This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stability of rotating gaseous stars

Zhiwu Lin
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332, USA
Yucong Wang
School of Mathematical Sciences
Xiamen University
Xiamen, 361005, China.
School of Mathematical Science
Peking University
Beijing, 100871, China
Abstract

We consider stability of rotating gaseous stars modeled by the Euler-Poisson system with general equation of states. When the angular velocity of the star is Rayleigh stable, we proved a sharp stability criterion for axi-symmetric perturbations. We also obtained estimates for the number of unstable modes and exponential trichotomy for the linearized Euler-Poisson system. By using this stability criterion, we proved that for a family of slowly rotating stars parameterized by the center density with fixed angular velocity, the turning point principle is not true. That is, unlike the case of non-rotating stars, the change of stability of the rotating stars does not occur at extrema points of the total mass. By contrast, we proved that the turning point principle is true for the family of slowly rotating stars with fixed angular momentum distribution. When the angular velocity is Rayleigh unstable, we proved linear instability of rotating stars. Moreover, we gave a complete description of the spectra and sharp growth estimates for the linearized Euler-Poisson equation.

1 Introduction

Consider a self-gravitating gaseous star modeled by the Euler-Poisson system of compressible fluids

{ρt+(ρv)=0,ρ(vt+vv)+p=ρV,ΔV=4πρ,lim|x|V(t,x)=0,\begin{cases}\rho_{t}+\nabla\cdot\left(\rho v\right)=0,\\ \rho\left(v_{t}+v\cdot\nabla v\right)+\nabla p=-\rho\nabla V,\\ \Delta V=4\pi\rho,\ \lim_{\left|x\right|\rightarrow\infty}V\left(t,x\right)=0,\end{cases} (1.1)

where x3,t>0,ρ(x,t)0x\in\mathbb{R}^{3},\ t>0,\ \rho\left(x,t\right)\geq 0 is the density, v(x,t)3v\left(x,t\right)\in\mathbb{R}^{3} is the velocity, p=P(ρ)p=P(\rho) is the pressure, and VV is the self-consistent gravitational potential. Assume P(ρ)P(\rho) satisfies:

P(s)=C1(0,),P>0,P(s)=C^{1}(0,\infty),\quad P^{\prime}>0, (1.2)

and there exists γ0(65,2)\gamma_{0}\in(\frac{6}{5},2) such that

lims0+s1γ0P(s)=K>0.\lim_{s\rightarrow 0+}s^{1-\gamma_{0}}P^{\prime}(s)=K>0. (1.3)

The assumption (1.3) implies that the pressure P(ρ)Kργ0P(\rho)\approx K\rho^{\gamma_{0}} for ρ\rho near 0. We note that γ0=53\gamma_{0}=\frac{5}{3} for realistic stars.

The Euler-Poisson system (1.1) has many steady solutions. The simplest one is the spherically symmetric non-rotating star with (ρ0,v0)=(ρ0(|x|),0)\left(\rho_{0},v_{0}\right)=\left(\rho_{0}\left(\left|x\right|\right),0\right). We refer to [30] and references therein for the existence and stability of non-rotating stars. A turning point principle (TPP) was shown in [30] that the stability of the non-rotating stars is entirely determined by the mass-radius curve parameterized by the center density. In particular, the stability of a non-rotating star can only change at extrema (i.e. local maximum or minimum points) of the total mass.

We consider axi-symmetric rotating stars of the form

(ρ0,v0)=(ρ0(r,z),rω0(r)𝐞θ),\left(\rho_{0},\vec{v}_{0}\right)=\left(\rho_{0}\left(r,z\right),r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right),

where (r,θ,z)\left(r,\theta,z\right) are the cylindrical coordinates, ω0(r)\omega_{0}\left(r\right) is the angular velocity and (𝐞r,𝐞θ,𝐞z)\left(\mathbf{e}_{r},\mathbf{e}_{\theta},\mathbf{e}_{z}\right) denote unit vectors along r,θ,zr,\theta,z directions. We note that for barotropic equation of states P=P(ρ)P=P\left(\rho\right), it was known as Poincaré-Wavre theorem ([45, Section 4.3]) that the angular velocity must be independent of zz. The existence and stability of rotating stars is a classical problem in astrophysics. For homogeneous (i.e. constant density) rotating stars, it had been extensively investigated since the work of Maclaurin in 1740s, by many people including Dirichlet, Jacobi, Riemann, Poincaré and Chandrasekhar etc. We refer to the books [7, 21] for history and results on this topic. The compressible rotating stars are much less understood. From 1920s, Lichtenstein initiated a mathematical study of compressible rotating stars, which was summarized in his monograph ([27]). In particular, he showed the existence of slowly rotating stars near non-rotating stars by implicit function theorem. See also [14, 17, 18, 19, 41] for related results. The existence of rotating stars can also be established by variational methods ([2, 5, 9, 10, 11, 26, 31, 33]), or global bifurcation theory ([1, 42, 43]). Compared with the existence theory, there has been relatively few rigorous works on the stability of rotating stars. In this paper, we consider the stability of rotating stars under axi-symmetric perturbations. There are two natural questions to address: 1) Does TPP still hold for a family of rotating stars? 2) How does the rotation affect the stability (instability) of rotating stars?

The answers to these two questions have been disputed in the astrophysical literature. Bisnovaty-Kogan and Blinnikov [4] suggested that for a family of rotating stars with fixed angular momentum distribution per unit mass and parameterized by the center density μ\mu, TPP is true (i.e. stability changes at the extrema of the total mass). They used heuristic arguments (so called static method) as in the non-rotating case. Such arguments suppose that at the transition point of stability, there must exist a zero frequency mode which can only be obtained by infinitesimally transforming equilibrium configurations near the given one, without changing the total mass M(μ)M\left(\mu\right). Hence, the transition point is a critical point of the total mass (i.e. M(μ)=0M^{\prime}\left(\mu\right)=0). It is reasonable to study the family of rotating stars with fixed angular momentum distribution, which is invariant under Euler-Poisson dynamics. In [4], they also considered a family of rigidly rotating stars (i.e. ω0\omega_{0} is constant) for a special equation of state similar to white dwarf stars. By embedding each rigidly rotating star into a family with the same angular momentum distribution and with some numerical help, it was found that the transition of stability is not the extrema of mass. In [40], for a family of rotating stars with fixed rotational parameter (i.e. the ratio of rotational energy to gravitational energy), similar arguments as in [4] were used to indicate that TPP is true for this family and their numerical results suggested that instability occurs beyond the first mass extrema. However, up to date there is no rigorous proof or disproof of TPP for different families of rotating stars.

The issue that whether rotation can have a stabilizing effect on rotating stars has long been in debate. For a long time, it was believed that rotation is stabilizing for any angular velocity profile. This conviction was based on conclusions drawn from perturbation analysis near neutral modes of non-rotating stars, which was done by Ledoux [25] for rigidly rotating stars and by Lebovitz [24] for general angular velocities. However, the later works of Sidorov [38, 39] and Kähler [22] showed that rotating could be destabilizing. Hazlehurst [13] argued that the advocates of destabilization of rotation had used an argument that is open to criticism and disagreed that rotation could be destabilizing.

In this paper, we answer above two questions in a rigorous way. To state our results more precisely, we introduce some notations. Let (ρ0(r,z),v0=rω0(r)𝐞θ)(\rho_{0}\left(r,z\right),\vec{v_{0}}=r\omega_{0}\left(r\right)\mathbf{e}_{\theta}) be an axi-symmetric rotating star solution of (1.1). The support of ρ0\rho_{0} is denoted by Ω\Omega, which is an axi-symmetric bounded domain. The rotating star solutions satisfy

v0v0+Φ(ρ0)+V=0 in Ω,\vec{v}_{0}\cdot\nabla\vec{v}_{0}+\nabla\Phi^{\prime}(\rho_{0})+\nabla V=0\text{ in }\Omega, (1.4)
V=|x|1ρ0 in 3,V=-|x|^{-1}\ast\rho_{0}\text{ in }\mathbb{R}^{3}, (1.5)

Equivalently,

Φ(ρ0)|x|1ρ00rω02(s)s𝑑s+c0=0 in Ω,\Phi^{\prime}(\rho_{0})-|x|^{-1}\ast\rho_{0}-\int_{0}^{r}\omega_{0}^{2}(s)s\ ds+c_{0}=0\text{ in }\Omega, (1.6)

where c0>0c_{0}>0 is a constant.

Let R0R_{0} be the maximum of rr such that (r,z)Ω(r,z)\in\Omega. We assume ω0C1[0,R0]\omega_{0}\in C^{1}[0,R_{0}], Ω\partial\Omega is C2C^{2}\ with positive curvature near (R0,0)\left(R_{0},0\right), and for any (r,z)(r,z) near Ω\partial\Omega

ρ0(r,z)dist((r,z),Ω)1γ01,\rho_{0}(r,z)\thickapprox\text{dist}((r,z),\partial\Omega)^{\frac{1}{\mathbb{\gamma}_{0}-1}}, (1.7)

which are satisfied for slowly rotating stars near non-rotating stars as constructed in ([14, 17, 19, 41]). Let X=LΦ′′(ρ0)2×Lρ02X=L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\times L_{\rho_{0}}^{2} and Y=(Lρ02)2Y=\left(L_{\rho_{0}}^{2}\right)^{2}, where LΦ′′(ρ0)2L_{\Phi^{\prime\prime}(\rho_{0})}^{2} and Lρ02L_{\rho_{0}}^{2} are axi-symmetric weighted spaces in Ω\Omega with weights Φ′′(ρ0)\Phi^{\prime\prime}(\rho_{0}) and ρ0\rho_{0}. The enthalpy Φ(ρ)>0\Phi(\rho)>0 is defined by

Φ(0)=Φ(0)=0,Φ(ρ)=0ρP(s)s𝑑s.\Phi(0)=\Phi^{\prime}(0)=0,\quad\Phi^{\prime}(\rho)=\int_{0}^{\rho}\frac{P^{\prime}(s)}{s}ds.

Denote 𝐗:=X×Y\mathbf{X}:=X\times Y. Define the Rayleigh discriminant Υ(r)=r(ω02r4)r3\Upsilon(r)=\frac{\partial_{r}(\omega_{0}^{2}r^{4})}{r^{3}}.

For Rayleigh stable angular velocity ω0\omega_{0} satisfying Υ(r)>0\Upsilon(r)>0 for r[0,R0]r\in[0,R_{0}], the linearization of the axi-symmetric Euler-Poisson equations at (ρ0,v0)(\rho_{0},\vec{v_{0}}) can be written in a Hamiltonian form

ddt(u1u2)=𝐉𝐋(u1u2),\frac{d}{dt}\begin{pmatrix}u_{1}\\ u_{2}\end{pmatrix}=\mathbf{J}\mathbf{L}\begin{pmatrix}u_{1}\\ u_{2}\end{pmatrix}, (1.8)

where u1=(ρ,vθ)u_{1}=(\rho,v_{\theta}) and u2=(vr,vz)u_{2}=(v_{r},v_{z}), and ρ,(vr,vθ,vz)\rho,\left(v_{r},v_{\theta},v_{z}\right)\ are perturbations of density and (r,θ,z)\left(r,\theta,z\right)-components of velocity respectively. The operators

𝐉:=(0,BB,0):𝐗𝐗,𝐋:=(𝕃,00,A):𝐗𝐗,\mathbf{J}:=\begin{pmatrix}0,&B\\ -B^{\prime},&0\end{pmatrix}:\mathbf{X}^{\ast}\rightarrow\mathbf{X},\quad\mathbf{L}:=\begin{pmatrix}\mathbb{L},&0\\ 0,&A\end{pmatrix}:\mathbf{X}\rightarrow\mathbf{X}^{\ast}, (1.9)

are off-diagonal anti-self-dual and diagonal self-dual operators respectively, where

𝕃=(L00A1):XX,\mathbb{L}=\begin{pmatrix}L&0\\ 0&A_{1}\end{pmatrix}:X\rightarrow X^{\ast}, (1.10)

with

L=Φ′′(ρ0)4π(Δ)1,L=\Phi^{\prime\prime}(\rho_{0})-4\pi(-\Delta)^{-1}, (1.11)
B=(B1,B2)T,B1=,B2=r(ω0r2)rρ0𝐞r,B=(B_{1},B_{2})^{T},\ B_{1}=-\nabla\cdot,\ B_{2}=-\frac{\partial_{r}(\omega_{0}r^{2})}{r\rho_{0}}\mathbf{e}_{r}, (1.12)

A=ρ0A=\rho_{0}, and A1=4ω02r3ρ0r(ω02r4)=4ω02ρ0Υ(r)A_{1}=\frac{4\omega_{0}^{2}r^{3}\rho_{0}}{\partial_{r}(\omega_{0}^{2}r^{4})}=\frac{4\omega_{0}^{2}\rho_{0}}{\Upsilon(r)}. More precise definition and properties of these operators can be found in Section 2.2.

Our main result for the Rayleigh stable case is the following.

Theorem 1.1

Assume ω0C1[0,R0]\omega_{0}\in C^{1}[0,R_{0}], Υ(r)>0\Upsilon(r)>0, (1.7), Ω\partial\Omega is C2C^{2} and has positive curvature near (R0,0)(R_{0},0) . Then the operator 𝐉𝐋\mathbf{JL} defined by (1.9) generates a C0C^{0} group et𝐉𝐋e^{t\mathbf{JL}} of bounded linear operators on 𝐗=X×Y\mathbf{X}=X\times Y and there exists a decomposition

𝐗=EuEcEs,\mathbf{X}=E^{u}\oplus E^{c}\oplus E^{s},\quad

of closed subspaces Eu,s,cE^{u,s,c} satisfying the following properties:

i) Ec,Eu,EsE^{c},E^{u},E^{s} are invariant under et𝐉𝐋e^{t\mathbf{JL}}.

ii) Eu(Es)E^{u}\left(E^{s}\right) only consists of eigenvectors corresponding to positive (negative) eigenvalues of 𝐉𝐋\mathbf{JL} and

dimEu=dimEs=n(𝕃|R(B)¯)=n(𝒦|R(B1)),\dim E^{u}=\dim E^{s}=n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right)=n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right),

where 𝒦,\langle\mathcal{K}\cdot,\cdot\rangle is a bounded bilinear quadratic form on LΦ′′(ρ0)2L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\ defined by

𝒦δρ,δρ=Lδρ,δρ+2π0R0Υ(r)(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r,\langle\mathcal{K}\delta\rho,\delta\rho\rangle=\langle L\delta\rho,\delta\rho\rangle+2\pi\int_{0}^{R_{0}}\Upsilon(r)\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}\rho_{0}({r},z)dz}dr, (1.13)

for any δρLΦ′′(ρ0)2\delta\rho\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2} and n(𝒦|R(B1))n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right) denotes the number of negative modes of 𝒦,\left\langle\mathcal{K}\cdot,\cdot\right\rangle restricted to the subspace

R(B1)={δρLΦ′′(ρ0)2|δρ𝑑x=0}.R\left(B_{1}\right)=\left\{\delta\rho\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\ |\ \int\delta\rho dx=0\right\}. (1.14)

iii) The exponential trichotomy is true in the space 𝐗\mathbf{X} in the sense of (2.2) and (2.3).

Corollary 1.1

Under the assumptions of Theorem 1.1, the rotating star solution (ρ0,v0)(\rho_{0},\vec{v}_{0}) is spectrally stable to axi-symmetric perturbations if and only if

𝒦δρ,δρ0,\langle\mathcal{K}\delta\rho,\delta\rho\rangle\geq 0,

for all δρLΦ′′(ρ0)2\delta\rho\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2} with 3δρ𝑑x=0\int_{\mathbb{R}^{3}}\delta\rho dx=0.

Theorem 1.1 gives not only a sharp stability criteria for rotating stars with Rayleigh stable angular velocity, but also more detailed information on the spectra of the linearized Euler-Poisson operator and exponential trichotomy estimates for the linearized Euler-Poisson system. These will be useful for the future study of nonlinear dynamics near unstable rotating stars, particularly, the construction of invariant (stable, unstable and center) manifolds for the nonlinear Euler-Poisson system.

The sharp stability criterion in Corollary 1.1 is used to study the stability of two families of slowly rotating stars. For the first family of slowly rotating stars with fixed Rayleigh stable angular velocity and parameterized by the center density, we show that TPP is not true and the transition of stability does not occur at the first mass extrema. More precisely, for fixed κω0(r)C1,β\kappa\omega_{0}\left(r\right)\in C^{1,\beta}, for some β(0,1)\beta\in(0,1), satisfying Υ(r)>0\Upsilon(r)>0 and κ\kappa small enough, by implicit function theorem as in [14, 18, 41], there exists a family of slowly rotating stars (ρμ,κ,κrω0(r)𝐞θ)\left(\rho_{\mu,\kappa},\kappa r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right) parameterized by the center density μ\mu. We show that the transition of stability for this family is not at the first extrema of the total mass Mμ,κM_{\mu,\kappa}. In particular, when γ0>43\gamma_{0}>\frac{4}{3}, the slowly rotating stars are stable for small center density and remain stable slightly beyond the first mass maximum. This is consistent with the numerical evidence in [4] (Figure 10, p. 400) for the example of rigidly rotating stars and an equation of state with γ0=53\gamma_{0}=\frac{5}{3}. It shows that Rayleigh stable rotation is indeed stabilizing for rotating stars. By contrast, for the second family of slowly rotating stars with fixed monotone increasing angular momentum distribution (equivalently Rayleigh stable angular velocity), we show that TPP is indeed true. More precisely, for fixed j(p,q)C1,β(+×+)j\left(p,q\right)\in C^{1,\beta}\left(\mathbb{R}^{+}\times\mathbb{R}^{+}\right) satisfying p(j2(p,q))>0\partial_{p}(j^{2}\left(p,q\right))>0, j(0,q)=pj(0,q)=0j(0,q)=\partial_{p}j(0,q)=0 and ε\varepsilon sufficiently small, there exists a family of slowly rotating stars (ρμ,ε,εrj(mρμ,ε,Mμ,ε)𝐞θ)\left(\rho_{\mu,\varepsilon},\frac{\varepsilon}{r}j\left(m_{\rho_{\mu,\varepsilon}},M_{\mu,\varepsilon}\right)\mathbf{e}_{\theta}\right) parameterized by the center density μ\mu, where

mρμ,ε(r)=0rsρμ,ε(s,z)𝑑s𝑑zm_{\rho_{\mu,\varepsilon}}(r)=\int_{0}^{r}s\int_{-\infty}^{\infty}\rho_{\mu,\varepsilon}(s,z)dsdz\

is the mass distribution in the cylinder, and Mμ,εM_{\mu,\varepsilon} is the total mass. We show that the transition of stability for this family of rotating stars exactly occurs at the first extrema of the total mass Mμ,εM_{\mu,\varepsilon}. This not only confirms the claim in [4] based on heuristic arguments when j(m,M)=1Mj(mM)j\left(m,M\right)=\frac{1}{M}j(\frac{m}{M}), but also can apply to other examples studied in the literature, includingj(m,M)=j(m)\ j\left(m,M\right)=j\left(m\right) (see [2, 18, 31, 32]) and j(m,M)=j(mM)j\left(m,M\right)=j(\frac{m}{M}) (see [35]).

The issue of TPP is also not so clear for relativistic rotating stars. For relativistic stars, TPP was shown for the secular stability of a family of rigidly rotating stars ([12]), while numerical results in [44] indicated that the transition of dynamic instability does not occur at the mass maximum (i.e. TPP is not true) for such a family. Our approach for the Newtonian case might be useful for studying the relativistic case.

For the Rayleigh stable case, the stability of rotating stars is studied by using the separable Hamiltonian framework as in the non-rotating stars ([30]). However, there are fundamental differences between these two cases. For the non-rotating stars, the stability condition is reduced to find n(L|R(B1))n^{-}\left(L|_{R\left(B_{1}\right)}\right), that is, the number of negative modes of L,\left\langle L\cdot,\cdot\right\rangle restricted to R(B1)R\left(B_{1}\right), where LL and R(B1)R\left(B_{1}\right) are defined in (1.11) and (1.14) respectively. We note that the dynamically accessible space R(B1)R\left(B_{1}\right) (for density perturbation) is one co-dimensional with only the mass constraint. For the rotating stars, by using the separable Hamiltonian formulation (1.8), the stability is reduced to find n(𝕃|R(B)¯)n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right), where 𝕃,B\mathbb{L},B are defined in (1.10) and (1.12) respectively. Here, the dynamically accessible space R(B)¯\overline{R\left(B\right)} (for density and θ\theta-component of velocity) is infinite co-dimensional, which corresponds to perturbations preserving infinitely many generalized total angular momentum (2.11) in the first order. It is hard to compute the negative modes of 𝕃,\left\langle\mathbb{L\cdot},\mathbb{\cdot}\right\rangle with such infinitely many constraints. A key point in our proof is to find a reduced functional 𝒦\mathcal{K} defined in (1.13) for density perturbation such that n(𝕃|R(B)¯)=n(𝒦|R(B1))n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right)=n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right), where R(B1)R\left(B_{1}\right) denotes the density perturbations preserving the mass as in the non-rotating case. Therefore, the computation of negative modes of 𝕃|R(B)¯\mathbb{L}|_{\overline{R\left(B\right)}} with infinitely many constraints is reduced to study 𝒦|R(B1)\mathcal{K}|_{R\left(B_{1}\right)} with only one mass constraint. This reduced stability criterion in terms of 𝒦|R(B1)\mathcal{K}|_{R\left(B_{1}\right)} is crucial to prove or disprove TPP for different families of rotating stars.

Next we consider rotating stars with Rayleigh unstable angular velocity ω0(r)\omega_{0}\left(r\right). That is, there exists a point r0(0,R0)r_{0}\in(0,R_{0}) such that Υ(r0)=r(ω02r4)r3|r=r0<0\Upsilon(r_{0})=\frac{\partial_{r}(\omega_{0}^{2}r^{4})}{r^{3}}\big{|}_{r=r_{0}}<0. In this case, we cannot write the linearized Euler-Poisson system as a separable linear Hamiltonian PDEs since A1=4ω02r3ρ0r(ω02r4)A_{1}=\frac{4\omega_{0}^{2}r^{3}\rho_{0}}{\partial_{r}(\omega_{0}^{2}r^{4})} is not defined at r0r_{0}. Instead, we use the following second order system for u2=(vr,vz)u_{2}=(v_{r},v_{z})

ttu2=(𝕃1+𝕃2)u2:=𝕃~u2,\partial_{tt}u_{2}=-(\mathbb{L}_{1}+\mathbb{L}_{2})u_{2}:=-\mathbb{\tilde{L}}u_{2}, (1.15)

where 𝕃~=𝕃1+𝕃2,\mathbb{\tilde{L}=L}_{1}+\mathbb{L}_{2},

𝕃1u2=[Φ′′(ρ0)((ρ0u2))4π(Δ)1((ρ0u2)],\mathbb{L}_{1}u_{2}=\nabla[\Phi^{\prime\prime}(\rho_{0})(\nabla\cdot(\rho_{0}u_{2}))-4\pi(-\Delta)^{-1}(\nabla\cdot(\rho_{0}u_{2})],
𝕃2u2=(Υ(r)vr0),\mathbb{L}_{2}u_{2}=\begin{pmatrix}\Upsilon(r)v_{r}\\ 0\end{pmatrix},

are self-adjoint operators on YY. The following properties of the spectra of 𝕃~\mathbb{\tilde{L}} are obtained in Proposition 4.1: i) σess(𝕃~)=range(Υ(r))=[a,b],\sigma_{ess}(\tilde{\mathbb{L}})=range(\Upsilon(r))=[-a,b],\ where a>0,b0a>0,b\geq 0; ii) There are finitely many negative eigenvalues and infinitely many positive eigenvalues outside the interval [a,b][-a,b]. In particular, the infimum of σ(𝕃~)\sigma(\tilde{\mathbb{L}}) is negative, which might correspond to either discrete or continuous spectrum.

Define the space

Z={u2Y|(ρ0u2)LΦ′′(ρ0)2},Z=\left\{u_{2}\in Y\ |\ \nabla\cdot(\rho_{0}u_{2})\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\right\},

with the norm

u2Z=u2Y+(ρ0u2)LΦ′′(ρ0)2.\left\|u_{2}\right\|_{Z}=\left\|u_{2}\right\|_{Y}+\left\|\nabla\cdot(\rho_{0}u_{2})\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}. (1.16)
Theorem 1.2

Assume ω0C1[0,R0]\omega_{0}\in C^{1}[0,R_{0}], (1.7) and infr[0,R0]Υ(r)<0\inf_{r\in[0,R_{0}]}\Upsilon(r)<0. Let η0a\eta_{0}\leq-a be the minimum of λσ(𝕃~)\lambda\in\sigma(\tilde{\mathbb{L}}). Then we have:

i) Equation (1.15) defines a C0C^{0} group T(t)T(t), t𝐑t\in\mathbf{R}, on Z×YZ\times Y. There exists C>0C>0 such that for any (u2(0),u2t(0))Z×Y\left(u_{2}\left(0\right),u_{2t}\left(0\right)\right)\in Z\times Y,

u2(t)Z+u2t(t)YCeη0t(u2(0)Z+u2t(0)Y),t>0.\left\|u_{2}\left(t\right)\right\|_{Z}+\left\|u_{2t}\left(t\right)\right\|_{Y}\leq Ce^{\sqrt{-\eta_{0}}t}\left(\left\|u_{2}\left(0\right)\right\|_{Z}+\left\|u_{2t}\left(0\right)\right\|_{Y}\right),\ \forall t>0. (1.17)

The flow T(t)T(t) conserves the total energy

E(u2,u2t)=u2tY2+𝕃~u2,u2.E(u_{2},u_{2t})=\left\|u_{2t}\right\|_{Y}^{2}+\langle\mathbb{\tilde{L}}u_{2},u_{2}\rangle. (1.18)

ii) For any ε>0\varepsilon>0, there exists initial data u2ε(0)Z,u2tε(0)=0u_{2}^{\varepsilon}\left(0\right)\in Z,u_{2t}^{\varepsilon}\left(0\right)=0 such that

u2ε(t)Yeη0+εtu2ε(0)Z,t>0.\left\|u_{2}^{\varepsilon}\left(t\right)\right\|_{Y}\gtrsim e^{\sqrt{-\eta_{0}+\varepsilon}t}\left\|u_{2}^{\varepsilon}\left(0\right)\right\|_{Z},\ \forall t>0. (1.19)

The above theorem shows that rotating stars with Rayleigh unstable angular velocity are always linearly unstable. The maximal growth rate is obtained either by a discrete eigenvalue beyond the range of Υ(r)\Upsilon(r) or by unstable continuous spectrum due to Rayleigh instability (i.e. negative Υ(r)\Upsilon(r)). In [24], it was shown that for slowly rotating stars with any angular velocity profile, discrete unstable modes cannot be perturbed from neutral modes of non-rotating stars. However, the unstable continuous spectrum was not considered there.

