This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spool-nematic ordering of dsDNA and dsRNA under confinement

James D. Farrell farrelljd@iphy.ac.cn CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.    Jure Dobnikar jd489@cam.ac.uk CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China    Rudolf Podgornik podgornikrudolf@ucas.ac.cn School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China    Tine Curk corresponding author: tcurk@jhu.edu Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
Abstract

The ability of double-stranded DNA or RNA to locally melt and form kinks leads to strong non-linear elasticity effects that qualitatively affect their packing in confined spaces. Using analytical theory and numerical simulation we show that kink formation entails a mixed spool-nematic ordering of double-stranded DNA or RNA in spherical capsids, consisting of an outer spool domain and an inner, twisted nematic domain. These findings explain the experimentally observed nematic domains in viral capsids and imply that non-linear elasticity must be considered to predict the configurations and dynamics of double-stranded genomes in viruses, bacterial nucleoids or gene-delivery vehicles. The non-linear elastic theory suggests that spool-nematic ordering is a general feature of strongly confined kinkable polymers.

Spatial organization of genomes in viral containers Sun et al. (2010) and its physical principles Zandi et al. (2020) is an outstanding problem with a long history Pollard (1953), resulting in refined models based on cryo-electron microscopy Luque and Castón (2020), X-ray scattering techniques Khaykelson and Raviv (2020), thermodynamic osmotic pressure methodology Gelbart and Knobler (2009) and single molecule studies Smith (2011). These experiments display a range of morphologies (for a recent review see Ref. Comas-Garcia and Rosales-Mendoza (2023)). In the case of bacteriophages, high-resolution 3D reconstructions indicate inhomogeneous ordering of the encapsulated genome, with the dsRNA/DNA partitioning into ordered Ilca et al. (2019); Leforestier (2013) or disordered Leforestier and Livolant (2010) nanodomains. Similarly, measurements of DNA conformational dynamics during packaging Berndsen et al. (2014), as well as intermittent ejection dynamics Chiaruttini et al. (2010) implicate multi-domain structures. However, so far the general assumption has been that the equilibrium ground state is a single inverted spool Purohit et al. (2003); Zandi et al. (2020), or multiple spools Curk et al. (2019).

Mesoscopic theories Klug et al. (2005); Šiber et al. (2008); Shin and Grason (2011); Podgornik et al. (2016); Liang et al. (2019) and coarse-grained simulations of double-stranded genome packaging Kindt et al. (2001); Petrov and Harvey (2008); Rapaport (2016); Marenduzzo et al. (2009); Curk et al. (2019); Marzinek et al. (2020) are usually performed using a semiflexible polymer model that assumes linear elasticity with bending modulus B50kBTB\approx 50\,k_{\textnormal{B}}Tnm, where kBk_{\textnormal{B}} is the Boltzmann constant and TT the temperature. However, the realistic bending response of dsDNA and dsRNA is highly non-linear due to local melting, which enables the formation of kinks. For dsDNA, kinks form beyond a critical bending torque τc30{\tau_{\textnormal{c}}\approx 30} pN nm Yan and Marko (2004); Qu et al. (2011); Qu and Zocchi (2011), and typically comprise about three melted base pairs with the reversible work required to form a kink μ12kBT{\mu\approx 12k_{\textnormal{B}}T} Qu et al. (2011). Such non-linear effects can alter optimal packing configurations; in particular, a spherically-confined polymer that is able to kink exhibits increased local nematic ordering near the sphere surface Myers and Pettitt (2017); Bores and Pettitt (2020).

A general theory of a semi-flexible kinkable chain postulates an elastic free-energy density per chain length

f=B2κ2+μρk,f=\frac{B}{2}\kappa^{2}+\mu\rho_{\textnormal{k}}\;, (1)

with κ\kappa the local curvature, μ\mu the free energy per kink and ρk\rho_{\textnormal{k}} the local density of kinks in the chain. Here, we first perform non-equilibrium simulations to understand the packing arrangement of a kinkable, semi-flexible chain actively pushed into a spherical enclosure, and then analyze the stability of different packings using analytical theory.

A coarse-grained model that accurately describes the properties of DNA or dsRNA at small curvatures is the worm-like-chain (WLC) model; a semi-flexible polymer of length LL and circular cross-section σ\sigma with persistence length p=B/kBT\ell_{\textnormal{p}}=B/k_{\textnormal{B}}T. Efficient description of nonlinear elasticity includes the kinks as regions with locally reduced persistence length pm\ell^{\textnormal{m}}_{\textnormal{p}}. In the two-state kinkable WLC (KWLC) model Wiggins et al. (2005), molten regions behave as freely-jointed chains (pm=0\ell^{\textnormal{m}}_{\textnormal{p}}=0), while the more accurate meltable WLC (MWLC) Yan and Marko (2004); Sivak and Geissler (2012) assigns a single-stranded persistence length pm2nm\ell^{\textnormal{m}}_{\textnormal{p}}\approx 2~{}\textnormal{nm} to melted sections.

