This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin(7)\mathrm{Spin}(7) metrics of cohomogeneity one with Aloff–Wallach spaces as principal orbits

Hanci Chi
Abstract

In this article, we construct two continuous 1-parameter family of non-compact Spin(7)\mathrm{Spin}(7) metrics with both chiralities, with the principal orbit an Aloff–Wallach space Nk,lN_{k,l} and the singular orbit 2\mathbb{CP}^{2}. For a generic Nk,lN_{k,l}, metrics constructed are locally asymptotically conical (ALC). For N1,1N_{1,1}, we construct two continuous 1-parameter families with geometric transition from asymptotically conical (AC) metrics to ALC metrics.

1 Introduction

Metrics with Spin(7)\mathrm{Spin}(7) holonomy are interesting subjects in differential geometry and theoretical physics. The first example was constructed in [Bry87] on the cone over Berger space SO(5)/SO(3)SO(5)/SO(3). The first complete example was constructed in [BS89] and [GPP90] on the spinor bundle over 𝕊4\mathbb{S}^{4}. The first compact example was constructed in [Joy96]. In recent years, Spin(7)\mathrm{Spin}(7) metrics with an Aloff–Wallach space as principal orbit became an active field of research. It is expected that a cohomogeneity one space with an Aloff–Wallach space as its principal orbit admits a continuous 1-parameter family of Spin(7)\mathrm{Spin}(7) metrics with asymptotically locally conical (ALC) asymptotics: each metric’s asymptotic limit is a product between a 7-dimensional Ricci-flat cone and a circle with fixed radius l>0l>0. Moreover, with ll\to\infty, the metric converges to an asymptotically conical (AC) one: its asymptotic limit is an 8-dimensional cone. In this way, one has a continuous 1-parameter family of metrics with non-maximal volume growth and its boundary is a metric with maximal volume growth.

An Aloff–Wallach space is a homogeneous space Nk,l:=SU(3)/U(1)k,lN_{k,l}:=SU(3)/U(1)_{k,l}, where U(1)k,lU(1)_{k,l} is embedded in SU(3)SU(3) as diag(ek1t,el1t,e(k+l)1t)\mathrm{diag}\left(e^{k\sqrt{-1}t},e^{l\sqrt{-1}t},e^{-(k+l)\sqrt{-1}t}\right) with integers kk and ll. Without loss of generality, we assume that kk and ll are coprime. Using outer automorphism and Weyl group of SU(3)SU(3) to normalize (k,l)(k,l), we assume kl0k\geq l\geq 0 in this article. Due to the geometric differences, we call Nk,lN_{k,l} an exceptional Aloff–Wallach space if kl(kl)=0kl(k-l)=0 and a generic Aloff–Wallach space if otherwise. With an Aloff–Wallach space as the principal orbit, one can reduce the Einstein equations to a system of nonlinear second order ODEs. The Spin(7)\mathrm{Spin}(7) condition, being Ricci-flat, is reduced to a system of first order ODEs. The isolated explicit solution of cohomogeneity one Spin(7)\mathrm{Spin}(7) metric with N1,0N_{1,0} as principal orbit and 2\mathbb{CP}^{2} as singular orbit was given in [GS02]. In [Rei11], the author proved that singular orbit of a cohomogeneity one Spin(7)\mathrm{Spin}(7) metric with a fixed Nk,lN_{k,l} can only be either 𝕊5\mathbb{S}^{5} or 2\mathbb{CP}^{2}. The singular orbit 𝕊5\mathbb{S}^{5} appears exclusively for the case N1,0N_{1,0}. Recently, some ALC Spin(7)\mathrm{Spin}(7) metrics with N1,0N_{1,0} as principal orbit and 𝕊5\mathbb{S}^{5} as singular orbit were constructed in [Fos21]. The setting with N1,0N_{1,0} as the principal orbit was further studied in [Leh20], in which examples in [GS02] and [Fos21] were extended to two continuous families of ALC Spin(7)\mathrm{Spin}(7) metrics. The boundary of each family is an AC Spin(7)\mathrm{Spin}(7) metric. Explicit solutions with N1,1N_{1,1} as principal orbit were given in [CGLP01] and [KY02a]. In [Baz07] and [Baz08], it is observed that formulas for Spin(7)\mathrm{Spin}(7) condition in [CGLP02a] and [CGLP02b] can be applied in a broader setting where the cohomogeneity one manifold is deformed from a HyperKähler cone. Specifically, by using the 3-Sasakian structure on N1,1N_{1,1}, a 2-parameter family of Spin(7)\mathrm{Spin}(7) metrics was constructed on a complex line bundle over SU(3)/T2SU(3)/T^{2} in [Baz07] and a 2-parameter family of Spin(7)\mathrm{Spin}(7) metrics was constructed on a quaternionic line bundle over 2\mathbb{CP}^{2} in [Baz08]. Explicit isolated solutions with a generic Nk,lN_{k,l} as principal orbit are included in [KY02a] and[CGLP02a].

This article aims to prove the global existence of two continuous 1-parameter families of Spin(7)\mathrm{Spin}(7) metrics of cohomogeneity one with any Aloff–Walach spaces Nk,lN_{k,l} as principal orbit. Past examples mentioned above are partially recovered in the construction. Specifically, a fixed Nk,lN_{k,l} can be viewed as fiber bundles over 2\mathbb{CP}^{2} with lens spaces L(1,|k+l|)L(1,|k+l|), L(1,|k|)L(1,|k|) and L(1,|l|)L(1,|l|) as fibers, respectively. Let i{k+l,k,l}i\in\{k+l,k,l\} and i0i\neq 0, define Mk,l(i)M_{k,l}^{(i)} to be the 4/|i|\mathbb{R}^{4}/\mathbb{Z}_{|i|} bundle over 2\mathbb{CP}^{2} with Nk,lN_{k,l} as principal orbit. We prove the following theorems.

Theorem 1.1.

Let kl0k\geq l\geq 0 be coprime. Let i{k+l,k}i\in\{k+l,k\}. If Nk,lN_{k,l} is generic, there exists a continuous 1-parameter family of forward complete Spin(7)\mathrm{Spin}(7) metrics {γ(s1,s2)(i)(s1,s2)𝕊1,s1,s2>0}\left\{\gamma^{(i)}_{(s_{1},s_{2})}\mid(s_{1},s_{2})\in\mathbb{S}^{1},s_{1},s_{2}>0\right\} on Mk,l(i)M^{(i)}_{k,l}. Spin(7)\mathrm{Spin}(7) metrics on Mk,l(k+l)M^{(k+l)}_{k,l} and the ones on Mk,l(k)M^{(k)}_{k,l} have opposite chirality. All γ(k+l)\gamma^{(k+l)}’s and γ(k)\gamma^{(k)}’s have ALC asymptotics with space at infinity as an 𝕊1\mathbb{S}^{1} bundle over the G2G_{2} cone over the nearly-Kähler SU(3)/T2SU(3)/T^{2}.

Note that for a generic Nk,lN_{k,l} as the principal orbit, metrics γ(s1,s2)(k+l)\gamma_{(s_{1},s_{2})}^{(k+l)} on Mk,l(k+l)M_{k,l}^{(k+l)} do not include the explicit ALC Spin(7)\mathrm{Spin}(7) metrics in [CGLP02a] and [KY02a]. Hence it is likely to extend the continuous family of ALC metrics in Theorem 1.1 to a larger family using other methods. Metrics γ(s1,s2)(k)\gamma_{(s_{1},s_{2})}^{(k)} on Mk,l(k)M_{k,l}^{(k)} are new to the best knowledge of the author.

It is worth mentioning that our method for proving Theorem 1.1 also applies for the case of exceptional N1,0N_{1,0}. Only ALC metrics are constructed in this way. For each (s1,s2)(s_{1},s_{2}), the obtained metrics γ(s1,s2)(1)\gamma_{(s_{1},s_{2})}^{(1)} with both chiralities on M1,0(1)M_{1,0}^{(1)} can be identified by a global 2\mathbb{Z}_{2} symmetry. They are part of the results obtained in [Leh20]. They have smooth extension to the singular orbit 2\mathbb{CP}^{2}. For a more complete study on the Spin(7)\mathrm{Spin}(7) metrics with N1,0N_{1,0} as principal orbit, please see [Fos21] and [Leh20] for more details.

We also consider the case where the principal orbit is the exceptional N1,1N_{1,1}

Theorem 1.2.

There exists a continuous 1-parameter family of forward complete Spin(7)\mathrm{Spin}(7) metrics {γ(s1,s2)(i)(s1,s2)𝕊1,s1s(i),s2>0}\left\{\gamma^{(i)}_{(s_{1},s_{2})}\mid(s_{1},s_{2})\in\mathbb{S}^{1},s_{1}\geq s^{(i)}_{*},s_{2}>0\right\} on M1,1(i)M^{(i)}_{1,1} with s(2)=310s^{(2)}_{*}=-\frac{3}{\sqrt{10}} and s(1)=12s^{(1)}_{*}=-\frac{1}{\sqrt{2}}. Spin(7)\mathrm{Spin}(7) metrics on M1,1(2)M^{(2)}_{1,1} and the ones on M1,1(1)M^{(1)}_{1,1} have opposite chiralities. All γ(s1,s2)(2)\gamma^{(2)}_{(s_{1},s_{2})}’s and γ(s1,s2)(1)\gamma^{(1)}_{(s_{1},s_{2})}’s have an ALC asymptotics with space at infinity as an 𝕊1\mathbb{S}^{1} bundle over the G2G_{2} cone over the nearly-Kähler SU(3)/T2SU(3)/T^{2} if s1>ss_{1}>s_{*}. If s1=ss_{1}=s_{*}, then the metrics have AC asymptotics with tangent cones at infinity with base homogeneous Einstein metrics on N1,1N_{1,1}.

Metrics γ(s1,s2)(2)\gamma_{(s_{1},s_{2})}^{(2)} on the orbifold M1,1(2)M_{1,1}^{(2)} are the ALC Spin(7)\mathrm{Spin}(7) metrics in [CGLP01] and some of the solutions in [Baz07]. It is worth mentioning that M1,1(1)M_{1,1}^{(1)} is in fact T2T^{*}\mathbb{CP}^{2}. Metrics γ(s1,s2)(1)\gamma_{(s_{1},s_{2})}^{(1)} on M1,1(1)M_{1,1}^{(1)} are the ones that were conjectured in [KY02b]. For most of the cases, we do not have metrics that shows geometric transition from AC Spin(7)\mathrm{Spin}(7) metrics to ALC Spin(7)\mathrm{Spin}(7) metrics like the ones that occur in [CGLP02a] and [Leh20]. However, if the principal orbit is N1,1N_{1,1}, we do have two continuous 1-parameter families of Spin(7)\mathrm{Spin}(7) metrics that have ACAC metrics on their respective boundaries. In particular, the AC metric on M1,1(1)M_{1,1}^{(1)} is the Calabi HyperKähler metric in [Cal79]. In other words, the 1-parameter family of ALC Spin(7)\mathrm{Spin}(7) metrics on M1,1(1)M_{1,1}^{(1)} can be desingularized with Calabi’s AC metric.

This article is structured as the following. In Section 2, we study the Ricci-flat system with an Nk,lN_{k,l} as the principal orbit and apply coordinate change that is similar to the one in [Chi19b] and [Chi21]. The coordinate change transforms the singular orbit 2\mathbb{CP}^{2}, the AC asymptotics, and the ALC asymptotics to critical points of a polynomial system. The singular orbit 𝕊5\mathbb{S}^{5}, uniquely appears in the N1,0N_{1,0} case, is blown up to the infinity in the new coordinate. Although being more complicated than the Spin(7)\mathrm{Spin}(7) subsystem, the Ricci-flat system has some important estimate that is not obvious in the Spin(7)\mathrm{Spin}(7) subsystem.

In Section 3, we study critical points of the Spin(7)\mathrm{Spin}(7) subsystem and recover the locally existing result in [Rei11]. The cohomogeneity one Spin(7)\mathrm{Spin}(7) metrics are represented by integral curves that emanates from various critical points.

In Section 4, we prove the global existence and the asymptotic limit by constructing compact invariant sets. The construction boils down to a classical algebraic geometry problem, which requires one to show non-negativity of a resultant polynomial. For readability, the very technical computation and formula are presented in the Appendix.

Acknowledgements. The author would like to thank NSFC for partial support under grants No. 11521101 and NO. 12071489. Thanks also go to Michael Baker, Jesse Madnick and McKenzie Wang for useful discussions.

2 The Spin(7)\mathrm{Spin}(7) holonomy cohomogeneity one system

In this section, we study the cohomogeneity one Ricci-flat system on Mk,l(i)M^{(i)}_{k,l} derived in [Rei11]. We apply a coordinate change so that the system becomes a system of first order polynomial ODEs. The Spin(7)\mathrm{Spin}(7) condition, originally a first order subsystem, is then transformed to a set of algebraic equation in the new coordinate.

Consider an Aloff–Wallach space Nk,lN_{k,l}, we fix the basis for 𝔰𝔲(3)\mathfrak{su}(3) as the one in [Rei11]. Specifically, we work with the basis

e1:=[010100000],e2:=1[010100000],e3:=[001000100],e4:=1[001000100]e5:=[000001010],e6:=1[000001010],e7:=1[2l+k000(2k+l)000kl],e8:=1[k000l000(k+l)],\begin{split}&e_{1}:=\begin{bmatrix}0&1&0\\ -1&0&0\\ 0&0&0\end{bmatrix},\quad e_{2}:=\sqrt{-1}\begin{bmatrix}0&1&0\\ 1&0&0\\ 0&0&0\end{bmatrix},\quad e_{3}:=\begin{bmatrix}0&0&1\\ 0&0&0\\ -1&0&0\end{bmatrix},\quad e_{4}:=\sqrt{-1}\begin{bmatrix}0&0&1\\ 0&0&0\\ 1&0&0\end{bmatrix}\\ &e_{5}:=\begin{bmatrix}0&0&0\\ 0&0&1\\ 0&-1&0\end{bmatrix},\quad e_{6}:=\sqrt{-1}\begin{bmatrix}0&0&0\\ 0&0&1\\ 0&1&0\end{bmatrix},\\ &e_{7}:=\sqrt{-1}\begin{bmatrix}2l+k&0&0\\ 0&-(2k+l)&0\\ 0&0&k-l\end{bmatrix},\quad e_{8}:=\sqrt{-1}\begin{bmatrix}k&0&0\\ 0&l&0\\ 0&0&-(k+l)\end{bmatrix},\\ \end{split} (2.1)

where e8e_{8} generates 𝔲(1)k,l\mathfrak{u}(1)_{k,l}. The isotropy representation 𝔰𝔲(3)/𝔲(1)k,l\mathfrak{su}(3)/\mathfrak{u}(1)_{k,l} is decomposed as

𝔰𝔲(3)/𝔲(1)k,l=𝔦𝔱kl𝔱2k+l𝔱k+2l,\mathfrak{su}(3)/\mathfrak{u}(1)_{k,l}=\mathfrak{i}\oplus\mathfrak{t}^{k-l}\oplus\mathfrak{t}^{2k+l}\oplus\mathfrak{t}^{k+2l},

where

𝔱kl=span{e1,e2},𝔱2k+l=span{e3,e4},𝔱k+2l=span{e5,e6},𝔦=span{e7}.\mathfrak{t}^{k-l}=\mathrm{span}\{e_{1},e_{2}\},\quad\mathfrak{t}^{2k+l}=\mathrm{span}\{e_{3},e_{4}\},\quad\mathfrak{t}^{k+2l}=\mathrm{span}\{e_{5},e_{6}\},\quad\mathfrak{i}=\mathrm{span}\{e_{7}\}.

Recall our convention of Aloff–Wallach spaces, we set kk and ll to be coprime and kl0k\geq l\geq 0 without loss of generality. Under this setting, if Nk,lN_{k,l} is generic, i.e., kl(kl)0kl(k-l)\neq 0, one can conclude that all 𝔱\mathfrak{t}’s are non-trivial and have different weights. The isotropy representation then consists of 4 inequivalent irreducible summands. The group action of SU(3)SU(3) on (2.1) generates a frame for an SU(3)SU(3)-invariant Einstein metric gNk,lg_{N_{k,l}}. The matrix representation of gNk,lg_{N_{k,l}} is hence

[a200a2b200b2c200c2f2]\begin{bmatrix}a^{2}&0&&&&&\\ 0&a^{2}&&&&&&\\ &&b^{2}&0&&&\\ &&0&b^{2}&&&\\ &&&&c^{2}&0&\\ &&&&0&c^{2}&\\ &&&&&&f^{2}\end{bmatrix} (2.2)

for some a,b,c,f0a,b,c,f\neq 0. Consider the cohomogeneity one metric g=dt2+gNk,l(t)g=dt^{2}+g_{N_{k,l}}(t), where each component in (2.2) is a function of tt. Methods in [EW00] can be applied to derive the cohomogeneity one Einstein system. Let Δ=k2+kl+l2\Delta=k^{2}+kl+l^{2}. As shown in [Rei11], the cohomogeneity one Ricci-flat system is

a¨a(a˙a)2=(2a˙a+2b˙b+2c˙c+f˙f)a˙a+6a2+a2b2c2b2a2c2c2a2b212(k+l)2Δ2f2a4b¨b(b˙b)2=(2a˙a+2b˙b+2c˙c+f˙f)b˙b+6b2+b2a2c2c2a2b2a2b2c212l2Δ2f2b4c¨c(c˙c)2=(2a˙a+2b˙b+2c˙c+f˙f)c˙c+6c2+c2a2b2a2b2c2b2a2c212k2Δ2f2c4f¨f(f˙f)2=(2a˙a+2b˙b+2c˙c+f˙f)f˙f+12(k+l)2Δ2f2a4+12l2Δ2f2b4+12k2Δ2f2c4\begin{split}\frac{\ddot{a}}{a}-\left(\frac{\dot{a}}{a}\right)^{2}&=-\left(2\frac{\dot{a}}{a}+2\frac{\dot{b}}{b}+2\frac{\dot{c}}{c}+\frac{\dot{f}}{f}\right)\frac{\dot{a}}{a}+\frac{6}{a^{2}}+\frac{a^{2}}{b^{2}c^{2}}-\frac{b^{2}}{a^{2}c^{2}}-\frac{c^{2}}{a^{2}b^{2}}-\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}\frac{f^{2}}{a^{4}}\\ \frac{\ddot{b}}{b}-\left(\frac{\dot{b}}{b}\right)^{2}&=-\left(2\frac{\dot{a}}{a}+2\frac{\dot{b}}{b}+2\frac{\dot{c}}{c}+\frac{\dot{f}}{f}\right)\frac{\dot{b}}{b}+\frac{6}{b^{2}}+\frac{b^{2}}{a^{2}c^{2}}-\frac{c^{2}}{a^{2}b^{2}}-\frac{a^{2}}{b^{2}c^{2}}-\frac{1}{2}\frac{l^{2}}{\Delta^{2}}\frac{f^{2}}{b^{4}}\\ \frac{\ddot{c}}{c}-\left(\frac{\dot{c}}{c}\right)^{2}&=-\left(2\frac{\dot{a}}{a}+2\frac{\dot{b}}{b}+2\frac{\dot{c}}{c}+\frac{\dot{f}}{f}\right)\frac{\dot{c}}{c}+\frac{6}{c^{2}}+\frac{c^{2}}{a^{2}b^{2}}-\frac{a^{2}}{b^{2}c^{2}}-\frac{b^{2}}{a^{2}c^{2}}-\frac{1}{2}\frac{k^{2}}{\Delta^{2}}\frac{f^{2}}{c^{4}}\\ \frac{\ddot{f}}{f}-\left(\frac{\dot{f}}{f}\right)^{2}&=-\left(2\frac{\dot{a}}{a}+2\frac{\dot{b}}{b}+2\frac{\dot{c}}{c}+\frac{\dot{f}}{f}\right)\frac{\dot{f}}{f}+\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}\frac{f^{2}}{a^{4}}+\frac{1}{2}\frac{l^{2}}{\Delta^{2}}\frac{f^{2}}{b^{4}}+\frac{1}{2}\frac{k^{2}}{\Delta^{2}}\frac{f^{2}}{c^{4}}\end{split} (2.3)

with conservation law

(2a˙a+2b˙b+2c˙c+f˙f)22(a˙a)22(b˙b)22(c˙c)2(f˙f)2=12(1a2+1b2+1c2)2(a2b2c2+b2a2c2+c2a2b2)12(k+l)2Δ2f2a412l2Δ2f2b412k2Δ2f2c4.\begin{split}&\left(2\frac{\dot{a}}{a}+2\frac{\dot{b}}{b}+2\frac{\dot{c}}{c}+\frac{\dot{f}}{f}\right)^{2}-2\left(\frac{\dot{a}}{a}\right)^{2}-2\left(\frac{\dot{b}}{b}\right)^{2}-2\left(\frac{\dot{c}}{c}\right)^{2}-\left(\frac{\dot{f}}{f}\right)^{2}\\ &=12\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)-2\left(\frac{a^{2}}{b^{2}c^{2}}+\frac{b^{2}}{a^{2}c^{2}}+\frac{c^{2}}{a^{2}b^{2}}\right)-\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}\frac{f^{2}}{a^{4}}-\frac{1}{2}\frac{l^{2}}{\Delta^{2}}\frac{f^{2}}{b^{4}}-\frac{1}{2}\frac{k^{2}}{\Delta^{2}}\frac{f^{2}}{c^{4}}.\end{split} (2.4)

The conserved quantity (2.4) is essentially equivalent to gg having zero scalar curvature. Note that the RHS of (2.4) is the scalar curvature of (Nk,l,gNk,l(t))(N_{k,l},g_{N_{k,l}}(t)).

If kl(kl)=0kl(k-l)=0, then by our convention, we either have (k,l)=(1,0)(k,l)=(1,0) or (k,l)=(1,1)(k,l)=(1,1). In the first case, there are two equivalent isotropy summands 𝔱1\mathfrak{t}^{1} in 𝔰𝔲(3)/𝔲1,0\mathfrak{su}(3)/\mathfrak{u}_{1,0}. In the latter case, the isotropy representation 𝔰𝔲(3)/𝔲1,1\mathfrak{su}(3)/\mathfrak{u}_{1,1} consists of three trivial representations and two equivalent isotropy summands 𝔱3\mathfrak{t}^{3}. Therefore, SU(3)SU(3) invariant metrics on N1,1N_{1,1} and N1,0N_{1,0} are not necessarily diagonal.

For N1,0N_{1,0}, the matrix representation of an SU(3)SU(3)-invariant gN1,0g_{N_{1,0}} is

[a20A1A20a2A2A1b200b2A1A2c20A2A10c2f2].\begin{bmatrix}a^{2}&0&&&A_{1}&A_{2}\\ 0&a^{2}&&&-A_{2}&A_{1}\\ &&b^{2}&0&&&\\ &&0&b^{2}&&&\\ A_{1}&-A_{2}&&&c^{2}&0&\\ A_{2}&A_{1}&&&0&c^{2}&\\ &&&&&&f^{2}\end{bmatrix}. (2.5)

From [Rei08] we learn that NSU(3)(U1,0(1))=U(1)2N_{SU(3)}(U_{1,0}(1))=U(1)^{2}. One can further reduce the number of functions from 6 to 5, since the residual action of U(1)U(1) on gN1,0g_{N_{1,0}} changes A1A_{1} and A2A_{2} while leaving diagonal entries unchanged. The metric gN1,0g_{N_{1,0}} is SU(3)×U(1)SU(3)\times U(1) invariant if and only if its diagonal. In other words, with the enhanced SU(3)×U(1)SU(3)\times U(1) symmetry, the dynamic system is simply (2.3)\eqref{eqn: original Einstein equation} and (2.4)\eqref{eqn: original conservation} with (k,l)=(1,0).(k,l)=(1,0).

