This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\AtAppendix

Stability of fractional functional differential equations

J. Vanterler da C. Sousa Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computation, University of Campinas – UNICAMP, rua Sérgio Buarque de Holanda 651, 13083–859, Campinas SP, Brazil
e-mail: vanterlermatematico@hotmail.com, capelas@ime.unicamp.br
1 Departamento de Matemáticas, Universidad de la Serena, Benavente 980, La Serena, Chile
e-mail: fabio.granrod@gmail.com
E. Capelas de Oliveira  and  F. G. Rodrigues1
Abstract.

In this paper, we present a study on the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the solution of the fractional functional differential equation using the Banach fixed point theorem.


Keywords: ψ\psi-Hilfer fractional derivative, Ulam-Hyers stability, Ulam-Hyers-Rassias stability, fractional functional differential equations, Banach fixed point theorem.
MSC 2010 subject classifications. 26A33, 34A08, 34K37, 34K20.

1. Introduction

An exchange of questions and answers between Ulam and Hyers, the research on stability of solutions of functional differential equations was started several years ago [1, 2]. More precisely, Ulam raised the following question: Let H1H_{1} and H2H_{2} be a group and a metric group endowed with the metric d(,)d(\cdot,\cdot), respectively. Given ε>0\varepsilon>0, does there exists a δ>0\delta>0 such that if the function f:H1H2f:H_{1}\rightarrow H_{2} satisfies the following inequality d(f(x,y),f(x)f(y))<δd(f(x,y),f(x)f(y))<\delta, x,yH1\forall x,y\in H_{1}, then there exists a homeomorphism F:H1H2F:H_{1}\rightarrow H_{2} with d(f(x),F(x))<εd(f(x),F(x))<\varepsilon, xH1\forall x\in H_{1}? And so Hyers, presents his answer, in the case where H1H_{1} and H2H_{2} are Banach spaces [2]. Since then, a significant number of researchers have devoted themselves to developing their research which address stability and many important works have been published not only on functional differential equations, but also other types of equations [3, 4, 5, 6, 7].

On the other hand, with the expansion of the fractional calculus and the number of researchers investigating more and more problems involving the stability of solutions of fractional functional differential equations specially in Banach spaces, this field started to gain more attention [8, 9, 10, 11]. In addition, not only stability has been the subject of study, but investigating the existence and uniqueness, as well as the controllability of solutions of fractional differential equations, has called, and still call, a lot of attention over the years [12, 13, 14, 15, 16, 17, 18].

In 2012 Zhao et al. [19], investigated the existence of positive solutions of the fractional functional differential equation introduced by means of the Caputo fractional derivative and using the Krasnosel’skii fixed point theorem. In this paper, the results obtained on the existence of positive solutions for the fractional functional differential equation improve and generalize the existing results. There are numerous works on the existence and uniqueness of fractional functional differential equations, both locally and globally in the Hilbert, Banach and Fréchet spaces. For better reading we suggest the works [20, 21, 22, 23].

In the middle of 2017, Abbas et al. [11], investigated the existence of Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the random solution of the fractional functional differential equation of the Hilfer and Hilfer-Hadamard type by means of fixed point theorems. Abbas et al. [8], also investigated the Ulam stability of functional partial differential equations through Picard’s operator theory and provided some examples. Further work on stability of fractional functional differential equations and even functional integral equation can be found in the following works [24, 25, 26, 27]. The stability study is broad and there are other types of stability in which we will not discuss in this paper, but in the paper of Stamova and Stamov [28], they perform a system stability analysis of fractional functional differential equations using the Lyapunov method and the principle of comparison.

Since the theory about the Ulam-Hyers stability of functional differential equations is in wide growth, and the number of papers is yet small, one of the objectives for the realization of this paper is to provide an investigation of the fractional differential equation Eq.(1.1), in order to be a good research material in this matter.

Consider the delay fractional differential equation of the form

(1.1) H𝔻t0+α,β;ψy(t)=F(t,y(t),y(ta))^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)=F\left(t,y\left(t\right),y\left(t-a\right)\right)

where 𝔻t0+α,β;ψH(){}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}\left(\cdot\right) is the ψ\psi-Hilfer fractional derivative with 0<α10<\alpha\leq 1, 0β1,0\leq\beta\leq 1, F:3F:\mathbb{R}^{3}\rightarrow\mathbb{R} is a bounded and continuous function, a>0a>0 is a real constant and t>at>a.

Motivated by the works [29, 30, 31], in this paper, we have as main purpose to investigate the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the fractional functional differential equation Eq.(1.1) by means of Banach fixed point theorem.

This paper is organized as follows: in Section 2, we present as preliminaries the continuous functions and the weighted function space, in order to introduce the ψ\psi- Riemann-Liouville fractional integral and the ψ\psi-Hilfer fractional derivative. In this sense, we present the concepts of Ulam-Hyers and Ulam-Hyers-Rassias stabilities, as well as Banach fixed point theorem, which is fundamental for obtaining the main results. In Section 3, we present the first result of this paper, the Ulam-Hyers-Rassias stability by means of Banach fixed point theorem. In Section 4, again by means of Banach fixed point theorem, we present the second result of this paper, the Ulam-Hyers stability. Concluding remarks close the paper.

2. Preliminaries

In this section we present some important concepts that will be useful to write our mains results. First, we present the definitions of the ψ\psi-Riemann-Liouville fractional integral and the ψ\psi-Hilfer fractional derivative. In this sense, we present the Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stabilities concepts for the ψ\psi-Hilfer fractional derivative. We conclude the section with Banach fixed point theorem, an important result to obtain the stability of the fractional functional differential equation.

Let [a,b][a,b] (0<a<b<)(0<a<b<\infty) be a finite interval on the half-axis +\mathbb{R}^{+} and C[a,b]C[a,b], ACn[a,b]AC^{n}[a,b], Cn[a,b]C^{n}[a,b] be the spaces of continuous functions, nn-times absolutely continuous functions, nn-times continuously differentiable functions on [a,b][a,b], respectively.

The space of the continuous functions ff on [a,b][a,b] with the norm is defined by [32]

fC[a,b]=maxt[a,b]|f(t)|.\left\|f\right\|_{C\left[a,b\right]}=\underset{t\in\left[a,b\right]}{\max}\left|f\left(t\right)\right|.