We model dsDNA as a discrete MWLC: a bead-spring polymer with NN beads of diameter σ=2nm\sigma=2\,\textnormal{nm}. Consecutive beads are bonded by a two-body stretching term Vb=K(r/σ1)2{V_{\textnormal{b}}=K\left(r/\sigma-1\right)^{2}}, where rr is the distance between two consecutive beads and the prefactor K=16kBTp/σ{K=16k_{\textnormal{B}}T\ell_{\textnormal{p}}/\sigma} Curk et al. (2019), while excluded volume and short range hydration interactions at relevant packing densities Podgornik et al. (2016) are incorporated as a WCA repulsion Weeks et al. (1971) with strength ϵ=kBT{\epsilon=k_{\textnormal{B}}T}. To enable molecular dynamics (MD) simulations, we adapt the two-state MWLC model by writing it as a continuous, three–body bending interaction obtained as a canonical-ensemble superposition of a non-melted and a melted state. Assuming the states in each three-body segment are independent, and defining the Boltzmann factors q=exp[p(1cosθ)/σ]{q=\exp{\left[-\ell_{\textnormal{p}}(1-\cos{\theta})/\sigma\right]}} and qm=exp[βμMWLCpm(1cosθ)/σ]{q^{\textnormal{m}}=\exp{\left[-\beta\mu_{\textnormal{MWLC}}-\ell_{\textnormal{p}}^{\textnormal{m}}(1-\cos{\theta})/\sigma\right]}}, the potential of mean force is

Vθ=kBTlog[q+qm],V_{\theta}=-k_{\textnormal{B}}T\log\left[q+q^{\textnormal{m}}\right]\;, (2)

with θ\theta the angle between consecutive bond vectors, and μMWLC\mu_{\textnormal{MWLC}} the melting penalty per bead (Fig. 1). We obtain the average kink density ρ¯k\overline{\rho}_{\textnormal{k}} as the canonical average, ρ¯k=qm/(q+qm)/σ\overline{\rho}_{\textnormal{k}}=\left\langle q^{\textnormal{m}}/\left(q+q^{\textnormal{m}}\right)\right\rangle/\sigma. By fitting to experimental data, we find the MWLC model captures the non-linear elasticity of DNA bending at parameters pm=σ\ell^{\textnormal{m}}_{\textnormal{p}}=\sigma, μMWLC=10kBT\mu_{\textnormal{MWLC}}=10k_{\textnormal{B}}T and reproduces the kink formation of dsDNA chain at critical torque τc=32pN nm\tau_{\textnormal{c}}=32\,\textnormal{pN nm} (see Fig. S1 in Note (1)). Obtaining the kink formation free-energy at a specific base pair requires de-convolution of the coarse-grained model Schöpflin et al. (2012), but since μkBT\mu\gg k_{\textnormal{B}}T, the probability that more than one kink occurs within a single bead is negligible. Thus, the full (180180^{\circ}) kink formation penalty at a specific base-pair is μ=μMWLC(σ)+2kBT+kBTlog(σ/dn)13.8kBT\mu=\mu_{\textnormal{MWLC}}{(\sigma)}+2k_{\textnormal{B}}T+k_{\textnormal{B}}T\log(\sigma/d_{\textnormal{n}})\approx 13.8k_{\textnormal{B}}T, where the last term re-scales the number of kink states at bead size σ\sigma relative to length per nucleotide dn0.33nmd_{\textnormal{n}}\approx 0.33~{}\textnormal{nm}, and we emphasize that μMWLC\mu_{\textnormal{MWLC}} is a function of the discretization length σ\sigma.

Refer to caption
Figure 1: A: Bending potential of the meltable polymer (MWLC) for ssDNA (μMWLC=0\mu_{\textnormal{MWLC}}=0), dsDNA (μMWLC=10kBT\mu_{\textnormal{MWLC}}=10k_{\textnormal{B}}T), and dsDNA without melting (μMWLC=\mu_{\textnormal{MWLC}}=\infty) at p=25σ,pm=1σ,σ=2\ell_{\textnormal{p}}=25\sigma,\,\ell^{\textnormal{m}}_{\textnormal{p}}=1\sigma,\,\sigma=2 nm. Inset: Packing simulation setup with the capsid and portal (grey) and partially packed chain (colored by chain index) at μMWLC=10kBT\mu_{\textnormal{MWLC}}=10k_{\textnormal{B}}T. The black circle highlights a kink. B: Corresponding kink density ρ¯k\overline{\rho}_{\textnormal{k}} as a function of packing fraction and packing rate.

Using the MWLC model we perform MD simulations of DNA packing into a spherical capsid Plimpton (1995). Confinement is implemented as a WCA repulsion at R=6σR=6\sigma with strength ϵ\epsilon and diameter σ\sigma, giving an effective enclosure radius Reff=5.5σR_{\textnormal{eff}}=5.5\sigma. The maximum packing density of chains is determined by hexagonal close-packing Podgornik et al. (2016). Taking the volume of the chain relative to the maximum packed volume we define the packing fraction η33σ3Nin/(8πReff3)\eta\equiv 3\sqrt{3}\sigma^{3}N_{\textnormal{in}}/(8\pi R_{\textnormal{eff}}^{3}) where NinN_{\textnormal{in}} the number of beads packed in the capsid.