We briefly mention some recent mathematical works on the stability of rotating gaseous stars. The conditional Lyapunov stability of some rotating star constructed by variational methods had been obtained by Luo and Smoller [31, 32, 33, 34] under Rayleigh stability assumption, also called Sölberg stability criterion in their works.

The paper is organized as follows. In Section 2, we study rotating stars with Rayleigh stable angular velocity and prove the sharp stability criterion. In Section 3, we use the stability criterion to prove/disprove TPP for two families of slowly rotating stars. In Section 4, we prove linear instability of rotating stars with Rayleigh unstable angular velocity.

Throughout this paper, for a,b>0a,b>0\ we use aba\lesssim b to denote the estimate aCba\leq Cb for some constant CC independent of a,b,a,b,, aba\thickapprox b to denote the estimate C1abC2bC_{1}a\leq b\leq C_{2}b for some constants C1,C2>0C_{1},C_{2}>0, and aba\sim b to denote |ab|<ϵ|a-b|<\epsilon for some ϵ>0\epsilon>0 small enough.

2 Stability criterion for Rayleigh Stable case

In this section, we consider rotating stars with Rayleigh stable angular velocity profiles. The linearized Euler-Poisson system is studied by using a framework of separable Hamiltonian systems in [30]. First, we give a summary of the abstract theory in [30].

2.1 Separable Linear Hamiltonian PDEs

Consider a linear Hamiltonian PDEs of the separable form

t(uv)=(0BB0)(L00A)(uv)=𝐉𝐋(uv),\partial_{t}\left(\begin{array}[c]{c}u\\ v\end{array}\right)=\left(\begin{array}[c]{cc}0&B\\ -B^{\prime}&0\end{array}\right)\left(\begin{array}[c]{cc}L&0\\ 0&A\end{array}\right)\left(\begin{array}[c]{c}u\\ v\end{array}\right)=\mathbf{JL}\left(\begin{array}[c]{c}u\\ v\end{array}\right), (2.1)

where uX,vYu\in X,\ v\in Y and X,YX,Y are real Hilbert spaces. We briefly describe the results in [30] about general separable Hamiltonian PDEs (2.1). The triple (L,A,B)\left(L,A,B\right) is assumed to satisfy assumptions:

  1. (G1)

    The operator B:YD(B)XB:Y^{\ast}\supset D(B)\rightarrow X and its dual operator B:XD(B)YB^{\prime}:X^{\ast}\supset D(B^{\prime})\rightarrow Y\ are densely defined and closed (and thus B′′=BB^{\prime\prime}=B).

  2. (G2)

    The operator A:YYA:Y\rightarrow Y^{\ast} is bounded and self-dual (i.e. A=AA^{\prime}=A and thus Au,v\left\langle Au,v\right\rangle is a bounded symmetric bilinear form on YY). Moreover, there exist δ>0\delta>0 such that

    Au,uδuY2,uY.\langle Au,u\rangle\geq\delta\left\|u\right\|_{Y}^{2},\;\forall u\in Y.
  3. (G3)

    The operator L:XXL:X\rightarrow X^{\ast} is bounded and self-dual (i.e. L=LL^{\prime}=L etc.) and there exists a decomposition of XX into the direct sum of three closed subspaces

    X=XkerLX+,dimkerL<,n(L)dimX<,X=X_{-}\oplus\ker L\oplus X_{+},\ \dim\ker L<\infty,\ \ n^{-}(L)\triangleq\dim X_{-}<\infty,

    satisfying

    1. (G3.a)

      Lu,u<0\left\langle Lu,u\right\rangle<0 for all uX\{0}u\in X_{-}\backslash\{0\};

    2. (G3.b)

      there exists δ>0\delta>0 such that

      Lu,uδu2, for any uX+.\left\langle Lu,u\right\rangle\geq\delta\left\|u\right\|^{2}\ ,\text{ for any }u\in X_{+}.

We note that the assumptions dimkerL<\dim\ker L<\infty and A>0A>0\ can be relaxed (see [30]). But these simplified assumptions are enough for the applications to Euler-Poisson system studied in this section under the Rayleigh stability assumption (i.e. Υ(r)>0\Upsilon(r)>0 for all r[0,R0]r\in[0,R_{0}]). If the Rayleigh unstable assumption holds (i.e. Υ(r0)<0\Upsilon(r_{0})<0 for some r0[0,R0]r_{0}\in[0,R_{0}]), then n(L)=n^{-}(L)=\infty and we will discuss this in Section 4.

Theorem 2.1

[30]Assume (G1-3) for (2.1). The operator 𝐉𝐋\mathbf{JL} generates a C0C^{0} group et𝐉𝐋e^{t\mathbf{JL}} of bounded linear operators on 𝐗=X×Y\mathbf{X}=X\times Y and there exists a decomposition

𝐗=EuEcEs,\mathbf{X}=E^{u}\oplus E^{c}\oplus E^{s},\quad

of closed subspaces Eu,s,cE^{u,s,c} with the following properties:

i) Ec,Eu,EsE^{c},E^{u},E^{s} are invariant under et𝐉𝐋e^{t\mathbf{JL}}.

ii) Eu(Es)E^{u}\left(E^{s}\right) only consists of eigenvectors corresponding to negative (positive) eigenvalues of 𝐉𝐋\mathbf{JL} and

dimEu=dimEs=n(L|R(B)¯),\dim E^{u}=\dim E^{s}=n^{-}\left(L|_{\overline{R\left(B\right)}}\right),

where n(L|R(B)¯)n^{-}\left(L|_{\overline{R\left(B\right)}}\right) denotes the number of negative modes of L,|R(B)¯\left\langle L\cdot,\cdot\right\rangle|_{\overline{R\left(B\right)}}. If n(L|R(B)¯)>0n^{-}\left(L|_{\overline{R\left(B\right)}}\right)>0, then there exists M>0M>0 such that

|et𝐉𝐋|Es|Meλut,t0;|et𝐉𝐋|Eu|Meλut,t0,\left|e^{t\mathbf{JL}}|_{E^{s}}\right|\leq Me^{-\lambda_{u}t},\;t\geq 0;\quad\left|e^{t\mathbf{JL}}|_{E^{u}}\right|\leq Me^{\lambda_{u}t},\;t\leq 0, (2.2)

where λu=min{λλσ(𝐉𝐋|Eu)}>0\lambda_{u}=\min\{\lambda\mid\lambda\in\sigma(\mathbf{JL}|_{E^{u}})\}>0.

iii) The quadratic form 𝐋,\left\langle\mathbf{L}\cdot,\cdot\right\rangle vanishes on Eu,sE^{u,s}, i.e. 𝐋𝐮,𝐮=0\langle\mathbf{L}\mathbf{u},\mathbf{u}\rangle=0 for all 𝐮Eu,s\mathbf{u}\in E^{u,s}, but is non-degenerate on EuEsE^{u}\oplus E^{s}, and

Ec={𝐮𝐗𝐋𝐮,𝐯=0,𝐯EsEu}.E^{c}=\left\{\mathbf{u}\in\mathbf{X}\mid\left\langle\mathbf{\mathbf{L}u,v}\right\rangle=0,\ \forall\ \mathbf{v}\in E^{s}\oplus E^{u}\right\}.

There exists M>0M>0 such that

|et𝐉𝐋|Ec|M(1+t2), for all t.|e^{t\mathbf{J}\mathbf{L}}|_{E^{c}}|\leq M(1+t^{2}),\text{ for all }t\in\mathbb{R}. (2.3)

iv) Suppose L,\left\langle L\cdot,\cdot\right\rangle is non-degenerate on R(B)¯\overline{R\left(B\right)}, then |et𝐉𝐋|Ec|M|e^{t\mathbf{JL}}|_{E^{c}}|\leq M for some M>0M>0. Namely, there is Lyapunov stability on the center space EcE^{c}.

Remark 2.1

Above theorem shows that the solutions of (2.9) are spectrally stable if and only if L|R(B)¯0L|_{\overline{R\left(B\right)}}\geq 0. Moreover, n(L|R(B)¯)n^{-}\left(L|_{\overline{R\left(B\right)}}\right) equals to the number of unstable modes. The exponential trichotomy estimates (2.2)-(2.3) are important in the study of nonlinear dynamics near an unstable steady state, such as the proof of nonlinear instability or the construction of invariant (stable, unstable and center) manifolds. The exponential trichotomy can be lifted to more regular spaces if the spaces Eu,sE^{u,s} have higher regularity. We refer to Theorem 2.2 in [29] for more precise statements.

2.2 Hamiltonian formulation of linearized EP system

Consider an axi-symmetric rotating star solution (ρ0(r,z),v0=v0𝐞θ=rω0(r)𝐞θ)(\rho_{0}\left(r,z\right),\vec{v_{0}}=v_{0}\mathbf{e}_{\theta}=r\omega_{0}\left(r\right)\mathbf{e}_{\theta}). The support of density ρ0\rho_{0} is denoted by Ω\Omega, which is an axi-symmetric bounded domain. Let R0R_{0} be support radius in rr, that is, the maximum of rr such that (r,z)Ω(r,z)\in\Omega. We choose the coordinate system such that (R0,0)Ω(R_{0},0)\in\partial\Omega. We make the following assumptions:
i) ω0C1[0,R0]\omega_{0}\in C^{1}[0,R_{0}] satisfies the Rayleigh stability condition (i.e. Υ(r)>0\Upsilon(r)>0 for r[0,R0]r\in[0,R_{0}]);
ii) Ω\partial\Omega is C2C^{2} near (R0,0)(R_{0},0)\ and has positive curvature (equivalently Ω\Omega is locally convex) at (R0,0)(R_{0},0);
iii) ρ0\rho_{0} satisfies (1.7).
The following lemma will be used later.

Lemma 2.1

Under Assumptions ii) and iii) above, for ε>0\varepsilon>0 small enough we have

+ρ0λ(r,z)𝑑z(R0r)λγ01+12,\int_{-\infty}^{+\infty}\rho_{0}^{\lambda}(r,z)dz\thickapprox(R_{0}-r)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}},

for any λ>0\lambda>0 and r(R0ε,R0)r\in\left(R_{0}-\varepsilon,R_{0}\right).

Proof. By (1.7),

+ρ0λ(r,z)𝑑z(r,z)Ωdist((r,z),Ω)λγ01𝑑z.\int_{-\infty}^{+\infty}\rho_{0}^{\lambda}(r,z)dz\thickapprox\int_{\left(r,z\right)\in\Omega}\text{dist}((r,z),\partial\Omega)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}}dz.

First, we consider the case when Ω\Omega is the ball {r2+z2<R02}\left\{r^{2}+z^{2}<R_{0}^{2}\right\}. Then for rr close to R0R_{0}

(r,z)Ωdist((r,z),Ω)λγ01𝑑z\displaystyle\int_{\left(r,z\right)\in\Omega}\text{dist}((r,z),\partial\Omega)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}}dz =20R02r2(R0r2+z2)λγ01𝑑z\displaystyle=2\int_{0}^{\sqrt{R_{0}^{2}-r^{2}}}\left(R_{0}-\sqrt{r^{2}+z^{2}}\right)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}}dz (2.4)
0R02r2(R02r2z2)λγ01𝑑z\displaystyle\thickapprox\int_{0}^{\sqrt{R_{0}^{2}-r^{2}}}\left(R_{0}^{2}-r^{2}-z^{2}\right)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}}dz
=(R02r2)λγ01+1201(1u2)λγ01𝑑u\displaystyle=\left(R_{0}^{2}-r^{2}\right)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}\int_{0}^{1}\left(1-u^{2}\right)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}}du
(R0r)λγ01+12.\displaystyle\thickapprox(R_{0}-r)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}.

For general Ω\Omega, let 1r0>0\frac{1}{r_{0}}>0 be the curvature of Ω\partial\Omega at (R0,0)\left(R_{0},0\right) and

Γ={(r,z)|(rR0+r0)2+z2=r02},\Gamma=\left\{\left(r,z\right)\ |\ \left(r-R_{0}+r_{0}\right)^{2}+z^{2}=r_{0}^{2}\right\},

be the osculating circle at (R0,0)\left(R_{0},0\right). Then near (R0,0)\left(R_{0},0\right), Ω\partial\Omega\ is approximated by Γ\Gamma to the 2nd order. For any r(R0ε,R0)r\in\left(R_{0}-\varepsilon,R_{0}\right), let (r,z1(r)),(r,z2(r))\left(r,-z_{1}\left(r\right)\right),\ \left(r,z_{2}\left(r\right)\right)\ be the intersection of Ω\partial\Omega with the vertical line r=rr^{\prime}=r, where z1(r),z2(r)>0z_{1}\left(r\right),z_{2}\left(r\right)>0. Then for ε\varepsilon small enough, we have

z1(r),z2(r)=r02(rR0+r0)2+o(r02(rR0+r0)2).z_{1}\left(r\right),z_{2}\left(r\right)=\sqrt{r_{0}^{2}-\left(r-R_{0}+r_{0}\right)^{2}}+o\left(\sqrt{r_{0}^{2}-\left(r-R_{0}+r_{0}\right)^{2}}\right).

And for (r,z)Ω\left(r,z\right)\in\Omega with r(R0ε,R0)r\in\left(R_{0}-\varepsilon,R_{0}\right),

dist((r,z),Ω)\displaystyle\text{dist}((r,z),\partial\Omega) =dist((r,z),Γ)+o(dist((r,z),Γ))\displaystyle=\text{dist}((r,z),\Gamma)+o\left(\text{dist}((r,z),\Gamma)\right)
=(r0(rR0+r0)2+z2)+o((r0(rR0+r0)2+z2)).\displaystyle=\left(r_{0}-\sqrt{\left(r-R_{0}+r_{0}\right)^{2}+z^{2}}\right)+o\left(\left(r_{0}-\sqrt{\left(r-R_{0}+r_{0}\right)^{2}+z^{2}}\right)\right).

Then similar to (2.4), we have

+ρ0λ(r,z)𝑑z(r02(rR0+r0)2)λγ01+12(R0r)λγ01+12.\int_{-\infty}^{+\infty}\rho_{0}^{\lambda}(r,z)dz\thickapprox\left(r_{0}^{2}-\left(r-R_{0}+r_{0}\right)^{2}\right)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}\thickapprox(R_{0}-r)^{\frac{\lambda}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}.

 

Let X1:=LΦ′′(ρ0)2X_{1}:=L_{\Phi^{\prime\prime}(\rho_{0})}^{2}, X2=Lρ02X_{2}=L_{\rho_{0}}^{2}, X=X1×X2X=X_{1}\times X_{2}, Y=(Lρ02)2Y=\left(L_{\rho_{0}}^{2}\right)^{2} and 𝐗:=X×Y\mathbf{X}:=X\times Y. The linearized Euler-Poisson system for axi-symmetric perturbations around the rotating star solution (ρ0(r,z),ω0(r)r𝐞θ)(\rho_{0}\left(r,z\right),\omega_{0}\left(r\right)r\mathbf{e}_{\theta}) is

{tvr=2ω0(r)vθr(Φ′′(ρ0)ρ+V(ρ)),tvz=z(Φ′′(ρ0)ρ+V(ρ)),tvθ=1rr(ω0r2)vr,tρ=(ρ0v)=(ρ0(vr,0,vz)),\begin{cases}\partial_{t}v_{r}&=2\omega_{0}\left(r\right)v_{\theta}-\partial_{r}(\Phi^{\prime\prime}(\rho_{0})\rho+V(\rho)),\\ \partial_{t}v_{z}&=-\partial_{z}(\Phi^{\prime\prime}(\rho_{0})\rho+V(\rho)),\\ \partial_{t}v_{\theta}&=-\frac{1}{r}\partial_{r}(\omega_{0}r^{2})v_{r},\\ \partial_{t}\rho&=-\nabla\cdot(\rho_{0}v)=-\nabla\cdot(\rho_{0}(v_{r},0,v_{z})),\end{cases} (2.5)

with ΔV=4πρ\Delta V=4\pi\rho. Here, (ρ,v=(vr,vθ,vz))𝐗(\rho,\vec{v}=(v_{r},v_{\theta},v_{z}))\in\mathbf{X} are perturbations of density and velocity.

Define the operators

L:=Φ′′(ρ0)4π(Δ)1:X1(X1),A=ρ0:YY,L:=\Phi^{\prime\prime}(\rho_{0})-4\pi(-\Delta)^{-1}:X_{1}\rightarrow(X_{1})^{\ast},\quad A=\rho_{0}:Y\rightarrow Y^{\ast},
A1:=4ω02r3ρ0r(ω02r4)=4ω02ρ0Υ(r):X2(X2),A_{1}:=\frac{4\omega_{0}^{2}r^{3}\rho_{0}}{\partial_{r}(\omega_{0}^{2}r^{4})}=\frac{4\omega_{0}^{2}\rho_{0}}{\Upsilon(r)}:X_{2}\rightarrow(X_{2})^{\ast},

and

B=(B1B2):D(B)YX,B=(B1,B2):XD(B)Y,B=\begin{pmatrix}B_{1}\\ B_{2}\end{pmatrix}:D(B)\subset Y^{\ast}\rightarrow X,\quad B^{\prime}=\left(B_{1}^{\prime},B_{2}^{\prime}\right):X^{\ast}\supset D(B^{\prime})\rightarrow Y, (2.6)

where

B1(vrvz)=(vr,0,vz),B1ρ=(rρzρ),B_{1}\begin{pmatrix}v_{r}\\ v_{z}\end{pmatrix}=-\text{$\nabla\cdot$}(v_{r},0,v_{z}),\quad B_{1}^{\prime}\rho=\begin{pmatrix}\partial_{r}\rho\\ \partial_{z}\rho\end{pmatrix}, (2.7)

and

B2(vrvz)=r(ω0r2)rρ0vr,(B2)vθ=(r(ω0r2)rρ0vθ0).B_{2}\begin{pmatrix}v_{r}\\ v_{z}\end{pmatrix}=-\frac{\partial_{r}(\omega_{0}r^{2})}{r\rho_{0}}v_{r},\quad(B_{2})^{\prime}v_{\theta}=\begin{pmatrix}-\frac{\partial_{r}(\omega_{0}r^{2})}{r\rho_{0}}v_{\theta}\\ 0\end{pmatrix}. (2.8)

Then the linearized Euler-Poisson system (2.5) can be written in a separable Hamiltonian form

ddt(u1u2)=𝐉𝐋(u1u2),\frac{d}{dt}\begin{pmatrix}u_{1}\\ u_{2}\end{pmatrix}=\mathbf{J}\mathbf{L}\begin{pmatrix}u_{1}\\ u_{2}\end{pmatrix}, (2.9)

where u1=(ρ,vθ)u_{1}=(\rho,v_{\theta}) and u2=(vr,vz)u_{2}=(v_{r},v_{z}). The operators

𝐉:=(0,BB,0):𝐗𝐗,𝐋:=(𝕃,00,A):𝐗𝐗,\mathbf{J}:=\begin{pmatrix}0,&B\\ -B^{\prime},&0\end{pmatrix}:\mathbf{X}^{\ast}\rightarrow\mathbf{X},\quad\mathbf{L}:=\begin{pmatrix}\mathbb{L},&0\\ 0,&A\end{pmatrix}:\mathbf{X}\rightarrow\mathbf{X}^{\ast},

are off-diagonal anti-self-dual and diagonal self-dual respectively, where

𝕃=(L,00,A1):XX.\mathbb{L}=\begin{pmatrix}L,&0\\ 0,&A_{1}\end{pmatrix}:X\rightarrow X^{\ast}.

First, we check that (𝕃,A,B)\left(\mathbb{L},A,B\right) in (2.9) satisfy the assumptions (G1)-(G3) for the abstract theory in Section 2.1. The assumptions (G1) and (G2) can be shown by the same arguments in the proof of Lemma 3.5 in [30] and that B2B_{2} is bounded. The Rayleigh stability condition Υ(r)>0\Upsilon(r)>0\ implies that the operator A1A_{1} is bounded, positive and self-dual. By the same proof of Lemma 3.6 in [30], we have the following lemma.

Lemma 2.2

There exists a direct sum decomposition LΦ′′(ρ0)2=XkerLX+L_{\Phi^{\prime\prime}(\rho_{0})}^{2}=X_{-}\oplus\ker L\oplus X_{+} and δ0>0\delta_{0}>0\ such that:

i) dim(X),dimkerL<;\dim\left(X_{-}\right),\dim\ker L<\infty;\

ii) L|X<0,L|X+δ0L|_{X_{-}}<0,\ L|_{X_{+}}\geq\delta_{0} and XX+X_{-}\perp X_{+} in the inner product of LΦ′′(ρ0)2L_{\Phi^{\prime\prime}(\rho_{0})}^{2}.

The assumption (G3) readily follows from above lemma. Therefore, we can apply Theorem 2.1 to the linearized Euler-Poisson system (2.9). This proves the conclusions in Theorem 1.1 except for the formula n(𝕃|R(B)¯)=n(𝒦|R(B1))n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right)=n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right), which will be shown later. Here, R(B)¯\overline{R\left(B\right)} is the closure of R(B)R(B) in XX, and the operators B,B1B,B_{1} are defined in (2.6)-(2.8).

Remark 2.2

In some literature [31, 32, 33, 34], the Rayleigh stability condition is Υ(r)0\Upsilon(r)\geq 0 for all r[0,R0]r\in[0,R_{0}]. Here, we used the stability condition Υ(r)>0\Upsilon(r)>0 for all r[0,R0]r\in[0,R_{0}] as in the astrophysical literature such as [4, 46]. If Υ(r)0\Upsilon(r)\geq 0 for all r[0,R0]r\in[0,R_{0}] and Υ(r)=0\Upsilon(r)=0 only at some isolated points, let Λ(r,z)=4ω02ρ0Υ(r)\Lambda\left(r,z\right)=\frac{4\omega_{0}^{2}\rho_{0}}{\Upsilon(r)} and the operator A1:LΛ2(LΛ2)A_{1}:L_{\Lambda}^{2}\rightarrow(L_{\Lambda}^{2})^{\ast} is bounded and positive. The linearized Euler-Poisson system can still be studied in the framework of separable Hamiltonian systems and similar results as in Theorem 1.1 can be obtained.

2.3 Dynamically accessible perturbations

By Theorem 1.1, the solutions of (2.9) are spectrally stable (i.e. nonexistence of exponentially growing solution) if and only if 𝕃|R(B)¯0\mathbb{L}|_{\overline{R(B)}}\geq 0. More precisely, we have

Corollary 2.1

Assume ω0C1[0,R0]\omega_{0}\in C^{1}[0,R_{0}], (1.7), and infr[0,R0]Υ(r)>0\inf_{r\in[0,R_{0}]}\Upsilon(r)>0. The rotating star solution (ρ0(r,z),v0=rω0(r)𝐞θ)\left(\rho_{0}\left(r,z\right),\vec{v_{0}}=r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right)\ of Euler-Poisson system is spectrally stable if and only if

Lδρ,δρ+A1δvθ,δvθ0 for all (δρ,δvθ)R(B)¯.\langle L\delta\rho,\delta\rho\rangle+\langle A_{1}\delta v_{\theta},\delta v_{\theta}\rangle\geq 0\text{ for all }\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)}. (2.10)

In this section, we discuss the physical meaning of above stability criterion by using the variational structure of the rotating stars.

For any solution (ρ,v)(\rho,v) of the axi-symmetric Euler-Poisson system (1.1), define the angular momentum j=vθrj=v_{\theta}r\ and the generalized total angular momentum

Ag(ρ,vθ)=3ρg(vθr)𝑑x,A_{g}(\rho,v_{\theta})=\int_{\mathbb{R}^{3}}\rho g(v_{\theta}r)dx,\ (2.11)

for any function gC1()g\in C^{1}\left(\mathbb{R}\right).  

Lemma 2.3

For any gC1()g\in C^{1}(\mathbb{R}), the functional Ag(ρ,vθ)A_{g}(\rho,v_{\theta}) is conserved for the Euler-Poisson system (1.1).

Proof. First, we note that the angular momentum jj is an invariant of the particle trajectory under the axi-symmetric force field VΦ(ρ)-\nabla V-\nabla\Phi^{\prime}(\rho). Let φ(x,t)\varphi\left(x,t\right) be the flow map of the velocity field vv with initial position xx, and J(x,t)J\left(x,t\right) be the Jacobian of φ\varphi. Then ρ(φ(x,t),t)J(x,t)=ρ(x,0)\rho\left(\varphi\left(x,t\right),t\right)J\left(x,t\right)=\rho\left(x,0\right) and

Ag(ρ,vθ)(0)\displaystyle A_{g}(\rho,v_{\theta})\left(0\right) =3ρ(x,0)g(j(x))𝑑x\displaystyle=\int_{\mathbb{R}^{3}}\rho\left(x,0\right)g(j\left(x\right))dx
=3ρ(φ(x,t),t)J(x,t)g(j(φ(x,t)))𝑑x\displaystyle=\int_{\mathbb{R}^{3}}\rho\left(\varphi\left(x,t\right),t\right)J\left(x,t\right)\ g(j\left(\varphi\left(x,t\right)\right))dx
=3ρ(y,t)g(j(y))𝑑x=Ag(ρ,vθ)(t).\displaystyle=\int_{\mathbb{R}^{3}}\rho\left(y,t\right)g(j\left(y\right))dx=A_{g}(\rho,v_{\theta})\left(t\right).

