This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin-Spin Correlations in the Kitaev Model at Finite Temperatures: Approximate and Exact Results via Green’s Function Equation of Motion

Hibiki Takegami takegami.hibiki.64h@st.kyoto-u.ac.jp Course of Studies on Materials Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan    Takao Morinari morinari.takao.5s@kyoto-u.ac.jp Course of Studies on Materials Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
Abstract

The Kitaev model, defined on a honeycomb lattice, features an exactly solvable ground state with fractionalized Majorana fermion excitations, which can potentially form non-Abelian anyons crucial for fault-tolerant topological quantum computing. Although Majorana fermions are essential for obtaining the exact ground state, their physical interpretation in terms of spin operators remains unclear. In this study, we employ a Green’s function approach that maintains SU(2) symmetry to address this issue and explore the model’s finite temperature properties. Our results demonstrate that the computed temperature dependence of the correlation functions closely approximates the exact values at zero temperature, confirming the accuracy of our method. We also present several exact results concerning the spin Green’s function and spin-spin correlation functions that are specific to the Kitaev model.

Quantum spin liquids have emerged as a central topic in condensed matter physics, capturing significant attention due to their complex and intriguing properties Savary and Balents (2017). Among the various theoretical models, the Kitaev model is particularly notable for its exactly solvable ground state, which features fractionalized Majorana fermions Kitaev (2006). This model is not only analytically tractable but also holds potential for real-world applications in materials with significant spin-orbit coupling Jackeli and Khaliullin (2009); Takagi et al. (2019). Majorana fermions play a crucial role in the development of topological quantum computers, offering a platform for fault-tolerant quantum computation Kitaev (2003); Nayak et al. (2008).

While investigating the Kitaev model in terms of Majorana fermions provides significant mathematical elegance, a deeper understanding of the physical nature of Majorana fermions may be achieved through the study of spin operators. However, the Kitaev model presents substantial challenges due to its highly frustrated and strongly correlated nature.

In this paper, we employ the spin Green’s function approach for the spin operators while preserving SU(2) symmetry and solve its equation of motion. This method, which maintains SU(2) symmetry Kondo and Yamaji (1972), is particularly suitable because the system does not exhibit magnetic long-range order even at zero temperature. Another critical observation is that the spin-spin correlation function in the ground state is finite only between nearest neighbor sites Baskaran et al. (2007), suggesting that the spin-spin correlation length remains short-ranged even at finite temperatures. Since the equation of motion for the Green’s function Zubarev (1960) relies on finite-range correlation functions, it is well-suited for exploring the finite temperature properties of the Kitaev model. Additionally, this approach aligns with the high-temperature expansion Kondo and Yamaji (1972), enhancing the accuracy of results at higher temperatures. Physically, our spin Green’s function describes the propagation of a pair of 2\mathbb{Z}_{2} fluxes. Our results demonstrate that the computed temperature dependence of the correlation functions yields a value at zero temperature that is quite close to the exact value. Furthermore, we present several exact results regarding spin-spin correlation functions at finite temperatures.

The Hamiltonian of the isotropic Kitaev model on the honeycomb lattice is given by Kitaev (2006):

=Kγ=x,y,zi,jγSiγSjγ,{\cal H}=-K\sum_{\gamma=x,y,z}\sum_{{\langle i,j\rangle}_{\gamma}}S_{i}^{\gamma}S_{j}^{\gamma}, (1)

where SiγS_{i}^{\gamma} is the γ\gamma-component of the spin-1/2 operator at site ii, and we consider the ferromagnetic Kitaev coupling K>0K>0. The summation of i,jγ{\langle i,j\rangle}_{\gamma} represents the sum over the nearest neighbor sites connected by a γ\gamma bond, as shown in Fig. 1. In the honeycomb lattice, each unit cell comprises two sites corresponding to the A and B sublattices, as illustrated in Fig. 1. Additionally, Fig. 1 shows a plaquette pp consisting of six sites. For this plaquette, we define the following plaquette operator Kitaev (2006):

Wp=σ1xσ2yσ3zσ4xσ5yσ6z,W_{p}=\sigma_{1}^{x}\sigma_{2}^{y}\sigma_{3}^{z}\sigma_{4}^{x}\sigma_{5}^{y}\sigma_{6}^{z}, (2)

where σiγ\sigma_{i}^{\gamma} represents the γ\gamma-component of the Pauli matrix at site ii. σiγ\sigma_{i}^{\gamma} can be expressed as σiγ=ibiγci\sigma_{i}^{\gamma}=ib_{i}^{\gamma}c_{i} in terms of two types of Majorana fermions Kitaev (2006), where this equality holds by restricting the extended Hilbert space of Majorana fermions to the physical Hilbert space of the original spin operators. The product of two Majorana fermions, biγb_{i}^{\gamma} and bjγb_{j}^{\gamma}, residing at nearest neighbor sites forms a 2\mathbb{Z}_{2} gauge field. In this formulation, WpW_{p} represents the 2\mathbb{Z}_{2} gauge flux. Meanwhile, the Majorana fermions cic_{i} are itinerant under these 2\mathbb{Z}_{2} gauge fields.