We model the viral packing motor as a cylindrical portal of length λp=2σ\lambda_{\textnormal{p}}=2\sigma and radius Rp=1.2σR_{\textnormal{p}}=1.2\sigma (Fig. 1A inset). The motor force operates along the portal axis on beads inside the portal, implemented as a parabolically-modulated traveling wave

Fmotor=4fsx(λpx)λp2sin(2πxωtσ),{F_{\textnormal{motor}}=\frac{4f_{\textnormal{s}}x(\lambda_{\textnormal{p}}-x)}{\lambda_{\textnormal{p}}^{2}}}\sin{\left(2\pi\frac{x-\omega t}{\sigma}\right)}\;, (3)

where xx is the bead position in the portal (0xλp0\leq x\leq\lambda_{\textnormal{p}}), ω\omega the packing rate, tt the time, and fs=50kBTσ1f_{\textnormal{s}}=50k_{\textnormal{B}}T\sigma^{-1} the stall force. Real viral motors pack in a discrete fashion, at a rate dependent on the availability of ATP Fuller et al. (2007a, b). Our periodic motor force mimics this behavior, and also allows us to tune the stall force and packing rate independently. To model diffusive dynamics in an aqueous solution we apply a Langevin thermostat with damping time τ=mσ2/(kBT){\tau=\sqrt{m\sigma^{2}/(k_{\rm B}T)}} where mm is the mass of the beads, which via the Stokes-Einstein relation Note (2) results in a simulation timescale τ18\tau\approx 18 ns. Since the torsional strain can relax on the packing timescale Rollins et al. (2008); Rapaport (2016), we omit torsional terms from our models.

Using this setup we ran packing simulations of a 600-bead chain into a radius Reff=5.5σR_{\textnormal{eff}}=5.5\sigma sphere at rates from ω=1×104στ1\omega=1\times 10^{-4}\sigma\tau^{-1} to 5×102στ15\times 10^{-2}\sigma\tau^{-1}, with 120 independent simulations per ω\omega and evaluate the line density of spontaneously formed kinks (Fig. 1B). The initial peak corresponds to the appearance of the first kink during packing. The observed kink density is strongly rate-dependent; however, at slowest packing rates, ω1×104σ/τ40kb/s\omega\sim 1\times 10^{-4}\sigma/\tau\approx 40\,\textnormal{kb}/\textnormal{s}, it converges to ρ¯k0.03/σ\overline{\rho}_{\textnormal{k}}\approx 0.03/\sigma. This rate is still an order of magnitude faster than in real viral motors ω2kb/s\omega\lesssim 2\textnormal{kb}/\textnormal{s} Fuller et al. (2007b, a), but the observed convergence suggests that reducing the rates further would not alter the packed configurations. Moreover, the equilibrium theory (ω0\omega\to 0) shown below agrees well with the slow-packing simulations, suggesting that our predictions capture the biologically relevant packing rates.

Spherically-confined dsDNA is thought to arrange into spools Purohit et al. (2003); Curk et al. (2019), but kinking permits nematic ordering Myers and Pettitt (2017); Bores and Pettitt (2020), or a mixed phase of spools wrapped around a nematic core Ilca et al. (2019). To quantify spool and nematic order in our simulation configurations, we compute the order parameter tensor,

Qαβ=32(1Ninυ^iαυ^iβ13δαβ),Q_{\alpha\beta}=\frac{3}{2}{\left(\frac{1}{N_{\textnormal{in}}}\hat{\upsilon}_{i\alpha}\hat{\upsilon}_{i\beta}-\frac{1}{3}\delta_{\alpha\beta}\right)}, (4)

where υ^iα\hat{\upsilon}_{i\alpha} is the αth\alpha^{\textnormal{th}} component of either the unit binormal vector, 𝒃^\bm{\hat{b}}, or the unit tangent vector, 𝝉^\bm{\hat{\tau}}, at chain segment ii. The order parameter, SS, is the principal eigenvalue of 𝐐\mathbf{Q}.

Taking 𝝊^=𝒃^\bm{\hat{\upsilon}}=\bm{\hat{b}}, gives the spool order parameter, SsplS_{\textnormal{spl}}, similar to that defined in Ref. Nikoubashman et al. (2017), while taking 𝝊^=𝝉^\bm{\hat{\upsilon}}=\bm{\hat{\tau}} gives the nematic order parameter, SnemS_{\textnormal{nem}}. SnemS_{\textnormal{nem}} is of limited practical use because the spool domain is always more massive than the nematic domain. A more useful mixed spool–nematic order parameter SmixS_{\textnormal{mix}} is defined by setting

𝝊^i={𝝉^ifor 0<rirc𝒃^ifor rc<ri<Reff,\bm{\hat{\upsilon}}_{i}=\begin{cases}\bm{\hat{\tau}}_{i}&\textnormal{for }0<r_{i}\leq r_{\textnormal{c}}\\ \bm{\hat{b}}_{i}&\textnormal{for }r_{\textnormal{c}}<r_{i}<R_{\textnormal{eff}},\\ \end{cases} (5)

where rir_{i} is the distance from the center-of-mass of the ithi^{\textnormal{th}} chain segment to a director 𝒛^\bm{\hat{z}}, centered at the origin, and rcr_{\textnormal{c}} defines the spool–nematic boundary. In this case, SmixS_{\textnormal{mix}} must be maximized with respect to both rcr_{\textnormal{c}} and 𝒛^\bm{\hat{z}}. We denote the partial packing fractions of the spool and nematic domains ηspl\eta_{\text{spl}} and ηnem\eta_{\text{nem}}, respectively.

