This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stability of the centers of group algebras of general affine groups GAn(q)GA_{n}(q)

Jinkui Wan School of Mathematics and Statistics
Beijing Institute of Technology
Beijing, 100081, P.R. China
wjk302@hotmail.com
 and  Lan Zhou School of Mathematics and Statistics
Beijing Institute of Technology
Beijing, 100081, P.R. China
1120191985@bit.edu.cn
Abstract.

The general affine group GAn(q)GA_{n}(q) consisting of invertible affine transformations of an affine space of codimension one in the vector space 𝔽qn\mathbb{F}_{q}^{n} over a finite field 𝔽q\mathbb{F}_{q}, can be viewed as a subgroup of the general linear group GLn(q)GL_{n}(q) over 𝔽q\mathbb{F}_{q}. In the article, we introduce the notion of the type of each matrix in GAn(q)GA_{n}(q) and give an explicit representative for each conjugacy class. Then the center 𝒜n(q)\mathcal{A}_{n}(q) of the integral group algebra [GAn(q)]\mathbb{Z}[GA_{n}(q)] is proved to be a filtered algebra via the length function defined via the reflections lying in GAn(q)GA_{n}(q). We show in the associated graded algebras 𝒢n(q)\mathcal{G}_{n}(q) the structure constants with respect to the basis consisting of the conjugacy class sums are independent of nn. The structure constants in 𝒢n(q)\mathcal{G}_{n}(q) is further shown to contain the structure constants in the graded algebras introduced by the first author and Wang for GLn(q)GL_{n}(q) as special cases. The stability leads to a universal stable center 𝒢(q)\mathcal{G}(q) with positive integer structure constants only depending on qq which governs the algebras 𝒢n(q)\mathcal{G}_{n}(q) for all nn.

Key words and phrases:
Finite fields, general affine groups, centers, conjugacy classes
2000 Mathematics Subject Classification:
Primary: 20G40, 05E15

1. Introduction

1.1.

In [FH] by Farahat and Higman, a fundamental stability result for the centers of the integral group algebras [Sn]\mathbb{Z}[S_{n}] of the symmetric groups SnS_{n} was established. By introducing a conjugation-invariant reflection length for permutations, the center of [Sn]\mathbb{Z}[S_{n}] admits a filtered algebra structure. It is proved in [FH] that in the associated graded algebras the structure constants with respect to the basis of conjugacy class sums are independent of nn. This stability leads to the construction of a universal stable ring (the Farahat-Higman ring), equipped with a distinguished basis. Remarkably, this ring can be identified with the ring of symmetric functions but endowed with a new basis, see [Ma].

The above stability result has been generalized by Wang [Wa] to wreath products ΓSn\Gamma\wr S_{n} for any finite group Γ\Gamma and moreover it is shown in [Wa] that when the group Γ\Gamma is a finite subgroup of SL2()SL_{2}(\mathbb{C}), the associated graded algebra of the center of the group algebra of the wreath product is isomorphic to the cohomology ring of Hilbert scheme of nn points on the minimal resolution of 2/Γ\mathbb{C}^{2}/\Gamma. Recently the first author and Wang [WW] generalized the above stability property to the general linear group GLn(q)GL_{n}(q) over a finite field 𝔽q\mathbb{F}_{q}. More precisely, the group GLn(q)GL_{n}(q) is proved to be generated by the reflections in GLn(q)GL_{n}(q) and hence the center of the integral group algebra [GLn(q)]\mathbb{Z}[GL_{n}(q)] admits a filtration with respect to the reflection length. Then the structure constants of the associated graded algebras are shown to be independent of nn, and this stability leads to a universal stable center with positive integer structure constants which governs the graded algebras for all nn.

Based on [WW], Özden established the stability property for the family of symplectic groups Sp2n(q)Sp_{2n}(q) in [Oz] with respect to length function in terms of reflections in GL2n(q)GL_{2n}(q). Later on, Kannan-Ryba [KR] proved that the structure constants of the centers of the integral group algebra of the classical finite groups over 𝔽q\mathbb{F}_{q} are polynomials in qnq^{n}, recovering the results in [Me] for the case of GLn(q)GL_{n}(q).

1.2.

Besides the classical finite groups, the general affine groups GAn(q)GA_{n}(q) over 𝔽q{\mathbb{F}}_{q} form another rich and sophisticated family of finite groups which has been initially studied by Zelevinsky [Ze]. The main goal of this paper is to formulate and establish a stability result à la Farahat-Higman for the centers of the integral group algebras of GAn(q)GA_{n}(q).

1.3.

Denote by Φq\Phi_{q} the set of monic irreducible polynomials in 𝔽q[t]{\mathbb{F}}_{q}[t] other than tt. It is well known (cf. [Ma]) that the conjugacy classes of GLn(q)GL_{n}(q) are parametrized by the types 𝝀=(𝝀(f))fΦq𝒫n(Φq){\boldsymbol{\lambda}}=({\boldsymbol{\lambda}}(f))_{f\in\Phi_{q}}\in\mathscr{P}_{n}(\Phi_{q}) (which are the partition-valued functions on Φq\Phi_{q} of degree nn; cf. (2.2)). The general affine group GAn(q)GA_{n}(q) is the subgroup of GLn(q)GL_{n}(q) consisting of matrices of the form [10αg]\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix} with gGLn1(q)g\in GL_{n-1}(q) and α𝔽qn1\alpha\in{\mathbb{F}}_{q}^{n-1}. The conjugacy classes of GAn(q)GA_{n}(q) turns out to be parametrized by the set of pair (𝝀,k)({\boldsymbol{\lambda}},k), where 𝝀𝒫n1(Φq){\boldsymbol{\lambda}}\in\mathscr{P}_{n-1}(\Phi_{q}) and kk\in\mathbb{N} satisfying mk1m_{k}\geq 1 if k1k\geq 1, where 𝝀(t1){\boldsymbol{\lambda}}(t-1) is written as 𝝀(t1)=(1m12m2){\boldsymbol{\lambda}}(t-1)=(1^{m_{1}}2^{m_{2}}\cdots). An element A=[10αg]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\in GA_{n}(q) belongs to the conjugacy class corresponding to (𝝀,k)({\boldsymbol{\lambda}},k) with gGLn1(q)g\in GL_{n-1}(q) of type 𝝀𝒫n1(Φq){\boldsymbol{\lambda}}\in\mathscr{P}_{n-1}(\Phi_{q}) and k0k\geq 0 uniquely determined by AA and accordingly AA is said to be of type (𝝀,k)({\boldsymbol{\lambda}},k). Furthermore, we define the modified type of AA to be (𝝀̊,k)(\mathring{{\boldsymbol{\lambda}}},k), where 𝝀̊\mathring{{\boldsymbol{\lambda}}} is the modified type of gg introduced in [WW], that is, 𝝀̊(f)=𝝀(f)\mathring{{\boldsymbol{\lambda}}}(f)={\boldsymbol{\lambda}}(f) for ft1f\neq t-1 and 𝝀̊(t1)=(𝝀1e1,𝝀2e1,,𝝀re1)\mathring{{\boldsymbol{\lambda}}}(t-1)=({\boldsymbol{\lambda}}^{e}_{1}-1,{\boldsymbol{\lambda}}^{e}_{2}-1,\ldots,{\boldsymbol{\lambda}}^{e}_{r}-1) if 𝝀(t1)=(𝝀1e,𝝀2e,,𝝀re){\boldsymbol{\lambda}}(t-1)=({\boldsymbol{\lambda}}^{e}_{1},{\boldsymbol{\lambda}}^{e}_{2},\ldots,{\boldsymbol{\lambda}}^{e}_{r}). he key property is that the modified type remains unchanged for AA under the embedding of GAn(q)GA_{n}(q) into GAn+1(q)GA_{n+1}(q) and it is also clearly conjugation invariant. It follows that the conjugacy classes of GA(q)=n1GAn(q)GA_{\infty}(q)=\cup_{n\geq 1}GA_{n}(q) are parametrized by the modified types in 𝒫^𝖺(Φq)\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), see (2.31) for the notation. Let 𝒦(𝝀,k)(n) be conjugacy class of GAn(q) of modified type (𝝀,k)\mathscr{K}_{({\boldsymbol{\lambda}},k)}(n)\text{ be }\text{conjugacy class of }GA_{n}(q)\text{ of modified type }({\boldsymbol{\lambda}},k). Denote P(𝝀,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) the class sum of elements in GAn(q)GA_{n}(q) of modified type (𝝀,k)({\boldsymbol{\lambda}},k), and write

P(𝝀,k)(n)P(𝝁,s)(n)=(𝝂,t)𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)P(𝝂,t)(n)(in 𝒜n(q)).P_{({\boldsymbol{\lambda}},k)}(n)P_{({\boldsymbol{\mu}},s)}(n)=\sum_{({\boldsymbol{\nu}},t)}\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)P_{({\boldsymbol{\nu}},t)}(n)\quad(\text{in }\mathcal{A}_{n}(q)).

with 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) being the structure constants.

1.4.

It is known that the set of reflections (which are the elements with fixed point subspace in 𝔽qn{\mathbb{F}}_{q}^{n} having codimension one) in GLn(q)GL_{n}(q) forms a generating set for GLn(q)GL_{n}(q) and the reflection length (g)\ell(g) of a general element gGLn(q)g\in GL_{n}(q) is by definition the length of any reduced word of gg in terms of reflections. It turns out that the affine group GAn(q)GLn(q)GA_{n}(q)\subset GL_{n}(q) is generated by the set of reflections belonging to the affine group GAn(q)GA_{n}(q). Accordingly, the length 𝖺(A)\ell^{\mathsf{a}}(A) of a general element AGAn(q)A\in GA_{n}(q) is by definition the length of any reduced word of AA in terms of reflections in GAn(q)GA_{n}(q); two conjugate elements in GAn(q)GA_{n}(q) have the same length. It turns out that 𝖺(A)=(𝝀,k)\ell^{\mathsf{a}}(A)=\|({\boldsymbol{\lambda}},k)\| if AA is of modified type (𝝀,k)({\boldsymbol{\lambda}},k), see (3.15) for notations. The center 𝒜n(q)\mathcal{A}_{n}(q) of the integral group algebra [GAn(q)]\mathbb{Z}[GA_{n}(q)] of GAn(q)GA_{n}(q) is a filtered algebra with a basis of conjugacy class sums with respect to the reflection length. Denote by 𝒢n(q)\mathcal{G}_{n}(q) the associated graded algebra. Then we have

P(𝝀,k)(n)P(𝝁,s)(n)=(𝝂,t)=(𝝀,k)+(𝝁,s)𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)P(𝝂,t)(n)(in 𝒢n(q)).P_{({\boldsymbol{\lambda}},k)}(n)P_{({\boldsymbol{\mu}},s)}(n)=\sum_{\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|}\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)P_{({\boldsymbol{\nu}},t)}(n)\quad(\text{in }\mathcal{G}_{n}(q)).

Our main result concerning the stability of the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) is as follows.

Theorem 1.1 (Theorem 3.11).

(1)(1) 𝔭(𝛌,k),(𝛍,s)(𝛎,t)(n)=0\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)=0 unless (𝛎,t)(𝛌,k)+(𝛍,s)\|(\boldsymbol{\nu},t)\|\leq\|(\boldsymbol{\lambda},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|.

(2)(2) If (𝛎,t)=(𝛌,k)+(𝛍,s)\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|, then 𝔭(𝛌,k),(𝛍,s)(𝛎,t)(n)\mathfrak{p}_{({{\boldsymbol{\lambda}}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) is independent of nn. (In this case, we shall write 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({{\boldsymbol{\lambda}}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) as 𝔭(𝝀,k),(𝝁,s)(𝝂,t)\mathfrak{p}_{({{\boldsymbol{\lambda}}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}\in\mathbb{N}.)

The proof of Theorem 3.11 relies on two key observations. One observation is that the series GA1(q)GA2(q)GAn(q)GAn+1(q)GA_{1}(q)\subset GA_{2}(q)\subset\cdots\subset GA_{n}(q)\subset GA_{n+1}(q)\subset\cdots satisfies the so-called strictly increasing property, that is, 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n+1)\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)\leq\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n+1) for any admissible n1n\geq 1 and moreover if 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)<𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n+1)\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)<\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n+1) then 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n+1)<𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n+2)\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n+1)<\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n+2). Another key observation is that a(A)\ell^{a}(A) coincides with (A)\ell(A) for any AGAn(q)A\in GA_{n}(q) and hence when (𝝂,t)=(𝝀,k)+(𝝁,s)\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\| the increasing sequence 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n+1)\cdots\leq\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)\leq\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n+1)\leq\cdots is bounded by a constant independent of nn by applying the stability property established in [WW].

Theorem 3.11 can be rephrased as that the associated graded algebra 𝒢n(q)\mathcal{G}_{n}(q) of 𝒜n(q)\mathcal{A}_{n}(q) has structure constants independent of nn. We introduce a graded \mathbb{Z}-algebra 𝒢(q)\mathcal{G}(q) with a basis given by the symbols P(𝝀,k){P}_{({\boldsymbol{\lambda}},k)} indexed by (𝝀,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), and its multiplication has structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)} as in the theorem above, for (𝝂,t)=(𝝀,k)+(𝝁,s)\|({\boldsymbol{\nu}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|({\boldsymbol{\mu}},s)\|; cf. (3.20).

Theorem 1.2 (Theorem 3.12).

The graded \mathbb{Z}-algebra 𝒢n(q)\mathcal{G}_{n}(q) has the multiplication given by

P(𝝀,k)(n)P(𝝁,s)(n)=(𝝂,t)=(𝝀,k)+(𝝁,s)𝔭(𝝀,k),(𝝁,s)(𝝂,t)P(𝝂,t)(n).{P}_{({\boldsymbol{\lambda}},k)}(n){P}_{({\boldsymbol{\mu}},s)}(n)=\sum_{\|({\boldsymbol{\nu}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|({\boldsymbol{\mu}},s)\|}\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}{P}_{({\boldsymbol{\nu}},t)}(n).

for (𝛌,k),(𝛍,s)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}). Moreover, we have a surjective homomorphism 𝒢(q)𝒢n(q)\mathcal{G}(q)\twoheadrightarrow\mathcal{G}_{n}(q) for each nn, which maps P(𝛌,k){P}_{({\boldsymbol{\lambda}},k)} to P(𝛌,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) for all (𝛌,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}).

1.5.

We compute some examples of the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) in 𝒜n(q)\mathcal{A}_{n}(q). Our computation turns out to imply two interesting facts. One fact is that we show the structure constant a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} in the center of [GLn(q)]\mathbb{Z}[GL_{n}(q)] in the case 𝝂=𝝀+𝝁\|{\boldsymbol{\nu}}\|=\|{\boldsymbol{\lambda}}\|+\|\boldsymbol{{\boldsymbol{\mu}}}\| coincides with 𝔭(𝝀,0),(𝝁,0)(𝝂,0)\mathfrak{p}_{({{\boldsymbol{\lambda}}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}. This means the structure constants in the graded algebra for GLn(q)GL_{n}(q) studied in [WW] are special cases of the structure constants in the graded algebra 𝒢n(q)\mathcal{G}_{n}(q) for GAn(q)GA_{n}(q).

It is known [Be, DL] that in GAn(q)GA_{n}(q) there exists another set of generators consisting of affine reflections and moreover the affine reflection length denoted by 𝖺(A)\ell\ell^{\mathsf{a}}(A) satisfies 𝖺(A)=𝖺(B)\ell\ell^{\mathsf{a}}(A)=\ell\ell^{\mathsf{a}}(B) whenever A,BGAn(q)A,B\in GA_{n}(q) are conjugate. Hence the center 𝒜n(q)\mathcal{A}_{n}(q) of the integral group algebra [GAn(q)]\mathbb{Z}[GA_{n}(q)] of GAn(q)GA_{n}(q) admits another filtered structure with respect to the affine reflection length. It turns out that the structure constants of the corresponding graded algebra 𝒢n(q)\mathcal{G}^{\prime}_{n}(q) actually dependents on nn, which is different from 𝒢n(q)\mathcal{G}_{n}(q). This difference is an interesting phenomenon which is worthwhile to be further explored to get deeper connection between these two algebras. It also indicate that the algebra 𝒢n(q)\mathcal{G}_{n}(q) defined via the length function 𝖺(A)\ell^{\mathsf{a}}(A) is the suitable one for further study.

1.6.

The paper is organized as follows. In Section 2, we review basic facts on GAn(q)GA_{n}(q) and in particularly give an explicit representatives for each conjugacy class of GAn(q)GA_{n}(q). We introduce the notion of modified types for each element in GAn(q)GA_{n}(q). In Section 3, we recall the stability property for GLn(q)GL_{n}(q) established in [WW] and prove that the center 𝒜n(q)\mathcal{A}_{n}(q) of [GAn(q)]\mathbb{Z}[GA_{n}(q)] is a filtered algebra. Then we formulate and establish the stability on the structure constants for the graded algebra 𝒢n(q)\mathcal{G}_{n}(q) and the universal stable center 𝒢(q)\mathcal{G}(q). In Section 4, we compute some examples of the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) and prove the structure constants a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} in the situation 𝝂=𝝀+𝝁\|\boldsymbol{{\boldsymbol{\nu}}}\|=\|{\boldsymbol{\lambda}}\|+\|\boldsymbol{{\boldsymbol{\mu}}}\| in the center of [GLn(q)]\mathbb{Z}[GL_{n}(q)] coincides with 𝔭(𝝀,0),(𝝁,0)(𝝂,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}.

Acknowledgements. This project was partially carried out while the first author enjoyed the support and hospitality of University of Virginia. She would like to thank Weiqiang Wang and Arun Kannan for many helpful discussions on the project. Both author are supported by NSFC-12122101 and NSFC-12071026.

2. Conjugacy classes and types of matrices in general affine group GAn(q)GA_{n}(q)

In this section, we shall give an explicit description of the conjugacy classes of the affine group GAn(q)GA_{n}(q) over the finite field 𝔽q{\mathbb{F}}_{q} and introduce the notion of the modified type for elements in GAn(q)GA_{n}(q).

2.1. The conjugacy classes in GLn(q)GL_{n}(q)

Let 𝒫\mathscr{P} be the set of all partitions. For λ=(λ1,λ2,,)𝒫\lambda=(\lambda_{1},\lambda_{2},\ldots,)\in\mathscr{P}, we denote its size by |λ|=λ1+λ2++λ|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}, its length by (λ)\ell(\lambda). We will also write λ=(1m1(λ)2m2(λ))\lambda=(1^{m_{1}(\lambda)}2^{m_{2}(\lambda)}\ldots), where mi(λ)m_{i}(\lambda) is the number of parts in λ\lambda equal to ii. For two partitions λ,μ𝒫\lambda,\mu\in\mathscr{P}, we denote by λμ=(1m1(λ)+m1(μ)2m2(λ)+m2(μ))\lambda\cup\mu=(1^{m_{1}(\lambda)+m_{1}(\mu)}2^{m_{2}(\lambda)+m_{2}(\mu)}\cdots) the partition whose parts are those of λ\lambda and μ\mu. For a set YY, let 𝒫(Y)\mathscr{P}(Y) be the set of the partition-valued functions 𝝀:Y𝒫\boldsymbol{\lambda}:Y\rightarrow\mathscr{P} such that only finitely many 𝝀(y){\boldsymbol{\lambda}}(y) are nonempty partitions. Given 𝝀,𝝁𝒫(Y){\boldsymbol{\lambda}},{\boldsymbol{\mu}}\in\mathscr{P}(Y), we define 𝝀𝝁𝒫(Y){\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}}\in\mathscr{P}(Y) by letting (𝝀𝝁)(y)=𝝀(y)𝝁(y)({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}})(y)={\boldsymbol{\lambda}}(y)\cup{\boldsymbol{\mu}}(y) for each yYy\in Y.

Denote by 𝔽q\mathbb{F}_{q} the finite field of qq elements, where qq is a prime power. We shall regard vectors in the nn-dimensional vector space 𝔽qn{\mathbb{F}}_{q}^{n} as column vectors, that is, 𝔽qn={v=(v1,,vn)|vk𝔽q,1kn}{\mathbb{F}}_{q}^{n}=\{v=(v_{1},\ldots,v_{n})^{\intercal}|v_{k}\in{\mathbb{F}}_{q},1\leq k\leq n\} for each n1n\geq 1. Denote by Mn×m(q)M_{n\times m}(q) the set of n×mn\times m matrices over the finite field 𝔽q\mathbb{F}_{q}. The general linear group GLn(q)GL_{n}(q), which consists of all invertible matrices in Mn×n(q)M_{n\times n}(q), acts on 𝔽qn\mathbb{F}_{q}^{n} naturally via left multiplication.

