This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\authormark

Li and Han

\corres

Yuecai Han, School of Mathematics, Jilin University, Changchun 130012, China.

\presentaddress

School of Mathematics, Jilin University, Changchun 130012, China

Stochastic Maximum Principle for a generalized Volterra Control System

Yuhang Li    Yuecai Han \orgdivSchool of Mathematics, \orgnameJilin University, \orgaddress\stateChangchun 130012, \countryChina hanyc@jlu.edu.cn
(<day> <Month>, <year>; <day> <Month>, <year>; <day> <Month>, <year>)
Abstract

[Abstract]In this paper, we consider the stochastic optimal control problem for a generalized Volterra control system. The corresponding state process is a kind of a generalized stochastic Volterra integral differential equations. We prove the existence and uniqueness of the solution of this type of equations. We obtain the stochastic maximum principle of the optimal control system by introducing a kind of generalized anticipated backward stochastic differential equations. We prove the existence and uniqueness of the solution of this adjoint equation, which may be singular at some points. As an application, the linear quadratic control problem is investigated to illustrate the main results.

keywords:
Generalized Volterra control system; Volterra Integral differential equations; Maximum principle; Linear quadratic optimal control.
articletype: reasearch article00footnotetext: Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor

1 Introduction

To better describe the real-world, the stochastic integral differential equations have been studied in many areas, such as in biological science, applied mathematics, physics, and other disciplines, etc 1, 2, 3, 4. Mao and Riedle 5 study the stability of some types of stochastic volterra integral differential equations. Nesterenko6 substantiate the application of a modified projection-iterative method to the solution of boundary value problems for weakly nonlinear integrodifferential equations with parameters. Dzhumabaev7 establish the necessary and sufficient conditions for the well-posedness of linear boundary value problems for Fredholm integro-differential equations . Zhang et al.8 investigate numerical analysis of the following generalized stochastic volterra integral differential equations

dY(t)=\displaystyle dY(t)= f(Y(t),0tk1(t,s)Y(s)𝑑s,0tσ1(t,s)Y(s)𝑑w(s))dt\displaystyle f\left(Y(t),\int_{0}^{t}k_{1}(t,s)Y(s)ds,\int_{0}^{t}\sigma_{1}(t,s)Y(s)dw(s)\right)dt
+g(Y(t),0tk2(t,s)Y(s)𝑑s,0tσ2(t,s)Y(s)𝑑w(s))dw(t).\displaystyle+g\left(Y(t),\int_{0}^{t}k_{2}(t,s)Y(s)ds,\int_{0}^{t}\sigma_{2}(t,s)Y(s)dw(s)\right)dw(t).

They prove the existence and uniqueness of the solution when ki\|k_{i}\| and σi\|\sigma_{i}\| are bounded.

Control problems for integral differential equations have also been studied. Kim9 discuss a reachability problem for a second-order integro-differential equation based upon a new kind of unique continuation property. Mashayekhi et al.10 give a new numerical method for solving the optimal control of a class of systems described by integro-differential equations with quadratic performance index. Assanova et al.11 present the existence of optimal controls of systems governed by impulsive integro-differential equations of mixed type. Wang12 investigate the optimal control problems in terms of maximum principles and linear quadratic control problems of optimal control for forward stochastic Volterra integro-differential equations.

In this paper we focus on the following Volterra control system

{dXt=b(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)dt+σ(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)dWt,0tT,X0=x,\displaystyle\left\{\begin{array}[]{ll}dX_{t}=b\Big{(}t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\Big{)}dt+\sigma\Big{(}t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\Big{)}dW_{t},\qquad 0\leq t\leq T,\\ X_{0}=x,\end{array}\right. (3)

to minimize the cost function

J(u)=E[0Tf(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)𝑑t+g(XT)].\displaystyle J(u)=E\left[\int_{0}^{T}f\left(t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\right)dt+g(X_{T})\right].

We call the corresponding stochastic differential equation (SDE in short) as a generalized stochastic Volterra integral differential equation (SVIDE in short), which is a specific type of integral differential equations. This type of equation is influenced by the past information of both state process and control process from beginning to present.

It should be pointed out that most SVIDEs can not be written as stochastic Volterra integral equations with the following form

X(t)=φ(t)+0tb(t,s,X(t),X(s))𝑑s+0tσ(t,s,X(t),X(s))𝑑W(s),t[0,T].\displaystyle X(t)=\varphi(t)+\int_{0}^{t}b(t,s,X(t),X(s))ds+\int_{0}^{t}\sigma(t,s,X(t),X(s))dW(s),\quad t\in[0,T].

For example, consider the following SDE,

dXt=(Xt+sin(0tXs𝑑s))dt+σ(t)dWt,\displaystyle dX_{t}=\left(X_{t}+{\rm sin}\left(\int_{0}^{t}X_{s}ds\right)\right)dt+\sigma(t)dW_{t},

where the drift term is nonlinear on the integral of state process.

We study the uniqueness of the solution of the SVIDE. Different from classical condition, to deal with the term contain the past information, we use Gronwall inequality to sup0rtE|X~rXr|2\sup_{0\leq r\leq t}E|\tilde{X}_{r}-X_{r}|^{2}, which is a upper bound for CE[|1t0tX~s𝑑s1t0tXs𝑑s|]2CE\left[\left|\frac{1}{t}\int_{0}^{t}\tilde{X}_{s}ds-\frac{1}{t}\int_{0}^{t}X_{s}ds\right|\right]^{2}. Then a new stochastic maximum principle for control system (3) is established. We define the Hamiltonian function and the adjoint equation to obtain the optimal system. To study the properties of the adjoint equation, we prove the existence and uniqueness of the solution of the following equation

{dyt=h(t,yt,zt,Et[tTk(s,t)a1(s)ys𝑑s],Et[tTk(s,t)a2(s)zs𝑑s])dtztdWt,yT=ξ,\displaystyle\left\{\begin{array}[]{ll}-dy_{t}=h\left(t,y_{t},z_{t},E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{1}(s)y_{s}ds\right],E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{2}(s)z_{s}ds\right]\right)dt-z_{t}dW_{t},\\ \\ y_{T}=\xi,\end{array}\right.

which is singular at point 0. Compared with classical type investigated by El Karoui and Peng13, we construct a contraction mapping under a new β\beta-norm

(Y,Z)β=sup0sTEeβs|Ys|2+E0TeβsZs2𝑑s.\displaystyle\|(Y,Z)\|_{\beta}=\sup_{0\leq s\leq T}Ee^{\beta s}|Y_{s}|^{2}+E\int_{0}^{T}e^{\beta s}Z_{s}^{2}ds.

Furthermore, we get the necessary condition that the optimal control process should satisfy. Consider the linear quadratic case, which can be applied to a Volterra linear quadratic state regulator, we obtain the unique optimal control process for linear quadratic Volterra control system.

The rest of this paper is organized as follows. In section 2, we introduce a type of generalized SVIDE and prove the existence and the uniqueness of the solution of this type of equation. In section 3, we prove the stochastic maximum principle by introducing a kind of anticipated backward stochastic differential equations, and the existence and uniquenes of this kind of equations is proved. In the section 4, the linear quadratic case is investigated to illustrate the main result.

2 A generalized stochastic Volterra integral differential equation

Let (Ω,,)(\Omega,\mathcal{F},\mathbb{P}) be a probability space. 0\mathcal{F}_{0}\subset\mathcal{F} be a sub σ\sigma-algebra, and 𝔽=(t)0tT\mathbb{F}=(\mathcal{F}_{t})_{0\leq t\leq T} be the filtration generated by 0\mathcal{F}_{0} and a mm-dimensional standard Brownian motion W=(Wt)0tT\textbf{W}=(W_{t})_{0\leq t\leq T}. We consider the following stochastic differential equation.