For N1,1N_{1,1}, the matrix representation of an SU(3)SU(3)-invariant gN1,1g_{N_{1,1}} is

[a12A1A2A1a22A3b20B1B20b2B2B1B1B2c20B2B10c2A2A3f2].\begin{bmatrix}a_{1}^{2}&A_{1}&&&&&A_{2}\\ A_{1}&a_{2}^{2}&&&&&A_{3}\\ &&b^{2}&0&B_{1}&B_{2}&\\ &&0&b^{2}&-B_{2}&B_{1}&\\ &&B_{1}&-B_{2}&c^{2}&0&\\ &&B_{2}&B_{1}&0&c^{2}&\\ A_{2}&A_{3}&&&&&f^{2}\end{bmatrix}. (2.6)

The normalizer NSU(3)(U1,1(1))N_{SU(3)}(U_{1,1}(1)) is isomorphic to U(2)U(2) and NSU(3)(U1,1(1))/U1,1(1)SU(2)N_{SU(3)}(U_{1,1}(1))/U_{1,1}(1)\cong SU(2). The residual action of SU(2)SU(2) acts as SO(3)SO(3) on the three trivial representations [Rei08]. Therefore, one can use the SU(2)SU(2) to partially diagonalize gN1,1g_{N_{1,1}} so that all AiA_{i}’s vanish and the number of functions is reduced from 10 to 7. A SU(3)×SU(2)SU(3)\times SU(2)-invariant gN1,1g_{N_{1,1}} may still not be diagonal. Nevertheless, one can consider the case with diagonal gN1,1g_{N_{1,1}}, as shown in (4.10)(4.10) in [Rei11]. In this article, we further impose the condition a1=a2a_{1}=a_{2} and study (2.3) and (2.4) with (k,l)=(1,1)(k,l)=(1,1). One can check that such a dynamic system is a subsystem of (4.10)(4.10) in [Rei11]. For the case where a1a_{1} and a2a_{2} are unequal, please see [Baz07] for more details.

Singular orbits of cohomogeneity one space Mk,l(k+l)M_{k,l}^{(k+l)}, Mk,l(l)M_{k,l}^{(l)} and Mk,l(k)M_{k,l}^{(k)} are generated by 𝔱2k+l𝔱k+2l\mathfrak{t}^{2k+l}\oplus\mathfrak{t}^{k+2l}, 𝔱kl𝔱k+2l\mathfrak{t}^{k-l}\oplus\mathfrak{t}^{k+2l} and 𝔱kl𝔱2k+l\mathfrak{t}^{k-l}\oplus\mathfrak{t}^{2k+l}, respectively. Hence according to [EW00] for the case Mk,l(1)M_{k,l}^{(1)} and the power series in [Rei11] for the rest of the orbifolds, the initial conditions for theses three types of 4/|i|\mathbb{R}^{4}/\mathbb{Z}_{|i|} bundles, are respectively given by

limt0(a,b,c,f,a˙,b˙,c˙,f˙)=(0,a0,a0,0,1,0,0,2Δk+l),limt0(a,b,c,f,a˙,b˙,c˙,f˙)=(b0,0,b0,0,0,1,0,2Δl),limt0(a,b,c,f,a˙,b˙,c˙,f˙)=(c0,c0,0,0,0,0,1,2Δk).\begin{split}&\lim_{t\to 0}(a,b,c,f,\dot{a},\dot{b},\dot{c},\dot{f})=\left(0,a_{0},a_{0},0,1,0,0,\frac{2\Delta}{k+l}\right),\\ &\lim_{t\to 0}(a,b,c,f,\dot{a},\dot{b},\dot{c},\dot{f})=\left(b_{0},0,b_{0},0,0,1,0,\frac{2\Delta}{l}\right),\\ &\lim_{t\to 0}(a,b,c,f,\dot{a},\dot{b},\dot{c},\dot{f})=\left(c_{0},c_{0},0,0,0,0,1,\frac{2\Delta}{k}\right).\end{split} (2.7)

For exceptional Aloff–Wallach spaces, recent development in [VZ20] can also be applied to derive the initial condition even with equivalent isotropy summands.

The Spin(7)\mathrm{Spin}(7) condition is derived in [Rei11] as the following

a˙a=bac+cababck+l2Δfa2b˙b=cab+abcbac+l2Δfb2c˙c=abc+baccab+k2Δfc2f˙f=k+l2Δfa2l2Δfb2k2Δfc2.\begin{split}\frac{\dot{a}}{a}&=\frac{b}{ac}+\frac{c}{ab}-\frac{a}{bc}-\frac{k+l}{2\Delta}\frac{f}{a^{2}}\\ \frac{\dot{b}}{b}&=\frac{c}{ab}+\frac{a}{bc}-\frac{b}{ac}+\frac{l}{2\Delta}\frac{f}{b^{2}}\\ \frac{\dot{c}}{c}&=\frac{a}{bc}+\frac{b}{ac}-\frac{c}{ab}+\frac{k}{2\Delta}\frac{f}{c^{2}}\\ \frac{\dot{f}}{f}&=\frac{k+l}{2\Delta}\frac{f}{a^{2}}-\frac{l}{2\Delta}\frac{f}{b^{2}}-\frac{k}{2\Delta}\frac{f}{c^{2}}\end{split}. (2.8)

Change the sign of ff in (2.8). We then obtain the Spin(7)\mathrm{Spin}(7) condition with the opposite chirality:

a˙a=bac+cababc+k+l2Δfa2b˙b=cab+abcbacl2Δfb2c˙c=abc+baccabk2Δfc2f˙f=k+l2Δfa2+l2Δfb2+k2Δfc2.\begin{split}\frac{\dot{a}}{a}&=\frac{b}{ac}+\frac{c}{ab}-\frac{a}{bc}+\frac{k+l}{2\Delta}\frac{f}{a^{2}}\\ \frac{\dot{b}}{b}&=\frac{c}{ab}+\frac{a}{bc}-\frac{b}{ac}-\frac{l}{2\Delta}\frac{f}{b^{2}}\\ \frac{\dot{c}}{c}&=\frac{a}{bc}+\frac{b}{ac}-\frac{c}{ab}-\frac{k}{2\Delta}\frac{f}{c^{2}}\\ \frac{\dot{f}}{f}&=-\frac{k+l}{2\Delta}\frac{f}{a^{2}}+\frac{l}{2\Delta}\frac{f}{b^{2}}+\frac{k}{2\Delta}\frac{f}{c^{2}}\end{split}. (2.9)

Although we mainly consider the construction of Spin(7)\mathrm{Spin}(7) metrics in this article, we start with the Ricci-flat system. As shown in the following, with a coordinate change, some important estimates can be quickly derived from the new Ricci-flat system while it is not obvious in the new Spin(7)\mathrm{Spin}(7) subsystem.

It is clear that

L:=[a˙a00a˙ab˙b00b˙bc˙c00c˙cf˙f]L:=\begin{bmatrix}\frac{\dot{a}}{a}&0&&&&&\\ 0&\frac{\dot{a}}{a}&&&&&&\\ &&\frac{\dot{b}}{b}&0&&&\\ &&0&\frac{\dot{b}}{b}&&&\\ &&&&\frac{\dot{c}}{c}&0&\\ &&&&0&\frac{\dot{c}}{c}&\\ &&&&&&\frac{\dot{f}}{f}\\ \end{bmatrix}

is the second fundamental form of Nk,lN_{k,l} in Mk,l(i)M^{(i)}_{k,l} at time tt. The quantity trL\mathrm{tr}{L} in (2.3) is hence the mean curvature. In many works on the construction of cohomogeneity one Einstein metrics, the coordinate change dη=trLdtd\eta=\mathrm{tr}{L}dt can help to simplify the original Einstein system[DW09][BDW15][Chi19a]. This case is no exception. Define functions

X1=a˙atrL,X2=b˙btrL,X3=c˙ctrL,X4=f˙ftrL,Z1=abctrL,Z2=bactrL,Z3=cabtrL,Z4=ftrL.\begin{split}&X_{1}=\frac{\frac{\dot{a}}{a}}{\mathrm{tr}{L}},\quad X_{2}=\frac{\frac{\dot{b}}{b}}{\mathrm{tr}{L}},\quad X_{3}=\frac{\frac{\dot{c}}{c}}{\mathrm{tr}{L}},\quad X_{4}=\frac{\frac{\dot{f}}{f}}{\mathrm{tr}{L}},\\ &Z_{1}=\frac{\frac{a}{bc}}{\mathrm{tr}{L}},\quad Z_{2}=\frac{\frac{b}{ac}}{\mathrm{tr}{L}},\quad Z_{3}=\frac{\frac{c}{ab}}{\mathrm{tr}{L}},\quad Z_{4}=f\mathrm{tr}{L}.\end{split} (2.10)

And define functions

𝒢=2X12+2X22+2X32+X421=6Z2Z3+Z12Z22Z3212(k+l)2Δ2Z22Z32Z422=6Z1Z3+Z22Z32Z1212l2Δ2Z12Z32Z423=6Z1Z2+Z32Z12Z2212k2Δ2Z12Z22Z424=12(k+l)2Δ2Z22Z32Z42+12l2Δ2Z12Z32Z42+12k2Δ2Z12Z22Z42s=21+22+23+4\begin{split}&\mathcal{G}=2X_{1}^{2}+2X_{2}^{2}+2X_{3}^{2}+X_{4}^{2}\\ &\mathcal{R}_{1}=6Z_{2}Z_{3}+Z_{1}^{2}-Z_{2}^{2}-Z_{3}^{2}-\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}\\ &\mathcal{R}_{2}=6Z_{1}Z_{3}+Z_{2}^{2}-Z_{3}^{2}-Z_{1}^{2}-\frac{1}{2}\frac{l^{2}}{\Delta^{2}}Z_{1}^{2}Z_{3}^{2}Z_{4}^{2}\\ &\mathcal{R}_{3}=6Z_{1}Z_{2}+Z_{3}^{2}-Z_{1}^{2}-Z_{2}^{2}-\frac{1}{2}\frac{k^{2}}{\Delta^{2}}Z_{1}^{2}Z_{2}^{2}Z_{4}^{2}\\ &\mathcal{R}_{4}=\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{l^{2}}{\Delta^{2}}Z_{1}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{k^{2}}{\Delta^{2}}Z_{1}^{2}Z_{2}^{2}Z_{4}^{2}\\ &\mathcal{R}_{s}=2\mathcal{R}_{1}+2\mathcal{R}_{2}+2\mathcal{R}_{3}+\mathcal{R}_{4}\end{split} (2.11)

Use to denote the derivative with respect to η\eta. (2.3) is transformed to

[X1X2X3X4Z1Z2Z3Z4]=V(Xi,Zi):=[X1(𝒢1)+1X2(𝒢1)+2X3(𝒢1)+3X4(𝒢1)+4Z1(𝒢+X1X2X3)Z2(𝒢+X2X3X1)Z3(𝒢+X3X1X2)Z4(𝒢+X4)]\begin{bmatrix}X_{1}\\ X_{2}\\ X_{3}\\ X_{4}\\ Z_{1}\\ Z_{2}\\ Z_{3}\\ Z_{4}\end{bmatrix}^{\prime}=V(X_{i},Z_{i})\colon=\begin{bmatrix}X_{1}(\mathcal{G}-1)+\mathcal{R}_{1}\\ X_{2}(\mathcal{G}-1)+\mathcal{R}_{2}\\ X_{3}(\mathcal{G}-1)+\mathcal{R}_{3}\\ X_{4}(\mathcal{G}-1)+\mathcal{R}_{4}\\ Z_{1}(\mathcal{G}+X_{1}-X_{2}-X_{3})\\ Z_{2}(\mathcal{G}+X_{2}-X_{3}-X_{1})\\ Z_{3}(\mathcal{G}+X_{3}-X_{1}-X_{2})\\ Z_{4}(-\mathcal{G}+X_{4})\\ \end{bmatrix} (2.12)

The conservation law (2.4) becomes

𝒢1+s=0.\mathcal{G}-1+\mathcal{R}_{s}=0. (2.13)

Note that (1tr(L))=1tr(L)𝒢\left(\frac{1}{\mathrm{tr}(L)}\right)^{\prime}=\frac{1}{\mathrm{tr}(L)}\mathcal{G}. Therefore, 1tr(L)\frac{1}{\mathrm{tr}(L)} can be treated as function of η\eta by

1tr(L)=exp(ηη𝒢𝑑η~+C).\frac{1}{\mathrm{tr}(L)}=\exp\left(\int_{\eta^{*}}^{\eta}\mathcal{G}d\tilde{\eta}+C\right).

To recover the original coordinate, we simply compute

t=ηη1tr(L)𝑑η~=ηηexp(ηη𝒢𝑑η~~+C)𝑑η~+t0t=\int_{\eta^{*}}^{\eta}\frac{1}{\mathrm{tr}(L)}d\tilde{\eta}=\int_{\eta^{*}}^{\eta}\exp\left(\int_{\eta^{**}}^{\eta^{*}}\mathcal{G}d\tilde{\tilde{\eta}}+C\right)d\tilde{\eta}+t_{0}

and

a=1tr(L)1Z2Z3,b=1tr(L)1Z1Z3,c=1tr(L)1Z1Z2,f=1tr(L)Z4a=\frac{1}{\mathrm{tr}(L)}\frac{1}{\sqrt{Z_{2}Z_{3}}},\quad b=\frac{1}{\mathrm{tr}(L)}\frac{1}{\sqrt{Z_{1}Z_{3}}},\quad c=\frac{1}{\mathrm{tr}(L)}\frac{1}{\sqrt{Z_{1}Z_{2}}},\quad f=\frac{1}{\mathrm{tr}(L)}Z_{4}

From the definition of XiX_{i}’s in (2.10), one expects 2X1+2X2+2X3+X4=12X_{1}+2X_{2}+2X_{3}+X_{4}=1 is preserved by the new dynamic system. Indeed, since

(2X1+2X2+2X3+X4)=(2X1+2X2+2X3+X4)(𝒢1)+s=(2X1+2X2+2X3+X4)(𝒢1)+1𝒢by (2.13)=(2X1+2X2+2X3+X41)(𝒢1),\begin{split}(2X_{1}+2X_{2}+2X_{3}+X_{4})^{\prime}&=(2X_{1}+2X_{2}+2X_{3}+X_{4})(\mathcal{G}-1)+\mathcal{R}_{s}\\ &=(2X_{1}+2X_{2}+2X_{3}+X_{4})(\mathcal{G}-1)+1-\mathcal{G}\quad\text{by \eqref{eqn: new conservation}}\\ &=(2X_{1}+2X_{2}+2X_{3}+X_{4}-1)(\mathcal{G}-1)\end{split}, (2.14)

it is clear that

:={2X1+2X2+2X3+X4=1}\mathcal{H}:=\{2X_{1}+2X_{2}+2X_{3}+X_{4}=1\}

is invariant. It is worth mentioning that in many works on constructing cohomogeneity one steady Ricci solitons[DW09][BDW15][Win17], coordinate change dη=(u˙+trL)dtd\eta=(-\dot{u}+\mathrm{tr}{L})dt is applied, where uu is the potential function. For our case, one obtains the same polynomial system as (2.12) with

𝒢1+s0,\mathcal{G}-1+\mathcal{R}_{s}\leq 0,

where the equality is needed for (2.14) to hold. From this perspective, one can treat the invariance of \mathcal{H} as the outcome of setting the potential of cohomogeneity one steady Ricci solitons to be a constant. From (2.12), it is clear that we can assume ZiZ_{i}’s be non-negative without loss of generality. In fact, the set {Z1,Z2,Z3,Z40}\{Z_{1},Z_{2},Z_{3},Z_{4}\geq 0\} is invariant. A straightforward observation also gives the following proposition.

Proposition 2.1.

The set {X40}\{X_{4}\geq 0\} is invariant.

Proof.

It is clear that

X4,V|X4=0=4=12(k+l)2Δ2Z22Z32Z42+12l2Δ2Z12Z32Z42+12k2Δ2Z12Z22Z420.\left.\langle\nabla X_{4},V\rangle\right|_{X_{4}=0}=\mathcal{R}_{4}=\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{l^{2}}{\Delta^{2}}Z_{1}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{k^{2}}{\Delta^{2}}Z_{1}^{2}Z_{2}^{2}Z_{4}^{2}\geq 0. (2.15)

If non-transverse crossings emerge on an integral curve, then in addition to X4=0X_{4}=0 at the crossing point, either Zi=Zj=0Z_{i}=Z_{j}=0 for distinct i,j{1,2,3}i,j\in\{1,2,3\} or Z4=0Z_{4}=0 at that point. Then such an integral curve must lie in either the invariant set {Zi=Zj=0}\{Z_{i}=Z_{j}=0\} or {Z4=0}\{Z_{4}=0\} and the condition X4=0X_{4}=0 is held along the integral curve. Hence we exclude the possibility of non-transverse crossings. The proof is complete. ∎

Therefore, cohomogeneity one Ricci-flat metrics with an Aloff–Wallach space Nk,lN_{k,l} as the principal orbit is represented by an integral curve to (2.12) on the following subset of 8\mathbb{R}^{8}:

𝒞RF:={2X1+2X2+2X3+X4=1,𝒢1+s=0,X40,Z1,Z2,Z3,Z40},\begin{split}&\mathcal{C}_{RF}\\ &:=\left\{2X_{1}+2X_{2}+2X_{3}+X_{4}=1,\quad\mathcal{G}-1+\mathcal{R}_{s}=0,\quad X_{4}\geq 0,\quad Z_{1},Z_{2},Z_{3},Z_{4}\geq 0\right\},\end{split} (2.16)

a 66-dimensional algebraic surface with boundary. By Lemma 5.1 in [BDW15], we know that limηt=\lim\limits_{\eta\to\infty}t=\infty. Therefore, if an integral curve is defined on \mathbb{R}, then the Ricci-flat metric represented is forward complete.

We now consider the Spin(7)\mathrm{Spin}(7) condition (2.8) and (2.9) in the new coordinate. The Spin(7)\mathrm{Spin}(7) condition form an invariant subset of 𝒞RF\mathcal{C}_{RF} with a lower dimension. Specifically, (2.8) turns to

F1:=X1+Z1Z2Z3+k+l2ΔZ2Z3Z4=0F2:=X2+Z2Z3Z1l2ΔZ1Z3Z4=0F3:=X3+Z3Z1Z2k2ΔZ1Z2Z4=0F4:=X4k+l2ΔZ2Z3Z4+l2ΔZ1Z3Z4+k2ΔZ1Z2Z4=0\begin{split}F_{1}&:=X_{1}+Z_{1}-Z_{2}-Z_{3}+\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}=0\\ F_{2}&:=X_{2}+Z_{2}-Z_{3}-Z_{1}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}=0\\ F_{3}&:=X_{3}+Z_{3}-Z_{1}-Z_{2}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=0\\ F_{4}&:=X_{4}-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=0\end{split} (2.17)

It is known that Spin(7)\mathrm{Spin}(7) metrics are Ricci-flat. Hence (2.8) is a first order subsystem of (2.3). This is can also be shown using the new coordinates. Define 𝒞Spin(7)+:=𝒞RF(i=14{Fi=0})\mathcal{C}^{+}_{\mathrm{Spin}(7)}:=\mathcal{C}_{RF}\cap\left(\bigcap\limits_{i=1}^{4}\left\{F_{i}=0\right\}\right). We claim the following.

Proposition 2.2.

𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)} is invariant.

Proof.

It is well-known that Spin(7)\mathrm{Spin}(7) metrics are Ricci-flat[Bon66]. With the coordinate change applied, the first order condition is transformed to algebraic equations in (2.17). Therefore, 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)} is an invariant set in 𝒞RF\mathcal{C}_{RF}.

The statement can also be proven directly using (2.12),(2.13) and definition of 𝒞RF\mathcal{C}_{RF}. Using the relation 2X1+2X2+2X3+X4=12X_{1}+2X_{2}+2X_{3}+X_{4}=1 in 𝒞RF\mathcal{C}_{RF}, we have

F1,V=F1(𝒢1)+k+lΔZ2Z3Z4(F2+F3+F4)+Z1(3F1+F2+F3+F4)Z2(F1+3F2+F3+F4)Z3(F1+F2+3F3+F4)F2,V=F2(𝒢1)lΔZ1Z3Z4(F1+F3+F4)Z1(3F1+F2+F3+F4)+Z2(F1+3F2+F3+F4)Z3(F1+F2+3F3+F4)F3,V=F3(𝒢1)kΔZ1Z2Z4(F1+F2+F4)Z1(3F1+F2+F3+F4)Z2(F1+3F2+F3+F4)+Z3(F1+F2+3F3+F4)F4,V=F4(𝒢1)k+lΔZ2Z3Z4(F2+F3+F4)+lΔZ1Z3Z4(F1+F3+F4)+kΔZ1Z2Z4(F1+F2+F4).\begin{split}\langle\nabla F_{1},V\rangle&=F_{1}(\mathcal{G}-1)+\frac{k+l}{\Delta}Z_{2}Z_{3}Z_{4}(F_{2}+F_{3}+F_{4})\\ &\quad+Z_{1}(3F_{1}+F_{2}+F_{3}+F_{4})-Z_{2}(F_{1}+3F_{2}+F_{3}+F_{4})-Z_{3}(F_{1}+F_{2}+3F_{3}+F_{4})\\ \langle\nabla F_{2},V\rangle&=F_{2}(\mathcal{G}-1)-\frac{l}{\Delta}Z_{1}Z_{3}Z_{4}(F_{1}+F_{3}+F_{4})\\ &\quad-Z_{1}(3F_{1}+F_{2}+F_{3}+F_{4})+Z_{2}(F_{1}+3F_{2}+F_{3}+F_{4})-Z_{3}(F_{1}+F_{2}+3F_{3}+F_{4})\\ \langle\nabla F_{3},V\rangle&=F_{3}(\mathcal{G}-1)-\frac{k}{\Delta}Z_{1}Z_{2}Z_{4}(F_{1}+F_{2}+F_{4})\\ &\quad-Z_{1}(3F_{1}+F_{2}+F_{3}+F_{4})-Z_{2}(F_{1}+3F_{2}+F_{3}+F_{4})+Z_{3}(F_{1}+F_{2}+3F_{3}+F_{4})\\ \langle\nabla F_{4},V\rangle&=F_{4}(\mathcal{G}-1)\\ &\quad-\frac{k+l}{\Delta}Z_{2}Z_{3}Z_{4}(F_{2}+F_{3}+F_{4})+\frac{l}{\Delta}Z_{1}Z_{3}Z_{4}(F_{1}+F_{3}+F_{4})+\frac{k}{\Delta}Z_{1}Z_{2}Z_{4}(F_{1}+F_{2}+F_{4})\end{split}. (2.18)

Hence the statement is proven. ∎

Replace XiX_{i}’s in (2.13), we obtain

(2(Z1+Z2+Z3)k+l2ΔZ2Z3Z4+l2ΔZ1Z3Z4+k2ΔZ1Z2Z4)2=1.\left(2(Z_{1}+Z_{2}+Z_{3})-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}\right)^{2}=1.