Following [Ma], we recall the description of conjugacy classes in GLn(q)GL_{n}(q). Let Φq\Phi_{q} be the set of all monic irreducible polynomial in 𝔽q[t]{\mathbb{F}}_{q}[t] other than tt. Then for each gGLn(q)g\in GL_{n}(q), the vector space 𝔽qn{\mathbb{F}}_{q}^{n} admits a 𝔽q[t]{\mathbb{F}}_{q}[t]-module via tv=gvt\cdot v=gv for any v𝔽qnv\in{\mathbb{F}}_{q}^{n}, Since 𝔽q[t]{\mathbb{F}}_{q}[t] is a PID, there exists a unique 𝝀=(𝝀(f))fΦq𝒫(Φq){\boldsymbol{\lambda}}=({\boldsymbol{\lambda}}(f))_{f\in\Phi_{q}}\in\mathscr{P}(\Phi_{q}) such that

(2.1) VgV𝝀:=f,i𝔽q[t]/(f)𝝀i(f),V_{g}\cong V_{\boldsymbol{\lambda}}:=\oplus_{f,i}{\mathbb{F}}_{q}[t]/(f)^{{\boldsymbol{\lambda}}_{i}(f)},

where we write 𝝀(f)=(𝝀1(f),𝝀2(f),)𝒫{\boldsymbol{\lambda}}(f)=({\boldsymbol{\lambda}}_{1}(f),{\boldsymbol{\lambda}}_{2}(f),\ldots)\in\mathscr{P}; moreover, we have

(2.2) 𝝀:=fΦqd(f)|𝝀(f)|=n,\|{\boldsymbol{\lambda}}\|:=\sum_{f\in\Phi_{q}}d(f)|{\boldsymbol{\lambda}}(f)|=n,

where d(f)d(f) denotes the degree of the polynomial ff. Denote by 𝒫n(Φq)\mathscr{P}_{n}(\Phi_{q}) the set of 𝝀𝒫(Φq){\boldsymbol{\lambda}}\in\mathscr{P}(\Phi_{q}) satisfying (2.2). The partition-valued function 𝝀=(𝝀(f))fΦq𝒫(Φq){\boldsymbol{\lambda}}=({\boldsymbol{\lambda}}(f))_{f\in\Phi_{q}}\in\mathscr{P}(\Phi_{q}) is called the type of gg. Then any two elements of GLn(q)GL_{n}(q) are conjugate if and only if they have the same type, and there is a bijection between the set of conjugacy classes of GLn(q)GL_{n}(q) and the set 𝒫n(Φq)\mathscr{P}_{n}(\Phi_{q}). For each 𝝀𝒫n(Φq){\boldsymbol{\lambda}}\in\mathscr{P}_{n}(\Phi_{q}), denote by 𝒦𝝀\mathcal{K}_{\boldsymbol{\lambda}} the conjugacy class of elements in GnG_{n} of type 𝝀{\boldsymbol{\lambda}}.

For each f=td1idaiti1Φqf=t^{d}-\sum_{1\leq i\leq d}a_{i}t^{i-1}\in\Phi_{q}, let J(f)J(f) denote the companion matrix for ff of the form

J(f)=[010000100001a1a2a3ad],J(f)=\begin{bmatrix}0&1&0&\cdots&0\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&1\\ a_{1}&a_{2}&a_{3}&\cdots&a_{d}\end{bmatrix},

and for each integer m1m\geq 1 let

Jm(f)=[J(f)Id0000J(f)Id00000J(f)Id0000J(f)]dm×dmJ_{m}(f)=\begin{bmatrix}J(f)&I_{d}&0&\cdots&0&0\\ 0&J(f)&I_{d}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&J(f)&I_{d}\\ 0&0&0&\cdots&0&J(f)\end{bmatrix}_{dm\times dm}

with mm diagonal blocks J(f)J(f), where IdI_{d} is the d×dd\times d identity matrix. Given 𝝀𝒫(Φq){\boldsymbol{\lambda}}\in\mathscr{P}(\Phi_{q}) with 𝝀(f)=(𝝀1(f),𝝀2(f),){\boldsymbol{\lambda}}(f)=({\boldsymbol{\lambda}}_{1}(f),{\boldsymbol{\lambda}}_{2}(f),\ldots), set

(2.3) J𝝀=diag(J𝝀i(f)(f))f,i,J_{\boldsymbol{\lambda}}=\text{diag}\,\Big{(}J_{{\boldsymbol{\lambda}}_{i}(f)}(f)\Big{)}_{f,i},

that is, J𝝀J_{\boldsymbol{\lambda}} is the diagonal sum of the matrices J𝝀i(f)(f)J_{{\boldsymbol{\lambda}}_{i}(f)}(f) for all i1i\geq 1 and fΦqf\in\Phi_{q}. Then an element gGLn(q)g\in GL_{n}(q) of type 𝝀{\boldsymbol{\lambda}} is conjugate to the canonical form J𝝀J_{\boldsymbol{\lambda}} (cf. [Ma, Chapter IV, §2]). For fΦqf\in\Phi_{q}, set

J𝝀(f)=diag(J𝝀i(f)(f))i1.J_{\boldsymbol{\lambda}}(f)=\text{diag}\,\Big{(}J_{{\boldsymbol{\lambda}}_{i}(f)}(f)\Big{)}_{i\geq 1}.

Then by (2.1), we have VJ𝝀(f)i1𝔽q[t]/(f)𝝀i(f)V_{J_{\boldsymbol{\lambda}}(f)}\cong\oplus_{i\geq 1}{\mathbb{F}}_{q}[t]/(f)^{{\boldsymbol{\lambda}}_{i}(f)} as 𝔽q[t]{\mathbb{F}}_{q}[t]-modules and moreover, we have J𝝀=diag(J𝝀(f))fΦq.J_{\boldsymbol{\lambda}}=\text{diag}\,\big{(}J_{\boldsymbol{\lambda}}(f)\big{)}_{f\in\Phi_{q}}. Set

J𝝀=diag(J𝝀(f))ft1.J_{\boldsymbol{\lambda}}^{-}=\text{diag}\,\big{(}J_{{\boldsymbol{\lambda}}(f)}\big{)}_{f\neq t-1}.

Suppose 𝝀(t1)=(1m12m2rmr){\boldsymbol{\lambda}}(t-1)=(1^{m_{1}}2^{m_{2}}\cdots r^{m_{r}}) and set

E𝝀(k)=[Jk(t1)00000Jk(t1)000000Jk(t1)00000Jk(t1)]kmk×kmkE^{(k)}_{{\boldsymbol{\lambda}}}=\begin{bmatrix}J_{k}(t-1)&0&0&\cdots&0&0\\ 0&J_{k}(t-1)&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&J_{k}(t-1)&0\\ 0&0&0&\cdots&0&J_{k}(t-1)\end{bmatrix}_{km_{k}\times km_{k}}

for 1kr1\leq k\leq r, then we can write

(2.4) J𝝀=[E𝝀(1)00000E𝝀(2)000000E𝝀(r)00000J𝝀]n×n.J_{{\boldsymbol{\lambda}}}=\begin{bmatrix}E^{(1)}_{{\boldsymbol{\lambda}}}&0&0&\cdots&0&0\\ 0&E^{(2)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&\cdots&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix}_{n\times n}.

By [WW, Lemma 2.1] (cf. [Ma, IV, (2.5)]), we have the following.

Lemma 2.1.

Let 𝛌,𝛍𝒫(Φq){\boldsymbol{\lambda}},{\boldsymbol{\mu}}\in\mathscr{P}(\Phi_{q}) and f1f2Φqf_{1}\neq f_{2}\in\Phi_{q}. Suppose AA is a d(f2)|𝛍(f2)|×d(f1)|𝛌(f1)|d(f_{2})|{\boldsymbol{\mu}}(f_{2})|\times d(f_{1})|{\boldsymbol{\lambda}}(f_{1})|-matrix over 𝔽q{\mathbb{F}}_{q} satisfying AJ𝛌(f1)=J𝛍(f2)A.AJ_{\boldsymbol{\lambda}}(f_{1})=J_{\boldsymbol{\mu}}(f_{2})A. Then A=0A=0.

Recall Jm(t1)J_{m}(t-1) is the Jordan form of size mm and eigenvalue 11. The following elementary lemma can be verified by a direct computation.

Lemma 2.2.

[WW, Lemma 2.4] Let k,m1k,m\geq 1. Suppose AMm×k(q)A\in M_{m\times k}(q) satisfies AJk(t1)=Jm(t1)AAJ_{k}(t-1)=J_{m}(t-1)A. Then AA is of the form

(2.5) A=[00a1a2am1am000a1am2am10000a1a200000a1]if mk,A=\begin{bmatrix}0&\cdots&0&a_{1}&a_{2}&\cdots&a_{m-1}&a_{m}\\ 0&\cdots&0&0&a_{1}&\cdots&a_{m-2}&a_{m-1}\\ \vdots&&\vdots&\vdots&&\ddots&\vdots&\vdots\\ 0&\cdots&0&0&0&\cdots&a_{1}&a_{2}\\ 0&\cdots&0&0&0&\cdots&0&a_{1}\end{bmatrix}\quad\text{if }m\leq k,

or

(2.6) A=[a1a2ak1ak0a1ak2ak100a1a2000a100000000]if mk,A=\begin{bmatrix}a_{1}&a_{2}&\cdots&a_{k-1}&a_{k}\\ 0&a_{1}&\cdots&a_{k-2}&a_{k-1}\\ &&\ddots&&\\ 0&0&&a_{1}&a_{2}\\ 0&0&\cdots&0&a_{1}\\ 0&0&\cdots&0&0\\ \vdots&\vdots&&\vdots&\vdots\\ 0&0&\cdots&0&0\end{bmatrix}\quad\text{if }m\geq k,

for some scalars a1,,amin(k,m)𝔽qa_{1},\ldots,a_{\min(k,m)}\in{\mathbb{F}}_{q}.

The following lemma will be useful to compute the conjugacy classes in GAn(q)GA_{n}(q).

Lemma 2.3.

Suppose 𝛌𝒫n(Φq){\boldsymbol{\lambda}}\in\mathscr{P}_{n}(\Phi_{q}) with 𝛌(t1)=(1m12m2rmr){\boldsymbol{\lambda}}(t-1)=(1^{m_{1}}2^{m_{2}}\cdots r^{m_{r}}). Then a matrix ZMn×n(𝔽q)Z\in M_{n\times n}(\mathbb{F}_{q}) commutes with J𝛌J_{{\boldsymbol{\lambda}}} if and only if ZZ has the form

(2.7) Z=[Z11Z12Z1r0Z21Z22Z2r0Zr1Zr2Zrr0000Z,]Z=\begin{bmatrix}Z_{11}&Z_{12}&\cdots&Z_{1r}&0\\ Z_{21}&Z_{22}&\cdots&Z_{2r}&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ Z_{r1}&Z_{r2}&\cdots&Z_{rr}&0\\ 0&0&\cdots&0&Z^{-},\end{bmatrix}

where each Zij=[Zij(11)Zij(12)Zij(1mj)Zij(21)Zij(22)Zij(2mj)Zij(mi1)Zij(mi2)Zij(mimj)]Z_{ij}=\begin{bmatrix}Z^{(11)}_{ij}&Z^{(12)}_{ij}&\cdots&Z^{(1m_{j})}_{ij}\\ Z^{(21)}_{ij}&Z^{(22)}_{ij}&\cdots&Z^{(2m_{j})}_{ij}\\ \vdots&\vdots&\vdots&\vdots\\ Z^{(m_{i}1)}_{ij}&Z^{(m_{i}2)}_{ij}&\cdots&Z^{(m_{i}m_{j})}_{ij}\end{bmatrix} is an mi×mjm_{i}\times m_{j}-block matrix and each block matrix Zij(kl)Z_{ij}^{(kl)} is of size i×ji\times j with the form (2.5) if iji\leq j and with the form (2.6) if iji\geq j and moreover ZJ𝛌=J𝛌ZZ^{-}J_{{\boldsymbol{\lambda}}^{-}}=J_{{\boldsymbol{\lambda}}^{-}}Z^{-}.

Proof.

Suppose ZMn(𝔽q)Z\in M_{n}(\mathbb{F}_{q}). Clearly by Lemma 2.1, one can obtain that ZZ commuting with J𝝀J_{{\boldsymbol{\lambda}}} must be of the form (2.7) and moreover ZijE𝝀(i)=E𝝀(j)ZijZ_{ij}E^{(i)}_{{\boldsymbol{\lambda}}}=E^{(j)}_{{\boldsymbol{\lambda}}}Z_{ij} for 1i,jr1\leq i,j\leq r. Then by (2.5) and (2.6), the lemma is proved.

2.2. The general affine Group GAn(q)GA_{n}(q)

We will review some basics on affine spaces and general affine group by following [DL]. Let VV be a finite dimensional vector space over 𝔽q\mathbb{F}_{q}. An affine space V~\widetilde{V} associated to VV is defined to be a set V~\widetilde{V} together with a unique VV-action V×V~V~,(α,x)α+xV\times\widetilde{V}\rightarrow\widetilde{V},(\alpha,x)\mapsto\alpha+x satisfies

(2.8) 𝟎+x=x,β+(α+x)=(β+α)+x,\displaystyle{\bf 0}+x=x,\beta+(\alpha+x)=(\beta+\alpha)+x,

for any xV~,α,βVx\in\widetilde{V},\alpha,\beta\in V and moreover for any x,yV~x,y\in\widetilde{V}, there exists a unique vector αV\alpha\in V such that α+x=y\alpha+x=y. For x,yV~x,y\in\widetilde{V}, as there exists a unique vector αV\alpha\in V such that α+x=y\alpha+x=y, we can define the difference yx=αy-x=\alpha which is a vector in VV. However, one cannot take sums of elements of V~\widetilde{V}. We define dimV~=dimV\dim\widetilde{V}=\dim V. A map f:V~V~f:\widetilde{V}\rightarrow\widetilde{V} is said to be an affine transformation if

(2.9) f(y1)f(x1)=f(y2)f(x2)f(y_{1})-f(x_{1})=f(y_{2})-f(x_{2})

for any x1,x2,y1,y2V~x_{1},x_{2},y_{1},y_{2}\in\widetilde{V} satisfying y1x1=y2x2Vy_{1}-x_{1}=y_{2}-x_{2}\in V and moreover the induced map f0:VV,αf(α+x)f(x)f^{0}:V\rightarrow V,\alpha\mapsto f(\alpha+x)-f(x) is linear, where xV~x\in\widetilde{V} is a fixed point. We observe that the map f0f^{0} is well-defined due to (2.9). Clearly the composition of two affine transformations is still an affine transformation. An affine transformation ff is called invertible if it is bijective and it is straightforward to check that the inverse of an invertible affine transformation is still an affine transformation. The (general) affine group GA(V~)GA(\widetilde{V}) of V~\widetilde{V} is defined to be group consisting of all invertible affine transformations of V~\widetilde{V}.

In an affine space, it is possible to fix a point and coordinate axis such that every point in the space can be represented as a nn-tuple of its coordinates. For example, suppose dimV~=dimV=n1\dim\widetilde{V}=\dim V=n-1. By choosing coordinates for V~\widetilde{V}, one can identify V~\widetilde{V} with the affine hyperplane

(2.10) 𝔽~qn1:={(1,v1,v2,,vn1)|v1,,vn1𝔽q}\widetilde{\mathbb{F}}_{q}^{n-1}:=\{(1,v_{1},v_{2},\ldots,v_{n-1})^{\intercal}|v_{1},\ldots,v_{n-1}\in\mathbb{F}_{q}\}

in 𝔽qn\mathbb{F}_{q}^{n} and VV is identified with the linear subspace {(0,v1,v2,,vn1)|v1,,vn1𝔽q}\{(0,v_{1},v_{2},\ldots,v_{n-1})^{\intercal}|v_{1},\ldots,v_{n-1}\in\mathbb{F}_{q}\}. Then general affine group GA(V~)GA(\widetilde{V}) can be identified with the set of n×nn\times n-matrices:

(2.11) GA(V~)GAn(q):={[10αg]|gGLn1(q),α𝔽qn1}.GA(\widetilde{V})\cong GA_{n}(q):=\bigg{\{}\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\bigg{|}g\in GL_{n-1}(q),\alpha\in{\mathbb{F}}_{q}^{n-1}\bigg{\}}.

2.3. The conjugacy classes in GAn(q)GA_{n}(q)

It is known [Ze] that the number of conjugacy classes of GAn(q)GA_{n}(q) is equal to c0+c1++cn1c_{0}+c_{1}+\cdots+c_{n-1} with cic_{i} being the number of conjugacy classes of GLi(q)GL_{i}(q) and a representative of conjugacy classes is also given in [Mu] via a “maximal problem” procedure in the context of maximal parabolic subgroups. In the following, we shall give an explicit description of the type of each matrix in GAn(q)GA_{n}(q) as well as an explicit representative for each conjugacy class.

Recall the general affine group GAn(q)GA_{n}(q) is the subgroup of GLn(q)GL_{n}(q) given by

(2.12) GAn(q)={[10αg]|gGLn1(q),α𝔽qn1}.GA_{n}(q)=\bigg{\{}\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\bigg{|}g\in GL_{n-1}(q),\alpha\in{\mathbb{F}}_{q}^{n-1}\bigg{\}}.

Clearly the natural embedding GLn(q)GLn+1(q),h[h001]GL_{n}(q)\subset GL_{n+1}(q),h\mapsto\begin{bmatrix}h&0\\ 0&1\end{bmatrix} for n0n\geq 0 leads to the following embedding and hence:

(2.13) GA1(q)GA2(q)GAn(q)GAn+1(q).GA_{1}(q)\subset GA_{2}(q)\subset\cdots\subset GA_{n}(q)\subset GA_{n+1}(q)\subset\cdots.

Denote by GA(q)=n1GAn(q)GA_{\infty}(q)=\cup_{n\geq 1}GA_{n}(q) the corresponding limit group. For simplicity, write Im(In1g)={(In1g)β|β𝔽qn1}\text{Im}(I_{n-1}-g)=\{(I_{n-1}-g)\beta|\beta\in{\mathbb{F}}_{q}^{n-1}\} for each gGLn1(q)g\in GL_{n-1}(q). The following formula will be useful later for our computation:

(2.14) BAB1=[10(Inhgh1)β+hαhgh1]BAB^{-1}=\begin{bmatrix}1&0\\ (I_{n}-hgh^{-1})\beta+h\alpha&hgh^{-1}\end{bmatrix}

for any A=[10αg],B=[10βh]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix},B=\begin{bmatrix}1&0\\ \beta&h\end{bmatrix}\in GA_{n}(q).

Lemma 2.4.

Let A=[10αg]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\in GA_{n}(q). Suppose gGLn1(q)g\in GL_{n-1}(q) is of the type 𝛌{\boldsymbol{\lambda}} with 𝛌(t1)=(1m12m2rmr){\boldsymbol{\lambda}}(t-1)=(1^{m_{1}}2^{m_{2}}\cdots r^{m_{r}}). Assume αIm(In1g)\alpha\notin\text{Im}(I_{n-1}-g). Then AA is conjugate in GAn(q)GA_{n}(q) to a matrix of the form

(2.15) J(𝝀,k):=[10000000E𝝀(1)0000000E𝝀(2)0000ek00E𝝀(k)0000000E𝝀(r)0000000J𝝀],J_{({\boldsymbol{\lambda}},k)}:=\begin{bmatrix}1&0&0&0&\cdots&0&0&0\\ 0&E^{(1)}_{{\boldsymbol{\lambda}}}&0&0&\cdots&0&0&0\\ 0&0&E^{(2)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ e_{k}&0&0&\cdots&E^{(k)}_{{\boldsymbol{\lambda}}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&0&\cdots&0&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix},

where ek=(0,0,,0,1)𝔽qkmke_{k}=(0,0,\ldots,0,1)^{\intercal}\in\mathbb{F}_{q}^{km_{k}} in GAn(q)GA_{n}(q) for some 1kr1\leq k\leq r with mk1m_{k}\geq 1.

Proof.