{dXt=b(t,Xt,Yt)dt+σ(t,Xt,Yt)dWt,0tT,X0=x,\displaystyle\left\{\begin{array}[]{ll}dX_{t}=b(t,X_{t},Y_{t})dt+\sigma(t,X_{t},Y_{t})dW_{t},\qquad 0\leq t\leq T,\\ X_{0}=x,\end{array}\right. (6)

where E|X0|2<E|X_{0}|^{2}<\infty, bb and σ\sigma be measurable functions on [0,T]×𝐑d×𝐑d[0,T]\times\mathbf{R}^{d}\times\mathbf{R}^{d} with values in 𝐑d\mathbf{R}^{d} and 𝐑d×m\mathbf{R}^{d\times m}, respectively. Here

Yt={0tk(t,s)Xs𝑑s,t>0,X0,t=0,\displaystyle Y_{t}=\left\{\begin{array}[]{ll}\int_{0}^{t}k(t,s)X_{s}ds,&\textrm{$t>0$},\\ X_{0},&\textrm{$t=0$},\end{array}\right. (9)

where k(t,s)k(t,s) satisfies sup0tT0t|k(t,s)|M\sup_{0\leq t\leq T}\int_{0}^{t}|k(t,s)|\leq M for some constants M>0M>0. It is obviously that YtY_{t} is continuous. This class of equations provides a description of the effect of past situations on the current situation. Assume that

|b(t,x,y)|2|σ(t,x,y)|2L(1+|x|2+|y|2),x,y𝐑n,t[0,T],|b(t,x,y)|^{2}\lor|\sigma(t,x,y)|^{2}\leq L(1+|x|^{2}+|y|^{2}),\quad x,y\in\mathbf{R}^{n},t\in[0,T], (10)

and

|b(t,x1,y1)b(t,x2,y2)|2\displaystyle|b(t,x_{1},y_{1})-b(t,x_{2},y_{2})|^{2} |σ(t,x1,y1)σ(t,x2,y2)|2L(|x1x2|2+|y1y2|2),\displaystyle\lor|\sigma(t,x_{1},y_{1})-\sigma(t,x_{2},y_{2})|^{2}\leq L(|x_{1}-x_{2}|^{2}+|y_{1}-y_{2}|^{2}),
x1,x2,y1,y2𝐑n,t[0,T]\displaystyle x_{1},x_{2},y_{1},y_{2}\in\mathbf{R}^{n},\quad t\in[0,T] (11)

for some constant L>0L>0 (where |σ|2=|σij|2|\sigma|^{2}=\sum|\sigma_{ij}|^{2}).

Now we show the existence and uniqueness of the solution of equation (6).  

Lemma 2.1  If condition (10) and (2) holds, there exist a unique solution to equation (6).  

Proof: Uniqueness. Let XtX_{t} and X~t\tilde{X}_{t} be two solutions of the equation (6), YtY_{t} and Y~t\tilde{Y}_{t} are corresponding moving average processes, and X0=Y0=X~0=Y~0=xX_{0}=Y_{0}=\tilde{X}_{0}=\tilde{Y}_{0}=x. Thus, we have

E|X~tXt|2\displaystyle E|\tilde{X}_{t}-X_{t}|^{2} =E[0tb(s,X~s,Y~s)b(s,Xs,Ys)ds+0tσ(s,X~s,Y~s)σ(s,Xs,Ys)dWs]2\displaystyle=E\Big{[}\int_{0}^{t}b(s,\tilde{X}_{s},\tilde{Y}_{s})-b(s,X_{s},Y_{s})ds+\int_{0}^{t}\sigma(s,\tilde{X}_{s},\tilde{Y}_{s})-\sigma(s,X_{s},Y_{s})dW_{s}\Big{]}^{2}
2(T+1)LE0t|X~sXs|2+|Y~sYs|2ds\displaystyle\leq 2(T+1)LE\int_{0}^{t}|\tilde{X}_{s}-X_{s}|^{2}+|\tilde{Y}_{s}-Y_{s}|^{2}ds
(2M2+1)(T+1)L0tsup0rsE|X~rXr|2ds.\displaystyle\leq(2M^{2}+1)(T+1)L\int_{0}^{t}\sup_{0\leq r\leq s}E|\tilde{X}_{r}-X_{r}|^{2}ds.

The last inequality holding is because

E|Y~sYs|2=E|0sk(s,r)(X~rXr)𝑑r|2E{[0s|k(s,r)|𝑑r][0s|k(s,r)||X~rXr|2𝑑r]}M2sup0rsE|X~rXr|2.\displaystyle E|\tilde{Y}_{s}-Y_{s}|^{2}=E\left|\int_{0}^{s}k(s,r)(\tilde{X}_{r}-X_{r})dr\right|^{2}\leq E\left\{\left[\int_{0}^{s}|k(s,r)|dr\right]\left[\int_{0}^{s}|k(s,r)||\tilde{X}_{r}-X_{r}|^{2}dr\right]\right\}\leq M^{2}\sup_{0\leq r\leq s}E|\tilde{X}_{r}-X_{r}|^{2}.

For every ε>0\varepsilon>0, there exits ξt[0,t]\xi_{t}\in[0,t], such that

E|X~ξtXξt|2sup0rtE|X~rXr|2ε,\displaystyle E|\tilde{X}_{\xi_{t}}-X_{\xi_{t}}|^{2}\geq\sup_{0\leq r\leq t}E|\tilde{X}_{r}-X_{r}|^{2}-\varepsilon,

so that

sup0rtE|X~rXr|2\displaystyle\sup_{0\leq r\leq t}E|\tilde{X}_{r}-X_{r}|^{2}\leq E|X~ξtXξt|2+ε\displaystyle E|\tilde{X}_{\xi_{t}}-X_{\xi_{t}}|^{2}+\varepsilon
\displaystyle\leq (2M2+1)(T+1)L0ξtsup0rsE|X~rXr|2ds+ε\displaystyle(2M^{2}+1)(T+1)L\int_{0}^{\xi_{t}}\sup_{0\leq r\leq s}E|\tilde{X}_{r}-X_{r}|^{2}ds+\varepsilon
\displaystyle\leq (2M2+1)(T+1)L0tsup0rsE|X~rXr|2ds+ε.\displaystyle(2M^{2}+1)(T+1)L\int_{0}^{t}\sup_{0\leq r\leq s}E|\tilde{X}_{r}-X_{r}|^{2}ds+\varepsilon.

Through the Gronwall’s inequality and the arbitrariness of ε\varepsilon, we get sup0tTE|X~tXt|2=0\sup_{0\leq t\leq T}E|\tilde{X}_{t}-X_{t}|^{2}=0. Thus, the solution XtX_{t} is unique.  

Existence. Let

{Xt(k+1)=x+0tb(s,Xs(k),Ys(k))𝑑t+0tσ(s,Xs(k),Ys(k))𝑑Ws,Yt(k)=0tk(t,s)Xs(k)𝑑s,Xt(0)=x,\displaystyle\left\{\begin{array}[]{ll}X_{t}^{(k+1)}&=x+\int_{0}^{t}b(s,X_{s}^{(k)},Y_{s}^{(k)})dt+\int_{0}^{t}\sigma(s,X_{s}^{(k)},Y_{s}^{(k)})dW_{s},\\ \quad Y_{t}^{(k)}&=\int_{0}^{t}k(t,s)X_{s}^{(k)}ds,\\ \quad X_{t}^{(0)}&=x,\end{array}\right.

and

ut(k)=sup0rtE|Xr(k+1)Xr(k)|2.\displaystyle u_{t}^{(k)}=\sup_{0\leq r\leq t}E\Big{|}X_{r}^{(k+1)}-X_{r}^{(k)}\Big{|}^{2}.

Similar to the proof of classical case, we get

ut(k)Ak+1tk+1(k+1)!\displaystyle u_{t}^{(k)}\leq\frac{A^{k+1}t^{k+1}}{(k+1)!}

for some constants A>0A>0. Let λ\lambda be Lebesgue measure on [0,T][0,T], 0n<m0\leq n<m and m,nm,n\to\infty. Then we have  

Xt(m)Xt(n)L2(λ×P)k=nm1(Ak+2Tk+2(k+2)!)120.\displaystyle\left\|X_{t}^{(m)}-X_{t}^{(n)}\right\|_{L^{2}(\lambda\times P)}\leq\sum_{k=n}^{m-1}\left(\frac{A^{k+2}T^{k+2}}{(k+2)!}\right)^{\frac{1}{2}}\rightarrow 0.

Therefore, {Xt(n)}n0\{X_{t}^{(n)}\}_{n\geq 0} is a Cauchy sequence in L2(λ×P){L^{2}(\lambda\times P)}. Define

Xt:=limnXt(n),Yt:=limnYt(n)=limn0tk(t,s)Xs(n)𝑑s.\displaystyle X_{t}:=\lim_{n\to\infty}X_{t}^{(n)},\qquad Y_{t}:=\lim_{n\to\infty}Y_{t}^{(n)}=\lim_{n\to\infty}\int_{0}^{t}k(t,s)X_{s}^{(n)}ds.

Then XtX_{t} and YtY_{t} are t\mathcal{F}_{t}-measurable for all tt. Since this holds for each Xt(n)X_{t}^{(n)} and Yt(n)Y_{t}^{(n)}, thus XtX_{t} is the solution of (6).