 

The steady state (ρ0,ω0r𝐞θ)(\rho_{0},\omega_{0}r\mathbf{e}_{\theta}) has the following variational structure. By the steady state equation (1.6), we have

12ω02r2+Φ(ρ0)|x|1ρ0+g0(ω0r2)+c0=0in Ω,\frac{1}{2}\omega_{0}^{2}r^{2}+\Phi^{\prime}(\rho_{0})-|x|^{-1}\ast\rho_{0}+g_{0}\left(\omega_{0}r^{2}\right)+c_{0}=0\ \text{in }\Omega, (2.12)

where c0>0c_{0}>0 is the constant in (1.6) and g0C1()g_{0}\in C^{1}\left(\mathbb{R}\right) satisfies the equation

g0(ω0(r)r2)=ω0(r),r[0,R0].g_{0}^{\prime}\left(\omega_{0}\left(r\right)r^{2}\right)=-\omega_{0}\left(r\right),\ \ \ \forall\ r\in\left[0,R_{0}\right]. (2.13)

The existence of g0g_{0} satisfying (2.13) is ensured by the Rayleigh stable condition Υ(r)>0\Upsilon(r)>0 which implies that ω0(r)r2\omega_{0}\left(r\right)r^{2} is monotone to rr. The equations (1.6) and (2.12) are equivalent since

g0(ω0(r)r2)=12ω02r20rω02(s)s𝑑sg_{0}\left(\omega_{0}\left(r\right)r^{2}\right)=-\frac{1}{2}\omega_{0}^{2}r^{2}-\int_{0}^{r}\omega_{0}^{2}(s)s\ ds

due to (2.13) and integration by parts. Denote the the total energy by

H(ρ,v)=312ρv2+Φ(ρ)18π|V|2dx,ΔV=4πρ,H(\rho,v)=\int_{\mathbb{R}^{3}}\frac{1}{2}\rho v^{2}+\Phi(\rho)-\frac{1}{8\pi}|\nabla V|^{2}dx,\ \ \Delta V=4\pi\rho,\

which is conserved for the Euler-Poisson system (1.1). Define the energy-Casimir functional

Hc(ρ,v)=H(ρ,v)+c03ρ𝑑x+3ρg0(vθr)𝑑x,H_{c}(\rho,v)=H(\rho,v)+c_{0}\int_{\mathbb{R}^{3}}\rho\ dx+\int_{\mathbb{R}^{3}}\rho g_{0}(v_{\theta}r)\ dx,

where c0c_{0}\ and g0g_{0} are as in (2.12). Then (ρ0,ω0r𝐞θ)(\rho_{0},\omega_{0}r\mathbf{e}_{\theta}) is a critical point of Hc(ρ,v)H_{c}(\rho,v), since

DHc(ρ0,ω0r𝐞θ),(δρ,δv)=\displaystyle\langle DH_{c}(\rho_{0},\omega_{0}r\mathbf{e}_{\theta}),(\delta\rho,\delta v)\rangle= 3[12ω02r2+Φ(ρ0)+V(ρ0)+c0+g0(ω0r2)]δρ𝑑x\displaystyle\int_{\mathbb{R}^{3}}\left[\frac{1}{2}\omega_{0}^{2}r^{2}+\Phi^{\prime}(\rho_{0})+V(\rho_{0})+c_{0}+g_{0}(\omega_{0}r^{2})\right]\delta\rho\ dx
+3[ρ0ω0r+ρ0g0(ω0r2)r]δvθ𝑑x=0\displaystyle+\int_{\mathbb{R}^{3}}[\rho_{0}\omega_{0}r+\rho_{0}g_{0}^{\prime}(\omega_{0}r^{2})r]\delta v_{\theta}\ dx=0

by equations (2.12) and (2.13). By direct computations,

D2Hc(ρ,v)[ρ0,ω0r𝐞θ](δρ,δv),(δρ,δv)\displaystyle\langle D^{2}H_{c}(\rho,v)[\rho_{0},\omega_{0}r\mathbf{e}_{\theta}](\delta\rho,\delta v),(\delta\rho,\delta v)\rangle (2.14)
=3(Φ′′(ρ0)(δρ)24π(Δ1δρ)δρ+ρ0(δvr)2+ρ0(δvz)2dx\displaystyle=\int_{\mathbb{R}^{3}}(\Phi^{\prime\prime}(\rho_{0})\left(\delta\rho\right)^{2}-4\pi(-\Delta^{-1}\delta\rho)\delta\rho+\rho_{0}\left(\delta v_{r}\right)^{2}+\rho_{0}\left(\delta v_{z}\right)^{2}dx
+3ρ0(1+g0′′(ω0r2)r2)(δvθ)2𝑑x\displaystyle\quad+\int_{\mathbb{R}^{3}}\rho_{0}(1+g_{0}^{\prime\prime}(\omega_{0}r^{2})r^{2})\left(\delta v_{\theta}\right)^{2}dx
=Lδρ,δρ+A1δvθ,δvθ+A(δvr,δvz),(δvr,δvz),\displaystyle=\langle L\delta\rho,\delta\rho\rangle+\langle A_{1}\delta v_{\theta},\delta v_{\theta}\rangle+\left\langle A\left(\delta v_{r},\delta v_{z}\right),\left(\delta v_{r},\delta v_{z}\right)\right\rangle,

where we used the identity

1+g0′′(ω0r2)r2=1ω0r2ddr(ω0r2)=4ω02r3ddr(ω02r4)=4ω02Υ(r).1+g_{0}^{\prime\prime}(\omega_{0}r^{2})r^{2}=1-\frac{\omega_{0}^{\prime}r^{2}}{\frac{d}{dr}\left(\omega_{0}r^{2}\right)}=\frac{4\omega_{0}^{2}r^{3}}{\frac{d}{dr}\left(\omega_{0}^{2}r^{4}\right)}=\frac{4\omega_{0}^{2}}{\Upsilon(r)}.

The functional (2.14) is a conserved quantity of the linearized Euler-Poisson system (2.9) due to the Hamiltonian structure. We note that the number of negative directions of (2.14) is given by n(𝕃)n^{-}\left(\mathbb{L}\right).

We now turn to the spaces of δρ\delta\rho and (δρ,δvθ)\left(\delta\rho,\delta v_{\theta}\right).

Lemma 2.4

It holds that

R(B1)=R(B1)¯={δρLΦ′′(ρ0)2|3δρ𝑑x=0}.R\left(B_{1}\right)=\overline{R\left(B_{1}\right)}=\left\{\delta\rho\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\ \bigg{|}\ \int_{\mathbb{R}^{3}}\delta\rho dx=0\right\}.

Proof. Since kerB1=ker\ker B_{1}^{\prime}=\ker\nabla is spanned by constant functions, we have

R(B1)¯=(kerB1)={δρLΦ′′(ρ0)2|3δρ𝑑x=0}.\overline{R\left(B_{1}\right)}=\left(\ker B_{1}^{\prime}\right)^{\perp}=\left\{\delta\rho\in L_{\Phi^{\prime\prime}(\rho_{0})}^{2}\ \bigg{|}\ \int_{\mathbb{R}^{3}}\delta\rho dx=0\right\}.

It remains to show R(B1)=R(B1)¯R\left(B_{1}\right)=\overline{R\left(B_{1}\right)} which is equivalent to R(B1A)=R(B1A)¯R\left(B_{1}A\right)=\overline{R\left(B_{1}A\right)}. By Lemma 3.15 in [30], we have the orthogonal decomposition

Lρ02=ker(B1A)W,L_{\rho_{0}}^{2}=\ker\left(B_{1}A\right)\oplus W,

where W={w=pLρ02}W=\left\{w=\nabla p\in L_{\rho_{0}}^{2}\right\}. For any δρR(B1A)\delta\rho\in R\left(B_{1}A\right), by the proof of Lemma 3.15 in [30], there exists a unique gradient field pLρ02\nabla p\in L_{\rho_{0}}^{2} such that

B1Ap=(ρ0p)=δρ.B_{1}A\nabla p=\nabla\cdot\left(\rho_{0}\nabla p\right)=\delta\rho.

By Proposition 12 in [20], we have

pLρ02(ρ0p)LΦ′′(ρ0)2=δρLΦ′′(ρ0)2.\left\|\nabla p\right\|_{L_{\rho_{0}}^{2}}\lesssim\left\|\nabla\cdot\left(\rho_{0}\nabla p\right)\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}=\left\|\delta\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}. (2.15)

For any uD(B1A)u\in D\left(B_{1}A\right), let vWv\in W be the projection of uu to WW. Then above estimate (2.15) implies that

dist(u,ker(B1A))=infzker(B1A)uzLρ02=vLρ02B1AuLΦ′′(ρ0)2.dist\left(u,\ker\left(B_{1}A\right)\right)=\inf_{z\in\ker\left(B_{1}A\right)}\left\|u-z\right\|_{L_{\rho_{0}}^{2}}=\left\|v\right\|_{L_{\rho_{0}}^{2}}\lesssim\left\|B_{1}Au\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}.

By Theorem 5.2 in [23, P. 231], this implies that R(B1)=R(B1)¯.R\left(B_{1}\right)=\overline{R\left(B_{1}\right)}.   

Definition 2.1

The perturbation (δρ,δvθ)X\left(\delta\rho,\delta v_{\theta}\right)\in X is called dynamically accessible if (δρ,δvθ)R(B)¯\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)}.

In the next lemma, we give two equivalent characterizations of the dynamically accessible perturbations.

Lemma 2.5

For (δρ,δvθ)X\left(\delta\rho,\delta v_{\theta}\right)\in X, the following statements are equivalent.

(i) (δρ,δvθ)R(B)¯;\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)};

(ii)

3g(ω0r2)δρ𝑑x+3ρ0rg(ω0r2)δvθ𝑑x=0,gC1();\int_{\mathbb{R}^{3}}g(\omega_{0}r^{2})\delta\rho\ dx+\!\int_{\mathbb{R}^{3}}\rho_{0}rg^{\prime}(\omega_{0}r^{2})\delta v_{\theta}\ dx=0,\ \forall g\in C^{1}\left(\mathbb{R}\right); (2.16)

(iii) 3δρ𝑑x=0\int_{\mathbb{R}^{3}}\delta\rho\ dx=0 and

+δvθρ0(r,z)𝑑z=r(ω0r2)r20rs+δρ(s,z)𝑑z𝑑s.\int_{-\infty}^{+\infty}\delta v_{\theta}\rho_{0}\left(r,z\right)dz=\frac{\partial_{r}\left(\omega_{0}r^{2}\right)}{r^{2}}\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds. (2.17)

Proof. First, we show (i) and (ii) are equivalent. We have R(B)¯=(kerB)\overline{R(B)}=\left(\ker B^{\prime}\right)^{\perp}, where the dual operator B:B^{\prime}: XYX^{\ast}\rightarrow Y\ is defined in (2.7)-(2.8). Let (ρ,vθ)\left(\rho,v_{\theta}\right) be a C1C^{1} function in kerB\ker B^{\prime}, then

B(ρvθ)=(rρr(ω0r2)rρ0vθzρ)=(00).B^{\prime}\begin{pmatrix}\rho\\ v_{\theta}\end{pmatrix}=\begin{pmatrix}\partial_{r}\rho-\frac{\partial_{r}(\omega_{0}r^{2})}{r\rho_{0}}v_{\theta}\\ \partial_{z}\rho\end{pmatrix}=\begin{pmatrix}0\\ 0\end{pmatrix}.

Since zρ=0\partial_{z}\rho=0 and ω0r2\omega_{0}r^{2} is monotone to rr by the Rayleigh stability condition, we can write ρ=g(ω0r2)\rho=g\left(\omega_{0}r^{2}\right) for some function gC1g\in C^{1}. Then rρr(ω0r2)rρ0vθ=0\partial_{r}\rho-\frac{\partial_{r}(\omega_{0}r^{2})}{r\rho_{0}}v_{\theta}=0 implies that vθ=ρ0rg(ω0r2)v_{\theta}=\rho_{0}rg^{\prime}(\omega_{0}r^{2}). Thus kerB\ker B^{\prime} is the closure of the set

{(g(ω0r2),ρ0rg(ω0r2)),gC1()},\left\{\left(g\left(\omega_{0}r^{2}\right),\rho_{0}rg^{\prime}(\omega_{0}r^{2})\right),\ g\in C^{1}\left(\mathbb{R}\right)\right\},

in XX^{\ast}. Therefore, (δρ,δvθ)R(B)¯=(kerB)\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)}=\left(\ker B^{\prime}\right)^{\perp} if and only if (2.16) is satisfied.

Next, we show (ii) and (iii) are equivalent. If (ii) is satisfied, by choosing g=1g=1 we get δρ𝑑x=0\int\delta\rho\ dx=0. Then by (2.16) and integration by parts, we have

0R0[r2+δvθρ0(r,z)𝑑zr(ω0r2)(0rs+δρ(s,z)𝑑z𝑑s)]g(ω0r2)𝑑r=0.\int_{0}^{R_{0}}\left[r^{2}\int_{-\infty}^{+\infty}\delta v_{\theta}\rho_{0}(r,z)dz-\partial_{r}(\omega_{0}r^{2})\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)\right]g^{\prime}(\omega_{0}r^{2})dr=0.

which implies (2.17) since gC1()g\in C^{1}\left(\mathbb{R}\right) is arbitrary. On the other hand, by reversing the above computation, (ii) follows from (iii).   

The statement (ii) above implies that for any (δρ,δvθ)R(B)¯\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)}, we have

DAg(ρ0,ω0r),(δρ,δvθ)=0,\langle DA_{g}(\rho_{0},\omega_{0}r),(\delta\rho,\delta v_{\theta})\rangle=0,

where the generalized angular momentum AgA_{g} is defined in (2.11). That is, a dynamically accessible perturbation (δρ,δvθ)(\delta\rho,\delta v_{\theta}) must lie on the tangent space of the functional AgA_{g} at the equilibrium (ρ0,ω0r𝐞θ)(\rho_{0},\omega_{0}r\ \mathbf{e}_{\theta}). Since gg is arbitrary, this implies infinite many constraints for dynamically accessible perturbations. The stability criterion (2.10) implies that that rotating stars are stable if and only if they are local minimizers of energy-Casimir functional H(ρ,v)H(\rho,v) under the constraints of fixed generalized angular momentum AgA_{g} for all gg. This contrasts significantly with the case of non-rotating stars. It was shown in ([30]) that non-rotating stars are stable if and only if they are local minimizers of the energy-Casimir functional under the only constraint of fixed total mass. The stability criterion (2.10) for rotating stars involves infinitely many constraints and is much more difficult to check. In the next section, we give an equivalent stability criterion in terms of a reduced functional (1.13) under only the mass constraint.

Remark 2.3

For non-rotating stars, the dynamically accessible perturbations are given by R(B1)=R(B1)¯R\left(B_{1}\right)=\overline{R\left(B_{1}\right)} which is the perturbations preserving the mass (see Lemma 2.4). For rotating stars, the dynamically accessible space R(B)¯\overline{R(B)} is different from R(B)R\left(B\right).

2.4 Reduced functional and the equivalent Stability Criterion

In this section, we prove the formula n(𝕃|R(B)¯)=n(𝒦|R(B1))n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right)=n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right) and complete the proof of Theorem 1.1.

Lemma 2.6

For any δρR(B1)\delta\rho\in R\left(B_{1}\right), define

uθδρ=r(ω0r2)r20rs+δρ(s,z)𝑑z𝑑s+ρ0(r,z)𝑑zu_{\theta}^{\delta\rho}=\frac{\partial_{r}(\omega_{0}r^{2})}{r^{2}}\frac{\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds}{\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}\text{. } (2.18)

Then (δρ,uθδρ)R(B)¯\left(\delta\rho,u_{\theta}^{\delta\rho}\right)\in\overline{R\left(B\right)} and uθδρLρ02δρLΦ′′(ρ0)2.\left\|u_{\theta}^{\delta\rho}\right\|_{L_{\rho_{0}}^{2}}\ \lesssim\left\|\delta\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}.

Proof. We have

uθδρLρ0223ρ0(0rs+δρ(s,z)𝑑z𝑑sr+ρ0(r,z)𝑑z)2𝑑x=2π0R0(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r\displaystyle\left\|u_{\theta}^{\delta\rho}\right\|_{L_{\rho_{0}}^{2}}^{2}\ \lesssim\int_{\mathbb{R}^{3}}{\rho_{0}}\left(\frac{\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds}{r\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}\right)^{2}dx=2\pi\int_{0}^{R_{0}}\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}dr
=2π0R0ε(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r+2πR0εR0(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r\displaystyle=2\pi\int_{0}^{R_{0}-\varepsilon}\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}dr+2\pi\int_{R_{0}-\varepsilon}^{R_{0}}\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}dr
=I+II,\displaystyle=I+II,

where ε>0\varepsilon>0 is chosen such that Lemma 2.1 holds. Since the function h1(r)=+ρ0(r,z)𝑑zh_{1}\left(r\right)=\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz has a positive lower bound in [0,R0ε]\left[0,R_{0}-\varepsilon\right] and h2(r)=+1Φ′′(ρ0(r,z))𝑑zh_{2}\left(r\right)=\int_{-\infty}^{+\infty}\frac{1}{\Phi^{\prime\prime}(\rho_{0}(r,z))}dz is bounded, by Hardy’s inequality (see Lemma 3.21 in [30]) we have

I\displaystyle I 0R0εr2(0rs+δρ(s,z)𝑑z𝑑s)2𝑑r\displaystyle\lesssim\int_{0}^{R_{0}-\varepsilon}r^{-2}\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}dr
0R0εr2(+δρ(r,z)𝑑z)2𝑑r\displaystyle\lesssim\int_{0}^{R_{0}-\varepsilon}r^{2}\left(\int_{-\infty}^{+\infty}\delta\rho(r,z)dz\right)^{2}dr
0R0εr2(+Φ′′(ρ0)(δρ)2(r,z)𝑑z)(+1Φ′′(ρ0(r,z))𝑑z)𝑑r\displaystyle\lesssim\int_{0}^{R_{0}-\varepsilon}r^{2}\left(\int_{-\infty}^{+\infty}\Phi^{\prime\prime}(\rho_{0})\left(\delta\rho\right)^{2}(r,z)dz\right)\left(\int_{-\infty}^{+\infty}\frac{1}{\Phi^{\prime\prime}(\rho_{0}(r,z))}dz\right)dr
0R0εr+Φ′′(ρ0)(δρ)2(r,z)𝑑z𝑑rδρLΦ′′(ρ0)22.\displaystyle\lesssim\int_{0}^{R_{0}-\varepsilon}r\int_{-\infty}^{+\infty}\Phi^{\prime\prime}(\rho_{0})\left(\delta\rho\right)^{2}(r,z)dzdr\lesssim\|\delta\rho\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}^{2}.

By Hardy’s inequality and Lemma 2.1, we have

II\displaystyle II =2πR0εR0(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r\displaystyle=2\pi\int_{R_{0}-\varepsilon}^{R_{0}}\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}{\rho_{0}}(r,z)dz}dr
R0εR0(0rs+δρ(s,z)𝑑z𝑑s)2(R0r)1γ01+12𝑑r\displaystyle\lesssim\int_{R_{0}-\varepsilon}^{R_{0}}\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{(R_{0}-r)^{\frac{1}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}}dr
R0εR0(+δρ(r,z)𝑑z)2(R0r)1γ01+32𝑑r\displaystyle\lesssim\int_{R_{0}-\varepsilon}^{R_{0}}\left(\int_{-\infty}^{+\infty}\delta\rho(r,z)dz\right)^{2}(R_{0}-r)^{-\frac{1}{\gamma_{0}-1}+\frac{3}{2}}dr
R0εR0(+Φ′′(ρ0)(δρ)2𝑑z)(+1Φ′′(ρ0)𝑑z)(R0r)1γ01+32𝑑r\displaystyle\lesssim\int_{R_{0}-\varepsilon}^{R_{0}}\left(\int_{-\infty}^{+\infty}\Phi^{\prime\prime}(\rho_{0})(\delta\rho)^{2}dz\right)\left(\int_{-\infty}^{+\infty}\frac{1}{\Phi^{\prime\prime}(\rho_{0})}dz\right)(R_{0}-r)^{-\frac{1}{\mathbb{\gamma}_{0}-1}+\frac{3}{2}}dr
R0εR0(+Φ′′(ρ0)(δρ)2𝑑z)(R0r)𝑑r\displaystyle\lesssim\int_{R_{0}-\varepsilon}^{R_{0}}\left(\int_{-\infty}^{+\infty}\Phi^{\prime\prime}(\rho_{0})(\delta\rho)^{2}dz\right)(R_{0}-r)dr
δρLΦ′′(ρ0)22,\displaystyle\lesssim\|\delta\rho\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}^{2},

where we used the estimate

+1Φ′′(ρ0)𝑑z+ρ02γ0𝑑z(R0r)2γ0γ01+12,\int_{-\infty}^{+\infty}\frac{1}{\Phi^{\prime\prime}(\rho_{0})}dz\thickapprox\int_{-\infty}^{+\infty}\rho_{0}^{2-\gamma_{0}}dz\thickapprox(R_{0}-r)^{\frac{2-\mathbb{\gamma}_{0}}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}},

since Φ′′(s)sγ02\Phi^{\prime\prime}\left(s\right)\approx s^{\mathbb{\gamma}_{0}-2} for ss small. This proves uθδρLρ02δρLΦ′′(ρ0)2\left\|u_{\theta}^{\delta\rho}\right\|_{L_{\rho_{0}}^{2}}\ \lesssim\left\|\delta\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}.

The statement (δρ,uθδρ)R(B)¯\left(\delta\rho,u_{\theta}^{\delta\rho}\right)\in\overline{R\left(B\right)} follows from Lemma 2.5 since 3δρ𝑑x=0\int_{\mathbb{R}^{3}}\delta\rho\ dx=0 for δρR(B1)\delta\rho\in R\left(B_{1}\right) and uθδρu_{\theta}^{\delta\rho} obviously satisfies (2.17).   

With the help of lemma 2.6 we can finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We only need to show n(𝕃|R(B)¯)=n(𝒦|R(B1))n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right)=n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right). First, we have

𝕃(δρδvθ),(δρδvθ)𝒦δρ,δρ,(δρ,δvθ)R(B)¯,\left\langle\mathbb{L}\begin{pmatrix}\delta\rho\\ \delta v_{\theta}\end{pmatrix},\begin{pmatrix}\delta\rho\\ \delta v_{\theta}\end{pmatrix}\right\rangle\geq\langle\mathcal{K}\delta\rho,\delta\rho\rangle,\ \ \forall\left(\delta\rho,\delta v_{\theta}\right)\in\overline{R(B)}, (2.19)

since

A1δvθ,δvθ\displaystyle\langle A_{1}\delta v_{\theta},\delta v_{\theta}\rangle =34ω02Υ(r)ρ0(δvθ)2𝑑x=2π0R04ω02rΥ(r)+ρ0(δvθ)2𝑑z𝑑r\displaystyle=\int_{\mathbb{R}^{3}}\frac{4\omega_{0}^{2}}{\Upsilon(r)}\rho_{0}\left(\delta v_{\theta}\right)^{2}\ dx=2\pi\int_{0}^{R_{0}}\frac{4\omega_{0}^{2}r}{\Upsilon(r)}\int_{-\infty}^{+\infty}\rho_{0}\left(\delta v_{\theta}\right)^{2}dz\ dr
=2π0R04ω02rΥ(r)+ρ0(uθδρ)2𝑑z𝑑r+2π0R04ω02rΥ(r)+ρ0(δvθuθδρ)2𝑑z𝑑r\displaystyle=2\pi\int_{0}^{R_{0}}\frac{4\omega_{0}^{2}r}{\Upsilon(r)}\int_{-\infty}^{+\infty}\rho_{0}\left(u_{\theta}^{\delta\rho}\right)^{2}dz\ dr+2\pi\int_{0}^{R_{0}}\frac{4\omega_{0}^{2}r}{\Upsilon(r)}\int_{-\infty}^{+\infty}\rho_{0}\left(\delta v_{\theta}-u_{\theta}^{\delta\rho}\right)^{2}dz\ dr
2π0R04ω02rΥ(r)+ρ0(uθδρ)2𝑑z𝑑r\displaystyle\geq 2\pi\int_{0}^{R_{0}}\frac{4\omega_{0}^{2}r}{\Upsilon(r)}\int_{-\infty}^{+\infty}\rho_{0}\left(u_{\theta}^{\delta\rho}\right)^{2}dz\ dr
=2π0R0Υ(r)(0rs+δρ(s,z)𝑑z𝑑s)2r+ρ0(r,z)𝑑z𝑑r.\displaystyle=2\pi\int_{0}^{R_{0}}\Upsilon(r)\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}\rho_{0}({r},z)dz}dr.

In the above, we used the observation that

+ρ0(δvθuθδρ)𝑑z=+ρ0δvθ𝑑zuθδρ(r)+ρ0𝑑z=0,\int_{-\infty}^{+\infty}\rho_{0}\left(\delta v_{\theta}-u_{\theta}^{\delta\rho}\right)dz\ =\int_{-\infty}^{+\infty}\rho_{0}\delta v_{\theta}dz-\ u_{\theta}^{\delta\rho}\left(r\right)\int_{-\infty}^{+\infty}\rho_{0}dz=0,

since

+ρ0δvθ𝑑z=uθδρ(r)+ρ0𝑑z=r(ω0r2)r20rs+δρ(s,z)𝑑z𝑑s\int_{-\infty}^{+\infty}\rho_{0}\delta v_{\theta}dz=u_{\theta}^{\delta\rho}\left(r\right)\int_{-\infty}^{+\infty}\rho_{0}dz=\frac{\partial_{r}\left(\omega_{0}r^{2}\right)}{r^{2}}\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds

due to (2.17) and (2.18). Since δρR(B1)\delta\rho\in R\left(B_{1}\right), it follows from (2.19) that n(𝒦|R(B1))n(𝕃|R(B)¯)n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right)\geq n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right). On the other hand, we also have n(𝒦|R(B1))n(𝕃|R(B)¯),n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right)\leq n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right), since

𝒦δρ,δρ=𝕃(δρuθδρ),(δρuθδρ).\langle\mathcal{K}\delta\rho,\delta\rho\rangle=\left\langle\mathbb{L}\begin{pmatrix}\delta\rho\\ u_{\theta}^{\delta\rho}\end{pmatrix},\begin{pmatrix}\delta\rho\\ u_{\theta}^{\delta\rho}\end{pmatrix}\right\rangle.