Refer to caption
Figure 2: A–C: representative configurations at packing fractions η=0.12, 0.37, 0.75\eta=0.12,\,0.37,\,0.75, respectively, of a MWLC packed into a spherical capsid of size 2Reff=11σ2R_{\textnormal{eff}}=11\sigma at packing rate ω=0.0001στ1{\omega=0.0001\sigma\tau^{-1}}. Each segment is assigned an RGB color according to the projection on the cylindrical axis, (red,green,blue)=(|n^z|,|τ^z|,|b^z|)\left(\textnormal{red},\textnormal{green},\textnormal{blue}\right)=\left(|\hat{n}_{z}|,|\hat{\tau}_{z}|,|\hat{b}_{z}|\right). On the right hand side in (B,C) only chain segments inside a 3σ3\sigma-thick slab are shown to emphasize the emergence of a twisted-nematic core. D: mean values of nematic SnemS_{\textnormal{nem}} (dotted lines), spool SsplS_{\textnormal{spl}} (dashed lines), and mixed SmixS_{\textnormal{mix}} (solid lines) order parameters. Error bars not drawn for clarity; see Fig S2 in Note (1) for uncertainties.

At the slowest packing rates, we found that the chains initially arrange into a loose spool (Fig. 2A). At intermediate packing densities (η0.3\eta\approx 0.3), a distinct inner domain emerges exhibiting some nematic order (Fig. 2B), which is reflected in the growth of SmixS_{\textnormal{mix}} while SsplS_{\textnormal{spl}} remains constant (Fig. 2D). Upon further packing, SsplS_{\textnormal{spl}} begins to grow faster than SmixS_{\textnormal{mix}}, indicating that the growth of the nematic core has stopped (ηnem\eta_{\text{nem}} levels off at 0.16\approx 0.16), while chain continues to be packed into the outer spool, and the core shrinks in size from 2.8σ\approx 2.8\sigma to 2.1σ\approx 2.1\sigma (see Figs. S3 and S4 in Note (1)). These trends, and the snapshot in Fig. 2C, confirm our main observation: for dense packings, the genome adopts a mixed spool–nematic configuration.

Fast and slow packings are indistinguishable at low densities, but the growth of SmixS_{\textnormal{mix}} is dramatically reduced at faster packing rates, even falling at high densities (Fig. 2D) indicating kinetically-arrested disorder. Moreover, for the fastest packing rate rpack=0.05στ1r_{\textnormal{pack}}=0.05\sigma\tau^{-1}, the size of the core region rcr_{\textnormal{c}} remains roughly constant rc2.8σr_{\textnormal{c}}\approx 2.8\sigma during the time the kink density doubles from 0.040.04 to 0.080.08, indicating that the chain has insufficient time to relax and grow the spool domain as packing proceeds. At slower packing rates the structures are more ordered and approach the spool–twisted-nematic configuration, while the values of all three order parameters and the kink density are well-converged among the three slowest packing rates.

Refer to caption
Figure 3: A: Optimal helix angle θopt\theta^{\textnormal{opt}} as a function of helix radius obtained by minimizing the free-energy density (1) (black solid line). The bars show experimental data for bacteriophage ϕ6\phi 6 Ilca et al. (2019) (colors chosen to match individual dsRNA shells in Ref. Ilca et al. (2019)) Inset: optimal energy density for B=0.1(blue), 0.2, 0.5, 1.0, 2.0(red){B^{*}=0.1\,(\textnormal{blue}),\,0.2,\,0.5,\,1.0,\,2.0\,(\textnormal{red})}. B: Distribution of (r,θ)\left(r,\theta\right) in configurations with packing fractions η=0.590.62\eta=0.59\textnormal{--}0.62 from simulations. The dashed curve gives the theoretical prediction for R0/σ=5,βμ=13.8R_{0}/\sigma=5,\,\beta\mu=13.8.