On the other hand, on 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)}, we have

0=2F1+2F2+2F3+F4=12(Z1+Z2+Z3)+k+l2ΔZ2Z3Z4l2ΔZ1Z3Z4k2ΔZ1Z2Z4.0=2F_{1}+2F_{2}+2F_{3}+F_{4}=1-2(Z_{1}+Z_{2}+Z_{3})+\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}. (2.19)

Therefore, 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)} can also be expressed as the intersection

𝒞Spin(7)+=𝒞RF(i=14{Fi=0}){2(Z1+Z2+Z3)k+l2ΔZ2Z3Z4+l2ΔZ1Z3Z4+k2ΔZ1Z2Z4=1}\begin{split}\mathcal{C}^{+}_{\mathrm{Spin}(7)}=&\mathcal{C}_{RF}\cap\left(\bigcap\limits_{i=1}^{4}\left\{F_{i}=0\right\}\right)\\ &\cap\left\{2(Z_{1}+Z_{2}+Z_{3})-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=1\right\}\end{split} (2.20)

Cohomogeneity one Spin(7)\mathrm{Spin}(7) metrics with an Aloff–Wallach space Nk,lN_{k,l} as the principal orbit is represented by an integral curve to (2.12) restricted on 𝒞Spin(7)+𝒞RF\mathcal{C}^{+}_{\mathrm{Spin}(7)}\subset\mathcal{C}_{RF}, a 3-dimensional algebraic surface in 8\mathbb{R}^{8} with boundaries. In other words, the Spin(7)\mathrm{Spin}(7) metrics can be represented by integral curves to the vector field V~\tilde{V} that consists of the last four entries of V(Xi,Zi)V(X_{i},Z_{i}), where XiX_{i}’s are polynomials defined as in (2.17). Such a dynamic system has a conservation law given by (2.19).

For the Spin(7)\mathrm{Spin}(7) condition with the opposite chirality, (2.9) becomes

H1:=X1+Z1Z2Z3k+l2ΔZ2Z3Z4=0H2:=X2+Z2Z3Z1+l2ΔZ1Z3Z4=0H3:=X3+Z3Z1Z2+k2ΔZ1Z2Z4=0H4:=X4+k+l2ΔZ2Z3Z4l2ΔZ1Z3Z4k2ΔZ1Z2Z4=0,\begin{split}&H_{1}:=X_{1}+Z_{1}-Z_{2}-Z_{3}-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}=0\\ &H_{2}:=X_{2}+Z_{2}-Z_{3}-Z_{1}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}=0\\ &H_{3}:=X_{3}+Z_{3}-Z_{1}-Z_{2}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=0\\ &H_{4}:=X_{4}+\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=0\end{split}, (2.21)

which is also a subsystem of (2.12). Define 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)} to be

𝒞Spin(7)=𝒞RF(i=14{Hi=0}){2(Z1+Z2+Z3)+k+l2ΔZ2Z3Z4l2ΔZ1Z3Z4k2ΔZ1Z2Z4=1}.\begin{split}\mathcal{C}^{-}_{\mathrm{Spin}(7)}=&\mathcal{C}_{RF}\cap\left(\bigcap\limits_{i=1}^{4}\left\{H_{i}=0\right\}\right)\\ &\cap\left\{2(Z_{1}+Z_{2}+Z_{3})+\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}=1\right\}\end{split}. (2.22)

With the similar computation as the one in Proposition 2.2, we can also show that 𝒞Spin(7)\mathcal{C}_{\mathrm{Spin}(7)}^{-} is invariant.

Remark 2.3.

If we consider the Spin(7)\mathrm{Spin}(7) system with vector field V~\tilde{V} on the 3-dimensional algebraic surface (2.19) in 4\mathbb{R}^{4}, then the computation to prove Proposition 2.1 becomes much more challenging. As 𝒞Spin(7)±\mathcal{C}^{\pm}_{\mathrm{Spin}(7)} are invariant subsets of 𝒞RF\mathcal{C}_{RF}, the estimate X40X_{4}\geq 0 can be carried over to 𝒞Spin(7)±\mathcal{C}_{\mathrm{Spin}(7)}^{\pm}.

Proposition 2.4.

On 𝒞Spin(7)±\mathcal{C}^{\pm}_{\mathrm{Spin}(7)}, we have X4=2(Z1+Z2+Z3)1X_{4}=2(Z_{1}+Z_{2}+Z_{3})-1.

Proof.

Summing all equations in (2.17), we obtain

1X42+X4=X1+X2+X3+X4=Z1+Z2+Z3\frac{1-X_{4}}{2}+X_{4}=X_{1}+X_{2}+X_{3}+X_{4}=Z_{1}+Z_{2}+Z_{3} (2.23)

Hence X4=2(Z1+Z2+Z3)1X_{4}=2(Z_{1}+Z_{2}+Z_{3})-1 in 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)}. Similar argument can prove the statement for 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)}. ∎

There exists an invariant subset that lies in both 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)} and 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)}. Define

𝒞G2=𝒞Spin(7)+𝒞Spin(7).\begin{split}\mathcal{C}_{G_{2}}=&\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\mathcal{C}^{-}_{\mathrm{Spin}(7)}\end{split}. (2.24)

Equivalently, we have 𝒞G2=𝒞Spin(7)±{X4=0}{Z4=0}\mathcal{C}_{G_{2}}=\mathcal{C}^{\pm}_{\mathrm{Spin}(7)}\cap\{X_{4}=0\}\cap\{Z_{4}=0\}. It is clear that 𝒞G2\mathcal{C}_{G_{2}} is a 2-dimensional invariant set. System (2.12) restricted on 𝒞G2\mathcal{C}_{G_{2}} is essentially the system for cohomogeneity one G2G_{2} metric with 2\mathbb{CP}^{2} as singular orbit and SU(3)/T2SU(3)/T^{2} as principal orbit. For a forward complete ALC Ricci-flat metric, components a,ba,b and cc in (2.2) increase linearly and ff converges to a constant as tt\to\infty. The integral curve that represents such a metric converges to the invariant set 𝒞RF{X4=0}{Z4=0}\mathcal{C}_{RF}\cap\{X_{4}=0\}\cap\{Z_{4}=0\} as η\eta\to\infty. Therefore, one can also think of 𝒞G2\mathcal{C}_{G_{2}} as a subset of the “space of ALC asymptotics”. Such an invariant subset also occurs in the dynamic system in [Chi21]. By [CS02], all integral curves on 𝒞G2\mathcal{C}_{G_{2}} are explicitly known. More details are discussed in Section 4.4.

3 Local Existence

In this section, we compute linearizations of some important critical points of (2.12). In particular, we compute linearization at some critical points that are in 𝒞Spin(7)±\mathcal{C}^{\pm}_{\mathrm{Spin}(7)} and recover the local existence of Spin(7)\mathrm{Spin}(7) metrics on the tubular neighborhood around 2\mathbb{CP}^{2} as in [Rei11].

Critical points of (2.12) on 𝒞RF\mathcal{C}_{RF} are the following.

  1. I

    P0(k+l):=(13,0,0,13,0,13,13,6Δk+l),P0(l):=(0,13,0,13,13,0,13,6Δl),P0(k):=(0,0,13,13,13,13,0,6Δk)P_{0}^{(k+l)}:=\left(\frac{1}{3},0,0,\frac{1}{3},0,\frac{1}{3},\frac{1}{3},\frac{6\Delta}{k+l}\right),\quad P_{0}^{(l)}:=\left(0,\frac{1}{3},0,\frac{1}{3},\frac{1}{3},0,\frac{1}{3},\frac{6\Delta}{l}\right),\quad P_{0}^{(k)}:=\left(0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\frac{6\Delta}{k}\right).

    These critical points represent the initial conditions (2.7) in the new coordinate. Integral curves that emanate from these points represent Ricci-flat metrics that are defined on the tubular neighborhood around 2\mathbb{CP}^{2} in Mk,l(k+l)M_{k,l}^{(k+l)}, Mk,l(l)M_{k,l}^{(l)} and Mk,l(k)M_{k,l}^{(k)}, respectively.

  2. II
    1. (a)

      P1:=(16,16,16,0,16,16,16,0)P_{1}:=\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},0,\frac{1}{6},\frac{1}{6},\frac{1}{6},0\right)

    2. (b)

      (16,16,16,0,1012,1024,1024,0),(16,16,16,0,1024,1012,1024,0),(16,16,16,0,1024,1024,1012,0)\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},0,\frac{\sqrt{10}}{12},\frac{\sqrt{10}}{24},\frac{\sqrt{10}}{24},0\right),\quad\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},0,\frac{\sqrt{10}}{24},\frac{\sqrt{10}}{12},\frac{\sqrt{10}}{24},0\right),\quad\left(\frac{1}{6},\frac{1}{6},\frac{1}{6},0,\frac{\sqrt{10}}{24},\frac{\sqrt{10}}{24},\frac{\sqrt{10}}{12},0\right)

    All these critical points lie in the space of ALC asymptotics 𝒞RF{X4=0,Z4=0}\mathcal{C}_{RF}\cap\{X_{4}=0,Z_{4}=0\}. Moreover, the point P1P_{1} lies in 𝒞G2\mathcal{C}_{G_{2}}. If an integral curve converges to one of these critical point, then the metric represented has an ALC asymptotics with space at infinity as 𝕊1\mathbb{S}^{1} bundle over the cone over the homogeneous Einstein metric on SU(3)/T2SU(3)/T^{2}. If the curve converges to P1P_{1}, then the asymptotic cone in the ALC asymptotics has G2G_{2} holonomy.

  3. III

    (17,17,17,17,z1,z2,z3,z4)\left(\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{1}{7},z_{1},z_{2},z_{3},z_{4}\right), where i(z1,z2,z3,z4)=649\mathcal{R}_{i}(z_{1},z_{2},z_{3},z_{4})=\frac{6}{49} for each ii.

    The ziz_{i}’s in these critical points give the solution of homogeneous Einstein metrics on Nk,lN_{k,l}. One need to solve a quartic polynomial to get the explicit value. By a proper coordinate change, one can conclude that for each Nk,lN_{k,l}, there are exactly two real solutions[KV93]. In particular, for N1,1N_{1,1}, we have

    PAC1:=(17,17,17,17,27,17,17,21),PAC2:=(17,17,17,17,221,521,521,635).P_{AC-1}:=\left(\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{2}{7},\frac{1}{7},\frac{1}{7},21\right),\quad P_{AC-2}:=\left(\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{2}{21},\frac{5}{21},\frac{5}{21},\frac{63}{5}\right).

    If an integral curve converges to one of these critical points, then the metric represented has ACAC limit as cone over homogeneous Einstein metrics on Nk,lN_{k,l}. Since the homogeneous Einstein metrics on Nk,lN_{k,l} has nearly parallel G2G_{2} structure, the metric cone has its holonomy group contained in Spin(7)\mathrm{Spin}(7).

  4. IV

    (12,12,12,0,52,0,0,0),(12,12,12,0,0,52,0,0),(12,12,12,0,0,0,52,0)\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},0,\frac{\sqrt{5}}{2},0,0,0\right),\quad\left(-\frac{1}{2},\frac{1}{2},-\frac{1}{2},0,0,\frac{\sqrt{5}}{2},0,0\right),\quad\left(-\frac{1}{2},-\frac{1}{2},\frac{1}{2},0,0,0,\frac{\sqrt{5}}{2},0\right).

    These critical points lie in 𝒞G2\mathcal{C}_{G_{2}}. They are sources in the restricted system on 𝒞G2\mathcal{C}_{G_{2}}. Singular G2G_{2} metrics in [CS02] are represented by integral curves that emanate from these points.

  5. V

    (12,0,0,0,0,14,14,0),(0,12,0,0,14,0,14,0),(0,0,12,0,14,14,0,0)\left(\frac{1}{2},0,0,0,0,\frac{1}{4},\frac{1}{4},0\right),\quad\left(0,\frac{1}{2},0,0,\frac{1}{4},0,\frac{1}{4},0\right),\quad\left(0,0,\frac{1}{2},0,\frac{1}{4},\frac{1}{4},0,0\right).

    These critical points also lie in 𝒞G2\mathcal{C}_{G_{2}}. They are saddles in the restricted system on 𝒞G2\mathcal{C}_{G_{2}}. The smooth G2G_{2} metrics in [BS89] and [GPP90] are represented by an integral curves that emanates from these points.

  6. VI

    (x1,x2,x3,x4,0,0,0,0)(x_{1},x_{2},x_{3},x_{4},0,0,0,0), where 2x1+2x2+2x3+x4=12x_{1}+2x_{2}+2x_{3}+x_{4}=1 and 2x12+2x22+2x32+x42=12x_{1}^{2}+2x_{2}^{2}+2x_{3}^{2}+x_{4}^{2}=1.

  7. VII

    (0,0,0,1,0,0,0,z4)(0,0,0,1,0,0,0,z_{4}), where z40z_{4}\geq 0.

Remark 3.1.

One can easily verify that critical points listed above are all on 𝒞RF\mathcal{C}_{RF} by counting their non-vanishing ZiZ_{i} entries. For example, if Z1Z_{1} does not vanish on a critical point, then one immediately learn that 𝒢=X2+X3X1\mathcal{G}=X_{2}+X_{3}-X_{1} from the vector field in (2.12) and can exhaust all the possibilities. Recall that ZiZ_{i}’s are non-negative in 𝒞RF\mathcal{C}_{RF} hence we do not need to list any critical point with negative ZiZ_{i} entries.

The linearization at P0(k+l)P_{0}^{(k+l)} is

(P0(k+l))=[290029000227k+lΔ023002232300023022323049004904343227k+lΔ0000230001913132900001913132900008Δk+l002Δk+l0000]\mathcal{L}\left(P_{0}^{(k+l)}\right)=\begin{bmatrix}-\frac{2}{9}&0&0&\frac{2}{9}&0&0&0&-\frac{2}{27}\frac{k+l}{\Delta}\\ 0&-\frac{2}{3}&0&0&2&\frac{2}{3}&-\frac{2}{3}&0\\ 0&0&-\frac{2}{3}&0&2&-\frac{2}{3}&\frac{2}{3}&0\\ \frac{4}{9}&0&0&-\frac{4}{9}&0&\frac{4}{3}&\frac{4}{3}&\frac{2}{27}\frac{k+l}{\Delta}\\ 0&0&0&0&\frac{2}{3}&0&0&0\\ \frac{1}{9}&\frac{1}{3}&-\frac{1}{3}&\frac{2}{9}&0&0&0&0\\ \frac{1}{9}&-\frac{1}{3}&\frac{1}{3}&\frac{2}{9}&0&0&0&0\\ -8\frac{\Delta}{k+l}&0&0&2\frac{\Delta}{k+l}&0&0&0&0\end{bmatrix} (3.1)

Eigenvalues and eigenvectors of (P0(k+l))\mathcal{L}\left(P_{0}^{(k+l)}\right) are

λ1=λ2=λ3=λ4=23,λ5=λ6=23,λ7=λ8=43\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{2}{3},\quad\lambda_{5}=\lambda_{6}=-\frac{2}{3},\quad\lambda_{7}=\lambda_{8}=-\frac{4}{3}
v1=[200401136Δk+l],v2=[3(k+l)4k+5l5k+4l12(k+l)3(k+l)5k4l4k5l0],v3=[01100110],v4=[03302000],v5=[433402236Δk+l],v6=[01100000],v7=[02200110],v8=[211401018Δk+l].v_{1}=\begin{bmatrix}2\\ 0\\ 0\\ -4\\ 0\\ -1\\ -1\\ -36\frac{\Delta}{k+l}\end{bmatrix},v_{2}=\begin{bmatrix}-3(k+l)\\ 4k+5l\\ 5k+4l\\ -12(k+l)\\ 3(k+l)\\ -5k-4l\\ -4k-5l\\ 0\end{bmatrix},v_{3}=\begin{bmatrix}0\\ 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\end{bmatrix},v_{4}=\begin{bmatrix}0\\ 3\\ 3\\ 0\\ 2\\ 0\\ 0\\ 0\end{bmatrix},v_{5}=\begin{bmatrix}4\\ -3\\ -3\\ 4\\ 0\\ -2\\ -2\\ 36\frac{\Delta}{k+l}\end{bmatrix},v_{6}=\begin{bmatrix}0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\end{bmatrix},v_{7}=\begin{bmatrix}0\\ 2\\ -2\\ 0\\ 0\\ -1\\ 1\\ 0\end{bmatrix},v_{8}=\begin{bmatrix}2\\ -1\\ 1\\ -4\\ 0\\ 1\\ 0\\ 18\frac{\Delta}{k+l}\end{bmatrix}.

Except v4v_{4} and v6v_{6}, all the other eigenvectors are tangent to 𝒞RF\mathcal{C}_{RF}. v1,v2v_{1},v_{2} and v7v_{7} are tangent to 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)}. For each choice of parameter (s1,s2,s3)3(s_{1},s_{2},s_{3})\in\mathbb{R}^{3}, we fix s12+s22+s32=1s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=1 to cut down the redundancy. We have the linearized solution

P0(k+l)+s1e2η3v1+s2e2η3v2+s3e2η3v3P_{0}^{(k+l)}+s_{1}e^{\frac{2\eta}{3}}v_{1}+s_{2}e^{\frac{2\eta}{3}}v_{2}+s_{3}e^{\frac{2\eta}{3}}v_{3} (3.2)

for the Ricci-flat system and

P0(k+l)+s1e2η3v1+s2e2η3v2P_{0}^{(k+l)}+s_{1}e^{\frac{2\eta}{3}}v_{1}+s_{2}e^{\frac{2\eta}{3}}v_{2} (3.3)

for the Spin(7)\mathrm{Spin}(7) subsystem. By the Hartman–Grobman Theorem, there is a 1 to 1 correspondence between each choice of (s1,s2,s3)𝕊2(s_{1},s_{2},s_{3})\in\mathbb{S}^{2} and an actual integral curve that emanates from P0(k+l)P_{0}^{(k+l)}. By the unstable version of Theorem 4.5 in [CL55], there is no ambiguity to use γ(s1,s2,s3)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2},s_{3})} to denote the integral curve that emanate from P0(k+l)P_{0}^{(k+l)} with

γ(s1,s2,s3)(k+l)=P0(k+l)+s1e2η3v1+s2e2η3v2+s3e2η3v3+O(e(23+δ)η).\gamma^{(k+l)}_{(s_{1},s_{2},s_{3})}=P_{0}^{(k+l)}+s_{1}e^{\frac{2\eta}{3}}v_{1}+s_{2}e^{\frac{2\eta}{3}}v_{2}+s_{3}e^{\frac{2\eta}{3}}v_{3}+O(e^{\left(\frac{2}{3}+\delta\right)\eta}).

We hence abuse the notation by using γ(s1,s2,s3)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2},s_{3})} to denote the Ricci-flat metric that is defined on the tubular neighborhood around 2\mathbb{CP}^{2} in Mk,l(k+l)M_{k,l}^{(k+l)}. Similar notation is carried over for γ(s1,s2)(k+l):=γ(s1,s2,0)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})}:=\gamma^{(k+l)}_{(s_{1},s_{2},0)}, a locally defined Spin(7)\mathrm{Spin}(7) metric.

The linearization at P0(k)P_{0}^{(k)} is

(P0(k))=[2300023232002300232320002929000227kΔ00494943430227kΔ131319290000131319290000000000230008Δk2Δk0000]\mathcal{L}\left(P_{0}^{(k)}\right)=\begin{bmatrix}-\frac{2}{3}&0&0&0&\frac{2}{3}&-\frac{2}{3}&2&0\\ 0&\frac{-2}{3}&0&0&-\frac{2}{3}&\frac{2}{3}&2&0\\ 0&0&-\frac{2}{9}&\frac{2}{9}&0&0&0&-\frac{2}{27}\frac{k}{\Delta}\\ 0&0&\frac{4}{9}&-\frac{4}{9}&\frac{4}{3}&\frac{4}{3}&0&\frac{2}{27}\frac{k}{\Delta}\\ \frac{1}{3}&-\frac{1}{3}&\frac{1}{9}&\frac{2}{9}&0&0&0&0\\ -\frac{1}{3}&\frac{1}{3}&\frac{1}{9}&\frac{2}{9}&0&0&0&0\\ 0&0&0&0&0&0&\frac{2}{3}&0\\ 0&0&-8\frac{\Delta}{k}&2\frac{\Delta}{k}&0&0&0&0\end{bmatrix} (3.4)

Eigenvalues and eigenvectors of (P0(k))\mathcal{L}\left(P_{0}^{(k)}\right) are

λ1=λ2=λ3=λ4=23,λ5=λ6=23,λ7=λ8=43\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\frac{2}{3},\quad\lambda_{5}=\lambda_{6}=-\frac{2}{3},\quad\lambda_{7}=\lambda_{8}=-\frac{4}{3}
v1=[002411036Δk],v2=[5k+l4kl3k12k4k+l5kl3k0],v3=[11001100],v4=[33000200],v5=[002211018Δk],v6=[11000000],v7=[22001100],v8=[112420018Δk].v_{1}=\begin{bmatrix}0\\ 0\\ 2\\ -4\\ -1\\ -1\\ 0\\ -36\frac{\Delta}{k}\end{bmatrix},v_{2}=\begin{bmatrix}5k+l\\ 4k-l\\ -3k\\ -12k\\ -4k+l\\ -5k-l\\ 3k\\ 0\end{bmatrix},v_{3}=\begin{bmatrix}-1\\ 1\\ 0\\ 0\\ -1\\ 1\\ 0\\ 0\end{bmatrix},v_{4}=\begin{bmatrix}3\\ 3\\ 0\\ 0\\ 0\\ 2\\ 0\\ 0\end{bmatrix},v_{5}=\begin{bmatrix}0\\ 0\\ 2\\ 2\\ -1\\ -1\\ 0\\ 18\frac{\Delta}{k}\end{bmatrix},v_{6}=\begin{bmatrix}1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{bmatrix},v_{7}=\begin{bmatrix}2\\ -2\\ 0\\ 0\\ -1\\ 1\\ 0\\ 0\end{bmatrix},v_{8}=\begin{bmatrix}-1\\ 1\\ 2\\ -4\\ 2\\ 0\\ 0\\ 18\frac{\Delta}{k}\end{bmatrix}.

The first three eigenvectors are tangent to 𝒞RF\mathcal{C}_{RF} and the first two eigenvectors are tangent to 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)}. We use γ(s1,s2,s3)(k)\gamma_{(s_{1},s_{2},s_{3})}^{(k)} to denote integral curve such that

γ(s1,s2,s3)(k)=P0(k)+s1e2η3v1+s2e2η3v2+s3e2η3v3+O(e(23+δ)η)\gamma_{(s_{1},s_{2},s_{3})}^{(k)}=P_{0}^{(k)}+s_{1}e^{\frac{2\eta}{3}}v_{1}+s_{2}e^{\frac{2\eta}{3}}v_{2}+s_{3}e^{\frac{2\eta}{3}}v_{3}+O(e^{\left(\frac{2}{3}+\delta\right)\eta})

near P0(k)P_{0}^{(k)}. Hence γ(s1,s2,s3)(k)\gamma_{(s_{1},s_{2},s_{3})}^{(k)} and γ(s1,s2)(k):=γ(s1,s2,0)(k)\gamma_{(s_{1},s_{2})}^{(k)}:=\gamma_{(s_{1},s_{2},0)}^{(k)} are respectively locally defined Ricci-flat metrics and Spin(7)\mathrm{Spin}(7) metrics on the tubular neighborhood around 2\mathbb{CP}^{2} in Mk,l(k)M_{k,l}^{(k)}

The analysis of linearizations at P0(l)P_{0}^{(l)} is similar. For the linearization at P0(l)P_{0}^{(l)}, one find three unstable eigenvectors that are tangent to 𝒞RF\mathcal{C}_{RF}, and two among these three vectors are tangent to 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)}. In summary, we prove the following lemma.

Lemma 3.2.