On the order hand, we have nn-times absolutely continuous functions given by

ACn[a,b]={f:[a,b]; f(n1)AC([a,b])}.AC^{n}\left[a,b\right]=\left\{f:\left[a,b\right]\rightarrow\mathbb{R};\text{ }f^{\left(n-1\right)}\in AC\left(\left[a,b\right]\right)\right\}.

The weighted space Cγ,ψ[a,b]C_{\gamma,\psi}[a,b] of functions ff on (a,b](a,b] is defined by [32]

Cγ;ψ[a,b]={f:(a,b]; (ψ(t)ψ(a))γf(t)C[a,b]}, 0γ<1C_{\gamma;\psi}\left[a,b\right]=\left\{f:\left(a,b\right]\rightarrow\mathbb{R};\text{ }\left(\psi\left(t\right)-\psi\left(a\right)\right)^{\gamma}f\left(t\right)\in C\left[a,b\right]\right\},\text{ }0\leq\gamma<1

with the norm

fCγ;ψ[a,b]=(ψ(t)ψ(a))γf(t)C[a,b]=maxt[a,b]|(ψ(t)ψ(a))γf(t)|.\left\|f\right\|_{C_{\gamma;\psi}\left[a,b\right]}=\left\|\left(\psi\left(t\right)-\psi\left(a\right)\right)^{\gamma}f\left(t\right)\right\|_{C\left[a,b\right]}=\underset{t\in\left[a,b\right]}{\max}\left|\left(\psi\left(t\right)-\psi\left(a\right)\right)^{\gamma}f\left(t\right)\right|.

The weighted space Cγ;ψn[a,b]C_{\gamma;\psi}^{n}\left[a,b\right] of function ff on (a,b](a,b] is defined by [32]

Cγ;ψn[a,b]={f:(a,b]; f(t)Cn1[a,b]; f(n)(t)Cγ;ψ[a,b]}, 0γ<1C_{\gamma;\psi}^{n}\left[a,b\right]=\left\{f:\left(a,b\right]\rightarrow\mathbb{R};\text{ }f\left(t\right)\in C^{n-1}\left[a,b\right];\text{ }f^{\left(n\right)}\left(t\right)\in C_{\gamma;\psi}\left[a,b\right]\right\},\text{ }0\leq\gamma<1

with the norm

fCγ;ψn[a,b]=k=0n1f(k)C[a,b]+f(n)Cγ;ψ[a,b].\left\|f\right\|_{C_{\gamma;\psi}^{n}\left[a,b\right]}=\overset{n-1}{\underset{k=0}{\sum}}\left\|f^{\left(k\right)}\right\|_{C\left[a,b\right]}+\left\|f^{\left(n\right)}\right\|_{C_{\gamma;\psi}\left[a,b\right]}.

For n=0n=0, we have, Cγ,ψ0[a,b]=Cγ,ψ[a,b]C_{\gamma,\psi}^{0}\left[a,b\right]=C_{\gamma,\psi}\left[a,b\right].

The weighted space Cγ,ψα,β[a,b]C^{\alpha,\beta}_{\gamma,\psi}[a,b] is defined by

Cγ;ψα,β[a,b]={fCγ;ψ[a,b]; H𝔻a+α,β;ψfCγ;ψ[a,b]}, γ=α+β(1α).C_{\gamma;\psi}^{\alpha,\beta}\left[a,b\right]=\left\{f\in C_{\gamma;\psi}\left[a,b\right];\text{ }^{H}\mathbb{D}_{a+}^{\alpha,\beta;\psi}f\in C_{\gamma;\psi}\left[a,b\right]\right\},\text{ }\gamma=\alpha+\beta\left(1-\alpha\right).

Let α>0\alpha>0, [a,b]\left[a,b\right] and ψ(t)\psi\left(t\right) be an increasing and positive monotone function on (a,b]\left(a,b\right], having a continuous derivative ψ(t)\psi^{\prime}\left(t\right) on [a,b]\left[a,b\right]. The Riemann-Liouville fractional integral with respect to another function ψ\psi on [a,b]\left[a,b\right] is defined by [32]

(2.1) It0+α;ψy(t):=1Γ(α)t0tNψα(t,s)y(s)𝑑sI_{t_{0}+}^{\alpha;\psi}y\left(t\right):=\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,s)y\left(s\right)ds

where Γ()\Gamma\left(\cdot\right) is the gamma function with 0<α10<\alpha\leq 1 and Nψα(t,s):=ψα1N^{\alpha}_{\psi}(t,s):=\psi^{\prime\alpha{-1}}. The ψ\psi-Riemann-Liouville fractional integral on the left is defined in an analogous way.

On the other hand, left n1<αnn-1<\alpha\leq n with nn\in\mathbb{N}, J=[a,b]J=\left[a,b\right] be an interval such that a<b+-\infty\leq a<b\leq+\infty and let f,ψCn([a,b],)f,\psi\in C^{n}\left(\left[a,b\right],\mathbb{R}\right) be two functions such that ψ\psi is increasing and ψ(t)0\psi^{\prime}\left(t\right)\neq 0, for all tJ.t\in J. The ψ\psi-Hilfer fractional derivative is given by [32]

𝔻t0+α,β;ψHy(t)=It0+β(nα);ψ(1ψ(t)ddt)nIt0+(1β)(nα);ψy(t).{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)=I_{t_{0}+}^{\beta\left(n-\alpha\right);\psi}\left(\frac{1}{\psi^{\prime}\left(t\right)}\frac{d}{dt}\right)^{n}I_{t_{0}+}^{\left(1-\beta\right)\left(n-\alpha\right);\psi}y\left(t\right).

The ψ\psi-Hilfer fractional derivative on the left is defined in an analogous way.

Let XX be a nonempty set. A function d:X×X[0,]d:X\times X\rightarrow\left[0,\infty\right] is called generalized metric on XX if, and only if, dd satisfies [33]:

  1. (1)

    d(x,y)=0d\left(x,y\right)=0 if x=y;x=y;

  2. (2)

    d(x,y)=d(y,x)d\left(x,y\right)=d\left(y,x\right), for all x,yX;x,y\in X;

  3. (3)

    d(x,z)d(x,y)+d(y,z),d\left(x,z\right)\leq d\left(x,y\right)+d\left(y,z\right), for all x,y,zX.x,y,z\in X.