To investigate whether our packing is under thermodynamic or kinetic control, we consider an analytical theory where a chain confined to a radius R0R_{0} sphere adopts a helical configuration parametrized as u(rcosu,rsinu,bu),u[h/b,h/b]{u\mapsto\left(r\cos{u},r\sin{u},bu\right),u\in\left[-h/b,h/b\right]} with radius rr, pitch length 2πb2\pi b, and helix height h=R02r2h=\sqrt{R_{0}^{2}-r^{2}}. The slope p=b/rp=b/r corresponds to the helix angle θ=arctan(1/p)\theta=\arctan{\left(1/p\right)}. The limit pp\to\infty corresponds to a nematic, and p0p\to 0 to a spool phase. To obtain the optimal slope, we minimize the free energy [Eq.  (1)] assuming that each radial shell is independent of its neighbors. The local curvature of a helix is κ(r,b)=|r|/(r2+b2){\kappa(r,b)=|r|/\left(r^{2}+b^{2}\right)}, and the contour length of a helix is L(r,b)=(2h/b)r2+b2L{\left(r,b\right)}=\left(2h/b\right)\sqrt{r^{2}+b^{2}}. Assuming a 180180^{\circ} kink forms whenever the chain hits the confining capsid, the kink density at radius rr is ρk(r,b)=1/L(r,b)\rho_{\textnormal{k}}{\left(r,b\right)}=1/L{\left(r,b\right)}. The optimal non-zero slope poptp^{\textnormal{opt}} is then the real positive root of

f/p=A(1+p2)3/24p=0,\partial f/\partial p=A(1+p^{2})^{3/2}-4p=0, (6)

where A=(r)2/B1(r)2{A=\left(r^{*}\right)^{2}/B^{*}\sqrt{1-(r^{*})^{2}}}, with B=B/(μR0){B^{*}=B/(\mu R_{0})} the ratio of bending stiffness to kink energy and r=r/R0{r^{*}=r/R_{0}}. Surprisingly, we find that the optimal slope is a discontinuous function of the helix radius (Fig. 3): for small rr, i.e., A<Ac32/27A<A_{\textnormal{c}}\equiv\sqrt{32/27}, the optimal slope is given by

popt=8A3cos[13arccos(A2764)]1,p^{\textnormal{opt}}=\sqrt{{\textstyle\frac{8}{A\sqrt{3}}}\cos{\left[{\textstyle\frac{1}{3}}\arccos{\left(-A\sqrt{{\textstyle\frac{27}{64}}}\right)}\right]}-1}\;, (7)

whereas popt=0p^{\textnormal{opt}}=0 for A>AcA>A_{\textnormal{c}}. At A=AcA=A_{\textnormal{c}} the optimal slope jumps from zero to popt=2p^{\textnormal{opt}}=\sqrt{2}, which, interestingly, describes a helix with an angle complementary to the magic angle θm=arctan2\theta_{m}=\arctan{\sqrt{2}}. This observation implies that the outer shells form a spool (p=0p=0), while the inner shells form a twisted nematic domain with a large slope (Fig. 3A).

Whether the spool or the nematic core forms at low packing density depends on the ratio BB^{*}. B>1B^{*}>1 favors the spool phase, whereas at B<1B^{*}<1 the nematic core is more stable (Fig. 3A, inset). For a typical virus (2R0502R_{0}\approx 50 nm) and DNA parameters (B=50kBTnm,μ=13.8kBTB=50k_{\textnormal{B}}T\,\textnormal{nm},\,\mu=13.8k_{\textnormal{B}}T) we find B0.14B^{*}\approx 0.14 and so predict that a spool forms initially with a transition to a nematic core at radius rc0.38R0r_{\textnormal{c}}\approx 0.38R_{0}. Hence, the majority of the DNA should form a spool, enclosing a twisted-nematic core.

This result explains the experimental observation of a helical core structure in a dsRNA bacteriophage Ilca et al. (2019); taking R0=20.8nmR_{0}=20.8\,\textnormal{nm} and B=63kBTnmB=63k_{\textnormal{B}}T\,\textnormal{nm} Abels et al. (2005); Hyeon et al. (2006), and assuming μ=13.8kBT\mu=13.8k_{\textnormal{B}}T (the value for dsDNA), we find excellent agreement with experiment on both the critical radius rcr_{\textnormal{c}} and the helix angle at the transition (Fig. 3A). The analytical prediction of the helix angle also agrees with simulation results at low packing rates (ω0.0005στ1\omega\leq 0.0005\sigma\tau^{-1}, Fig. 3B), suggesting that, in the slow packing regime, our simulations are under thermodynamic control, and the packing morphology is determined by equilibrium free-energy minimization.

To obtain the full phase diagram of packing configurations we use the continuum theory of polymer nematics Shin and Grason (2011); Svenšek et al. (2010); Curk et al. (2019) where the polymer is described by a vector field 𝐭(𝐫)\mathbf{t}(\mathbf{r}). Assuming that kinks form only at the enclosure surface, and disregarding entropic contributions due to conformational fluctuations, the lowest-order non-trivial terms of the elastic free-energy functional are given by,

E=KV|𝐭|(𝐭^×(×𝐭^))2d𝐫+εkinkS|𝐧𝐭|dS.E=K{\int_{V}}|\mathbf{t}|~{}\Big{(}\hat{\mathbf{t}}\times(\nabla\times\hat{\mathbf{t}})\Big{)}^{2}~{}\textnormal{d}{\bf r}+\varepsilon_{\textnormal{kink}}{\oint_{S}}|\mathbf{n}\cdot\mathbf{t}|~{}\textnormal{d}S\;. (8)

The first term is the bending term Svenšek et al. (2010); Shin and Grason (2011) with 𝐭^=𝐭/|𝐭|\hat{\mathbf{t}}=\mathbf{t}/|\mathbf{t}| the unit tangent vector to the chain contour, while the second describes the kink density at the enclosure surface with normal vector 𝐧\mathbf{n}. This expression is an integral form of Eq. (1) with prefactors K=2B/(πσ2)K=2B/{(\pi\sigma^{2})} and εkink=2μ/(πσ2)\varepsilon_{\textnormal{kink}}=2\mu/(\pi\sigma^{2}).