3 The Maximum Principle

Consider the following control problem. The state equation is

{dXt=b(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)dt+σ(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)dWt,0tT,X0=x,\displaystyle\left\{\begin{array}[]{ll}dX_{t}=b\Big{(}t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\Big{)}dt+\sigma\Big{(}t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\Big{)}dW_{t},\qquad 0\leq t\leq T,\\ X_{0}=x,\end{array}\right. (14)

with the cost function

J(u)=E[0Tf(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s)𝑑t+g(XT)],\displaystyle J(u)=E\left[\int_{0}^{T}f\left(t,X_{t},\int_{0}^{t}k(t,s)X_{s}ds,u_{t},\int_{0}^{t}l(t,s)u_{s}ds\right)dt+g(X_{T})\right], (15)

where b(t,x,y,u,v)b(t,x,y,u,v) and σ(t,x,y,u,v)\sigma(t,x,y,u,v) are measurable functions on 𝐑×𝐑d×𝐑d×𝐑k×𝐑k\mathbf{R}\times\mathbf{R}^{d}\times\mathbf{R}^{d}\times\mathbf{R}^{k}\times\mathbf{R}^{k} with values in 𝐑d\mathbf{R}^{d} and 𝐑d×m\mathbf{R}^{d\times m}, respectively. f(t,x,y,u,v)f(t,x,y,u,v) and g(x)g(x) be measurable functions on 𝐑×𝐑d×𝐑d×𝐑k×𝐑k\mathbf{R}\times\mathbf{R}^{d}\times\mathbf{R}^{d}\times\mathbf{R}^{k}\times\mathbf{R}^{k} and 𝐑d\mathbf{R}^{d}, respectively, with values in 𝐑\mathbf{R}. We denote by 𝕌\mathbb{U} the set of progressively measurable process u=(ut)0tT=(u_{t})_{0\leq t\leq T} taking values in a given closed-convex set Uk\textbf{U}\subset\mathbb{R}^{k} and satisfying E0T|ut|2𝑑t<E\int_{0}^{T}|u_{t}|^{2}dt<\infty.

To simplify the notation without losing the generality, we just consider the case d=m=k=1d=m=k=1. We assume utu_{t}^{*} is the optimal control process, i.e.,

J(ut)=minut𝕌J(ut).\displaystyle J(u_{t}^{*})=\min_{u_{t}\in\mathbb{U}}J(u_{t}).

For all 0<ε<10<\varepsilon<1, let

utε=(1ε)ut+εαt\trianglequt+εβt,\displaystyle u_{t}^{\varepsilon}=(1-\varepsilon)u_{t}^{*}+\varepsilon\alpha_{t}\triangleq u^{*}_{t}+\varepsilon\beta_{t},

where αt\alpha_{t} is any other admissible control.

We define the Hamiltonian function HH by

H(t,x,y,u,v,p,q)=b(t,x,y,u,v)p+σ(t,x,y,u,v)q+f(t,x,y,u,v).\displaystyle H(t,x,y,u,v,p,q)=b(t,x,y,u,v)p+\sigma(t,x,y,u,v)q+f(t,x,y,u,v). (16)

Denote

ϕ(t)=ϕ(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s),\displaystyle\phi^{*}(t)=\phi\left(t,X_{t}^{*},\int_{0}^{t}k(t,s)X_{s}^{*}ds,u_{t}^{*},\int_{0}^{t}l(t,s)u_{s}^{*}ds\right),

for ϕ=b,σ,f,bx,σx,fx,by,σy,fy,bu,σu,fu,bv,σv,fv\phi=b,\sigma,f,b_{x},\sigma_{x},f_{x},b_{y},\sigma_{y},f_{y},b_{u},\sigma_{u},f_{u},b_{v},\sigma_{v},f_{v}.  

Theorem 3.1   If (ut)0tT(u_{t}^{*})_{0\leq t\leq T} is the optimal control process, (Xt)0tT(X_{t}^{*})_{0\leq t\leq T} and (pt,qt)(p_{t},q_{t}) is the process satisfying

{dpt=[bx(t)pt+Et[tTk(s,t)by(s)psds]+σx(t)qt+Et[tTk(s,t)σy(s)qsds]+fx(t)+Et[tTk(s,t)fy(s)ds]]dtqtdWt,pT=gx(XT).\displaystyle\left\{\begin{array}[]{ll}-dp_{t}=\Big{[}b_{x}^{*}(t)p_{t}+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)b_{y}^{*}(s)p_{s}ds\right]+\sigma_{x}^{*}(t)q_{t}+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)\sigma_{y}^{*}(s)q_{s}ds\right]\\ \qquad\qquad+f_{x}^{*}(t)+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)f_{y}^{*}(s)ds\right]\Big{]}dt-q_{t}dW_{t},\\ \\ p_{T}=g_{x}(X_{T}^{*}).\end{array}\right. (21)

Then we have

[Hu(t)+Et[tTl(s,t)Hv(s)𝑑s]](αtut)0,αt𝕌,dλdPa.s.\displaystyle\Big{[}H^{*}_{u}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds]\Big{]}\cdot(\alpha_{t}-u^{*}_{t})\geq 0,\qquad\forall\alpha_{t}\in\mathbb{U},\quad d\lambda\otimes dP\quad a.s. (22)

for any control process αt\alpha_{t}, where

H(t)=H(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s,pt,qt).\displaystyle H^{*}(t)=H\Big{(}t,X_{t}^{*},\int_{0}^{t}k(t,s)X_{s}^{*}ds,u_{t}^{*},\int_{0}^{t}l(t,s)u_{s}^{*}ds,p_{t},q_{t}\Big{)}.

Remark 3.2  To investigate the adjoint equation (21), we consider a more general type of anticipated backward stochastic differential equations:

{dyt=h(t,yt,zt,Et[tTk(s,t)a1(s)ys𝑑s],Et[tTk(s,t)a2(s)zs𝑑s])dtztdWt,yT=ξ.\displaystyle\left\{\begin{array}[]{ll}-dy_{t}=h\left(t,y_{t},z_{t},E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{1}(s)y_{s}ds\right],E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{2}(s)z_{s}ds\right]\right)dt-z_{t}dW_{t},\\ \\ y_{T}=\xi.\end{array}\right. (26)

Without losing the generality, we assume sup0tT0t|k(t,s)|𝑑s=sup0tT0t|l(t,s)|𝑑s=1\sup_{0\leq t\leq T}\int_{0}^{t}|k(t,s)|ds=\sup_{0\leq t\leq T}\int_{0}^{t}|l(t,s)|ds=1. This type of anticipated backward stochastic differential equations may be singular even we assume h(t,y,z,y~,z~)h(t,y,z,\tilde{y},\tilde{z}) is Lipscitz continous, such as k(t,s)=1tk(t,s)=\frac{1}{t}. We would deal with it in the following Lemma.

Anticipated backward stochastic differential equations was first studied by Peng and Yang 14, they study the following type of equation:

{dYt=f(t,Yt,Zt,Yt+δ(t),Zt+ζ(t))dtZtdWt,t[0,T],Yt=ξt,t[T,T+K],Zt=ηt,t[T,T+K],\begin{cases}-dY_{t}=f\left(t,Y_{t},Z_{t},Y_{t+\delta(t)},Z_{t+\zeta(t)}\right)dt-Z_{t}dW_{t},&t\in[0,T],\\ Y_{t}=\xi_{t},&t\in[T,T+K],\\ Z_{t}=\eta_{t},&t\in[T,T+K],\end{cases}

the unique solutions, a comparison theorem, and a duality between them and stochastic differential delay equations are introduced. More properties of generalized anticipated backward stochastic differential equations refer to Yang and Elliott 15.

Lemma 3.3 The anticipated backward stochastic differential equation (26) has the unique solution pair if the following conditions hold:

|h(t,y,z,y~,z~)|\displaystyle|h(t,y,z,\tilde{y},\tilde{z})| M1(|y|+|z|+|y~|+|z~|),\displaystyle\leq M_{1}(|y|+|z|+|\tilde{y}|+|\tilde{z}|),
|h(t,y1,z1,y1~,z1~)h(t,y2,z2,y2~,z2~)|\displaystyle|h(t,y_{1},z_{1},\tilde{y_{1}},\tilde{z_{1}})-h(t,y_{2},z_{2},\tilde{y_{2}},\tilde{z_{2}})| M1(|y1y2|+|z1z2|+|y~1y~2|+|z1~z2~|),\displaystyle\leq M_{1}(|y_{1}-y_{2}|+|z_{1}-z_{2}|+|\tilde{y}_{1}-\tilde{y}_{2}|+|\tilde{z_{1}}-\tilde{z_{2}}|),

and

a1(s)a2(s)M2,s[0,T],a.s.\displaystyle a_{1}(s)\vee a_{2}(s)\leq M_{2},\qquad\forall s\in[0,T],\quad a.s. (27)

for some constants M1,M2>0M_{1},M_{2}>0 satisfy M1M2<81T12M_{1}M_{2}<8^{-1}T^{-\frac{1}{2}}.