Refer to caption
Figure 1: (Color online) Kitaev model on the honeycomb lattice, showing two interpenetrating sublattices, A and B. Sublattice A is represented by red circles, while sublattice B is represented by blue circles. The direction-dependent interactions in Eq. (1) are labeled as xx, yy, and zz. The lattice vectors are denoted as 𝐧1=(3/2,3/2)a0{\bf n}_{1}=(\sqrt{3}/2,3/2)a_{0} and 𝐧2=(3/2,3/2)a0{\bf n}_{2}=(-\sqrt{3}/2,3/2)a_{0}, where a0a_{0} is the nearest neighbor distance. The plaquette operator WpW_{p} for plaquette pp is defined by Eq. (2).

An intriguing aspect of the Kitaev model is that it has been rigorously demonstrated that its ground state is a spin liquid state without long-range magnetic order. Because of the absence of the magnetic long-range order, we may apply SU(2) invariant formalsim of the Green’s function methodKondo and Yamaji (1972). We define the Matsubara Green’s function:

Gnα1,mα2γ(τ)=TτSnα1γ(τ)Smα2γ(0)Snα1γ|Smα2γτ.G_{n{\alpha_{1}},m{\alpha_{2}}}^{\gamma}\left(\tau\right)=-\left\langle{{T_{\tau}}S_{n{\alpha_{1}}}^{\gamma}\left(\tau\right)S_{m{\alpha_{2}}}^{\gamma}\left(0\right)}\right\rangle\equiv{\left\langle{{S_{n{\alpha_{1}}}^{\gamma}}}\mathrel{\left|{\vphantom{{S_{n{\alpha_{1}}}^{\gamma}}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{\tau}}. (3)

Here τ\tau represents the imaginary time and TτT_{\tau} represents the imaginary time ordering operator. The notation SnαγS_{n{\alpha}}^{\gamma} represents the γ\gamma-th component of the spin operator for the α\alpha-th sublattice within the nn-th unit cell.

Before delving into the analysis of the Green’s function, we first discuss its physical meaning. Specifically, we consider the Green’s function (3) with γ=x\gamma=x, α1=B\alpha_{1}=B, and α2=A\alpha_{2}=A. This Green’s function describes a process where the 2\mathbb{Z}_{2} flux values at adjacent hexagon plaquettes are flipped at imaginary time 0 and then flipped again at imaginary time τ\tau. This process is schematically illustrated in Fig. 2. We observe that any flipped 2\mathbb{Z}_{2} flux values must be flipped again; otherwise, the thermal average will vanish.

Refer to caption
Figure 2: (Color online) The physical meaning of the Green’s function (3) for the case of γ=x\gamma=x, α1=B\alpha_{1}=B, and α2=A\alpha_{2}=A, with the nn-th unit cell shifted from the mm-th unit cell by 𝐧1{\bf n}_{1}. In the left panel, the red circle denotes the A sublattice in the mm-th unit cell. At imaginary time 0, the 2\mathbb{Z}_{2} flux values in plaquettes p1p_{1} and p2p_{2} are flipped by the spin operator SmAxS_{m{\rm A}}^{x}, as indicated by the filled hexagons. In the right panel, the flipped 2\mathbb{Z}_{2} flux values are flipped again at imaginary time τ\tau by the spin operator SnBxS_{n{\rm B}}^{x}.

Denoting the inverse temperature by β=1/T\beta=1/T, where TT is the temperature, and setting the Boltzmann constant kBk_{\rm B} to 1, the Fourier representation of Eq. (3) in the Matsubara frequency, ωn=2πn/β\omega_{n}=2\pi n/\beta with nn being an integer, is given by

Gnα1,mα2γ(iωn)\displaystyle G_{n{\alpha_{1}},m{\alpha_{2}}}^{\gamma}\left({i{\omega_{n}}}\right) =\displaystyle= 0β𝑑τeiωnτGnα1,mα2γ(τ)\displaystyle\int_{0}^{\beta}{d\tau}{e^{i{\omega_{n}}\tau}}G_{n{\alpha_{1}},m{\alpha_{2}}}^{\gamma}\left(\tau\right) (4)
\displaystyle\equiv Snα1γ|Smα2γiωn\displaystyle{\left\langle{{S_{n{\alpha_{1}}}^{\gamma}}}\mathrel{\left|{\vphantom{{S_{n{\alpha_{1}}}^{\gamma}}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{i{\omega_{n}}}}

To find the expression for the Green’s function, we first take the derivative of Eq. (3) with respect to τ\tau and then perform the Fourier transform. This process yields

iωnSnα1γ|Smα2γiωn\displaystyle i{\omega_{n}}{\left\langle{{S_{n{\alpha_{1}}}^{\gamma}}}\mathrel{\left|{\vphantom{{S_{n{\alpha_{1}}}^{\gamma}}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{i{\omega_{n}}}} =\displaystyle= [,Snα1γ]|Smα2γiωn\displaystyle{\left\langle{{\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}}\mathrel{\left|{\vphantom{{\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{i{\omega_{n}}}} (5)
+[Snα1γ,Smα2γ].\displaystyle+\left\langle{\left[{S_{n{\alpha_{1}}}^{\gamma},S_{m{\alpha_{2}}}^{\gamma}}\right]}\right\rangle.