Let i{k+l,k,l}i\in\{k+l,k,l\}. There is a continuous 2-parameter family of Ricci-flat metrics on the tubular neighborhood around 2\mathbb{CP}^{2} on each Mk,l(i)M_{k,l}^{(i)}, represented by integral curves that emanates from P0(i)P_{0}^{(i)}. If s3=0s_{3}=0, γ(s1,s2)(i):=γ(s1,s2,0)(i)\gamma^{(i)}_{(s_{1},s_{2})}:=\gamma^{(i)}_{(s_{1},s_{2},0)} gives rise to the locally defined Spin(7)\mathrm{Spin}(7) metric on Mk,l(i)M_{k,l}^{(i)}. γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} and γ(s1,s2)(l)\gamma^{(l)}_{(s_{1},s_{2})} share the same chirality that is opposite to the one of γ(s1,s2)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})}.

The linearization at P1P_{1} is

(P1)=[131819190132323019131819023132301919131802323130000560000518118118000001185181180000011811851800000000000016]\mathcal{L}\left(P_{1}\right)=\begin{bmatrix}-\frac{13}{18}&\frac{1}{9}&\frac{1}{9}&0&\frac{1}{3}&\frac{2}{3}&\frac{2}{3}&0\\ \frac{1}{9}&-\frac{13}{18}&\frac{1}{9}&0&\frac{2}{3}&\frac{1}{3}&\frac{2}{3}&0\\ \frac{1}{9}&\frac{1}{9}&-\frac{13}{18}&0&\frac{2}{3}&\frac{2}{3}&\frac{1}{3}&0\\ 0&0&0&-\frac{5}{6}&0&0&0&0\\ \frac{5}{18}&-\frac{1}{18}&-\frac{1}{18}&0&0&0&0&0\\ -\frac{1}{18}&\frac{5}{18}&-\frac{1}{18}&0&0&0&0&0\\ -\frac{1}{18}&-\frac{1}{18}&\frac{5}{18}&0&0&0&0&0\\ 0&0&0&0&0&0&0&-\frac{1}{6}\end{bmatrix} (3.5)

Eigenvalues and eigenvectors of (P1)\mathcal{L}\left(P_{1}\right) are

λ1=λ2=λ3=16,λ4=λ5=56,λ6=λ7=23,λ8=13\lambda_{1}=\lambda_{2}=\lambda_{3}=-\frac{1}{6},\quad\lambda_{4}=\lambda_{5}=-\frac{5}{6},\quad\lambda_{6}=\lambda_{7}=-\frac{2}{3},\quad\lambda_{8}=\frac{1}{3}
v1=[00000001],v2=[21104220],v3=[01100220],v4=[00010000],v5=[55501110],v6=[42202110],v7=[02200110],v8=[22201110]v_{1}=\begin{bmatrix}0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\end{bmatrix},v_{2}=\begin{bmatrix}2\\ -1\\ -1\\ 0\\ -4\\ 2\\ 2\\ 0\end{bmatrix},v_{3}=\begin{bmatrix}0\\ -1\\ 1\\ 0\\ 0\\ 2\\ -2\\ 0\end{bmatrix},v_{4}=\begin{bmatrix}0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\end{bmatrix},v_{5}=\begin{bmatrix}-5\\ -5\\ -5\\ 0\\ 1\\ 1\\ 1\\ 0\end{bmatrix},v_{6}=\begin{bmatrix}4\\ -2\\ -2\\ 0\\ -2\\ 1\\ 1\\ 0\end{bmatrix},v_{7}=\begin{bmatrix}0\\ 2\\ -2\\ 0\\ 0\\ -1\\ 1\\ 0\end{bmatrix},v_{8}=\begin{bmatrix}2\\ 2\\ 2\\ 0\\ 1\\ 1\\ 1\\ 0\end{bmatrix}

It is clear that except v5v_{5} and v8v_{8}, all the other eigenvectors are tangent to 𝒞RF\mathcal{C}_{RF}. Hence P1P_{1} is a sink in the system (2.12) restricted on 𝒞RF\mathcal{C}_{RF}. Therefore, the critical point is also a sink in the subsystem restricted on 𝒞Spin(7)±\mathcal{C}^{\pm}_{\mathrm{Spin}(7)}. Recall that P1P_{1} is in 𝒞G2\mathcal{C}_{G_{2}}, the 2-dimensional invariant set of ALC asymptotics. If a γ(s1,s2)(i)\gamma_{(s_{1},s_{2})}^{(i)} gets sufficiently closed to P1P_{1}, then it converges to P1P_{1} and the metric represented has ALC asymptotics.

4 Global Existence and Asymptotics

With the assumption kl0k\geq l\geq 0, we prove that Spin(7)\mathrm{Spin}(7) metrics γ(s1,s2)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})} and γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} in Lemma 3.2 are globally defined for (s1,s2)(s_{1},s_{2}) in an open set of 𝕊1\mathbb{S}^{1}. Due to the limitation of our method, it is not clear if we have global existence of γ(s1,s2)(l)\gamma^{(l)}_{(s_{1},s_{2})}. More details are discussed at Section 4.2.

4.1 Global Metrics on Mk,l(k+l)M_{k,l}^{(k+l)}

Define

𝒮=𝒞Spin(7)+{0Z46Δk+l}\mathcal{S}=\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{4}\leq\frac{6\Delta}{k+l}\right\} (4.1)
Proposition 4.1.

The set 𝒮\mathcal{S} consists of two connected component. The component that satisfies Z2+Z323Z_{2}+Z_{3}\leq\frac{2}{3} is compact.

Proof.

By (2.19), we have

0=12(Z1+Z2+Z3)+(k+l2ΔZ2Z3l2ΔZ1Z3k2ΔZ1Z2)Z412(Z2+Z3)+3Z2Z3since Z46Δk+l and Zi012(Z2+Z3)+34(Z2+Z3)2=(32(Z2+Z3)1)(12(Z2+Z3)1).\begin{split}0&=1-2(Z_{1}+Z_{2}+Z_{3})+\left(\frac{k+l}{2\Delta}Z_{2}Z_{3}-\frac{l}{2\Delta}Z_{1}Z_{3}-\frac{k}{2\Delta}Z_{1}Z_{2}\right)Z_{4}\\ &\leq 1-2(Z_{2}+Z_{3})+3Z_{2}Z_{3}\quad\text{since $Z_{4}\leq\frac{6\Delta}{k+l}$ and $Z_{i}\geq 0$}\\ &\leq 1-2(Z_{2}+Z_{3})+\frac{3}{4}(Z_{2}+Z_{3})^{2}\\ &=\left(\frac{3}{2}(Z_{2}+Z_{3})-1\right)\left(\frac{1}{2}(Z_{2}+Z_{3})-1\right)\end{split}. (4.2)

Hence either Z2+Z323Z_{2}+Z_{3}\leq\frac{2}{3} or Z2+Z32Z_{2}+Z_{3}\geq 2 in 𝒮\mathcal{S}. Consider the component that satisfies Z2+Z323Z_{2}+Z_{3}\leq\frac{2}{3}. As for Z1Z_{1}, we have

0=12(Z1+Z2+Z3)+(k+l2ΔZ2Z3l2ΔZ1Z3k2ΔZ1Z2)Z412Z12(Z2+Z3)+3Z2Z3since Z46Δk+l and Zi012Z12(Z2+Z3)+32(Z2+Z3)212Z1since Z2+Z323.\begin{split}0&=1-2(Z_{1}+Z_{2}+Z_{3})+\left(\frac{k+l}{2\Delta}Z_{2}Z_{3}-\frac{l}{2\Delta}Z_{1}Z_{3}-\frac{k}{2\Delta}Z_{1}Z_{2}\right)Z_{4}\\ &\leq 1-2Z_{1}-2(Z_{2}+Z_{3})+3Z_{2}Z_{3}\quad\text{since $Z_{4}\leq\frac{6\Delta}{k+l}$ and $Z_{i}\geq 0$}\\ &\leq 1-2Z_{1}-2(Z_{2}+Z_{3})+\frac{3}{2}(Z_{2}+Z_{3})^{2}\\ &\leq 1-2Z_{1}\quad\text{since $Z_{2}+Z_{3}\leq\frac{2}{3}$}\end{split}. (4.3)

Hence all Z112Z_{1}\leq\frac{1}{2} and all ZiZ_{i}’s are bounded above. By (2.17), it is clear that all XiX_{i}’s are bounded. Hence the component is compact. ∎

By Proposition 4.1, we can write 𝒮=𝒮ˇ𝒮^\mathcal{S}=\check{\mathcal{S}}\sqcup\hat{\mathcal{S}}, where 𝒮ˇ\check{\mathcal{S}} denote the compact component

𝒮Spin(7){0Z2+Z323}.\mathcal{S}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{2}+Z_{3}\leq\frac{2}{3}\right\}.

We focus on 𝒮ˇ\check{\mathcal{S}} in the following since P0(k+l),P1𝒮ˇP_{0}^{(k+l)},P_{1}\in\check{\mathcal{S}}. We show that 𝒮ˇ\check{\mathcal{S}} is invariant so that these integral curves stay in the compact set 𝒮ˇ\check{\mathcal{S}}. Note that

Z4,V|Z4=6Δk+l=Z4(𝒢+X4)=6Δk+l(𝒢X4).\left.\langle\nabla Z_{4},V\rangle\right|_{Z_{4}=\frac{6\Delta}{k+l}}=Z_{4}(-\mathcal{G}+X_{4})=-\frac{6\Delta}{k+l}(\mathcal{G}-X_{4}). (4.4)

To show that 𝒮ˇ\check{\mathcal{S}} is invariant, it suffices to prove that

𝒮ˇ=𝒮ˇ{𝒢X40},\check{\mathcal{S}}=\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}\geq 0\}, (4.5)

as demonstrated in Figure 1.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
(a) Z4=6Δk+lZ_{4}=\frac{6\Delta}{k+l}
Refer to caption
(b) Z4=126Δk+lZ_{4}=\frac{1}{2}\frac{6\Delta}{k+l}
Refer to caption
(c) Z4=186Δk+lZ_{4}=\frac{1}{8}\frac{6\Delta}{k+l}
Figure 1: The figures above are “picture proof” 𝒮ˇ𝒮ˇ{𝒢X40}\check{\mathcal{S}}\subset\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}\geq 0\}, with (k,l)=(3,2)(k,l)=(3,2). Figures in the first row demonstrate the compact set 𝒮ˇ\check{\mathcal{S}} for fixed Z46Δk+lZ_{4}\leq\frac{6\Delta}{k+l}. Figures in the second row demonstrate the set 𝒮ˇ{𝒢X4=0}\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}=0\} for fixed Z46Δk+lZ_{4}\leq\frac{6\Delta}{k+l}, with all X1X_{1}, X2X_{2} and X3X_{3} replaced by ZiZ_{i}’s using (2.17) and apply Proposition 2.4 for X4X_{4}. Points shown are P0(k+l)P_{0}^{(k+l)}, P0(k)P_{0}^{(k)} and P0(l)P_{0}^{(l)}. Note that P0(k+l)P_{0}^{(k+l)} lies in the boundary of 𝒮ˇ\check{\mathcal{S}} as shown in the first figure. From the observation, surfaces that represent 𝒮ˇ\check{\mathcal{S}} are “behind” those that represent 𝒮ˇ{𝒢X4=0}\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}=0\}, meaning 𝒢X40\mathcal{G}-X_{4}\geq 0 is satisfied on each point on 𝒮ˇ\check{\mathcal{S}}. In that way, we can tell that Z4Z_{4} is monotonic decreasing if it decreases initially.

The Spin(7)\mathrm{Spin}(7) condition (2.17) plays a key role in proving (4.5). Specifically, we simplify the inequalities by replacing all XiX_{i}’s with ZiZ_{i}’s. Then the question boils down to showing the separation of two algebraic surfaces in 4\mathbb{R}^{4}. In order to prove the separation, we find algebraic surfaces that are “ between” the one given by (2.19) and the one from 𝒮ˇ{𝒢X4=0}\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}=0\}. These so-called “separation surfaces” are symmetric with respect to the hyperplane Z2=Z3Z_{2}=Z_{3}. In this way, slices of these surfaces with fixed Z1Z_{1} and Z4Z_{4} are easier to be proven to be separated.

Define

𝒬(Z1,Z2,Z3,Z4)=k+l8ΔZ4(Z2+Z3)2(2+k+l4ΔZ1Z4)(Z2+Z3)+k+l8ΔZ12Z42Z1+1.\begin{split}&\mathcal{Q}(Z_{1},Z_{2},Z_{3},Z_{4})\\ &=\frac{k+l}{8\Delta}Z_{4}(Z_{2}+Z_{3})^{2}-\left(2+\frac{k+l}{4\Delta}Z_{1}Z_{4}\right)(Z_{2}+Z_{3})+\frac{k+l}{8\Delta}Z_{1}^{2}Z_{4}-2Z_{1}+1.\end{split} (4.6)
Proposition 4.2.

Each points in 𝒮ˇ\check{\mathcal{S}} satisfies 𝒬0\mathcal{Q}\geq 0, i.e., 𝒮ˇ=𝒮ˇ{𝒬0}.\check{\mathcal{S}}=\check{\mathcal{S}}\cap\{\mathcal{Q}\geq 0\}.

Proof.

By (2.19), we have

0=12(Z1+Z2+Z3)+k+l2ΔZ2Z3Z4l2ΔZ1Z3Z4k2ΔZ1Z2Z4=k+l8ΔZ4(Z2+Z3)2(2+k+l4ΔZ1Z4)(Z2+Z3)k+l8ΔZ4((Z3Z2)klk+lZ1)2+(klk+l)2k+l8ΔZ12Z42Z1+1k+l8ΔZ4(Z2+Z3)2(2+k+l4ΔZ1Z4)(Z2+Z3)+(klk+l)2k+l8ΔZ12Z42Z1+1k+l8ΔZ4(Z2+Z3)2(2+k+l4ΔZ1Z4)(Z2+Z3)+k+l8ΔZ12Z42Z1+1=𝒬.\begin{split}0&=1-2(Z_{1}+Z_{2}+Z_{3})+\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}\\ &=\frac{k+l}{8\Delta}Z_{4}(Z_{2}+Z_{3})^{2}-\left(2+\frac{k+l}{4\Delta}Z_{1}Z_{4}\right)(Z_{2}+Z_{3})-\frac{k+l}{8\Delta}Z_{4}\left((Z_{3}-Z_{2})-\frac{k-l}{k+l}Z_{1}\right)^{2}\\ &\quad+\left(\frac{k-l}{k+l}\right)^{2}\frac{k+l}{8\Delta}Z_{1}^{2}Z_{4}-2Z_{1}+1\\ &\leq\frac{k+l}{8\Delta}Z_{4}(Z_{2}+Z_{3})^{2}-\left(2+\frac{k+l}{4\Delta}Z_{1}Z_{4}\right)(Z_{2}+Z_{3})+\left(\frac{k-l}{k+l}\right)^{2}\frac{k+l}{8\Delta}Z_{1}^{2}Z_{4}-2Z_{1}+1\\ &\leq\frac{k+l}{8\Delta}Z_{4}(Z_{2}+Z_{3})^{2}-\left(2+\frac{k+l}{4\Delta}Z_{1}Z_{4}\right)(Z_{2}+Z_{3})+\frac{k+l}{8\Delta}Z_{1}^{2}Z_{4}-2Z_{1}+1\\ &=\mathcal{Q}\end{split}. (4.7)

Hence 𝒬0\mathcal{Q}\geq 0 in 𝒮ˇ\check{\mathcal{S}}. The proof is complete. ∎

Define

𝒜(Z1,Z2,Z3,Z4)=132(k+lΔ)2(Z2+Z3)4Z422(Z2+Z3)2(12Z1+2)(Z2+Z3)+2Z122Z1+2.\begin{split}&\mathcal{A}(Z_{1},Z_{2},Z_{3},Z_{4})\\ &=\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{4}Z_{4}^{2}-2(Z_{2}+Z_{3})^{2}-(12Z_{1}+2)(Z_{2}+Z_{3})+2Z_{1}^{2}-2Z_{1}+2.\end{split} (4.8)
Proposition 4.3.

We have the following inclusion 𝒮ˇ{𝒜0}𝒮ˇ{𝒢X40}.\check{\mathcal{S}}\cap\{\mathcal{A}\geq 0\}\subset\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}\geq 0\}.

Proof.

By (2.13), we have

𝒢X4=1sX4.\mathcal{G}-X_{4}=1-\mathcal{R}_{s}-X_{4}. (4.9)

By Proposition 2.4, the computation continues as

𝒢X4=2(Z12+Z22+Z32)12(Z2Z3+Z1Z3+Z1Z2)2(Z1+Z2+Z3)+2.+12(k+l)2Δ2Z22Z32Z42+12l2Δ2Z12Z32Z42+12k2Δ2Z12Z22Z422(Z12+Z22+Z32)12(Z2Z3+Z1Z3+Z1Z2)2(Z1+Z2+Z3)+2.+12(k+l)2Δ2Z22Z32Z42=132(k+lΔ)2(Z2+Z3)4Z422(Z2+Z3)2(12Z1+2)(Z2+Z3)+2Z122Z1+2+(Z3Z2)2(132(k+lΔ)2(Z3Z2)2Z42116(k+lΔ)2(Z2+Z3)2Z42+4)132(k+lΔ)2(Z2+Z3)4Z422(Z2+Z3)2(12Z1+2)(Z2+Z3)+2Z122Z1+2+(Z3Z2)2(4116(k+lΔ)2(Z2+Z3)2Z42)132(k+lΔ)2(Z2+Z3)4Z422(Z2+Z3)2(12Z1+2)(Z2+Z3)+2Z122Z1+2+(Z3Z2)2(494(Z2+Z3)2)since Z46Δk+l in 𝒮ˇ132(k+lΔ)2(Z2+Z3)4Z422(Z2+Z3)2(12Z1+2)(Z2+Z3)+2Z122Z1+2since Z2+Z323 in 𝒮ˇ=𝒜\begin{split}&\mathcal{G}-X_{4}\\ &=2(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2})-12(Z_{2}Z_{3}+Z_{1}Z_{3}+Z_{1}Z_{2})-2(Z_{1}+Z_{2}+Z_{3})+2.\\ &\quad+\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{l^{2}}{\Delta^{2}}Z_{1}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\frac{k^{2}}{\Delta^{2}}Z_{1}^{2}Z_{2}^{2}Z_{4}^{2}\\ &\geq 2(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2})-12(Z_{2}Z_{3}+Z_{1}Z_{3}+Z_{1}Z_{2})-2(Z_{1}+Z_{2}+Z_{3})+2.\\ &\quad+\frac{1}{2}\frac{(k+l)^{2}}{\Delta^{2}}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}\\ &=\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{4}Z_{4}^{2}-2(Z_{2}+Z_{3})^{2}-(12Z_{1}+2)(Z_{2}+Z_{3})+2Z_{1}^{2}-2Z_{1}+2\\ &\quad+(Z_{3}-Z_{2})^{2}\left(\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{3}-Z_{2})^{2}Z_{4}^{2}-\frac{1}{16}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{2}Z_{4}^{2}+4\right)\\ &\geq\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{4}Z_{4}^{2}-2(Z_{2}+Z_{3})^{2}-(12Z_{1}+2)(Z_{2}+Z_{3})+2Z_{1}^{2}-2Z_{1}+2\\ &\quad+(Z_{3}-Z_{2})^{2}\left(4-\frac{1}{16}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{2}Z_{4}^{2}\right)\\ &\geq\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{4}Z_{4}^{2}-2(Z_{2}+Z_{3})^{2}-(12Z_{1}+2)(Z_{2}+Z_{3})+2Z_{1}^{2}-2Z_{1}+2\\ &\quad+(Z_{3}-Z_{2})^{2}\left(4-\frac{9}{4}(Z_{2}+Z_{3})^{2}\right)\quad\text{since $Z_{4}\leq\frac{6\Delta}{k+l}$ in $\check{\mathcal{S}}$}\\ &\geq\frac{1}{32}\left(\frac{k+l}{\Delta}\right)^{2}(Z_{2}+Z_{3})^{4}Z_{4}^{2}-2(Z_{2}+Z_{3})^{2}-(12Z_{1}+2)(Z_{2}+Z_{3})+2Z_{1}^{2}-2Z_{1}+2\\ &\quad\text{since $Z_{2}+Z_{3}\leq\frac{2}{3}$ in $\check{\mathcal{S}}$}\\ &=\mathcal{A}\end{split} (4.10)

Hence 𝒜0\mathcal{A}\geq 0 in 𝒮ˇ\check{\mathcal{S}} implies 𝒢X40\mathcal{G}-X_{4}\geq 0 in 𝒮ˇ\check{\mathcal{S}}. The proof is complete. ∎

By Proposition 4.2 and Proposition 4.3, to show that 𝒮ˇ𝒮ˇ{𝒢X40}\check{\mathcal{S}}\subset\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}\geq 0\}, it suffices to prove that

𝒮ˇ{𝒬0}𝒮ˇ{𝒜0}.\check{\mathcal{S}}\cap\{\mathcal{Q}\geq 0\}\subset\check{\mathcal{S}}\cap\{\mathcal{A}\geq 0\}. (4.11)

The inclusion (4.11) is easier to show since it only involves ZiZ_{i}’s and polynomials 𝒬\mathcal{Q} and 𝒜\mathcal{A} can be viewed as polynomials in Z2+Z3Z_{2}+Z_{3}. Specifically, by Proposition 4.1, we know that 0Z1120\leq Z_{1}\leq\frac{1}{2} in 𝒮ˇ{𝒬0}\check{\mathcal{S}}\cap\{\mathcal{Q}\geq 0\}. Fix Z1=α[0,12]Z_{1}=\alpha\in\left[0,\frac{1}{2}\right] and Z4=6Δk+lβZ_{4}=\frac{6\Delta}{k+l}\beta with β(0,1]\beta\in(0,1], define

q1(α,β)(Z2+Z3):=𝒬(α,Z2,Z3,6Δk+lβ)=3β4(Z2+Z3)2(2+32αβ)(Z2+Z3)+34α2β2α+1,q2(α,β)(Z2+Z3):=𝒜(α,Z2,Z3,6Δk+lβ)=9β28(Z2+Z3)42(Z2+Z3)2(12α+2)(Z2+Z3)+2α22α+2.\begin{split}{q_{1}}_{(\alpha,\beta)}(Z_{2}+Z_{3})&:=\mathcal{Q}\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\\ &=\frac{3\beta}{4}(Z_{2}+Z_{3})^{2}-\left(2+\frac{3}{2}\alpha\beta\right)(Z_{2}+Z_{3})+\frac{3}{4}\alpha^{2}\beta-2\alpha+1,\\ {q_{2}}_{(\alpha,\beta)}(Z_{2}+Z_{3})&:=\mathcal{A}\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\\ &=\frac{9\beta^{2}}{8}(Z_{2}+Z_{3})^{4}-2(Z_{2}+Z_{3})^{2}-(12\alpha+2)(Z_{2}+Z_{3})+2\alpha^{2}-2\alpha+2.\end{split} (4.12)

It is clear that for each fixed (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1], we have

q1(α,β)(0)=34α2β2α+10,q1(α,β)(23)=132α+β3αβ+34α2β2α58αβ0.\begin{split}{q_{1}}_{(\alpha,\beta)}(0)&=\frac{3}{4}\alpha^{2}\beta-2\alpha+1\geq 0,\\ {q_{1}}_{(\alpha,\beta)}\left(\frac{2}{3}\right)&=-\frac{1}{3}-2\alpha+\frac{\beta}{3}-\alpha\beta+\frac{3}{4}\alpha^{2}\beta\leq-2\alpha-\frac{5}{8}\alpha\beta\leq 0.\end{split} (4.13)

It is also clear that q1q_{1} has two positive roots for each fixed (α,β)(\alpha,\beta), with one root be no larger than 23\frac{2}{3} and the other one no smaller. Let ω(α,β)\omega(\alpha,\beta) be the smaller positive root of q1(α,β){q_{1}}_{(\alpha,\beta)}. It is clear that ω(α,β)[0,23]\omega(\alpha,\beta)\in\left[0,\frac{2}{3}\right]. We have

{0Z112,0Z46Δk+l,0Z2+Z323,𝒬0}=(α,β)[0,12]×(0,1]{(α,Z2,Z3,6Δk+lβ)0Z2+Z3ω(α,β)}\begin{split}&\left\{0\leq Z_{1}\leq\frac{1}{2},\quad 0\leq Z_{4}\leq\frac{6\Delta}{k+l},\quad 0\leq Z_{2}+Z_{3}\leq\frac{2}{3},\quad\mathcal{Q}\geq 0\right\}\\ &=\bigcup_{(\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1]}\left\{\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\mid 0\leq Z_{2}+Z_{3}\leq\omega(\alpha,\beta)\right\}\end{split} (4.14)

On the other hand, for each fixed (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1], we have

q2(α,β)(0)=2α22α+2>0,q2(α,β)(23)=29β22910α+2α20.\begin{split}{q_{2}}_{(\alpha,\beta)}(0)&=2\alpha^{2}-2\alpha+2>0,\\ {q_{2}}_{(\alpha,\beta)}\left(\frac{2}{3}\right)&=\frac{2}{9}\beta^{2}-\frac{2}{9}-10\alpha+2\alpha^{2}\leq 0.\end{split} (4.15)

Let ζ(α,β)\zeta(\alpha,\beta) be the smallest non-negative root of q2(α,β){q_{2}}_{(\alpha,\beta)}. It is clear that ζ(α,β)[0,23]\zeta(\alpha,\beta)\in\left[0,\frac{2}{3}\right]. We then have

(α,β)[0,12]×(0,1]{(α,Z2,Z3,6Δk+lβ)0Z2+Z3ζ(α,β)}{𝒜0}.\bigcup_{(\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1]}\left\{\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\mid 0\leq Z_{2}+Z_{3}\leq\zeta(\alpha,\beta)\right\}\subset\{\mathcal{A}\geq 0\}.