Proof: Denote T2(d)\mathbb{H}_{T}^{2}\left(\mathbb{R}^{d}\right) is the space of all predictable processes ϕ:Ω×[0,T]d\phi:\Omega\times[0,T]\mapsto\mathbb{R}^{d} such that φ2=\|\varphi\|^{2}= 𝔼0T|φt|2𝑑t<+.\mathbb{E}\int_{0}^{T}\left|\varphi_{t}\right|^{2}dt<+\infty. We define β\beta-norm: (Y,Z)β=sup0sTEeβs|Ys|2+E0TeβsZs2𝑑s\|(Y,Z)\|_{\beta}=\sup_{0\leq s\leq T}Ee^{\beta s}|Y_{s}|^{2}+E\int_{0}^{T}e^{\beta s}Z_{s}^{2}ds on T2(d)×T2(d×m)\mathbb{H}_{T}^{2}\left(\mathbb{R}^{d}\right)\times\mathbb{H}_{T}^{2}\left(\mathbb{R}^{d\times m}\right). For any t\mathcal{F}_{t}-adapted continuous process pair (yt1,zt1),(yt2,zt2)(y_{t}^{1},z_{t}^{1}),(y_{t}^{2},z_{t}^{2}) with bounded β\beta-norm, let

{dYti=h(t,yti,zti,Et[tTk(s,t)a1(s)ysi𝑑s],Et[tTk(s,t)a2(s)zsi𝑑s])dtZtidWt,YTi=ξ,\displaystyle\left\{\begin{array}[]{ll}-dY^{i}_{t}&=h\left(t,y^{i}_{t},z^{i}_{t},E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{1}(s)y^{i}_{s}ds\right],E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{2}(s)z^{i}_{s}ds\right]\right)dt-Z^{i}_{t}dW_{t},\\ \quad Y^{i}_{T}&=\xi,\end{array}\right.

for i=1,2i=1,2.

We denote

δϕt=ϕt1ϕt2,\displaystyle\delta\phi_{t}=\phi^{1}_{t}-\phi^{2}_{t},

for ϕ=Y,Z,y,z\phi=Y,Z,y,z, and

δht=\displaystyle\delta h_{t}= h(t,yt1,zt1,Et[tTk(s,t)a1(s)ys1𝑑s],Et[tTk(s,t)a2(s)zs1𝑑s])\displaystyle h\left(t,y^{1}_{t},z^{1}_{t},E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{1}(s)y^{1}_{s}ds\right],E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{2}(s)z^{1}_{s}ds\right]\right)
h(t,yt2,zt2,Et[tTk(s,t)a1(s)ys2𝑑s],Et[tTk(s,t)a2(s)zs2𝑑s]).\displaystyle-h\left(t,y^{2}_{t},z^{2}_{t},E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{1}(s)y^{2}_{s}ds\right],E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)a_{2}(s)z^{2}_{s}ds\right]\right).

We can directly get

|δht|M1(|δyt|+|δzt|)+M1M2(Et[tTk(s,t)|δys|𝑑s]+Et[tTk(s,t)|δzs|𝑑s]).\displaystyle|\delta h_{t}|\leq M_{1}\left(|\delta y_{t}|+|\delta z_{t}|\right)+M_{1}M_{2}\left(E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)|\delta y_{s}|ds\right]+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)|\delta z_{s}|ds\right]\right).

By ito^\hat{\rm o}’s formula,

d(eβtδYt2)=\displaystyle d\left(e^{\beta t}\delta Y_{t}^{2}\right)= βeβtδYt2dt+2eβtδYtdδYt+eβt(dδYt)2\displaystyle\beta e^{\beta t}\delta Y_{t}^{2}dt+2e^{\beta t}\delta Y_{t}d\delta Y_{t}+e^{\beta t}\left(d\delta Y_{t}\right)^{2}
=\displaystyle= eβt[βδYt22δYtδht+δZt2]dt+eβtδYtδZtdWt.\displaystyle e^{\beta t}\left[\beta\delta Y_{t}^{2}-2\delta Y_{t}\delta h_{t}+\delta Z_{t}^{2}\right]dt+e^{\beta t}\delta Y_{t}\delta Z_{t}dW_{t}.

Taking the expectation and integral, we have

EeβtδYt2+EtTeβsδZs2𝑑s=\displaystyle Ee^{\beta t}\delta Y_{t}^{2}+E\int_{t}^{T}e^{\beta s}\delta Z_{s}^{2}ds= EtTeβs[βδYs2+2δYsδhs]𝑑s\displaystyle E\int_{t}^{T}e^{\beta s}\left[-\beta\delta Y_{s}^{2}+2\delta Y_{s}\delta h_{s}\right]ds
\displaystyle\leq EtTeβs[βδYs2+(c11+c21)M1|δYs|2+c1M1|δys|2+c2M1|δzs|2]𝑑s\displaystyle E\int_{t}^{T}e^{\beta s}\left[-\beta\delta Y_{s}^{2}+(c_{1}^{-1}+c_{2}^{-1})M_{1}|\delta Y_{s}|^{2}+c_{1}M_{1}|\delta y_{s}|^{2}+c_{2}M_{1}|\delta z_{s}|^{2}\right]ds
+2M1M2EtTeβs|δYs|(Es[sTk(r,s)|δyr|𝑑r]+Es[sTk(r,s)|δzr|𝑑r])𝑑s.\displaystyle+2M_{1}M_{2}E\int_{t}^{T}e^{\beta s}|\delta Y_{s}|\left(E^{\mathcal{F}_{s}}\left[\int_{s}^{T}k(r,s)|\delta y_{r}|dr\right]+E^{\mathcal{F}_{s}}\left[\int_{s}^{T}k(r,s)|\delta z_{r}|dr\right]\right)ds. (28)

Notice that

2E[tTeβs|δYs|Es[sTk(r,s)|δyr|𝑑r]𝑑s]=\displaystyle 2E\left[\int_{t}^{T}e^{\beta s}|\delta Y_{s}|E^{\mathcal{F}_{s}}[\int_{s}^{T}k(r,s)|\delta y_{r}|dr]ds\right]= 2EtTsTk(r,s)eβs|δYs||δyr|𝑑r𝑑s\displaystyle 2E\int_{t}^{T}\int_{s}^{T}k(r,s)e^{\beta s}|\delta Y_{s}||\delta y_{r}|drds
\displaystyle\leq c31EtTsTk(r,s)eβs|δYs|2𝑑r𝑑s+c3EtTsTk(r,s)eβs|δyr|2𝑑r𝑑s,\displaystyle c_{3}^{-1}E\int_{t}^{T}\int_{s}^{T}k(r,s)e^{\beta s}|\delta Y_{s}|^{2}drds+c_{3}E\int_{t}^{T}\int_{s}^{T}k(r,s)e^{\beta s}|\delta y_{r}|^{2}drds,

and

tTsTk(r,s)drds=tTtrk(r,s)dsdr=TtT,\displaystyle\int_{t}^{T}\int_{s}^{T}k(r,s)drds=\int_{t}^{T}\int_{t}^{r}k(r,s)dsdr=\leq T-t\leq T,

so we have

2E[tTeβs|δYs|Es[sTk(r,s)|δyr|𝑑r]𝑑s]\displaystyle 2E\left[\int_{t}^{T}e^{\beta s}|\delta Y_{s}|E^{\mathcal{F}_{s}}[\int_{s}^{T}k(r,s)|\delta y_{r}|dr]ds\right]\leq c31TsuptsTEeβs|δYs|2+c3EtTeβr|δyr|2𝑑r\displaystyle c_{3}^{-1}T\sup_{t\leq s\leq T}Ee^{\beta s}|\delta Y_{s}|^{2}+c_{3}E\int_{t}^{T}e^{\beta r}|\delta y_{r}|^{2}dr
\displaystyle\leq c31TsuptsTEeβs|δYs|2+c3TsuptsTEeβs|δys|2.\displaystyle c_{3}^{-1}T\sup_{t\leq s\leq T}Ee^{\beta s}|\delta Y_{s}|^{2}+c_{3}T\sup_{t\leq s\leq T}Ee^{\beta s}|\delta y_{s}|^{2}. (29)

In the same way

2E[tTeβs|δYs|Es[sTk(r,s)|δzr|𝑑r]𝑑s]c31TsuptsTEeβs|δYs|2+c3EtTeβr|δzr|2𝑑r.\displaystyle 2E\left[\int_{t}^{T}e^{\beta s}|\delta Y_{s}|E^{\mathcal{F}_{s}}[\int_{s}^{T}k(r,s)|\delta z_{r}|dr]ds\right]\leq c_{3}^{-1}T\sup_{t\leq s\leq T}Ee^{\beta s}|\delta Y_{s}|^{2}+c_{3}E\int_{t}^{T}e^{\beta r}|\delta z_{r}|^{2}dr. (30)

Substitute (3) and (30) into (3), choose β>(c11+c21)M1\beta>(c_{1}^{-1}+c_{2}^{-1})M_{1} and let c1,c2c_{1},c_{2}\to\infty, we get

Eeβt|δYt|2+EtTeβsδZs2𝑑s2M1M2c31suptsTEeβs|δYs|2+2c3M1M2T[suptsTEeβs|δys|2+EtTeβs|δzs|2𝑑s].\displaystyle Ee^{\beta t}|\delta Y_{t}|^{2}+E\int_{t}^{T}e^{\beta s}\delta Z_{s}^{2}ds\leq 2M_{1}M_{2}c_{3}^{-1}\sup_{t\leq s\leq T}Ee^{\beta s}|\delta Y_{s}|^{2}+2c_{3}M_{1}M_{2}T\left[\sup_{t\leq s\leq T}Ee^{\beta s}|\delta y_{s}|^{2}+E\int_{t}^{T}e^{\beta s}|\delta z_{s}|^{2}ds\right].