For the study of Ulam-Hyers, Ulam-Hyers-Rassias and generalized Ulam-Hyers-Rassias stabilities, we will adapt such definitions [29, 30, 33].

Definition 1.

For some ε0\varepsilon\geq 0, ΦC1γ;ψ[t0a,t0]\Phi\in C_{1-\gamma;\psi}\left[t_{0}-a,t_{0}\right] and t0,Tt_{0},T\in\mathbb{R} with T>t0T>t_{0}, assume that for any continuous function f:[t0a,T]f:\left[t_{0}-a,T\right]\rightarrow\mathbb{R} satisfying

{|𝔻t0+α,β;ψHf(t)F(t,f(t),f(ta))|<ε, t[t0,T]|f(t)Φ(t)|<ε, t[t0a,t0],\left\{\begin{array}[c]{cll}\left|{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}f\left(t\right)-F\left(t,f\left(t\right),f\left(t-a\right)\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0},T\right]\\ \left|f\left(t\right)-\Phi\left(t\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0}-a,t_{0}\right],\end{array}\right.

there exists a continuous function f0:[t0a,T]f_{0}:\left[t_{0}-a,T\right]\rightarrow\mathbb{R} satisfying:

{𝔻t0+α,β;ψHf(t)=F(t,f(t),f(ta)), t[t0,T]f(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}f\left(t\right)&=&F\left(t,f\left(t\right),f\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ f\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

|f(t)f0(t)|K(ε), t[t0a,T]\left|f\left(t\right)-f_{0}\left(t\right)\right|\leq K\left(\varepsilon\right),\text{ }t\in\left[t_{0}-a,T\right]

where K(ε)K\left(\varepsilon\right) depending of ε\varepsilon only. Then, we say that the solution of Eq.(1.1) is Ulam-Hyers stable.

Definition 2.

For some ε0\varepsilon\geq 0, ΦC1γ;ψ[t0a,t0]\Phi\in C_{1-\gamma;\psi}\left[t_{0}-a,t_{0}\right] and t0,Tt_{0},T\in\mathbb{R} with T>t0T>t_{0}, assume that for any continuous function f:[t0a,T]f:\left[t_{0}-a,T\right]\rightarrow\mathbb{R} satisfying

{|𝔻t0+α,β;ψHf(t)F(t,f(t),f(ta))|<φ, t[t0,T]|f(t)Φ(t)|<φ, t[t0a,t0],\left\{\begin{array}[c]{cll}\left|{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}f\left(t\right)-F\left(t,f\left(t\right),f\left(t-a\right)\right)\right|&<&\varphi,\text{ }t\in\left[t_{0},T\right]\\ \left|f\left(t\right)-\Phi\left(t\right)\right|&<&\varphi,\text{ }t\in\left[t_{0}-a,t_{0}\right],\end{array}\right.

there exists a continuous function f0:[t0a,T]f_{0}:[t_{0}-a,T]\rightarrow\mathbb{R} satisfying

{𝔻t0+α,β;ψHf0(t)=F(t,f0(t),f0(ta)), t[t0,T]f0(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}f_{0}\left(t\right)&=&F\left(t,f_{0}\left(t\right),f_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ f_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

|f(t)f0(t)|Φ1, t[t0a,T]\left|f\left(t\right)-f_{0}\left(t\right)\right|\leq\Phi_{1},\text{ }t\in\left[t_{0}-a,T\right]

where K(ε)K\left(\varepsilon\right) depending of ε\varepsilon only. Then, we say that the solution of Eq.(1.1) is the Ulam-Hyers-Rassias stable.

Definition 3.

Eq.(1.1) is generalized Ulam-Hyers stable with respect to ϕ\phi if there exists cϕ>0c_{\phi}>0 such that for each solution yC1γ;ψ1([t0a,T],)y\in C_{1-\gamma;\psi}^{1}\left(\left[t_{0}-a,T\right],\mathbb{R}\right) to

|𝔻t0+α,β;ψHy(t)F(t,y(t),y(ta))|ϕ(t), t[t0a,T]\left|{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\right|\leq\phi\left(t\right),\text{ }t\in\left[t_{0}-a,T\right]

there exists a solution xC1γ;ψ1([t0a,T],)x\in C_{1-\gamma;\psi}^{1}\left(\left[t_{0}-a,T\right],\mathbb{R}\right) of Eq.(1.1) with

|y(t)x(t)|cϕϕ(t), t[t0a,T].\left|y\left(t\right)-x\left(t\right)\right|\leq c_{\phi}\phi\left(t\right),\text{ }t\in\left[t_{0}-a,T\right].

The following is the result of the Banach fixed point theorem, however its proof will be omitted.

Theorem 1.

[34] Let (X,d)\left(X,d\right) be a generalized complete metric space. Assume that Ω:XX\Omega:X\rightarrow X is a strictly contractive operator with the Lipschitz constant L<1.L<1. If there exists a nonnegative integer kk such that d(Ωk+1x,Ωkx)<d\left(\Omega^{k+1}x,\Omega^{k}x\right)<\infty for some xXx\in X, then the following are true:

  1. (1)

    The sequence {Ωnx}\left\{\Omega^{n}x\right\} converges to a fixed xx^{\ast} of Ω\Omega;

  2. (2)

    xx^{\ast} is the unique fixed point of Ω\Omega in

    X={yX:d(Ωkx,y)<}.X^{\ast}=\left\{y\in X:d\left(\Omega^{k}x,y\right)<\infty\right\}.
  3. (3)

    If yXy\in X^{\ast}, then

    d(y,X)11Ld(Ωy,y).d\left(y,X^{\ast}\right)\leq\dfrac{1}{1-L}d\left(\Omega y,y\right).

3. Ulam-Hyers-Rassias stability

By means of the Banach fixed point theorem, in this section we present the first result of this paper, the Ulam-Hyers-Rassias stability for the delay fractional differential equation, Eq.(1.1).

Theorem 2.