Since gg is of type 𝝀{\boldsymbol{\lambda}}, there exists hGLn1(q)h\in GL_{n-1}(q) such that hgh1=J𝝀hgh^{-1}=J_{\boldsymbol{\lambda}} and then

(2.16) In1hgh1=In1J𝝀=[Im1E𝝀(1)00000I2m2E𝝀(2)000000IrmrE𝝀(r)00000ImJ𝝀]I_{n-1}-hgh^{-1}=I_{n-1}-J_{\boldsymbol{\lambda}}=\begin{bmatrix}I_{m_{1}}-E_{\boldsymbol{\lambda}}^{(1)}&0&0&\cdots&0&0\\ 0&I_{2m_{2}}-E_{\boldsymbol{\lambda}}^{(2)}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&I_{rm_{r}}-E_{\boldsymbol{\lambda}}^{(r)}&0\\ 0&0&0&\cdots&0&I_{m}-J_{\boldsymbol{\lambda}}^{-}\end{bmatrix}

by (2.4), where m=n1|𝝀(t1)|m=n-1-|{\boldsymbol{\lambda}}(t-1)|. Write hα=γ=[γ1γ2γrγ]𝔽qn1h\alpha=\gamma=\begin{bmatrix}\gamma_{1}&\gamma_{2}&\cdots&\gamma_{r}&\gamma^{-}\end{bmatrix}^{\intercal}\in\mathbb{F}_{q}^{n-1} with γi=[γi(1)γi(2)γi(mi)]\gamma_{i}=\begin{bmatrix}\gamma_{i}^{(1)}&\gamma_{i}^{(2)}&\cdots&\gamma_{i}^{(m_{i})}\end{bmatrix} and γi(j)=[ci1(j)ci2(j)cii(j)]𝔽qi\gamma_{i}^{(j)}=\begin{bmatrix}c_{i1}^{(j)}&c_{i2}^{(j)}&\cdots&c_{ii}^{(j)}\end{bmatrix}\in\mathbb{F}_{q}^{i} for 1ir,1jmi1\leq i\leq r,1\leq j\leq m_{i}. Take β=[β1β2βrβ]\beta=\begin{bmatrix}\beta_{1}&\beta_{2}&\cdots&\beta_{r}\ &\beta^{-}\end{bmatrix}^{\intercal} with

βi=[βi(1)βi(2)βi(mi)],βi(j)=[0ci1(j)cii1(j)]\beta_{i}=\begin{bmatrix}\beta_{i}^{(1)}&\beta_{i}^{(2)}&\cdots&\beta_{i}^{(m_{i})}\end{bmatrix},\quad\beta_{i}^{(j)}=\begin{bmatrix}0&c^{(j)}_{i1}&\cdots&c^{(j)}_{ii-1}\end{bmatrix}

for 1ir,1jmi1\leq i\leq r,1\leq j\leq m_{i} and β\beta^{-} satisfies (β)=(ImJ𝝀)1(γ)(\beta^{-})^{\intercal}=-(I_{m}-J_{{\boldsymbol{\lambda}}}^{-})^{-1}(\gamma^{-})^{\intercal} as ImJ𝝀I_{m}-J_{\boldsymbol{\lambda}}^{-} is invertible. Then by (2.16), we obtain that

(2.17) (Inhgh1)β+hα=[ρ1ρ2ρrρ],(I_{n}-hgh^{-1})\beta+h\alpha=\begin{bmatrix}\rho_{1}\\ \rho_{2}\\ \vdots\\ \rho_{r}\\ \rho^{-}\end{bmatrix},

with

(2.18) ρ1=γ1,ρi=[ρi(1)ρi(2)ρi(mi)] with ρi(j)=[00cii(j)]𝔽qi\rho_{1}=\gamma_{1},\quad\rho_{i}=\begin{bmatrix}\rho_{i}^{(1)}&\rho_{i}^{(2)}&\cdots&\rho_{i}^{(m_{i})}\end{bmatrix}^{\intercal}\text{ with }\rho_{i}^{(j)}=\begin{bmatrix}0&0&\cdots&c_{ii}^{(j)}\end{bmatrix}\in\mathbb{F}_{q}^{i}

for 2ir,1jmi2\leq i\leq r,1\leq j\leq m_{i} and ρ=[000]𝔽qm\rho^{-}=\begin{bmatrix}0&0&\cdots&0\end{bmatrix}\in\mathbb{F}_{q}^{m}. Set B=[10βh]GAn(q)B=\begin{bmatrix}1&0\\ \beta&h\end{bmatrix}\in GA_{n}(q), then by (2.14) and (2.17) we have

(2.19) BAB1=[100000ρ1E𝝀(1)0000ρ20E𝝀(2)000ρr000E𝝀(r)000000J𝝀].BAB^{-1}=\begin{bmatrix}1&0&0&0&\cdots&0&0\\ \rho_{1}&E^{(1)}_{{\boldsymbol{\lambda}}}&0&0&\cdots&0&0\\ \rho_{2}&0&E^{(2)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ \rho_{r}&0&0&0&\cdots&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&0&\cdots&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix}.

By assumption αIm(In1g)\alpha\notin\text{Im}(I_{n-1}-g) we obtain that there does not exist β𝔽nn1\beta\in\mathbb{F}_{n}^{n-1} such that α=(In1g)β\alpha=(I_{n-1}-g)\beta. Thus by (2.17) there must exist some 1ir1\leq i\leq r such that ρi0\rho_{i}\neq 0. Now assume

(2.20) max{i|ρi0}=k.\max\{i|\rho_{i}\neq 0\}=k.

We claim the matrix in (2.19) is conjugate to the matrix of the form

(2.21) J(𝝀,k)=[10000000E𝝀(1)0000000E𝝀(2)0000000E𝝀(k1)000ek000E𝝀(k)00000000E𝝀(r)00000000J𝝀],J_{({\boldsymbol{\lambda}},k)}=\begin{bmatrix}1&0&0&\cdots&0&0&\cdots&0&0\\ 0&E^{(1)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0&\cdots&0&0\\ 0&0&E^{(2)}_{{\boldsymbol{\lambda}}}&\cdots&0&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&E^{(k-1)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0\\ e_{k}&0&0&\cdots&0&E^{(k)}_{{\boldsymbol{\lambda}}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&0&0&0&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&\cdots&0&0&0&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix},

where ek=(0,0,,0,1)𝔽qkmke_{k}=(0,0,\ldots,0,1)^{\intercal}\in\mathbb{F}_{q}^{km_{k}}. To prove the claim, as ρk0\rho_{k}\neq 0 is of the form (2.18), let j0=max{jckk(j)0,1jmk}j_{0}=max\left\{j\mid c_{kk}^{(j)}\neq 0,1\leq j\leq m_{k}\right\}. Then set

X^kk=[X^kk(11)X^kk(12)X^kk(1mk)X^kk(21)X^kk(22)X^kk(2mk)X^kk(mk1)X^kk(mk2)X^kk(mkmk)]\hat{X}_{kk}=\begin{bmatrix}\hat{X}^{(11)}_{kk}&\hat{X}^{(12)}_{kk}&\cdots&\hat{X}^{(1m_{k})}_{kk}\\ \hat{X}^{(21)}_{kk}&\hat{X}^{(22)}_{kk}&\cdots&\hat{X}^{(2m_{k})}_{kk}\\ \vdots&\vdots&\vdots&\vdots\\ \hat{X}^{(m_{k}1)}_{kk}&\hat{X}^{(m_{k}2)}_{kk}&\cdots&\hat{X}^{(m_{k}m_{k})}_{kk}\end{bmatrix}

with

X^kk(st)={diag(1ckk(j0))k×k,s=t=j0,Ik×k,s=tj0diag(ckk(s)ckk(j0))k×k,1s<j0,t=j0,0,otherwise.\hat{X}_{kk}^{(st)}=\left\{\begin{array}[]{cc}\operatorname{diag}\left(\frac{1}{c_{kk}^{(j_{0})}}\right)_{k\times k},&s=t=j_{0},\\ I_{k\times k},&s=t\neq j_{0}\\ \operatorname{diag}\left(-\frac{c^{(s)}_{kk}}{c_{kk}^{(j_{0})}}\right)_{k\times k},&1\leq s<j_{0},t=j_{0},\\ 0,&\text{otherwise}.\end{array}\right.

Clearly X^kkρk=[ρ~k(1)ρ~k(2)ρ~k(j0)ρ~k(mk)]\hat{X}_{kk}\rho_{k}=\begin{bmatrix}\widetilde{\rho}^{(1)}_{k}&\widetilde{\rho}^{(2)}_{k}&\cdots&\widetilde{\rho}^{(j_{0})}_{k}&\cdots&\widetilde{\rho}^{(m_{k})}_{k}\end{bmatrix} with ρ~k(j0)=[0001]𝔽qk\widetilde{\rho}_{k}^{(j_{0})}=\begin{bmatrix}0&0&\cdots&0&1\end{bmatrix}\in{\mathbb{F}}_{q}^{k} and ρ~k(j)=[0000]𝔽qk\widetilde{\rho}_{k}^{(j)}=\begin{bmatrix}0&0&\cdots&0&0\end{bmatrix}\in{\mathbb{F}}_{q}^{k} for jj0j\neq j_{0}. Let

Xkk=[Ik0000Ik000000Ik00Ik0]X^kkX_{kk}=\begin{bmatrix}I_{k}&0&\cdots&0&\cdots&0\\ 0&I_{k}&\cdots&0&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&0\\ 0&0&\cdots&0&\cdots&I_{k}\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&\cdots&I_{k}&\cdots&0\end{bmatrix}\cdot\hat{X}_{kk}

Then XkkX_{kk} is an invertible mk×mkm_{k}\times m_{k}-block matrix with each block Xkk(st)X^{(st)}_{kk} being of the form (2.5) and

(2.22) Xkkρk=ek.X_{kk}\rho_{k}=e_{k}.

Furthermore, choose

(2.23) Xii=Iimi for 1ir,ik.X_{ii}=I_{im_{i}}\text{ for }1\leq i\leq r,i\neq k.

In addition, we take

(2.24) Xij=0 for i>j or i<j but jk.X_{ij}=0\text{ for }i>j\text{ or }i<j\text{ but }j\neq k.

Then for each 1ikr1\leq i\neq k\leq r, we choose XikX_{ik} with Xik=[Xik(11)Xik(12)Xik(1mk)Xik(21)Xik(22)Xik(2mk)Xik(mi1)Xik(mi2)Xik(mimk)]X_{ik}=\begin{bmatrix}X^{(11)}_{ik}&X^{(12)}_{ik}&\cdots&X^{(1m_{k})}_{ik}\\ X^{(21)}_{ik}&X^{(22)}_{ik}&\cdots&X^{(2m_{k})}_{ik}\\ \vdots&\vdots&\vdots&\vdots\\ X^{(m_{i}1)}_{ik}&X^{(m_{i}2)}_{ik}&\cdots&X^{(m_{i}m_{k})}_{ik}\end{bmatrix} being an mi×mkm_{i}\times m_{k}-block matrix and each block matrix Xik(ab)X_{ik}^{(ab)} is of size i×ki\times k with the form (2.5) if iki\leq k and with the form (2.6) if iki\geq k, where

(2.25) Xik(au)=[00cii(a)ckk(u)000000cii(a)ckk(u)000000cii(a)ckk(u)000000cii(a)ckk(u)]i×k, and Xikab=0 for buX_{ik}^{(au)}=\begin{bmatrix}0&\cdots&0&-\frac{c_{ii}^{(a)}}{c_{kk}^{(u)}}&0&\cdots&0&0\\ 0&\cdots&0&0&-\frac{c_{ii}^{(a)}}{c_{kk}^{(u)}}&\cdots&0&0\\ \vdots&&\vdots&\vdots&&\ddots&\vdots&\vdots\\ 0&\cdots&0&0&0&\cdots&-\frac{c_{ii}^{(a)}}{c_{kk}^{(u)}}&0\\ 0&\cdots&0&0&0&\cdots&0&-\frac{c_{ii}^{(a)}}{c_{kk}^{(u)}}\end{bmatrix}_{i\times k},\text{ and }X_{ik}^{ab}=0\text{ for }b\neq u

for 1ami,1bmk1\leq a\leq m_{i},1\leq b\leq m_{k}. Clearly by (2.23) and (2.25) we have

(2.26) Xiiρi+Xikρk=0.X_{ii}\rho_{i}+X_{ik}\rho_{k}=0.

Finally choose an invertible XGLm(q)X^{-}\in GL_{m}(q) such that XJ𝝀=J𝝀XX^{-}J_{{\boldsymbol{\lambda}}}^{-}=J_{{\boldsymbol{\lambda}}}^{-}X^{-}. Putting together we obtain a matrix XX is of the form

X=[Im1000X1k0000I2m200X2k0000000Xk1,k0000000Xkk00000000I(k+1)mk+100000000Irmr00000000X]X=\begin{bmatrix}I_{m_{1}}&0&0&\cdots&0&X_{1k}&0&\cdots&0&0\\ 0&I_{2m_{2}}&0&\cdots&0&X_{2k}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&0&X_{k-1,k}&0&\cdots&0&0\\ 0&0&0&\cdots&0&X_{kk}&0&\cdots&0&0\\ 0&0&0&\cdots&0&0&I_{(k+1)m_{k+1}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&0&0&0&\cdots&I_{rm_{r}}&0\\ 0&0&0&\cdots&0&0&0&\cdots&0&X^{-}\end{bmatrix}

Then by (2.22)-(2.26) we obtain

X[ρ1ρ2ρr00]\displaystyle X\begin{bmatrix}\rho_{1}\\ \rho_{2}\\ \vdots\\ \rho_{r}\\ 0\\ \vdots\\ 0\end{bmatrix} =[Im1000X1k0000I2m200X2k0000000Xk1,k0000000Xkk00000000I(k+1)mk+100000000Irmr00000000X][ρ1ρ2ρk1ρk000]\displaystyle=\begin{bmatrix}I_{m_{1}}&0&0&\cdots&0&X_{1k}&0&\cdots&0&0\\ 0&I_{2m_{2}}&0&\cdots&0&X_{2k}&0&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&0&X_{k-1,k}&0&\cdots&0&0\\ 0&0&0&\cdots&0&X_{kk}&0&\cdots&0&0\\ 0&0&0&\cdots&0&0&I_{(k+1)m_{k+1}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&0&0&0&\cdots&I_{rm_{r}}&0\\ 0&0&0&\cdots&0&0&0&\cdots&0&X^{-}\end{bmatrix}\begin{bmatrix}\rho_{1}\\ \rho_{2}\\ \vdots\\ \rho_{k-1}\\ \rho_{k}\\ 0\\ \vdots\\ 0\\ 0\end{bmatrix}
=[000ek00]\displaystyle=\begin{bmatrix}0\\ 0\\ \vdots\\ 0\\ e_{k}\\ 0\\ \vdots\\ \vdots\\ 0\end{bmatrix}

and moreover XJ𝝀X1=J𝝀XJ_{{\boldsymbol{\lambda}}}X^{-1}=J_{{\boldsymbol{\lambda}}} by Lemma 2.3. This together with (2.19) leads to

[100X]BAB1[100X1]=J(𝝀,k).\begin{bmatrix}1&0\\ 0&X\end{bmatrix}BAB^{-1}\begin{bmatrix}1&0\\ 0&X^{-1}\end{bmatrix}=J_{({\boldsymbol{\lambda}},k)}.

This proves the claim and hence the lemma follows.

Set

𝒫n𝖺(Φq)={(𝝀,k)𝒫n1(Φq)×0|k is a part of 𝝀(t1) whenever k1}.\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q})=\big{\{}({\boldsymbol{\lambda}},k)\in\mathscr{P}_{n-1}(\Phi_{q})\times\mathbb{Z}_{\geq 0}|~{}k\text{ is a part of }{\boldsymbol{\lambda}}(t-1)\text{ whenever }k\geq 1\big{\}}.

For each (𝝀,k)𝒫n𝖺(Φq)({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q}), recall

J(𝝀,k)=[10000000E𝝀(1)0000000E𝝀(2)0000ek00E𝝀(k)0000000E𝝀(r)0000000J𝝀],J_{({\boldsymbol{\lambda}},k)}=\begin{bmatrix}1&0&0&0&\cdots&0&0&0\\ 0&E^{(1)}_{{\boldsymbol{\lambda}}}&0&0&\cdots&0&0&0\\ 0&0&E^{(2)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ e_{k}&0&0&\cdots&E^{(k)}_{{\boldsymbol{\lambda}}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&0&\cdots&0&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix},

if k1k\geq 1 and while in the case k0k\geq 0 set

J(𝝀,0):=[10000000E𝝀(1)0000000E𝝀(2)0000000E𝝀(k)0000000E𝝀(r)0000000J𝝀].J_{({\boldsymbol{\lambda}},0)}:=\begin{bmatrix}1&0&0&0&\cdots&0&0&0\\ 0&E^{(1)}_{{\boldsymbol{\lambda}}}&0&0&\cdots&0&0&0\\ 0&0&E^{(2)}_{{\boldsymbol{\lambda}}}&0&\cdots&0&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&E^{(k)}_{{\boldsymbol{\lambda}}}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&E^{(r)}_{{\boldsymbol{\lambda}}}&0\\ 0&0&0&0&\cdots&0&0&J_{\boldsymbol{\lambda}}^{-}\end{bmatrix}.

For each (𝝀,k)𝒫n𝖺(Φq)({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q}), set 𝝀~(k)𝒫n(Φq)\widetilde{{\boldsymbol{\lambda}}}_{(k)}\in\mathscr{P}_{n}(\Phi_{q}) via

(2.27) 𝝀~(k)(f)={𝝀(f),ft1,(1m1kmk1(k+1)mk+1+1rmr),f=t1\widetilde{{\boldsymbol{\lambda}}}_{(k)}(f)=\begin{cases}{\boldsymbol{\lambda}}(f),&f\neq t-1,\\ \left(1^{m_{1}}\cdots k^{m_{k}-1}(k+1)^{m_{k+1}+1}\cdots r^{m_{r}}\right),&f=t-1\end{cases}

in the case k1k\geq 1 and

(2.28) 𝝀~(0)(f)={𝝀(f),ft1,(1m1+12m2rmr),f=t1.\widetilde{{\boldsymbol{\lambda}}}_{(0)}(f)=\begin{cases}{\boldsymbol{\lambda}}(f),&f\neq t-1,\\ \left(1^{m_{1}+1}2^{m_{2}}\cdots\cdots r^{m_{r}}\right),&f=t-1.\end{cases}

Clearly for each (𝝀,k)𝒫n𝖺(Φq)({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q}), the type of J(𝝀,k)J_{({\boldsymbol{\lambda}},k)} in GLn(q)GL_{n}(q) is exactly 𝝀~(k)\widetilde{{\boldsymbol{\lambda}}}_{(k)}.

Proposition 2.5.

Every element in GAn(q)GA_{n}(q) is conjugate to J(𝛌,k)J_{({\boldsymbol{\lambda}},k)} for some (𝛌,k)𝒫n𝖺(Φq)({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q}). Moreover {J(𝛌,k)|(𝛌,k)𝒫n𝖺(Φq)}\big{\{}J_{({\boldsymbol{\lambda}},k)}\big{|}({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q})\big{\}} is a complete set of representatives in conjugacy classes in GAn(q)GA_{n}(q).

Proof.

Fix A=[10αg]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\in GA_{n}(q). If there does not exist β𝔽qn1\beta\in\mathbb{F}_{q}^{n-1} such that (In1g)β=α(I_{n-1}-g)\beta=\alpha, then Lemma 2.4 implies that AA is conjugate to J(𝝀,k)J_{({\boldsymbol{\lambda}},k)} for some (𝝀,k)𝒫n𝖺(Φq)({\boldsymbol{\lambda}},k)\in\mathscr{P}^{\mathsf{a}}_{n}(\Phi_{q}) with 𝝀{\boldsymbol{\lambda}} being the type of gGLn1(q)g\in GL_{n-1}(q) and k1k\geq 1 being a part of the partition 𝝀(t1){\boldsymbol{\lambda}}(t-1). Otherwise if there exists β𝔽qn1\beta\in\mathbb{F}_{q}^{n-1} such that (In1g)β=α(I_{n-1}-g)\beta=\alpha, then

[10βIn1][10αg][10βIn1]=[100g].\left[\begin{array}[]{cc}1&0\\ -\beta&I_{n-1}\end{array}\right]\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]\left[\begin{array}[]{ll}1&0\\ \beta&I_{n-1}\end{array}\right]=\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right].

This means AA is conjugate to [100g]\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right] in GAn(q)GA_{n}(q) and hence AA is conjugate to J(𝝀,0)J_{({\boldsymbol{\lambda}},0)} with 𝝀{\boldsymbol{\lambda}} being the type of gg. This proves the first statement in the proposition.