Thus n(𝒦|R(B1))=n(𝕃|R(B)¯)n^{-}\left(\mathcal{K}|_{R\left(B_{1}\right)}\right)=n^{-}\left(\mathbb{L}|_{\overline{R\left(B\right)}}\right). This finishes the proof of Theorem 1.1.   

3 TPP for slowly rotating stars

In this section, we use the stability criterion in Theorem 1.1 to study two families of slowly rotating stars parameterized by the center density.

3.1 The case of fixed angular velocity

In this subsection, we consider a family of slowly rotating stars with fixed angular velocity.

Under the assumptions (1.2)-(1.3), for some μmax>0\mu_{\max}>0, there exists a family of nonrotating stars with radially symmetric density ρμ(|x|)\rho_{\mu}(|x|) parametrized by the center density μ(0,μmax)\mu\in(0,\mu_{\max}). We refer to [30] and references therein for such results. LetRμ\ R_{\mu} be the support radius of ρμ\rho_{\mu} and Bμ=B(0,Rμ)B_{\mu}=B(0,R_{\mu}) be the support of ρμ\rho_{\mu}. The radial density ρμ\rho_{\mu} satisfies

Δ(Φ(ρμ))+4πρμ=0,in Bμ,\Delta(\Phi^{\prime}(\rho_{\mu}))+4\pi\rho_{\mu}=0,\ \ \text{in }B_{\mu},

with ρμ(0)=μ\rho_{\mu}(0)=\mu. For the general equations of state satisfying (1.2)-(1.3) with γ04/3\gamma_{0}\geq 4/3 , it was shown in [15] that μmax=+\mu_{\max}=+\infty.

Let ω(r)C1,β[0,)\omega(r)\in C^{1,\beta}[0,\infty) be fixed for some β(0,1)\beta\in(0,1). We construct a family of rotating stars for Euler-Poisson system with the following form

{ρ0=ρμ,κ(r,z)=ρμ(gζμ,κ1((r,z))),v0=κrω0(r)𝐞θ,\begin{cases}\rho_{0}=\rho_{\mu,\kappa}(r,z)=\rho_{\mu}(g_{\zeta_{\mu,\kappa}}^{-1}((r,z))),\\ \vec{v}_{0}=\kappa r\omega_{0}\left(r\right)\mathbf{e}_{\theta},\end{cases}

where the dilating function is

gζμ,κ=x(1+ζμ,κ|x|2),g_{\zeta_{\mu,\kappa}}=x\left(1+\frac{\zeta_{\mu,\kappa}}{|x|^{2}}\right),

and ζμ,κ(x):Bμ\zeta_{\mu,\kappa}(x):B_{\mu}\rightarrow\mathbb{R} is axi-symmetric and even in zz.

The existence of rotating stars (ρμ,κ,κrω0(r)𝐞θ)\left(\rho_{\mu,\kappa},\kappa r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right)\ is reduced to the following equations for ρμ,κ\rho_{\mu,\kappa}:

κ20rω2(s)s𝑑s+Φ(ρμ,κ)+Vμ,κ+cμ,κ=0 in Ωμ,κ,-\kappa^{2}\int_{0}^{r}\omega^{2}(s)sds+\Phi^{\prime}(\rho_{\mu,\kappa})+V_{\mu,\kappa}+c_{\mu,\kappa}=0\text{ in }\Omega_{\mu,\kappa}, (3.1)
Vμ,κ=|x|1ρμ,κ in 3,V_{\mu,\kappa}=-|x|^{-1}\ast\rho_{\mu,\kappa}\text{ in }\mathbb{R}^{3},

where cμ,κc_{\mu,\kappa} is a constant and Ωμ,κ=gζμ,κ(Bμ)\Omega_{\mu,\kappa}=g_{\zeta_{\mu,\kappa}}(B_{\mu}) is the support of the density ρμ,κ\rho_{\mu,\kappa}\ of the rotating star solution.

By similar arguments as in [14, 41, 19], we can get the following existence theorem.

Theorem 3.1

Let μ[μ0,μ1](0,μmax)\mu\in[\mu_{0},\mu_{1}]\subset(0,\mu_{\max}), P(ρ)P(\rho) satisfy (1.2)-(1.3), and ω(r)C1,β[0,)\omega(r)\in C^{1,\beta}[0,\infty). Then there exist κ~>0\tilde{\kappa}>0 and solutions ρμ,κ\rho_{\mu,\kappa} of (3.1) for all |κ|<κ~|\kappa|<\tilde{\kappa}, satisfying the following properties:
1) ρμ,κCc1,α(3)\rho_{\mu,\kappa}\in C_{c}^{1,\alpha}(\mathbb{R}^{3}), where α=min(2γ0γ01,1)\alpha=\min(\frac{2-\mathbb{\gamma}_{0}}{\mathbb{\gamma}_{0}-1},1).
2) ρμ,κ\rho_{\mu,\kappa} is axi-symmetric and even in zz.
3) ρμ,κ(0)=μ\rho_{\mu,\kappa}(0)=\mu.
4) ρμ,κ0\rho_{\mu,\kappa}\geq 0 has compact support gζμ,κ(Bμ)g_{\zeta_{\mu,\kappa}}(B_{\mu}).
5) For all μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}], the mapping κρμ,κ\kappa\rightarrow\rho_{\mu,\kappa} is continuous from (κ~,κ~)(-\tilde{\kappa},\tilde{\kappa}) into Cc1(3)C_{c}^{1}(\mathbb{R}^{3}).

When κ=0\kappa=0, ρμ,0=\rho_{\mu,0}= ρμ(|x|)\rho_{\mu}(|x|) is the nonrotating star solution with ρμ(0)=μ\rho_{\mu}(0)=\mu.

Now we use Theorem 1.1 to study the stability of above rotating star solutions (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}), for μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}], κ\kappa small enough, and ωC1,β[0,)\omega\in C^{1,\beta}[0,\infty) satisfying the Rayleigh condition Υ(r):=r(ω2r4)r3>0\Upsilon(r):=\frac{\partial_{r}(\omega^{2}r^{4})}{r^{3}}>0. First, we check the assumptions in Theorem 1.1. Let Rμ,κR_{\mu,\kappa} be the support radius in rr for Ωμ,κ=gζμ,κ(Bμ)\Omega_{\mu,\kappa}=g_{\zeta_{\mu,\kappa}}(B_{\mu}). Since gζμ,κC2(Bμ)g_{\zeta_{\mu,\kappa}}\in C^{2}(B_{\mu}) dependents continuously on κ\kappa, it is easy to check the assumptions on Ωμ,κ\Omega_{\mu,\kappa} for κ\kappa small enough. That is, Ωμ,κ\partial\Omega_{\mu,\kappa} is C2C^{2} and has positive curvature near (Rμ,κ,0)(R_{\mu,\kappa},0). Next, we check the assumption (1.7). For nonrotating stars, it is known ([6, 16, 28, 30]) that

ρμ(r,z)((Rμr2+z2)1γ01) for r2+z2Rμ.\rho_{\mu}(r,z)\approx((R_{\mu}-\sqrt{r^{2}+z^{2}})^{\frac{1}{\mathbb{\gamma}_{0}-1}})\text{ for }\sqrt{r^{2}+z^{2}}\sim R_{\mu}.

For κ\kappa small enough, by the definition of the dilating function gζμ,κg_{\zeta_{\mu,\kappa}}, we have

ρμ,κ(r,z)\displaystyle\rho_{\mu,\kappa}(r,z) =ρμ(gζμ,κ1(r,z))\displaystyle=\rho_{\mu}(g_{\zeta_{\mu,\kappa}}^{-1}(r,z))
((Rμ|gζμ,κ1(r,z)|)1γ01)\displaystyle\approx((R_{\mu}-|g_{\zeta_{\mu,\kappa}}^{-1}(r,z)|)^{\frac{1}{\mathbb{\gamma}_{0}-1}})
dist((r,z),gζμ,κ(Bμ))1γ01,\displaystyle\approx\text{dist}((r,z),\partial g_{\zeta_{\mu,\kappa}}(B_{\mu}))^{\frac{1}{\mathbb{\gamma}_{0}-1}},

for (r,z)\left(r,z\right) near (Rμ,κ,0)=gζμ,κ(Rμ,0)(R_{\mu,\kappa},0)=g_{\zeta_{\mu,\kappa}}(R_{\mu},0).

Below, for rotating stars (ρμ,κ,rω0(r)𝐞θ)\left(\rho_{\mu,\kappa},r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right) we use Xμ,κX_{\mu,\kappa}, X1μ,κX_{1}^{\mu,\kappa}, Yμ,κY_{\mu,\kappa}, Lμ,κL_{\mu,\kappa}, A1μ,κA_{1}^{\mu,\kappa}, B1μ,κB_{1}^{\mu,\kappa}, B2μ,κB_{2}^{\mu,\kappa}, Kμ,κK_{\mu,\kappa}, etc., to denote the corresponding spaces XX, X1X_{1}, YY, and operators LL, A1A_{1}, B1B_{1}, B2B_{2}, 𝒦\mathcal{K} etc. defined in Section 2.

By Theorem 1.1, the rotating star (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}) is spectrally stable if and only if

Kμ,κδρ,δρ=Lμ,κδρ,δρ+2κ2π0Rμ,κΥ(r)(0rs+δρ(s,z)𝑑z𝑑s)2r+ρμ,κ(r,z)𝑑z𝑑r0,\langle K_{\mu,\kappa}\delta\rho,\delta\rho\rangle=\langle L_{\mu,\kappa}\delta\rho,\delta\rho\rangle+2\kappa^{2}\pi\int_{0}^{R_{\mu,\kappa}}\Upsilon(r)\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}\rho_{\mu,\kappa}({r},z)dz}dr\geq 0, (3.2)

for all

δρR(B1μ,κ)={δρX1μ,κ|3δρ𝑑x=0}.\delta\rho\in R(B_{1}^{\mu,\kappa})=\left\{\delta\rho\in X_{1}^{\mu,\kappa}|\int_{\mathbb{R}^{3}}\delta\rho dx=0\right\}.

Moreover, the number of unstable modes equals n(Kμ,κ|R(B1μ,κ))n^{-}\left(K_{\mu,\kappa}|_{R(B_{1}^{\mu,\kappa})}\right). The following is an easy corollary of the stability criterion.

Corollary 3.1

(Sufficient condition for instability)
Let I[μ0,μ1]I\subset[\mu_{0},\mu_{1}] be an interval such that the non-rotating star (ρμ,0)(\rho_{\mu},0) is unstable for any μI\mu\in I. Then for any ωC1,β[0,)\omega\in C^{1,\beta}[0,\infty) satisfies Υ(r)>0\Upsilon(r)>0, there exists κ0>0\kappa_{0}>0 such that the rotating star (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}) is unstable for any 0<κ<κ00<\kappa<\kappa_{0} and μI\mu\in I.

Proof. The instability of (ρμ,0)(\rho_{\mu},0) implies that n(Lμ,0|R(B1μ,0))>0n^{-}(L_{\mu,0}|_{R(B_{1}^{\mu,0})})>0 for μI\mu\in I. Thus there exists some ϵ>0\epsilon>0 (independent of μ\mu) and δρμ,0=δρμ,0(|x|)R(B1μ,0)\delta\rho_{\mu,0}=\delta\rho_{\mu,0}(|x|)\in R(B_{1}^{\mu,0})\ such that Lμ,0δρμ,0,δρμ,0=2ϵ<0\langle L_{\mu,0}\delta\rho_{\mu,0},\delta\rho_{\mu,0}\rangle=-2\epsilon<0 for μI\mu\in I. Let

δρμ,κ(r,z)=δρμ,0(gζμ,κ(r,z))Bμδρμ,0(|x|)detDgζμ,κ(x)dxMμ,κρμ,κ(r,z),\delta\rho_{\mu,\kappa}(r,z)=\delta\rho_{\mu,0}(g_{\zeta_{\mu,\kappa}}(r,z))-\frac{\int_{B_{\mu}}\delta\rho_{\mu,0}(|x|)\det Dg_{\zeta_{\mu,\kappa}}(x)dx}{M_{\mu,\kappa}}\rho_{\mu,\kappa}(r,z),

then δρμ,κ(r,z)R(B1μ,κ)\delta\rho_{\mu,\kappa}(r,z)\in R(B_{1}^{\mu,\kappa}). Noticing that

limκ0Bμδρμ,0(|x|)detDgζμ,κ(x)dx=Bμδρμ,0(|x|)𝑑x=0,\lim_{\kappa\rightarrow 0}\int_{B_{\mu}}\delta\rho_{\mu,0}(|x|)\det Dg_{\zeta_{\mu,\kappa}}(x)dx=\int_{B_{\mu}}\delta\rho_{\mu,0}(|x|)dx=0,

we have

limκ0Lμ,κδρμ,κ,δρμ,κ=Lμ,0δρμ,0,δρμ,0=2ϵ<0.\lim_{\kappa\rightarrow 0}\langle L_{\mu,\kappa}\delta\rho_{\mu,\kappa},\delta\rho_{\mu,\kappa}\rangle=\langle L_{\mu,0}\delta\rho_{\mu,0},\delta\rho_{\mu,0}\rangle=-2\epsilon<0.

Thus, there exists κ0>0\kappa_{0}>0 such that when 0<κ<κ00<\kappa<\kappa_{0}

Kμ,κδρμ,κ,δρμ,κ\displaystyle\langle K_{\mu,\kappa}\delta\rho_{\mu,\kappa},\delta\rho_{\mu,\kappa}\rangle
=Lμ,κδρμ,κ,δρμ,κ+2κ2π0Rμ,κΥ(r)(0rs+δρμ,κ(s,z)𝑑z𝑑s)2r+ρμ,κ(r,z)𝑑z𝑑r<ϵ<0.\displaystyle=\langle L_{\mu,\kappa}\delta\rho_{\mu,\kappa},\delta\rho_{\mu,\kappa}\rangle+2\kappa^{2}\pi\int_{0}^{R_{\mu,\kappa}}\Upsilon(r)\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho_{\mu,\kappa}(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}\rho_{\mu,\kappa}({r},z)dz}dr<-\epsilon<0.

The linear instability of (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}) follows.   

Let μ~\tilde{\mu} be the first critical point of the mass-radius ratio MμRμ\frac{M_{\mu}}{R_{\mu}} for the nonrotating stars and set μ~=+\tilde{\mu}=+\infty if MμRμ\frac{M_{\mu}}{R_{\mu}} has no critical point. Consider the rotating stars (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}) for μ\mu\in [μ0,μ1](0,μ~)[\mu_{0},\mu_{1}]\subset\left(0,\tilde{\mu}\right) and κ\kappa small. We have the following sufficient condition for stability.

Theorem 3.2

(Sufficient condition for stability)
Suppose P(ρ)P(\rho) satisfies (1.2)-(1.3), and ωC1,β[0,)\omega\in C^{1,\beta}[0,\infty) satisfies Υ(r)>0\Upsilon(r)>0. For any μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset\left(0,\tilde{\mu}\right) and κ\kappa small enough, if dMμ,κdμ0,\frac{dM_{\mu,\kappa}}{d\mu}\geq 0, then the rotating star (ρμ,κ,κωr𝐞θ)(\rho_{\mu,\kappa},\kappa\omega r\mathbf{e}_{\theta}) is spectrally stable.

For the proof of above Theorem, first we compute n(Lμ,κ|Xμ,κ)n^{-}\left(L_{\mu,\kappa}|_{X_{\mu,\kappa}}\right). Let H˙ax1\dot{H}_{ax}^{1} and H˙ax1\dot{H}_{ax}^{-1} be the axi-symmetric subspaces of H˙1(3)\dot{H}^{1}(\mathbb{R}^{3}) and H˙1(3)\dot{H}^{-1}(\mathbb{R}^{3}) respectively. Define the reduced operator Dμ,κ:H˙ax1H˙ax1D_{\mu,\kappa}:\dot{H}_{ax}^{1}\rightarrow\dot{H}_{ax}^{-1} by

Dμ,κ:=Δ4πΦ′′(ρμ,κ).D_{\mu,\kappa}:=-\Delta-\frac{4\pi}{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}.

Then

Dμ,κψ,ψ=3|ψ|2𝑑x4π3|ψ|2Φ′′(ρμ,κ)𝑑x,ψH˙ax1,\langle D_{\mu,\kappa}\psi,\psi\rangle=\int_{\mathbb{R}^{3}}|\nabla\psi|^{2}dx-4\pi\int_{\mathbb{R}^{3}}\frac{|\psi|^{2}}{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}dx,\ \psi\in\dot{H}_{ax}^{1},

defines a bounded bilinear symmetric form on H˙ax1\dot{H}_{ax}^{1}. By the same proof of Lemma 3.7 in [30], we have

Lemma 3.1

It holds that n(Lμ,κ|X1μ,κ)=n(Dμ,κ)n^{-}\left(L_{\mu,\kappa}|_{X_{1}^{\mu,\kappa}}\right)=n^{-}\left(D_{\mu,\kappa}\right) and dimkerLμ,κ=dimkerDμ,κ\dim\ker L_{\mu,\kappa}=\dim\ker D_{\mu,\kappa}.

Since the rotating star solution (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}) is even in zz, we can compute n(Lμ,κ|X1μ,κ)n^{-}\left(L_{\mu,\kappa}|_{X_{1}^{\mu,\kappa}}\right) and n(Dμ,κ)n^{-}\left(D_{\mu,\kappa}\right) on the even and odd (in zz) subspaces respectively. Define

Xodμ,κ:={ρX1μ,κ|ρ(r,z)=ρ(r,z)},Xevμ,κ:={ρX1μ,κ|ρ(r,z)=ρ(r,z)},\displaystyle X_{od}^{\mu,\kappa}:=\{\rho\in X_{1}^{\mu,\kappa}|\ \rho(r,z)=-\rho(r,-z)\},\ X_{ev}^{\mu,\kappa}:=\{\rho\in X_{1}^{\mu,\kappa}\ |\ \rho(r,z)=\rho(r,-z)\}, (3.3)
Hod:={φH˙ax1|φ(r,z)=φ(r,z)},Hev:={φH˙ax1|φ(r,z)=φ(r,z)}.\displaystyle H^{od}:=\{\varphi\in\dot{H}_{ax}^{1}\ |\varphi(r,z)=-\varphi(r,-z)\},\ H^{ev}:=\{\varphi\in\dot{H}_{ax}^{1}\ |\ \varphi(r,z)=\varphi(r,-z)\}.
Lemma 3.2

Assume P(ρ)P(\rho) satisfies (1.2)-(1.3), ωC1,β[0,)\omega\in C^{1,\beta}[0,\infty) satisfies Υ(r)>0\Upsilon(r)>0. Then for any μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset\left(0,\tilde{\mu}\right) and κ\kappa small enough, we have n(Lμ,κ)=n(Lμ,0)=1n^{-}(L_{\mu,\kappa})=n^{-}(L_{\mu,0})=1 and kerLμ,κ=span{zρμ,κ}\ker L_{\mu,\kappa}=span\{\partial_{z}\rho_{\mu,\kappa}\}. Moreover, we have the following direct sum decompositions for Xevμ,κX_{ev}^{\mu,\kappa} and Xevμ,κ:X_{ev}^{\mu,\kappa}:

Xevμ,κ=X,evμ,κX+,evμ,κ,dimX,evμ,κ=1,X_{ev}^{\mu,\kappa}=X_{-,ev}^{\mu,\kappa}\oplus X_{+,ev}^{\mu,\kappa},\ \ \dim X_{-,ev}^{\mu,\kappa}=1,

and

Xodμ,κ=span{zρμ,κ}X+,odμ,κ,X_{od}^{\mu,\kappa}=span\{\partial_{z}\rho_{\mu,\kappa}\}\oplus X_{+,od}^{\mu,\kappa},

satisfying: i) Lμ,κ|X,evμ,κ<0;L_{\mu,\kappa}|_{X_{-,ev}^{\mu,\kappa}}<0;

ii) there exists δ>0\delta>0 such that

Lμ,κu,uδuLΦ′′(ρμ,κ)22, for any uX+,evμ,κX+,odμ,κ,\left\langle L_{\mu,\kappa}u,u\right\rangle\geq\delta\left\|u\right\|_{L_{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}^{2}}^{2}\ ,\text{ for any }u\in X_{+,ev}^{\mu,\kappa}\oplus X_{+,od}^{\mu,\kappa},

where δ\delta is independent of μ\mu and κ\kappa.

The same decompositions are also true for Kμ,κK_{\mu,\kappa}\ on Xevμ,κX_{ev}^{\mu,\kappa} and Xodμ,κX_{od}^{\mu,\kappa}. In addition, for any μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}], it holds that dVμ,κ(0,Zμ,κ)dμ<0\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}<0 for κ\kappa small enough.

Proof. It was showed in [30] that: for any μ(0,μ~)\mu\in\left(0,\tilde{\mu}\right), we have n(Dμ,0)=1n^{-}(D_{\mu,0})=1 and kerDμ,0=span{zVμ}\ker D_{\mu,0}=span\{\partial_{z}V_{\mu}\}\ in the axi-symmetric function space. Here, Vμ=V_{\mu}= |x|1ρμ-|x|^{-1}\ast\rho_{\mu}\ is the gravitational potential of the non-rotating star. Since zVμ\partial_{z}V_{\mu} is odd in zz, it follows that for any μ(0,μ~)\mu\in\left(0,\tilde{\mu}\right):  i) on HevH^{ev}, n(Dμ,0)=1n^{-}(D_{\mu,0})=1, kerDμ,0={0}\ker D_{\mu,0}=\{0\}; ii) on HodH^{od}, kerDμ,0=span{zVμ}\ker D_{\mu,0}=span\{\partial_{z}V_{\mu}\} and n(Dμ,0)=0n^{-}(D_{\mu,0})=0. Moreover, for μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset\left(0,\tilde{\mu}\right), there exists δ0>0\delta_{0}>0 (independent of μ\mu) and decompositions Hev=H,μevH+,μevH^{ev}=H_{-,\mu}^{ev}\oplus H_{+,\mu}^{ev} and Hod=span{zVμ}H+,μodH^{od}=span\{\partial_{z}V_{\mu}\}\oplus H_{+,\mu}^{od} satisfying that: i) dimH,μev=1,Dμ,0|H,μev<δ0\dim H_{-,\mu}^{ev}=1,\ D_{\mu,0}|_{H_{-,\mu}^{ev}}<-\delta_{0}; ii) Dμ,0|H+,μevH+,μodδ0D_{\mu,0}|_{H_{+,\mu}^{ev}\oplus H_{+,\mu}^{od}}\geq\delta_{0}. Since zVμ,κHodkerDμ,κ\partial_{z}V_{\mu,\kappa}\in H^{od}\cap\ker D_{\mu,\kappa} and

(Dμ,κDμ,0)ψ,ψ\displaystyle\langle(D_{\mu,\kappa}-D_{\mu,0})\psi,\psi\rangle =(4πΦ′′(ρμ,κ)4πΦ′′(ρμ))ψ2𝑑x\displaystyle=\int\left(\frac{4\pi}{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}-\frac{4\pi}{\Phi^{\prime\prime}(\rho_{\mu})}\right)\psi^{2}dx
((4πΦ′′(ρμ,κ)4πΦ′′(ρμ))32𝑑x)23ψL62\displaystyle\lesssim\left(\int\left(\frac{4\pi}{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}-\frac{4\pi}{\Phi^{\prime\prime}(\rho_{\mu})}\right)^{\frac{3}{2}}dx\right)^{\frac{2}{3}}\|\psi\|_{L^{6}}^{2}
O(κ)ψL220, as κ0,\displaystyle\lesssim O(\kappa)\|\nabla\psi\|_{L^{2}}^{2}\rightarrow 0,\text{ as }\kappa\rightarrow 0,

by the perturbation arguments (e.g. Corollary 2.19 in [30]) it follows that for μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] and κ\kappa sufficiently small, the decompositions Hev=H,μevH+,μevH^{ev}=H_{-,\mu}^{ev}\oplus H_{+,\mu}^{ev} and Hod=span{zVμ,κ}H+,μevH^{od}=span\{\partial_{z}V_{\mu,\kappa}\}\oplus H_{+,\mu}^{ev} satisfy: i) dimH,μev=1,Dμ,κ|H,μev<12δ0\dim H_{-,\mu}^{ev}=1,\ D_{\mu,\kappa}|_{H_{-,\mu}^{ev}}<-\frac{1}{2}\delta_{0}; ii) Dμ,κ|H+,μevH+,μev12δ0D_{\mu,\kappa}|_{H_{+,\mu}^{ev}\oplus H_{+,\mu}^{ev}}\geq\frac{1}{2}\delta_{0}.

By the proof of Lemma 3.4 in [30], for any ρX1μ,κ\rho\in X_{1}^{\mu,\kappa}\ we have

Lμ,κρ,ρ=ρLΦ′′(ρμ,κ)2214πψL2214πDμ,κψ,ψ,\left\langle L_{\mu,\kappa}\rho,\rho\right\rangle=\left\|\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}^{2}}^{2}-\frac{1}{4\pi}\|\nabla\psi\|_{L^{2}}^{2}\geq\frac{1}{4\pi}\left\langle D_{\mu,\kappa}\psi,\psi\right\rangle,\ \ (3.4)

where ψ=14πΔ1ρ\psi=\frac{1}{4\pi}\Delta^{-1}\rho. We note that zρμ,κkerLμ,κXodμ,κ\partial_{z}\rho_{\mu,\kappa}\in\ker L_{\mu,\kappa}\cap X_{od}^{\mu,\kappa} and zVμ,κ=14πΔ1ρμ,κ\partial_{z}V_{\mu,\kappa}=\frac{1}{4\pi}\Delta^{-1}\rho_{\mu,\kappa}. The existence of decompositions for Xevμ,κX_{ev}^{\mu,\kappa} and Xodμ,κX_{od}^{\mu,\kappa} as stated in the lemma follows readily from (3.4) and above decompositions for HodH^{od} and HevH^{ev}.