Hence (4.11) boils down to proving the following proposition.

Proposition 4.4.

For each fixed (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1],

ω(α,β)ζ(α,β).\omega(\alpha,\beta)\leq\zeta(\alpha,\beta).

Moreover, the equality holds only at (α,β)=(0,1)(\alpha,\beta)=(0,1).

Proof.

It is clear that ω(0,1)=ζ(0,1)=23\omega(0,1)=\zeta(0,1)=\frac{2}{3}. By implicit differentiation, we have

ωα|(α,β)=(0,1)=3,ωβ|(α,β)=(0,1)=13,ζα|(α,β)=(0,1)=3,ζβ|(α,β)=(0,1)=215.\left.\frac{\partial\omega}{\partial\alpha}\right|_{(\alpha,\beta)=(0,1)}=-3,\quad\left.\frac{\partial\omega}{\partial\beta}\right|_{(\alpha,\beta)=(0,1)}=\frac{1}{3},\quad\left.\frac{\partial\zeta}{\partial\alpha}\right|_{(\alpha,\beta)=(0,1)}=-3,\quad\left.\frac{\partial\zeta}{\partial\beta}\right|_{(\alpha,\beta)=(0,1)}=\frac{2}{15}.
2ωα2|(α,β)=(0,1)=24,2ζα2|(α,β)=(0,1)=1415>24\left.\frac{\partial^{2}\omega}{\partial\alpha^{2}}\right|_{(\alpha,\beta)=(0,1)}=24,\quad\left.\frac{\partial^{2}\zeta}{\partial\alpha^{2}}\right|_{(\alpha,\beta)=(0,1)}=\frac{141}{5}>24

Hence ωζ\omega\leq\zeta in a small neighborhood around (α,β)=(0,1)(\alpha,\beta)=(0,1) in [0,12]×(0,1]\left[0,\frac{1}{2}\right]\times(0,1].

Suppose ω=ζ\omega=\zeta at some point in [0,12]×(0,1]\left[0,\frac{1}{2}\right]\times(0,1]. Then q1(α,β){q_{1}}_{(\alpha,\beta)} and q2(α,β){q_{2}}_{(\alpha,\beta)} have common roots. Hence the resultant

r(α,β)(q1,q2)=det[9β2803β400009β28(2+32αβ)3β4002034α2β2α+1(2+32αβ)3β40(12α+2)2034α2β2α+1(2+32αβ)3β42α22α+2(12α+2)0034α2β2α+1(2+32αβ)02α22α+200034α2β2α+1]=27β2[24316384α8β6+(81512α7+811024α6)β5+(81256α6189256α5+27128α4)β4+(15332α52732α4+2716α3932α2)β3+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]\begin{split}&r_{(\alpha,\beta)}(q_{1},q_{2})\\ &=\det\begin{bmatrix}\frac{9\beta^{2}}{8}&0&\frac{3\beta}{4}&0&0&0\\ 0&\frac{9\beta^{2}}{8}&-\left(2+\frac{3}{2}\alpha\beta\right)&\frac{3\beta}{4}&0&0\\ -2&0&\frac{3}{4}\alpha^{2}\beta-2\alpha+1&-\left(2+\frac{3}{2}\alpha\beta\right)&\frac{3\beta}{4}&0\\ -(12\alpha+2)&-2&0&\frac{3}{4}\alpha^{2}\beta-2\alpha+1&-\left(2+\frac{3}{2}\alpha\beta\right)&\frac{3\beta}{4}\\ 2\alpha^{2}-2\alpha+2&-(12\alpha+2)&0&0&\frac{3}{4}\alpha^{2}\beta-2\alpha+1&-\left(2+\frac{3}{2}\alpha\beta\right)\\ 0&2\alpha^{2}-2\alpha+2&0&0&0&\frac{3}{4}\alpha^{2}\beta-2\alpha+1\end{bmatrix}\\ &=27\beta^{2}\bigg{[}\frac{243}{16384}\alpha^{8}\beta^{6}+\left(-\frac{81}{512}\alpha^{7}+\frac{81}{1024}\alpha^{6}\right)\beta^{5}+\left(\frac{81}{256}\alpha^{6}-\frac{189}{256}\alpha^{5}+\frac{27}{128}\alpha^{4}\right)\beta^{4}\\ &\quad+\left(-\frac{153}{32}\alpha^{5}-\frac{27}{32}\alpha^{4}+\frac{27}{16}\alpha^{3}-\frac{9}{32}\alpha^{2}\right)\beta^{3}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\end{split} (4.16)

vanishes for some (α,β)(\alpha,\beta). Straightforward observation in the appendix shows that r(α,β)r(\alpha,\beta) is non-negative for any (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1] and it vanishes only at (0,1)(0,1). Hence ωζ\omega\leq\zeta and the equality holds only at (0,1)(0,1). The proof is complete. ∎

Refer to caption
Figure 2: The graph of r(α,β)r(\alpha,\beta) defined on [0,12]×(0,1]\left[0,\frac{1}{2}\right]\times(0,1] is non-negative by straightforward observation. The dot at the right corner is (0,1)(0,1). The rigorous proof of r(α,β)r(\alpha,\beta) being non-negative is presented in the appendix.

In summary, we have the following lemma.

Lemma 4.5.

The set 𝒮ˇ\check{\mathcal{S}} is invariant.

Proof.

We have the following chain of inclusions:

𝒮ˇ=𝒮ˇ{𝒬0}by Proposition 4.2{0Z112,0Z2+Z323,0<Z46Δk+l,𝒬0}by Proposition 4.1=(α,β)[0,12]×(0,1]{(α,Z2,Z3,6Δk+lβ)0Z2+Z3ω(α,β)}(α,β)[0,12]×(0,1]{(α,Z2,Z3,6Δk+lβ)0Z2+Z3ζ(α,β)}by Proposition 4.4{𝒜0}.\begin{split}\check{\mathcal{S}}&=\check{\mathcal{S}}\cap\{\mathcal{Q}\geq 0\}\quad\text{by Proposition \ref{prop: included in Q}}\\ &\subset\left\{0\leq Z_{1}\leq\frac{1}{2},\quad 0\leq Z_{2}+Z_{3}\leq\frac{2}{3},\quad 0<Z_{4}\leq\frac{6\Delta}{k+l},\quad\mathcal{Q}\geq 0\right\}\quad\text{by Proposition \ref{prop: S is compact}}\\ &=\bigcup_{(\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1]}\left\{\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\mid 0\leq Z_{2}+Z_{3}\leq\omega(\alpha,\beta)\right\}\\ &\subset\bigcup_{(\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1]}\left\{\left(\alpha,Z_{2},Z_{3},\frac{6\Delta}{k+l}\beta\right)\mid 0\leq Z_{2}+Z_{3}\leq\zeta(\alpha,\beta)\right\}\quad\text{by Proposition \ref{each slice is contained}}\\ &\subset\left\{\mathcal{A}\geq 0\right\}\end{split}. (4.17)

Therefore we have

𝒮ˇ=𝒮ˇ{𝒬0}𝒮ˇ{𝒜0}𝒮ˇ{𝒢X40}\begin{split}\check{\mathcal{S}}=\check{\mathcal{S}}\cap\{\mathcal{Q}\geq 0\}\subset\check{\mathcal{S}}\cap\{\mathcal{A}\geq 0\}\subset\check{\mathcal{S}}\cap\{\mathcal{G}-X_{4}\geq 0\}\end{split} (4.18)

by Proposition 4.3. In other words, inequality

𝒢X4𝒜𝒬0\mathcal{G}-X_{4}\geq\mathcal{A}\geq\mathcal{Q}\geq 0

holds in 𝒮ˇ\check{\mathcal{S}}. Hence we have

Z4,V|Z4=6Δk+l=6Δk+l(𝒢X4)0.\begin{split}&\left.\langle\nabla Z_{4},V\rangle\right|_{Z_{4}=\frac{6\Delta}{k+l}}=-\frac{6\Delta}{k+l}(\mathcal{G}-X_{4})\leq 0.\end{split} (4.19)

If non-transverse crossings emerge on an integral curve in 𝒮ˇ\check{\mathcal{S}}, then Z4=6Δk+lZ_{4}=\frac{6\Delta}{k+l} and 𝒢X4=𝒜=𝒬=0\mathcal{G}-X_{4}=\mathcal{A}=\mathcal{Q}=0 at each crossing point. By Proposition 4.2 and Proposition 4.4, we know that Z1=0Z_{1}=0 and Z2=Z3Z_{2}=Z_{3} at the crossing point, which force it to be the critical point P0(k+l)P_{0}^{(k+l)}. Non-transverse crossing is hence excluded and the compact set 𝒮ˇ\check{\mathcal{S}} is invariant. The proof is complete. ∎

4.2 Global Metrics on Mk,l(k)M_{k,l}^{(k)}

One may intend to use the method above to prove the global existence of both γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} and γ(s1,s2)(l)\gamma^{(l)}_{(s_{1},s_{2})}. However, by the following proposition, the method is only effective for the case on Mk,l(k)M_{k,l}^{(k)}.

Proposition 4.6.

The set

𝒯k:=𝒞Spin(7){0Z46Δk}\mathcal{T}_{k}:=\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{4}\leq\frac{6\Delta}{k}\right\} (4.20)

consists of two connected component, with one of the component being compact.

Proof.

We first prove the statement for 𝒯k\mathcal{T}_{k}. By (2.21), we have

0=12(Z1+Z2+Z3)(k+l2ΔZ2Z3l2ΔZ1Z3k2ΔZ1Z2)Z4=12(Z1+Z2)Z3(2l2ΔZ1Z4)k+l2ΔZ2Z3Z4+k2ΔZ1Z2Z412(Z1+Z2)Z3(23lkZ1)+3Z1Z2since Z46Δk in 𝒯k12(Z1+Z2)Z3(23Z1)+3Z1Z2by the setting k>l12(Z1+Z2)Z3(23Z1)+3Z1Z2+34(Z1+Z2+Z3)2=34(Z1+Z2+Z32)(Z1+Z2+Z323).\begin{split}0&=1-2(Z_{1}+Z_{2}+Z_{3})-\left(\frac{k+l}{2\Delta}Z_{2}Z_{3}-\frac{l}{2\Delta}Z_{1}Z_{3}-\frac{k}{2\Delta}Z_{1}Z_{2}\right)Z_{4}\\ &=1-2(Z_{1}+Z_{2})-Z_{3}\left(2-\frac{l}{2\Delta}Z_{1}Z_{4}\right)-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}\\ &\leq 1-2(Z_{1}+Z_{2})-Z_{3}\left(2-3\frac{l}{k}Z_{1}\right)+3Z_{1}Z_{2}\quad\text{since $Z_{4}\leq\frac{6\Delta}{k}$ in $\mathcal{T}_{k}$}\\ &\leq 1-2(Z_{1}+Z_{2})-Z_{3}\left(2-3Z_{1}\right)+3Z_{1}Z_{2}\quad\text{by the setting $k>l$}\\ &\leq 1-2(Z_{1}+Z_{2})-Z_{3}\left(2-3Z_{1}\right)+3Z_{1}Z_{2}+\frac{3}{4}(-Z_{1}+Z_{2}+Z_{3})^{2}\\ &=\frac{3}{4}(Z_{1}+Z_{2}+Z_{3}-2)\left(Z_{1}+Z_{2}+Z_{3}-\frac{2}{3}\right)\end{split}. (4.21)

Hence either Z1+Z2+Z323Z_{1}+Z_{2}+Z_{3}\leq\frac{2}{3} or Z1+Z2+Z32Z_{1}+Z_{2}+Z_{3}\geq 2 in 𝒯k\mathcal{T}_{k}. Hence we can write 𝒯k=𝒯kˇ𝒯k^\mathcal{T}_{k}=\check{\mathcal{T}_{k}}\sqcup\hat{\mathcal{T}_{k}}, where 𝒯kˇ\check{\mathcal{T}_{k}} is the compact component

𝒞Spin(7){0Z1+Z2+Z323,0Z46Δk}.\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{1}+Z_{2}+Z_{3}\leq\frac{2}{3},\quad 0\leq Z_{4}\leq\frac{6\Delta}{k}\right\}.

Since P0(k)𝒯kˇP_{0}^{(k)}\in\check{\mathcal{T}_{k}}, the compact component is non-empty. The proof is complete. ∎

Remark 4.7.

Since Z1+Z2+Z323Z_{1}+Z_{2}+Z_{3}\leq\frac{2}{3} in 𝒯kˇ\check{\mathcal{T}_{k}}, the estimate for Z1Z_{1} can be sharper. From the third last line of computation (4.21), we have

012(Z1+Z2)Z3(23Z1)+3Z1Z212(Z1+Z2)+3Z1Z2=12Z1+(3Z12)Z212Z1.\begin{split}0&\leq 1-2(Z_{1}+Z_{2})-Z_{3}\left(2-3Z_{1}\right)+3Z_{1}Z_{2}\\ &\leq 1-2(Z_{1}+Z_{2})+3Z_{1}Z_{2}\\ &=1-2Z_{1}+(3Z_{1}-2)Z_{2}\\ &\leq 1-2Z_{1}\end{split}. (4.22)

Hence Z112Z_{1}\leq\frac{1}{2} in 𝒯kˇ\check{\mathcal{T}_{k}}

Refer to caption
Figure 3: The set 𝒯l\mathcal{T}_{l} with fixed Z4=6ΔlZ_{4}=\frac{6\Delta}{l} in the case (k,l)=(3,2)(k,l)=(3,2) is shown above. It is connected and non-compact. More estimates are needed to prove the global existence on Mk,l(l)M_{k,l}^{(l)}.
Refer to caption
Refer to caption
Refer to caption
(a) Z4=6ΔkZ_{4}=\frac{6\Delta}{k}
Refer to caption
(b) Z4=186ΔkZ_{4}=\frac{1}{8}\frac{6\Delta}{k}
Figure 4: The Spin(7)\mathrm{Spin}(7) conditions for 𝒯k\mathcal{T}_{k} and 𝒯l\mathcal{T}_{l} have the same chirality. In Figure 3, the set is non-compact. With smaller Z4Z_{4}, the set “shrinks” to a compact one. Similar to the case for 𝒮ˇ\check{\mathcal{S}}, the figures above show 𝒯kˇ𝒯kˇ{𝒢X40}\check{\mathcal{T}_{k}}\subset\check{\mathcal{T}_{k}}\cap\{\mathcal{G}-X_{4}\geq 0\}, with (k,l)=(3,2)(k,l)=(3,2). Figures in the first row demonstrate the compact set 𝒯kˇ\check{\mathcal{T}_{k}} for fixed Z46ΔkZ_{4}\leq\frac{6\Delta}{k}. Figures in the second row demonstrate the set 𝒯kˇ{𝒢X4=0}\check{\mathcal{T}_{k}}\cap\{\mathcal{G}-X_{4}=0\} for fixed Z46ΔkZ_{4}\leq\frac{6\Delta}{k}.
Remark 4.8.

On the other hand, consider the set

𝒯l:=𝒞Spin(7){0Z46Δl}.\mathcal{T}_{l}:=\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{4}\leq\frac{6\Delta}{l}\right\}. (4.23)

The estimate (4.21) does not hold by the setting k>lk>l. As shown in Figure 3, 𝒯l\mathcal{T}_{l} is connected and non-compact. Therefore, even if we are able to prove the invariance of 𝒯l\mathcal{T}_{l}, the upper bound 6Δl\frac{6\Delta}{l} for Z4Z_{4} may seems to be too large to start with.

Now that the construction boils down to showing the inclusion

𝒯kˇ𝒯kˇ{𝒢X40}.\check{\mathcal{T}_{k}}\subset\check{\mathcal{T}_{k}}\cap\{\mathcal{G}-X_{4}\geq 0\}.

It turns out that for the case Mk,l(k)M_{k,l}^{(k)}, the analysis is much more delicate than the case Mk,l(k+l)M_{k,l}^{(k+l)}. We first state the following proposition.

Proposition 4.9.

The set 𝒞Spin(7){Z1Z20}{Z2Z30}\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\{Z_{1}-Z_{2}\geq 0\}\cap\{Z_{2}-Z_{3}\geq 0\} is invariant.

Proof.

Consider

(Z1Z2),V|Z1Z2=0=2Z1(X1X2)=4(Z2Z1)+k+lΔZ2Z3Z4+lΔZ1Z3Z4replace X1 and X2 using (2.21)=k+lΔZ2Z3Z4+lΔZ1Z3Z40\begin{split}&\left.\langle\nabla(Z_{1}-Z_{2}),V\rangle\right|_{Z_{1}-Z_{2}=0}\\ &=2Z_{1}(X_{1}-X_{2})\\ &=4(Z_{2}-Z_{1})+\frac{k+l}{\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{\Delta}Z_{1}Z_{3}Z_{4}\quad\text{replace $X_{1}$ and $X_{2}$ using \eqref{eqn: new opposite spin(7) equation}}\\ &=\frac{k+l}{\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{\Delta}Z_{1}Z_{3}Z_{4}\\ &\geq 0\end{split} (4.24)

and

(Z2Z3),V|Z2Z3=0=2Z2(X2X3)=4(Z3Z2)+kΔZ1Z2Z4lΔZ1Z3Z4replace X2 and X3 using (2.21)=klΔZ1Z2Z4since Z2=Z30.\begin{split}&\left.\langle\nabla(Z_{2}-Z_{3}),V\rangle\right|_{Z_{2}-Z_{3}=0}\\ &=2Z_{2}(X_{2}-X_{3})\\ &=4(Z_{3}-Z_{2})+\frac{k}{\Delta}Z_{1}Z_{2}Z_{4}-\frac{l}{\Delta}Z_{1}Z_{3}Z_{4}\quad\text{replace $X_{2}$ and $X_{3}$ using \eqref{eqn: new opposite spin(7) equation}}\\ &=\frac{k-l}{\Delta}Z_{1}Z_{2}Z_{4}\quad\text{since $Z_{2}=Z_{3}$}\\ &\geq 0\end{split}. (4.25)

The proof is complete. ∎

We redefine 𝒯kˇ\check{\mathcal{T}_{k}} as

𝒯kˇ:=𝒞Spin(7){0Z1+Z2+Z323,0Z46Δk}{Z1Z20}{Z2Z30}.\check{\mathcal{T}_{k}}:=\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\left\{0\leq Z_{1}+Z_{2}+Z_{3}\leq\frac{2}{3},\quad 0\leq Z_{4}\leq\frac{6\Delta}{k}\right\}\cap\{Z_{1}-Z_{2}\geq 0\}\cap\{Z_{2}-Z_{3}\geq 0\}.

The problem boils down to prove the separation between 𝒯kˇ\check{\mathcal{T}_{k}} and 𝒯kˇ{𝒢X4=0}\check{\mathcal{T}_{k}}\cap\{\mathcal{G}-X_{4}=0\}. For the case of Mk,l(k)M_{k,l}^{(k)}, the algebraic surface for 𝒢X4\mathcal{G}-X_{4} is too “close” to 𝒯kˇ\check{\mathcal{T}_{k}}. It is difficult to find algebraic surfaces such as 𝒜=0\mathcal{A}=0 and 𝒬=0\mathcal{Q}=0 in the case of Mk,l(k+l)M_{k,l}^{(k+l)} to separate 𝒯kˇ\check{\mathcal{T}_{k}} and 𝒯kˇ{𝒢X4=0}\check{\mathcal{T}_{k}}\cap\{\mathcal{G}-X_{4}=0\}. Hence in this case, we take algebraic surface given by (2.22) and the one from (2.13) and Proposition 2.4:

𝒢X4=1sX4=s+22(Z1+Z2+Z3).\mathcal{G}-X_{4}=1-\mathcal{R}_{s}-X_{4}=\mathcal{R}_{s}+2-2(Z_{1}+Z_{2}+Z_{3}).

Specifically, define

𝒫(Z1,Z2,Z3,Z4):=12(Z1+Z2+Z3)k+l2ΔZ2Z3Z4+l2ΔZ1Z3Z4+k2ΔZ1Z2Z4.\mathcal{P}(Z_{1},Z_{2},Z_{3},Z_{4}):=1-2(Z_{1}+Z_{2}+Z_{3})-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}.