Regarding the second statement, since the matrix J(𝝀,k)J_{({\boldsymbol{\lambda}},k)} has type 𝝀~(k)𝒫n(Φq)\widetilde{{\boldsymbol{\lambda}}}_{(k)}\in\mathcal{P}_{n}(\Phi_{q}) as an element in GLn(q)GL_{n}(q). Hence if J(𝝀,k)J_{({\boldsymbol{\lambda}},k)} is conjugate to J(𝝁,l)J_{({\boldsymbol{\mu}},l)} in GAn(q)GA_{n}(q) then 𝝀~(k)=𝝁~(l)\widetilde{{\boldsymbol{\lambda}}}_{(k)}=\widetilde{{\boldsymbol{\mu}}}_{(l)} and moreover by (2.14) we have 𝝀=𝝁{\boldsymbol{\lambda}}={\boldsymbol{\mu}}. This implies k=lk=l and hence (𝝀,k)=(𝝁,l)({\boldsymbol{\lambda}},k)=({\boldsymbol{\mu}},l). Thus the proposition is proved. ∎

Recall the notion of modified type of an element gGLn1(q)g\in GL_{n-1}(q) in [WW]. More precisely, suppoe 𝝀{\boldsymbol{\lambda}} is the type of gGLn1(q)g\in GL_{n-1}(q). Denote by 𝝀e=𝝀(t1)=(𝝀1e,𝝀2e,,𝝀re){\boldsymbol{\lambda}}^{e}={\boldsymbol{\lambda}}(t-1)=({\boldsymbol{\lambda}}^{e}_{1},{\boldsymbol{\lambda}}^{e}_{2},\ldots,{\boldsymbol{\lambda}}^{e}_{r}) the partition of the unipotent Jordan blocks, and denote by r=(𝝀e)r=\ell({\boldsymbol{\lambda}}^{e}) its length. Define 𝝀̊\mathring{{\boldsymbol{\lambda}}} to be the modified type of gGLn1(q)g\in GL_{n-1}(q), that is, (𝝀̊,k)𝒫nr(Φq)×0(\mathring{{\boldsymbol{\lambda}}},k)\in\mathscr{P}_{n-r}(\Phi_{q})\times\mathbb{Z}_{\geq 0} satisifes 𝝀̊(f)=𝝀(f)\mathring{{\boldsymbol{\lambda}}}(f)={\boldsymbol{\lambda}}(f) for ft1f\neq t-1 and 𝝀̊(t1)=(𝝀1e1,𝝀2e1,,𝝀re1)\mathring{{\boldsymbol{\lambda}}}(t-1)=({\boldsymbol{\lambda}}^{e}_{1}-1,{\boldsymbol{\lambda}}^{e}_{2}-1,\ldots,{\boldsymbol{\lambda}}^{e}_{r}-1). Meanwhile, given 𝝁𝒫(Φq)=n0𝒫n(Φq){\boldsymbol{\mu}}\in\mathscr{P}(\Phi_{q})=\cup_{n\geq 0}\mathscr{P}_{n}(\Phi_{q}) with r=(𝝁e)r=\ell({\boldsymbol{\mu}}^{e}) and 𝝁e=(𝝁1e,𝝁2e,,𝝁re){\boldsymbol{\mu}}^{e}=({\boldsymbol{\mu}}^{e}_{1},{\boldsymbol{\mu}}^{e}_{2},\ldots,{\boldsymbol{\mu}}^{e}_{r}), we define 𝝁n1𝒫n1(Φq){\boldsymbol{\mu}}^{\uparrow n-1}\in\mathscr{P}_{n-1}(\Phi_{q}) for all n1𝝁+rn-1\geq\|{\boldsymbol{\mu}}\|+r via

(2.29) 𝝁n1(f)\displaystyle{\boldsymbol{\mu}}^{\uparrow n-1}(f) =𝝁(f),forft1,\displaystyle={\boldsymbol{\mu}}(f),\;{\rm for}\,f\neq t-1,
(2.30) 𝝁n1(t1)\displaystyle{\boldsymbol{\mu}}^{\uparrow n-1}(t-1) =(𝝁n1)e=(𝝁1e+1,𝝁2e+1,,𝝁re+1,1,,1n1r𝝁).\displaystyle=({\boldsymbol{\mu}}^{\uparrow n-1})^{e}=({\boldsymbol{\mu}}^{e}_{1}+1,{\boldsymbol{\mu}}^{e}_{2}+1,\ldots,{\boldsymbol{\mu}}^{e}_{r}+1,\underbrace{1,\ldots,1}_{n-1-r-\|{\boldsymbol{\mu}}\|}).

Clearly elements of type 𝝁n1{\boldsymbol{\mu}}^{\uparrow n-1} in GLn1(q)GL_{n-1}(q) have a modified type 𝝁{\boldsymbol{\mu}}. Denote by 𝒦𝝀(n)\mathscr{K}_{{\boldsymbol{\lambda}}}(n) the conjugacy class in GLn(q)GL_{n}(q) which consists of elements of modified type 𝝀{\boldsymbol{\lambda}}. Then 𝒦𝝀(n)\mathscr{K}_{{\boldsymbol{\lambda}}}(n) is nonempty if and only if 𝝀+(𝝀(t1))n\|{\boldsymbol{\lambda}}\|+\ell({\boldsymbol{\lambda}}(t-1))\leq n and accordingly denote by K𝝀(n)K_{\boldsymbol{\lambda}}(n) the conjugacy class sum.

Inspired by [WW], we can also analogously introduce the notion of modified type for each AGAn(q)A\in GA_{n}(q). If an element A=[10αg]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\in GA_{n}(q) is conjugate to J(𝝀,k)J_{({\boldsymbol{\lambda}},k)}, we say that AA has a type (𝝀,k)({\boldsymbol{\lambda}},k). Define the modified type of AA to be (𝝀̊,k)(\mathring{{\boldsymbol{\lambda}}},k), where 𝝀̊\mathring{{\boldsymbol{\lambda}}} is the modified type of gGLn1(q)g\in GL_{n-1}(q) defined above in [WW]. Observe that the modified type remains unchanged for AA under the embedding of GAn(q)GA_{n}(q) into GAn+1(q)GA_{n+1}(q) in (2.13) and it is also clearly conjugation invariant by (2.14). The following is immediate.

Lemma 2.6.

Two elements in GA=n1GAn(q)GA_{\infty}=\cup_{n\geq 1}GA_{n}(q) are conjugate if and only if they have the same modified type.

Let

(2.31) 𝒫^𝖺(Φq)={(𝝀,k)𝒫(Φq)×0|k1 is a part of 𝝀(t1) whenever k1}.\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q})=\{({\boldsymbol{\lambda}},k)\in\mathscr{P}(\Phi_{q})\times\mathbb{Z}_{\geq 0}|k-1\text{ is a part of }{\boldsymbol{\lambda}}(t-1)\text{ whenever }k\geq 1\}.

Then by Lemma 2.6 the conjugacy classes of GA(q)=n1GAn(q)GA_{\infty}(q)=\cup_{n\geq 1}GA_{n}(q) are parametrized by 𝒫^𝖺(Φq)\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}). Given (𝝁,l)𝒫^𝖺(Φq)({\boldsymbol{\mu}},l)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), we denote by 𝒦(𝝁,l)\mathscr{K}_{({\boldsymbol{\mu}},l)} the conjugacy class in GAGA_{\infty} which consists of elements of modified type (𝝁,l)({\boldsymbol{\mu}},l). For each (𝝁,l)𝒫^𝖺(Φq)({\boldsymbol{\mu}},l)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), 𝒦(𝝁,l)(n):=GAn(q)𝒦(𝝁,l)\mathscr{K}_{({\boldsymbol{\mu}},l)}(n):=GA_{n}(q)\cap\mathscr{K}_{({\boldsymbol{\mu}},l)} if nonempty is a conjugacy class of GAnGA_{n} of type (𝝁n1,l)({\boldsymbol{\mu}}^{\uparrow n-1},l). Hence 𝒦(𝝁,l)(n)\mathscr{K}_{({\boldsymbol{\mu}},l)}(n) is nonempty if and only if 𝝁+(𝝁e)n1\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-1 if l1l\neq 1 and 𝝁+(𝝁e)n2\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-2 if l=1l=1. Let P(𝝁,l)(n){P}_{({\boldsymbol{\mu}},l)}(n) be the class sum of 𝒦(𝝁,l)(n)\mathscr{K}_{({\boldsymbol{\mu}},l)}(n) if 𝝁+(𝝁e)n1\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-1 when l1l\neq 1 and 𝝁+(𝝁e)n2\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-2 when l=1l=1, and be 0 otherwise. Clearly if AGAn(q)A\in GA_{n}(q) is of modified type (𝝀,k)({\boldsymbol{\lambda}},k), then the type of AA in GAn(q)GA_{n}(q) is (𝝀n1,k)({\boldsymbol{\lambda}}^{\uparrow n-1},k) and hence its type as an element in GLn(q)GL_{n}(q) is 𝝀n1~(k)\widetilde{{\boldsymbol{\lambda}}^{\uparrow n-1}}_{(k)}. Then the modified type denoted by 𝝀^(k)\widehat{{\boldsymbol{\lambda}}}_{(k)} of AA viewed as an element in GLn(q)GL_{n}(q) is

(2.32) 𝝀^(k)={𝝀, if k=0,𝝀~(k1), if k1.\widehat{{\boldsymbol{\lambda}}}_{(k)}=\left\{\begin{array}[]{cc}{\boldsymbol{\lambda}},&\text{ if }k=0,\\ \widetilde{{\boldsymbol{\lambda}}}_{(k-1)},&\text{ if }k\geq 1.\end{array}\right.

Denote by 𝒜n(q)\mathcal{A}_{n}(q) the center of the integral group algebra [GAn(q)]\mathbb{Z}[GA_{n}(q)]. We summarize these discussions in the following.

Lemma 2.7.

The set {P(𝛍,l)(n)0|(𝛍,l)𝒫^𝖺(Φq)}\{{P}_{({\boldsymbol{\mu}},l)}(n)\neq 0|({\boldsymbol{\mu}},l)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q})\} forms the class sum \mathbb{Z}-basis for the center 𝒜n(q)\mathcal{A}_{n}(q), for each n1n\geq 1.

3. Stability of the center 𝒜n(q)\mathcal{A}_{n}(q) of [GAn(q)]\mathbb{Z}[GA_{n}(q)]

In this section, we first recall the stability property for the center of the integral group algebra [GLn(q)]\mathbb{Z}[GL_{n}(q)] obtained in [WW] and then we shall establish the stability for the structure constants of the graded algebra associated to 𝒜n(q)\mathcal{A}_{n}(q) after verifying a key observation.

3.1. Stability in GLn(q)GL_{n}(q)

Let Vn=𝔽qnV_{n}={\mathbb{F}}_{q}^{n}. For hGLn(q)h\in GL_{n}(q), the fixed point subspace by hh is denoted by

Vnh:=ker(hIn)={vVn|hv=v}.V_{n}^{h}:=\ker(h-I_{n})=\{v\in V_{n}|hv=v\}.

An element 𝗋\mathsf{r} in GLn(q)GL_{n}(q) is a reflection if its fixed point subspace has codimension 1. Let n\mathcal{R}_{n} be the set of reflections in GLn(q)GL_{n}(q). That is

n={hGLn(q)|rank(hIn)=1}.\mathcal{R}_{n}=\{h\in GL_{n}(q)|~{}\text{rank}(h-I_{n})=1\}.

Then n\mathcal{R}_{n} is a generating set for the group GLn(q)GL_{n}(q), since all of the elementary matrices used in Gaussian elimination are reflections and every invertible matrix is row equivalent to the identity matrix. The reflection length of an element hGLn(q)h\in GL_{n}(q) is defined by

(3.1) (h):=min{k|h=𝗋1𝗋2𝗋k for some 𝗋in}.\ell(h):=\min\big{\{}k\big{|}h=\mathsf{r}_{1}\mathsf{r}_{2}\cdots\mathsf{r}_{k}\text{ for some }\mathsf{r}_{i}\in\mathcal{R}_{n}\big{\}}.

By [WW], the following holds for the length (h)\ell(h).

Lemma 3.1.

[WW, Lemma 3.2]    

  1. (1)

    If hGLn(q)h\in GL_{n}(q) is of modified type 𝝁{\boldsymbol{\mu}}, then (h)=𝝁.\ell(h)=\|{\boldsymbol{\mu}}\|.

  2. (2)

    If the modified types of h1,h2h_{1},h_{2}, h1h2GLn(q)h_{1}h_{2}\in GL_{n}(q) are 𝝀,𝝁{\boldsymbol{\lambda}},{\boldsymbol{\mu}} and 𝝂{\boldsymbol{\nu}}, then 𝝂𝝀+𝝁\|{\boldsymbol{\nu}}\|\leq\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|.

The combinatorics of partial orders on GLn(q)GL_{n}(q) arising from the reflection lengths has been studied in [HLR]. Recall the codimension codimVnh=ndimVnh=rank(hIn){\rm codim}V_{n}^{h}=n-\dim V_{n}^{h}={\rm rank}(h-I_{n}). The reflection length has the following simple and useful geometric interpretation.

Lemma 3.2.

[HLR, Propositions  2.9, 2.16]

  1. (1)

    For hGLn(q)h\in GL_{n}(q), we have (h)=codimVnh\ell(h)={\rm codim}V_{n}^{h}.

  2. (2)

    Suppose h1,h2GLn(q)h_{1},h_{2}\in GL_{n}(q). Then (h1h2)(h1)+(h2)\ell(h_{1}h_{2})\leq\ell(h_{1})+\ell(h_{2}).

  3. (3)

    If (h1h2)=(h1)+(h2)\ell(h_{1}h_{2})=\ell(h_{1})+\ell(h_{2}), then Vnh1Vnh2=Vnh1h2V_{n}^{h_{1}}\cap V_{n}^{h_{2}}=V_{n}^{h_{1}h_{2}} and Vn=Vnh1+Vnh2V_{n}=V_{n}^{h_{1}}+V_{n}^{h_{2}}.

We recall the stability property concerning the structure constants for center 𝒵([GLn(q)])\mathcal{Z}(\mathbb{Z}[GL_{n}(q)]) of the integral group algebra [GLn(q)]\mathbb{Z}[GL_{n}(q)] established in [WW]. Recall that K𝝀(n)K_{\boldsymbol{\lambda}}(n) is the conjugacy class sum corresponding to the conjugacy classes 𝒦𝝀(n)\mathscr{K}_{\boldsymbol{\lambda}}(n), for 𝝀+(𝝀e)n\|{\boldsymbol{\lambda}}\|+\ell({\boldsymbol{\lambda}}^{e})\leq n. Following [WW] we write the multiplication in the center 𝒵(GLn(q))\mathcal{Z}\left(\mathbb{Z}GL_{n}(q)\right) of the integral group algebra [GLn(q)]\mathbb{Z}[GL_{n}(q)] as

(3.2) K𝝀(n)K𝝁(n)=𝝂:𝝂𝝀+𝝁a𝝀𝝁𝝂(n)K𝝂(n).K_{\boldsymbol{\lambda}}(n)K_{\boldsymbol{\mu}}(n)=\sum_{{\boldsymbol{\nu}}:\;\|{\boldsymbol{\nu}}\|\leq\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|}a^{\boldsymbol{\nu}}_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}(n)K_{\boldsymbol{\nu}}(n).
Theorem 3.3.

[WW, Theorem 3.11] Let 𝛌,𝛍,𝛎𝒫(Φq){\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}}\in\mathscr{P}(\Phi_{q}). If 𝛎=𝛌+𝛍\|{\boldsymbol{\nu}}\|=\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|, then a𝛌𝛍𝛎(n)a^{\boldsymbol{\nu}}_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}(n) is independent of nn. (In this case, we shall write a𝝀𝝁𝝂(n)a^{\boldsymbol{\nu}}_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}(n) as a𝝀𝝁𝝂a^{\boldsymbol{\nu}}_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}\in\mathbb{N}.)

3.2. A key observation

In this subsection, we shall formulate a general observation which can be applied to the case GAn(q)GA_{n}(q) and which are expected to hold for other classical finite groups. Suppose Hn(q)H_{n}(q) for each n1n\geq 1 is a subgroup of GLn(q)GL_{n}(q), and moreover these subgroups satisfy

H1(q)Hn(q)Hn+1(q)H_{1}(q)\subset\cdots\subset H_{n}(q)\subset H_{n+1}(q)\subset\cdots

which is compatible with the embedding

GL0(q)GL1(q)GLn(q)GLn+1(q).GL_{0}(q)\subset GL_{1}(q)\subset\cdots\subset GL_{n}(q)\subset GL_{n+1}(q)\subset\cdots.

That is

(3.3) h(m):=[h00Im]Hn+m(q)h^{(m)}:=\begin{bmatrix}h&0\\ 0&I_{m}\end{bmatrix}\in H_{n+m}(q)

for any hHn(q)h\in H_{n}(q) and m0m\geq 0. Let [Hn(q)]\mathbb{Z}[H_{n}(q)] be the integral group algebra of Hn(q)H_{n}(q) over the ring of integers, and denote by 𝒵([Hn(q)])\mathcal{Z}(\mathbb{Z}[H_{n}(q)]) the center of [Hn(q)]\mathbb{Z}[H_{n}(q)] for each n0n\geq 0. For hHn(q)h\in H_{n}(q), denote by 𝒦G(h),𝒦H(h)\mathscr{K}_{G}(h),\mathscr{K}_{H}(h) the conjugacy class containing hh in GLn(q)GL_{n}(q) and Hn(q)H_{n}(q), respectively. Clearly 𝒦H(h)𝒦G(h)\mathscr{K}_{H}(h)\subseteq\mathscr{K}_{G}(h) and if hh is of modified type 𝝀{\boldsymbol{\lambda}} as an element in GLn(q)GL_{n}(q) then 𝒦G(h)=𝒦𝝀(n)\mathscr{K}_{G}(h)=\mathscr{K}_{{\boldsymbol{\lambda}}}(n). For convenience, we write

hG:=g𝒦G(h)g,hH:=g𝒦H(h)g.\llbracket h\mathbb{\rrbracket}_{G}:=\sum_{g\in\mathscr{K}_{G}(h)}g,\quad\llbracket h\mathbb{\rrbracket}_{H}:=\sum_{g\in\mathscr{K}_{H}(h)}g.

for any hHn(q)h\in H_{n}(q). Then hG,hH\llbracket h\rrbracket_{G},\llbracket h\rrbracket_{H} are the conjugacy class sums in the center 𝒵([GLn(q)])\mathcal{Z}(\mathbb{Z}[GL_{n}(q)]) and 𝒵([Hn(q)]))\mathcal{Z}(\mathbb{Z}[H_{n}(q)])). Suppose h1,h2,h3Hnh_{1},h_{2},h_{3}\in H_{n}, let bh1h2h3b_{h_{1}h_{2}}^{h_{3}} and ah1h2h3a_{h_{1}h_{2}}^{h_{3}} be the structure constant in the center of the group algebra of Hn(q)H_{n}(q) and GLn(q)GL_{n}(q), that is,

h1Gh2G=ah1h2h3h3G+other terms.(in𝒵([GLn(q)]))\llbracket h_{1}\rrbracket_{G}\llbracket h_{2}\rrbracket_{G}=a_{h_{1}h_{2}}^{h_{3}}\llbracket h_{3}\rrbracket_{G}+\text{other terms}.\quad(in~{}\mathcal{Z}(\mathbb{Z}[GL_{n}(q)]))
h1Hh2H=bh1h2h3h3H+other terms.(in𝒵([Hn(q)]))\llbracket h_{1}\rrbracket_{H}\llbracket h_{2}\rrbracket_{H}=b_{h_{1}h_{2}}^{h_{3}}\llbracket h_{3}\rrbracket_{H}+\text{other terms}.\quad(in~{}\mathcal{Z}(\mathbb{Z}[H_{n}(q)]))

Clearly for h1,h2,h3Hn(q)h_{1},h_{2},h_{3}\in H_{n}(q), if h1,h2,h3h_{1},h_{2},h_{3} being viewed as elements in GLn(q)GL_{n}(q) are of modified types 𝝀,𝝁,𝝂{\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}}, respectively, then

(3.4) ah1h2h3=a𝝀,𝝁𝝂(n).a_{h_{1}h_{2}}^{h_{3}}=a_{{\boldsymbol{\lambda}},{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(n).