Since

|(Lμ,κKμ,κ)ρ,ρ|o(κ2)ρLΦ′′(ρμ,κ)22,ρX1μ,κ,\left|\left\langle\left(L_{\mu,\kappa}-K_{\mu,\kappa}\right)\rho,\rho\right\rangle\right|\lesssim o(\kappa^{2})\left\|\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{\mu,\kappa})}^{2}}^{2},\ \ \forall\rho\in X_{1}^{\mu,\kappa},

and zρμ,κkerKμ,κXodμ,κ\partial_{z}\rho_{\mu,\kappa}\in\ker K_{\mu,\kappa}\cap X_{od}^{\mu,\kappa}, we have the same decompositions for Kμ,κK_{\mu,\kappa} on Xevμ,κX_{ev}^{\mu,\kappa} and Xodμ,κX_{od}^{\mu,\kappa}.

Since γ0(6/5,2)\gamma_{0}\in(6/5,2), it is known that (see [30])

dVμ(0,Rμ)dμ=ddμ(MμRμ)<0\frac{dV_{\mu}(0,R_{\mu})}{d\mu}=-\frac{d}{d\mu}\left(\frac{M_{\mu}}{R_{\mu}}\right)<0

for μ\mu small. Recall that μ~\tilde{\mu} is the first critical point of MμRμ\frac{M_{\mu}}{R_{\mu}}. Therefore, when μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset\left(0,\tilde{\mu}\right), we have dVμ(0,Rμ)dμ<ϵ0\frac{dV_{\mu}(0,R_{\mu})}{d\mu}<-\epsilon_{0} for some constant ϵ0>0\epsilon_{0}>0 independent of μ\mu. Since |dVμ,κ(0,Zμ,κ)dμdVμ(0,Rμ)dμ|=O(κ)\left|\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}-\frac{dV_{\mu}(0,R_{\mu})}{d\mu}\right|=O(\kappa), we have dVμ,κ(0,Zμ,κ)dμ<0\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}<0 for any μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] and κ\kappa small enough. This finishes the proof of the lemma.   

Proof of Theorem 3.2. The spectral stability of (ρμ,κ,κωr𝐞θ)(\rho_{\mu,\kappa},\kappa\omega r\mathbf{e}_{\theta}) is equivalent to show n(Kμ,κ|R(B1μ,κ))=0n^{-}\left(K_{\mu,\kappa}|_{R(B_{1}^{\mu,\kappa})}\right)=0. By Lemma 3.2 and the fact that Kμ,κ=Lμ,κK_{\mu,\kappa}=L_{\mu,\kappa}\ on Xodμ,κX_{od}^{\mu,\kappa}, we have

n(Kμ,κ|Xodμ,κR(B1μ,κ))=n(Lμ,κ|Xodμ,κR(B1μ,κ))n(Lμ,κ|Xodμ,κ)=0.n^{-}(K_{\mu,\kappa}|_{X_{od}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})})=n^{-}(L_{\mu,\kappa}|_{X_{od}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})})\leq n^{-}(L_{\mu,\kappa}|_{X_{od}^{\mu,\kappa}})=0.

Since Kμ,κLμ,κK_{\mu,\kappa}\geq L_{\mu,\kappa} on Xevμ,κX_{ev}^{\mu,\kappa}\ due to Υ(r)>0\Upsilon(r)>0, for spectral stability it suffices to show n(Lμ,κ|Xevμ,κR(B1μ,κ))=0n^{-}\left(L_{\mu,\kappa}|_{X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})}\right)=0.

Applying ddμ\frac{d}{d\mu} to (3.1), we obtain that

Lμ,κdρμ,κdμ=dcμ,κdμ.L_{\mu,\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu}=-\frac{dc_{\mu,\kappa}}{d\mu}.

From (3.1) we know that cμ,κ=Vμ,κ(Rμ,κ,0)c_{\mu,\kappa}=-V_{\mu,\kappa}(R_{\mu,\kappa},0). By Lemma 3.2, dcμ,κdμ>0\frac{dc_{\mu,\kappa}}{d\mu}>0 for μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] and κ\kappa small enough. Therefore,

Xevμ,κR(B1μ,κ)={δρXevμ,κ|Lμ,κdρμ,κdμ,δρ=0},X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})=\left\{\delta\rho\in X_{ev}^{\mu,\kappa}\ |\ \left\langle L_{\mu,\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu},\delta\rho\right\rangle=0\right\},

i.e. δρ\delta\rho is orthogonal to dρμ,κdμ\frac{d\rho_{\mu,\kappa}}{d\mu}\ in Lμ,κ,\left\langle L_{\mu,\kappa}\cdot,\cdot\right\rangle.

When dMμ,κdμ>0\frac{dM_{\mu,\kappa}}{d\mu}>0, we have

Lμ,κdρμ,κdμ,dρμ,κdμ=dcμ,κdμgζμ,κ(Bμ)dρμ,κdμ𝑑x=dVμ,κ(0,Zμ,κ)dμdMμ,κdμ<0.\left\langle L_{\mu,\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu},\frac{d\rho_{\mu,\kappa}}{d\mu}\right\rangle=-\frac{dc_{\mu,\kappa}}{d\mu}\int_{g_{\zeta_{\mu,\kappa}}(B_{\mu})}\frac{d\rho_{\mu,\kappa}}{d\mu}dx=\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}\frac{dM_{\mu,\kappa}}{d\mu}<0.

Combining above with Lemma 3.2, we get n(Lμ,κ|Xevμ,κR(B1μ,κ))=0n^{-}(L_{\mu,\kappa}|_{X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})})=0. Hence we get the spectrally stability.

When dMμ,κdμ=0\frac{dM_{\mu,\kappa}}{d\mu}=0, since

dMμ,κdμ=dρμ,κdμ𝑑x=0,\frac{dM_{\mu,\kappa}}{d\mu}=\int\frac{d\rho_{\mu,\kappa}}{d\mu}dx=0,

we have dρμ,κdμXevμ,κR(B1μ,κ)\frac{d\rho_{\mu,\kappa}}{d\mu}\in X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa}). Meanwhile, since kerLμ,κ={0}\ker L_{\mu,\kappa}=\{0\} on Xevμ,κX_{ev}^{\mu,\kappa}, by the same argument as in the proof of Theorem 1.1 in [30], we have n(Lμ,κ|Xevμ,κR(B1μ,κ))=0n^{-}(L_{\mu,\kappa}|_{X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa})})=0. The spectral stability is again true.   

It is natural to ask if extrema points of the total mass Mμ,κM_{\mu,\kappa}\ of the rotating stars (ρμ,κ,κωr𝐞θ)(\rho_{\mu,\kappa},\kappa\omega r\mathbf{e}_{\theta})\ are the transition points for stability as in the case of nonrotating stars. Below, we show that this is not true.

First, we give conditions to ensure that the first extrema point of total mass Mμ,κM_{\mu,\kappa} is obtained at a center density μκ\mu_{\ast}^{\kappa} before μ~\tilde{\mu} (the first critical point of Mμ/RμM_{\mu}/R_{\mu}). Assume P(ρ)P(\rho)\ satisfies the following asymptotically polytropic conditions:

H1)

P(ρ)=cργ0(1+O(ρa0)) when ρ0,P(\rho)=c_{-}\rho^{\gamma_{0}}(1+O(\rho^{a_{0}}))\text{ when }\rho\rightarrow 0, (3.5)

for some γ0(43,2)\gamma_{0}\in(\frac{4}{3},2) and c,a0>0c_{-},\ a_{0}>0;

H2)

P(ρ)=c+ργ(1+O(ρa)) when ρ+,P(\rho)=c_{+}\rho^{\gamma_{\infty}}(1+O(\rho^{-a_{\infty}}))\text{ when }\rho\rightarrow+\infty, (3.6)

for some γ(1,6/5)(6/5,4/3)\gamma_{\infty}\in(1,6/5)\cup(6/5,4/3) and c+,a>0c_{+},\ a_{\infty}>0.

Under assumptions H1)-H2), it was shown in [15] that the total mass MμM_{\mu} of the non-rotating stars has extrema points. Moreover, the first extrema point of MμM_{\mu}, which is a maximum point denoted by μ\mu_{\ast}, must be less than μ~\tilde{\mu} (see Lemma 3.14 in [30]). For any μ0<μ<μ1<\mu_{0}<\mu_{\ast}<\mu_{1}< μ~\tilde{\mu}, we have Mμ,κMμM_{\mu,\kappa}\rightarrow M_{\mu} in C1[μ0,μ1]C^{1}\left[\mu_{0},\mu_{1}\right] when κ0\kappa\rightarrow 0. Thus when κ\kappa is small enough, the function Mμ,κM_{\mu,\kappa} has the first maximum μκ(μ0,μ1)\mu_{\ast}^{\kappa}\in\left(\mu_{0},\mu_{1}\right) and limκ0μκ=μ\lim_{\kappa\rightarrow 0}\mu_{\ast}^{\kappa}=\mu_{\ast}. By Theorem 3.2, the rotating stars (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta})\ are stable for μ[μ0,μκ]\mu\in\left[\mu_{0},\mu_{\ast}^{\kappa}\right]. It is shown below that the transition of stability occurs beyond μκ\mu_{\ast}^{\kappa}.

Theorem 3.3

Suppose P(ρ)P(\rho) satisfies (3.5)-(3.6), ωC1,β[0,)\omega\in C^{1,\beta}[0,\infty) satisfies Υ(r)>0\Upsilon(r)>0. Fixed κ\kappa small, let μ^κ\hat{\mu}_{\kappa}\ be the first transition point of stability of the rotating stars (ρμ,κ,κω(r)r𝐞θ)(\rho_{\mu,\kappa},\kappa\omega(r)r\mathbf{e}_{\theta}). Then for any κ0\kappa\neq 0 small enough, we have μ^κ>μκ.\hat{\mu}_{\kappa}>\mu_{\ast}^{\kappa}.

Proof. As in the proof of Theorem 3.2, the spectral stability is equivalent to show Kμ,κ0K_{\mu,\kappa}\geq 0 on Xevμ,κR(B1μ,κ)X_{ev}^{\mu,\kappa}\cap R(B_{1}^{\mu,\kappa}). Suppose the maxima point μκ\mu_{\ast}^{\kappa} of Mμ,κM_{\mu,\kappa} is the first transition point for stability, then we have

infρXevμκ,κR(B1μκ,κ)Kμκ,κρ,ρρLΦ′′(ρμκ,κ)2=0.\inf_{\rho\in X_{ev}^{\mu_{\ast}^{\kappa},\kappa}\cap R(B_{1}^{\mu_{\ast}^{\kappa},\kappa})}\frac{\langle K_{\mu_{\ast}^{\kappa},\kappa}\rho,\rho\rangle}{\|\rho\|_{L_{\Phi^{\prime\prime}(\rho_{\mu_{\ast}^{\kappa},\kappa})}^{2}}}=0. (3.7)

By Lemma 3.2, when κ\kappa is small enough, we have the decomposition

Xevμκ,κ=X,evμκ,κX+,evμκ,κ,dimX,evμκ,κ=1,X_{ev}^{\mu_{\ast}^{\kappa},\kappa}=X_{-,ev}^{\mu_{\ast}^{\kappa},\kappa}\oplus X_{+,ev}^{\mu_{\ast}^{\kappa},\kappa},\ \ \dim X_{-,ev}^{\mu_{\ast}^{\kappa},\kappa}=1,

satisfying: i) Kμκ,κ|X,evμκ,κ<0;K_{\mu_{\ast}^{\kappa},\kappa}|_{X_{-,ev}^{\mu_{\ast}^{\kappa},\kappa}}<0;\ ii) there exists δ>0\delta>0 such that

Kμκ,κρ,ρδρLΦ′′(ρμκ,κ)22, for any ρX+,evμκ,κ.\left\langle K_{\mu_{\ast}^{\kappa},\kappa}\rho,\rho\right\rangle\geq\delta\left\|\rho\right\|_{L_{\Phi^{\prime\prime}(\rho_{\mu_{\ast}^{\kappa},\kappa})}^{2}}^{2}\ ,\text{ for any }\rho\in X_{+,ev}^{\mu_{\ast}^{\kappa},\kappa}.

By using above decomposition, it is easy to show that the infimum in (3.7) is obtained by some ρXevμκ,κR(B1μκ,κ)\rho^{\ast}\in X_{ev}^{\mu_{\ast}^{\kappa},\kappa}\cap R(B_{1}^{\mu_{\ast}^{\kappa},\kappa}). Then

Lμκ,κρ,ρKμκ,κρ,ρ=0.\langle L_{\mu_{\ast}^{\kappa},\kappa}\rho^{\ast},\rho^{\ast}\rangle\leq\langle K_{\mu_{\ast}^{\kappa},\kappa}\rho^{\ast},\rho^{\ast}\rangle=0.

On the other hand, we have

Lμκ,κdρμ,κdμ|μ=μκ,dρμ,κdμ|μ=μκ=dVμ,κ(0,Zμ,κ)dμ|μ=μκdMμ,κdμ|μ=μκ=0,\left\langle L_{\mu_{\ast}^{\kappa},\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}},\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}\right\rangle=\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}\frac{dM_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}=0,

and

Lμκ,κdρμ,κdμ|μ=μκ,ρ=dVμ,κ(0,Zμ,κ)dμ|μ=μκρ𝑑x=0.\left\langle L_{\mu_{\ast}^{\kappa},\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}},\rho^{\ast}\right\rangle=\frac{dV_{\mu,\kappa}(0,Z_{\mu,\kappa})}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}\int\rho^{\ast}dx=0.

This implies that ρ=cdρμ,κdμ|μ=μκ\rho^{\ast}=c\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}} for some constant c0c\neq 0. Since otherwise,

n0(Lμκ,κ|Xevμκ,κ)n0(Lμκ,κ|span{dρμ,κdμ|μ=μκ,ρ})=2.n^{\leq 0}(L_{\mu_{\ast}^{\kappa},\kappa}|_{X_{ev}^{\mu_{\ast}^{\kappa},\kappa}})\geq n^{\leq 0}(L_{\mu_{\ast}^{\kappa},\kappa}|_{span\left\{\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}},\rho^{\ast}\right\}})=2.

which is in contradiction to n0(Lμκ,κ|Xevμκ,κ)=1n^{\leq 0}(L_{\mu_{\ast}^{\kappa},\kappa}|_{X_{ev}^{\mu_{\ast}^{\kappa},\kappa}})=1. Thus, we have

0\displaystyle 0 =Kμκ,κdρμ,κdμ|μ=μκ,dρμ,κdμ|μ=μκ\displaystyle=\left\langle K_{\mu_{\ast}^{\kappa},\kappa}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}},\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}\right\rangle
=2πκ20+Υ(r)(0rs+dρμ,κdμ|μ=μκ(s,z)dzds)2r+ρμκ,κ(r,z)𝑑z𝑑r.\displaystyle=2\pi\kappa^{2}\int_{0}^{+\infty}\Upsilon(r)\frac{\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}(s,z)dzds\right)^{2}}{r\int_{-\infty}^{+\infty}\rho_{\mu_{\ast}^{\kappa},\kappa}({r},z)dz}dr.

and consequently

+dρμ,κdμ|μ=μκ(r,z)dz=0,r[0,Rμκ,κ].\int_{-\infty}^{+\infty}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}(r,z)dz=0,\ \ \ \forall r\in[0,R_{\mu_{\ast}^{\kappa},\kappa}]. (3.8)

Nevertheless, it is not true as shown below.

For non-rotating stars (ρμ(𝐫),0)(\rho_{\mu}(\mathbf{r}),0), we have

ΔVμ=1𝐫2(𝐫2(Vμ(𝐫)))=4πρμ,\Delta V_{\mu}=\frac{1}{\mathbf{r}^{2}}\left(\mathbf{r}^{2}\left(V_{\mu}(\mathbf{r})\right)^{\prime}\right)^{\prime}=4\pi\rho_{\mu},

where 𝐫=r2+z2\mathbf{r}=\sqrt{r^{2}+z^{2}} and Vμ(𝐫)V_{\mu}(\mathbf{r}) is the gravitational potential. Applying ddμ\frac{d}{d\mu} to above equation, one has

1𝐫2(𝐫2(dVμ(𝐫)dμ))=4πdρμdμ.\frac{1}{\mathbf{r}^{2}}\left(\mathbf{r}^{2}\left(\frac{dV_{\mu}(\mathbf{r})}{d\mu}\right)^{\prime}\right)^{\prime}=4\pi\frac{d\rho_{\mu}}{d\mu}.

When 𝐫Rμ\mathbf{r}\geq R_{\mu}, since dρμdμ(𝐫)=0\frac{d\rho_{\mu}}{d\mu}\left(\mathbf{r}\right)=0 we have

𝐫2(dVμdμ)(𝐫)=Rμ2(dVμdμ)(Rμ)=4π0Rμs2dρμdμ(s)𝑑s=dMμdμ,\mathbf{r}^{2}\left(\frac{dV_{\mu}}{d\mu}\right)^{\prime}(\mathbf{r})=R_{\mu}^{2}\left(\frac{dV_{\mu}}{d\mu}\right)^{\prime}(R_{\mu})=4\pi\int_{0}^{R_{\mu}}s^{2}\frac{d\rho_{\mu}}{d\mu}(s)ds=\frac{dM_{\mu}}{d\mu},

and consequently

dVμdμ(𝐫)=dMμdμ1𝐫,for 𝐫Rμ.\frac{dV_{\mu}}{d\mu}(\mathbf{r})=-\frac{dM_{\mu}}{d\mu}\frac{1}{\mathbf{r}},\ \text{for }\mathbf{r}\geq R_{\mu}.\

Since limκ0μκ=μ\lim_{\kappa\rightarrow 0}\mu_{\ast}^{\kappa}=\mu_{\ast}, we have limκ0dMμdμ(μκ)=dMμdμ(μ)=0\lim_{\kappa\rightarrow 0}\frac{dM_{\mu}}{d\mu}\left(\mu_{\ast}^{\kappa}\right)=\frac{dM_{\mu}}{d\mu}\left(\mu_{\ast}\right)=0. Thus

dVμdμ(Rμ)|μ=μκ=dMμdμ(μκ)1Rμκ0,as κ0\frac{dV_{\mu}}{d\mu}(R_{\mu})|_{\mu=\mu_{\ast}^{\kappa}}=-\frac{dM_{\mu}}{d\mu}\left(\mu_{\ast}^{\kappa}\right)\frac{1}{R_{\mu_{\ast}^{\kappa}}}\rightarrow 0,\ \text{as }\kappa\rightarrow 0\text{. }

Define yμ(𝐫)=Vμ(Rμ)Vμ(𝐫)=Φ(ρμ)y_{\mu}(\mathbf{r})=V_{\mu}(R_{\mu})-V_{\mu}(\mathbf{r})=\Phi^{\prime}(\rho_{\mu}). Then by Lemma 3.13 in [30], we have

dyμdμ(Rμ)|μ=μκ\displaystyle\frac{dy_{\mu}}{d\mu}(R_{\mu})|_{\mu=\mu_{\ast}^{\kappa}} =ddμ(MμRμ)|μ=μκdVμdμ(Rμ)|μ=μκ\displaystyle=-\frac{d}{d\mu}\left(\frac{M_{\mu}}{R_{\mu}}\right)|_{\mu=\mu_{\ast}^{\kappa}}-\frac{dV_{\mu}}{d\mu}(R_{\mu})|_{\mu=\mu_{\ast}^{\kappa}} (3.9)
ddμ(MμRμ)|μ=μ0, as κ0.\displaystyle\rightarrow-\frac{d}{d\mu}\left(\frac{M_{\mu}}{R_{\mu}}\right)|_{\mu=\mu_{\ast}}\neq 0\text{, as }\kappa\rightarrow 0.

Thus by (3.9), we obtain

dρμdμ(𝐫)=1Φ′′(ρμ)dyμdμ(𝐫)ρμ2γ0(Rμ𝐫)2γ0γ01,\frac{d\rho_{\mu}}{d\mu}(\mathbf{r})=\frac{1}{\Phi^{\prime\prime}(\rho_{\mu})}\frac{dy_{\mu}}{d\mu}(\mathbf{r})\approx\rho_{\mu}^{2-\gamma_{0}}\approx(R_{\mu}-\mathbf{r})^{\frac{2-\gamma_{0}}{\gamma_{0}-1}},

for 𝐫Rμ\mathbf{r}\sim R_{\mu} and μ=μκ\mu=\mu_{\ast}^{\kappa}. By (3.36) and (4.78) in [41], we know

|dgζμ,κ1dμ(y)|=|limμ1μgζμ1,κ1gζμ,κ1μ1μ(y)|Cκ,\left|\frac{dg_{\zeta_{\mu,\kappa}}^{-1}}{d\mu}(y)\right|=\left|\lim_{\mu_{1}\rightarrow\mu}\frac{g_{\zeta_{\mu_{1},\kappa}}^{-1}-g_{\zeta_{\mu,\kappa}}^{-1}}{\mu_{1}-\mu}(y)\right|\leq C\kappa,

for some constant CC independent of μ\mu and κ\kappa. Therefore,

dρμ,κdμ(r,z)\displaystyle\frac{d\rho_{\mu,\kappa}}{d\mu}(r,z) =dρμ(gζμ,κ1(r,z))dμ=dρμdμ(gζμ,κ1(r,z))+dρμ(𝐫)d𝐫|𝐫=gζμ,κ1(r,z)dgζμ,κ1dμ\displaystyle=\frac{d\rho_{\mu}(g_{\zeta_{\mu,\kappa}}^{-1}(r,z))}{d\mu}=\frac{d\rho_{\mu}}{d\mu}(g_{\zeta_{\mu,\kappa}}^{-1}(r,z))+\frac{d\rho_{\mu}(\mathbf{r})}{d\mathbf{r}}|_{\mathbf{r}=g_{\zeta_{\mu,\kappa}}^{-1}(r,z)}\frac{dg_{\zeta_{\mu,\kappa}}^{-1}}{d\mu}
ρμ(gζμ,κ1(r,z))2γ0=ρμ,κ(r,z)2γ0,\displaystyle\approx\rho_{\mu}(g_{\zeta_{\mu,\kappa}}^{-1}(r,z))^{2-\gamma_{0}}=\rho_{\mu,\kappa}(r,z)^{2-\gamma_{0}},

for gζμ,κ1(r,z)Rμg_{\zeta_{\mu,\kappa}}^{-1}(r,z)\sim R_{\mu} and μ=μκ\mu=\mu_{\ast}^{\kappa}. By Lemma 2.1, we have

+dρμ,κdμ|μ=μκ(r,z)dz+ρμ,κ(r,z)2γ0𝑑z(Rμκ,κr)2γ0γ01+120,\int_{-\infty}^{+\infty}\frac{d\rho_{\mu,\kappa}}{d\mu}|_{\mu=\mu_{\ast}^{\kappa}}(r,z)dz\thickapprox\int_{-\infty}^{+\infty}\rho_{\mu,\kappa}(r,z)^{2-\gamma_{0}}dz\thickapprox(R_{\mu_{\ast}^{\kappa},\kappa}-r)^{\frac{2-\gamma_{0}}{\mathbb{\gamma}_{0}-1}+\frac{1}{2}}\neq 0,

for rRμκ,κr\sim R_{\mu_{\ast}^{\kappa},\kappa}. This is in contradiction to (3.8) and finishes the proof of the theorem.   

3.2 The case of fixed angular momentum distribution

Let j(p,q):2j(p,q):\mathbb{R}^{2}\mapsto\mathbb{R} be a given function satisfying

j(p,q)C1,β(+×+) and j(0,q)=pj(0,q)=0.j(p,q)\in C^{1,\beta}(\mathbb{R}^{+}\times\mathbb{R}^{+})\text{ and }j(0,q)=\partial_{p}j(0,q)=0. (3.10)

Define J(p,q)=j2(p,q)J(p,q)=j^{2}(p,q). We construct a family of rotating stars of the following form

{ρμ,ε(r,z)=ρμ(gζμ,ε1((r,z))),vμ,ε=εj(mρμ,ε(r),Mμ,ε)r𝐞θ,\begin{cases}\rho_{\mu,\varepsilon}(r,z)=\rho_{\mu}(g_{\zeta_{\mu,\varepsilon}}^{-1}((r,z))),\\ \vec{v}_{\mu,\varepsilon}=\varepsilon\frac{j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})}{r}\mathbf{e}_{\theta},\end{cases}

where

mρμ,ε(r)=0rsρμ,ε(s,z)𝑑s𝑑z,gζμ,ε=x(1+ζμ,ε(x)|x|2),m_{\rho_{\mu,\varepsilon}}(r)=\int_{0}^{r}s\int_{-\infty}^{\infty}\rho_{\mu,\varepsilon}(s,z)dsdz,\ g_{\zeta_{\mu,\varepsilon}}=x\left(1+\frac{\zeta_{\mu,\varepsilon}(x)}{|x|^{2}}\right),

and ζμ,ε(x):Bμ\zeta_{\mu,\varepsilon}(x):B_{\mu}\rightarrow\mathbb{R} is axi-symmetric and even in zz.

The existence of rotating stars (ρμ,ε,vμ,ε)\left(\rho_{\mu,\varepsilon},\vec{v}_{\mu,\varepsilon}\right)\ is reduced to the following equations:

Φ(ρμ,ε)+Vμ,εε20rJ(mρμ,ε(s),Mμ,ε)s3𝑑s+cμ,ε=0,in Ωμ,ε,\Phi^{\prime}(\rho_{\mu,\varepsilon})+V_{\mu,\varepsilon}-\varepsilon^{2}\int_{0}^{r}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})s^{-3}ds+c_{\mu,\varepsilon}=0,\quad\text{in }\Omega_{\mu,\varepsilon}, (3.11)
Vμ,ε=|x|1ρμ,ε in 3,V_{\mu,\varepsilon}=-|x|^{-1}\ast\rho_{\mu,\varepsilon}\text{ in }\mathbb{R}^{3}, (3.12)

where Ωμ,ε=gζμ,ε(Bμ)\Omega_{\mu,\varepsilon}=g_{\zeta_{\mu,\varepsilon}}(B_{\mu}) and cμ,εc_{\mu,\varepsilon} is a constant.