And define

(Z1,Z2,Z3,Z4)=2(Z12+Z22+Z32)12(Z2Z3+Z1Z2+Z1Z3)+22(Z1+Z2+Z3)+12(k+lΔ)2Z22Z32Z42+12(lΔ)2Z12Z32Z42+12(kΔ)2Z12Z22Z42\begin{split}&\mathcal{B}(Z_{1},Z_{2},Z_{3},Z_{4})\\ &=2(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2})-12(Z_{2}Z_{3}+Z_{1}Z_{2}+Z_{1}Z_{3})+2-2(Z_{1}+Z_{2}+Z_{3})\\ &\quad+\frac{1}{2}\left(\frac{k+l}{\Delta}\right)^{2}Z_{2}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\left(\frac{l}{\Delta}\right)^{2}Z_{1}^{2}Z_{3}^{2}Z_{4}^{2}+\frac{1}{2}\left(\frac{k}{\Delta}\right)^{2}Z_{1}^{2}Z_{2}^{2}Z_{4}^{2}\end{split} (4.26)

With each fixed Z2=αZ1Z_{2}=\alpha Z_{1}, Z3=βZ1Z_{3}=\beta Z_{1} and Z4=6ΔkδZ_{4}=\frac{6\Delta}{k}\delta with (α,β,δ)[0,1]×[0,1]×(0,1](\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1], we define slices

p1(α,β,δ)(Z1):=𝒫(Z1,αZ1,βZ1,6Δkδ)=12(Z1+Z2+Z3)k+l2ΔZ2Z3Z4+l2ΔZ1Z3Z4+k2ΔZ1Z2Z4=(3k+lkαβδ+3lkβδ+3αδ)Z122(1+α+β)Z1+1p2(α,β,δ)(Z1):=(Z1,αZ1,βZ1,6Δkδ)=(18(k+lk)2α2β2δ2+18(lk)2β2δ2+18α2δ2)Z14+(2(1+α2+β2)12(αβ+α+β))Z122(1+α+β)Z1+2.\begin{split}{p_{1}}_{(\alpha,\beta,\delta)}(Z_{1})&:=\mathcal{P}\left(Z_{1},\alpha Z_{1},\beta Z_{1},\frac{6\Delta}{k}\delta\right)\\ &=1-2(Z_{1}+Z_{2}+Z_{3})-\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}+\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}+\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}\\ &=\left(-3\frac{k+l}{k}\alpha\beta\delta+3\frac{l}{k}\beta\delta+3\alpha\delta\right)Z_{1}^{2}-2(1+\alpha+\beta)Z_{1}+1\\ {p_{2}}_{(\alpha,\beta,\delta)}(Z_{1})&:=\mathcal{B}\left(Z_{1},\alpha Z_{1},\beta Z_{1},\frac{6\Delta}{k}\delta\right)\\ &=\left(18\left(\frac{k+l}{k}\right)^{2}\alpha^{2}\beta^{2}\delta^{2}+18\left(\frac{l}{k}\right)^{2}\beta^{2}\delta^{2}+18\alpha^{2}\delta^{2}\right)Z_{1}^{4}\\ &\quad+(2(1+\alpha^{2}+\beta^{2})-12(\alpha\beta+\alpha+\beta))Z_{1}^{2}-2(1+\alpha+\beta)Z_{1}+2\end{split}. (4.27)

Each pair of slice with fixed (α,β,δ)(\alpha,\beta,\delta) gives two polynomials in Z1Z_{1} for us to compare. Since

p1(α,β,δ)(0)=1,p1(α,β,δ)(12)=34k+lkα2β2δ2(134δ)α(134lkδ)β0{p_{1}}_{(\alpha,\beta,\delta)}(0)=1,\quad{p_{1}}_{(\alpha,\beta,\delta)}\left(\frac{1}{2}\right)=-\frac{3}{4}\frac{k+l}{k}\alpha^{2}\beta^{2}\delta^{2}-\left(1-\frac{3}{4}\delta\right)\alpha-\left(1-\frac{3}{4}\frac{l}{k}\delta\right)\beta\leq 0

there is a real positive root for each p1(α,β,δ)(Z1){p_{1}}_{(\alpha,\beta,\delta)}(Z_{1}) in [0,12]\left[0,\frac{1}{2}\right]. It is clear that for each (α,β,δ)(\alpha,\beta,\delta), p1p_{1} has two real roots, with one be no larger than 12\frac{1}{2} and the other one no smaller. Let ξ(α,β,δ)\xi(\alpha,\beta,\delta) be the smaller positive root for each p1(α,β,δ)(Z1){p_{1}}_{(\alpha,\beta,\delta)}(Z_{1}). Since p2(α,β,δ)(0)=2>0{p_{2}}_{(\alpha,\beta,\delta)}(0)=2>0, we let σ(α,β,δ)\sigma(\alpha,\beta,\delta) denote the smallest positive root for each p2(α,β,δ)(Z1){p_{2}}_{(\alpha,\beta,\delta)}(Z_{1}). Suppose σ(α,β,δ)\sigma(\alpha,\beta,\delta) does not exist, then >0\mathcal{B}>0 for that particular slice.

Proposition 4.10.

For each fixed (α,β,δ)[0,1]×[0,1]×(0,1](\alpha,\beta,\delta)\in\left[0,1\right]\times[0,1]\times(0,1] with αβ\alpha\geq\beta such that σ(α,β,δ)\sigma(\alpha,\beta,\delta) exists, we have

ξ(α,β,δ)σ(α,β,δ).\xi(\alpha,\beta,\delta)\leq\sigma(\alpha,\beta,\delta).

Moreover, the equality holds only at (α,β,δ)=(1,0,1)(\alpha,\beta,\delta)=(1,0,1).

Proof.

It is clear that ξ(1,0,1)=σ(1,0,1)=13\xi(1,0,1)=\sigma(1,0,1)=\frac{1}{3}. By implicit differentiation, we have

ξα|(α,β,δ)=(1,0,1)=16,ξβ|(α,β,δ)=(1,0,1)=12,ξδ|(α,β,δ)=(1,0,1)=16,\left.\frac{\partial\xi}{\partial\alpha}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=-\frac{1}{6},\quad\left.\frac{\partial\xi}{\partial\beta}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=-\frac{1}{2},\quad\left.\frac{\partial\xi}{\partial\delta}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=\frac{1}{6},
σα|(α,β,δ)=(1,0,1)=16,σβ|(α,β,δ)=(1,0,1)=12,σδ|(α,β,δ)=(1,0,1)=115.\left.\frac{\partial\sigma}{\partial\alpha}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=-\frac{1}{6},\quad\left.\frac{\partial\sigma}{\partial\beta}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=-\frac{1}{2},\quad\left.\frac{\partial\sigma}{\partial\delta}\right|_{(\alpha,\beta,\delta)=(1,0,1)}=\frac{1}{15}.

Hence (σξ)(α,β,δ)0(\sigma-\xi)(\alpha,\beta,\delta)\geq 0 initially if the direction of derivative as negative δ\delta component. If the direction of derivative is in the αβ\alpha\beta-plane, we consider the function (σξ)(α,β):=(σξ)(α,β,1)(\sigma-\xi)(\alpha,\beta):=(\sigma-\xi)(\alpha,\beta,1). The Hessian of (σξ)(α,β)(\sigma-\xi)(\alpha,\beta) at (α,β)=(1,0)(\alpha,\beta)=(1,0) is then

[1160125k2l12k125k2l12k1960+(k+l)2+l215k2].\begin{bmatrix}\frac{11}{60}&\frac{1}{2}-\frac{5k-2l}{12k}\\ \frac{1}{2}-\frac{5k-2l}{12k}&\frac{19}{60}+\frac{(k+l)^{2}+l^{2}}{15k^{2}}\end{bmatrix}.

The determinant is 19k2kll2300k217300\frac{19k^{2}-kl-l^{2}}{300k^{2}}\geq\frac{17}{300}. Hence ξσ\xi\leq\sigma in a small neighborhood around (α,β,δ)=(1,0,1)(\alpha,\beta,\delta)=(1,0,1) in [0,1]×[0,1]×(0,1]\left[0,1\right]\times[0,1]\times(0,1].

Suppose σ=ξ\sigma=\xi for some (α,β,δ)(\alpha,\beta,\delta), then the resultant of of p1p_{1} and p2p_{2} vanishes at that point. The formula of r(α,β,δ)(p1,p2)r_{(\alpha,\beta,\delta)}(p_{1},p_{2}) is presented in the Appendix. With the help of Maple, we know that r(α,β,δ)(p1,p2)r_{(\alpha,\beta,\delta)}(p_{1},p_{2}) is non-negative in the region [0,1]×[0,1]×(0,1][0,1]\times[0,1]\times(0,1] and it only vanishes at (1,0,1)(1,0,1) if (k,l)(1,1)(k,l)\neq(1,1). If (k,l)=(1,1)(k,l)=(1,1), then r(α,β,δ)(p1,p2)r_{(\alpha,\beta,\delta)}(p_{1},p_{2}) vanishes only at (1,0,1)(1,0,1) and (1,1,0)(1,1,0). Therefore σξ\sigma\geq\xi for all (α,β,δ)[0,1]×[0,1]×(0,1](\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1]. ∎

Hence we have the following lemma.

Lemma 4.11.

The set 𝒯kˇ\check{\mathcal{T}_{k}} is invariant.

Proof.

We have the following chain of inclusions:

𝒯kˇ{0Z3Z2Z112,0<Z46Δk,𝒫=0}by Proposition 4.6 and Proposition 4.9=(α,β,δ)[0,1]×[0,1]×(0,1]{(Z1,αZ1,βZ1,6Δkδ)Z1=ξ(α,β,δ)}(α,β,δ)[0,1]×[0,1]×(0,1]{(Z1,αZ1,βZ1,6Δkδ)0Z1σ(α,β,δ)}by Proposition 4.10{𝒢X40}.\begin{split}\check{\mathcal{T}_{k}}&\subset\left\{0\leq Z_{3}\leq Z_{2}\leq Z_{1}\leq\frac{1}{2},\quad 0<Z_{4}\leq\frac{6\Delta}{k},\quad\mathcal{P}=0\right\}\quad\text{by Proposition \ref{prop: Tk is compact} and Proposition \ref{prop: smaller Tk}}\\ &=\bigcup_{(\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1]}\left\{\left(Z_{1},\alpha Z_{1},\beta Z_{1},\frac{6\Delta}{k}\delta\right)\mid Z_{1}=\xi(\alpha,\beta,\delta)\right\}\\ &\subset\bigcup_{(\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1]}\left\{\left(Z_{1},\alpha Z_{1},\beta Z_{1},\frac{6\Delta}{k}\delta\right)\mid 0\leq Z_{1}\leq\sigma(\alpha,\beta,\delta)\right\}\quad\text{by Proposition \ref{prop: sigma larger xi}}\\ &\subset\left\{\mathcal{G}-X_{4}\geq 0\right\}\end{split}. (4.28)

Similar to the argument in proving Lemma 4.13, the non-transverse crossing cannot emerge in 𝒯kˇ\check{\mathcal{T}_{k}} as the crossing point can only be the critical point P0(k)P_{0}^{(k)}. Hence 𝒯kˇ\check{\mathcal{T}_{k}} is a compact invariant set. ∎

From Section 3, it is clear that γ(s1,s2)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})} and γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} are in the set 𝒮ˇ\check{\mathcal{S}} and 𝒯kˇ\check{\mathcal{T}_{k}} initially if s1,s2>0s_{1},s_{2}>0. Hence we have the following lemma.

Lemma 4.12.

Metrics represented by γ(s1,s2)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})} on Mk,l(k+l)M_{k,l}^{(k+l)} with s1,s2>0s_{1},s_{2}>0 are forward complete. Metrics represented by γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} on Mk,l(k)M_{k,l}^{(k)} with s1,s2>0s_{1},s_{2}>0 are forward complete.

The global existence mentioned in Theorem 1.1 is proven. Our method of proving forward completeness also works on the cohomogeneity one space with exceptional N1,0N_{1,0} and N1,1N_{1,1} as principal orbit. For N1,0N_{1,0}, we obtain two continuous 1-parameter families of Spin(7)\mathrm{Spin}(7) metrics with both chiralities on the same manifold M1,0(1)M_{1,0}^{(1)}. They are part of the more complete family in [Leh20]. For N1,1N_{1,1}, Mk,l(k)M_{k,l}^{(k)} and Mk,l(l)M_{k,l}^{(l)} are equivalent. In that case, we obtain two continuous 1-parameter families of Spin(7)\mathrm{Spin}(7) metrics, one on M1,1(2)M_{1,1}^{(2)} and the other on M1,1(1)M_{1,1}^{(1)}. However, such a family does not contain any AC metric and it is a part of the more complete family in Theorem 1.2.

4.3 Global Metrics on M1,1(2)M_{1,1}^{(2)} and M1,1(1)M_{1,1}^{(1)}

In this section we prove Theorem 1.2. It turns out that for the case where N1,1N_{1,1} is the principal orbit, one can have a simpler construction with a larger family of Spin(7)\mathrm{Spin}(7) metrics. On M1,1(2)M_{1,1}^{(2)}, We recover the explicit solution in [CGLP01] and part of the solution in [Baz07]. On M1,1(1)M_{1,1}^{(1)}, we construct a new continuous 1-parameter family of Spin(7)\mathrm{Spin}(7) metric that has geometric transition from the AC Calabi HyperKähler metric to ALC metrics. Such a family was conjectured in [KY02b].

Recall that in [CGLP01], one has an explicit solution to (2.8) with (k,l)=(1,1)(k,l)=(1,1). Specifically, one can impose

b(t)=c(t)=f(t)2,a˙=1a2b2b(t)=c(t)=\frac{f(t)}{2},\quad\dot{a}=1-\frac{a^{2}}{b^{2}}

for all tt and obtain a subsystem of (2.8). In the new coordinate, such a subsystem is translated to the invariant subset

𝒞Spin(7)+{X2X3=0,Z2Z3=0}{Z2Z3Z43=0}.\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\{X_{2}-X_{3}=0,\quad Z_{2}-Z_{3}=0\}\cap\{\sqrt{Z_{2}Z_{3}}Z_{4}-3=0\}.

Note that this is a 1-dimensional invariant set and critical points PAC2=(17,17,17,17,221,521,521,635)P_{AC-2}=\left(\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{2}{21},\frac{5}{21},\frac{5}{21},\frac{63}{5}\right) and P0(2)P_{0}^{(2)} are contained in it. Hence the example in [CGLP01] is transformed to an algebraic curve in the new coordinate. Then we construct the following compact invariant set

Lemma 4.13.

The set 𝒮~:=𝒞Spin(7)+{X2=X3,Z2=Z3}{Z2Z3Z430}\tilde{\mathcal{S}}:=\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\}\cap\{\sqrt{Z_{2}Z_{3}}Z_{4}-3\leq 0\} is compact and invariant.

Proof.

Since Z2=Z3Z_{2}=Z_{3} in 𝒮~\tilde{\mathcal{S}}, we have

1=2(Z1+Z2+Z3)(13Z2Z3Z416Z1Z3Z416Z1Z2Z4)=2(Z1+2Z2)(13Z213Z1)Z2Z4since Z2=Z3\begin{split}1&=2(Z_{1}+Z_{2}+Z_{3})-\left(\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{2}Z_{4}\right)\\ &=2(Z_{1}+2Z_{2})-\left(\frac{1}{3}Z_{2}-\frac{1}{3}Z_{1}\right)Z_{2}Z_{4}\quad\text{since $Z_{2}=Z_{3}$}\end{split} (4.29)

from (2.19). Since X40X_{4}\geq 0 by Proposition 2.1, we know that Z2Z10Z_{2}-Z_{1}\geq 0. Hence computation above continues as

12(Z1+2Z2)(Z212Z112Z1)=3Z1+3Z2.\begin{split}1&\geq 2(Z_{1}+2Z_{2})-\left(Z_{2}-\frac{1}{2}Z_{1}-\frac{1}{2}Z_{1}\right)\\ &=3Z_{1}+3Z_{2}\end{split}. (4.30)

Hence Z1Z_{1},Z2Z_{2} and Z3Z_{3} are bounded above. Therefore Z4Z_{4} is bounded above by (2.19). Then all XiX_{i}’s are bounded. Hence 𝒮~\tilde{\mathcal{S}} is compact.

It is clear that 𝒞Spin(7)+{X2=X3,Z2=Z3}\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\} is invariant. In the subset 𝒞Spin(7)+{X2=X3,Z2=Z3}{Z2Z3Z430}\mathcal{C}^{+}_{\mathrm{Spin}(7)}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\}\cap\{\sqrt{Z_{2}Z_{3}}Z_{4}-3\leq 0\}, we have

(Z2Z3Z43),V|Z2Z3Z43=0=Z2Z3Z4(X4X1)=3(X4X1)=3((13Z22Z413Z1Z2Z4)(2Z2Z113Z22Z4))=(Z2Z43)(2Z2Z1)0\begin{split}&\left.\langle\nabla(\sqrt{Z_{2}Z_{3}}Z_{4}-3),V\rangle\right|_{\sqrt{Z_{2}Z_{3}}Z_{4}-3=0}\\ &=\sqrt{Z_{2}Z_{3}}Z_{4}(X_{4}-X_{1})\\ &=3(X_{4}-X_{1})\\ &=3\left(\left(\frac{1}{3}Z_{2}^{2}Z_{4}-\frac{1}{3}Z_{1}Z_{2}Z_{4}\right)-\left(2Z_{2}-Z_{1}-\frac{1}{3}Z_{2}^{2}Z_{4}\right)\right)\\ &=\left(Z_{2}Z_{4}-3\right)(2Z_{2}-Z_{1})\\ &\leq 0\end{split} (4.31)

Hence the proof is complete. ∎

By (3.3), we know that γ(s1,s2)(2)\gamma^{(2)}_{(s_{1},s_{2})} is tangent to 𝒮~\partial\tilde{\mathcal{S}} if (s1,s2)=(310,110)(s_{1},s_{2})=\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right) and γ(s1,s2)(2)\gamma^{(2)}_{(s_{1},s_{2})} is in the interior of 𝒮~\tilde{\mathcal{S}} initially if s1>310s_{1}>-\frac{3}{\sqrt{10}}. Hence {γ(s1,s2)(2)(s1,s2)𝕊1,s1310}\left\{\gamma^{(2)}_{(s_{1},s_{2})}\mid(s_{1},s_{2})\in\mathbb{S}^{1},s_{1}\geq-\frac{3}{\sqrt{10}}\right\} is a 1-parameter family of Spin(7)\mathrm{Spin}(7) metrics on M1,1(2)M_{1,1}^{(2)}, and γ(310,110)(2)\gamma^{(2)}_{\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)} is an AC metric.

Remark 4.14.

Note that for N1,1N_{1,1}, one can easily show that 𝒞RF{X2=X3,Z2=Z3}\mathcal{C}_{RF}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\} is invariant. The restricted system of (2.12) on 𝒞RF{X2=X3,Z2=Z3}\mathcal{C}_{RF}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\} is essentially the same as the one that appears in [Chi21], where a 2-parameter family of non-positive Einstein metrics are constructed, with all Ricci-flat metrics being Spin(7)\mathrm{Spin}(7). Metrics represented by γ(s1,s2)(2)\gamma^{(2)}_{(s_{1},s_{2})} is nothing new but the geometric analogy to 𝔹8\mathbb{B}_{8} metrics in [CGLP02a] and [CGLP02b], belonging to the strictly larger solution set obtained in [Baz08]. The AC metric γ(310,110)(2)\gamma^{(2)}_{\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)} is the geometric analogy to the Spin(7)\mathrm{Spin}(7) metric in [BS89] and [GPP90].

By mimicking the example in [CGLP01], we are able to describe the AC Calabi HyperKähler metric on M1,1(1)M_{1,1}^{(1)} as an algebraic curve. In fact, integral curve that represents the AC metric sits on the boundary of a compact invariant subset of 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)}.

Lemma 4.15.

The set

𝒯~:=𝒞Spin(7){Z2+Z3Z10}{Z2Z4+Z3Z460}\tilde{\mathcal{T}}:=\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\{Z_{2}+Z_{3}-Z_{1}\geq 0\}\cap\{Z_{2}Z_{4}+Z_{3}Z_{4}-6\leq 0\}

is compact and invariant. Moreover, the boundary of 𝒯~\tilde{\mathcal{T}} where both equality hold is an integral curve.

Proof.

Since Z1Z4Z2Z4+Z3Z46Z_{1}Z_{4}\leq Z_{2}Z_{4}+Z_{3}Z_{4}\leq 6 in 𝒯~\tilde{\mathcal{T}}, each one of Z1Z4Z_{1}Z_{4}, Z2Z4Z_{2}Z_{4} and Z3Z4Z_{3}Z_{4} is bounded. By (2.22), we know that all ZiZ_{i}’s are bounded. Then all variables are bounded. The compactness is clear.

We have

(Z2+Z3Z1),V|Z2+Z3Z1=0=(Z2+Z3Z1)𝒢+Z2(X2X1X3)+Z3(X3X1X2)Z1(X1X2X3)=2Z2(X2X1)+2Z3(X3X1)on replacing Z1 with Z2+Z3=2Z2(2(Z1Z2)13Z2Z3Z416Z1Z3Z4)+2Z3(2(Z1Z3)13Z2Z3Z416Z1Z2Z4)replace Xi’s using (2.21)=2Z2(2Z313Z2Z3Z416Z1Z3Z4)+2Z3(2Z213Z2Z3Z416Z1Z2Z4)since Z2+Z3=Z1.\begin{split}&\left.\left\langle\nabla\left(Z_{2}+Z_{3}-Z_{1}\right),V\right\rangle\right|_{Z_{2}+Z_{3}-Z_{1}=0}\\ &=(Z_{2}+Z_{3}-Z_{1})\mathcal{G}+Z_{2}(X_{2}-X_{1}-X_{3})+Z_{3}(X_{3}-X_{1}-X_{2})-Z_{1}(X_{1}-X_{2}-X_{3})\\ &=2Z_{2}(X_{2}-X_{1})+2Z_{3}(X_{3}-X_{1})\quad\text{on replacing $Z_{1}$ with $Z_{2}+Z_{3}$}\\ &=2Z_{2}\left(2(Z_{1}-Z_{2})-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{3}Z_{4}\right)+2Z_{3}\left(2(Z_{1}-Z_{3})-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{2}Z_{4}\right)\\ &\quad\text{replace $X_{i}$'s using \eqref{eqn: new opposite spin(7) equation}}\\ &=2Z_{2}\left(2Z_{3}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{3}Z_{4}\right)+2Z_{3}\left(2Z_{2}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{2}Z_{4}\right)\\ &\quad\text{since $Z_{2}+Z_{3}=Z_{1}$}\end{split}. (4.32)

Since Z1Z4Z2Z4+Z3Z46Z_{1}Z_{4}\leq Z_{2}Z_{4}+Z_{3}Z_{4}\leq 6 in 𝒯~\tilde{\mathcal{T}}, computation above continues as

(Z2+Z3Z1),V|Z2+Z3Z1=02Z2(2Z313Z2Z3Z4Z3)+2Z3(2Z213Z2Z3Z4Z2)=Z2Z3(423Z4(Z2+Z3))0.\begin{split}&\left.\left\langle\nabla\left(Z_{2}+Z_{3}-Z_{1}\right),V\right\rangle\right|_{Z_{2}+Z_{3}-Z_{1}=0}\\ &\geq 2Z_{2}\left(2Z_{3}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-Z_{3}\right)+2Z_{3}\left(2Z_{2}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-Z_{2}\right)\\ &=Z_{2}Z_{3}\left(4-\frac{2}{3}Z_{4}(Z_{2}+Z_{3})\right)\\ &\geq 0\end{split}. (4.33)