Consider the interval I=[t0a,T]I=\left[t_{0}-a,T\right] and suppose that F:I××F:I\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R} is a continuous function with the following Lipschitz condition:

|F(t,x,y)F(t,z,w)|L1|xz|+L2|yw|\left|F\left(t,x,y\right)-F\left(t,z,w\right)\right|\leq L_{1}\left|x-z\right|+L_{2}\left|y-w\right|

for all (t,x,y),(t,z,w)I××\left(t,x,y\right),\left(t,z,w\right)\in I\times\mathbb{R}\times\mathbb{R}.

Let ϕ:I(0,)\phi:I\rightarrow\left(0,\infty\right) be a continuous function. Assume that ΦC1γ;ψ[t0a,t0]\Phi\in C_{1-\gamma;\psi}\left[t_{0}-a,t_{0}\right], K,L1K,L_{1} and L2L_{2} are positive constants with

0<K(L1+L2)<10<K\left(L_{1}+L_{2}\right)<1

and

|1Γ(α)t0tNψα(t,u)ϕ(u)𝑑u|Kϕ(t),\left|\dfrac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\phi\left(u\right)du\right|\leq K\phi\left(t\right),

for all tI=[t0a,T]t\in I=\left[t_{0}-a,T\right].

Then, if a continuous function y:Iy:I\rightarrow\mathbb{R} and φ:I(0,)\varphi:I\rightarrow(0,\infty) satisfies

{|𝔻t0+α,β;ψHy(t)F(t,y(t),y(ta))|<φ(t), t[t0,T]|y(t)Φ(t)|<φ(t), t[t0a,t0]\left\{\begin{array}[c]{ccc}\left|{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\right|&<&\varphi\left(t\right),\text{ }t\in\left[t_{0},T\right]\\ \left|y\left(t\right)-\Phi\left(t\right)\right|&<&\varphi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

then there exists a unique continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that

(3.1) {𝔻t0+α,β;ψHy0(t)=F(t,y0(t),y0(ta)), t[t0, T]y0(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},\text{ }T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

(3.2) |y(t)y0(t)|11K(L1+L2)Kϕ(t), for all tI.\left|y\left(t\right)-y_{0}\left(t\right)\right|\leq\frac{1}{1-K\left(L_{1}+L_{2}\right)}K\phi\left(t\right),\text{ for all }t\in I.
Proof.

For the proof of this theorem, first consider the set SS given by

S={φ:I:φC1γ;ψ, φ(t)=Φ(t), if t[t0a,t0]}S=\left\{\varphi:I\rightarrow\mathbb{R}:\varphi\in C_{1-\gamma;\psi},\text{ }\varphi\left(t\right)=\Phi\left(t\right),\text{ if }t\in\left[t_{0}-a,t_{0}\right]\right\}

and the following generalized metric over SS

(3.3) d(φ,μ)=inf{M[0,):|φ(t)μ(t)|Mϕ(t), tI}.d\left(\varphi,\mu\right)=\inf\left\{M\in\left[0,\infty\right):\left|\varphi\left(t\right)-\mu\left(t\right)\right|\leq M\phi\left(t\right),\text{ }\forall t\in I\right\}.

Note that, (S,d)\left(S,d\right) is generalized complete metric space. Now, we introduce the following function Ω:SS\Omega:S\rightarrow S given by

(3.4) {(Ωφ)(t)=Φ(t), t[t0a,t0](Ωφ)(t)=Φ(t0)Ψγ(t,t0)+1Γ(α)t0tNψα(t,s)F(u,φ(u),φ(ua))𝑑u, t[t0,T],\left\{\begin{array}[]{cll}\left(\Omega\varphi\right)\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\\ \left(\Omega\varphi\right)\left(t\right)&=&\begin{array}[]{l}\Phi\left(t_{0}\right)\Psi^{\gamma}(t,t_{0})+\displaystyle\frac{1}{\Gamma\left(\alpha\right)}\displaystyle\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,s)F\left(u,\varphi\left(u\right),\varphi\left(u-a\right)\right)du,\\ \text{ }t\in\left[t_{0},T\right],\end{array}\end{array}\right.

where Ψγ(t,t0):=(ψ(t)ψ(t0))1γΓ(γ)\Psi^{\gamma}(t,t_{0}):=\dfrac{(\psi(t)-\psi(t_{0}))^{1-\gamma}}{\Gamma(\gamma)}, with γ=α+β(1α)\gamma=\alpha+\beta(1-\alpha). Note that, for φS\varphi\in S, the function Ωφ\Omega\varphi is continuous. In this way, we can write ΩφS\Omega\varphi\in S. Let φ,μS\varphi,\mu\in S and by Eq.(3.4), we have

|(Ωφ)(t)(Ωμ)(t)|\displaystyle\left|\left(\Omega\varphi\right)\left(t\right)-\left(\Omega\mu\right)\left(t\right)\right|
\displaystyle\leq |1Γ(α)t0tNψα(t,u)(F(u,φ(u),φ(ua))F(u,μ(u),μ(ua)))𝑑u|\displaystyle\left|\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\left(F\left(u,\varphi\left(u\right),\varphi\left(u-a\right)\right)-F\left(u,\mu\left(u\right),\mu\left(u-a\right)\right)\right)du\right|
\displaystyle\leq 1Γ(α)t0tNψα(t,u)(L1|φ(u)μ(u)|L2|φ(ua)μ(ua)|)𝑑u\displaystyle\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\left(L_{1}\left|\varphi\left(u\right)-\mu\left(u\right)\right|-L_{2}\left|\varphi\left(u-a\right)-\mu\left(u-a\right)\right|\right)du
\displaystyle\leq ML1Γ(α)t0tNψα(t,u)ϕ(u)𝑑u+ML2Γ(α)t0tNψα(t,u)ϕ(u)𝑑u\displaystyle\frac{ML_{1}}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\phi\left(u\right)du+\frac{ML_{2}}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\phi\left(u\right)du
\displaystyle\leq M(L1+L2)Γ(α)|t0tNψα(t,u)ϕ(u)𝑑u|\displaystyle\frac{M\left(L_{1}+L_{2}\right)}{\Gamma\left(\alpha\right)}\left|\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\phi\left(u\right)du\right|
\displaystyle\leq MK(L1+L2)ϕ(t), t[t0,T]\displaystyle MK\left(L_{1}+L_{2}\right)\phi\left(t\right),\text{ }t\in\left[t_{0},T\right]