Observe that we have

ah1(m)h2(m)h3(m)\displaystyle a_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}} ={(h1,h2)|h1𝒦G(h1(m)),h2𝒦G(h2(m)),h1h2=h3(m)},\displaystyle=\sharp\big{\{}(h_{1}^{\prime},h_{2}^{\prime})\big{|}h_{1}^{\prime}\in\mathscr{K}_{G}(h^{(m)}_{1}),h_{2}^{\prime}\in\mathscr{K}_{G}(h^{(m)}_{2}),h_{1}^{\prime}h_{2}^{\prime}=h^{(m)}_{3}\big{\}},
bh1(m)h2(m)h3(m)\displaystyle b_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}} ={(h1,h2)|h1𝒦H(h1(m)),h2𝒦H(h2(m)),h1h2=h3(m)},\displaystyle=\sharp\big{\{}(h_{1}^{\prime},h_{2}^{\prime})\big{|}h_{1}^{\prime}\in\mathscr{K}_{H}(h^{(m)}_{1}),h_{2}^{\prime}\in\mathscr{K}_{H}(h^{(m)}_{2}),h_{1}^{\prime}h_{2}^{\prime}=h^{(m)}_{3}\big{\}},

for each m0m\geq 0 and hence

(3.5) ah1(m)h2(m)h3(m)ah1(m+1)h2(m+1)h3(m+1),bh1(m)h2(m)h3(m)bh1(m+1)h2(m+1)h3(m+1)a_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}}\leq a_{h_{1}^{(m+1)}h_{2}^{(m+1)}}^{h_{3}^{(m+1)}},\quad b_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}}\leq b_{h_{1}^{(m+1)}h_{2}^{(m+1)}}^{h_{3}^{(m+1)}}

and moreover

(3.6) bh1(m)h2(m)h3(m)ah1(m)h2(m)h3(m)b_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}}\leq a_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}}

for any h1,h2,h3Hn(q)h_{1},h_{2},h_{3}\in H_{n}(q) and m0m\geq 0. Thus, we have the following inequalities:

(3.7) ah1h2h3ah1(1)h2(1)h3(1)ah1(2)h2(2)h3(2)bh1h2h3bh1(1)h2(1)h3(1)bh1(2)h2(2)h3(2)\displaystyle\begin{matrix}a_{h_{1}h_{2}}^{h_{3}}&\leq&a_{h_{1}^{(1)}h_{2}^{(1)}}^{h_{3}^{(1)}}&\leq&a_{h_{1}^{(2)}h_{2}^{(2)}}^{h_{3}^{(2)}}&\leq&\cdots\\ \begin{rotate}{90.0}$\leq$\end{rotate}&&\begin{rotate}{90.0}$\leq$\end{rotate}&&\begin{rotate}{90.0}$\leq$\end{rotate}&&\cdots\\ b_{h_{1}h_{2}}^{h_{3}}&\leq&b_{h_{1}^{(1)}h_{2}^{(1)}}^{h_{3}^{(1)}}&\leq&b_{h_{1}^{(2)}h_{2}^{(2)}}^{h_{3}^{(2)}}&\leq&\cdots\end{matrix}
Definition 3.4.

The family of groups H1(q)H2(q)Hn(q)Hn+1(q)H_{1}(q)\subseteq H_{2}(q)\subseteq\ldots\subseteq H_{n}(q)\subseteq H_{n+1}(q)\subseteq\ldots is said to satisfy the strictly increasing property if the following holds for any h1,h2,h3Hn(q),n1,m0h_{1},h_{2},h_{3}\in H_{n}(q),n\geq 1,m\geq 0:

(3.8) if bh1(m)h2(m)h3(m)<bh1(m+1)h2(m+1)h3(m+1), then bh1(m+1)h2(m+1)h3(m+1)<bh1(m+2)h2(m+2)h3(m+2).\text{if }b_{h_{1}^{(m)}h_{2}^{(m)}}^{h_{3}^{(m)}}<b_{h_{1}^{(m+1)}h_{2}^{(m+1)}}^{h_{3}^{(m+1)}},\text{ then }b_{h_{1}^{(m+1)}h_{2}^{(m+1)}}^{h_{3}^{(m+1)}}<b_{h_{1}^{(m+2)}h_{2}^{(m+2)}}^{h_{3}^{(m+2)}}.
Proposition 3.5.

Suppose the family of subgroups H1(q)H2(q)Hn(q)Hn+1(q)H_{1}(q)\subseteq H_{2}(q)\subseteq\ldots\subseteq H_{n}(q)\subseteq H_{n+1}(q)\subseteq\ldots satisfies the strictly increasing property. Let h1,h2,h3Hn(q)GLn(q)h_{1},h_{2},h_{3}\in H_{n}(q)\subset GL_{n}(q). If (h3)=(h1)+(h2)\ell\left(h_{3}\right)=\ell\left(h_{1}\right)+\ell\left(h_{2}\right), then bh1h2h3=bh1(m)h2(m)h3(m)b_{h_{1}h_{2}}^{h_{3}}=b_{h_{1}^{(m)}h_{2}^{(m)}}^{h_{3}^{(m)}} for any m0m\geqslant 0.

Proof.

Suppose the modified types of h1,h2,h3h_{1},h_{2},h_{3} regarding as elements in GLn(q)GL_{n}(q) are 𝝀,𝝁,𝝂{\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}}, respectively. Then by (3.3) we observe that the modified types of h1(m),h2(m),h3(m)Hn+m(q)GLn+m(q)h^{(m)}_{1},h^{(m)}_{2},h^{(m)}_{3}\in H_{n+m}(q)\subset GL_{n+m}(q) are also 𝝀,𝝁,𝝂{\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}} for any m0m\geq 0 and then we have by (3.4)

(3.9) ah1(m)h2(m)h3(m)=a𝝀,𝝁𝝂(n+m).a_{h^{(m)}_{1}h^{(m)}_{2}}^{h^{(m)}_{3}}=a_{{\boldsymbol{\lambda}},{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(n+m).

Now (h1(m))=𝝀,(h2(m))=𝝁,(h3(m))=𝝂\ell(h^{(m)}_{1})=\|{\boldsymbol{\lambda}}\|,\ell(h^{(m)}_{2})=\|{\boldsymbol{\mu}}\|,\ell(h^{(m)}_{3})=\|{\boldsymbol{\nu}}\| by Lemma 3.1 and hence the assumption that (h3)=(h1)+(h2)\ell\left(h_{3}\right)=\ell\left(h_{1}\right)+\ell\left(h_{2}\right) gives rise to 𝝀+𝝁=𝝂\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|=\|{\boldsymbol{\nu}}\|. Then by Theorem 3.3 and (3.9) we have

ah1h2h3=ah1(1)h2(1)h3(1)=ah1(2)h2(2)h3(2)==a𝝀,𝝁𝝂a_{h_{1}h_{2}}^{h_{3}}=a_{h_{1}^{(1)}h_{2}^{(1)}}^{h_{3}^{(1)}}=a_{h_{1}^{(2)}h_{2}^{(2)}}^{h_{3}^{(2)}}=\cdots=a_{{\boldsymbol{\lambda}},{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}

is a constant uniquely determined by 𝝀,𝝁,𝝂{\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}}. So in such a situation, by (3.7) the increasing sequence bh1h2h3bh1(1)h2(1)h3(1)b_{h_{1}h_{2}}^{h_{3}}\leq b_{h_{1}^{(1)}h_{2}^{(1)}}^{h_{3}^{(1)}}\leq\cdots is bounded the constant a𝝀,𝝁𝝂a_{{\boldsymbol{\lambda}},{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}, that is,

(3.10) bh1(m)h2(m)h3(m)a𝝀,𝝁𝝂b_{h_{1}^{(m)}h_{2}^{(m)}}^{h_{3}^{(m)}}\leq a_{{\boldsymbol{\lambda}},{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}

for all m0m\geq 0. Now assume there exists m00m_{0}\geq 0 such that bh1(m0)h2(m0)h3(m0)<bh1(m0+1)h2(m0+1)h3(m0+1)b_{h^{(m_{0})}_{1}h^{(m_{0})}_{2}}^{h^{(m_{0})}_{3}}<b_{h^{(m_{0}+1)}_{1}h^{(m_{0}+1)}_{2}}^{h^{(m_{0}+1)}_{3}}, then the assumption that the family of groups H1(q)H2(q)Hn(q)Hn+1(q)H_{1}(q)\subseteq H_{2}(q)\subseteq\ldots\subseteq H_{n}(q)\subseteq H_{n+1}(q)\subseteq\ldots satisfies the strictly increasing property implies that bh1(m0+1)h2(m0+1)h3(m0+1)<bh1(m0+2)h2(m0+2)h3(m0+2)b_{h^{(m_{0}+1)}_{1}h^{(m_{0}+1)}_{2}}^{h^{(m_{0}+1)}_{3}}<b_{h^{(m_{0}+2)}_{1}h^{(m_{0}+2)}_{2}}^{h^{(m_{0}+2)}_{3}}. Hence the subsequence bh1(m0)h2(m0)h3(m0)<bh1(m0+1)h2(m0+1)h3(m0+1)<bh1(m0+2)h2(m0+2)h3(m0+2)<b_{h^{(m_{0})}_{1}h^{(m_{0})}_{2}}^{h^{(m_{0})}_{3}}<b_{h^{(m_{0}+1)}_{1}h^{(m_{0}+1)}_{2}}^{h^{(m_{0}+1)}_{3}}<b_{h^{(m_{0}+2)}_{1}h^{(m_{0}+2)}_{2}}^{h^{(m_{0}+2)}_{3}}<\cdots is strictly increasing. This contradicts to (3.10). Therefore bh1h2h3=bh1(m)h2(m)h3(m)b_{h_{1}h_{2}}^{h_{3}}=b_{h_{1}^{(m)}h_{2}^{(m)}}^{h_{3}^{(m)}} for any m0m\geqslant 0. ∎

3.3. Length function via reflections in GAn(q)GA_{n}(q)

Denote 𝒯n\mathcal{T}_{n} the set of all reflections in GAn(q)GA_{n}(q), that is,

𝒯n=nGAn(q)={A=[10αg]GAn(q)|rank(InA)=1}.\mathcal{T}_{n}=\mathcal{R}_{n}\cap GA_{n}(q)=\left\{\left.A=\left[\begin{array}[]{cc}1&0\\ \alpha&g\end{array}\right]\in GA_{n}(q)\right\rvert\,\operatorname{rank}\left(I_{n}-A\right)=1\right\}.
Lemma 3.6.

The general affine group GAn(q)GA_{n}(q) is generated by 𝒯n\mathcal{T}_{n}.

Proof.

Fix [10αg]GAn(q)\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]\in GA_{n}(q). Assume g=𝗋1𝗋2𝗋tg=\mathsf{r}_{1}\mathsf{r}_{2}\cdots\mathsf{r}_{t} for some reflections 𝗋1,𝗋2,,𝗋tn1\mathsf{r}_{1},\mathsf{r}_{2},\ldots,\mathsf{r}_{t}\in\mathcal{R}_{n-1}. Then if α=0\alpha=0 we have

[10αg]=[100𝗋1][100𝗋t].\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]=\left[\begin{array}[]{lll}1&0\\ 0&\mathsf{r}_{1}\end{array}\right]\cdots\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{t}\end{array}\right].

Meanwhile if α0\alpha\neq 0 we have

[10αg]=[10αIn1][100𝗋1][100𝗋t].\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]=\left[\begin{array}[]{ll}1&0\\ \alpha&I_{n-1}\end{array}\right]\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{1}\end{array}\right]\cdots\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{t}\end{array}\right].

Clearly [100𝗋1],,[100𝗋t]𝒯n\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{1}\end{array}\right],\,\ldots,\,\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{t}\end{array}\right]\in\mathcal{T}_{n} and [10αIn1]𝒯n\left[\begin{array}[]{ll}1&0\\ \alpha&I_{n-1}\end{array}\right]\in\mathcal{T}_{n} in the case α0\alpha\neq 0. This proves the lemma. ∎

Recall the length (A)\ell(A) of AA being regarded as an element in GLn(q)GL_{n}(q) via (3.1). Similar by Lemma 3.6 we can define

𝖺(A):=min{kA=𝗋1𝗋2𝗋k,for some 𝗋i𝒯n}.\ell^{\mathsf{a}}(A):=\min\left\{k\mid A=\mathsf{r}_{1}\mathsf{r}_{2}\ldots\mathsf{r}_{k},\text{for some }\mathsf{r}_{i}\in\mathcal{T}_{n}\right\}.

Clearly if A,BGAn(q)A,B\in GA_{n}(q) then

(3.11) 𝖺(A)=𝖺(B) and (A)=(B), if A is conjugate to B in GAn(q).\ell^{\mathsf{a}}(A)=\ell^{\mathsf{a}}(B)\text{ and }\ell(A)=\ell(B),\text{ if }A\text{ is conjugate to }B\text{ in }GA_{n}(q).
Lemma 3.7.

Suppose AGAn(q)A\in GA_{n}(q). Then

(3.12) 𝖺(A)=(A).\ell^{\mathsf{a}}(A)=\ell(A).
Proof.

Since 𝒯nn\mathcal{T}_{n}\subseteq\mathcal{R}_{n}, we obviously have 𝖺(A)(A)\ell^{\mathsf{a}}(A)\geqslant\ell(A). Suppose A=[10αg]A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}. Observe that if there exists β𝔽qn1\beta\in\mathbb{F}_{q}^{n-1} such that α=(In1g)β\alpha=(I_{n-1}-g)\beta then

[10βIn1][10αg][10βIn1]=[100g].\left[\begin{array}[]{cc}1&0\\ -\beta&I_{n-1}\end{array}\right]\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]\left[\begin{array}[]{ll}1&0\\ \beta&I_{n-1}\end{array}\right]=\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right].

This means AA is conjugate to [100g]\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right] in GAn(q)GA_{n}(q) and hence by (3.11) we obtain

(3.13) 𝖺(A)=𝖺([100g]),(A)=([100g])=(g).\ell^{\mathsf{a}}(A)=\ell^{\mathsf{a}}\left(\begin{bmatrix}1&0\\ 0&g\end{bmatrix}\right),\quad\ell(A)=\ell\left(\begin{bmatrix}1&0\\ 0&g\end{bmatrix}\right)=\ell(g).

Assume (g)=t\ell(g)=t and a reduced expression is g=𝗋1𝗋2𝗋tg=\mathsf{r}_{1}\mathsf{r}_{2}\ldots\mathsf{r}_{t} in Gln1(q)Gl_{n-1}(q), then

[100g]=[100𝗋1][100𝗋t]( in GAn(q)),\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right]=\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{1}\end{array}\right]\cdots\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{t}\end{array}\right](\text{ in }GA_{n}(q)),

which leads to 𝖺([100g])t=(g)=([100g])𝖺([100g])\ell^{\mathsf{a}}\left(\begin{bmatrix}1&0\\ 0&g\end{bmatrix}\right)\leq t=\ell(g)=\ell\left(\begin{bmatrix}1&0\\ 0&g\end{bmatrix}\right)\leq\ell^{\mathsf{a}}\left(\begin{bmatrix}1&0\\ 0&g\end{bmatrix}\right). This together with (3.13) gives rise to 𝖺(A)=(A)\ell^{\mathsf{a}}(A)=\ell(A).

Otherwise if there does not exist β𝔽qn1\beta\in\mathbb{F}_{q}^{n-1} such that α=(In1g)β\alpha=(I_{n-1}-g)\beta, then by Lemma 3.2 we have (A)=codimVnA=rank(InA)\ell(A)=\operatorname{codim}V_{n}^{A}=\operatorname{rank}\left(I_{n}-A\right) and hence

(3.14) (A)=rank[00αIn1g]=1+rank(In1g)=1+(g).\ell(A)=\operatorname{rank}\left[\begin{array}[]{cc}0&0\\ -\alpha&I_{n-1}-g\end{array}\right]=1+\operatorname{rank}(I_{n-1}-g)=1+\ell(g).

Clearly in the situation α0\alpha\neq 0. Hence [10αIn1]𝒯n\left[\begin{array}[]{lll}1&0\\ \alpha&I_{n-1}\end{array}\right]\in\mathcal{T}_{n} and moreover

[10αg]=[10αIn1][100𝗋1][100𝗋t].\left[\begin{array}[]{ll}1&0\\ \alpha&g\end{array}\right]=\left[\begin{array}[]{lll}1&0\\ \alpha&I_{n-1}\end{array}\right]\left[\begin{array}[]{lll}1&0\\ 0&\mathsf{r}_{1}\end{array}\right]\cdots\left[\begin{array}[]{ll}1&0\\ 0&\mathsf{r}_{t}\end{array}\right].

This together with (3.14) leads to 𝖺(A)t+1=(g)+1=(A)\ell^{\mathsf{a}}(A)\leq t+1=\ell(g)+1=\ell(A). Putting together, the lemma is proved. ∎

For each (𝝁,l)𝒫^𝖺(Φq)({\boldsymbol{\mu}},l)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), we set

(3.15) (𝝁,l)={𝝁, if l=0,𝝁+1, if l1.\|({\boldsymbol{\mu}},l)\|=\left\{\begin{array}[]{cc}\|{\boldsymbol{\mu}}\|,&\text{ if }l=0,\\ \|{\boldsymbol{\mu}}\|+1,&\text{ if }l\geq 1.\end{array}\right.
Proposition 3.8.

If A=[10αg]GAn(q)A=\begin{bmatrix}1&0\\ \alpha&g\end{bmatrix}\in GA_{n}(q) is of modified type (𝛍,l)({\boldsymbol{\mu}},l), then

𝖺(A)=(𝝁,l).\ell^{\mathsf{a}}(A)=\|({\boldsymbol{\mu}},l)\|.
Proof.

Observe that modified type of gGLn1(q)g\in GL_{n-1}(q) is 𝝁{\boldsymbol{\mu}} and hence (g)=𝝁\ell(g)=\|{\boldsymbol{\mu}}\|. If there exists β𝔽qn1\beta\in\mathbb{F}_{q}^{n-1} such that α=(In1g)β\alpha=(I_{n-1}-g)\beta then by the proof of Proposition 2.5 we obtain that AA is conjugate to [100g]\left[\begin{array}[]{ll}1&0\\ 0&g\end{array}\right] in GAn(q)GA_{n}(q) and moreover l=0l=0. This means 𝖺(A)=(A)=(g)=𝝁\ell^{\mathsf{a}}(A)=\ell(A)=\ell(g)=\|{\boldsymbol{\mu}}\| by (3.15). Otherwise, we have l1l\geq 1 and hence again the proof of Lemma 3.7 we obtain 𝖺(A)=(A)=(g)+1=𝝁+1.\ell^{\mathsf{a}}(A)=\ell(A)=\ell(g)+1=\|{\boldsymbol{\mu}}\|+1. This proves the proposition. ∎

By Proposition 3.8 the following is straightforward.

Lemma 3.9.

If the modified types of A,BA,B, ABGAn(q)AB\in GA_{n}(q) are (𝛌,k),(𝛍,s)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s) and (𝛎,t)({\boldsymbol{\nu}},t), then (𝛎,t)(𝛌,k)+(𝛍,s)\|({\boldsymbol{\nu}},t)\|\leq\|({\boldsymbol{\lambda}},k)\|+\|({\boldsymbol{\mu}},s)\|.

3.4. Stability in the center 𝒜n(q)\mathcal{A}_{n}(q) of [GAn(q)]\mathbb{Z}[GA_{n}(q)]

In this subsection, we shall apply the general observation established in section 3.2 to the case Hn=GAn(q)H_{n}=GA_{n}(q) for n0n\geq 0 to prove the stability property for the center center 𝒜n(q)\mathcal{A}_{n}(q) of [GAn(q)]\mathbb{Z}[GA_{n}(q)]. To simplify notations, write 𝔭ABC=bh1,h2h3\mathfrak{p}_{AB}^{C}=b_{h_{1},h_{2}}^{h_{3}} for any h1=A,h2=B,h3=CGAn(q)h_{1}=A,h_{2}=B,h_{3}=C\in GA_{n}(q). We also write ABA\thicksim B if AA is conjugate to BB in GLn(q)GL_{n}(q) while writing A𝖺BA\thicksim_{\mathsf{a}}B if AA is conjugate to BB in GAn(q)GA_{n}(q). Set

𝔍ABC={(P,Q)|P,QGLn(q),PA,QB,PQ=C},\mathfrak{J}_{AB}^{C}=\{(P,Q)|P,Q\in GL_{n}(q),P\thicksim A,Q\thicksim B,PQ=C\},
(3.16) 𝔗ABC={(P,Q)|P,AGAn(q)P𝖺A,Q𝖺B,PQ=C}.\mathfrak{T}_{AB}^{C}=\{(P,Q)|P,A\in GA_{n}(q)P\thicksim_{\mathsf{a}}A,Q\thicksim_{\mathsf{a}}B,PQ=C\}.

Then clearly 𝔗ABC𝔍ABC\mathfrak{T}_{AB}^{C}\subset\mathfrak{J}_{AB}^{C} and hence

(3.17) 𝔭ABC=𝔗ABC𝔍ABC=aABC.\mathfrak{p}_{AB}^{C}=\sharp~{}\mathfrak{T}_{AB}^{C}\leq\sharp~{}\mathfrak{J}_{AB}^{C}=a^{C}_{AB}.

Moreover if A,B,CA,B,C are of modified types (𝝀,k),(𝝁,s),(𝝂,t)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s),({\boldsymbol{\nu}},t) in GAn(q)GA_{n}(q), then by (2.32) A,B,CA,B,C are of modified types 𝝀^(k),𝝁^(s),𝝂^(t)\widehat{{\boldsymbol{\lambda}}}_{(k)},\widehat{{\boldsymbol{\mu}}}_{(s)},\widehat{{\boldsymbol{\nu}}}_{(t)} in GLn(q)GL_{n}(q) and

𝔭ABC=𝔭(𝝀,k),(𝝁,s)(𝝂,t),aABC=a𝝀^(k),𝝁^(s)𝝂^(t).\mathfrak{p}_{AB}^{C}=\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)},\quad a^{C}_{AB}=a^{\widehat{{\boldsymbol{\nu}}}_{(t)}}_{\widehat{{\boldsymbol{\lambda}}}_{(k)},\widehat{{\boldsymbol{\mu}}}_{(s)}}.