Now we have a new Green’s function, represented by the first term on the right-hand side. The equation of motion for this Green’s function is given by

iωn[,Snα1γ]|Smα2γiωn\displaystyle i{\omega_{n}}{\left\langle{{\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}}\mathrel{\left|{\vphantom{{\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{i{\omega_{n}}}} =\displaystyle= [,[,Snα1γ]]|Smα2γiωn\displaystyle{\left\langle{{\left[{{\cal H},\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}\right]}}\mathrel{\left|{\vphantom{{\left[{{\cal H},\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}\right]}{S_{m{\alpha_{2}}}^{\gamma}}}}\right.\kern-1.2pt}{{S_{m{\alpha_{2}}}^{\gamma}}}\right\rangle_{i{\omega_{n}}}} (6)
+[[,Snα1γ],Smα2γ].\displaystyle+\left\langle{\left[{\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right],S_{m{\alpha_{2}}}^{\gamma}}\right]}\right\rangle.

We first compute [,Snα1γ]\left[{{\cal H},S_{n{\alpha 1}}^{\gamma}}\right], and then compute [,[,Snα1γ]]\left[{{\cal H},\left[{{\cal H},S_{n{\alpha_{1}}}^{\gamma}}\right]}\right]. From the latter calculation, terms like SnAγSn1BxSn2Aγ|Smαxiωn{\left\langle{{S_{nA}^{\gamma}S_{{n_{1}}B}^{x}S_{{n_{2}}A}^{\gamma}}}\mathrel{\left|{\vphantom{{S_{nA}^{\gamma}S_{{n_{1}}B}^{x}S_{{n_{2}}A}^{\gamma}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}}, SnγSn1BγSn2Ax|Smαxiωn{\left\langle{{S_{n}^{\gamma}S_{{n_{1}}B}^{\gamma}S_{{n_{2}}A}^{x}}}\mathrel{\left|{\vphantom{{S_{n}^{\gamma}S_{{n_{1}}B}^{\gamma}S_{{n_{2}}A}^{x}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}}, etc., appear. Instead of considering the equation of motion for such terms, we approximate them as the product of a correlation function and a Green’s function with a reduced number of spins, using the so-called Tyablikov decoupling Tyablikov and Bonch-Bruevich (1962), as follows:

SnAγSn1BxSn2Aγ|Smαxiωn\displaystyle{\left\langle{{S_{nA}^{\gamma}S_{{n_{1}}B}^{x}S_{{n_{2}}A}^{\gamma}}}\mathrel{\left|{\vphantom{{S_{nA}^{\gamma}S_{{n_{1}}B}^{x}S_{{n_{2}}A}^{\gamma}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}} \displaystyle\simeq αcAAγ(𝐑n2𝐑n)\displaystyle\alpha c_{AA}^{\gamma}\left({{{\bf{R}}_{{n_{2}}}}-{{\bf{R}}_{n}}}\right) (7)
×Sn1Bx|Smαxiωn,\displaystyle\times{\left\langle{{S_{{n_{1}}B}^{x}}}\mathrel{\left|{\vphantom{{S_{{n_{1}}B}^{x}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}},
SnAγSn1BγSn2Ax|Smαxiωn\displaystyle{\left\langle{{S_{nA}^{\gamma}S_{{n_{1}}B}^{\gamma}S_{{n_{2}}A}^{x}}}\mathrel{\left|{\vphantom{{S_{nA}^{\gamma}S_{{n_{1}}B}^{\gamma}S_{{n_{2}}A}^{x}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}} \displaystyle\simeq αcABγ(𝐑n1𝐑n)\displaystyle\alpha c_{AB}^{\gamma}\left({{{\bf{R}}_{{n_{1}}}}-{{\bf{R}}_{n}}}\right) (8)
×Sn2Ax|Smαxiωn,\displaystyle\times{\left\langle{{S_{{n_{2}}A}^{x}}}\mathrel{\left|{\vphantom{{S_{{n_{2}}A}^{x}}{S_{m\alpha}^{x}}}}\right.\kern-1.2pt}{{S_{m\alpha}^{x}}}\right\rangle_{i{\omega_{n}}}},