and

|(Ωφ)(t)(Ωμ)(t)|=Φ(t)Φ(t)=0, t[t0a,t]\left|\left(\Omega\varphi\right)\left(t\right)-\left(\Omega\mu\right)\left(t\right)\right|=\Phi\left(t\right)-\Phi\left(t\right)=0,\text{ }t\in\left[t_{0}-a,t\right]

which implies that d(ΩφΩμ)K(L1+L2)d(φ,μ).d\left(\Omega\varphi-\Omega\mu\right)\leq K\left(L_{1}+L_{2}\right)d\left(\varphi,\mu\right). Since 0<K(L1+L2)<10<K\left(L_{1}+L_{2}\right)<1, then Ω\Omega is strictly contractive on SS. Let ξS\xi\in S arbitrary and mintI ϕ(t)>0\underset{t\in I}{\min}\text{ }\phi\left(t\right)>0. As F(t,ξ(t),ξ(ta))F\left(t,\xi\left(t\right),\xi\left(t-a\right)\right) and ξ(t)\xi\left(t\right) are bounded on II, then exists a constant 0<M<0<M<\infty such that

(3.5) |(Ωξ)(t)ξ(t)|\displaystyle\left|\left(\Omega\xi\right)\left(t\right)-\xi\left(t\right)\right|
=\displaystyle= |Ψγ(t,t0)Φ(t0)+1Γ(α)t0tNψα(t,u)F(u,ξ(u),ξ(ua))𝑑uξ(t)|\displaystyle\left|\Psi^{\gamma}(t,t_{0})\Phi\left(t_{0}\right)+\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)F\left(u,\xi\left(u\right),\xi\left(u-a\right)\right)du-\xi\left(t\right)\right|
\displaystyle\leq Mφ(t).\displaystyle M\varphi\left(t\right).

Thus, by means of Eq.(3.5), it follows that d(Ωξ,ξ)<d\left(\Omega\xi,\xi\right)<\infty. By means of the Theorem 1 (1), there exists a continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that Ωnξy0\Omega^{n}\xi\rightarrow y_{0} in (S,d)\left(S,d\right) and Ωy0=y0\Omega y_{0}=y_{0}, then y0y_{0} satisfies

{𝔻t0+α,β;ψHy0(t)=F(t,y0(t),y0(ta)), t[t0,T]y0(t)=Φ(t), t[t0a,t0].\left\{\begin{array}[]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right].\end{array}\right.

Now consider for any gSg\in S, such that gg and ξ\xi are bounded on II, then exist a constant 0<Mg<0<M_{g}<\infty such that

|ξ(t)g(t)|Mgφ(t)\left|\xi\left(t\right)-g\left(t\right)\right|\leq M_{g}\varphi\left(t\right)

for tIt\in I. Thus, we can write gS\forall g\in S, d(ξ,g)<d\left(\xi,g\right)<\infty with S={gS;d(ξ,g)<}S=\left\{g\in S;d\left(\xi,g\right)<\infty\right\}. Furthermore, it is clear that

(3.6) ϕ(t) H𝔻t0+α,β;ψy(t)F(t,y(t),y(ta))ϕ(t), t[t0,T].-\phi\left(t\right)\leq\text{ }^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\leq\phi\left(t\right),\text{ }\forall t\in\left[t_{0},T\right].

Applying the fractional integral It0α;ψ()I_{t_{0}}^{\alpha;\psi}\left(\cdot\right) on both sides of Eq.(3.6), we have

|y(t)Ψγ(t,t0)Φ(t0)1Γ(α)t0tNψα(t,u)F(u,y(u),y(ua))𝑑u|\displaystyle\left|y\left(t\right)-\Psi^{\gamma}(t,t_{0})\Phi\left(t_{0}\right)-\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)F\left(u,y\left(u\right),y\left(u-a\right)\right)du\right|
\displaystyle\leq |1Γ(α)t0tNψα(t,u)ϕ(u)𝑑u|Kϕ(t), t[t0,T].\displaystyle\left|\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\phi\left(u\right)du\right|\leq K\phi\left(t\right),\text{ }t\in\left[t_{0},T\right].

This form, by definition Ω\Omega, finishes

|y(t)(Ωy)(t)|Kϕ(t), tI.\left|y\left(t\right)-\left(\Omega y\right)\left(t\right)\right|\leq K\phi\left(t\right),\text{ }t\in I.

Consequently, it implies that d(y,Ωy)K\ d\left(y,\Omega y\right)\leq K. By means of Theorem 1 (3) and the last estimative, we have

d(y,y0)11K(L1+L2)d(Ωy,y)Kϕ(t)1K(L1+L2), tI.d\left(y,y_{0}\right)\leq\frac{1}{1-K\left(L_{1}+L_{2}\right)}d\left(\Omega y,y\right)\leq\frac{K\phi\left(t\right)}{1-K\left(L_{1}+L_{2}\right)},\text{ }\forall t\in I.

Thus, by Theorem 1 (2), we conclude that there exists y0y_{0}, the unique continuous function with the property Eq.(3.1).

Remark 1.

One of the advantages of working with Ulam-Hyers and Ulam-Hyers-Rassias stabilities, or any other type of stability with the global fractional differential operator so-called ψ\psi-Hilfer, is that the results obtained in this way, are also valid for their respective individual cases.

4. Ulam-Hyers stability

In this section, we investigate the second main result of the paper, the Ulam-Hyers stability, again making use of the Banach fixed point theorem.

Theorem 3.

Suppose that F:I××F:I\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R} is a continuous function with the following Lipschitz condition

|F(t,x,y)F(t,z,w)|L1|xz|+L2|yw|,\left|F\left(t,x,y\right)-F\left(t,z,w\right)\right|\leq L_{1}\left|x-z\right|+L_{2}\left|y-w\right|,

where (t,x,y),(t,z,w)I××\left(t,x,y\right),\left(t,z,w\right)\in I\times\mathbb{R}\times\mathbb{R} and 0<(ψ(T))α(L1+L2)Γ(α+1)<10<\dfrac{\left(\psi\left(T\right)\right)^{\alpha}\left(L_{1}+L_{2}\right)}{\Gamma\left(\alpha+1\right)}<1.