Although (3.11) is a little different from the steady state equations in [14] [19], the key linearized operator at the point ε=0\varepsilon=0 is the same as [14]. By similar arguments as [14, 19, 41], we can get the following existence theorem.

Theorem 3.4

Let μ[μ0,μ1](0,μmax)\mu\in[\mu_{0},\mu_{1}]\subset(0,\mu_{\max}), P(ρ)P(\rho) satisfy (1.2)-(1.3) and j(p,q)j(p,q) satisfy (3.10). Then there exist ε~>0\tilde{\varepsilon}>0 and solutions ρμ,ε\rho_{\mu,\varepsilon} of (3.11) for all |ε|<ε~|\varepsilon|<\tilde{\varepsilon}, with the following properties:
1) ρμ,εCc1,α(3)\rho_{\mu,\varepsilon}\in C_{c}^{1,\alpha}(\mathbb{R}^{3}), where α=min(2γ0γ01,1)\alpha=\min(\frac{2-\mathbb{\gamma}_{0}}{\mathbb{\gamma}_{0}-1},1).
2) ρμ,ε\rho_{\mu,\varepsilon} is axi-symmetric and even in zz.
3) ρμ,ε(0)=μ\rho_{\mu,\varepsilon}(0)=\mu.
4) ρμ,ε0\rho_{\mu,\varepsilon}\geq 0 has compact support gζμ,ε(Bμ)g_{\zeta_{\mu,\varepsilon}}(B_{\mu}).
5) For all μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}], the mapping ερμ,ε\varepsilon\rightarrow\rho_{\mu,\varepsilon} is continuous from (ε~,ε~)(-\tilde{\varepsilon},\tilde{\varepsilon}) into Cc1(3).C_{c}^{1}(\mathbb{R}^{3}).

When ε=0\varepsilon=0, ρμ,0(x)=ρμ(|x|)\rho_{\mu,0}(x)=\rho_{\mu}(|x|) is the nonrotating star solution with ρμ(0)=μ\rho_{\mu}(0)=\mu.

Now we use Theorem 1.1 to study the stability of rotating star solutions (ρμ,ε,εj(mρμ,ε(r),Mμ,ε)/r𝐞θ)(\rho_{\mu,\varepsilon},\varepsilon j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})/r\mathbf{e}_{\theta}), where ε\varepsilon is small enough, j(p,q)j(p,q) satisfies (3.10) and the Rayleigh stability condition pJ(p,q)>0\partial_{p}J\left(p,q\right)>0~{}(i.e. jpj>0j\partial_{p}j>0). As in Section 3.1, the assumptions in Theorem 1.1 can be verified. That is, Ωμ,ε\partial\Omega_{\mu,\varepsilon} is C2C^{2} and has positive curvature near (Rμ,ε,0)(R_{\mu,\varepsilon},0) and (1.7) holds for any μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] and ε\varepsilon small enough.

Below, for rotating stars (ρμ,ε,εj(mρμ,ε(r),Mμ,ε)/r𝐞θ)(\rho_{\mu,\varepsilon},\varepsilon j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})/r\mathbf{e}_{\theta}) we use Xμ,εX_{\mu,\varepsilon}, X1μ,εX_{1}^{\mu,\varepsilon}, Yμ,εY_{\mu,\varepsilon}, Lμ,εL_{\mu,\varepsilon}, A1μ,εA_{1}^{\mu,\varepsilon}, B1μ,εB_{1}^{\mu,\varepsilon}, B2μ,εB_{2}^{\mu,\varepsilon}, Kμ,εK_{\mu,\varepsilon}, etc., to denote the corresponding spaces XX, X1X_{1}, YY, and operators LL, A1A_{1}, B1B_{1}, B2B_{2}, 𝒦\mathcal{K} etc. defined in Section 2. Again, we denote μ~\tilde{\mu} to be the first critical point of Mμ/RμM_{\mu}/R_{\mu} for non-rotating stars. Define the spaces Xevμ,εX_{ev}^{\mu,\varepsilon} and Xevμ,εX_{ev}^{\mu,\varepsilon} as in (3.3). By the same proof of Lemma 3.2, we have the following.

Lemma 3.3

Assume P(ρ)P(\rho) satisfies(1.2)-(1.3) and j(p,q)j(p,q) satisfies (3.10) and p(j2(p,q))>0\partial_{p}(j^{2}\left(p,q\right))>0. Then for any μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset(0,\tilde{\mu}) and ε\varepsilon small enough, we have n(Kμ,ε)=1n^{-}(K_{\mu,\varepsilon})=1 and kerKμ,ε=span{zρμ,ε}\ker K_{\mu,\varepsilon}=span\{\partial_{z}\rho_{\mu,\varepsilon}\}. Moreover, we have the following direct sum decompositions for Xevμ,εX_{ev}^{\mu,\varepsilon} and Xevμ,ε:X_{ev}^{\mu,\varepsilon}:

Xevμ,ε=X,evμ,εX+,evμ,ε,dimX,evμ,ε=1,X_{ev}^{\mu,\varepsilon}=X_{-,ev}^{\mu,\varepsilon}\oplus X_{+,ev}^{\mu,\varepsilon},\ \ \dim X_{-,ev}^{\mu,\varepsilon}=1,

and

Xodμ,ε=span{zρμ,ε}X+,odμ,ε,X_{od}^{\mu,\varepsilon}=span\{\partial_{z}\rho_{\mu,\varepsilon}\}\oplus X_{+,od}^{\mu,\varepsilon},

satisfying: i) Kμ,ε|X,evμ,ε<0;K_{\mu,\varepsilon}|_{X_{-,ev}^{\mu,\varepsilon}}<0;

ii) there exists δ>0\delta>0 such that

Kμ,εu,uδuLΦ′′(ρμ,ε)22,  uX+,evμ,εX+,odμ,ε,\left\langle K_{\mu,\varepsilon}u,u\right\rangle\geq\delta\left\|u\right\|_{L_{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})}^{2}}^{2}\ ,\text{ }\forall\text{ }u\in X_{+,ev}^{\mu,\varepsilon}\oplus X_{+,od}^{\mu,\varepsilon},

where δ\delta is independent of μ\mu and ε\varepsilon.

In addition, for any μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}], it holds that dVμ,ε(Rμ,ε,0)dμ<0\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}<0 for ε\varepsilon small.

By Theorem 1.1, we get the following necessary and sufficient condition for the stability of rotating stars (ρμ,ε,εj(mρμ,ε(r),Mμ,ε)/r𝐞θ):(\rho_{\mu,\varepsilon},\varepsilon j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})/r\mathbf{e}_{\theta}):

Kμ,εδρ,δρ=Lμ,εδρ,δρ\displaystyle\langle K_{\mu,\varepsilon}\delta\rho,\delta\rho\rangle=\langle L_{\mu,\varepsilon}\delta\rho,\delta\rho\rangle
+2ε2π0Rμ,εpJ(mρμ,ε(r),Mμ,ε)r3(0rs+δρ(s,z)𝑑z𝑑s)2𝑑r0,\displaystyle\quad+2\varepsilon^{2}\pi\int_{0}^{R_{\mu,\varepsilon}}\frac{\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})}{r^{3}}\left(\int_{0}^{r}s\int_{-\infty}^{+\infty}\delta\rho(s,z)dzds\right)^{2}dr\geq 0,

for all δρR(B1μ,ε)={δρX1μ,ε|3δρ𝑑x=0}\delta\rho\in R(B_{1}^{\mu,\varepsilon})=\left\{\delta\rho\in X_{1}^{\mu,\varepsilon}|\int_{\mathbb{R}^{3}}\delta\rho dx=0\right\}.

The following Theorem shows that the stability of this family of rotating stars can only change at the mass extrema.

Theorem 3.5

Assume P(ρ)P(\rho) satisfies (1.2)-(1.3), and j(p,q)j(p,q) satisfy (3.10) and p(j2(p,q))>0\partial_{p}(j^{2}\left(p,q\right))>0. Let nu(μ)n^{u}(\mu) be the number of unstable modes, namely the total algebraic multiplicities of unstable eigenvalues of the linearized Euler-Poisson systems at (ρμ,ε,εj(mρμ,ε(r),Mμ,ε)/r𝐞θ)(\rho_{\mu,\varepsilon},\varepsilon j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})/r\mathbf{e}_{\theta}). Then for any μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset(0,\tilde{\mu}) and ε\varepsilon small enough, we have

nu(μ)={1, when dMμ,εdμ<0,0, when dMμ,εdμ0.n^{u}(\mu)=\begin{cases}1\text{, when }\frac{dM_{\mu,\varepsilon}}{d\mu}<0,\\ 0\text{, when }\frac{dM_{\mu,\varepsilon}}{d\mu}\geq 0.\end{cases}

Proof. By the same arguments in the proof of Theorem 3.2, we have

nu(μ)=n(Kμ,ε|Xevμ,εR(B1μ,ε)).n^{u}(\mu)=n^{-}\left(K_{\mu,\varepsilon}|_{X_{ev}^{\mu,\varepsilon}\cap R(B_{1}^{\mu,\varepsilon})}\right).

Thus it is reduced to find the number of negative modes of the quadratic form Kμ,ε,\left\langle K_{\mu,\varepsilon}\cdot,\cdot\right\rangle restricted to the even subspace of R(B1μ,ε)R(B_{1}^{\mu,\varepsilon}).

Applying ddμ\frac{d}{d\mu} to (3.11), we obtain that

Lμ,εdρμ,εdμ=ε20rpJ(mρμ,ε(s),Mμ,ε)dmρμ,εdμs3ds\displaystyle L_{\mu,\varepsilon}\frac{d\rho_{\mu,\varepsilon}}{d\mu}=\varepsilon^{2}\int_{0}^{r}\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})\frac{dm_{\rho_{\mu,\varepsilon}}}{d\mu}s^{-3}ds (3.13)
+ε20rqJ(mρμ,ε(s),Mμ,ε)dMμ,εdμs3dsdcμ,εdμ,\displaystyle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\varepsilon^{2}\int_{0}^{r}\partial_{q}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})\frac{dM_{\mu,\varepsilon}}{d\mu}s^{-3}ds-\frac{dc_{\mu,\varepsilon}}{d\mu},

where

dcμ,εdμ\displaystyle\frac{dc_{\mu,\varepsilon}}{d\mu} =ddμ(Vμ,ε(Rμ,ε,0)+ε20Rμ,εJ(mρμ,ε(s),Mμ,ε)s3𝑑s)\displaystyle=\frac{d}{d\mu}\left(-V_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)+\varepsilon^{2}\int_{0}^{R_{\mu,\varepsilon}}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})s^{-3}ds\right)
=dVμ,ε(Rμ,ε,0)dμ+ε20Rμ,εpJ(mρμ,ε(s),Mμ,ε)dmρμ,ε(s)dμs3ds\displaystyle=-\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}+\varepsilon^{2}\int_{0}^{R_{\mu,\varepsilon}}\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})\frac{dm_{\rho_{\mu,\varepsilon}}(s)}{d\mu}s^{-3}ds
+ε2dMμ,εdμhμ,ε(Rμ,ε)+ε2J(Mμ,ε,Mμ,ε)Rμ,ε3dRμ,εdμ.\displaystyle\quad+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}h_{\mu,\varepsilon}(R_{\mu,\varepsilon})+\varepsilon^{2}J(M_{\mu,\varepsilon},M_{\mu,\varepsilon})R_{\mu,\varepsilon}^{-3}\frac{dR_{\mu,\varepsilon}}{d\mu}.

By integration by parts and (3.13), we obtain that

2π0Rμ,εε2[pJ(mρμ,ε(r),Mμ,ε)r3](0rsdρμ,εdμ𝑑z𝑑s)(0rsφ𝑑z𝑑s)𝑑r\displaystyle 2\pi\int_{0}^{R_{\mu,\varepsilon}}\varepsilon^{2}\left[\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})r^{-3}\right]\left(\int_{0}^{r}\int_{-\infty}^{\infty}s\frac{d\rho_{\mu,\varepsilon}}{d\mu}dzds\right)\left(\int_{0}^{r}\int_{-\infty}^{\infty}s\varphi dzds\right)dr
=ε2[0Rμ,εpJ(mρμ,ε(r),Mμ,ε)r3dmρμ,εdμdr]3φ𝑑x\displaystyle=\varepsilon^{2}\left[\int_{0}^{R_{\mu,\varepsilon}}\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})r^{-3}\frac{dm_{\rho_{\mu,\varepsilon}}}{d\mu}dr\right]\int_{\mathbb{R}^{3}}\varphi dx
2π0Rμ,εε2[0rpJ(mρμ,ε(s),Mμ,ε)dmρμ,ε(s)dμs3ds]rφ𝑑z𝑑r\displaystyle\quad-2\pi\int_{0}^{R_{\mu,\varepsilon}}\int_{-\infty}^{\infty}\varepsilon^{2}\left[\int_{0}^{r}\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})\frac{dm_{\rho_{\mu,\varepsilon}(s)}}{d\mu}s^{-3}ds\right]r\varphi dzdr
=ε2[0Rμ,εpJ(mρμ,ε(r),Mμ,ε)r3dmρμ,εdμdr]3φ𝑑xdc0dμ,φ\displaystyle=\varepsilon^{2}\left[\int_{0}^{R_{\mu,\varepsilon}}\partial_{p}J(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})r^{-3}\frac{dm_{\rho_{\mu,\varepsilon}}}{d\mu}dr\right]\int_{\mathbb{R}^{3}}\varphi dx-\left\langle\frac{dc_{0}}{d\mu},\varphi\right\rangle
Lμ,εdρμ,εdμ,φε2dMμ,εdμ0rqJ(mρμ,ε(s),Mμ,ε)s3ds,φ\displaystyle\quad-\left\langle L_{\mu,\varepsilon}\frac{d\rho_{\mu,\varepsilon}}{d\mu},\varphi\right\rangle-\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}\left\langle\int_{0}^{r}\partial_{q}J(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon})s^{-3}ds,\varphi\right\rangle
=(dVμ,ε(Rμ,ε,0)dμε2J(Mμ,ε,Mμ,ε)Rμ,ε3dRμ,εdμε2dMμ,εdμhμ,ε(Rμ,ε))3φ𝑑x\displaystyle=\left(\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}-\varepsilon^{2}J(M_{\mu,\varepsilon},M_{\mu,\varepsilon})R_{\mu,\varepsilon}^{-3}\frac{dR_{\mu,\varepsilon}}{d\mu}-\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}h_{\mu,\varepsilon}(R_{\mu,\varepsilon})\right)\int_{\mathbb{R}^{3}}\varphi dx
Lμ,εdρμ,εdμ,φε2dMμ,εdμKμ,εgμ,ε,φ.\displaystyle\quad-\left\langle L_{\mu,\varepsilon}\frac{d\rho_{\mu,\varepsilon}}{d\mu},\varphi\right\rangle-\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}\left\langle K_{\mu,\varepsilon}g_{\mu,\varepsilon},\varphi\right\rangle.

Here, in the above we used

hμ,ε(r)=0rqJ(mρμ,ε(s),Mμ,ε)s3ds,h_{\mu,\varepsilon}(r)=\int_{0}^{r}\partial_{q}J\left(m_{\rho_{\mu,\varepsilon}}(s),M_{\mu,\varepsilon}\right)s^{-3}ds,

and gμ,ε=Kμ,ε1hμ,εg_{\mu,\varepsilon}=K_{\mu,\varepsilon}^{-1}h_{\mu,\varepsilon}. The inverse operator

Kμ,ε1:(Xevμ,ε)L1Φ′′(ρμ,ε)2Xevμ,εK_{\mu,\varepsilon}^{-1}:\left(X_{ev}^{\mu,\varepsilon}\right)^{\ast}\subset L_{\frac{1}{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})}}^{2}\rightarrow X_{ev}^{\mu,\varepsilon}

exists and is bounded by Lemma 3.3. Since 1Φ′′(ρμ,ε)\frac{1}{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})} has compact support and Φ′′(s)sγ02\Phi^{\prime\prime}\left(s\right)\thickapprox s^{\gamma_{0}-2}\ for s0+s\sim 0^{+}, we have

|gμ,ε𝑑x|gμ,εLΦ′′(ρμ,ε)2Kμ,ε1hμ,εL1Φ′′(ρμ,ε)2(hμ,ε2Φ′′(ρμ,ε)𝑑x)12<+.\left|\int g_{\mu,\varepsilon}dx\right|\lesssim\|g_{\mu,\varepsilon}\|_{L_{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})}^{2}}\lesssim\left\|K_{\mu,\varepsilon}^{-1}\right\|\|h_{\mu,\varepsilon}\|_{L_{\frac{1}{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})}}^{2}}\lesssim\left(\int\frac{h_{\mu,\varepsilon}^{2}}{\Phi^{\prime\prime}(\rho_{\mu,\varepsilon})}dx\right)^{\frac{1}{2}}<+\infty.

Therefore, we have

Kμ,ε[dρμ,εdμ+ε2dMμ,εdμgμ,ε],φ=(dVμ,ε(Rμ,ε,0)dμ+O(ε2))3φ𝑑x,\left\langle K_{\mu,\varepsilon}\left[\frac{d\rho_{\mu,\varepsilon}}{d\mu}+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}g_{\mu,\varepsilon}\right],\varphi\right\rangle=\left(\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}+O(\varepsilon^{2})\right)\int_{\mathbb{R}^{3}}\varphi dx, (3.14)

for any φXevμ,ε\varphi\in X_{ev}^{\mu,\varepsilon}.

By (3.14) and the fact that dVμ,ε(Rμ,ε,0)dμ+O(ε2)<0\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}+O(\varepsilon^{2})<0 when μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] and ε\varepsilon is small, we have

Xevμ,εR(B1μ,ε)={δρXevμ,ε|Kμ,ε(dρμ,εdμ+ε2dMμ,εdμgμ,ε),δρ=0}.X_{ev}^{\mu,\varepsilon}\cap R(B_{1}^{\mu,\varepsilon})=\left\{\delta\rho\in X_{ev}^{\mu,\varepsilon}|\left\langle K_{\mu,\varepsilon}\left(\frac{d\rho_{\mu,\varepsilon}}{d\mu}+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}g_{\mu,\varepsilon}\right),\delta\rho\right\rangle=0\right\}.

On the other hand, we have

Kμ,ε(dρμ,εdμ+ε2dMμ,εdμgμ,ε),(dρμ,εdμ+ε2dMμ,εdμgμ,ε)\displaystyle\left\langle K_{\mu,\varepsilon}\left(\frac{d\rho_{\mu,\varepsilon}}{d\mu}+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}g_{\mu,\varepsilon}\right),\left(\frac{d\rho_{\mu,\varepsilon}}{d\mu}+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}g_{\mu,\varepsilon}\right)\right\rangle
=(dVμ,ε(Rμ,ε,0)dμ+O(ε2))(dρμ,εdμ+ε2dMμ,εdμgμ,ε)𝑑x\displaystyle=\left(\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}+O(\varepsilon^{2})\right)\int\left(\frac{d\rho_{\mu,\varepsilon}}{d\mu}+\varepsilon^{2}\frac{dM_{\mu,\varepsilon}}{d\mu}g_{\mu,\varepsilon}\right)dx
=(dVμ,ε(Rμ,ε,0)dμ+O(ε2))dMμ,εdμ.\displaystyle=\left(\frac{dV_{\mu,\varepsilon}(R_{\mu,\varepsilon},0)}{d\mu}+O(\varepsilon^{2})\right)\frac{dM_{\mu,\varepsilon}}{d\mu}.

By Lemma 3.3, n(Kμ,ε|Xevμ,ε)=1n^{-}(K_{\mu,\varepsilon}|_{X_{ev}^{\mu,\varepsilon}})=1\ and ker\ker Kμ,ε|Xevμ,ε={0}K_{\mu,\varepsilon}|_{X_{ev}^{\mu,\varepsilon}}=\left\{0\right\}. We consider two cases:

1) dMμ,εdμ0\frac{dM_{\mu,\varepsilon}}{d\mu}\neq 0. A combination of above properties immediately yields

nu(μ)=n(Kμ,ε|Xevμ,εR(B1μ,ε))={1 when dMμ,εdμ<0,0 when dMμ,εdμ>0.n^{u}(\mu)=n^{-}\left(K_{\mu,\varepsilon}|_{X_{ev}^{\mu,\varepsilon}\cap R(B_{1}^{\mu,\varepsilon})}\right)=\begin{cases}1\text{ when }\frac{dM_{\mu,\varepsilon}}{d_{\mu}}<0,\\ 0\text{ when }\frac{dM_{\mu,\varepsilon}}{d_{\mu}}>0.\end{cases}

2) When dMμ,εdμ=0\frac{dM_{\mu,\varepsilon}}{d\mu}=0, as in the proof of Theorem 3.2, we have

nu(μ)=n(Kμ,ε|Xevμ,εR(B1μ,ε))=0.n^{u}(\mu)=n^{-}\left(K_{\mu,\varepsilon}|_{X_{ev}^{\mu,\varepsilon}\cap R(B_{1}^{\mu,\varepsilon})}\right)=0.

This finishes the proof of the theorem.   

Remark 3.1

The above theorem implies that for a family of rotating stars with fixed angular momentum distribution j(m,M)j(m,M), the transition of stability occurs at the first extrema of the total mass. That is, the turning point principle (TPP) is true for this family of rotating stars. This contrasts greatly to rotating stars of fixed angular velocity, for which case TPP is shown to be not true (see Theorem 3.3).

In the literature, there are three common choices of j(m,M)j(m,M) in the study of rotating stars.

i) (Fixed angular momentum distribution) The most common one is j(m,M)=j(m)j(m,M)=j(m). See for example [2, 18, 31, 32, 33, 34];

ii) (Fixed angular momentum distribution per unit mass) j(m,M)=j(m/M)j(m,M)=j(m/M). See for example [35];

iii) (Fixed angular momentum distribution with given total angular momentum) j(m,M)=1Mj(m/M)j(m,M)=\frac{1}{M}j(m/M). See for example [4]. We note that for this case, the total angular momentum given by

1Mj(mM)𝑑m=01j(m)𝑑m(m=mM),\int\frac{1}{M}j(\frac{m}{M})dm=\int_{0}^{1}j\left(m^{\prime}\right)dm^{\prime}\ \ (m^{\prime}=\frac{m}{M}),

is a constant depending only on jj.

In the rest of this subsection, we use Theorem 3.5 to study two examples of rotating stars with mass extrema points.

Example 1. Asymptotically polytropic rotating stars

Assume P(ρ)P(\rho) satisfies assumptions (3.5)-(3.6). By the same arguments as in the case of fixed angular velocity, when ε\varepsilon is small enough and μ[μ0,μ1](0,μ~)\mu\in[\mu_{0},\mu_{1}]\subset(0,\tilde{\mu}), the mass Mμ,εM_{\mu,\varepsilon} of the rotating stars (ρμ,ε,εj(mρμ,ε(r),Mμ,ε)/r𝐞θ)(\rho_{\mu,\varepsilon},\varepsilon j(m_{\rho_{\mu,\varepsilon}}(r),M_{\mu,\varepsilon})/r\mathbf{e}_{\theta}) has the the first maximum με(μ0,μ1)\mu_{\ast}^{\varepsilon}\in\left(\mu_{0},\mu_{1}\right). Then by Theorem 3.5, the rotating stars are stable when μ[μ0,με]\mu\in[\mu_{0},\mu_{\ast}^{\varepsilon}] and unstable when μ\mu goes between με\mu_{\ast}^{\varepsilon} and the next extrema point of Mμ,εM_{\mu,\varepsilon} in (με,μ1)\left(\mu_{\ast}^{\varepsilon},\mu_{1}\right).

Example 2. Polytropic rotating stars

Consider the polytropic equation of state P(ρ)=ργ(γ(65,2))P(\rho)=\rho^{\gamma}~{}\left(\gamma\in\left(\frac{6}{5},2\right)\right). The non-rotating stars (i.e. Lane-Emden stars) with any center density μ\mu are stable when γ(4/3,2)\gamma\in(4/3,2) and are unstable when γ(6/5,4/3)\gamma\in(6/5,4/3). In particular, Mμ=Cγμ12(3γ4)M_{\mu}=C_{\gamma}\mu^{\frac{1}{2}\left(3\gamma-4\right)} is a monotone function when γ43\gamma\neq\frac{4}{3}\ and there is no transition point of stability.

However, polytropic rotating stars with fixed angular momentum distribution j(m,M)j\left(m,M\right)\ can have mass extrema points, which are also the transition points of stability. One such example was given in [4] for γ=4.033.03<43\gamma=\frac{4.03}{3.03}<\frac{4}{3} and j(m,M)=1M[1(1mM)2/3]j(m,M)=\frac{1}{M}[1-(1-\frac{m}{M})^{2/3}]. With numerical help, it was found (see Figure 1 below taken from [4]) that there is a mass minimum point μ\mu^{\ast}\ for the total mass M(μ)M\left(\mu\right). This is the first transition point of stability. In particular, rotating stars with center density μ\mu beyond μ\mu^{\ast} become stable.

Refer to caption
Figure 1: The dependence of the mass M(μ)M\left(\mu\right) on the center density μ\mu for γ=4.033.03\gamma=\frac{4.03}{3.03} and the angular momentum distribution j(m,M)=1M[1(1mM)2/3]j(m,M)=\frac{1}{M}[1-(1-\frac{m}{M})^{2/3}]. From Bisnovatyi-Kogan and Blinnikov [4].
Remark 3.2

It can also be seen from above Example 2 that the critical index γ\gamma^{\ast} for the onset of instability of rotating polytropic stars is not 43\frac{4}{3}. Ledoux [25], Chandrasekhar and Lebovitz [8] indicated that the critical index γ\gamma^{\ast} is reduced from 43\frac{4}{3} to γ=432ω2I9|W|\gamma^{\ast}=\frac{4}{3}-\frac{2\omega^{2}I}{9|W|} for small uniform rotating stars, where I>0I>0 is the moment of inertia about the center of mass and WW is the gravitational potential energy. For more discussion about the critical index γ\gamma^{\ast} of rotating stars, see [13, 22, 38, 39].