where α\alpha is a correction parameter in this approximationKondo and Yamaji (1972) to be determined from the constraint. The approximation is more accurate when one applies this decoupling scheme at Green’s functions with more spins or in higher spatial dimensionsSasamoto and Morinari (2024). Here, the correlation functions are defined by

cα1α2γ(𝐑n2𝐑n1)=Sn1α1γSn2α2γc_{{\alpha_{1}}{\alpha_{2}}}^{\gamma}\left({{{\bf{R}}_{{n_{2}}}}-{{\bf{R}}_{{n_{1}}}}}\right)=\left\langle{S_{{n_{1}}{\alpha_{1}}}^{\gamma}S_{{n_{2}}{\alpha_{2}}}^{\gamma}}\right\rangle (9)

with 𝐑n{\bf R}_{n} being the coordinate vector of the nn-th unit cell.

After a tedious but straightforward calculation followed by a Fourier transform to momentum space, we obtain

[(iωn)2K22]Gx(𝐪,iωn)K2M(𝐪)Gx(𝐪,iωn)KN(𝐪).\left[{{{\left({i{\omega_{n}}}\right)}^{2}}-\frac{K^{2}}{2}}\right]{{G}^{x}}\left({{\bf{q}},i{\omega_{n}}}\right)-{K^{2}}M\left({\bf{q}}\right){{G}^{x}}\left({{\bf{q}},i{\omega_{n}}}\right)\simeq KN\left({\bf{q}}\right). (10)

The matrix form of the Green’s function, Gx(𝐪,iωn){{G}^{x}}\left({{\bf{q}},i{\omega_{n}}}\right), is given by:

Gx(𝐪,iωn)=(GAAx(𝐪,iωn)GABx(𝐪,iωn)GBAx(𝐪,iωn)GBBx(𝐪,iωn)).{{G}^{x}}\left({{\bf{q}},i{\omega_{n}}}\right)=\left({\begin{array}[]{*{20}{c}}{G_{AA}^{x}\left({{\bf{q}},i{\omega_{n}}}\right)}&{G_{AB}^{x}\left({{\bf{q}},i{\omega_{n}}}\right)}\\ {G_{BA}^{x}\left({{\bf{q}},i{\omega_{n}}}\right)}&{G_{BB}^{x}\left({{\bf{q}},i{\omega_{n}}}\right)}\end{array}}\right). (11)

The components of the matrices M(𝐪)M({\bf q}) and N(𝐪)N({\bf q}) are:

MAA(𝐪)/α\displaystyle{M_{AA}}\left({\bf{q}}\right)/\alpha =\displaystyle= cABy(0)ei𝐪𝐧1+cABz(𝐧2)ei𝐪(𝐧1𝐧2),\displaystyle c_{AB}^{y}\left(0\right){e^{i{\bf{q}}\cdot{{\bf{n}}_{1}}}}+c_{AB}^{z}\left({{{\bf{n}}_{2}}}\right){e^{i{\bf{q}}\cdot\left({{{\bf{n}}_{1}}-{{\bf{n}}_{2}}}\right)}}, (12)
MAB(𝐪)/α\displaystyle{M_{AB}}\left({\bf{q}}\right)/\alpha =\displaystyle= cAAy(𝐧2)[cABz(0)+cABy(𝐧2)]ei𝐪𝐧1\displaystyle-c_{AA}^{y}\left({-{{\bf{n}}_{2}}}\right)-\left[{c_{AB}^{z}\left(0\right)+c_{AB}^{y}\left({{{\bf{n}}_{2}}}\right)}\right]{e^{-i{\bf{q}}\cdot{{\bf{n}}_{1}}}} (13)
cAAz(𝐧2)ei𝐪𝐧2,\displaystyle-c_{AA}^{z}\left({{{\bf{n}}_{2}}}\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{2}}}},
MBA(𝐪)/α\displaystyle{M_{BA}}\left({\bf{q}}\right)/\alpha =\displaystyle= cBBy(𝐧2)[cBAz(0)+cBAy(𝐧2)]ei𝐪𝐧1\displaystyle-c_{BB}^{y}\left({{{\bf{n}}_{2}}}\right)-\left[{c_{BA}^{z}\left(0\right)+c_{BA}^{y}\left({-{{\bf{n}}_{2}}}\right)}\right]{e^{i{\bf{q}}\cdot{{\bf{n}}_{1}}}} (14)
cBBz(𝐧2)ei𝐪𝐧2,\displaystyle-c_{BB}^{z}\left({-{{\bf{n}}_{2}}}\right){e^{i{\bf{q}}\cdot{{\bf{n}}_{2}}}},
MBB(𝐪)/α\displaystyle{M_{BB}}\left({\bf{q}}\right)/\alpha =\displaystyle= cBAy(0)ei𝐪𝐧1\displaystyle c_{BA}^{y}\left(0\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{1}}}} (15)
+cBAz(𝐧2)ei𝐪(𝐧1𝐧2).\displaystyle+c_{BA}^{z}\left({-{{\bf{n}}_{2}}}\right){e^{-i{\bf{q}}\cdot\left({{{\bf{n}}_{1}}-{{\bf{n}}_{2}}}\right)}}.