Then by (3.17) we obtain

(3.18) 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)a𝝀^(k),𝝁^(s)𝝂^(t)(n).\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)\leq a^{\widehat{{\boldsymbol{\nu}}}_{(t)}}_{\widehat{{\boldsymbol{\lambda}}}_{(k)},\widehat{{\boldsymbol{\mu}}}_{(s)}}(n).
Lemma 3.10.

The family of general affine groups GA1(q)GA2(q)GA3(q)GA_{1}(q)\subset GA_{2}(q)\subset GA_{3}(q)\subset\cdots satisfies the strictly increasing property.

Proof.

Assume there exist A,B,CGAn(q)A,B,C\in GA_{n}(q) for some n1n\geq 1 such that

(3.19) 𝔭A(m)B(m)C(m)<𝔭A(m+1)B(m+1)C(m+1)\mathfrak{p}^{C^{(m)}}_{A^{(m)}B^{(m)}}\textless\mathfrak{p}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}}

for some m0m\geq 0. Observe that by (3.17)

𝔭A(m),B(m)C(m)=#𝔗A(m)B(m)C(m),𝔭A(m+1)B(m+1)C(m+1)=#𝔗A(m+1)B(m+1)C(m+1),\displaystyle\mathfrak{p}^{C^{(m)}}_{A^{(m)},B^{(m)}}=\#~{}\mathfrak{T}_{A^{(m)}B^{(m)}}^{C^{(m)}},\quad\mathfrak{p}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}}=\#~{}\mathfrak{T}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}},

where

𝔗A(m)B(m)C(m)={(P,Q)|PaA(m),QaB(m),PQ=C(m)}\mathfrak{T}_{A^{(m)}B^{(m)}}^{C^{(m)}}=\left\{(P,Q)\Big{|}P\thicksim_{a}A^{(m)},Q\thicksim_{a}B^{(m)},PQ=C^{(m)}\right\}

and

𝔗A(m+1)B(m+1)C(m+1)={(P,Q)|Pa[A(m)001],Qa[B(m)001],PQ=[C(m)001]}.\mathfrak{T}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}}=\left\{(P^{\prime},Q^{\prime})\Big{|}P^{\prime}\thicksim_{a}\begin{bmatrix}A^{(m)}&0\\ 0&1\end{bmatrix},Q^{\prime}\thicksim_{a}\begin{bmatrix}B^{(m)}&0\\ 0&1\end{bmatrix},P^{\prime}Q^{\prime}=\begin{bmatrix}C^{(m)}&0\\ 0&1\end{bmatrix}\right\}.

Clearly there is an embedding 𝔗A(m)B(m)C(m)𝔗A(m+1)B(m+1)C(m+1)\mathfrak{T}_{A^{(m)}B^{(m)}}^{C^{(m)}}\subseteq\mathfrak{T}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}} by sending the pair (P,Q)(P,Q) to the pair (P(1),Q(1))(P^{(1)},Q^{(1)}). Then by (3.19) we obtain that there exists a pair (E,F)𝔗A(m+1)B(m+1)C(m+1)(E,F)\in\mathfrak{T}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}} such that it is not of the form ([P001],[Q001])\left(\begin{bmatrix}P&0\\ 0&1\end{bmatrix},\begin{bmatrix}Q&0\\ 0&1\end{bmatrix}\right) with (P,Q)𝔗A(m)B(m)C(m)(P,Q)\in\mathfrak{T}_{A^{(m)}B^{(m)}}^{C^{(m)}}. We write E,FGAm+1(q)GLm+1(q)E,F\in GA_{m+1}(q)\subset GL_{m+1}(q) in the block form as E=[E11fhe]E=\begin{bmatrix}E_{11}&f\\ h&e\end{bmatrix} F=[F11fhe]F=\begin{bmatrix}F_{11}&f^{{}^{\prime}}\\ h^{{}^{\prime}}&e^{{}^{\prime}}\end{bmatrix}, then at least one of f,h,f,h𝔽qf,h,f^{\prime},h^{\prime}\in{\mathbb{F}}_{q} is nonzero. Now set E=[E110f010h0e],F=[F110f010h0e]E^{{}^{\prime}}=\begin{bmatrix}E_{11}&0&f\\ 0&1&0\\ h&0&e\end{bmatrix},F^{\prime}=\begin{bmatrix}F_{11}&0&f^{{}^{\prime}}\\ 0&1&0\\ h^{{}^{\prime}}&0&e^{{}^{\prime}}\end{bmatrix}. Then (E,F)𝔗A(m+2)B(m+2)C(m+2)(E^{\prime},F^{\prime})\in\mathfrak{T}_{A^{(m+2)}B^{(m+2)}}^{C^{(m+2)}}. However at least one of f,h,f,h𝔽qf,h,f^{\prime},h^{\prime}\in{\mathbb{F}}_{q} is nonzero, clearly the pair (E,F)(E^{\prime},F^{\prime}) does not belong to the image of embedding 𝔗A(m+1)B(m+1)C(m+1)𝔗A(m+2)B(m+2)C(m+2)\mathfrak{T}_{A^{(m+1)}B^{(m+1)}}^{C^{(m+1)}}\subset\mathfrak{T}_{A^{(m+2)}B^{(m+2)}}^{C^{(m+2)}}. This leads to 𝔭A(m+1)B(m+1)C(m+1)<𝔭A(m+2)B(m+2)C(m+2)\mathfrak{p}^{C^{(m+1)}}_{A^{(m+1)}B^{(m+1)}}\textless\mathfrak{p}_{A^{(m+2)}B^{(m+2)}}^{C^{(m+2)}}. Hence the lemma is proved. ∎

Recall that for (𝝀,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}) the element P(𝝀,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) is the class sum of elements in GAn(q)GA_{n}(q) of modified type (𝝀,k)({\boldsymbol{\lambda}},k) if 𝝁+(𝝁e)n1\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-1 when l1l\neq 1 and 𝝁+(𝝁e)n2\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}^{e})\leq n-2 when l=1l=1 and P(𝝀,k)(n)=0{P}_{({\boldsymbol{\lambda}},k)}(n)=0 otherwise. We write

P(𝝀,k)(n)P(𝝁,s)(n)=(𝝂,t)𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)P(𝝂,t)(n)(in 𝒜n(q)),{P}_{({\boldsymbol{\lambda}},k)}(n){P}_{({\boldsymbol{\mu}},s)}(n)=\sum_{({\boldsymbol{\nu}},t)}\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)~{}{P}_{({\boldsymbol{\nu}},t)}(n)\left(\text{in }\mathcal{A}_{n}(q)\right),

where 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) is the structure constant. Here we take the convention that 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) is well defined only for these admissible n1n\geq 1 such that all three of P(𝝀,k)(n),P(𝝁,s)(n),P(𝝂,t)(n){P}_{({\boldsymbol{\lambda}},k)}(n),{P}_{({\boldsymbol{\mu}},s)}(n),{P}_{({\boldsymbol{\nu}},t)}(n) are nonzero.

Theorem 3.11.

The following holds for (𝛌,k),(𝛍,s),(𝛎,t)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s),({\boldsymbol{\nu}},t)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}) and n1n\geq 1:

(1)(1) 𝔭(𝛌,k),(𝛍,s)(𝛎,t)(n)=0\mathfrak{p}_{(\boldsymbol{\lambda},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n)=0 unless (𝛎,t)(𝛌,k)+(𝛍,s)\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|\leq\|(\boldsymbol{\lambda},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|.

(2)(2) If (𝛎,t)=(𝛌,k)+(𝛍,s)\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|=\|(\boldsymbol{\lambda},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|, then 𝔭(𝛌,k),(𝛍,s)(𝛎,t)(n)\mathfrak{p}_{({{\boldsymbol{\lambda}}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) is independent of nn. (In this case, we shall write 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}(n) as 𝔭(𝝀,k),(𝝁,s)(𝝂,t)\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}\in\mathbb{N}.)

Proof.

(1)(1) . If 𝔭(𝝀,k),(μ,s)(𝝂,t)(n)0\mathfrak{p}_{({\boldsymbol{\lambda}},k),(\mu,s)}^{({\boldsymbol{\nu}},t)}(n)\neq 0, then there exists g𝒦(𝝀,k)(n)g\in\mathscr{K}_{({\boldsymbol{\lambda}},k)}(n), h𝒦(𝝁,s)(n)h\in\mathscr{K}_{({\boldsymbol{\mu}},s)}(n) such that gh𝒦(𝝂,t)(n)gh\in\mathscr{K}_{({\boldsymbol{\nu}},t)}(n), then by Lemma 3.1, Proposition 3.4 and Lemma 3.6 we have (𝝂,t)=𝖺(gh)𝖺(g)+𝖺(h)=(𝝀,k)+(𝝁,s)\|(\boldsymbol{{\boldsymbol{\nu}}},t)\|=\ell^{\mathsf{a}}(gh)\leq\ell^{\mathsf{a}}(g)+\ell^{\mathsf{a}}(h)=\|(\boldsymbol{{\boldsymbol{\lambda}}},k)\|+\|(\boldsymbol{{\boldsymbol{\mu}}},s)\|.

(2)(2) Let n0n_{0} be the smallest positive integer such that P(𝝀,k)(n0)0,P(𝝁,s)(n0)0{P}_{({\boldsymbol{\lambda}},k)}(n_{0})\neq 0,{P}_{({\boldsymbol{\mu}},s)}(n_{0})\neq 0 and P(𝝂,t)(n0)0{P}_{({\boldsymbol{\nu}},t)}(n_{0})\neq 0. Then 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}(n) is well-defined for nn0n\geq n_{0}. Take A,B,CGAn0(q)A,B,C\in GA_{n_{0}}(q) such that their modified types are (𝝀,k),(𝝁,s)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s) and (𝝂,t)({\boldsymbol{\nu}},t), respectively. Then by Lemma 3.7 and Proposition 3.8 we have (A)=𝖺(A)=(𝝀,k)\ell(A)=\ell^{\mathsf{a}}(A)=\|({\boldsymbol{\lambda}},k)\|, (B)=𝖺(B)=(𝝁,s)\ell(B)=\ell^{\mathsf{a}}(B)=\|({\boldsymbol{\mu}},s)\|, (C)=𝖺(C)=(𝝂,t)\ell(C)=\ell^{\mathsf{a}}(C)=\|({\boldsymbol{\nu}},t)\| and hence by the assumption (𝝂,t)=(𝝀,k)+(𝝁,s)\|(\boldsymbol{\nu},t)\|=\|(\boldsymbol{\lambda},k)\|+\|(\boldsymbol{\mu},s)\| we obtain (C)=(A)+(B)\ell(C)=\ell(A)+\ell(B). Then for each nn0n\geq n_{0} by Proposition 3.5 and Lemma 3.10 we have

𝔭(λ,k),(μ,s)(ν,t)(n)=𝔭A(nn0)B(nn0)C(nn0)=𝔭ABC=𝔭(λ,k),(μ,s)(ν,t)(n0).\mathfrak{p}_{({\lambda},k),(\mu,s)}^{(\nu,t)}(n)=\mathfrak{p}^{C^{(n-n_{0})}}_{A^{(n-n_{0})}B^{(n-n_{0})}}=\mathfrak{p}^{C}_{AB}=\mathfrak{p}_{({\lambda},k),(\mu,s)}^{(\nu,t)}(n_{0}).

Thus 𝔭(λ,k),(μ,s)(ν,t)(n)\mathfrak{p}_{(\lambda,k),(\mu,s)}^{(\nu,t)}(n) is a constant independent of nn. ∎

3.5. The stable center

Analogous to [WW, Section 3.4], we can also introduce the so-called stable center for the affine groups GAn(q)GA_{n}(q). Let 𝒜n(m)(q)\mathcal{A}^{(m)}_{n}(q) be the subspace of 𝒜n(q)\mathcal{A}_{n}(q) spanned by the elements P(𝝀,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) with (𝝀,k)m\|({\boldsymbol{\lambda}},k)\|\leq m. Due to Lemma  3.9, the assignment of degree (𝝀,k)\|({\boldsymbol{\lambda}},k)\| to P(𝝀,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) provides 𝒜n(q)\mathcal{A}_{n}(q) a filtered ring structure with the filtration 0𝒜n(0)(q)𝒜n(1)(q)𝒜n(2)(q)𝒜n(q)0\subset\mathcal{A}^{(0)}_{n}(q)\subset\mathcal{A}^{(1)}_{n}(q)\subset\mathcal{A}^{(2)}_{n}(q)\subset\cdots\subset\mathcal{A}_{n}(q). Then we can define the associated graded algebra denoted by 𝒢n(q)\mathcal{G}_{n}(q) as follows. As a vector space

𝒢n(q)=i0(𝒜n(i)(q)/𝒜n(i1)(q))\mathcal{G}_{n}(q)=\oplus_{i\geq 0}(\mathcal{A}^{(i)}_{n}(q)/\mathcal{A}^{(i-1)}_{n}(q))

where we set 𝒜n(1)(q)=0\mathcal{A}^{(-1)}_{n}(q)=0 and the multiplication satisfies (x+𝒜n(i1)(q))(y+𝒜n(j1)(q))=xy+𝒫i+j1(x+\mathcal{A}^{(i-1)}_{n}(q))(y+\mathcal{A}^{(j-1)}_{n}(q))=xy+\mathcal{P}_{i+j-1} for x𝒜n(i)(q),y𝒜n(j)(q)x\in\mathcal{A}^{(i)}_{n}(q),y\in\mathcal{A}^{(j)}_{n}(q) and i,j0i,j\geq 0. Meanwhile, let 𝒢(q)\mathcal{G}(q) be a graded associative \mathbb{Z}-algebra with a basis given by the symbols P(𝝀,k){P}_{({\boldsymbol{\lambda}},k)} indexed by (𝝀,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), and with multiplication given by

(3.20) P(𝝀,k)P(𝝁,s)=(𝝂,t)=(𝝀,k)+(𝝁,s)𝔭(𝝀,k)(𝝁,s)(𝝂,t)P(𝝂,t).{P}_{({\boldsymbol{\lambda}},k)}{P}_{({\boldsymbol{\mu}},s)}=\sum_{\|({\boldsymbol{\nu}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|({\boldsymbol{\mu}},s)\|}\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k)({\boldsymbol{\mu}},s)}P_{({\boldsymbol{\nu}},t)}.

Note P(,0){P}_{(\emptyset,0)} is the unit of 𝒜(q)\mathcal{A}(q). The following summarizes the above discussions.

Theorem 3.12.

The graded \mathbb{Z}-algebra 𝒢n(q)\mathcal{G}_{n}(q) has the multiplication given by

P(𝝀,k)(n)P(𝝁,s)(n)=(𝝂,t)=(𝝀,k)+(𝝁,s)𝔭(𝝀,k)(𝝁,s)(𝝂,t)P(𝝂,t)(n),{P}_{({\boldsymbol{\lambda}},k)}(n){P}_{({\boldsymbol{\mu}},s)}(n)=\sum_{\|({\boldsymbol{\nu}},t)\|=\|({\boldsymbol{\lambda}},k)\|+\|({\boldsymbol{\mu}},s)\|}\mathfrak{p}^{({\boldsymbol{\nu}},t)}_{({\boldsymbol{\lambda}},k)({\boldsymbol{\mu}},s)}P_{({\boldsymbol{\nu}},t)}(n),

for (𝛌,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}). Moreover, we have a surjective algebra homomorphism 𝒢(q)𝒢n(q)\mathcal{G}(q)\twoheadrightarrow\mathcal{G}_{n}(q) for each nn, which maps P(𝛌,k){P}_{({\boldsymbol{\lambda}},k)} to P(𝛌,k)(n){P}_{({\boldsymbol{\lambda}},k)}(n) for all (𝛌,k)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}).

We will refer to 𝒢(q)\mathcal{G}(q) as the stable center associated to the family of finite general linear groups. This algebra can be viewed as the inverse limit of the projective system of algebras {𝒢n(q)}n1\{\mathcal{G}_{n}(q)\}_{n\geq 1}.

4. Computation on structure constants in the center 𝒜n(q)\mathcal{A}_{n}(q)

In this section, we shall compute some examples for the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n). For r1r\geq 1 and fΦqf\in\Phi_{q}, we define the single cycles (r)f𝒫(Φq)(r)_{f}\in\mathcal{P}(\Phi_{q}) by letting (r)f(f)=(r)(r)_{f}(f)=(r) and (r)f(f)=(r)_{f}(f^{\prime})=\emptyset for fff^{\prime}\neq f. Call (r)f(r)_{f} a rr-cycle of degree d(f)d(f). Denote by 𝔽q=𝔽q\{0}{\mathbb{F}}_{q}^{*}={\mathbb{F}}_{q}\backslash\{0\}. For convenience, for each AGAn(q)A\in GA_{n}(q) we shall denote by [[A]]𝖺[\![A]\!]_{\mathsf{a}} the class sum in GAn(q)GA_{n}(q) and denote by [[A]][\![A]\!] the class sum corresponding in GLn(q)GL_{n}(q) corresponding to AA, respectively.

4.1. Coincidence between 𝔭(𝝀,0),(𝝁,0)(𝝂,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)} and a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}

Lemma 4.1.

Suppose ξ,ζ𝔽q\{0,1}\xi,\zeta\in\mathbb{F}_{q}\backslash\{0,1\}. Let 𝛌=(1)tξ,𝛍=(1)tζ{\boldsymbol{\lambda}}=(1)_{t-\xi},{\boldsymbol{\mu}}=(1)_{t-\zeta}. Then

𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)={q2+q, if ξ=ζ,2q1, if ξζ.\displaystyle\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\left\{\begin{array}[]{cc}q^{2}+q,&\text{ if }\xi=\zeta,\\ 2q-1,&\text{ if }\xi\neq\zeta.\end{array}\right.
Proof.

Observe that (𝝀,0)+(𝝁,0)=(𝝀𝝁,0)\|({\boldsymbol{\lambda}},0)\|+\|({\boldsymbol{\mu}},0)\|=\|({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)\| and moreover P(𝝀𝝁,0)(n)0P_{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}(n)\neq 0 if and only if n3n\geq 3. Hence by Theorem 3.11, the structure constant 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}(n) is independent of nn for n3n\geq 3. That means 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)=𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)(3)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}(3). Therefore we can do the computation in GA3(q)GA_{3}(q).

Firstly, assume ξ=ζ\xi=\zeta. Then 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)} is exactly the coefficient of [[C]]𝖺[\![C]\!]_{\mathsf{a}} in [[A]]𝖺[[B]]𝖺[\![A]\!]_{\mathsf{a}}\cdot[\![B]\!]_{\mathsf{a}} with

A=[1000ζ0001],B=[1000ζ0001],C=[1000ζ000ζ].A=\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&1\end{bmatrix},\quad B=\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&1\end{bmatrix},\quad C=\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&\zeta\end{bmatrix}.

Equivalently, let Γ1={MM𝖺A1,MC𝖺B}\Gamma_{1}=\left\{M\mid M\thicksim_{\mathsf{a}}A^{-1},\,MC\thicksim_{\mathsf{a}}B\right\}. Then 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)=Γ1\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\sharp\Gamma_{1}. Suppose M=[100b1a1a2b2a3a4]Γ1M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\in\Gamma_{1}. Then

M=[100b1a1a2b2a3a4]𝖺[1000ζ10001],MC=[100b1a1ζa2ζb2a3ζa4ζ]𝖺[1000ζ0001].M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\zeta^{-1}&0\\ 0&0&1\end{bmatrix},\quad MC=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}\zeta&a_{2}\zeta\\ b_{2}&a_{3}\zeta&a_{4}\zeta\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&1\end{bmatrix}.

A direct calculation gives rise to

a1+a4=ζ1+1,a1a4a2a3=ζ1,rank(MI)=1,rank(MCI)=1.a_{1}+a_{4}=\zeta^{-1}+1,\quad a_{1}a_{4}-a_{2}a_{3}=\zeta^{-1},\quad\operatorname{rank}(M-I)=1,\quad\operatorname{rank}(MC-I)=1.

Hence we obtain

(4.1) b1=b2=0,a1+a4=ζ1+1,a1a4a2a3=ζ1.b_{1}=b_{2}=0,a_{1}+a_{4}=\zeta^{-1}+1,\quad a_{1}a_{4}-a_{2}a_{3}=\zeta^{-1}.