The optimal structure of a confined meltable filament results from competition between the elastic and melting terms in Eq. (8). For stiff polymers, kinking is preferable to bending, so they will tend to arrange into nematically-aligned straight segments with kinks at the boundaries. In contrast, flexible polymers are expected to form spool structures without kinks. To explore these competing mechanisms, we assume that the chains form a two-domain structure: an outer spool and a nematic core. The spool contains no kinks (𝐧𝐭=0\mathbf{n}\cdot\mathbf{t}=0), while the nematic core does not contribute to bending (×𝐭^=0\nabla\times\hat{\mathbf{t}}=0). Assuming phases are close packed, the spool free-energy is Curk et al. (2019); Purohit et al. (2003),

Espl(η,R0)=π2BR03σ2[12ln1+η1/31η1/3η1/3],E_{\textnormal{spl}}(\eta,R_{0})=\frac{\pi^{2}BR_{0}}{\sqrt{3}\sigma^{2}}\left[\textstyle{\frac{1}{2}}\ln\frac{1+\eta^{1/3}}{1-\eta^{1/3}}-\eta^{1/3}\right]\;, (9)

while the nematic free energy is

Enem(η,R0)=π2μR0223σ2[1(1η)2/3].E_{\textnormal{nem}}(\eta,R_{0})=\frac{\pi^{2}\mu R_{0}^{2}}{2\sqrt{3}\sigma^{2}}\left[1-(1-\eta)^{2/3}\right]\;. (10)

Since the spool and the nematic core occupy disjoint volumes, and connections between domains can be neglected in the long-chain limit, the total free energy is the sum, E(η,ηspl,R0)=Espl(ηspl,R0)+Enem(ηηspl,R0)E(\eta,\eta_{\textnormal{spl}},R_{0})=E_{\textnormal{spl}}(\eta_{\textnormal{spl}},R_{0})+E_{\textnormal{nem}}(\eta-\eta_{\textnormal{spl}},R_{0}), with ηspl\eta_{\textnormal{spl}} the spool volume. Minimizing E(η,ηspl,R0)E(\eta,\eta_{\textnormal{spl}},R_{0}) we find a phase diagram (Fig. 4) that is a function of two dimensionless parameters: B=B/(μR0)B^{*}=B/(\mu R_{0}) and η\eta. The boundary delineating the pure nematic and the mixed phase is B=(1η)1/3B^{*}=(1-\eta)^{-1/3}, while the boundary between the pure spool and the mixed phase is B=1η2/3B^{*}=1-\eta^{2/3}.

Refer to caption
Figure 4: Theoretical phase diagram showing the stable phases. The phase boundaries (solid lines) are obtained by minimizing the total free energy EE at zero nematic twist [Eqs. (9), (10)], whereas the dashed line shows boundary at optimal twist [Eq. (7)] (the spool–mixed-phase boundaries overlap). The dotted line indicates the range of parameter space probed by simulations. Points A–C refer to the snapshots in Fig. 2; points D–F are estimates for bacteriophages ϕ6\phi 6 Ilca et al. (2019) and ϕ22\phi 22 Tang et al. (2011), and herpes simplex virus type 1 Chen et al. (2023) at μ=13.8kBT\mu=13.8k_{\textnormal{B}}T (see Note (1) for details of their computation).

The coexistence region emerges at B1B^{*}\sim 1, growing with η\eta and dominating in the high packing fraction limit. For a typical 50nm50\,\textnormal{nm} virus, B0.14B^{*}\approx 0.14, implying a spool phase at low packing fractions, enclosing a nematic core at η>(1B)3/20.8{\eta>(1-B^{*})^{3/2}\approx 0.8}. This theory assumes coupled shells with no nematic twist in the core (pp\to\infty); considering the opposite limit of free shells slightly stabilizes the nematic phase by allowing non-zero twist [Eq. (7)], but the shift in the phase boundaries is less than 0.1B0.1B^{*} (dashed line in Fig. 4).

Experimental data can be mapped onto the phase diagram by assuming that μ\mu for RNA and DNA are the same, and the range of η\eta is bounded by hexagonal and cubic packings (both observed experimentally). With such a mapping, the observed spool–twisted-nematic structure packings in ϕ6\phi 6 bacteriophage Ilca et al. (2019) and herpes simplex virus Chen et al. (2023) are consistent with our theoretical predictions (Fig. 4).