and

NAA(𝐪)\displaystyle{N_{AA}}\left({\bf{q}}\right) =\displaystyle= cABz(0)+cABy(𝐧2)\displaystyle c_{AB}^{z}\left(0\right)+c_{AB}^{y}\left({{{\bf{n}}_{2}}}\right)
NAB(𝐪)\displaystyle{N_{AB}}\left({\bf{q}}\right) =\displaystyle= cABy(0)cABz(𝐧2)ei𝐧2𝐪\displaystyle-c_{AB}^{y}\left(0\right)-c_{AB}^{z}\left({{{\bf{n}}_{2}}}\right){e^{-i{{\bf{n}}_{2}}\cdot{\bf{q}}}}
NBA(𝐪)\displaystyle{N_{BA}}\left({\bf{q}}\right) =\displaystyle= cBAy(0)cBAz(𝐧2)ei𝐧2𝐪\displaystyle-c_{BA}^{y}\left(0\right)-c_{BA}^{z}\left({-{{\bf{n}}_{2}}}\right){e^{i{{\bf{n}}_{2}}\cdot{\bf{q}}}}
NBB(𝐪)\displaystyle{N_{BB}}\left({\bf{q}}\right) =\displaystyle= cBAz(0)+cBAy(𝐧2),\displaystyle c_{BA}^{z}\left(0\right)+c_{BA}^{y}\left({-{{\bf{n}}_{2}}}\right), (16)

respectively. We obtain a similar formula for Gy(𝐪,iωn){{G}^{y}}\left({{\bf{q}},i{\omega_{n}}}\right) and Gz(𝐪,iωn){{G}^{z}}\left({{\bf{q}},i{\omega_{n}}}\right). However, due to the symmetry of the honeycomb lattice, we do not need these for the isotropic case.

Solving Eq. (10), we obtain

Gx(𝐪,iωn)\displaystyle{G^{x}}\left({{\bf{q}},i{\omega_{n}}}\right) =\displaystyle= K[(iωn)2(ω𝐪(+))2][(iωn)2(ω𝐪())2]\displaystyle\frac{K}{{\left[{{{\left({i{\omega_{n}}}\right)}^{2}}-{{\left({\omega_{\bf{q}}^{\left(+\right)}}\right)}^{2}}}\right]\left[{{{\left({i{\omega_{n}}}\right)}^{2}}-{{\left({\omega_{\bf{q}}^{\left(-\right)}}\right)}^{2}}}\right]}} (19)
×((iωn)2K2/2a𝐪b𝐪b𝐪(iωn)2K2/2a𝐪)N𝐪,\displaystyle\times\left({\begin{array}[]{*{20}{c}}{{{\left({i{\omega_{n}}}\right)}^{2}}-{K^{2}}/2-a_{\bf{q}}^{*}}&{{b_{\bf{q}}}}\\ {b_{\bf{q}}^{*}}&{{{\left({i{\omega_{n}}}\right)}^{2}}-{K^{2}}/2-{a_{\bf{q}}}}\end{array}}\right){N_{\bf{q}}},

The energy dispersion ω𝐪(±)\omega_{\bf{q}}^{(\pm)} is given by

ω𝐪(±)=K22+Rea𝐪±λ𝐪,\omega_{\bf{q}}^{\left(\pm\right)}=\sqrt{\frac{{{K^{2}}}}{2}+{\mathop{\rm Re}\nolimits}{a_{\bf{q}}}\pm{\lambda_{\bf{q}}}}, (20)

with λ𝐪=|b𝐪|2|Ima𝐪|2{\lambda_{\bf{q}}}=\sqrt{{{\left|{{b_{\bf{q}}}}\right|}^{2}}-{{\left|{{\mathop{\rm Im}\nolimits}{a_{\bf{q}}}}\right|}^{2}}}. The terms a𝐪a_{\bf q} and b𝐪b_{\bf q} are defined by

a𝐪=+αK2ei𝐪𝐧1[cABy(0)+cABz(𝐧2)ei𝐪𝐧2],{a_{\bf{q}}}=+\alpha{K^{2}}{e^{i{\bf{q}}\cdot{{\bf{n}}_{1}}}}\left[{c_{AB}^{y}\left(0\right)+c_{AB}^{z}\left({{{\bf{n}}_{2}}}\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{2}}}}}\right], (21)
b𝐪\displaystyle{b_{\bf{q}}} =\displaystyle= αK2[cABz(0)ei𝐪𝐧1+cABy(𝐧2)ei𝐪𝐧1\displaystyle-\alpha{K^{2}}\left[c_{AB}^{z}\left(0\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{1}}}}+c_{AB}^{y}\left({{{\bf{n}}_{2}}}\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{1}}}}\right. (22)
+cAAy(𝐧2)+cAAz(𝐧2)ei𝐪𝐧2],\displaystyle\left.+c_{AA}^{y}\left({-{{\bf{n}}_{2}}}\right)+c_{AA}^{z}\left({{{\bf{n}}_{2}}}\right){e^{-i{\bf{q}}\cdot{{\bf{n}}_{2}}}}\right],