This means MM is of the form

(4.2) M=[1000a1a20a3a4]M=\begin{bmatrix}1&0&0\\ 0&a_{1}&a_{2}\\ 0&a_{3}&a_{4}\end{bmatrix}

satisfying (4.1). Conversely, it is straightforward to check by Proposition 2.5 that an matrix of the form (4.2) satisfying (4.1) must belong to Γ1\Gamma_{1}. Thus

𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)=Γ1={M=[1000a1a20a3a4]|a1+a4=ζ1+1a1a4a2a3=ζ1}=q2+q.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\sharp\Gamma_{1}=\sharp\left\{M=\begin{bmatrix}1&0&0\\ 0&a_{1}&a_{2}\\ 0&a_{3}&a_{4}\end{bmatrix}\;\Bigg{|}\;\begin{aligned} a_{1}+a_{4}&=\zeta^{-1}+1\\ a_{1}a_{4}-a_{2}a_{3}&=\zeta^{-1}\end{aligned}\right\}=q^{2}+q.

Secondly, assume ξζ\xi\neq\zeta. Similarly, 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)} is exactly the coefficient of [[C]]𝖺[\![C]\!]_{\mathsf{a}} in [[A]]𝖺[[B]]𝖺[\![A]\!]_{\mathsf{a}}\cdot[\![B]\!]_{\mathsf{a}} with

A=[1000ξ0001],B=[1000ζ0001],C=[1000ξ000ζ].A=\begin{bmatrix}1&0&0\\ 0&\xi&0\\ 0&0&1\end{bmatrix},\quad B=\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&1\end{bmatrix},\quad C=\begin{bmatrix}1&0&0\\ 0&\xi&0\\ 0&0&\zeta\end{bmatrix}.

Equivalently, let Γ2={MM𝖺A1,MC𝖺B}\Gamma_{2}=\left\{M\mid M\thicksim_{\mathsf{a}}A^{-1},\,MC\thicksim_{\mathsf{a}}B\right\}. Then 𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)=Γ2\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\sharp\Gamma_{2}. Suppose M=[100b1a1a2b2a3a4]Γ2M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\in\Gamma_{2}. Then

M=[100b1a1a2b2a3a4]𝖺[1000ξ10001],MC=[100b1a1ξa2ζb2a3ξa4ζ]𝖺[1000ζ0001].M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&0\\ 0&0&1\end{bmatrix},\quad MC=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}\xi&a_{2}\zeta\\ b_{2}&a_{3}\xi&a_{4}\zeta\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\zeta&0\\ 0&0&1\end{bmatrix}.

This means

a1+a4=ξ1+1,a1a4a2a3=ξ1,rank(MI)=1,rank(MCI)=1a_{1}+a_{4}=\xi^{-1}+1,\,\ a_{1}a_{4}-a_{2}a_{3}=\xi^{-1},\,\operatorname{rank}(M-I)=1,\,\operatorname{rank}(MC-I)=1

and hence

(4.3) b1=b2=0,a1=ξ1,a4=1,a2a3=0b_{1}=b_{2}=0,\quad a_{1}=\xi^{-1},\quad a_{4}=1,\quad a_{2}a_{3}=0

This means MM is of the form

(4.4) M=[1000ξ1a20a31].M=\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&a_{2}\\ 0&a_{3}&1\end{bmatrix}.

Conversely, it is straightforward to check by Proposition 2.5 that an matrix of the form (4.4) satisfying (4.3) must belong to Γ2\Gamma_{2}. Thus

𝔭(𝝀,0),(𝝁,0)(𝝀𝝁,0)=Γ2={M=[1000ξ1a20a31]|a2a3=0}=2q1.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\lambda}}\cup{\boldsymbol{\mu}},0)}=\sharp\Gamma_{2}=\sharp\left\{M=\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&a_{2}\\ 0&a_{3}&1\end{bmatrix}\;\Bigg{|}\;a_{2}a_{3}=0\right\}=2q-1.

We observe that 𝔭(𝝀,0),(𝝁,0)(𝝂,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)} in the above two examples coincide with the structure constant a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} given in [WW, Theorem 4.4]. In fact, this observation holds in general concerning the comparison between the structure constants a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} and 𝔭(𝝀,0),(𝝁,0)(𝝂,0)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)} in the situation 𝝀+𝝁=𝝂\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|=\|{\boldsymbol{\nu}}\|.

Theorem 4.2.

Let 𝛌,𝛍,𝛎𝒫(Φq){\boldsymbol{\lambda}},{\boldsymbol{\mu}},{\boldsymbol{\nu}}\in\mathcal{P}(\Phi_{q}). Suppose 𝛌+𝛍=𝛎\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|=\|{\boldsymbol{\nu}}\|. Then

𝔭(𝝀,0),(𝝁,0)(𝝂,0)=a𝝀𝝁𝝂.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}=a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}.
Proof.

Let m=max{𝝀+(𝝀(t1)),𝝁+(𝝁(t1)),𝝂+(𝝂(t1))}m=\max\{\|{\boldsymbol{\lambda}}\|+\ell({\boldsymbol{\lambda}}(t-1)),\|{\boldsymbol{\mu}}\|+\ell({\boldsymbol{\mu}}(t-1)),\|{\boldsymbol{\nu}}\|+\ell({\boldsymbol{\nu}}(t-1))\}. Since 𝝀+𝝁=𝝂\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|=\|{\boldsymbol{\nu}}\| by Theorem 3.3 the structure constant a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} is independent of nn and hence it can be computed in GLm(q)GL_{m}(q) or GLm+1(q)GL_{m+1}(q) via

(4.5) a𝝀𝝁𝝂=a𝝀𝝁𝝂(m)=a𝝀𝝁𝝂(m+1)\displaystyle a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}=a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m)=a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)

while

(4.6) a𝝀𝝁𝝂(m)=\displaystyle a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m)= {(g,h)|gJ𝝀m,hJ𝝁m,gh=J𝝂m},\displaystyle\sharp\big{\{}(g,h)\big{|}g\thicksim J_{{\boldsymbol{\lambda}}^{\uparrow m}},h\thicksim J_{{\boldsymbol{\mu}}^{\uparrow m}},gh=J_{{\boldsymbol{\nu}}^{\uparrow m}}\big{\}},
a𝝀𝝁𝝂(m+1)=\displaystyle a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)= {(g,h)|g[J𝝀m001],h[J𝝁m001],gh=[J𝝂m001]}\displaystyle\sharp\left\{(g^{\prime},h^{\prime})\big{|}g^{\prime}\thicksim\begin{bmatrix}J_{{\boldsymbol{\lambda}}^{\uparrow m}}&0\\ 0&1\end{bmatrix},h^{\prime}\thicksim\begin{bmatrix}J_{{\boldsymbol{\mu}}^{\uparrow m}}&0\\ 0&1\end{bmatrix},g^{\prime}h^{\prime}=\begin{bmatrix}J_{{\boldsymbol{\nu}}^{\uparrow m}}&0\\ 0&1\end{bmatrix}\right\}
(4.7) =\displaystyle= {(g′′,h′′)|g′′[100J𝝀m],h′′[100J𝝁m],g′′h′′=[100J𝝂m]}.\displaystyle\sharp\left\{(g^{\prime\prime},h^{\prime\prime})\big{|}g^{\prime\prime}\thicksim\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\lambda}}^{\uparrow m}}\end{bmatrix},h^{\prime\prime}\thicksim\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\mu}}^{\uparrow m}}\end{bmatrix},g^{\prime\prime}h^{\prime\prime}=\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\nu}}^{\uparrow m}}\end{bmatrix}\right\}.

For simplicity, write A=[100J𝝀m],B=[100J𝝁m],C=[100J𝝂m]GAm+1(q)A=\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\lambda}}^{\uparrow m}}\end{bmatrix},B=\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\mu}}^{\uparrow m}}\end{bmatrix},C=\begin{bmatrix}1&0\\ 0&J_{{\boldsymbol{\nu}}^{\uparrow m}}\end{bmatrix}\in GA_{m+1}(q). Comparing the two sets on the right hand side of (4.6) and (4.7), by (4.5) we obtain that the pair (g′′,h′′)(g^{\prime\prime},h^{\prime\prime}) satisfying g′′A,h′′B,g′′h′′=Cg^{\prime\prime}\thicksim A,h^{\prime\prime}\thicksim B,g^{\prime\prime}h^{\prime\prime}=C must be of the form g′′=[100g],h′′=[100h]g^{\prime\prime}=\begin{bmatrix}1&0\\ 0&g\end{bmatrix},h^{\prime\prime}=\begin{bmatrix}1&0\\ 0&h\end{bmatrix} with gJ𝝀m,hJ𝝁m,gh=J𝝂mg\sim J_{{\boldsymbol{\lambda}}^{\uparrow m}},h\sim J_{{\boldsymbol{\mu}}^{\uparrow m}},gh=J_{{\boldsymbol{\nu}}^{\uparrow m}}. This implies g′′,h′′GAm+1(q)g^{\prime\prime},h^{\prime\prime}\in GA_{m+1}(q) and moreover the modified types of g′′,h′′g^{\prime\prime},h^{\prime\prime} are (𝝀,0),(𝝁,0)({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0), respectively. That is, g′′𝖺A,h′′𝖺B,g′′h′′=Cg^{\prime\prime}\thicksim_{\mathsf{a}}A,h^{\prime\prime}\thicksim_{\mathsf{a}}B,g^{\prime\prime}h^{\prime\prime}=C. Hence (g′′,h′′)𝔗ABC(g^{\prime\prime},h^{\prime\prime})\in\mathfrak{T}_{AB}^{C} by (3.16). This together with (3.17) and (4.7) leads to

(4.8) a𝝀𝝁𝝂(m+1)𝔗ABC=𝔭ABC=𝔭(𝝀,0),(𝝁,0)(𝝂,0)(m+1)a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)\leq\sharp\mathfrak{T}_{AB}^{C}=\mathfrak{p}_{AB}^{C}=\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}(m+1)

Meanwhile

a𝝀𝝁𝝂(m+1)=aABC,𝔭(𝝀,0),(𝝁,0)(𝝂,0)(m+1)=𝔭ABCa_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)=a^{C}_{AB},\quad\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}(m+1)=\mathfrak{p}_{AB}^{C}

and hence by (3.17), (3.18) and (2.32) we obtain

a𝝀𝝁𝝂(m+1)𝔭(𝝀,0),(𝝁,0)(𝝂,0)(m+1).a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)\geq\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}(m+1).

This together with (4.8) leads to

(4.9) a𝝀𝝁𝝂(m+1)=𝔭(𝝀,0),(𝝁,0)(𝝂,0)(m+1)a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(m+1)=\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}(m+1)

Meanwhile by the assumption 𝝀+𝝁=𝝂\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|=\|{\boldsymbol{\nu}}\|, (3.15) and Theorem 3.11, we have 𝔭(𝝀,0),(𝝁,0)(𝝂,0)=𝔭(𝝀,0),(𝝁,0)(𝝂,0)(m+1)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}=\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\mu}},0)}^{({\boldsymbol{\nu}},0)}(m+1) and hence the proposition is proved. ∎

Remark 4.3.

Theorem 4.2 means that (3.18) is actually an equality in the case k=s=t=0k=s=t=0 and 𝝂=𝝀+𝝁\|{\boldsymbol{\nu}}\|=\|{\boldsymbol{\lambda}}\|+\|{\boldsymbol{\mu}}\|. This implies that the structure constant a𝝀𝝁𝝂a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}} in the stable center in the case of GLn(q)GL_{n}(q) studied in [WW] is a special case of the structure constants in the stable center in the case of GAn(q)GA_{n}(q).

4.2. More examples in the stable center 𝒢n(q)\mathcal{G}_{n}(q).

Lemma 4.4.

Let 𝛌=(1)tξ{\boldsymbol{\lambda}}=(1)_{t-\xi} with ξ𝔽q\{0,1}\xi\in\mathbb{F}_{q}\backslash\{0,1\}. Then

𝔭(𝝀,0),(,1)(𝝀,1)=q.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1)}^{({\boldsymbol{\lambda}},1)}=q.
Proof.

Clearly 𝔭(𝝀,0),(,1)(𝝀,1)\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1)}^{({\boldsymbol{\lambda}},1)} is exactly the coefficient of [[C]]𝖺[\![C]\!]_{\mathsf{a}} in the product [[A]]𝖺[[B]]𝖺[\![A]\!]_{\mathsf{a}}\cdot[\![B]\!]_{\mathsf{a}} in GA3(q)GA_{3}(q) with

(4.10) A=[1000ξ0001],B=[100010101],C=[1000ξ0101].A=\begin{bmatrix}1&0&0\\ 0&\xi&0\\ 0&0&1\end{bmatrix},\quad B=\begin{bmatrix}1&0&0\\ 0&1&0\\ 1&0&1\end{bmatrix},\quad C=\begin{bmatrix}1&0&0\\ 0&\xi&0\\ 1&0&1\end{bmatrix}.

Equivalently, let

Γ3={MGA3(q)|M𝖺[1000ξ10001],M[1000ξ0101]𝖺[100010101]}.\Gamma_{3}=\left\{M\in GA_{3}(q)\Bigg{|}M\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&0\\ 0&0&1\end{bmatrix},\ M\begin{bmatrix}1&0&0\\ 0&\xi&0\\ 1&0&1\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&1&0\\ 1&0&1\end{bmatrix}\right\}.

Then 𝔭(𝝀,0),(,1)(𝝀,1)=Γ3\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1)}^{({\boldsymbol{\lambda}},1)}=\sharp\Gamma_{3}. Suppose M=[100b1a1a2b2a3a4]Γ3M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\in\Gamma_{3}. Then

M=[100b1a1a2b2a3a4]𝖺[1000ξ10001],MC=[100b1+a2a1ξa2b2+a4a3ξa4]𝖺[100010101].M=\begin{bmatrix}1&0&0\\ b_{1}&a_{1}&a_{2}\\ b_{2}&a_{3}&a_{4}\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&0\\ 0&0&1\end{bmatrix},\quad MC=\begin{bmatrix}1&0&0\\ b_{1}+a_{2}&a_{1}\xi&a_{2}\\ b_{2}+a_{4}&a_{3}\xi&a_{4}\end{bmatrix}\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&1&0\\ 1&0&1\end{bmatrix}.

This together with (2.14) and the proof of Proposition 2.5 leads to

[a1ξa2a3ξa4]=[1001],rank(MI)=1,rank(MCI)=1,b1+a20 or b2+a40.\begin{bmatrix}a_{1}\xi&a_{2}\\ a_{3}\xi&a_{4}\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix},\,\operatorname{rank}(M-I)=1,\,\operatorname{rank}(MC-I)=1,\,b_{1}+a_{2}\neq 0\text{ or }b_{2}+a_{4}\neq 0.

and hence

a1=ξ1,a4=1,a2=a3=b2=0.a_{1}=\xi^{-1},\quad a_{4}=1,\quad a_{2}=a_{3}=b_{2}=0.

Thus MM is of the form

(4.11) M=[100b1ξ10001].M=\begin{bmatrix}1&0&0\\ b_{1}&\xi^{-1}&0\\ 0&0&1\end{bmatrix}.

Conversely, it is straightforward using Proposition 2.5 to check that the matrix of the form (4.11) belongs to Γ3\Gamma_{3}. Hence

𝔭(𝝀,0),(,1)(𝝀,1)=Γ3={M=[100b1ξ10001]|b1𝔽q}=q.\mathfrak{p}_{({\boldsymbol{\lambda}},0),(\emptyset,1)}^{({\boldsymbol{\lambda}},1)}=\sharp\Gamma_{3}=\sharp\left\{M=\begin{bmatrix}1&0&0\\ b_{1}&\xi^{-1}&0\\ 0&0&1\end{bmatrix}\Bigg{|}b_{1}\in{\mathbb{F}}_{q}\right\}=q.

In general, we have the following.

Proposition 4.5.

Suppose ξ1,ξ2,,ξr𝔽q\{0,1}\xi_{1},\xi_{2},...,\xi_{r}\in\mathbb{F}_{q}\backslash\{0,1\} and ξiξj\xi_{i}\neq\xi_{j} for 1ijr1\leq i\neq j\leq r. Let 𝛌=(1)tξ1(1)tξ2(1)tξr{\boldsymbol{\lambda}}=(1)_{t-\xi_{1}}\cup(1)_{t-\xi_{2}}\cup\cdots\cup(1)_{t-\xi_{r}}. Then

𝔭(𝝀,0),(,1)(𝝀,1)=qr.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1)}^{({\boldsymbol{\lambda}},1)}=q^{r}.
Proof.

Clearly 𝔭(𝝀,0),(,1)(𝝀,1)\mathfrak{p}_{({\boldsymbol{\lambda}},0),(\emptyset,1)}^{({\boldsymbol{\lambda}},1)} is exactly the coefficient of [[C]]𝖺[\![C]\!]_{\mathsf{a}} in the product [[A]]𝖺[[B]]𝖺[\![A]\!]_{\mathsf{a}}\cdot[\![B]\!]_{\mathsf{a}} in GA3(q)GA_{3}(q) with

(4.12) A=[100000ξ100000ξ200000ξr000001],B=[1000001000001000001010001],C=[100000ξ100000ξ200000ξr010001].{\footnotesize A=\begin{bmatrix}1&0&0&\cdots&0&0\\ 0&\xi_{1}&0&\cdots&0&0\\ 0&0&\xi_{2}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&\xi_{r}&0\\ 0&0&\cdots&0&0&1\end{bmatrix},B=\begin{bmatrix}1&0&0&\cdots&0&0\\ 0&1&0&\cdots&0&0\\ 0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&1&0\\ 1&0&\cdots&0&0&1\end{bmatrix},C=\begin{bmatrix}1&0&0&\cdots&0&0\\ 0&\xi_{1}&0&\cdots&0&0\\ 0&0&\xi_{2}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&\xi_{r}&0\\ 1&0&\cdots&0&0&1\end{bmatrix}.}

Equivalently, let

Γ4={MGAr+2(q)|M𝖺A1,MC𝖺B}.\Gamma_{4}=\left\{M\in GA_{r+2}(q)\Bigg{|}M\thicksim_{\mathsf{a}}A^{-1},\ MC\thicksim_{\mathsf{a}}B\right\}.

Then 𝔭(𝝀,0),(,1)(𝝀,1)=Γ4\mathfrak{p}_{({\boldsymbol{\lambda}},0),(\emptyset,1)}^{({\boldsymbol{\lambda}},1)}=\sharp\Gamma_{4}. Suppose

M=[10000b1a11a12a1ra1,r+1b2a21a22a2ra2,r+1brar1ar2arrar,r+1br+1ar+1,1ar+1,2ar+1,rar+1,r+1]Γ4.M=\begin{bmatrix}1&0&0&\cdots&0&0\\ b_{1}&a_{11}&a_{12}&\cdots&a_{1r}&a_{1,r+1}\\ b_{2}&a_{21}&a_{22}&\cdots&a_{2r}&a_{2,r+1}\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ b_{r}&a_{r1}&a_{r2}&\cdots&a_{rr}&a_{r,r+1}\\ b_{r+1}&a_{r+1,1}&a_{r+1,2}&\cdots&a_{r+1,r}&a_{r+1,r+1}\end{bmatrix}\in\Gamma_{4}.

Then

M𝖺A1,MC𝖺B.M\sim_{\mathsf{a}}A^{-1},\quad MC\sim_{\mathsf{a}}B.

and hence by (2.14) and the proof of Proposition 2.5 we have

[a11ξ1a12ξ2a1rξra1,r+1a21ξ1a22ξ2a2rξra2,r+1ar1ξ1ar2ξ2arrξrar,r+1ar+1,1ξ1ar+1,2ξ2ar+1,rξrar+1,r+1]=Ir+1\begin{bmatrix}a_{11}\xi_{1}&a_{12}\xi_{2}&\cdots&a_{1r}\xi_{r}&a_{1,r+1}\\ a_{21}\xi_{1}&a_{22}\xi_{2}&\cdots&a_{2r}\xi_{r}&a_{2,r+1}\\ \vdots&\vdots&\cdots&\vdots&\vdots\\ a_{r1}\xi_{1}&a_{r2}\xi_{2}&\cdots&a_{rr}\xi_{r}&a_{r,r+1}\\ a_{r+1,1}\xi_{1}&a_{r+1,2}\xi_{2}&\cdots&a_{r+1,r}\xi_{r}&a_{r+1,r+1}\end{bmatrix}=I_{r+1}

and moreover

rank(MIr+2)=r,rank(MCIr+2)=1.\operatorname{rank}(M-I_{r+2})=r,\,\operatorname{rank}(MC-I_{r+2})=1.

Thus MM is of the form

(4.13) M=[10000b1ξ11000b20ξ2100br00ξr1000001].M=\begin{bmatrix}1&0&0&\cdots&0&0\\ b_{1}&\xi^{-1}_{1}&0&\cdots&0&0\\ b_{2}&0&\xi^{-1}_{2}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ b_{r}&0&0&\cdots&\xi^{-1}_{r}&0\\ 0&0&\cdots&0&0&1\end{bmatrix}.