Then it is not difficult to get

(14M1M2c31)sup0sTEeβs|δYs|2+E0TeβsδZs2𝑑s4c3M1M2T[sup0sTEeβs|δys|2+E0Teβs|δzs|2𝑑s],\displaystyle(1-4M_{1}M_{2}c_{3}^{-1})\sup_{0\leq s\leq T}Ee^{\beta s}|\delta Y_{s}|^{2}+E\int_{0}^{T}e^{\beta s}\delta Z_{s}^{2}ds\leq 4c_{3}M_{1}M_{2}T\left[\sup_{0\leq s\leq T}Ee^{\beta s}|\delta y_{s}|^{2}+E\int_{0}^{T}e^{\beta s}|\delta z_{s}|^{2}ds\right],

which shows

(14M1M2c31)(δY,δZ)β4c3M1M2T(δy,δz)β.\displaystyle(1-4M_{1}M_{2}c_{3}^{-1})\|(\delta Y,\delta Z)\|_{\beta}\leq 4c_{3}M_{1}M_{2}T\|(\delta y,\delta z)\|_{\beta}.

Under the assumption M1M2<81T12M_{1}M_{2}<8^{-1}T^{-\frac{1}{2}} and taking c3=T12c_{3}=T^{-\frac{1}{2}}, we get the contraction mapping Φ:(y,z)(Y,Z)\Phi:(y,z)\to(Y,Z) from T,β2(d)×T,β2(d×m)\mathbb{H}_{T,\beta}^{2}\left(\mathbb{R}^{d}\right)\times\mathbb{H}_{T,\beta}^{2}\left(\mathbb{R}^{d\times m}\right) onto itself and that there exists a fixed point, which is the unique continuous solution of the antici- pated backward stochastic differential equation.

This completes the proof of Lemma 3.3.

Lemma 3.4   Let (ut)0tT(u_{t}^{*})_{0\leq t\leq T} is the optimal control process and (Xt)0tT(X_{t}^{*})_{0\leq t\leq T} be the corresponding state process, and (pt,qt)(p_{t},q_{t}) is the adjoint process satisfying(21). Then the Ga^teauxG\hat{a}teaux derivative of JJ at utu^{*}_{t} in the direction βt\beta_{t} is

ddεJ(ut+εβt)|ε=0=E0T[Hu(t)+tTl(s,t)Hv(s)𝑑s]βt𝑑t.\displaystyle\frac{d}{d\varepsilon}J(u_{t}^{*}+\varepsilon\beta_{t})\Big{|}_{\varepsilon=0}=E\int_{0}^{T}\Big{[}H^{*}_{u}(t)+\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds\Big{]}\cdot\beta_{t}dt. (31)

Proof: Let XtX_{t}^{*} and XtεX_{t}^{\varepsilon} be the state process corresponding to utu_{t}^{*} and utεu_{t}^{\varepsilon}, respectively. Define VtV_{t} by

{dVt=[bx(t)Vt+by(t)0tk(t,s)Vs𝑑s+bu(t)βt+bv(t)0tl(t,s)βs𝑑s]dt+[σx(t)Vt+σy(t)0tk(t,s)Vs𝑑s+σu(t)βt+σv(t)0tl(t,s)βs𝑑s]dWt,V0=0.\displaystyle\left\{\begin{array}[]{ll}dV_{t}=&\Big{[}b_{x}^{*}(t)V_{t}+b_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}ds+b_{u}^{*}(t)\beta_{t}+b_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{]}dt\\ &+\Big{[}\sigma_{x}^{*}(t)V_{t}+\sigma_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}ds+\sigma_{u}^{*}(t)\beta_{t}+\sigma_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{]}dW_{t},\\ V_{0}=0.\end{array}\right. (35)

It’s easy to get

sup0tTlimε0E[XtεXtεVt]2=0.\displaystyle\sup_{0\leq t\leq T}\lim_{\varepsilon\to 0}E\Big{[}\frac{X_{t}^{\varepsilon}-X_{t}^{*}}{\varepsilon}-V_{t}\Big{]}^{2}=0.

So we have that

J(utε)J(ut)εE[0T(fx(t)Vt+fy(t)0tk(t,s)Vs𝑑s+fu(t)βt+fv(t)0tl(t,s)βs𝑑s)𝑑t+gx(XT)VT],\displaystyle\frac{J(u_{t}^{\varepsilon})-J(u_{t}^{*})}{\varepsilon}\to E\left[\int_{0}^{T}\left(f_{x}^{*}(t)V_{t}+f_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}ds+f_{u}^{*}(t)\beta_{t}+f_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\right)dt+g_{x}(X_{T}^{*})V_{T}\right], (36)

as ε0\varepsilon\to 0.

By Ito^\hat{\rm o}’s formula, we have that

d(ptVt)\displaystyle d(p_{t}V_{t}) =ptdVt+Vtdpt+dptdVt\displaystyle=p_{t}dV_{t}+V_{t}dp_{t}+dp_{t}dV_{t}
=pt[bx(t)Vt+by(t)0tk(t,s)Vs𝑑s+bu(t)βt+bv(t)0tl(t,s)βs𝑑s]dt\displaystyle=p_{t}\Big{[}b_{x}^{*}(t)V_{t}+b_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}ds+b_{u}^{*}(t)\beta_{t}+b_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{]}dt
Vt[bx(t)pt+Et[tTk(s,t)by(s)ps𝑑s]+σx(t)qt+Et[tTk(s,t)σy(s)qs𝑑s]+fx(t)+Et[tTk(s,t)fy(s)𝑑s]]dt\displaystyle\quad-V_{t}\Big{[}b_{x}^{*}(t)p_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)b_{y}^{*}(s)p_{s}ds]+\sigma_{x}^{*}(t)q_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)\sigma_{y}^{*}(s)q_{s}ds]+f_{x}^{*}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)f_{y}^{*}(s)ds]\Big{]}dt
+qt[σx(t)Vt+σy(t)0tk(t,s)Vs𝑑s+σu(t)βt+σv(t)0tl(t,s)βs𝑑s]dt+MtdWt\displaystyle\quad+q_{t}\Big{[}\sigma_{x}^{*}(t)V_{t}+\sigma_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}ds+\sigma_{u}^{*}(t)\beta_{t}+\sigma_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{]}dt+M_{t}dW_{t}
=[by(t)pt0tk(t,s)Vs𝑑sVtEttTk(s,t)by(s)ps𝑑s+σy(t)qt0tk(t,s)Vs𝑑sVtEt[tTk(s,t)σy(s)qs𝑑s]]dt\displaystyle=\Big{[}b_{y}^{*}(t)p_{t}\int_{0}^{t}k(t,s)V_{s}ds-V_{t}E^{\mathcal{F}_{t}}\int_{t}^{T}k(s,t)b_{y}^{*}(s)p_{s}ds+\sigma_{y}^{*}(t)q_{t}\int_{0}^{t}k(t,s)V_{s}ds-V_{t}E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)\sigma_{y}^{*}(s)q_{s}ds]\Big{]}dt
[fx(t)VtVtEt[tTk(s,t)fy(s)𝑑s]]dt+[bu(t)pt+σu(t)qt]βtdt\displaystyle\quad-\Big{[}f_{x}^{*}(t)V_{t}-V_{t}E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)f_{y}^{*}(s)ds]\Big{]}dt+\Big{[}b_{u}^{*}(t)p_{t}+\sigma_{u}^{*}(t)q_{t}\Big{]}\beta_{t}dt
+[bv(t)pt+σv(t)qt]0tl(t,s)βs𝑑s𝑑t+MtdWt,\displaystyle\quad+\Big{[}b_{v}^{*}(t)p_{t}+\sigma_{v}^{*}(t)q_{t}\Big{]}\int_{0}^{t}l(t,s)\beta_{s}dsdt+M_{t}dW_{t}, (37)

where (Mt)0tT(M_{t})_{0\leq t\leq T} is a t\mathcal{F}_{t} adapted process.