In our Green’s function approach, we determine the correlation functions in a self-consistent manner. The correlation functions are expressed in terms of the Green’s function as

cα1α2x(𝐫)=1N𝐪ei𝐪𝐫[Gx(𝐪,τ=0+)]α1α2,c_{{\alpha_{1}}{\alpha_{2}}}^{x}\left({\bf{r}}\right)=-\frac{1}{N}\sum\limits_{\bf{q}}{{e^{i{\bf{q}}\cdot{\bf{r}}}}}{\left[{{G^{x}}\left({{\bf{q}},\tau={0^{+}}}\right)}\right]_{{\alpha_{1}}{\alpha_{2}}}}, (23)

where NN is the number of unit cells. In the numerical calculations below, we take N=45×45N=45\times 45. There are relationships between the correlation functions due to the absence of magnetic long-range order and any symmetry breaking. By utilizing these symmetries, we define

c1cABz(0)=cABx(𝐧1)=cABy(𝐧2),{c_{1}}\equiv c_{AB}^{z}\left(0\right)=c_{AB}^{x}\left({{{\bf{n}}_{1}}}\right)=c_{AB}^{y}\left({{{\bf{n}}_{2}}}\right), (24)
c1\displaystyle{c^{\prime}_{1}} \displaystyle\equiv cABx(0)=cABy(𝐧1)=cABz(𝐧2)\displaystyle c_{AB}^{x}\left(0\right)=c_{AB}^{y}\left({{{\bf{n}}_{1}}}\right)=c_{AB}^{z}\left({{{\bf{n}}_{2}}}\right) (25)
=\displaystyle= cABy(0)=cABz(𝐧1)=cABx(𝐧2),\displaystyle c_{AB}^{y}\left(0\right)=c_{AB}^{z}\left({{{\bf{n}}_{1}}}\right)=c_{AB}^{x}\left({{{\bf{n}}_{2}}}\right),
c2\displaystyle{c_{2}} \displaystyle\equiv cAAy(𝐧2)=cAAx(𝐧1𝐧2)=cAAz(𝐧1)\displaystyle c_{AA}^{y}\left({{{\bf{n}}_{2}}}\right)=c_{AA}^{x}\left({{{\bf{n}}_{1}}-{{\bf{n}}_{2}}}\right)=c_{AA}^{z}\left({{{\bf{n}}_{1}}}\right) (26)
=\displaystyle= cAAz(𝐧2)=cAAy(𝐧1𝐧2)=cAAx(𝐧1).\displaystyle c_{AA}^{z}\left({{{\bf{n}}_{2}}}\right)=c_{AA}^{y}\left({{{\bf{n}}_{1}}-{{\bf{n}}_{2}}}\right)=c_{AA}^{x}\left({{{\bf{n}}_{1}}}\right).

The self-consistent equations to be solved are then given by

c1\displaystyle{c_{1}} =\displaystyle= 1βN𝐪s=±ei𝐪𝐧1ZABs(ω𝐪s)2g(βω𝐪s2)\displaystyle\frac{1}{{\beta N}}\sum\limits_{\bf{q}}{\sum\limits_{s=\pm}{{e^{i{\bf{q}}\cdot{{\bf{n}}_{1}}}}}}\frac{{Z_{AB}^{s}}}{{{{\left({\omega_{\bf{q}}^{s}}\right)}^{2}}}}g\left({\frac{{\beta\omega_{\bf{q}}^{s}}}{2}}\right) (27)
c1\displaystyle c_{1}^{\prime} =\displaystyle= 1βN𝐪s=±ZABs(ω𝐪s)2g(βω𝐪s2)\displaystyle\frac{1}{{\beta N}}\sum\limits_{\bf{q}}{\sum\limits_{s=\pm}{\frac{{Z_{AB}^{s}}}{{{{\left({\omega_{\bf{q}}^{s}}\right)}^{2}}}}g\left({\frac{{\beta\omega_{\bf{q}}^{s}}}{2}}\right)}} (28)
c2\displaystyle{c_{2}} =\displaystyle= 1βN𝐪s=±ei𝐪(𝐧1𝐧2)ZAAs(ω𝐪s)2g(βω𝐪s2)\displaystyle\frac{1}{{\beta N}}\sum\limits_{\bf{q}}{\sum\limits_{s=\pm}{{e^{i{\bf{q}}\cdot\left({{{\bf{n}}_{1}}-{{\bf{n}}_{2}}}\right)}}}}\frac{{Z_{AA}^{s}}}{{{{\left({\omega_{\bf{q}}^{s}}\right)}^{2}}}}g\left({\frac{{\beta\omega_{\bf{q}}^{s}}}{2}}\right) (29)
14\displaystyle\frac{1}{4} =\displaystyle= 1βN𝐪s=±ZAAs(ω𝐪s)2g(βω𝐪s2)\displaystyle\frac{1}{{\beta N}}\sum\limits_{\bf{q}}{\sum\limits_{s=\pm}{\frac{{Z_{AA}^{s}}}{{{{\left({\omega_{\bf{q}}^{s}}\right)}^{2}}}}g\left({\frac{{\beta\omega_{\bf{q}}^{s}}}{2}}\right)}} (30)