Conversely, it is straightforward using Proposition 2.5 to check that the matrix of the form (4.13) belongs to Γ4\Gamma_{4}. Hence

𝔭(𝝀,0),(,1)(𝝀,1)=Γ4={[10000b1ξ11000b20ξ2100br00ξr1000001]|bi𝔽q}=qr.\mathfrak{p}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1)}^{({\boldsymbol{\lambda}},1)}=\sharp\Gamma_{4}=\sharp\left\{\begin{bmatrix}1&0&0&\cdots&0&0\\ b_{1}&\xi^{-1}_{1}&0&\cdots&0&0\\ b_{2}&0&\xi^{-1}_{2}&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ b_{r}&0&0&\cdots&\xi^{-1}_{r}&0\\ 0&0&\cdots&0&0&1\end{bmatrix}\Bigg{|}b_{i}\in{\mathbb{F}}_{q}\right\}=q^{r}.

Remark 4.6.

Different from Theorem 4.2, by comparing with [WW, Proposition 4.5] we observe that the computation in Proposition 4.5 gives an example of the inequality (3.18).

4.3. Examples depending on nn.

Proposition 4.7.

Suppose ξ𝔽q\{0,1}\xi\in\mathbb{F}_{q}\backslash\{0,1\}. Let 𝛌=(1)t1,𝛍=(1)tξ,𝛎=(1)tξ1{\boldsymbol{\lambda}}=(1)_{t-1},{\boldsymbol{\mu}}=(1)_{t-\xi},{\boldsymbol{\nu}}=(1)_{t-\xi^{-1}}. Then for n3n\geq 3:

  1. (1)

    𝔭(𝝀,0),(𝝀,0)(,1)(n)=qn1q.\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\lambda}},0)}(n)=q^{n-1}-q.

  2. (2)

    𝔭(𝝁,0),(𝝂,0)(,1)(n)=qn1.\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\mu}},0),({\boldsymbol{\nu}},0)}(n)=q^{n-1}.

Proof.

To prove (1), let

g=[1100001000001000001000001]GLn1(q),A=[100g],C=[10αIn1],α=[100]𝔽qn1.g=\begin{bmatrix}1&1&0&\cdots&0&0\\ 0&1&0&\cdots&0&0\\ 0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 0&0&0&\cdots&1&0\\ 0&0&0&\cdots&0&1\end{bmatrix}\in GL_{n-1}(q),\,A=\begin{bmatrix}1&0\\ 0&g\end{bmatrix},\,C=\begin{bmatrix}1&0\\ \alpha&I_{n-1}\end{bmatrix},\,\alpha=\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix}\in{\mathbb{F}}_{q}^{n-1}.

Then AGAn(q)A\in GA_{n}(q) is of modified type (𝝀,0)({\boldsymbol{\lambda}},0) with A1=[100g1]A^{-1}=\begin{bmatrix}1&0\\ 0&g^{-1}\end{bmatrix} and CGAn(q)C\in GA_{n}(q) is of modified type (,1)({\boldsymbol{\emptyset}},1). Analogous to the proof of Lemma 4.1, we obtain 𝔭(𝝀,0),(𝝀,0)(,1)(n)=Γ5\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\lambda}},0)}(n)=\sharp\Gamma_{5} with

Γ5={M|M𝖺A1,MC𝖺A}.\Gamma_{5}=\left\{M\Big{|}M\thicksim_{\mathsf{a}}A^{-1},MC\thicksim_{\mathsf{a}}A\right\}.

Suppose

M=[10γf]Γ5, where γ=[r1r2rn1],f=[f11f12f1,n1f21f22f2,n1fn1,1fn1,2fn1,n1].M=\begin{bmatrix}1&0\\ \gamma&f\end{bmatrix}\in\Gamma_{5},\text{ where }\gamma=\begin{bmatrix}r_{1}\\ r_{2}\\ \vdots\\ r_{n-1}\end{bmatrix},\quad f=\begin{bmatrix}f_{11}&f_{12}&\cdots&f_{1,n-1}\\ f_{21}&f_{22}&\cdots&f_{2,n-1}\\ \vdots&\vdots&\cdots&\vdots\\ f_{n-1,1}&f_{n-1,2}&\cdots&f_{n-1,n-1}\end{bmatrix}.

Then by the proof of Proposition 2.5 we obtain that M𝖺A1M\thicksim_{\mathsf{a}}A^{-1} if and olny if

(4.14) fg1GLn1(q) and γ=(In1f)β, for some β𝔽qn1.f\thicksim g^{-1}\in GL_{n-1}(q)\text{ and }\gamma=(I_{n-1}-f)\beta,\text{ for some }\beta\in{\mathbb{F}}_{q}^{n-1}.

Meanwhile MC=[10γ+fαf]𝖺AMC=\begin{bmatrix}1&0\\ \gamma+f\alpha&f\end{bmatrix}\thicksim_{\mathsf{a}}A if and olny if

(4.15) fgGLn1(q) and γ+fα=(In1f)δ, for some δ𝔽qn1.f\thicksim g\in GL_{n-1}(q)\text{ and }\gamma+f\alpha=(I_{n-1}-f)\delta,\text{ for some }\delta\in{\mathbb{F}}_{q}^{n-1}.

Then we have

(4.16) rank[f111f12f1,n1f21f221f2,n1fn1fn2fn1,n11]=1,rank\begin{bmatrix}f_{11}-1&f_{12}&\cdots&f_{1,n-1}\\ f_{21}&f_{22}-1&\cdots&f_{2,n-1}\\ \vdots&\vdots&\ddots&\vdots\\ f_{n1}&f_{n2}&\cdots&f_{n-1,n-1}-1\end{bmatrix}=1,
(4.17) rank[0000r1f111f12f1nr2f21f221f2nrn1fn1fn2fn1,n11]=1,rank\begin{bmatrix}0&0&0&\cdots&0\\ r_{1}&f_{11}-1&f_{12}&\cdots&f_{1n}\\ r_{2}&f_{21}&f_{22}-1&\cdots&f_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ r_{n-1}&f_{n1}&f_{n2}&\cdots&f_{n-1,n-1}-1\end{bmatrix}=1,

and

(4.18) rank[0000r1+f11f111f12f1,n1r2+f21f21f221f2,n1rn1+fn1,1fn1fn2fn1,n11]=1rank\begin{bmatrix}0&0&0&\cdots&0\\ r_{1}+f_{11}&f_{11}-1&f_{12}&\cdots&f_{1,n-1}\\ r_{2}+f_{21}&f_{21}&f_{22}-1&\cdots&f_{2,n-1}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ r_{n-1}+f_{n-1,1}&f_{n1}&f_{n2}&\cdots&f_{n-1,n-1}-1\end{bmatrix}=1

By (4.17) and (4.18), a straightforward calculation gives rise to

f11=f22==fn1,n1=1,fij=0 for i2,ij.f_{11}=f_{22}=\cdots=f_{n-1,n-1}=1,\quad f_{ij}=0\text{ for }i\geq 2,i\neq j.

This together with (4.14) leads to r2=r3==rn1=0r_{2}=r_{3}=\cdots=r_{n-1}=0. Therefore MΓ5M\in\Gamma_{5} must be of the form

(4.19) M=[1000r11f12f1,n100100001]M=\begin{bmatrix}1&0&0&\cdots&0\\ r_{1}&1&f_{12}&\cdots&f_{1,n-1}\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\cdots&\vdots\\ 0&0&0&\cdots&1\end{bmatrix}

and moreover one of f12,f13,,f1,n1f_{12},f_{13},\ldots,f_{1,n-1} is nonzero by (4.16). Conversely, clearly a matrix of the form (4.19) satisfies (4.14) and (4.15) and hence it belongs to Γ5\Gamma_{5}. Therefore we obtain

𝔭(𝝀,0),(𝝀,0)(,1)(n)\displaystyle\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\lambda}},0),({\boldsymbol{\lambda}},0)}(n) =Γ5\displaystyle=\sharp\Gamma_{5}
={[1000r11f12f1,n100100001]GAn(q)|f1k0 for some 2kn1}\displaystyle=\sharp\left\{\begin{bmatrix}1&0&0&\cdots&0\\ r_{1}&1&f_{12}&\cdots&f_{1,n-1}\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\cdots&\vdots\\ 0&0&0&\cdots&1\end{bmatrix}\in GA_{n}(q)\Bigg{|}f_{1k}\neq 0\text{ for some }2\leq k\leq n-1\right\}
=qn1q.\displaystyle=q^{n-1}-q.

Next, we shall compute 𝔭(𝝁,0),(𝝂,0)(,1)(n)\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\mu}},0),({\boldsymbol{\nu}},0)}(n). Similarly, one can deduce that

𝔭(𝝁,0),(𝝂,0)(,1)(n)=Γ6\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\mu}},0),({\boldsymbol{\nu}},0)}(n)=\sharp\Gamma_{6}

with

Γ6={M|M𝖺[1000ξ1000In2]𝖺M[10αIn2],α=[100]}\Gamma_{6}=\left\{M\Bigg{|}M\thicksim_{\mathsf{a}}\begin{bmatrix}1&0&0\\ 0&\xi^{-1}&0\\ 0&0&I_{n-2}\end{bmatrix}\thicksim_{\mathsf{a}}M\begin{bmatrix}1&0\\ \alpha&I_{n-2}\end{bmatrix},\alpha=\begin{bmatrix}1&0&\cdots&0\end{bmatrix}^{\intercal}\right\}

Analogous to the calculation in part (1), one can obtain that a matrix M=[10γf]GAn(q)M=\begin{bmatrix}1&0\\ \gamma&f\end{bmatrix}\in GA_{n}(q) with γ=[r1r2rn1],f=[f11f12f1,n1f21f22f2,n1fn1,1fn1,2fn1,n1]\gamma=\begin{bmatrix}r_{1}\\ r_{2}\\ \vdots\\ r_{n-1}\end{bmatrix},\quad f=\begin{bmatrix}f_{11}&f_{12}&\cdots&f_{1,n-1}\\ f_{21}&f_{22}&\cdots&f_{2,n-1}\\ \vdots&\vdots&\cdots&\vdots\\ f_{n-1,1}&f_{n-1,2}&\cdots&f_{n-1,n-1}\end{bmatrix} belongs to Γ6\Gamma_{6} if only if MM is of the form

M=[10000r1ξ1f12f13f1,n1001000001000001]M=\begin{bmatrix}1&0&0&0&\cdots&0\\ r_{1}&\xi^{-1}&f_{12}&f_{13}&\cdots&f_{1,n-1}\\ 0&0&1&0&\cdots&0\\ 0&0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&0&\cdots&1\\ \end{bmatrix}
𝔭(𝝁,0),(𝝂,0)(,1)(n)\displaystyle\mathfrak{p}^{({\boldsymbol{\emptyset}},1)}_{({\boldsymbol{\mu}},0),({\boldsymbol{\nu}},0)}(n) =Γ6={[1000r1ξ1f12f1,n100100001]|r1,f1i𝔽q,2in1}\displaystyle=\sharp\Gamma_{6}=\sharp\left\{\begin{bmatrix}1&0&0&\cdots&0\\ r_{1}&\xi^{-1}&f_{12}&\cdots&f_{1,n-1}\\ 0&0&1&\cdots&0\\ \vdots&\vdots&\vdots&\cdots&\vdots\\ 0&0&0&\cdots&1\end{bmatrix}\Bigg{|}r_{1},f_{1i}\in{\mathbb{F}}_{q},2\leq i\leq n-1\right\}
=qn1.\displaystyle=q^{n-1}.

Remark 4.8.

It is known from [DL] that the general affine GAn(q)GA_{n}(q) also admits another set of generators consisting of the so-called affine reflections, which gives rise to a new length function denoted by 𝖺(A)\ell\ell^{\mathsf{a}}(A) for each AGAn(q)A\in GA_{n}(q). This will define a new filtration in the center 𝒜n(q)\mathcal{A}_{n}(q) of [GAn(q)]\mathbb{Z}[GA_{n}(q)] and hence we have a new graded algebra denoted by 𝒢n(q)\mathcal{G}_{n}^{\prime}(q). In [DL], three types of elements known as elliptic, parabolic and hyperbolic are introduced. Actually one can show that 𝖺(A)=𝖺(A)\ell\ell^{\mathsf{a}}(A)=\ell^{\mathsf{a}}(A) if AA is elliptic or parabolic while 𝖺(A)=𝖺(A)+1\ell\ell^{\mathsf{a}}(A)=\ell^{\mathsf{a}}(A)+1 if AA is hyperbolic by [DL, Theorem 11] and Lemma 3.7 . Moreover, in our notation AA is hyperbolic if and only if AA is of modified type (,1)({\boldsymbol{\emptyset}},1) by [DL, Definition 10]. The computation in Proposition 4.7 shows that if A,B,CGAn(q)A,B,C\in GA_{n}(q) are of the modified type (𝝀,0),(𝝀,0),(,1)({\boldsymbol{\lambda}},0),({\boldsymbol{\lambda}},0),({\boldsymbol{\emptyset}},1) with 𝝀=(1)t1{\boldsymbol{\lambda}}=(1)_{t-1}, respectively, then the coefficient of [[C]]𝖺[\![C]\!]_{\mathsf{a}} in the product [[A]]𝖺[[B]]𝖺[\![A]\!]_{\mathsf{a}}\cdot[\![B]\!]_{\mathsf{a}} is strictly smaller than the coefficient of [[C]]𝖺[\![C^{\prime}]\!]_{\mathsf{a}} in the product [[A]]𝖺[[B]]𝖺[\![A^{\prime}]\!]_{\mathsf{a}}\cdot[\![B^{\prime}]\!]_{\mathsf{a}}, where A=[A001]A^{\prime}=\begin{bmatrix}A&0\\ 0&1\end{bmatrix}, B=[B001]B^{\prime}=\begin{bmatrix}B&0\\ 0&1\end{bmatrix} and C=[C001]GAn+1(q)C^{\prime}=\begin{bmatrix}C&0\\ 0&1\end{bmatrix}\in GA_{n+1}(q) even though 𝖺(A)+𝖺(B)=𝖺(C)\ell\ell^{\mathsf{a}}(A)+\ell\ell^{\mathsf{a}}(B)=\ell\ell^{\mathsf{a}}(C). This means the structure constants in the graded algebra 𝒢n(q)\mathcal{G}_{n}^{\prime}(q) associated to the new filtration in 𝒜n(q)\mathcal{A}_{n}(q) with respect to the new length function 𝖺(A)\ell\ell^{\mathsf{a}}(A) does not admit the stability property.

Remark 4.9.

There are several further directions and problems arising from our work which may be worth pursuing.

Question 1: It is interesting to compare the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) and a𝝀𝝁𝝂(n)a_{{\boldsymbol{\lambda}}{\boldsymbol{\mu}}}^{{\boldsymbol{\nu}}}(n). As mentioned earlier in Remark 4.3 and Remark 4.6, we ask for when they coincide besides the situation in Theorem 4.2.

Question 2: Due to [Ze], the following series

(4.20) GAn(q)GLn(q)GAn+1(q)GLn+1(q)\cdots\subset GA_{n}(q)\subset GL_{n}(q)\subset GA_{n+1}(q)\subset GL_{n+1}(q)\subset\cdots

satisfies the multiplicity-free property concerning the irreducible representations over the field of complex numbers. Then analogous to [Kl, Section 1.2] it is possible to define the notion of Jucys-Murphy elements by studying the centralizers of GAn(q)GA_{n}(q) in the group algebra of [GLn(q)]\mathbb{Z}[GL_{n}(q)] as well as the centralizers of GLn(q)GL_{n}(q) in the group algebra of [GAn+1(q)]\mathbb{Z}[GA_{n+1}(q)] with respect to the embeddings in (4.20). These potential elements is expected to be used to obtain a set of generators for the graded algebra 𝒢n(q)\mathcal{G}_{n}(q) as an analog of [FH, Theorem 1].

Question 3: As mentioned in Remark 4.8 the structure constants in the graded algebra 𝒢n(q)\mathcal{G}_{n}^{\prime}(q) associated to the new filtration in center 𝒜n(q)\mathcal{A}_{n}(q) with respect to the new length function 𝖺(A)\ell\ell^{\mathsf{a}}(A) does not have the similar stability phenomena. However, it is still worthwhile to ask which structure constants satisfy the stability property.

Question 4: We expect the general phenomenon in section 3.2 can be applied to obtain the similar stability phenomena for various families of subgroups of GLn(q)GL_{n}(q) such as unitary, symplectic, or orthogonal groups. In fact, one can apply the key observation in section 3.2 to the symplectic group Sp2n(q)Sp_{2n}(q) to recover the main result in [Oz] without the lengthy computation on the centralizers. On the other hand, the symplectic group Sp2n(q)Sp_{2n}(q) is generated by the set of transvections [Om] and hence the center of the group algebra [Sp2n(q)]\mathbb{Z}[Sp_{2n}(q)] admits the new filtered structure different from the one introduced in [Oz]. It is worthwhile to study the structure constants of the associated graded algebra and to see whether the stability property holds in this case. We may come to this project in a coming article.

Question 5: We ask whether the graded algebra 𝒢n(q)\mathcal{G}_{n}(q) in this paper afford a geometric interpretation and generalization similar to the case of wreath product ΓSn\Gamma\wr S_{n} for a subgroup Γ\Gamma of SL2()SL_{2}(\mathbb{C}). It is known [Wa] that the associated graded of the center of the complex group algebra of ΓSn\Gamma\wr S_{n} is isomorphic to the cohomology ring of Hilbert scheme of nn points on the minimal resolution 2/Γ~\widetilde{\mathbb{C}^{2}/\Gamma} (also cf. [LS, Va, LQW]). It can also be regarded as the Chen-Ruan orbifold cohomology ring of the orbifold 2n/ΓSn\mathbb{C}^{2n}\big{/}\Gamma\wr S_{n}.

Question 6: Regarding the structure constants 𝔭(𝝀,k),(𝝁,s)(𝝂,t)(n)\mathfrak{p}_{({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s)}^{({\boldsymbol{\nu}},t)}(n) in (3.2) for the center 𝒜n(q)\mathcal{A}_{n}(q) with (𝝀,k),(𝝁,s),(𝝂,t)𝒫^𝖺(Φq)({\boldsymbol{\lambda}},k),({\boldsymbol{\mu}},s),({\boldsymbol{\nu}},t)\in\widehat{\mathscr{P}}^{\mathsf{a}}(\Phi_{q}), we ask for the dependency on qq and nn in general cases. We expect the work [KR] can be generalized to this case.

References

  • [Be] M. Berger, Geometry. I. Universitext. Springer-Verlag, Berlin, 1994. Translated from the 1977 French original by M. Cole and S. Levy, Corrected reprint of the 1987 translation.
  • [DL] E. Delmas and J.B. Lewis, Reflection length in the general linear and affine groups, arXiv:1803.03070.
  • [FH] H. Farahat and G. Higman, The centers of symmetric group rings, Proc. Roy. Soc. (A) 250 (1959), 212–221.
  • [HLR] J. Huang, J.B. Lewis and V. Reiner, Absolute order in general linear groups, Journal of London Math. Soc. 95 (2017), 223–247, arXiv:1506.03332.
  • [KR] A. Kannan and C. Ryba, Stable Centres II: Finite Classical Groups, arXiv:2112.01467.
  • [Kl] A. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge University Press, 2005.
  • [LQW] W.-P. Li, Z. Qin and W. Wang, Ideals of the cohomology rings of Hilbert schemes and their applications, Trans. AMS 356 (2004), 245–265.
  • [LS] M. Lehn and C. Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001), 345–357.
  • [Ma] I. Mcdonald, Symmetric functions and Hall polynomials, 2nd Edition, Clarendon Press, Oxford, 1995.
  • [Me] P.-L. Méliot, Partial isomorphisms over finite fields, J. Algebraic Combin. 40 (2014), no. 1, 83–136, arXiv:1303.4313.
  • [Mu] S. Murray, Conjugacy Classes in Maximal Parabolic Subgroups of General Linear Groups, Journal of Algebra 233 (2000), 135–155.
  • [Om] O. Ömeara, Symplectic groups, American Mathematical Society (1978), 122 pages.
  • [Oz] S. Özden, Stability of the centers of the symplectic group rings [Sp2n(q)]\mathbb{Z}[Sp_{2n}(q)], Journal of Algebra 572 (2021), 263–296.
  • [Va] E. Vasserot, Sur l’anneau de cohomologie du schéma de Hilbert de 2\mathbb{C}^{2}, C. R. Acad. Sci. Paris, Sér. I Math. 332 (2001), 7–12.
  • [WW] J. Wan, W. Wang, Stability of the centers of group algebras of GLn(q)GL_{n}(q), Advances in Mathematics 349 (2019), 749–780.
  • [Wa] W. Wang, The Farahat-Higman ring of wreath products and Hilbert schemes, Adv. Math. 187 (2004), 417–446.
  • [Ze] A. Zelevinsky, Representations of finite classical groups. A Hopf Algebra Approach, Lecture Notes in Mathematics, Vol. 869, Springer, Berlin, New York, 1981.