In summary, our theoretical and simulation results imply that dsDNA/dsRNA packed into a sphere adopts a spool–nematic configuration. Coexistence between an outer spool and a nematic core arises spontaneously both in packing simulations and equilibrium theory based on the minimization of elastic energy. We explored the strong and weak limits of orientational coupling, finding nearly-identical phase diagrams for a meltable chain, with the main difference being whether the nematic core exhibits non-zero twist. We expect that packing of dsDNA and dsRNA in viruses falls between these two limits, forming a large outer spool with a (twisted-)nematic core emerging at high packing densities (η>0.8\eta>0.8 for a typical 2R0=502R_{0}=50 nm virus). These results explain the experimental data for dsRNA packing in a bacteriophage virus Ilca et al. (2019).

We have considered packing into a pre-formed spherical capsid, but our findings are based on global free-energy minimization and thus expected to hold qualitatively for other packing situations such as DNA condensation or ordering in bacterial nucleomes. For example, kink formation and nematic ordering may explain why plasmid DNA assembles into rod-like structures Jiang et al. (2013) rather than tori Hoang et al. (2014). Moreover, our phase diagram shows that spool–nematic ordering is expected for any strongly confined kinkable polymer. Non-linear bending and kinking behavior might be a common characteristic of helical polymers, as their structure is usually determined by reversible supramolecular interactions.

Acknowledgements.
This work was supported by the Whiting School of Engineering (JHU) through startup funds, the Chinese National Science Foundation through the Key research grant 12034019, and from the Strategic Priority Research Program of the Chinese Academy of Sciences through the grant XDB33000000.