Let ΦC1γ;ψ[t0a,t]\Phi\in C_{1-\gamma;\psi}\left[t_{0}-a,t\right] and ε0.\varepsilon\geq 0. If a continuous function y:Iy:I\rightarrow\mathbb{R} satisfies

{|𝔻t0+α,β;ψHy(t)F(t,y(t),y(ta))|<ε, t[t0,T]|y(t)Φ(t)|<ε, t[t0a,t0]\left\{\begin{array}[c]{cll}\left|{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0},T\right]\\ \left|y\left(t\right)-\Phi\left(t\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

then there exists a unique continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that

(4.1) {𝔻t0+α,β;ψHy0(t)=F(t,y0(t),y0(ta)), t[t0,T]y0(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

(4.2) |y(t)y0(t)|ε(ψ(T))αΓ(α+1)(ψ(T))α(L1+L2), tI.\left|y\left(t\right)-y_{0}\left(t\right)\right|\leq\frac{\varepsilon\left(\psi\left(T\right)\right)^{\alpha}}{\Gamma\left(\alpha+1\right)-\left(\psi\left(T\right)\right)^{\alpha}\left(L_{1}+L_{2}\right)},\text{ }\forall t\in I.
Proof.

For the proof, we consider the following generalized metric over SS, given by

d1(φ,μ)=inf{M[0,]:|φ(t)μ(t)|M, tI}.d_{1}\left(\varphi,\mu\right)=\inf\left\{M\in\left[0,\infty\right]:\left|\varphi\left(t\right)-\mu\left(t\right)\right|\leq M,\text{ }\forall t\in I\right\}.

Note that, (S,d1)\left(S,d_{1}\right) is a generalized complete metric space. For any φ,μS\varphi,\mu\in S and Mφ,μ{M[0,]:|φ(t)μ(t)|M, tI}M_{\varphi,\mu}\in\left\{M\in\left[0,\infty\right]:\left|\varphi\left(t\right)-\mu\left(t\right)\right|\leq M,\text{ }\forall t\in I\right\}, using Eq.(3.4), we obtain

|(Ωφ)(t)(Ωμ)(t)|\displaystyle\left|\left(\Omega\varphi\right)\left(t\right)-\left(\Omega\mu\right)\left(t\right)\right|
=\displaystyle= |1Γ(α)t0tNψα(t,u)F(u,ϕ(u),ϕ(ua))𝑑u1Γ(α)t0tNψα(t,u)F(u,μ(u),μ(ua))𝑑u|\displaystyle\left|\begin{array}[]{c}\dfrac{1}{\Gamma\left(\alpha\right)}\displaystyle\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)F\left(u,\phi\left(u\right),\phi\left(u-a\right)\right)du\\ -\dfrac{1}{\Gamma\left(\alpha\right)}\displaystyle\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)F\left(u,\mu\left(u\right),\mu\left(u-a\right)\right)du\end{array}\right|
\displaystyle\leq 1Γ(α)t0tNψα(t,u)(L1|ϕ(u)μ(u)|+L2|ϕ(ua)μ(ua)|)𝑑u\displaystyle\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)\left(L_{1}\left|\phi\left(u\right)-\mu\left(u\right)\right|+L_{2}\left|\phi\left(u-a\right)-\mu\left(u-a\right)\right|\right)du
\displaystyle\leq L1Mφ,μΓ(α)t0tNψα(t,u)𝑑u+L2Mφ,μΓ(α)t0tNψα(t,u)𝑑u\displaystyle\frac{L_{1}M_{\varphi,\mu}}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)du+\frac{L_{2}M_{\varphi,\mu}}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)du
\displaystyle\leq (L1+L2)Mφ,μΓ(α+1)(ψ(T))α\displaystyle\frac{\left(L_{1}+L_{2}\right)M_{\varphi,\mu}}{\Gamma\left(\alpha+1\right)}\left(\psi\left(T\right)\right)^{\alpha}

and

|(Ωφ)(t)(Ωμ)(t)|=Φ(t)Φ(t)=0, t[t0a,t0]\left|\left(\Omega\varphi\right)\left(t\right)-\left(\Omega\mu\right)\left(t\right)\right|=\Phi\left(t\right)-\Phi\left(t\right)=0,\text{ }\forall t\in\left[t_{0}-a,t_{0}\right]

which imply that d1(Ωφ,Ωμ)(L1+L2)(ψ(T))αΓ(α+1)d(φ,μ)d_{1}\left(\Omega\varphi,\Omega\mu\right)\leq\dfrac{\left(L_{1}+L_{2}\right)\left(\psi\left(T\right)\right)^{\alpha}}{\Gamma\left(\alpha+1\right)}d\left(\varphi,\mu\right). Since 0<(ψ(T))α(L1+L2)Γ(α+1)<1,0<\dfrac{\left(\psi\left(T\right)\right)^{\alpha}\left(L_{1}+L_{2}\right)}{\Gamma\left(\alpha+1\right)}<1, then Ω\Omega is strictly contractive on SS. Now, for an arbitrary δS\delta\in S and using the fact that F(t,δ(t),δ(ta))F\left(t,\delta\left(t\right),\delta\left(t-a\right)\right) and δ(t)\delta\left(t\right), are boundedness on SS, we can show d1(Ωδ,δ)<d_{1}\left(\Omega\delta,\delta\right)<\infty. Hence, from Theorem 1 (1), there exists a continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that Ωnξy0\Omega^{n}\xi\rightarrow y_{0} in (S,d1)\left(S,d_{1}\right) and Ωy0=y0,\Omega y_{0}=y_{0}, then y0y_{0} satisfies

{𝔻t0+α,β;ψHy0(t)=F(t,y0(t),y0(ta)), t[t0,T]y0(t)=Φ(t), t[t0a,t0].\left\{\begin{array}[]{cll}{}^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right].\end{array}\right.