On the other hand, we have

(Z2Z4+Z3Z46),V|Z2Z4+Z3Z46=0=Z2Z4(X2+X4X1X3)+Z3Z4(X3+X4X1X2)=Z2Z4(3Z1+3Z3Z21+16Z1Z2Z413Z2Z3Z416Z1Z3Z4)+Z3Z4(3Z1+3Z2Z31+16Z1Z3Z413Z2Z3Z416Z1Z2Z4)replace X1X2 and X3 using (2.21) and apply Proposition 2.4=6(Z2+Z3)2Z2((3Z1+3Z3Z21)(Z2+Z3)+Z1Z22Z2Z3Z1Z3)+6(Z2+Z3)2Z3((3Z1+3Z2Z31)(Z2+Z3)+Z1Z32Z2Z3Z1Z2)since Z2Z4+Z3Z4=6=3(Z2+Z3)2(Z2+Z3)((Z2+Z3)(6Z1+2Z2+2Z32)4Z2Z3)+3(Z2+Z3)2(Z2Z3)((Z2+Z3)(4Z34Z2)+2Z1(Z2Z3))apply identity ab+cd=12(a+c)(b+d)+12(ac)(bd)=3(Z2+Z3)2(Z2+Z3)((Z2+Z3)(2Z1+4Z2+4Z32)+4Z2Z3+(Z2+Z3)(4Z12Z22Z3)8Z2Z3)+3(Z2+Z3)2(Z2Z3)((Z2+Z3)(4Z34Z2)+2Z1(Z2Z3)).\begin{split}&\left.\left\langle\nabla(Z_{2}Z_{4}+Z_{3}Z_{4}-6),V\right\rangle\right|_{Z_{2}Z_{4}+Z_{3}Z_{4}-6=0}\\ &=Z_{2}Z_{4}(X_{2}+X_{4}-X_{1}-X_{3})+Z_{3}Z_{4}(X_{3}+X_{4}-X_{1}-X_{2})\\ &=Z_{2}Z_{4}\left(3Z_{1}+3Z_{3}-Z_{2}-1+\frac{1}{6}Z_{1}Z_{2}Z_{4}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{3}Z_{4}\right)\\ &\quad+Z_{3}Z_{4}\left(3Z_{1}+3Z_{2}-Z_{3}-1+\frac{1}{6}Z_{1}Z_{3}Z_{4}-\frac{1}{3}Z_{2}Z_{3}Z_{4}-\frac{1}{6}Z_{1}Z_{2}Z_{4}\right)\\ &\quad\text{replace $X_{1}$, $X_{2}$ and $X_{3}$ using \eqref{eqn: new opposite spin(7) equation} and apply Proposition \ref{prop: X_4 and Zi}}\\ &=\frac{6}{(Z_{2}+Z_{3})^{2}}Z_{2}\left((3Z_{1}+3Z_{3}-Z_{2}-1)(Z_{2}+Z_{3})+Z_{1}Z_{2}-2Z_{2}Z_{3}-Z_{1}Z_{3}\right)\\ &\quad+\frac{6}{(Z_{2}+Z_{3})^{2}}Z_{3}\left((3Z_{1}+3Z_{2}-Z_{3}-1)(Z_{2}+Z_{3})+Z_{1}Z_{3}-2Z_{2}Z_{3}-Z_{1}Z_{2}\right)\\ &\quad\text{since $Z_{2}Z_{4}+Z_{3}Z_{4}=6$}\\ &=\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}+Z_{3})\bigg{(}(Z_{2}+Z_{3})(6Z_{1}+2Z_{2}+2Z_{3}-2)-4Z_{2}Z_{3}\bigg{)}\\ &\quad+\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}-Z_{3})\bigg{(}(Z_{2}+Z_{3})(4Z_{3}-4Z_{2})+2Z_{1}(Z_{2}-Z_{3})\bigg{)}\\ &\quad\text{apply identity $ab+cd=\frac{1}{2}(a+c)(b+d)+\frac{1}{2}(a-c)(b-d)$}\\ &=\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}+Z_{3})\bigg{(}(Z_{2}+Z_{3})(2Z_{1}+4Z_{2}+4Z_{3}-2)+4Z_{2}Z_{3}+(Z_{2}+Z_{3})(4Z_{1}-2Z_{2}-2Z_{3})-8Z_{2}Z_{3}\bigg{)}\\ &\quad+\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}-Z_{3})\bigg{(}(Z_{2}+Z_{3})(4Z_{3}-4Z_{2})+2Z_{1}(Z_{2}-Z_{3})\bigg{)}\\ \end{split}. (4.34)

By multiplying both hand side of last equality in (2.22) by 2(Z2+Z3)2(Z_{2}+Z_{3}), we know that if Z2Z4+Z3Z4=6Z_{2}Z_{4}+Z_{3}Z_{4}=6,

2(Z2+Z3)=4(Z1+Z2+Z3)(Z2+Z3)+23Z2Z3Z4(Z2+Z3)26Z1(Z2Z4+Z3Z4)(Z2+Z3)=4(Z1+Z2+Z3)(Z2+Z3)+4Z2Z32Z1(Z2+Z3)=(2Z1+4Z2+4Z3)(Z2+Z3)+4Z2Z3.\begin{split}2(Z_{2}+Z_{3})&=4(Z_{1}+Z_{2}+Z_{3})(Z_{2}+Z_{3})+\frac{2}{3}Z_{2}Z_{3}Z_{4}(Z_{2}+Z_{3})-\frac{2}{6}Z_{1}(Z_{2}Z_{4}+Z_{3}Z_{4})(Z_{2}+Z_{3})\\ &=4(Z_{1}+Z_{2}+Z_{3})(Z_{2}+Z_{3})+4Z_{2}Z_{3}-2Z_{1}(Z_{2}+Z_{3})\\ &=(2Z_{1}+4Z_{2}+4Z_{3})(Z_{2}+Z_{3})+4Z_{2}Z_{3}\end{split}. (4.35)

Hence we have

(Z2Z4+Z3Z46),V|Z2Z4+Z3Z46=0=3(Z2+Z3)2(Z2+Z3)((Z2+Z3)(4Z12Z22Z3)8Z2Z3)+3(Z2+Z3)2(Z2Z3)((Z2+Z3)(4Z34Z2)+2Z1(Z2Z3))=6(Z2+Z3)2(Z2+Z3Z1)((Z2+Z3)2+2Z22+2Z32)0\begin{split}&\left.\left\langle\nabla(Z_{2}Z_{4}+Z_{3}Z_{4}-6),V\right\rangle\right|_{Z_{2}Z_{4}+Z_{3}Z_{4}-6=0}\\ &=\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}+Z_{3})\bigg{(}(Z_{2}+Z_{3})(4Z_{1}-2Z_{2}-2Z_{3})-8Z_{2}Z_{3}\bigg{)}\\ &\quad+\frac{3}{(Z_{2}+Z_{3})^{2}}(Z_{2}-Z_{3})\bigg{(}(Z_{2}+Z_{3})(4Z_{3}-4Z_{2})+2Z_{1}(Z_{2}-Z_{3})\bigg{)}\\ &=-\frac{6}{(Z_{2}+Z_{3})^{2}}(Z_{2}+Z_{3}-Z_{1})((Z_{2}+Z_{3})^{2}+2Z_{2}^{2}+2Z_{3}^{2})\\ &\leq 0\end{split} (4.36)

Hence 𝒯~\tilde{\mathcal{T}} is indeed invariant. ∎

Note that the boundary

𝒞Spin(7){Z2+Z3Z1=0}{Z2Z4+Z3Z46=0}\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\{Z_{2}+Z_{3}-Z_{1}=0\}\cap\{Z_{2}Z_{4}+Z_{3}Z_{4}-6=0\}

is a 1-dimensional invariant set and it contains P0(1)P_{0}^{(1)} and PAC1=(17,17,17,17,27,17,17,21)P_{AC-1}=\left(\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{2}{7},\frac{1}{7},\frac{1}{7},21\right). It is clear that γ(12,12)(1)\gamma^{(1)}_{\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)} is tangent to 𝒯~\partial\tilde{\mathcal{T}} and γ(s1,s2)(1)\gamma^{(1)}_{(s_{1},s_{2})} is in the interior of 𝒯~\tilde{\mathcal{T}} initially if s1>12s_{1}>-\frac{1}{\sqrt{2}}. Hence {γ(s1,s2)(1)(s1,s2)𝕊1,s112}\left\{\gamma^{(1)}_{(s_{1},s_{2})}\mid(s_{1},s_{2})\in\mathbb{S}^{1},s_{1}\geq-\frac{1}{\sqrt{2}}\right\} is a 1-parameter family of Spin(7)\mathrm{Spin}(7) metrics on M1,1(1)M_{1,1}^{(1)}, where γ(12,12)(1)\gamma^{(1)}_{\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)} is an AC metric. In summary, we have

Lemma 4.16.

Metrics represented by γ(s1,s2)(2)\gamma^{(2)}_{(s_{1},s_{2})} on M1,1(2)M_{1,1}^{(2)} with (s1,s2)𝕊1(s_{1},s_{2})\in\mathbb{S}^{1} and s1310s_{1}\geq-\frac{3}{\sqrt{10}} are forward complete. Metrics represented by γ(s1,s2)(1)\gamma^{(1)}_{(s_{1},s_{2})} on M1,1(1)M_{1,1}^{(1)} with (s1,s2)𝕊1(s_{1},s_{2})\in\mathbb{S}^{1} and s112s_{1}\geq-\frac{1}{\sqrt{2}} are forward complete. Moreover, metrics γ(310,110)(2)\gamma_{\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)}^{(2)} and γ(12,12)(1)\gamma^{(1)}_{\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)} are AC.

Refer to caption
(a) γ(310,110)(2)\gamma^{(2)}_{\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)}
Refer to caption
(b) γ(12,12)(1)\gamma^{(1)}_{\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)}
Figure 5: Two AC metrics in 𝒮~\tilde{\mathcal{S}} and 𝒯~\tilde{\mathcal{T}} are in fact represented by algebraic curves. In fact, γ(310,110)(2)\gamma^{(2)}_{\left(-\frac{3}{\sqrt{10}},\frac{1}{\sqrt{10}}\right)} lies in a straight line {Z2=Z3}{3Z1+3Z2=1}\{Z_{2}=Z_{3}\}\cap\{3Z_{1}+3Z_{2}=1\}

By the invariance of 𝒮~\tilde{\mathcal{S}} and 𝒯~\tilde{\mathcal{T}}, we also obtain forward complete conically singular metrics with N1,1N_{1,1} as principal orbits. One can check that for each one of (PAC1)\mathcal{L}(P_{AC-1}) and (PAC2)\mathcal{L}(P_{AC-2}), there exists a unique unstable eigenvector that is tangent to 𝒞Spin(7)\mathcal{C}^{-}_{\mathrm{Spin}(7)} and 𝒞Spin(7)+\mathcal{C}^{+}_{\mathrm{Spin}(7)}, respectively. Integral curves that emanates from PAC1P_{AC-1} and PAC2P_{AC-2} along these eigenvectors lie in 𝒞RF{X2=X3,Z2=Z3}\mathcal{C}_{RF}\cap\{X_{2}=X_{3},Z_{2}=Z_{3}\}. Recall Remark 4.14, we know that they are forward complete. In fact, the integral curve that emanates from PAC1P_{AC-1} is the geometric analogy to 𝔸8\mathbb{A}_{8} in [CGLP02a].

4.4 Asymptotics

Without further specifying, we use γ\gamma to denote either γ(s1,s2)(k+l)\gamma^{(k+l)}_{(s_{1},s_{2})} or γ(s1,s2)(k)\gamma^{(k)}_{(s_{1},s_{2})} in Lemma 4.12 and Lemma 4.16 that is defined on \mathbb{R} is this section. We prove the following.

Lemma 4.17.

For each γ\gamma in Lemma 4.12, limηγ=P1\lim\limits_{\eta\to\infty}\gamma=P_{1}. For each γ\gamma in Lemma 4.16, we have

limηγ(s1,s2)(2)={P1s1>310PAC1s1=310,limηγ(s1,s2)(1)={P1s1>12PAC2s1=12.\lim_{\eta\to\infty}\gamma_{(s_{1},s_{2})}^{(2)}=\left\{\begin{array}[]{ll}P_{1}&s_{1}>-\frac{3}{\sqrt{10}}\\ P_{AC-1}&s_{1}=-\frac{3}{\sqrt{10}}\end{array}\right.,\quad\lim_{\eta\to\infty}\gamma_{(s_{1},s_{2})}^{(1)}=\left\{\begin{array}[]{ll}P_{1}&s_{1}>-\frac{1}{\sqrt{2}}\\ P_{AC-2}&s_{1}=-\frac{1}{\sqrt{2}}\end{array}\right..
Proof.

We first consider γ=γ(s1,s2)(k+l)\gamma=\gamma^{(k+l)}_{(s_{1},s_{2})} in Lemma 4.12. By Lemma 4.11, we know that γ\gamma stays in the set where 𝒜0\mathcal{A}\geq 0 and 𝒢X40\mathcal{G}-X_{4}\geq 0 is held. Since

ddηZ4(γ(η))=(Z4(𝒢X4))(η)0,\frac{d}{d\eta}Z_{4}(\gamma(\eta))=\left(-Z_{4}(\mathcal{G}-X_{4})\right)(\eta)\leq 0,

we know that the function Z4(γ)Z_{4}(\gamma) is decreasing along γ\gamma, hence it converges to some limit z0z\geq 0 as η\eta\to\infty. Suppose z0>0z_{0}>0, then the ω\omega-limit set of γ\gamma, denoted as Ω\Omega, is contained in the level set {Z4=z}\left\{Z_{4}=z_{*}\right\}. By the invariance of the ω\omega-limit set, we know that Ω{Z4=z}{𝒢X4=0}\Omega\subset\left\{Z_{4}=z_{*}\right\}\cap\{\mathcal{G}-X_{4}=0\}. But then by (4.10), we learn that 𝒜=0\mathcal{A}=0 for each point in Ω\Omega. Moreover, from (4.10) we know that 𝒜=0\mathcal{A}=0 in 𝒮ˇ\check{\mathcal{S}} implies Z1=0Z_{1}=0 and Z2=Z3Z_{2}=Z_{3}. Hence in addition to (2.19), points in Ω\Omega also satisfy

Z1=0,Z2=Z3,Z2+Z323,𝒜=0.Z_{1}=0,\quad Z_{2}=Z_{3},\quad Z_{2}+Z_{3}\leq\frac{2}{3},\quad\mathcal{A}=0.

From all the constraints above, we can conclude that Ω={P0(k+l)}\Omega=\{P_{0}^{(k+l)}\}. By the monotonicity of Z4Z_{4} along γ\gamma and the fact that Z4<6Δk+lZ_{4}<\frac{6\Delta}{k+l} initially along γ\gamma, we reach a contradiction. Hence z=0z_{*}=0

Similarly, we have the monotonicity of Z4Z_{4} along γ=γ(s1,s2)(k)\gamma=\gamma_{(s_{1},s_{2})}^{(k)}. If Z4Z_{4} does not converges to 0, then the ω\omega-limit set is a subset of 𝒞Spin(7){𝒢X4=0}\mathcal{C}^{-}_{\mathrm{Spin}(7)}\cap\{\mathcal{G}-X_{4}=0\}. Then the ω\omega-limit can only be {P0(k)}\{P_{0}^{(k)}\}, a contradiction.

Hence Z4Z_{4} converges to 0 along each γ\gamma in Lemma 4.12. By Proposition 2.1, it is clear that X40X_{4}\geq 0 along γ\gamma. Then from (2.17) and (2.21), we have

X4=±(k+l2ΔZ2Z3Z4l2ΔZ1Z3Z4k2ΔZ1Z2Z4)(k+l2ΔZ2Z3+l2ΔZ1Z3+k2ΔZ1Z2)Z4.\begin{split}X_{4}&=\pm\left(\frac{k+l}{2\Delta}Z_{2}Z_{3}Z_{4}-\frac{l}{2\Delta}Z_{1}Z_{3}Z_{4}-\frac{k}{2\Delta}Z_{1}Z_{2}Z_{4}\right)\\ &\leq\left(\frac{k+l}{2\Delta}Z_{2}Z_{3}+\frac{l}{2\Delta}Z_{1}Z_{3}+\frac{k}{2\Delta}Z_{1}Z_{2}\right)Z_{4}\end{split}. (4.37)

Since all ZiZ_{i}’s are bounded above, we must have

limηZ4(γs(η))=limηX4(γ(η))=0.\lim_{\eta\to\infty}Z_{4}(\gamma_{s}(\eta))=\lim_{\eta\to\infty}X_{4}(\gamma(\eta))=0.

Hence Ω\Omega is an invariant subset of 𝒞G2=𝒞Spin(7)±{X4=Z4=0}\mathcal{C}_{G_{2}}=\mathcal{C}^{\pm}_{\mathrm{Spin}(7)}\cap\{X_{4}=Z_{4}=0\}. The subsystem (2.17) restricted on 𝒞G2\mathcal{C}_{G_{2}} is essentially the dynamic system of cohomogeneity one G2G_{2} metrics with SU(3)/T2SU(3)/T^{2} as principal orbit studied in [CS02]. Integral curves that represent smooth cohomogeneity one G2G_{2} metric in [BS89] and [GPP90] are included in 𝒞G2\mathcal{C}_{G_{2}}. In [Chi19b], we show that each integral curve of this subsystem is in fact an algebraic curve in Z1Z_{1}, Z2Z_{2} and Z3Z_{3}. Moreover, they all converges to P1P_{1}. By the invariance of Ω\Omega, it is clear that P1ΩP_{1}\in\Omega. Since P1P_{1} is a sink, we conclude that limηγ(η)=P1\lim\limits_{\eta\to\infty}\gamma(\eta)=P_{1}.

Consider γ(s1,s2)(2)\gamma_{(s_{1},s_{2})}^{(2)} in Lemma 4.16, the monotonicity of Z2Z3Z4\sqrt{Z_{2}Z_{3}}Z_{4} along γ(s1,s2)(2)\gamma_{(s_{1},s_{2})}^{(2)} imply that functions Z2Z3Z4\sqrt{Z_{2}Z_{3}}Z_{4} converges. Suppose the limit is nonzero, then by the invariance of the ω\omega-limit set and computation similar to (4.31), one can conclude that Z2Z3Z4=3\sqrt{Z_{2}Z_{3}}Z_{4}=3 is satisfied by elements in the ω\omega-limit set. With (2.19) and the constraints Z2=Z3Z_{2}=Z_{3}, we know that γ(s1,s2)(2)\gamma_{(s_{1},s_{2})}^{(2)} lies in a straight line {Z2=Z3}{3Z1+3Z2=1}\{Z_{2}=Z_{3}\}\cap\{3Z_{1}+3Z_{2}=1\}. Hence the limit must be PAC1P_{AC-1}.

If Z2Z3Z4<3\sqrt{Z_{2}Z_{3}}Z_{4}<3 initially, the limit must be zero. Since Z3=Z2Z1Z_{3}=Z_{2}\geq Z_{1} in 𝒮~\tilde{\mathcal{S}}, we know that the Z2Z_{2} and Z3Z_{3} variable must not converge to 0 due to (2.19). Hence Z4Z_{4} converges to zero, then it follows that X4X_{4} converges to zero and the limit must be P1P_{1}. As for γ(s1,s2)(1)\gamma_{(s_{1},s_{2})}^{(1)} in Lemma 4.16, the argument is similar and the statement is proven. ∎

Theorem 1.1 and Theorem 1.2 are proven by Lemma 4.12, Lemma 4.16 and Lemma 4.17. It is a natural question to ask if Spin(7)\mathrm{Spin}(7) metrics on Mk,l(i)M_{k,l}^{(i)} with generic Nk,lN_{k,l} can be extended to a larger family where the boundary is given by an AC metric. If such an AC metric exists, can it be described as an algebraic curve in our new coordinate? A further question is whether one can show γ(s1,s2,s3)(i)\gamma_{(s_{1},s_{2},s_{3})}^{(i)} is defined on \mathbb{R}, integral curves that represent cohomogeneity one Ricci-flat metric that may not have any special holonomy.

5 Appendix

5.1 Non-negativity of r(α,β)(q1,q2)r_{(\alpha,\beta)}(q_{1},q_{2})

We show that r(α,β)(q1,q2)0r_{(\alpha,\beta)}(q_{1},q_{2})\geq 0 for any (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1]. Firstly, we have

r(α,β)=27β2[24316384α8β6+(81512α7+811024α6)β5+(81256α6189256α5+27128α4)β4+(15332α52732α4+2716α3932α2)β3+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]27β2[(81256α6189256α5+27128α4)β4+(15332α52732α4+2716α3932α2)β3+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]since α[0,12]27β2[(189256α5)β3+(15332α52732α4+2716α3932α2)β3+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]since β[0,1]=27β2[(1413256α52732α4+2716α3932α2)β3+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]27β2[(1413256α52732α4932α2)β2+(18α4392α3+15916α294α+316)β2+(21α315α2+174α716)β+6α22α+14]since β[0,1]=27β2[(1413256α5+54932α4392α3+30932α294α+316)β2+(21α315α2+174α716)β+6α22α+14]27β2[(1413512α4+54932α4392α3+30932α294α+316)β2+(21α315α2+174α716)β+6α22α+14]since α[0,12]=27β2[(7371512α4392α3+30932α294α+316)β2+(21α315α2+174α716)β+6α22α+14]27β2[(392α3+30932α294α+316)β2+(21α315α2+174α716)β+6α22α+14]27β2[(30932α294α+316)β2+(392α3+21α315α2+174α716)β+6α22α+14]since β[0,1]27β2[(30932α294α+316)β2+(15α2+174α716)β+6α22α+14].\begin{split}&r(\alpha,\beta)\\ &=27\beta^{2}\bigg{[}\frac{243}{16384}\alpha^{8}\beta^{6}+\left(-\frac{81}{512}\alpha^{7}+\frac{81}{1024}\alpha^{6}\right)\beta^{5}+\left(\frac{81}{256}\alpha^{6}-\frac{189}{256}\alpha^{5}+\frac{27}{128}\alpha^{4}\right)\beta^{4}\\ &\quad+\left(-\frac{153}{32}\alpha^{5}-\frac{27}{32}\alpha^{4}+\frac{27}{16}\alpha^{3}-\frac{9}{32}\alpha^{2}\right)\beta^{3}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\geq 27\beta^{2}\bigg{[}\left(\frac{81}{256}\alpha^{6}-\frac{189}{256}\alpha^{5}+\frac{27}{128}\alpha^{4}\right)\beta^{4}\\ &\quad+\left(-\frac{153}{32}\alpha^{5}-\frac{27}{32}\alpha^{4}+\frac{27}{16}\alpha^{3}-\frac{9}{32}\alpha^{2}\right)\beta^{3}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\quad\text{since $\alpha\in\left[0,\frac{1}{2}\right]$}\\ &\geq 27\beta^{2}\bigg{[}\left(-\frac{189}{256}\alpha^{5}\right)\beta^{3}\\ &\quad+\left(-\frac{153}{32}\alpha^{5}-\frac{27}{32}\alpha^{4}+\frac{27}{16}\alpha^{3}-\frac{9}{32}\alpha^{2}\right)\beta^{3}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\quad\text{since $\beta\in\left[0,1\right]$}\\ &=27\beta^{2}\bigg{[}\left(-\frac{1413}{256}\alpha^{5}-\frac{27}{32}\alpha^{4}+\frac{27}{16}\alpha^{3}-\frac{9}{32}\alpha^{2}\right)\beta^{3}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\geq 27\beta^{2}\bigg{[}\left(-\frac{1413}{256}\alpha^{5}-\frac{27}{32}\alpha^{4}-\frac{9}{32}\alpha^{2}\right)\beta^{2}+\left(18\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{159}{16}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}\\ &\quad+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\quad\text{since $\beta\in\left[0,1\right]$}\\ &=27\beta^{2}\bigg{[}\left(-\frac{1413}{256}\alpha^{5}+\frac{549}{32}\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\geq 27\beta^{2}\bigg{[}\left(-\frac{1413}{512}\alpha^{4}+\frac{549}{32}\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\quad\text{since $\alpha\in\left[0,\frac{1}{2}\right]$}\\ &=27\beta^{2}\bigg{[}\left(\frac{7371}{512}\alpha^{4}-\frac{39}{2}\alpha^{3}+\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\geq 27\beta^{2}\bigg{[}\left(-\frac{39}{2}\alpha^{3}+\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\\ &\geq 27\beta^{2}\bigg{[}\left(\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(-\frac{39}{2}\alpha^{3}+21\alpha^{3}-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\quad\text{since $\beta\in\left[0,1\right]$}\\ &\geq 27\beta^{2}\bigg{[}\left(\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16}\right)\beta^{2}+\left(-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16}\right)\beta+6\alpha^{2}-2\alpha+\frac{1}{4}\bigg{]}\end{split}. (5.1)

Define function fα(β)=c2(α)β2+c1β+c0(α)f_{\alpha}(\beta)=c_{2}(\alpha)\beta^{2}+c_{1}\beta+c_{0}(\alpha), where

c2(α)=30932α294α+316,c1(α)=15α2+174α716,c0(α)=6α22α+14.c_{2}(\alpha)=\frac{309}{32}\alpha^{2}-\frac{9}{4}\alpha+\frac{3}{16},\quad c_{1}(\alpha)=-15\alpha^{2}+\frac{17}{4}\alpha-\frac{7}{16},\quad c_{0}(\alpha)=6\alpha^{2}-2\alpha+\frac{1}{4}.