4 Instability for Rayleigh Unstable case

Consider an axi-symmetric rotating star (ρ0,v0)=(ρ0(r,z),ω0(r)r𝐞θ)(\rho_{0},\vec{v}_{0})=\left(\rho_{0}\left(r,z\right),\omega_{0}(r)r\mathbf{e}_{\theta}\right), where the angular velocity ω0(r)\omega_{0}(r) satisfies the Rayleigh instability condition, that is, there exists a point r0(0,R0)r_{0}\in(0,R_{0}) such that

Υ(r0)=r(ω02r4)r3|r=r0<0.\Upsilon(r_{0})=\frac{\partial_{r}(\omega_{0}^{2}r^{4})}{r^{3}}\bigg{|}_{r=r_{0}}<0. (4.1)

For incompressible Euler equation, it is a classical result by Rayleigh in 1880 [37] that condition (4.1) implies linear instability of the rotating flow v0=ω0(r)r𝐞θ\vec{v}_{0}=\omega_{0}(r)r\mathbf{e}_{\theta} under axi-symmetric perturbations. In this section, we will show the axi-symmetric instability of rotating stars with Rayleigh unstable angular velocity.

From the linearized Euler-Poisson system (2.5), we get the following second order equation for u2=(vrvz)u_{2}=\begin{pmatrix}v_{r}\\ v_{z}\end{pmatrix},

ttu2=𝕃~u2=(𝕃1+𝕃2)u2,\partial_{tt}u_{2}=-\mathbb{\tilde{L}}u_{2}=-(\mathbb{L}_{1}+\mathbb{L}_{2})u_{2}, (4.2)

where 𝕃1,𝕃2\mathbb{L}_{1},\ \mathbb{L}_{2}\,\ are operators on Y=(Lρ02)2Y=\left(L_{\rho_{0}}^{2}\right)^{2} defined by

𝕃1u2=B1LB1A=[Φ′′(ρ0)((ρ0u2))4π(Δ)1((ρ0u2)],\mathbb{L}_{1}u_{2}=B_{1}^{\prime}LB_{1}A=\nabla[\Phi^{\prime\prime}(\rho_{0})(\nabla\cdot(\rho_{0}u_{2}))-4\pi(-\Delta)^{-1}(\nabla\cdot(\rho_{0}u_{2})],

and

𝕃2u2=(Υ(r)vr0).\mathbb{L}_{2}u_{2}=\begin{pmatrix}\Upsilon(r)v_{r}\\ 0\end{pmatrix}.
Lemma 4.1

𝕃~\mathbb{\tilde{L}} is a self-adjoint operator on (Y,[,])(Y,[\cdot,\cdot]) with the equivalent inner product [,]=A,[\cdot,\cdot]=\langle A\cdot,\cdot\rangle.

Proof. By Lemma 2.9 in [30], 𝕃1\mathbb{L}_{1} is self-adjoint on (Y,[,])(Y,[\cdot,\cdot]) with the equivalent inner product [,]:=A,[\cdot,\cdot]:=\langle A\cdot,\cdot\rangle. Since 𝕃2\mathbb{L}_{2} is a symmetric bounded operator on (Y,[,]),(Y,[\cdot,\cdot]), 𝕃~=𝕃1+𝕃2\mathbb{\tilde{L}}=\mathbb{L}_{1}+\mathbb{L}_{2} is self-adjoint by Kato-Rellich Theorem.   

The next lemma on the quadratic form of 𝕃~\mathbb{\tilde{L}\ }will be used later.

Lemma 4.2

There exists constants m>0m>0 such that for any u2Yu_{2}\in Y, we have

[𝕃~u2,u2]+mu2Y2(ρ0u2)LΦ′′(ρ0)22.\left[\mathbb{\tilde{L}}u_{2},u_{2}\right]+m\left\|u_{2}\right\|_{Y}^{2}\geq\left\|\nabla\cdot(\rho_{0}u_{2})\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}^{2}.

Proof. Since

[𝕃~u2,u2]=[𝕃1u2,u2]+[𝕃2u2,u2],\left[\mathbb{\tilde{L}}u_{2},u_{2}\right]=\left[\mathbb{L}_{1}u_{2},u_{2}\right]+\left[\mathbb{L}_{2}u_{2},u_{2}\right],

and obviously |[𝕃2u2,u2]|u2Lρ022\left|\left[\mathbb{L}_{2}u_{2},u_{2}\right]\right|\lesssim\left\|u_{2}\right\|_{L_{\rho_{0}}^{2}}^{2}, it suffices to estimate

[𝕃1u2,u2]=LB1Au2,B1Au2=(ρ0u2)LΦ′′(ρ0)224π3|V|2𝑑x,\left[\mathbb{L}_{1}u_{2},u_{2}\right]=\left\langle LB_{1}Au_{2},B_{1}Au_{2}\right\rangle=\left\|\nabla\cdot(\rho_{0}u_{2})\right\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}^{2}-4\pi\int_{\mathbb{R}^{3}}\left|\nabla V\right|^{2}dx,

where ΔV=(ρ0u2)-\Delta V=\nabla\cdot(\rho_{0}u_{2}). By integration by parts,

3|V|2𝑑x=3ρ0u2Vdx(u2Y2)12(|V|2𝑑x)12,\int_{\mathbb{R}^{3}}\left|\nabla V\right|^{2}dx=-\int_{\mathbb{R}^{3}}\rho_{0}u_{2}\cdot\nabla Vdx\lesssim\left(\left\|u_{2}\right\|_{Y}^{2}\right)^{\frac{1}{2}}\left(\int\left|\nabla V\right|^{2}dx\right)^{\frac{1}{2}},

which implies that |V|2𝑑xu2Y2\int\left|\nabla V\right|^{2}dx\lesssim\left\|u_{2}\right\|_{Y}^{2}. This finishes the proof of the lemma.   

The study of equation (4.2) is reduced to understand the spectra of the self-adjoint operator 𝕃~\mathbb{\tilde{L}}. First, we give a Helmholtz type decomposition of vector fields in YY.

Lemma 4.3

There is a direct sum decomposition Y=Y1Y2Y=Y_{1}\oplus Y_{2}, where Y1Y_{1} is the closure of

{uY|u=p, for some pC1(Ω)},\left\{u\in Y\ |\ u=\nabla p,\text{ for some }p\in C^{1}\left(\Omega\right)\right\},

in YY and Y2Y_{2} is the closure of

{u(C1(Ω))2Y|(ρ0u)=0 },\left\{u\in\left(C^{1}\left(\Omega\right)\right)^{2}\cap Y\ |\ \nabla\cdot\left(\rho_{0}u\right)=0\text{ }\right\},

in YY.

The proof of above lemma is similar to that of Lemma 3.15 in [30] and we skip. Denote 1:YY1\mathbb{P}_{1}:Y\mapsto Y_{1} and 2:YY2\mathbb{P}_{2}:Y\mapsto Y_{2} to be the projection operators. Then 1,21\left\|\mathbb{P}_{1}\right\|,\left\|\mathbb{P}_{2}\right\|\leq 1.

For any u2Yu_{2}\in Y, let u2=v1+v2u_{2}=v_{1}+v_{2} where v1=1u2Y1v_{1}=\mathbb{P}_{1}u_{2}\in Y_{1} and v2=2u2Y2v_{2}=\mathbb{P}_{2}u_{2}\in Y_{2}. Since

𝕃~u2=𝕃1v1+1𝕃2v1+1𝕃2v2+2𝕃2v1+2𝕃2v2,\mathbb{\tilde{L}}u_{2}=\mathbb{L}_{1}v_{1}+\mathbb{P}_{1}\mathbb{L}_{2}v_{1}+\mathbb{P}_{1}\mathbb{L}_{2}v_{2}+\mathbb{P}_{2}\mathbb{L}_{2}v_{1}+\mathbb{P}_{2}\mathbb{L}_{2}v_{2},

the operator 𝕃~:YY\mathbb{\tilde{L}}:Y\rightarrow Y is equivalent to the following matrix operator on Y1×Y2Y_{1}\times Y_{2}

(𝕃~1,,𝕃~2)(v1v2)\displaystyle\begin{pmatrix}\tilde{\mathbb{L}}_{1},&\mathbb{C}\\ \mathbb{C}^{\ast},&\tilde{\mathbb{L}}_{2}\end{pmatrix}\begin{pmatrix}v_{1}\\ v_{2}\end{pmatrix}
=[(𝕃~1,0,𝕃~2)+(0,0,0)](v1v2)\displaystyle=\left[\begin{pmatrix}\tilde{\mathbb{L}}_{1},&\mathbb{C}\\ 0,&\tilde{\mathbb{L}}_{2}\end{pmatrix}+\begin{pmatrix}0,&0\\ \mathbb{C}^{\ast},&0\end{pmatrix}\right]\begin{pmatrix}v_{1}\\ v_{2}\end{pmatrix}
=(T+𝔸)v,\displaystyle=(T+\mathbb{A})v,

where

𝕃~1=𝕃1+1𝕃21:Y1Y1,𝕃~2=2𝕃22:Y2Y2,\tilde{\mathbb{L}}_{1}=\mathbb{L}_{1}+\mathbb{P}_{1}\mathbb{L}_{2}\mathbb{P}_{1}:Y_{1}\rightarrow Y_{1},\tilde{\ \mathbb{L}}_{2}=\mathbb{P}_{2}\mathbb{L}_{2}\mathbb{P}_{2}:Y_{2}\rightarrow Y_{2},
=1𝕃22:Y2Y1,=2𝕃21:Y1Y2,\mathbb{C}=\mathbb{P}_{1}\mathbb{L}_{2}\mathbb{P}_{2}:Y_{2}\rightarrow Y_{1},\ \mathbb{C}^{\ast}=\mathbb{P}_{2}\mathbb{L}_{2}\mathbb{P}_{1}:Y_{1}\rightarrow Y_{2},

and

T=(𝕃~1,0,𝕃~2),𝔸=(0,0,0):Y1×Y2Y1×Y2.T=\begin{pmatrix}\tilde{\mathbb{L}}_{1},&\mathbb{C}\\ 0,&\tilde{\mathbb{L}}_{2}\end{pmatrix},\ \mathbb{A}=\begin{pmatrix}0,&0\\ \mathbb{C}^{\ast},&0\end{pmatrix}:\ Y_{1}\times Y_{2}\rightarrow Y_{1}\times Y_{2}.\
Lemma 4.4

The operator 𝔸\mathbb{A} is TT-compact.

Proof. For any v=(v1,v2)D(T)v=\left(v_{1},v_{2}\right)\in D\left(T\right), the graph norm vT\left\|v\right\|_{T}\ is defined by

vT\displaystyle\left\|v\right\|_{T} =vY+TvY\displaystyle=\|v\|_{Y}+\|Tv\|_{Y}
vY+𝕃~1v1YvY+𝕃1v1Y.\displaystyle\approx\|v\|_{Y}+\|\tilde{\mathbb{L}}_{1}v_{1}\|_{Y}\approx\|v\|_{Y}+\|\mathbb{L}_{1}v_{1}\|_{Y}.

It is obvious that D(𝔸)D(T)D(\mathbb{A})\supset D(T). To prove 𝔸\mathbb{A} is TT-compact, we need to prove 𝔸:(D(𝔸),T)(Y,Y)\mathbb{A}:(D(\mathbb{A}),\left\|\cdot\right\|_{T})\mapsto(Y,\|\cdot\|_{Y}) is compact. By the definition of 𝔸\mathbb{A}, we notice that 𝔸v=2𝕃2v1:Y1×Y2{0}×Y2\mathbb{A}v=\mathbb{P}_{2}\mathbb{L}_{2}v_{1}:Y_{1}\times Y_{2}\mapsto\left\{0\right\}\times Y_{2}. For v1=ξY1v_{1}=\nabla\xi\in Y_{1},

v1Z=(ρ0v1)LΦ′′(ρ0)2+v1Y=(ρ0ξ)LΦ′′(ρ0)2+ξY,\left\|v_{1}\right\|_{Z}=\|\nabla\cdot(\rho_{0}v_{1})\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}+\|v_{1}\|_{Y}=\|\nabla\cdot(\rho_{0}\nabla\xi)\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}+\|\nabla\xi\|_{Y},

as defined in (1.16). By the proof of Lemma 4.2 we have

(ρ0v1)LΦ′′(ρ0)22+v1Y2\displaystyle\|\nabla\cdot(\rho_{0}v_{1})\|_{L_{\Phi^{\prime\prime}(\rho_{0})}^{2}}^{2}+\|v_{1}\|_{Y}^{2} 𝕃1v1,v1+2mv1Y2\displaystyle\lesssim\langle\mathbb{L}_{1}v_{1},v_{1}\rangle+2m\|v_{1}\|_{Y}^{2}
𝕃1v1Y2+v1Y2vT2.\displaystyle\lesssim\|\mathbb{L}_{1}v_{1}\|_{Y}^{2}+\|v_{1}\|_{Y}^{2}\approx\left\|v\right\|_{T}^{2}.

Thus v1ZvT\left\|v_{1}\right\|_{Z}\lesssim\left\|v\right\|_{T}. Since the embedding (Y1,Z)(Y1,Y)(Y_{1},\left\|\cdot\right\|_{Z})\hookrightarrow(Y_{1},\|\cdot\|_{Y}) is compact by Proposition 12 in [20] and 2,𝕃2\mathbb{P}_{2},\ \mathbb{L}_{2} are bounded operators, it follows that 𝔸:(D(𝔸),T)(Y,Y)\mathbb{A}:(D(\mathbb{A}),\left\|\cdot\right\|_{T})\mapsto(Y,\|\cdot\|_{Y}) is compact.   

The above lemma implies that the essential spectra of 𝕃~\mathbb{\tilde{L}} is the same as 𝕃~2\tilde{\mathbb{L}}_{2}.

Lemma 4.5

σess(𝕃~)=σess(𝕃~2)\sigma_{ess}(\mathbb{\tilde{L}})=\sigma_{ess}(\tilde{\mathbb{L}}_{2}).

Proof. We have σess(𝕃~)=σess(T+𝔸)\sigma_{ess}(\mathbb{\tilde{L}})=\sigma_{ess}(T+\mathbb{A}) by the definition of the operator T+𝔸T+\mathbb{A}. By Lemma 4.4 and Weyl’s Theorem, we have σess(T+𝔸)=σess(T).\sigma_{ess}(T+\mathbb{A})=\sigma_{ess}(T). By Theorem 2.3 v) in [30] and the compact embedding of (Y1,Z)(Y1,Y)(Y_{1},\left\|\cdot\right\|_{Z})\hookrightarrow(Y_{1},\|\cdot\|_{Y}), the spectra of 𝕃1\mathbb{L}_{1} on Y1Y_{1} are purely discrete and σess(𝕃1)={}\sigma_{ess}\left(\mathbb{L}_{1}\right)=\left\{\emptyset\right\}. By the same arguments as in the proof of Lemma 4.4, 𝕃~1\tilde{\mathbb{L}}_{1} is relative compact to 𝕃1\mathbb{L}_{1} and as a result σess(𝕃~1)=σess(𝕃1)={}.\sigma_{ess}\left(\tilde{\mathbb{L}}_{1}\right)=\sigma_{ess}\left(\mathbb{L}_{1}\right)=\left\{\emptyset\right\}. Since the matrix operator TT is upper triangular, it follows that

σess(T)=σess(𝕃~1)σess(𝕃~2)=σess(𝕃~2).\sigma_{ess}(T)=\sigma_{ess}\left(\tilde{\mathbb{L}}_{1}\right)\cup\sigma_{ess}\left(\tilde{\mathbb{L}}_{2}\right)=\sigma_{ess}\left(\tilde{\mathbb{L}}_{2}\right).

 

We study the essential spectra of 𝕃~2\tilde{\mathbb{L}}_{2} in the next two lemmas. By the Rayleigh instability condition (4.1) and the fact that Υ(0)=4ω0(0)20\Upsilon(0)=4\omega_{0}(0)^{2}\geq 0, we know that range(Υ(r))=[a,b]\text{range}\left(\Upsilon(r)\right)=[-a,b] for some a>0a>0, b0b\geq 0.

Lemma 4.6

σess(𝕃~2)range(Υ(r))=[a,b]\sigma_{ess}(\tilde{\mathbb{L}}_{2})\supset\text{range}(\Upsilon(r))=[-a,b].

Proof. For any λ(a,b)\lambda\in\left(-a,b\right), let r0(0,R0)r_{0}\in(0,R_{0}) be such that λ=Υ(r0)\lambda=\Upsilon(r_{0}). Choose (r0,z0)Ω(r_{0},z_{0})\in\Omega and ε0\varepsilon_{0} small enough, such that (r,z)Ω\left(r,z\right)\in\Omega when |rr0|ε0\left|r-r_{0}\right|\leq\varepsilon_{0} and |zz0|ε02\left|z-z_{0}\right|\leq\varepsilon_{0}^{2}. Choose a sequence {εn}n=1(0,ε0)\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}\subset\left(0,\varepsilon_{0}\right) with limnεn=0\lim_{n\rightarrow\infty}\varepsilon_{n}=0. Let φ(r)\varphi(r), ψ(z)C0(1,1)\psi(z)\in C_{0}^{\infty}(-1,1) be two smooth cutoff functions such that φ(0)=ψ(0)=1\varphi(0)=\psi(0)=1. Define δvεn=(δvrεn,δvzεn)\delta v^{\varepsilon_{n}}=(\delta v_{r}^{\varepsilon_{n}},\delta v_{z}^{\varepsilon_{n}}) with

δvzεn=εnAεnρ0rφ(rr0εn)ψ(zz0εn2),\delta v_{z}^{\varepsilon_{n}}=-\frac{\varepsilon_{n}}{A_{\varepsilon_{n}}\rho_{0}r}\varphi^{\prime}(\frac{r-r_{0}}{\varepsilon_{n}})\psi(\frac{z-z_{0}}{\varepsilon_{n}^{2}}),

and

δvrεn=1Aεnρ0rφ(rr0εn)ψ(zz0εn2),\delta v_{r}^{\varepsilon_{n}}=\frac{1}{A_{\varepsilon_{n}}\rho_{0}r}\varphi(\frac{r-r_{0}}{\varepsilon_{n}})\psi^{\prime}(\frac{z-z_{0}}{\varepsilon_{n}^{2}}),

where

Aεn2\displaystyle A_{\varepsilon_{n}}^{2} =3ρ0(|εnρ0rφ(rr0εn)ψ(zz0εn2)|2+|1ρ0rφ(rr0εn)ψ(zz0εn2)|2)𝑑x\displaystyle=\int_{\mathbb{R}^{3}}\rho_{0}\left(\left|\frac{\varepsilon_{n}}{\rho_{0}r}\varphi^{\prime}(\frac{r-r_{0}}{\varepsilon_{n}})\psi(\frac{z-z_{0}}{\varepsilon_{n}^{2}})\right|^{2}+\left|\frac{1}{\rho_{0}r}\varphi(\frac{r-r_{0}}{\varepsilon_{n}})\psi^{\prime}(\frac{z-z_{0}}{\varepsilon_{n}^{2}})\right|^{2}\right)dx
=2πεn31111(εn2|φ(t)ψ(s)|2+|φ(t)ψ(s)|2)ρ0r|(r,z)=(εt+r0,εn2s+z0)𝑑t𝑑s=O(εn3).\displaystyle=2\pi\varepsilon_{n}^{3}\int_{-1}^{1}\int_{-1}^{1}\frac{\left(\varepsilon_{n}^{2}\left|\varphi^{\prime}(t)\psi(s)\right|^{2}+\left|\varphi(t)\psi^{\prime}(s)\right|^{2}\right)}{\rho_{0}r|_{(r,z)=(\varepsilon t+r_{0},\varepsilon_{n}^{2}s+z_{0})}}dtds=O\left(\varepsilon_{n}^{3}\right).

Then δvεnY=1\|\delta v^{\varepsilon_{n}}\|_{Y}=1 and δvεnY2\delta v^{\varepsilon_{n}}\in Y_{2} owing to

δρεn=B1Aδvεn=1rr(rρ0δvrεn)+z(ρ0δvzεn)=0.\delta\rho^{\varepsilon_{n}}=B_{1}A\delta v^{\varepsilon_{n}}=\frac{1}{r}\partial_{r}(r\rho_{0}\delta v_{r}^{\varepsilon_{n}})+\partial_{z}(\rho_{0}\delta v_{z}^{\varepsilon_{n}})=0.

We will show that {δvεn}\left\{\delta v^{\varepsilon_{n}}\right\} is a Weyl’s sequence for the operator 𝕃~2\tilde{\mathbb{L}}_{2}\ and therefore λσess(𝕃~2)\lambda\in\sigma_{ess}(\tilde{\mathbb{L}}_{2}).

First, we check that δvεn\delta v^{\varepsilon_{n}} converge to 0 weakly in Y2Y_{2}. For any ξY2\xi\in Y_{2}, since δvεn\delta v^{\varepsilon_{n}} is supported in Ωεn={|rr0|εn,|zz0|εn2}\Omega_{\varepsilon_{n}}=\left\{\left|r-r_{0}\right|\leq\varepsilon_{n},\left|z-z_{0}\right|\leq\varepsilon_{n}^{2}\right\}, we have

|δvεn,ξ|δvεnY(2πr0εnr0+εnz0εn2z0+εn2ρ0|ξ|2r𝑑r𝑑z)120,\left|\langle\delta v^{\varepsilon_{n}},\xi\rangle\right|\leq\left\|\delta v^{\varepsilon_{n}}\right\|_{Y}\left(2\pi\int_{r_{0}-\varepsilon_{n}}^{r_{0}+\varepsilon_{n}}\int_{z_{0}-\varepsilon_{n}^{2}}^{z_{0}+\varepsilon_{n}^{2}}\rho_{0}|\xi|^{2}rdrdz\right)^{\frac{1}{2}}\rightarrow 0,

when εn0\varepsilon_{n}\rightarrow 0.

Next, we prove that (𝕃~2λ)δvεn(\tilde{\mathbb{L}}_{2}-\lambda)\delta v^{\varepsilon_{n}} converge to 0 strongly in Y2Y_{2}. We write

(𝕃~2λ)δvεn=2(Υ(r)δvrεn0)λδvεn=2((Υ(r)Υ(r0))δvrεnΥ(r0)δvzεn).(\tilde{\mathbb{L}}_{2}-\lambda)\delta v^{\varepsilon_{n}}=\mathbb{P}_{2}\begin{pmatrix}\Upsilon(r)\delta v_{r}^{\varepsilon_{n}}\\ 0\end{pmatrix}-\lambda\delta v^{\varepsilon_{n}}=\mathbb{P}_{2}\begin{pmatrix}\left(\Upsilon(r)-\Upsilon(r_{0})\right)\delta v_{r}^{\varepsilon_{n}}\\ -\Upsilon(r_{0})\delta v_{z}^{\varepsilon_{n}}\end{pmatrix}.

Noticing that 21\left\|\mathbb{P}_{2}\right\|\leq 1, and

δvzεnY2=O(εn5)Aεn2=O(εn2),\left\|\delta v_{z}^{\varepsilon_{n}}\right\|_{Y}^{2}=\frac{O\left(\varepsilon_{n}^{5}\right)}{A_{\varepsilon_{n}}^{2}}=O\left(\varepsilon_{n}^{2}\right),

we have

(𝕃~2λ)δvεnY2\displaystyle\ \ \ \ \ \|(\tilde{\mathbb{L}}_{2}-\lambda)\delta v^{\varepsilon_{n}}\|_{Y}^{2}
max(r,z)Ωεn(Υ(r)Υ(r0))2δvrεnY2+Υ(r0)2δvzεnY2\displaystyle\leq\max_{\left(r,z\right)\in\Omega_{\varepsilon_{n}}}\left(\Upsilon(r)-\Upsilon(r_{0})\right)^{2}\left\|\delta v_{r}^{\varepsilon_{n}}\right\|_{Y}^{2}+\Upsilon(r_{0})^{2}\left\|\delta v_{z}^{\varepsilon_{n}}\right\|_{Y}^{2}
max(r,z)Ωεn(Υ(r)Υ(r0))2+O(εn2)0,\displaystyle\leq\max_{\left(r,z\right)\in\Omega_{\varepsilon_{n}}}\left(\Upsilon(r)-\Upsilon(r_{0})\right)^{2}+O\left(\varepsilon_{n}^{2}\right)\rightarrow 0,\text{ }

when εn0\varepsilon_{n}\rightarrow 0. This shows that δvεn\delta v^{\varepsilon_{n}} is a Weyl’s sequence for 𝕃~2\tilde{\mathbb{L}}_{2} and λσess(𝕃~2)\lambda\in\sigma_{ess}(\tilde{\mathbb{L}}_{2}). Thus (a,b)σess(𝕃~2)\left(-a,b\right)\subset\sigma_{ess}(\tilde{\mathbb{L}}_{2}) which implies [a,b]σess(𝕃~2)\left[-a,b\right]\subset\sigma_{ess}(\tilde{\mathbb{L}}_{2}) since σess(𝕃~2)\sigma_{ess}(\tilde{\mathbb{L}}_{2}) is closed.

 

Lemma 4.7

σ(𝕃~2)=σess(𝕃~2)=range(Υ(r))=[a,b]\sigma(\tilde{\mathbb{L}}_{2})=\sigma_{ess}(\tilde{\mathbb{L}}_{2})=\text{range}\left(\Upsilon(r)\right)=\left[-a,b\right].

Proof. Fix λ[a,b]\lambda\notin\left[-a,b\right]. For any u=(ur,uz)Y2u=\left(u_{r},u_{z}\right)\in Y_{2}, we have

[(𝕃~2λ)u,u]\displaystyle[(\tilde{\mathbb{L}}_{2}-\lambda)u,u] =[(𝕃2λ)u,u]\displaystyle=[(\mathbb{L}_{2}-\lambda)u,u]
=[(Υ(r)λ)ur,ur][λuz,uz]\displaystyle=[(\Upsilon(r)-\lambda)u_{r},u_{r}]-[\lambda u_{z},u_{z}]
=3ρ0(Υ(r)λ)ur2𝑑x+3(λ)ρ0uz2𝑑x.\displaystyle=\int_{\mathbb{R}^{3}}\rho_{0}(\Upsilon(r)-\lambda)u_{r}^{2}dx+\int_{\mathbb{R}^{3}}(-\lambda)\rho_{0}u_{z}^{2}dx.