Consider

Egx(XT)VT\displaystyle Eg_{x}(X_{T}^{*})V_{T} =EpTVT=E0Td(ptVt)+Ep0V0\displaystyle=Ep_{T}V_{T}=E\int_{0}^{T}d(p_{t}V_{t})+Ep_{0}V_{0}
=E0Tby(t)pt0tk(t,s)Vs𝑑s𝑑tE0TVttT1sby(s)ps𝑑s𝑑t\displaystyle=E\int_{0}^{T}b_{y}^{*}(t)p_{t}\int_{0}^{t}k(t,s)V_{s}dsdt-E\int_{0}^{T}V_{t}\int_{t}^{T}\frac{1}{s}b_{y}^{*}(s)p_{s}dsdt
+E0Tσy(t)qt0tk(t,s)Vs𝑑s𝑑tE0TVttTk(s,t)σy(s)qs𝑑s𝑑t\displaystyle\quad+E\int_{0}^{T}\sigma_{y}^{*}(t)q_{t}\int_{0}^{t}k(t,s)V_{s}dsdt-E\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)\sigma_{y}^{*}(s)q_{s}dsdt
E0Tfx(t)Vt𝑑tE0TVttTk(s,t)fy(s)𝑑s𝑑t\displaystyle\quad-E\int_{0}^{T}f_{x}^{*}(t)V_{t}dt-E\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)f_{y}^{*}(s)dsdt
+E0T[bu(t)pt+σuqt]βt𝑑t+E0T[bv(t)pt+σv(t)qt]0tl(t,s)βs𝑑s𝑑t.\displaystyle\quad+E\int_{0}^{T}\Big{[}b_{u}^{*}(t)p_{t}+\sigma_{u}^{*}q_{t}\Big{]}\beta_{t}dt+E\int_{0}^{T}\Big{[}b_{v}^{*}(t)p_{t}+\sigma_{v}^{*}(t)q_{t}\Big{]}\int_{0}^{t}l(t,s)\beta_{s}dsdt. (38)

By exchanging the order of integration, we have

0Tby(t)pt0tk(t,s)Vs𝑑s𝑑t=0TVttTk(s,t)by(s)ps𝑑s𝑑t,\displaystyle\int_{0}^{T}b_{y}^{*}(t)p_{t}\int_{0}^{t}k(t,s)V_{s}dsdt=\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)b_{y}^{*}(s)p_{s}dsdt, (39)
0Tσy(t)qt0tk(t,s)Vs𝑑s𝑑t=0TVttTk(s,t)σy(s)qs𝑑s𝑑t,\displaystyle\int_{0}^{T}\sigma_{y}^{*}(t)q_{t}\int_{0}^{t}k(t,s)V_{s}dsdt=\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)\sigma_{y}^{*}(s)q_{s}dsdt, (40)

and

0TVttTk(s,t)fy(s)𝑑s𝑑t=0Tfy(t)0tk(t,s)Vs𝑑s𝑑t.\displaystyle\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)f_{y}^{*}(s)dsdt=\int_{0}^{T}f_{y}^{*}(t)\int_{0}^{t}k(t,s)V_{s}dsdt. (41)

Substitute (39), (40) into (3), we get

Egx(XT)VT\displaystyle Eg_{x}(X_{T}^{*})V_{T} =E0Tfx(t)Vt𝑑tE0TVttTk(s,t)fy(s)𝑑s𝑑t\displaystyle=-E\int_{0}^{T}f_{x}^{*}(t)V_{t}dt-E\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)f_{y}^{*}(s)dsdt
+E0T[bu(t)pt+σu(t)qt]βt𝑑t+E0T[bv(t)pt+σv(t)qt]0tl(t,s)βs𝑑s𝑑t.\displaystyle\quad+E\int_{0}^{T}\Big{[}b_{u}^{*}(t)p_{t}+\sigma_{u}^{*}(t)q_{t}\Big{]}\beta_{t}dt+E\int_{0}^{T}\Big{[}b_{v}^{*}(t)p_{t}+\sigma_{v}^{*}(t)q_{t}\Big{]}\int_{0}^{t}l(t,s)\beta_{s}dsdt. (42)

Then, substitute (3) into (36) and by (41), we have

ddεJ(ut+εβt)|ε=0\displaystyle\frac{d}{d\varepsilon}J(u_{t}^{*}+\varepsilon\beta_{t})\Big{|}_{\varepsilon=0} =E0T(fxVt+fyint0tk(t,s)Vsds+fuβt+fv(t)0tl(t,s)βs𝑑s)𝑑t\displaystyle=E\int_{0}^{T}\Big{(}f_{x}^{*}V_{t}+f_{y}^{*}int_{0}^{t}k(t,s)V_{s}ds+f_{u}^{*}\beta_{t}+f_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{)}dt
E0Tfx(t)Vt𝑑tE0TVttTk(s,t)fy(s)𝑑s𝑑t\displaystyle\quad-E\int_{0}^{T}f_{x}^{*}(t)V_{t}dt-E\int_{0}^{T}V_{t}\int_{t}^{T}k(s,t)f_{y}^{*}(s)dsdt
+E0T[bu(t)pt+σu(t)qt]βt𝑑t+E0T[bv(t)pt+σv(t)qt]0tl(t,s)βs𝑑s𝑑t\displaystyle\quad+E\int_{0}^{T}\Big{[}b_{u}^{*}(t)p_{t}+\sigma_{u}^{*}(t)q_{t}\Big{]}\beta_{t}dt+E\int_{0}^{T}\Big{[}b_{v}^{*}(t)p_{t}+\sigma_{v}^{*}(t)q_{t}\Big{]}\int_{0}^{t}l(t,s)\beta_{s}dsdt
=E0T[bu(t)pt+σtqt+fu(t)]βt𝑑t+E0T[bv(t)pt+σv(t)qt+fv(t)]0tl(t,s)βs𝑑s𝑑t\displaystyle=E\int_{0}^{T}\Big{[}b_{u}^{*}(t)p_{t}+\sigma_{t}^{*}q_{t}+f_{u}^{*}(t)\Big{]}\beta_{t}dt+E\int_{0}^{T}\Big{[}b_{v}^{*}(t)p_{t}+\sigma_{v}^{*}(t)q_{t}+f_{v}^{*}(t)\Big{]}\int_{0}^{t}l(t,s)\beta_{s}dsdt
=E[0THu(t)βt+Hv(t)0tl(t,s)βs𝑑s]dt\displaystyle=E\Big{[}\int_{0}^{T}H_{u}^{*}(t)\beta_{t}+H_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}ds\Big{]}dt
=E0T[Hu(t)+tTl(s,t)Hv(s)𝑑s]βt𝑑t.\displaystyle=E\int_{0}^{T}\Big{[}H^{*}_{u}(t)+\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds\Big{]}\cdot\beta_{t}dt. (43)

The last equality holding is because that

0THv(t)0tl(t,s)βs𝑑s𝑑t=0TβttTl(s,t)Hv(s)𝑑s𝑑t.\int_{0}^{T}H_{v}^{*}(t)\int_{0}^{t}l(t,s)\beta_{s}dsdt=\int_{0}^{T}\beta_{t}\int_{t}^{T}l(s,t)H_{v}^{*}(s)dsdt.

This completes the proof of Lemma 3.4.  

Since (ut)0tT(u_{t}^{*})_{0\leq t\leq T} is optimal control process, we have the inequality

ddεJ(ut+ε(αtut))|ε=00.\displaystyle\frac{d}{d\varepsilon}J\Big{(}u_{t}^{*}+\varepsilon(\alpha_{t}-u_{t}^{*})\Big{)}\Big{|}_{\varepsilon=0}\geq 0.

By Lemma 3.4, we get

E0T[Hu(t)+tTl(s,t)Hv(s)𝑑s](αtut)𝑑t0.\displaystyle E\int_{0}^{T}\Big{[}H^{*}_{u}(t)+\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds\Big{]}\cdot(\alpha_{t}-u^{*}_{t})dt\geq 0.

So

E[𝟏A[Hu(t)+tTl(s,t)Hv(s)𝑑s]](αtut)0,t[0,T],At.\displaystyle E\Big{[}\mathbf{1}_{A}\big{[}H^{*}_{u}(t)+\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds\big{]}\Big{]}\cdot(\alpha_{t}-u^{*}_{t})\geq 0,\quad\forall t\in[0,T],\quad\forall A\subset\mathcal{F}_{t}.

To ensure adaptability, we can rewrite the above equation as

E[𝟏A[Hu(t)+Et[tTl(s,t)Hv(s)𝑑s]]](αtut)0,t[0,T],At,\displaystyle E\Big{[}\mathbf{1}_{A}\big{[}H^{*}_{u}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds]\big{]}\Big{]}\cdot(\alpha_{t}-u^{*}_{t})\geq 0,\quad\forall t\in[0,T],\quad\forall A\subset\mathcal{F}_{t},

and obtain that

[Hu(t)+Et[tTl(s,t)Hv(s)𝑑s]](αtut)0,t[0,T].\displaystyle\Big{[}H^{*}_{u}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)H^{*}_{v}(s)ds]\Big{]}\cdot(\alpha_{t}-u^{*}_{t})\geq 0,\qquad\forall t\in[0,T].