References

  • Sun et al. (2010) S. Sun, V. B. Rao,  and M. G. Rossmann, Curr. Opin. Struct. Biol. 20, 114 (2010).
  • Zandi et al. (2020) R. Zandi, B. Dragnea, A. Travesset,  and R. Podgornik, Phys. Rep. 847, 1 (2020).
  • Pollard (1953) E. C. Pollard, The physics of viruses (Academic Press Inc., 1953).
  • Luque and Castón (2020) D. Luque and J. R. Castón, Nat. Chem. Biol. 16, 231 (2020).
  • Khaykelson and Raviv (2020) D. Khaykelson and U. Raviv, Biophys. Rev. 12, 41 (2020).
  • Gelbart and Knobler (2009) W. M. Gelbart and C. M. Knobler, Science 323, 1682 (2009).
  • Smith (2011) D. E. Smith, Curr. Opin. Virol. 1, 134 (2011).
  • Comas-Garcia and Rosales-Mendoza (2023) M. Comas-Garcia and S. Rosales-Mendoza, eds., Physical virology, From the State-of-the-Art Research to the Future of Applied Virology, Springer series in biophysics 24 (Springer International Publishing, Cham, 2023).
  • Ilca et al. (2019) S. L. Ilca, X. Sun, K. El Omari, A. Kotecha, F. de Haas, F. DiMaio, J. M. Grimes, D. I. Stuart, M. M. Poranen,  and J. T. Huiskonen, Nature 570, 252 (2019).
  • Leforestier (2013) A. Leforestier, J Biol Phys 39, 201 (2013).
  • Leforestier and Livolant (2010) A. Leforestier and F. Livolant, Journal of Molecular Biology 396, 384 (2010).
  • Berndsen et al. (2014) Z. T. Berndsen, N. Keller, S. Grimes, P. J. Jardine,  and D. E. Smith, PNAS 111, 8345 (2014).
  • Chiaruttini et al. (2010) N. Chiaruttini, M. de Frutos, E. Augarde, P. Boulanger, L. Letellier,  and V. Viasnoff, Biophysical Journal 99, 447 (2010).
  • Purohit et al. (2003) P. K. Purohit, J. Kondev,  and R. Phillips, Proceedings of the National Academy of Sciences 100, 3173 (2003).
  • Curk et al. (2019) T. Curk, J. D. Farrell, J. Dobnikar,  and R. Podgornik, Phys. Rev. Lett. 123, 047801 (2019).
  • Klug et al. (2005) W. S. Klug, M. T. Feldmann,  and M. Ortiz, Comput. Mech. 35, 146 (2005).
  • Šiber et al. (2008) A. Šiber, M. Dragar, V. A. Parsegian,  and R. Podgornik, Eur. Phys. J. E Soft Matter 26 (2008).
  • Shin and Grason (2011) H. Shin and G. M. Grason, EPL 96, 36007 (2011).
  • Podgornik et al. (2016) R. Podgornik, A. Aksoyoglu, S. Yasar, D. Svensek,  and V. Parsegian, J. Phys. Chem. B 120, 6051 (2016).
  • Liang et al. (2019) Q. Liang, Y. Jiang,  and J. Z. Y. Chen, Phys. Rev. E. 100, 032502 (2019).
  • Kindt et al. (2001) J. Kindt, S. Tzlil, A. Ben-Shaul,  and W. M. Gelbart, Proceedings of the National Academy of Sciences 98, 13671 (2001).
  • Petrov and Harvey (2008) A. Petrov and S. C. Harvey, Biophys. J. 95, 497 (2008).
  • Rapaport (2016) D. C. Rapaport, Physical Review E 94, 030401 (2016).
  • Marenduzzo et al. (2009) D. Marenduzzo, E. Orlandini, A. Stasiak, D. W. Sumners, L. Tubiana,  and C. Micheletti, PNAS 106, 22269 (2009).
  • Marzinek et al. (2020) J. K. Marzinek, R. G. Huber,  and P. J. Bond, Curr. Opin. Struct. Biol. 61, 146 (2020).
  • Yan and Marko (2004) J. Yan and J. F. Marko, Phys. Rev. Lett.  93, 108108 (2004).
  • Qu et al. (2011) H. Qu, Y. Wang, C.-Y. Tseng,  and G. Zocchi, prx 1, 021008 (2011).
  • Qu and Zocchi (2011) H. Qu and G. Zocchi, Europhysics Letters 94, 18003 (2011).
  • Myers and Pettitt (2017) C. G. Myers and B. M. Pettitt, J. Comput. Chem. 38, 1191 (2017).
  • Bores and Pettitt (2020) C. Bores and B. M. Pettitt, Phys. Rev. E. 101, 012406 (2020).
  • Wiggins et al. (2005) P. A. Wiggins, R. Phillips,  and P. C. Nelson, Phys. Rev. E 71, 021909 (2005).
  • Sivak and Geissler (2012) D. A. Sivak and P. L. Geissler, J. Chem. Phys.  136, 045102 (2012).
  • Weeks et al. (1971) J. D. Weeks, D. Chandler,  and H. C. Andersen, The Journal of chemical physics 54, 5237 (1971).
  • Note (1) See Supplemental Material at [url], which includes Refs. Qu et al. (2010); Fiorin et al. (2013), for further information on: the model-fitting process; errors in simulation observables; and comparisons to experimental data.
  • Qu et al. (2010) H. Qu, C.-Y. Tseng, Y. Wang, A. J. Levine,  and G. Zocchi, Europhysics Letters 90, 18003 (2010).
  • Fiorin et al. (2013) G. Fiorin, M. L. Klein,  and J. Hénin, Molecular Physics 111, 3345 (2013).
  • Schöpflin et al. (2012) R. Schöpflin, H. Brutzer, O. Müller, R. Seidel,  and G. Wedemann, Biophysical journal 103, 323 (2012).
  • Plimpton (1995) S. Plimpton, Journal of computational physics 117, 1 (1995).
  • Fuller et al. (2007a) D. N. Fuller, D. M. Raymer, V. I. Kottadiel, V. B. Rao,  and D. E. Smith, Proceedings of the National Academy of Sciences 104, 16868 (2007a).
  • Fuller et al. (2007b) D. N. Fuller, D. M. Raymer, J. P. Rickgauer, R. M. Robertson, C. E. Catalano, D. L. Anderson, S. Grimes,  and D. E. Smith, Journal of molecular biology 373, 1113 (2007b).
  • Note (2) The diffusion constant of beads is D=σ2/τD=\sigma^{2}/\tau, determined by the viscosity of the solvent η\eta via the Stokes-Einstein relation, resulting in the time scale τ=3πσ3η/kBT\tau=3\pi\sigma^{3}\eta/k_{\rm B}T. For an aqueous solution at room temperature (η=103\eta=10^{-3} Pas) and σ=2nm\sigma=2\textnormal{nm}, we find τ18ns\tau\approx 18~{}\textnormal{ns}.
  • Rollins et al. (2008) G. C. Rollins, A. S. Petrov,  and S. C. Harvey, Biophysical Journal 94, L38 (2008).
  • Nikoubashman et al. (2017) A. Nikoubashman, D. A. Vega, K. Binder,  and A. Milchev, Physical review letters 118, 217803 (2017).
  • Abels et al. (2005) J. Abels, F. Moreno-Herrero, T. Van der Heijden, C. Dekker,  and N. H. Dekker, Biophysical journal 88, 2737 (2005).
  • Hyeon et al. (2006) C. Hyeon, R. I. Dima,  and D. Thirumalai, The Journal of chemical physics 125 (2006).
  • Svenšek et al. (2010) D. Svenšek, G. Veble,  and R. Podgornik, Phys. Rev. E 82, 011708 (2010).
  • Tang et al. (2011) J. Tang, G. C. Lander, A. Olia, R. Li, S. Casjens, P. Prevelige, G. Cingolani, T. S. Baker,  and J. E. Johnson, Structure 19, 496 (2011).
  • Chen et al. (2023) M. Chen, B. Sahoo, Z. Mou, X. Song, T. Tsai,  and X. Dai, bioRxiv  (2023), 10.1101/2023.12.15.571939.
  • Jiang et al. (2013) X. Jiang, W. Qu, D. Pan, Y. Ren, J.-M. Williford, H. Cui, E. Luijten,  and H.-Q. Mao, Advanced Materials 25, 227 (2013).
  • Hoang et al. (2014) T. X. Hoang, A. Giacometti, R. Podgornik, N. T. T. Nguyen, J. R. Banavar,  and A. Maritan, The Journal of Chemical Physics 140, 064902 (2014).