where g(x)=xcothxg(x)=x\coth x. The last equation is obtained from cAAx(0)=1/4c_{AA}^{x}\left(0\right)=1/4. ZAA±Z_{AA}^{\pm} and ZAB±Z_{AB}^{\pm} are given by

ZAA±=±2(iIma𝐪±λ𝐪)c1+b𝐪(ei𝐧2𝐪+1)c12λ𝐪,Z_{AA}^{\pm}=\pm\frac{2\left({i{\rm Im}{a_{\bf{q}}}\pm{\lambda_{\bf{q}}}}\right){c_{1}}+{b_{\bf{q}}}\left({{e^{i{{\bf{n}}_{2}}\cdot{\bf{q}}}}+1}\right){c_{1}^{\prime}}}{{2{\lambda_{\bf{q}}}}}, (31)
ZAB±=(ei𝐧2𝐪+1)(iIma𝐪±λ𝐪)c1+2b𝐪c12λ𝐪.Z_{AB}^{\pm}=\mp\frac{{\left({{e^{-i{{\bf{n}}_{2}}\cdot{\bf{q}}}}+1}\right)\left({i{\rm Im}{a_{\bf{q}}}\pm{\lambda_{\bf{q}}}}\right){c_{1}^{\prime}}+2{b_{\bf{q}}}{c_{1}}}}{{2{\lambda_{\bf{q}}}}}. (32)

The temperature dependencies of c1c_{1}, c1c^{\prime}_{1}, and c2c_{2} are shown in the left panel of Fig. 3. The value of 4c14c_{1} converges to 0.4859 as TT approaches zero, closely approximating the exact valueBaskaran et al. (2007) of 0.52494c1exact0.5249\equiv 4c_{1}^{\rm exact}. At high temperatures, the behavior of c1c_{1} aligns well with the high-temperature expansion result, expressed as c1=βK/16+O(β3)c_{1}=\beta K/16+O(\beta^{3}). Meanwhile, c1c^{\prime}_{1} and c2c_{2} remain zero across all temperatures, a finding rigorously confirmedBaskaran et al. (2007) at T=0T=0 and consistent even at finite temperatures. The vanishing of c1c^{\prime}_{1} and c2c_{2} can be understood as follows. Consider, for instance, cABx(0)=S0AxS0Bxc_{AB}^{x}(0)=\left\langle S_{0A}^{x}S_{0B}^{x}\right\rangle, which corresponds to c1c^{\prime}_{1}. In this correlation function, the spin operator S0BxS_{0B}^{x} flips the 2\mathbb{Z}_{2} flux values of the adjacent hexagons that share the xx-bond emanating from the B sublattice in the 0-th unit cell. Similarly, the spin operator S0AxS_{0A}^{x} flips the 2\mathbb{Z}_{2} flux values of the adjacent hexagons that share the xx-bond emanating from the A sublattice in the 0-th unit cell. Since the hexagons affected by S0BxS_{0B}^{x} and S0AxS_{0A}^{x} are different and the Hamiltonian HH does not alter the 2\mathbb{Z}_{2} flux values, the thermal average of their product is identically zero. This reasoning also applies to the other correlation functions, highlighting a unique characteristic of the Kitaev model. The same argument leads to TτSnα1γ1(τ)Smα2γ2(0)0\left\langle{{T_{\tau}}S_{n{\alpha_{1}}}^{\gamma_{1}}\left(\tau\right)S_{m{\alpha_{2}}}^{\gamma_{2}}\left(0\right)}\right\rangle\equiv 0 for γ1γ2\gamma_{1}\neq\gamma_{2}. The flux values flipped by Smα2γ2S_{m{\alpha_{2}}}^{\gamma_{2}} at imaginary time 0 cannot be flipped again by Snα1γ1S_{n{\alpha_{1}}}^{\gamma_{1}} at imaginary time τ\tau. We note that this result is exact. From this observation, we may restrict the two-spin Green’s function to the form of Eq. (3). We also note that the vanishing of c1c^{\prime}_{1} and c2c_{2} results in ω𝐪±\omega_{\bf{q}}^{\pm} forming a flat band, given by K(1±4αc1)/2K\sqrt{\left(1\pm 4\alpha{c_{1}}\right)/2}.