It is clear that c2,c0>0c_{2},c_{0}>0 and c1<0c_{1}<0 for any α[0,12]\alpha\in\left[0,\frac{1}{2}\right]. It is also clear that c12c21-\frac{c_{1}}{2c_{2}}\geq 1 for α[0,2+7369]\alpha\in\left[0,\frac{2+\sqrt{73}}{69}\right]. Consider

Δ(α)=(c124c2c0)(α)=274α4+154α33132α2+132α+1256.\Delta(\alpha)=(c_{1}^{2}-4c_{2}c_{0})(\alpha)=-\frac{27}{4}\alpha^{4}+\frac{15}{4}\alpha^{3}-\frac{31}{32}\alpha^{2}+\frac{1}{32}\alpha+\frac{1}{256}.

Since

Δ′′(α)=81α2+452α3116<0,Δ(320)=7798000<0,Δ(320)=2537640000<0,\Delta^{\prime\prime}(\alpha)=-81\alpha^{2}+\frac{45}{2}\alpha-\frac{31}{16}<0,\quad\Delta^{\prime}\left(\frac{3}{20}\right)=-\frac{779}{8000}<0,\quad\Delta\left(\frac{3}{20}\right)=-\frac{2537}{640000}<0,

it is clear that Δ(α)<0\Delta(\alpha)<0 any α[320,12]\alpha\in\left[\frac{3}{20},\frac{1}{2}\right]. Since 2+73690.1528>0.15=320\frac{2+\sqrt{73}}{69}\approx 0.1528>0.15=\frac{3}{20}, we have

fα(β)fα(1)=2132α20for α[0,2+7369]fα(β)>0for α[2+7369,12].\begin{array}[]{ll}f_{\alpha}(\beta)\geq f_{\alpha}(1)=\frac{21}{32}\alpha^{2}\geq 0&\text{for $\alpha\in\left[0,\frac{2+\sqrt{73}}{69}\right]$}\\ f_{\alpha}(\beta)>0&\text{for $\alpha\in\left[\frac{2+\sqrt{73}}{69},\frac{1}{2}\right]$}\end{array}.

Hence r(α,β)0r(\alpha,\beta)\geq 0 for any (α,β)[0,12]×(0,1](\alpha,\beta)\in\left[0,\frac{1}{2}\right]\times(0,1] and only vanishes at (0,1)(0,1).

5.2 Formula of r(α,β,δ)(p1,p2)r_{(\alpha,\beta,\delta)}(p_{1},p_{2})

We present the formular for r(α,β,δ)(p1,p2)r_{(\alpha,\beta,\delta)}(p_{1},p_{2}) for any (α,β,δ)[0,1]×[0,1]×(0,1](\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1]. Let ρ=lk\rho=\frac{l}{k}, we have

r(α,β,δ)(p1,p2)=36δ2(36ρ4α4β4δ272ρ4α3β4δ2+144ρ3α4β4δ2+108ρ4α2β4δ2+45ρ3α5β3δ6ρ3α4β4δ72ρ3α4β3δ2+45ρ3α3β5δ216ρ3α3β4δ2+216ρ2α4β4δ272ρ4αβ4δ269ρ3α4β3δ+60ρ3α3β4δ+144ρ3α3β3δ263ρ3α2β5δ+216ρ3α2β4δ2+135ρ2α5β3δ18ρ2α4β4δ216ρ2α4β3δ2+135ρ2α3β5δ216ρ2α3β4δ2+144ρα4β4δ2+36ρ4β4δ2+174ρ3α3β3δ144ρ3α2β3δ2+63ρ3αβ5δ72ρ3αβ4δ2+15ρ2α6β24ρ2α5β363ρ2α5β2δ+26ρ2α4β478ρ2α4β3δ+108ρ2α4β2δ24ρ2α3β5+51ρ2α3β4δ+288ρ2α3β3δ2+15ρ2α2β6126ρ2α2β5δ+108ρ2α2β4δ2+135ρα5β3δ18ρα4β4δ216ρα4β3δ2+135ρα3β5δ72ρα3β4δ2+36α4β4δ2174ρ3α2β3δ60ρ3αβ4δ+72ρ3αβ3δ245ρ3β5δ10ρ2α5β2+28ρ2α4β3+120ρ2α4β2δ48ρ2α3β4+216ρ2α3β3δ144ρ2α3β2δ2+36ρ2α2β5+120ρ2α2β4δ144ρ2α2β3δ26ρ2αβ6+63ρ2αβ5δ+30ρα6β28ρα5β3126ρα5β2δ+52ρα4β4+51ρα4β3δ+216ρα4β2δ28ρα3β578ρα3β4δ+144ρα3β3δ2+30ρα2β663ρα2β5δ+45α5β3δ6α4β4δ72α4β3δ2+45α3β5δ+69ρ3αβ3δ+6ρ3β4δ+81ρ2α4β224ρ2α3β3306ρ2α3β2δ+44ρ2α2β4306ρ2α2β3δ+108ρ2α2β2δ2+36ρ2αβ5129ρ2αβ4δ+15ρ2β66ρα6β+26ρα5β2+63ρα5βδ20ρα4β3+120ρα4β2δ72ρα4βδ220ρα3β4+216ρα3β3δ144ρα3β2δ2+26ρα2β5+120ρα2β4δ6ραβ6+15α6β24α5β363α5β2δ+26α4β4+60α4β3δ+108α4β2δ24α3β569α3β4δ+15α2β645ρ3β3δ44ρ2α3β224ρ2α2β3+120ρ2α2β2δ48ρ2αβ4+129ρ2αβ3δ4ρ2β5+46ρα5β+44ρα4β2129ρα4βδ4ρα3β3306ρα3β2δ+72ρα3βδ2+44ρα2β4306ρα2β3δ+46ραβ56α6β+36α5β2+63α5βδ48α4β372α4βδ2+28α3β4+174α3β3δ10α2β5+81ρ2α2β2+28ρ2αβ363ρ2αβ2δ+26ρ2β476ρα4β44ρα3β2+129ρα3βδ44ρα2β3+120ρα2β2δ76ραβ4+15α6+36α5β45α5δ+44α4β260α4βδ+36α4δ224α3β3174α3β2δ+81α2β410ρ2αβ24ρ2β3+76ρα3β+118ρα2β263ρα2βδ+76ραβ34α548α4β+6α4δ24α3β2+69α3βδ44α2β3+15ρ2β246ρα2β46ραβ2+26α4+28α3β45α3δ+81α2β2+6ραβ4α310α2β+15α2).=36δ2r~(α,β,δ)(p1,p2)\begin{split}r_{(\alpha,\beta,\delta)}(p_{1},p_{2})&=36\delta^{2}\bigg{(}36\rho^{4}\alpha^{4}\beta^{4}\delta^{2}-72\rho^{4}\alpha^{3}\beta^{4}\delta^{2}+144\rho^{3}\alpha^{4}\beta^{4}\delta^{2}+108\rho^{4}\alpha^{2}\beta^{4}\delta^{2}+45\rho^{3}\alpha^{5}\beta^{3}\delta-6\rho^{3}\alpha^{4}\beta^{4}\delta-72\rho^{3}\alpha^{4}\beta^{3}\delta^{2}\\ &\quad+45\rho^{3}\alpha^{3}\beta^{5}\delta-216\rho^{3}\alpha^{3}\beta^{4}\delta^{2}+216\rho^{2}\alpha^{4}\beta^{4}\delta^{2}-72\rho^{4}\alpha\beta^{4}\delta^{2}-69\rho^{3}\alpha^{4}\beta^{3}\delta+60\rho^{3}\alpha^{3}\beta^{4}\delta+144\rho^{3}\alpha^{3}\beta^{3}\delta^{2}\\ &\quad-63\rho^{3}\alpha^{2}\beta^{5}\delta+216\rho^{3}\alpha^{2}\beta^{4}\delta^{2}+135\rho^{2}\alpha^{5}\beta^{3}\delta-18\rho^{2}\alpha^{4}\beta^{4}\delta-216\rho^{2}\alpha^{4}\beta^{3}\delta^{2}+135\rho^{2}\alpha^{3}\beta^{5}\delta-216\rho^{2}\alpha^{3}\beta^{4}\delta^{2}\\ &\quad+144\rho\alpha^{4}\beta^{4}\delta^{2}+36\rho^{4}\beta^{4}\delta^{2}+174\rho^{3}\alpha^{3}\beta^{3}\delta-144\rho^{3}\alpha^{2}\beta^{3}\delta^{2}+63\rho^{3}\alpha\beta^{5}\delta-72\rho^{3}\alpha\beta^{4}\delta^{2}+15\rho^{2}\alpha^{6}\beta^{2}-4\rho^{2}\alpha^{5}\beta^{3}\\ &\quad-63\rho^{2}\alpha^{5}\beta^{2}\delta+26\rho^{2}\alpha^{4}\beta^{4}-78\rho^{2}\alpha^{4}\beta^{3}\delta+108\rho^{2}\alpha^{4}\beta^{2}\delta^{2}-4\rho^{2}\alpha^{3}\beta^{5}+51\rho^{2}\alpha^{3}\beta^{4}\delta+288\rho^{2}\alpha^{3}\beta^{3}\delta^{2}+15\rho^{2}\alpha^{2}\beta^{6}\\ &\quad-126\rho^{2}\alpha^{2}\beta^{5}\delta+108\rho^{2}\alpha^{2}\beta^{4}\delta^{2}+135\rho\alpha^{5}\beta^{3}\delta-18\rho\alpha^{4}\beta^{4}\delta-216\rho\alpha^{4}\beta^{3}\delta^{2}+135\rho\alpha^{3}\beta^{5}\delta-72\rho\alpha^{3}\beta^{4}\delta^{2}\\ &\quad+36\alpha^{4}\beta^{4}\delta^{2}-174\rho^{3}\alpha^{2}\beta^{3}\delta-60\rho^{3}\alpha\beta^{4}\delta+72\rho^{3}\alpha\beta^{3}\delta^{2}-45\rho^{3}\beta^{5}\delta-10\rho^{2}\alpha^{5}\beta^{2}+28\rho^{2}\alpha^{4}\beta^{3}+120\rho^{2}\alpha^{4}\beta^{2}\delta\\ &\quad-48\rho^{2}\alpha^{3}\beta^{4}+216\rho^{2}\alpha^{3}\beta^{3}\delta-144\rho^{2}\alpha^{3}\beta^{2}\delta^{2}+36\rho^{2}\alpha^{2}\beta^{5}+120\rho^{2}\alpha^{2}\beta^{4}\delta-144\rho^{2}\alpha^{2}\beta^{3}\delta^{2}-6\rho^{2}\alpha\beta^{6}+63\rho^{2}\alpha\beta^{5}\delta\\ &\quad+30\rho\alpha^{6}\beta^{2}-8\rho\alpha^{5}\beta^{3}-126\rho\alpha^{5}\beta^{2}\delta+52\rho\alpha^{4}\beta^{4}+51\rho\alpha^{4}\beta^{3}\delta+216\rho\alpha^{4}\beta^{2}\delta^{2}-8\rho\alpha^{3}\beta^{5}-78\rho\alpha^{3}\beta^{4}\delta+144\rho\alpha^{3}\beta^{3}\delta^{2}\\ &\quad+30\rho\alpha^{2}\beta^{6}-63\rho\alpha^{2}\beta^{5}\delta+45\alpha^{5}\beta^{3}\delta-6\alpha^{4}\beta^{4}\delta-72\alpha^{4}\beta^{3}\delta^{2}+45\alpha^{3}\beta^{5}\delta+69\rho^{3}\alpha\beta^{3}\delta+6\rho^{3}\beta^{4}\delta+81\rho^{2}\alpha^{4}\beta^{2}\\ &\quad-24\rho^{2}\alpha^{3}\beta^{3}-306\rho^{2}\alpha^{3}\beta^{2}\delta+44\rho^{2}\alpha^{2}\beta^{4}-306\rho^{2}\alpha^{2}\beta^{3}\delta+108\rho^{2}\alpha^{2}\beta^{2}\delta^{2}+36\rho^{2}\alpha\beta^{5}-129\rho^{2}\alpha\beta^{4}\delta+15\rho^{2}\beta^{6}\\ &\quad-6\rho\alpha^{6}\beta+26\rho\alpha^{5}\beta^{2}+63\rho\alpha^{5}\beta\delta-20\rho\alpha^{4}\beta^{3}+120\rho\alpha^{4}\beta^{2}\delta-72\rho\alpha^{4}\beta\delta^{2}-20\rho\alpha^{3}\beta^{4}+216\rho\alpha^{3}\beta^{3}\delta-144\rho\alpha^{3}\beta^{2}\delta^{2}\\ &\quad+26\rho\alpha^{2}\beta^{5}+120\rho\alpha^{2}\beta^{4}\delta-6\rho\alpha\beta^{6}+15\alpha^{6}\beta^{2}-4\alpha^{5}\beta^{3}-63\alpha^{5}\beta^{2}\delta+26\alpha^{4}\beta^{4}+60\alpha^{4}\beta^{3}\delta+108\alpha^{4}\beta^{2}\delta^{2}-4\alpha^{3}\beta^{5}\\ &\quad-69\alpha^{3}\beta^{4}\delta+15\alpha^{2}\beta^{6}-45\rho^{3}\beta^{3}\delta-44\rho^{2}\alpha^{3}\beta^{2}-24\rho^{2}\alpha^{2}\beta^{3}+120\rho^{2}\alpha^{2}\beta^{2}\delta-48\rho^{2}\alpha\beta^{4}+129\rho^{2}\alpha\beta^{3}\delta-4\rho^{2}\beta^{5}\\ &\quad+46\rho\alpha^{5}\beta+44\rho\alpha^{4}\beta^{2}-129\rho\alpha^{4}\beta\delta-4\rho\alpha^{3}\beta^{3}-306\rho\alpha^{3}\beta^{2}\delta+72\rho\alpha^{3}\beta\delta^{2}+44\rho\alpha^{2}\beta^{4}-306\rho\alpha^{2}\beta^{3}\delta+46\rho\alpha\beta^{5}\\ &\quad-6\alpha^{6}\beta+36\alpha^{5}\beta^{2}+63\alpha^{5}\beta\delta-48\alpha^{4}\beta^{3}-72\alpha^{4}\beta\delta^{2}+28\alpha^{3}\beta^{4}+174\alpha^{3}\beta^{3}\delta-10\alpha^{2}\beta^{5}+81\rho^{2}\alpha^{2}\beta^{2}+28\rho^{2}\alpha\beta^{3}\\ &\quad-63\rho^{2}\alpha\beta^{2}\delta+26\rho^{2}\beta^{4}-76\rho\alpha^{4}\beta-44\rho\alpha^{3}\beta^{2}+129\rho\alpha^{3}\beta\delta-44\rho\alpha^{2}\beta^{3}+120\rho\alpha^{2}\beta^{2}\delta-76\rho\alpha\beta^{4}+15\alpha^{6}+36\alpha^{5}\beta\\ &\quad-45\alpha^{5}\delta+44\alpha^{4}\beta^{2}-60\alpha^{4}\beta\delta+36\alpha^{4}\delta^{2}-24\alpha^{3}\beta^{3}-174\alpha^{3}\beta^{2}\delta+81\alpha^{2}\beta^{4}-10\rho^{2}\alpha\beta^{2}-4\rho^{2}\beta^{3}+76\rho\alpha^{3}\beta\\ &\quad+118\rho\alpha^{2}\beta^{2}-63\rho\alpha^{2}\beta\delta+76\rho\alpha\beta^{3}-4\alpha^{5}-48\alpha^{4}\beta+6\alpha^{4}\delta-24\alpha^{3}\beta^{2}+69\alpha^{3}\beta\delta-44\alpha^{2}\beta^{3}+15\rho^{2}\beta^{2}\\ &\quad-46\rho\alpha^{2}\beta-46\rho\alpha\beta^{2}+26\alpha^{4}+28\alpha^{3}\beta-45\alpha^{3}\delta+81\alpha^{2}\beta^{2}+6\rho\alpha\beta-4\alpha^{3}-10\alpha^{2}\beta+15\alpha^{2}\bigg{)}.\\ &=36\delta^{2}\tilde{r}_{(\alpha,\beta,\delta)}(p_{1},p_{2})\end{split} (5.2)

With the help of Maple, one can conclude that r~(α,β,δ)(p1,p2)0\tilde{r}_{(\alpha,\beta,\delta)}(p_{1},p_{2})\geq 0 for any (α,β,δ)[0,1]×[0,1]×(0,1](\alpha,\beta,\delta)\in[0,1]\times[0,1]\times(0,1] and it only vanishes at (1,0,1)(1,0,1) if (k,l)(1,1)(k,l)\neq(1,1). If (k,l)=(1,1)(k,l)=(1,1), the function vanishes at (1,0,1)(1,0,1) and (0,1,1)(0,1,1). The level set of r~(α,β,δ)(p1,p2)=0\tilde{r}_{(\alpha,\beta,\delta)}(p_{1},p_{2})=0 with some selected (k,l)(k,l) are presented below.

Refer to caption
(a) (k,l)=(1,0)(k,l)=(1,0)
Refer to caption
(b) (k,l)=(29,1)(k,l)=(29,1)
Refer to caption
(c) (k,l)=(17,5)(k,l)=(17,5)
Refer to caption
(d) (k,l)=(3,2)(k,l)=(3,2)
Refer to caption
(e) (k,l)=(7,6)(k,l)=(7,6)
Refer to caption
(f) (k,l)=(1,1)(k,l)=(1,1)
Figure 6: Figures above are the zero level set of r~(α,β,δ)(p1,p2)\tilde{r}_{(\alpha,\beta,\delta)}(p_{1},p_{2}), arranged in the increasing order of lk\frac{l}{k}. The cube denote the set [0,1]×[0,1]×(0,1][0,1]\times[0,1]\times(0,1] and the dot is (1,0,1)(1,0,1). Note that when (k,l)=(1,1)(k,l)=(1,1), r~(α,β,δ)(p1,p2)\tilde{r}_{(\alpha,\beta,\delta)}(p_{1},p_{2}) also vanishes at (0,1,1)(0,1,1). Such a phenomenon is not surprising since (2.21) with (k,l)=(1,1)(k,l)=(1,1) is symmetric with respect to Z2Z_{2} and Z3Z_{3}.

References

  • [Baz07] Ya. V. Bazaikin. On the new examples of complete noncompact Spin(7)-holonomy metrics. Siberian Mathematical Journal, 48(1):8–25, January 2007.
  • [Baz08] Ya. V. Bazaikin. Noncompact Riemannian spaces with the holonomy group spin(7) and 3-Sasakian manifolds. Proceedings of the Steklov Institute of Mathematics, 263(1):2–12, December 2008.
  • [BDW15] M. Buzano, A. S. Dancer, and M. Y. Wang. A family of steady Ricci solitons and Ricci flat metrics. Comm. in Anal. and Geom., 23(3):611–638, 2015.
  • [Bon66] E. Bonan. Sur les variétés riemanniennes à groupe d’holonomie G2G_{2} ou Spin(7). Comptes Rendus de l’Académie des Sciences, 262:127–129, 1966.
  • [Bry87] R. L. Bryant. Metrics with exceptional holonomy. The Annals of Mathematics, 126(3):525–576, November 1987.
  • [BS89] R. L. Bryant and S. M. Salamon. On the construction of some complete metrics with exceptional holonomy. Duke Mathematical Journal, 58(3):829–850, 1989.
  • [Cal79] E. Calabi. Métriques kählériennes et fibrés holomorphes. Annales scientifiques de l’École normale supérieure, 12(2):269–294, 1979.
  • [CGLP01] M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope. Hyper-Kähler Calabi metrics, L2 harmonic forms, resolved M2-branes, and AdS4/CFT3 correspondence. Nuclear Physics B, 617(1-3):151–197, December 2001.
  • [CGLP02a] M. Cvetič, G. W. Gibbons, H. Lü, and C. N. Pope. Cohomogeneity one manifolds of Spin(7) and G2G_{2} holonomy. Physical Review D, 65(10), May 2002.
  • [CGLP02b] M. Cvetič, G. W. Gibbons, H. Lu, and C. N. Pope. New complete non-compact Spin(7) manifolds. Nuclear Physics B, 620(1-2):29–54, January 2002.
  • [Chi19a] H. Chi. Cohomogeneity one Einstein metrics on vector bundles. PhD Thesis, McMaster University, 2019.
  • [Chi19b] H. Chi. Invariant Ricci-flat metrics of cohomogeneity one with Wallach spaces as principal orbits. Annals of Global Analysis and Geometry, June 2019.
  • [Chi21] H. Chi. Einstein metrics of cohomogeneity one with 𝕊4m+3\mathbb{S}^{4m+3} as principal orbit. Communications in Mathematical Physics, April 2021.
  • [CL55] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
  • [CS02] R. Cleyton and A. Swann. Cohomogeneity-one G2G_{2}-structures. Journal of Geometry and Physics, 44(2-3):202–220, December 2002.
  • [DW09] A. S. Dancer and M. Y. Wang. Non-Kähler expanding Ricci solitons. International Mathematics Research Notices. IMRN, (6):1107–1133, 2009.
  • [EW00] J.-H. Eschenburg and M. Y. Wang. The initial value problem for cohomogeneity one Einstein metrics. The Journal of Geometric Analysis, 10(1):109–137, 2000.
  • [Fos21] L. Foscolo. Complete noncompact Spin(7) manifolds from self-dual Einstein 4–orbifolds. Geometry & Topology, 25(1):339–408, March 2021.
  • [GPP90] G. W. Gibbons, D. N. Page, and C. N. Pope. Einstein metrics on S3,𝐑3S^{3},\;{\bf R}^{3} and 𝐑4{\bf R}^{4} bundles. Communications in Mathematical Physics, 127(3):529–553, 1990.
  • [GS02] S. Gukov and J. Sparks. M-Theory on Spin(7) manifolds. Nuclear Physics B, 625(1-2):3–69, March 2002.
  • [Joy96] D. Joyce. Compact Riemannian 7-manifolds with holonomy G2G_{2}. II. Journal of Differential Geometry, 43(2):329–375, 1996.
  • [KV93] O. Kowalski and Z. Vlášek. Homogeneous Einstein metrics on Aloff-Wallach spaces. Differential Geometry and its Applications, 3(2):157–167, June 1993.
  • [KY02a] H. Kanno and Y. Yasui. On Spin(7) holonomy metric based on SU(3)/U(1): I. Journal of Geometry and Physics, 43(4):293–309, October 2002.
  • [KY02b] H. Kanno and Y. Yasui. On Spin(7) holonomy metric based on SU(3)/U(1): II. Journal of Geometry and Physics, 43(4):310–326, October 2002.
  • [Leh20] F. Lehmann. Geometric transitions with Spin(7) holonomy via a dynamical system. arXiv:2012.11758 [math], December 2020.
  • [Rei08] F. Reidegeld. Spin(7)-manifolds of cohomogeneity one. PhD Thesis, Technische Universität Dortmund, 2008.
  • [Rei11] F. Reidegeld. Exceptional holonomy and Einstein metrics constructed from Aloff–Wallach spaces. Proceedings of the London Mathematical Society, 102(6):1127–1160, June 2011.
  • [VZ20] L. Verdiani and W. Ziller. Smoothness conditions in cohomogeneity one manifolds. Transformation Groups, September 2020.
  • [Win17] M. Wink. Cohomogeneity one Ricci Solitons from Hopf Fibrations. arXiv:1706.09712 [math], June 2017.