Since a>0,b0a>0,b\geq 0, we have

|[(𝕃~2λ)u,u]|c1uY2,|[(\tilde{\mathbb{L}}_{2}-\lambda)u,u]|\geq c_{1}\left\|u\right\|_{Y}^{2},

where c1=min{|λb|,|a+λ|}>0c_{1}=\min\left\{\left|\lambda-b\right|,|a+\lambda|\right\}>0. Thus (𝕃~2λ)uc1uY\left\|\left(\tilde{\mathbb{L}}_{2}-\lambda\right)u\right\|\geq c_{1}\left\|u\right\|_{Y}, which implies that (𝕃~2λ)1(\tilde{\mathbb{L}}_{2}-\lambda)^{-1} is bounded and λρ(𝕃~2)\lambda\in\rho(\tilde{\mathbb{L}}_{2}). Therefore, σ(𝕃~2)[a,b]\sigma(\tilde{\mathbb{L}}_{2})\subset\left[-a,b\right]. This prove the lemma by combining with Lemma 4.6.   

The following proposition gives a complete characterization of the spectra of 𝕃~\tilde{\mathbb{L}}.

Proposition 4.1

Under the Rayleigh instability condition (4.1), it holds:
i) σess(𝕃~)=range(Υ(r))=[a,b]\sigma_{ess}(\tilde{\mathbb{L}})=\text{range}(\Upsilon(r))=\left[-a,b\right].
ii) σ(𝕃~)(,a)\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a) consists of at most finitely many negative eigenvalues of finite multiplicity.
iii) σ(𝕃~)(b,+)\sigma(\tilde{\mathbb{L}})\cap(b,+\infty) consists of a sequence of positive eigenvalues tending to infinity.

Proof. The conclusion in i) follows from Lemmas 4.5 and 4.7. This implies that any λσ(𝕃~)\lambda\in\sigma(\tilde{\mathbb{L}}) in (,a)(-\infty,-a) or (b,+)(b,+\infty) must be a discrete eigenvalue of finite multiplicity.

Proof of ii): Suppose otherwise. Then there exists an infinite dimensional eigenspace for negative eigenvalues in (,a)(-\infty,-a). We notice that

𝕃~+aI=𝕃1+𝕃2+aI𝕃1,\tilde{\mathbb{L}}+aI=\mathbb{L}_{1}+\mathbb{L}_{2}+aI\geq\mathbb{L}_{1},

since 𝕃2+aI\mathbb{L}_{2}+aI is nonnegative. It follows that n(𝕃1)=n^{-}\left(\mathbb{L}_{1}\right)=\infty since n(𝕃~+aI)=n^{-}\left(\tilde{\mathbb{L}}+aI\right)=\infty. This is in contradiction to that n(𝕃1)n(L)<n^{-}\left(\mathbb{L}_{1}\right)\leq n^{-}\left(L\right)<\infty.

Proof of iii): Suppose otherwise. Then there exists an upper bound of σ(𝕃~)\sigma(\tilde{\mathbb{L}}), denoted by λmaxb\lambda_{max}\geq b. Thus 𝕃~λmaxI\tilde{\mathbb{L}}\leq\lambda_{max}I which implies that

𝕃1𝕃2+λmaxI(a+λmax)I.\mathbb{L}_{1}\leq-\mathbb{L}_{2}+\lambda_{max}I\leq\left(a+\lambda_{max}\right)I.

Consequently the eigenvalues of 𝕃1\mathbb{L}_{1} cannot exceed a+λmaxa+\lambda_{max}. This is in contradiction to the fact that 𝕃1\mathbb{L}_{1} has a sequence of positive eigenvalues tending to infinity.   

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Denote πλ\mathbb{\pi}_{\lambda} L(X)(λ𝐑)\in L\left(X\right)\ \left(\lambda\in\mathbf{R}\right) to be the spectral family of the self-adjoint operator 𝕃~\tilde{\mathbb{L}}. Let {μi}i=1\left\{\mu_{i}\right\}_{i=1}^{\infty} be the eigenvalues of 𝕃~\tilde{\mathbb{L}}\mathbb{\ }in (b,)\left(b,\infty\right). If σ(𝕃~)(,a)\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)\neq\varnothing, we denote the eigenvalues in (,a)\left(-\infty,-a\right) by ν1<<νK\nu_{1}<\cdots<\nu_{K} where K=dim(R(πa))K=\dim\left(R\left(\pi_{-a}\right)\right). For 1i<, 1jK1\leq i<\infty,\ 1\leq j\leq K, let Pi+P_{i}^{+} =πμi+πμi=\mathbb{\pi}_{\mu_{i}+}-\mathbb{\pi}_{\mu_{i}-}\ and PjP_{j}^{-} =πνj+πνj=\mathbb{\pi}_{\nu_{j}+}-\mathbb{\pi}_{\nu_{j}-}\ be the projections to ker(𝕃~μiI)\ker\left(\tilde{\mathbb{L}}-\mu_{i}I\right) and ker(𝕃~νjI)\ker\left(\tilde{\mathbb{L}}-\nu_{j}I\right)\ \ respectively, and P0=π0+π0P_{0}=\mathbb{\pi}_{0+}-\mathbb{\pi}_{0-} be the projection to ker𝕃~\ker\tilde{\mathbb{L}}. By Proposition 4.1, we have

𝕃~=λ𝑑πλ=i=1μiPi++j=1KνjPj+abλ𝑑πλ.\tilde{\mathbb{L}}=\int\lambda d\pi_{\lambda}=\sum_{i=1}^{\infty}\mu_{i}P_{i}^{+}+\sum_{j=1}^{K}\nu_{j}P_{j}^{-}+\int_{-a}^{b}\lambda d\pi_{\lambda}.

For any initial data (u2(0),u2t(0))Z×Y\left(u_{2}\left(0\right),u_{2t}\left(0\right)\right)\in Z\times Y, the solution to the second order equation (4.2) can be written as

u2(t)\displaystyle u_{2}\left(t\right) =i=1[cos(μit)Pi+u2(0)+1μisin(μit)Pi+u2t(0)]\displaystyle=\sum_{i=1}^{\infty}\left[\cos(\sqrt{\mu_{i}}t)P_{i}^{+}u_{2}\left(0\right)+\frac{1}{\sqrt{\mu_{i}}}\sin(\sqrt{\mu_{i}}t)P_{i}^{+}u_{2t}\left(0\right)\right] (4.3)
+j=1K[cosh(νjt)Pju2(0)+1νjsinh(νjt)Pju2t(0)]\displaystyle+\sum_{j=1}^{K}\left[\cosh\left(\sqrt{-\nu_{j}}t\right)P_{j}^{-}u_{2}\left(0\right)+\frac{1}{\sqrt{-\nu_{j}}}\sinh\left(\sqrt{-\nu_{j}}t\right)P_{j}^{-}u_{2t}\left(0\right)\right]
+0bcos(λt)𝑑πλu2(0)+0b1λsin(λt)𝑑πλu2t(0)\displaystyle+\int_{0}^{b}\cos(\sqrt{\lambda}t)d\pi_{\lambda}u_{2}(0)+\int_{0}^{b}\frac{1}{\sqrt{\lambda}}\sin(\sqrt{\lambda}t)d\pi_{\lambda}u_{2t}(0)
+a0cosh(λt)𝑑πλu2(0)+a01λsinh(λt)𝑑πλu2t(0)\displaystyle+\int_{-a}^{0}\cosh(\sqrt{-\lambda}t)d\pi_{\lambda}u_{2}(0)+\int_{-a}^{0}\frac{1}{\sqrt{-\lambda}}\sinh(\sqrt{-\lambda}t)d\pi_{\lambda}u_{2t}(0)
+P0u2(0)+tP0u2t(0).\displaystyle+P_{0}u_{2}(0)+tP_{0}u_{2t}(0).

If σ(𝕃~)(,a)=\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)=\varnothing, the solution u2(t)u_{2}\left(t\right) is obtained by removing the second term above.

Denote the minimum of λσ(𝕃~)\lambda\in\sigma(\tilde{\mathbb{L}}) by η0\eta_{0}, that is,

η0\displaystyle\eta_{0} =minψY=1[𝕃~ψ,ψ]\displaystyle=\min_{\|\psi\|_{Y}=1}[\tilde{\mathbb{L}}\psi,\psi]
={a, if σ(𝕃~)(,a)=,ν1, if σ(𝕃~)(,a)={ν1<<νK}.\displaystyle=\begin{cases}-a,\quad\text{ if }\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)=\varnothing,\\ \nu_{1},\text{ \ if }\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)=\{\nu_{1}<\cdots<\nu_{K}\}.\end{cases}

By the formula (4.3), it is easy to see that u2(t)Yeη0t\|u_{2}(t)\|_{Y}\lesssim e^{\sqrt{-\eta_{0}}t} for t>0t>0. To estimate u2(t)Z\|u_{2}(t)\|_{Z}, we note that by Lemma 4.2

u2Z2[𝕃~u2,u2]+2mu2Y2.\|u_{2}\|_{Z}^{2}\approx\left[\mathbb{\tilde{L}}u_{2},u_{2}\right]+2m\|u_{2}\|_{Y}^{2}. (4.4)

By using (4.3), we have

[𝕃~u2(t),u2(t)]\displaystyle\left[\mathbb{\tilde{L}}u_{2}\left(t\right),u_{2}\left(t\right)\right] i=1[μjPi+u2(0)Y2+Pi+u2t(0)Y2]\displaystyle\lesssim\sum_{i=1}^{\infty}\left[\mu_{j}\left\|P_{i}^{+}u_{2}\left(0\right)\right\|_{Y}^{2}+P_{i}^{+}\left\|u_{2t}\left(0\right)\right\|_{Y}^{2}\right]
+eη0tj=1K[Pju2(0)Y2+Pju2t(0)Y2]\displaystyle+e^{-\eta_{0}t}\sum_{j=1}^{K}\left[\left\|P_{j}^{-}u_{2}\left(0\right)\right\|_{Y}^{2}+\left\|P_{j}^{-}u_{2t}\left(0\right)\right\|_{Y}^{2}\right]
+0bd(πλu2(0),u2(0))+0bd(πλu2t(0),u2t(0))\displaystyle+\int_{0}^{b}d\left(\pi_{\lambda}u_{2}(0),u_{2}(0)\right)+\int_{0}^{b}d\left(\pi_{\lambda}u_{2t}(0),u_{2t}(0)\right)
+eη0t[a0d(πλu2(0),u2(0))+a0d(πλu2t(0),u2t(0))]\displaystyle+e^{-\eta_{0}t}\left[\int_{-a}^{0}d\left(\pi_{\lambda}u_{2}(0),u_{2}(0)\right)+\int_{-a}^{0}d\left(\pi_{\lambda}u_{2t}(0),u_{2t}(0)\right)\right]
eη0t((𝕃~u2(0),u2(0))+mu2(0)Y2+u2t(0)Y2)\displaystyle\lesssim e^{-\eta_{0}t}\left(\left(\mathbb{\tilde{L}}u_{2}\left(0\right),u_{2}\left(0\right)\right)+m\|u_{2}\left(0\right)\|_{Y}^{2}+\|u_{2t}\left(0\right)\|_{Y}^{2}\right)
eη0t(u2(0)Z2+u2t(0)Y2).\displaystyle\lesssim e^{-\eta_{0}t}\left(\|u_{2}\left(0\right)\|_{Z}^{2}+\|u_{2t}\left(0\right)\|_{Y}^{2}\right).

This implies

u2(t)Zeη0t(u2(0)Z+u2t(0)Y),\|u_{2}\left(t\right)\|_{Z}\lesssim e^{\sqrt{-\eta_{0}}t}\left(\|u_{2}\left(0\right)\|_{Z}+\|u_{2t}\left(0\right)\|_{Y}\right),

by using (4.4) and the estimate for u2(t)Y\|u_{2}(t)\|_{Y}. Since

u2t(t)\displaystyle u_{2t}\left(t\right) =i=1[μisin(μit)Pi+u2(0)+cos(μit)Pi+u2t(0)]\displaystyle=\sum_{i=1}^{\infty}\left[-\sqrt{\mu_{i}}\sin(\sqrt{\mu_{i}}t)P_{i}^{+}u_{2}\left(0\right)+\cos(\sqrt{\mu_{i}}t)P_{i}^{+}u_{2t}\left(0\right)\right]
+j=1K[νjsinh(νjt)Pju2(0)+cosh(νjt)Pju2t(0)]\displaystyle+\sum_{j=1}^{K}\left[\sqrt{-\nu_{j}}\sinh\left(\sqrt{-\nu_{j}}t\right)P_{j}^{-}u_{2}\left(0\right)+\cosh\left(\sqrt{-\nu_{j}}t\right)P_{j}^{-}u_{2t}\left(0\right)\right]
+0bλsin(λt)dπλu2(0)+0bcos(λt)𝑑πλu2t(0)\displaystyle+\int_{0}^{b}-\sqrt{\lambda}\sin(\sqrt{\lambda}t)d\pi_{\lambda}u_{2}(0)+\int_{0}^{b}\cos(\sqrt{\lambda}t)d\pi_{\lambda}u_{2t}(0)
+a0λsinh(λt)𝑑πλu2(0)+a0cosh(λt)𝑑πλu2t(0)+P0u2t(0),\displaystyle+\int_{-a}^{0}\sqrt{-\lambda}\sinh(\sqrt{-\lambda}t)d\pi_{\lambda}u_{2}(0)+\int_{-a}^{0}\cosh(\sqrt{-\lambda}t)d\pi_{\lambda}u_{2t}(0)+P_{0}u_{2t}(0),

by similar estimates as above for u2(t)Z,\|u_{2}\left(t\right)\|_{Z},\ we obtain

u2t(t)Yeη0t(u2(0)Z+u2t(0)Y).\left\|u_{2t}\left(t\right)\right\|_{Y}\lesssim e^{\sqrt{-\eta_{0}}t}\left(\|u_{2}\left(0\right)\|_{Z}+\|u_{2t}\left(0\right)\|_{Y}\right).

This finishes the proof of the upper bound estimate (1.17). It is straightforward to show that the energy E(u2,u2t)E(u_{2},u_{2t}) defined in (1.18) is conserved for solutions of (4.2).

Next, we prove the lower bound estimate (1.19) in two cases.

Case 1: σ(𝕃~)(,a)\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)\neq\varnothing. We choose u2(0)=ψ1u_{2}(0)=\psi_{1} and u2t(0)=ν1ψ1u_{2t}(0)=\sqrt{-\nu_{1}}\psi_{1} where ψ1Z\psi_{1}\in Z is the eigenfunction of 𝕃~\tilde{\mathbb{L}} corresponding to the smallest eigenvalue ν1\nu_{1} in (,a)(-\infty,-a). Then

(u2(t),u2t(t))=(eν1tψ1,ν1eν1tψ1),\left(u_{2}(t),u_{2t}(t)\right)=\left(e^{\sqrt{-\nu_{1}}t}\psi_{1},\sqrt{-\nu_{1}}e^{\sqrt{-\nu_{1}}t}\psi_{1}\right),

which clearly implies u2(t)Yeη0tu2(0)Z\left\|u_{2}(t)\right\|_{Y}\gtrsim e^{\sqrt{-\eta_{0}}t}\left\|u_{2}\left(0\right)\right\|_{Z}.

Case 2: σ(𝕃~)(,a)=\sigma(\tilde{\mathbb{L}})\cap(-\infty,-a)=\varnothing. Since σess(𝕃~)=[a,b]\sigma_{ess}(\tilde{\mathbb{L}})=[-a,b], for any ε>0\varepsilon>0 small there exists a nonzero function ϕR(πa+επa)Z\phi\in R(\pi_{-a+\varepsilon}-\pi_{-a})\subset Z. Choose the initial data u2(0)=ϕu_{2}(0)=\phi and u2t(0)=0u_{2t}(0)=0. Then the solution u2(t)u_{2}\left(t\right) for the equation (4.2) is given by

u2(t)=aa+εcosh(λt)𝑑πλϕ.u_{2}(t)=\int_{-a}^{-a+\varepsilon}\cosh(\sqrt{-\lambda}t)d\pi_{\lambda}\phi.

Thus

u2(t)Y2\displaystyle\|u_{2}(t)\|_{Y}^{2} =aa+εcosh2(λt)d(πλϕ,ϕ)eη0+εtaa+εd(πλϕ,ϕ)\displaystyle=\int_{-a}^{-a+\varepsilon}\cosh^{2}(\sqrt{-\lambda}t)d\left(\pi_{\lambda}\phi,\phi\right)\gtrsim e^{\sqrt{-\eta_{0}+\varepsilon}t}\int_{-a}^{-a+\varepsilon}d\left(\pi_{\lambda}\phi,\phi\right)
eη0+εtϕZ.\displaystyle\gtrsim e^{\sqrt{-\eta_{0}+\varepsilon}t}\left\|\phi\right\|_{Z}.

This finishes the proof of the theorem.   

Remark 4.1

By Theorem 1.2, the maximal growth rate of unstable rotating stars can be due to either discrete or continuous spectrum. Consider a family of slowly rotating stars (ρε,vε=εrω0(r)𝐞θ)\left(\rho_{\varepsilon},\vec{v_{\varepsilon}}=\varepsilon r\omega_{0}\left(r\right)\mathbf{e}_{\theta}\right)\ near a non-rotating star (ρ0(|x|),v0=0)\left(\rho_{0}\left(\left|x\right|\right),\vec{v_{0}}=\vec{0}\right) with ω0(r)\omega_{0}\left(r\right) satisfying the Rayleigh instability condition (4.1). If the non-rotating star is linearly stable, then for sufficiently small ε\varepsilon, the linear instability of (ρε,vε)\left(\rho_{\varepsilon},\vec{v_{\varepsilon}}\right) is due to the continuous spectrum. On the other hand, if the the non-rotating star is linearly unstable, then for sufficiently small ε\varepsilon, (ρε,vε)\left(\rho_{\varepsilon},\vec{v_{\varepsilon}}\right) remains unstable and the maximal growth rate is due to the discrete eigenvalue perturbed from the unstable eigenvalue of the non-rotating star.

Remark 4.2

In [24], Lebovitz indicated that for slowly rotating stars with any angular velocity profile ω0(r)\omega_{0}(r), discrete unstable modes cannot be perturbed from neutral modes of non-rotating stars. More precisely, Lebovitz showed the stabilizing influence of rotation on the fundamental mode (corresponding to the first eigenvalue of the operator 𝕃~\mathbb{\tilde{L}} in (4.2)) even when ω0(r)\omega_{0}(r) does not satisfy the Rayleigh stability condition. However, this does not imply the stability of the rotating stars since the unstable continuous spectrum was not considered in [24].

Acknowledgments: This work is supported partly by the NSF grants DMS-1715201 and DMS-2007457 (Lin) and the China Scholarship Council No.201806310066(Wang).

References

  • [1] G. Auchmuty. The global branching of rotating stars. Arch. Rat. Mech. Anal. 114:179–194, 1991.
  • [2] G. Auchmuty and R. Beals. Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal. 43:255–271, 1971.
  • [3] A. Balinsky, W. Evans and R. Lewis. The Analysis and Geometry of Hardy’s Inequality. Physical Review D Particles Fields. 81(8):1014–1025, 2015.
  • [4] S. I. Bisnovaty-Kogan, G. S. Blinnikov. Static criteria for stability of arbitrarily rotating stars. Astronomy &\& Astrophysics. 31(4), 1974.
  • [5] A. Caffarelli, L. Friedman. The shape of axi-symmetric rotating fluid. Journal of Functional Analysis. 694:109–142, 1980.
  • [6] S. Chandrasekhar. Introduction to the Stellar Structure. University of Chicago Press, 1939.
  • [7] S. Chandrasekhar. Ellipsoidal Figures of Equilibrium. Yale University Press, 1969.
  • [8] S. Chandrasekhar and N. R.  Lebovitz. The Pulsations and the Dynamical Stability of Gaseous Masses in Uniform Rotation. Astrophysical Journal. 152(1):267–291, 1968.
  • [9] S. Chanillo and Y. Li. On diameters of uniformly rotating stars. Communications in Mathematical Physics. 166(2):417–430, 1994.
  • [10] A. Friedman and B. Turkington. Asymptotic estimates for an axisymmetric rotating fluid. Journal of Functional Analysis. 37(2):136–163, 1980.
  • [11] A. Friedman and B. Turkington. Existence and dimensions of a rotating white dwarf. Journal of Differential Equations. 42(3):414–437, 1981.
  • [12] J. Friedman, J. Ipser, and R. Sorkin. Turning-Point method for axisymmetric stability of rotating relativistic stars. Astrophysical Journal. 325:722–724, 1988.
  • [13] J. Hazelhurst. The stabilizing effect of rotation. Astronomy and Astrophysics. 219:181–184, 1994.
  • [14] U. Heilig. On Lichtenstein’s analysis of rotating Newtonian stars. In Annales de l’IHP Physique théorique. 60:457–487, 1994.
  • [15] J. M. Heinzle. and C.  Uggla. Newtonian stellar models. Ann. Physics. 308:18–61, 2003.
  • [16] J. Jang. Nonlinear Instability Theory of Lane-Emden stars. Comm. Pure Appl. Math. 67:1418–1465, 2014.
  • [17] J. Jang and T. Makino. On slowly rotating axisymmetric solutions of the Euler-Poisson equations. Arch. Ration. Mech. Anal. 225:873–900, 2017.
  • [18] J. Jang and T. Makino. On rotating axisymmetric solutions of the Euler-Poisson equations. Journal of Differential equations. 266(7):3942–3972, 2019.
  • [19] J. Jang and T. Makino. On rotating axisymmetric solutions of the Euler-Poisson equations. Journal of Differential equations. 266:3942–3972, 2019.
  • [20] J. Jang and T. Makino. Linearized Analysis of Barotropic Perturbations around Spherically Symmetric Gaseous Stars Governed by the Euler-Poisson Equations. Journal of Mathematical Physics. 61(5):051508,42, 2020.
  • [21] W. S. Jardetzky. Theories of figures of celestial bodies. Interscience Publishers, 1958.
  • [22] H. Kähler. Rotational effects on stellar structure and stability. Astronomy and Astrophysics. 288:191–203, 1994.
  • [23] T. Kato. Perturbation theory for linear operators. Reprint of the 1980 edition. Springer-Verlag, Berlin, 1995.
  • [24] N. R. Lebovitz. The Effect of an Arbitrary Law of Slow Rotation on the Oscillations and the Stability of Gaseous Masses. The Astrophysical Journal. 160:701, 1970.
  • [25] P. Ledoux. On the Radial Pulsation of Gaseous Stars. The Astrophysical Journal. 102(2):143, 1945.
  • [26] Y. Li. On uniformly rotating stars. Arch. Rat. Mech. Anal. 115:367–393, 1991.
  • [27] L. Lichtenstein. Untersuchungen über die Gleichgewichtsfiguren rotierender Flüssigkeiten, deren Teilchen einander nach dem Newtonschen Gesetze anziehen. Math. Z. 36:481–562, 1933.
  • [28] S.S. Lin. Stability of gaseous stars in spherically symmetric motions. SIAM J. Math. Anal. 28(3):539–569, 1997.
  • [29] Z. Lin and C. Zeng. Instability, index theorem, and exponential trichotomy for Linear Hamiltonian PDEs. Mem. Amer. Math. Soc. 275 (1347), 2022.
  • [30] Z. Lin and C. Zeng. Separable Hamiltonian PDEs and Turning point principle for stability of gaseous stars. Comm. Pure. Appl. Math., accepted 2022.
  • [31] T. Luo and J. Smoller. Rotating fluids with self-gravitation in bounded domains. Arch. Rat. Mech. Anal. 173(3):345–377, 2004.
  • [32] T. Luo and J. Smoller. Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars. Communications in Mathematical Physics. 284(2):425–457, 2008.
  • [33] T. Luo and J. Smoller. Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch. Ration. Mech. Anal. 191(3):447–496, 2009.
  • [34] T. Luo and J. Smoller. On the Euler-Poisson equations of self-gravitating compressible fluids.Nonlinear conservation laws and applications, volume 153. Springer, New York, 2011.
  • [35] J.  P. Ostriker and W.  K. Mark. Rapidly rotating stars. I. The self-consistent-field method. The Astrophysical Journal. 1968, 151:1075–1088.
  • [36] J. E. Pringle and A. R. King. Astrophysical Flows. Cambridge university press, 2003.
  • [37] L. Rayleigh. On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. 11:57–70, 1880.
  • [38] K. A. Sidorov. Influence of rotation and a binary companion on the frequency of the radial pulsations of a homogeneous star. Astrophysics. 18(1):90–96, 1982.
  • [39] K. A. Sidorov. Structure and oscillations of rotating polytropes. Astrophysics. 17(4):427–436, 1982.
  • [40] S. W. Stahler. The Equilibria of Rotating Isothermal Clouds - Part Two - Structure and Dynamical Stability. Astrophysical Journal. 268:165–184, 1983.
  • [41] W. A. Strauss and Y. Wu. Steady States of Rotating Stars and Galaxies. SIAM Journal on Mathematical Analysis. 49(6):4865–4914, 2017.
  • [42] W. A Strauss and Y. Wu. Rapidly Rotating Stars. Communications in Mathematical Physics. 368(2):701–721, 2019.
  • [43] W. A Strauss and Y. Wu. Rapidly rotating white dwarfs. Nonlinearity. 33(9):4783–4798, 2020.
  • [44] K. Takami, L. Rezzolla, and S. Yoshida. A quasi-radial stability criterion for rotating relativistic stars. Monthly Notices of the Royal Astronomical Society Letters. 416(1):L1–L5, 2011.
  • [45] J. L. Tassoul. Theory of Rotating Stars. Princeton University Press, 1978.
  • [46] J. L. Tassoul. Stellar rotation. Cambridge university press, 2000.