This completes the proof of Theorem 3.1.

Remark 3.5   If the optimal control process (ut)0tT(u_{t}^{*})_{0\leq t\leq T} takes values in the interior of the 𝕌\mathbb{U} , then we can replace (22) with the following condition

Hu(t)+Et[tTl(s,t)Hv(s)𝑑s]=0.\displaystyle H_{u}^{*}(t)+E^{\mathcal{F}_{t}}\Big{[}\int_{t}^{T}l(s,t)H_{v}^{*}(s)ds\Big{]}=0.

Thus, we give the optimal system

{dXt=Hp(t)dt+Hq(t)dWt,dpt=[Hx(t)+Et[tTk(s,t)Hy(s)𝑑s]]dtqtdWt,X0=x,pT=gx(XT),Hu(t)+Et[tTl(s,t)Hv(s)𝑑s]=0,\displaystyle\left\{\begin{array}[]{ll}dX_{t}^{*}=H_{p}^{*}(t)dt+H_{q}^{*}(t)dW_{t},\\ \\ -dp_{t}=\Big{[}H^{*}_{x}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)H^{*}_{y}(s)ds]\Big{]}dt-q_{t}dW_{t},\\ \\ X_{0}^{*}=x,\quad p_{T}=g_{x}(X_{T}^{*}),\\ \\ H_{u}^{*}(t)+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)H_{v}^{*}(s)ds]=0,\end{array}\right. (51)

where

H(t)\displaystyle H^{*}(t) =H(t,Xt,0tk(t,s)Xs𝑑s,ut,0tl(t,s)us𝑑s,pt,qt),\displaystyle=H\Big{(}t,X_{t}^{*},\int_{0}^{t}k(t,s)X_{s}^{*}ds,u_{t}^{*},\int_{0}^{t}l(t,s)u_{s}^{*}ds,p_{t},q_{t}\Big{)},
H(t,x,y,u,v,p,q)\displaystyle H(t,x,y,u,v,p,q) =b(t,x,y,u,v)p+σ(t,x,y,u,v)q+f(t,x,y,u,v).\displaystyle=b(t,x,y,u,v)p+\sigma(t,x,y,u,v)q+f(t,x,y,u,v).

4 Linear quadratic case

In this section, we consider a linear quadratic (LQ in short) case, which can describe a moving average linear quadratic regulator problem. For simplicity, let YtY_{t} be the moving average process defined as (9) and vt=0tl(t,s)us𝑑sv_{t}=\int_{0}^{t}l(t,s)u_{s}ds. The state process is defined as follows

dXt=(AtXt+BtYt+Ctut+Ptvt)dt+(DtXt+FtYt+Htut+Ntvt)dWt,\displaystyle dX_{t}=\Big{(}A_{t}X_{t}+B_{t}Y_{t}+C_{t}u_{t}+P_{t}v_{t}\Big{)}dt+\Big{(}D_{t}X_{t}+F_{t}Y_{t}+H_{t}u_{t}+N_{t}v_{t}\Big{)}dW_{t}, (52)

with the cost function

J(u)=12E[0T(QtXt2+StYt2+Rtut2)𝑑t+GXT2].\displaystyle J(u)=\frac{1}{2}E\Big{[}\int_{0}^{T}(Q_{t}X_{t}^{2}+S_{t}Y_{t}^{2}+R_{t}u_{t}^{2})dt+GX_{T}^{2}\Big{]}. (53)

Here G>0G>0 and Qt,St,RtQ_{t},S_{t},R_{t} are positive functions.  

Using the conclusions of Section 3, we can get the adjoint equation

{dpt=[Atpt+Et[tTk(s,t)Bsps𝑑s]+Dtqt+Et[tTk(s,t)Fsqs𝑑s]+QtXt+Et[tTk(s,t)SsYs𝑑s]]dtqtdWt,pT=GXT,\displaystyle\left\{\begin{array}[]{ll}-dp_{t}=\Big{[}A_{t}p_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)B_{s}p_{s}ds]+D_{t}q_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)F_{s}q_{s}ds]+Q_{t}X^{*}_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}k(s,t)S_{s}Y^{*}_{s}ds]\Big{]}dt\\ \\ \qquad\qquad-q_{t}dW_{t},\\ \\ p_{T}=GX_{T}^{*},\end{array}\right. (59)

and the optimal control process utu_{t}^{*} should satisfy

Ctpt+Htqt+Rtut+Et[tTl(s,t)Psps𝑑s]+Et[tTl(s,t)Nsqs𝑑s]=0,\displaystyle C_{t}p_{t}+H_{t}q_{t}+R_{t}u^{*}_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)P_{s}p_{s}ds]+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)N_{s}q_{s}ds]=0,

i.e.,

ut=Rt1(Ctpt+Htqt+Et[tTl(s,t)Psps𝑑s]+Et[tTl(s,t)Nsqs𝑑s]).\displaystyle u_{t}^{*}=-R_{t}^{-1}\left(C_{t}p_{t}+H_{t}q_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)P_{s}p_{s}ds]+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)N_{s}q_{s}ds]\right). (60)

Theorem 4.1 The function ut=Rt1(Ctpt+Htqt+Et[tTl(s,t)Psps𝑑s]+Et[tTl(s,t)Nsqs𝑑s]),t[0,T]u_{t}^{*}=-R_{t}^{-1}\left(C_{t}p_{t}+H_{t}q_{t}+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)P_{s}p_{s}ds]+E^{\mathcal{F}_{t}}[\int_{t}^{T}l(s,t)N_{s}q_{s}ds]\right),\quad t\in[0,T] is the unique optimal control for moving average LQ problem (52), (53), where (pt,qt)(p_{t},q_{t}) is defined by equality (59).  

Proof:  We now prove utu_{t}^{*} is the optimal control. For any u~t𝕌\tilde{u}_{t}\subset\mathbb{U}, let (X~t,Y~t,v~t)(\tilde{X}_{t},\tilde{Y}_{t},\tilde{v}_{t}) and (Xt,Yt,vt)(X_{t}^{*},Y_{t}^{*},v_{t}^{*}) are processes corresponding to u~t\tilde{u}_{t} and utu_{t}^{*}, respectively. We have that

d(X~tXt)=\displaystyle d(\tilde{X}_{t}-X_{t}^{*})= [At(X~tXt)+Bt(Y~tYt)+Ct(u~tut)+Pt(v~tvt)]dt\displaystyle[A_{t}(\tilde{X}_{t}-X^{*}_{t})+B_{t}(\tilde{Y}_{t}-Y^{*}_{t})+C_{t}(\tilde{u}_{t}-u^{*}_{t})+P_{t}(\tilde{v}_{t}-v^{*}_{t})]dt
+[Dt(X~tXt)+Ft(Y~tYt)+Ht(u~tut)+Nt(v~tvt)]dWt.\displaystyle+[D_{t}(\tilde{X}_{t}-X^{*}_{t})+F_{t}(\tilde{Y}_{t}-Y^{*}_{t})+H_{t}(\tilde{u}_{t}-u^{*}_{t})+N_{t}(\tilde{v}_{t}-v^{*}_{t})]dW_{t}.