Using the fact that gg and δ\delta are bounded on II, then d1(δ,g)<d_{1}\left(\delta,g\right)<\infty, gS\forall g\in S, with S={d1(δ,y)<}S=\left\{d_{1}\left(\delta,y\right)<\infty\right\}. Then, using Theorem 1 (2), y0y_{0} is the unique continuous function with the property Eq.(4.1). Note that,

(4.4) ε H𝔻t0+α,β;ψy(t)F(t,y(t),y(ta))ε-\varepsilon\leq\text{ }^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\leq\varepsilon

for all t[t0,T]t\in\left[t_{0},T\right]. Applying the fractional integral It0α;ψ()I_{t_{0}}^{\alpha;\psi}\left(\cdot\right), on both sides of Eq.(4.4), we get

(4.5) |y(t)Ψγ(t,t0)1Γ(α)t0tNψα(t,u)F(u,y(u),y(ua))𝑑u|\displaystyle\left|y\left(t\right)-\Psi^{\gamma}(t,t_{0})-\frac{1}{\Gamma\left(\alpha\right)}\int_{t_{0}}^{t}N^{\alpha}_{\psi}(t,u)F\left(u,y\left(u\right),y\left(u-a\right)\right)du\right|
\displaystyle\leq εIt0α;ψ(1)ε(ψ(T))αΓ(α+1)\displaystyle\varepsilon I_{t_{0}}^{\alpha;\psi}\left(1\right)\leq\frac{\varepsilon\left(\psi\left(T\right)\right)^{\alpha}}{\Gamma\left(\alpha+1\right)}

for each tIt\in I. By means of Theorem 1 (3) and Eq.(4.5), we get

d1(y,y0)\displaystyle d_{1}\left(y,y_{0}\right) \displaystyle\leq ε(ψ(T))αΓ(α+1)(1(ψ(T))α(L1+L2)Γ(α+1))\displaystyle\frac{\varepsilon\left(\psi\left(T\right)\right)^{\alpha}}{\Gamma\left(\alpha+1\right)\left(1-\frac{\left(\psi\left(T\right)\right)^{\alpha}\left(L_{1}+L_{2}\right)}{\Gamma\left(\alpha+1\right)}\right)}
=\displaystyle= ε(ψ(T))αΓ(α+1)(ψ(T))α(L1+L2),\displaystyle\frac{\varepsilon\left(\psi\left(T\right)\right)^{\alpha}}{\Gamma\left(\alpha+1\right)-\left(\psi\left(T\right)\right)^{\alpha}\left(L_{1}+L_{2}\right)},

which we conclude the proof.

Corollary 1.

Suppose the conditions of the Theorem 2. If a continuous function y:Iy:I\rightarrow\mathbb{R} satisfies

(4.6) {|𝒟t0+αy(t)F(t,y(t),y(ta))|<ε, t[t0,T]|y(t)Φ(t)|<ε, t[t0a,t0]\left\{\begin{array}[c]{cll}\left|\mathcal{D}_{t_{0}+}^{\alpha}y\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0},T\right]\\ \left|y\left(t\right)-\Phi\left(t\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

then there exists a unique continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that

(4.7) {𝒟t0+αy0(t)=F(t,y0(t),y0(ta)), t[t0,T]y0(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}\mathcal{D}_{t_{0}+}^{\alpha}y_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

(4.8) |y(t)y0(t)|ε(lnT)αΓ(α+1)(lnT)α(L1+L2), tI,\left|y\left(t\right)-y_{0}\left(t\right)\right|\leq\frac{\varepsilon\left(\ln T\right)^{\alpha}}{\Gamma\left(\alpha+1\right)-\left(\ln T\right)^{\alpha}\left(L_{1}+L_{2}\right)},\text{ }\forall t\in I,

where 𝒟t0+()\mathcal{D}_{t_{0}+}(\cdot) is the Hadamard fractional derivative.

Proof.

The proof is a direct consequence of the Theorem 2.

Corollary 2.

Suppose the conditions of the Theorem 2. If a continuous function y:Iy:I\rightarrow\mathbb{R} satisfies

(4.9) {|y(t)F(t,y(t),y(ta))|<ε, t[t0,T]|y(t)Φ(t)|<ε, t[t0a,t0]\left\{\begin{array}[c]{cll}\left|y^{\prime}\left(t\right)-F\left(t,y\left(t\right),y\left(t-a\right)\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0},T\right]\\ \left|y\left(t\right)-\Phi\left(t\right)\right|&<&\varepsilon,\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

then there exists a unique continuous function y0:Iy_{0}:I\rightarrow\mathbb{R} such that

(4.10) {y0(t)=F(t,y0(t),y0(ta)), t[t0,T]y0(t)=Φ(t), t[t0a,t0]\left\{\begin{array}[c]{cll}y^{\prime}_{0}\left(t\right)&=&F\left(t,y_{0}\left(t\right),y_{0}\left(t-a\right)\right),\text{ }t\in\left[t_{0},T\right]\\ y_{0}\left(t\right)&=&\Phi\left(t\right),\text{ }t\in\left[t_{0}-a,t_{0}\right]\end{array}\right.

and

(4.11) |y(t)y0(t)|εT1T(L1+L2), tI.\left|y\left(t\right)-y_{0}\left(t\right)\right|\leq\frac{\varepsilon T}{1-T\left(L_{1}+L_{2}\right)},\text{ }\forall t\in I.
Proof.

The proof is a direct consequence of the Theorem 2.

Remark 2.

The following fractional differential equation

(4.12) H𝔻t0+α,β;ψy(t)=F(t,y(t))^{H}\mathbb{D}_{t_{0}+}^{\alpha,\beta;\psi}y\left(t\right)=F\left(t,y\left(t\right)\right)

is a special case of Eq.(1.1). Consequently, the results proposed here are also valid for Eq.(4.12).

Applying the limit α1\alpha\rightarrow 1 on both sides of the Eq.(4.12), we obtain the following differential equation of the first order [35]

y(t)=F(t,y(t)),y^{\prime}\left(t\right)=F\left(t,y\left(t\right)\right),

which, in turn, the results proposed here, are also valid.

5. Concluding Remarks

The study of Ulam-Hyers-type stability of solutions of the fractional functional differential equations has been the object of much study and investigated by many researchers [12, 13, 14, 16, 17, 18, 24, 25, 26]. Although it is yet a field of mathematics that is in expansion, over the years countless works have been published and others are yet to come. In this sense, the paper presented a discuss on the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the fractional functional differential equation Eq.(1.1) through the Banach fixed point theorem, which contributes to the growth of this area.