In the right panel of Fig. 3, we present the temperature dependence of α\alpha. As temperature increases, α\alpha approaches one, indicating that the decoupling approximation in Eqs. (7) and (8) becomes exact without the need for the correction parameter α\alpha. However, deviations of α\alpha from one at lower temperatures suggest the necessity of this correction parameter in the equations.

Refer to caption
Figure 3: (Color online) Temperature dependence of the correlation functions and the correction parameter α\alpha. Left panel: The temperature dependencies of c1c_{1}, c1c^{\prime}_{1}, and c2c_{2} are shown. The value of 4c14c_{1} approaches the exact theoretical valueBaskaran et al. (2007) of 0.5249 at T=0T=0 and aligns with high-temperature expansion result, which is indicated by the dashed line, at elevated temperatures, while c1c^{\prime}_{1} and c2c_{2} remain zero across the temperature range. Right panel: The variation of the parameter α\alpha with temperature, demonstrating the exactness of the decoupling approximation at high temperatures (where α\alpha approaches 1) and the necessity of this correction parameter at lower temperatures, where α\alpha deviates from 1.

From the temperature dependence of c1c_{1}, the internal energy can be computed using the relation

E=H=34NKc1.E=\left\langle H\right\rangle=-\frac{3}{4}NK{c_{1}}. (33)

We compared the temperature dependence of the energy with the results shown in Fig. 15(a) of Ref. Motome and Nasu, 2020, as shown in Fig. 4(a). We found an almost perfect match for T>THT>T_{H} with TH0.375KT_{H}\simeq 0.375K, but our energy values are slightly higher for T<THT<T_{H}. This discrepancy likely originates from the error in the c1c_{1} value at T=0T=0. Although the relative error is |(c1exactc1)/c1exact|0.07|(c_{1}^{\rm exact}-c_{1})/c_{1}^{\rm exact}|\simeq 0.07, minor details and significant physics, such as the fractionalization of spins, may be hidden within this discrepancy.

Figure 4 shows the temperature dependencies of the specific heat and entropy. The specific heat is calculated from the temperature derivative of the internal energy EE and compared with the high-temperature expansion (HTE) result, CHTE=3NK2β2/16C_{\rm HTE}=3NK^{2}\beta^{2}/16. The entropy is computed using the formula:

S=S()TT0𝑑TC(T)TT0𝑑TCHTE(T)T,S=S\left(\infty\right)-\int_{T}^{T_{0}}dT\frac{C(T)}{T}-\int_{T_{0}}^{\infty}dT\frac{C_{\rm HTE}(T)}{T}, (34)

where S()=2Nln2S\left(\infty\right)=2N\ln 2 and T0T_{0} is a sufficiently large value at which the Green’s function result for the specific heat closely approximates the HTE result (here, we take T0/K=10T_{0}/K=10). The specific heat exhibits a single broad peak around T/K0.4T/K\simeq 0.4, consistent with mean field calculations Saheli et al. (2024). We likely fail to observe the low-temperature peak around TL0.012KT_{L}\simeq 0.012K reported in Ref. Nasu et al., 2015 due to the discrepancy mentioned above. The entropy indicates the presence of residual entropy, but if fractionalization were captured, this residual entropy should vanish, as it has been rigorously shown that there are no 2\mathbb{Z}_{2} fluxes in the ground state and the system must satisfy the third law of thermodynamics.

Refer to caption
Figure 4: (Color online) Temperature dependencies of (a) the energy E=3NKc1/4E=-3NKc_{1}/4, (b) specific heat, and (c) entropy. The red circles in (a) are data taken from Ref. Motome and Nasu, 2020. The specific heat, calculated from the temperature derivative of the internal energy EE, is compared with the high-temperature expansion result CHTE=3NK2β2/16C_{\rm HTE}=3NK^{2}\beta^{2}/16. It displays a broad peak around T/K0.4T/K\simeq 0.4 without any lower-temperature peaks. The entropy is computed based on Eq. (34).

In conclusion, we have investigated the Kitaev model at finite temperatures using a Green’s function approach that maintains SU(2) symmetry. Our computations of the temperature dependence of the correlation functions revealed that the nearest neighbor spin-spin correlation functions closely match the exact values at zero temperature. Additionally, we have presented several exact results concerning the spin Green’s function and spin-spin correlation functions specific to the Kitaev model. These findings enhance our understanding of the Kitaev model and provide a novel approach to this model without relying on Majorana fermions. This work opens up new avenues for exploring the dynamic properties of the Kitaev model and its applications in the study of quantum spin liquids and topological quantum computing.

Acknowledgements.
The authors thank K. Harada and D. Sasamoto for helpful discussions.

References