From this contribution, the natural question that arises will be whether by means of the ψ\psi-Hilfer fractional derivative it is also possible to obtain the stabilities investigated here in the function space Lp,α(I,)L_{p,\alpha}(I,\mathbb{R})? And using another fixed point theorem? Another possibility of study is to investigate other types of stabilities such as δ\delta-Ulam-Hyers-Rassias, semi-Ulam-Hyers-Rassias and Mittag-Leffler-Ulam using the same fractional differentiable operator [36, 37, 38]. Studies in this direction are being prepared and will be published in the near future.

References

  • [1] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222–224.
  • [2] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley &\& Sons, Inc., New York, 1964.
  • [3] I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babeş-Bolyai Math. 54 (2009) 125–133.
  • [4] S.-M. Jung, Hyers–-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (2004) 1135–1140.
  • [5] S.-M. Jung, Hyers–-Ulam stability of linear differential equation of the first order (III), J. Math. Anal. Appl. 311 (2005) 139–146.
  • [6] S.-M. Jung, Hyers–-Ulam stability of linear differential equation of the first order (II), J. Math. Anal. Appl. 19 (2006) 854–858.
  • [7] S.-M. Jung, Hyers–-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006) 549–561.
  • [8] S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theory Differ. Equ. 51 (2014) 1–13.
  • [9] I. Stamova, G. Stamov, Stability analysis of impulsive functional systems of fractional order, Commun. Nonlinear Sci. Numer. Simulat. 19 (2014) 702–709.
  • [10] S. Abbas, M. Benchohra, J.-E. Lazreg, G. M. N’Guerekata, Hilfer and Hadamard functional random fractional differential inclusions, CUBO A Math. J. 19 (2017) 17–38.
  • [11] S. Abbas, M. Benchohra, M. A. Darwish, Some new existence results and stability concepts for fractional partial random differential equations, J. Math. and Appl. 39 (2016) 5–22.
  • [12] X. Li, S. Liu, W. Jiang, Positive solutions for boundary value problem of nonlinear fractional functional differential equations, Appl. Math. and Comput. 217 (22) (2011) 9278–9285.
  • [13] R. P. Agarwal, Y. Zhou, J. Wang, X. Luo, Fractional functional differential equations with causal operators in Banach spaces, Math. and Comput. Modell. 54 (5-6) (2011) 1440–1452.
  • [14] T. L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl. 64 (10) (2012) 3414–3424.
  • [15] Y.-L. Jiang, X.-L. Ding, Nonnegative solutions of fractional functional differential equations, Comput. Math. Appl. 63 (5) (2012) 896–904.
  • [16] R. Ganesh, R. Sakthivel, Y. Ren, S. M. Anthoni, N. I. Mahmudov, Controllability of neutral fractional functional equations with impulses and infinite delay, in: Abstract and Applied Analysis, Vol. 2013, Hindawi, 2013.
  • [17] M. Nadeem, J. Dabas, Controllability result of impulsive stochastic fractional functional differential equation with infinite delay, Int. J. Adv. Appl. Math. and Mech 2 (1) (2014) 9–18.
  • [18] R. Ganesh, R. Sakthivel, N. Mahmudov, Approximate controllability of fractional functional equations with infinite delay, Topological Methods in Nonlinear Analysis 43 (2) (2014) 345–364.
  • [19] Y. Zhao, H. Chen, L. Huang, Existence of positive solutions for nonlinear fractional functional differential equation, Comput. Math. Appl. 64 (10) (2012) 3456–3467.
  • [20] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. and Appl. 338 (2) (2008) 1340–1350.
  • [21] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods & Applications 69 (10) (2008) 3337–3343.
  • [22] Y.-K. Chang, M. M. Arjunan, G. M. N’Guérékata, V. Kavitha, On global solutions to fractional functional differential equations with infinite delay in Fréchet spaces, Comput. Math. Appl. 62 (2011) 1228–1237.
  • [23] Y. Wang, F. Gao, P. Kloeden, Impulsive fractional functional differential equations with a weakly continuous nonlinearity, Elec. J. Diff. Equations. 2017 (2017), 1–18.
  • [24] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative., Studia Universitatis Babes-Bolyai, Mathematica. 62 (2017) 27–38.
  • [25] S. Abbas, W. A. Albarakati, M. Benchohra, J. Henderson, Existence and Ulam stabilities for Hadamard fractional integral equations with random effects., Elec. J. Diff. Equations. 2016 (2016), 1–12.
  • [26] J. Wang, M. Feckan, Y. Zhou, Weakly Picard operators method for modifed fractional iterative functional differential equations, Fixed Point Theory 15 (1) (2014) 297–310.
  • [27] R. W. Ibrahim, H. A. Jalab, Existence of Ulam stability for iterative fractional differential equations based on fractional entropy, Entropy 17 (5) (2015) 3172–3181.
  • [28] G. T. Stamov, I. M. Stamova, Impulsive fractional functional differential systems and Lyapunov method for the existence of almost periodic solutions, Reports on Math. Physics. 75 (2015) 73–84.
  • [29] T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematica 62 (1) (2000) 23–130.
  • [30] S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space–valued differential equation y=λyy^{\prime}=\lambda y, Bull. Korean Math. Soc. 39 (2002) 309–315.
  • [31] C. Tunç, E. Biçer, On the Hyers-Ulam stability of non-homogeneous Euler equations of third and fourth order, Scientific Research and Essays 8 (2013) 220–226.
  • [32] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the ψ\psi-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat. 60 (2018) 72–91.
  • [33] C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation, J. Math. and Fundamental Sciences 47 (2) (2015) 143–153.
  • [34] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305–309.
  • [35] S. M. Jung, A fixed point approach to the stability of differential equations y=f(x,y)y^{\prime}=f(x,y), Bull. Malays. Math. Sci. Soc. 33 (1) (2010) 47–56.
  • [36] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations, arXiv:1804.02600.
  • [37] J. Vanterler da C. Sousa, K. D. Kucche, E. Capelas de Oliveira, Stability of ψ\psi-Hilfer impulsive fractional differential equations, arXiv:1806.08336 (2018).
  • [38] J. Wang, Y. Zhou, Mittag–Leffler–Ulam stabilities of fractional evolution equations, Appl. Math. Lett. 25 (4) (2012) 723–728.