Consider

dpt(X~tXt)=\displaystyle dp_{t}(\tilde{X}_{t}-X_{t}^{*})= ptd(X~tXt)+(X~tXt)dpt+dptd(X~tXt)\displaystyle p_{t}d(\tilde{X}_{t}-X^{*}_{t})+(\tilde{X}_{t}-X^{*}_{t})dp_{t}+dp_{t}d(\tilde{X}_{t}-X_{t}^{*})
=\displaystyle= pt[At(X~tXt)+Bt(Y~tYt)+Ct(u~tut)+Pt(v~tvt)]dt\displaystyle p_{t}\left[A_{t}(\tilde{X}_{t}-X^{*}_{t})+B_{t}(\tilde{Y}_{t}-Y^{*}_{t})+C_{t}(\tilde{u}_{t}-u^{*}_{t})+P_{t}(\tilde{v}_{t}-v^{*}_{t})\right]dt
(XtXt)[Atpt+Et[tTk(s,t)Bspsds]+Dtqt+Et[tTk(s,t)Fsqsds]\displaystyle-(X_{t}-X_{t}^{*})\Bigg{[}A_{t}p_{t}+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)B_{s}p_{s}ds\right]+D_{t}q_{t}+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)F_{s}q_{s}ds\right]
+QtXt+Et[tTk(s,t)SsYsds]]dt\displaystyle\qquad\qquad\qquad+Q_{t}X^{*}_{t}+E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)S_{s}Y^{*}_{s}ds\right]\Bigg{]}dt
+qt[Dt(X~tXt)+Ft(Y~tYt)+Ht(u~tut)+Nt(v~tvt)]dt+MtdWt\displaystyle+q_{t}\left[D_{t}(\tilde{X}_{t}-X^{*}_{t})+F_{t}(\tilde{Y}_{t}-Y^{*}_{t})+H_{t}(\tilde{u}_{t}-u^{*}_{t})+N_{t}(\tilde{v}_{t}-v^{*}_{t})\right]dt+M_{t}dW_{t}
=\displaystyle= ptBt(Y~tYt)dt(X~tXt)Et[tTk(s,t)Bsps𝑑s]dt\displaystyle p_{t}B_{t}(\tilde{Y}_{t}-Y_{t}^{*})dt-(\tilde{X}_{t}-X_{t}^{*})E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)B_{s}p_{s}ds\right]dt
+qtFt(Y~tYt)dt(X~tXt)Et[tTk(s,t)Fsqs𝑑s]dt\displaystyle+q_{t}F_{t}(\tilde{Y}_{t}-Y^{*}_{t})dt-(\tilde{X}_{t}-X_{t}^{*})E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)F_{s}q_{s}ds\right]dt
+(Ctpt+Htqt)(u~tut)dtQtXt(X~tXt)dt\displaystyle+(C_{t}p_{t}+H_{t}q_{t})(\tilde{u}_{t}-u^{*}_{t})dt-Q_{t}X_{t}^{*}(\tilde{X}_{t}-X_{t}^{*})dt
+ptPt(v~tvt)dt+qtNt(v~tvt)dt\displaystyle+p_{t}P_{t}(\tilde{v}_{t}-v^{*}_{t})dt+q_{t}N_{t}(\tilde{v}_{t}-v^{*}_{t})dt (61)
(X~tXt)Et[tTk(s,t)SsYs𝑑s]dt+MtdWt,\displaystyle-(\tilde{X}_{t}-X_{t}^{*})E^{\mathcal{F}_{t}}\left[\int_{t}^{T}k(s,t)S_{s}Y^{*}_{s}ds\right]dt+M_{t}dW_{t}, (62)

where (Mt)0tT(M_{t})_{0\leq t\leq T} is a t\mathcal{F}_{t} adapted process. By exchanging the order of integration, we get

0TptBt(Y~tYt)𝑑t=0TptBt0tk(t,s)(X~sXs)𝑑s𝑑t=0T(X~tXt)tTk(s,t)sps𝑑s𝑑t.\displaystyle\int_{0}^{T}p_{t}B_{t}(\tilde{Y}_{t}-Y_{t}^{*})dt=\int_{0}^{T}p_{t}B_{t}\int_{0}^{t}k(t,s)(\tilde{X}_{s}-X_{s}^{*})dsdt=\int_{0}^{T}(\tilde{X}_{t}-X_{t}^{*})\int_{t}^{T}k(s,t)_{s}p_{s}dsdt. (63)

In the same way, we have

0TqtFt(Y~tYt)𝑑t=0T(X~tXt)tTk(s,t)Fsqs𝑑s𝑑t,\displaystyle\int_{0}^{T}q_{t}F_{t}(\tilde{Y}_{t}-Y_{t}^{*})dt=\int_{0}^{T}(\tilde{X}_{t}-X_{t}^{*})\int_{t}^{T}k(s,t)F_{s}q_{s}dsdt, (64)
0TptPt(v~tvt)𝑑t=0T(u~tut)tTl(s,t)Psps𝑑s𝑑t,\displaystyle\int_{0}^{T}p_{t}P_{t}(\tilde{v}_{t}-v_{t}^{*})dt=\int_{0}^{T}(\tilde{u}_{t}-u_{t}^{*})\int_{t}^{T}l(s,t)P_{s}p_{s}dsdt, (65)
0TqtNt(v~tvt)𝑑t=0T(u~tut)tTl(s,t)Nsqs𝑑s𝑑t,\displaystyle\int_{0}^{T}q_{t}N_{t}(\tilde{v}_{t}-v_{t}^{*})dt=\int_{0}^{T}(\tilde{u}_{t}-u_{t}^{*})\int_{t}^{T}l(s,t)N_{s}q_{s}dsdt, (66)

and

0T(X~tXt)tTk(s,t)SsYs𝑑s𝑑t=0TStYt(Y~tYt)𝑑t.\displaystyle\int_{0}^{T}(\tilde{X}_{t}-X_{t}^{*})\int_{t}^{T}k(s,t)S_{s}Y^{*}_{s}dsdt=\int_{0}^{T}S_{t}Y^{*}_{t}(\tilde{Y}_{t}-Y_{t}^{*})dt. (67)

Taking integral for the (4) from 0 to TT and taking the expectation, through (60), (63), (64),(65),(66) and (67) we have

EGXT(X~TXT)=\displaystyle EGX_{T}^{*}(\tilde{X}_{T}-X_{T}^{*})= EpT(X~TXT)\displaystyle Ep_{T}(\tilde{X}_{T}-X_{T}^{*})
=\displaystyle= E0T𝑑pt(X~TXT)\displaystyle E\int_{0}^{T}dp_{t}(\tilde{X}_{T}-X_{T}^{*})
=\displaystyle= E0T[Rtut(u~tut)+QtXt(X~tXt)+StYt(Y~tYt)]𝑑t.\displaystyle-E\int_{0}^{T}\Big{[}R_{t}u_{t}^{*}(\tilde{u}_{t}-u^{*}_{t})+Q_{t}X_{t}^{*}(\tilde{X}_{t}-X^{*}_{t})+S_{t}Y^{*}_{t}(\tilde{Y}_{t}-Y_{t}^{*})\Big{]}dt. (68)

So that

J(u~t)J(ut)=\displaystyle J(\tilde{u}_{t})-J(u_{t}^{*})= 12E0T[Qt(X~t2Xt2)+St(Y~t2Yt2)+Rt(u~t2ut2)]𝑑t\displaystyle\frac{1}{2}E\int_{0}^{T}\Big{[}Q_{t}(\tilde{X}_{t}^{2}-X_{t}^{*2})+S_{t}(\tilde{Y}_{t}^{2}-Y_{t}^{*2})+R_{t}(\tilde{u}_{t}^{2}-u_{t}^{*2})\Big{]}dt
+12EG(X~T2XT2)\displaystyle+\frac{1}{2}EG(\tilde{X}_{T}^{2}-X_{T}^{*2})
=\displaystyle= 12E0T[Qt(X~t2Xt2)2QtXt(X~tXt)+St(Y~t2Yt2)\displaystyle\frac{1}{2}E\int_{0}^{T}\Big{[}Q_{t}(\tilde{X}_{t}^{2}-X_{t}^{*2})-2Q_{t}X_{t}^{*}(\tilde{X}_{t}-X^{*}_{t})+S_{t}(\tilde{Y}_{t}^{2}-Y_{t}^{*2})
2StYt(Y~tYt)+Rt(u~t2ut2)2Rtut(u~tut)]dt\displaystyle\qquad\qquad-2S_{t}Y^{*}_{t}(\tilde{Y}_{t}-Y_{t}^{*})+R_{t}(\tilde{u}_{t}^{2}-u_{t}^{*2})-2R_{t}u_{t}^{*}(\tilde{u}_{t}-u^{*}_{t})\Big{]}dt
\displaystyle\geq 0.\displaystyle 0.

This shows that utu_{t}^{*} is an optimal control.

Then we prove utu^{*}_{t} is unique, assume that both ut,1u_{t}^{*,1} and ut,2u_{t}^{*,2} are optimal controls, Xt1X_{t}^{1} and Xt2X_{t}^{2} are corresponding state processes, respectively. It is easy to get Xt1+Xt22\frac{X_{t}^{1}+X_{t}^{2}}{2} is the corresponding state process to ut,1+ut,22\frac{u_{t}^{*,1}+u_{t}^{*,2}}{2}. We assume there exist constants δ>0,α0\delta>0,\alpha\geq 0, such that RtδR_{t}\geq\delta and

J(ut,1)=J(ut,2)=α.\displaystyle J(u_{t}^{*,1})=J(u_{t}^{*,2})=\alpha.

Using the fact a2+b2=2[(a+b2)2+(ab2)2]a^{2}+b^{2}=2[(\frac{a+b}{2})^{2}+(\frac{a-b}{2})^{2}], we have that

2α=\displaystyle 2\alpha= J(ut,1)+J(ut,2)\displaystyle J(u_{t}^{*,1})+J(u_{t}^{*,2})
=\displaystyle= 12E0T[Qt(Xt1Xt1+Xt2Xt2)+St(Yt1Yt1+Yt2Yt2)+Rt(ut,1ut,1+ut,2ut,2)]𝑑t\displaystyle\frac{1}{2}E\int_{0}^{T}\Big{[}Q_{t}(X_{t}^{1}X_{t}^{1}+X_{t}^{2}X_{t}^{2})+S_{t}(Y_{t}^{1}Y_{t}^{1}+Y_{t}^{2}Y_{t}^{2})+R_{t}(u_{t}^{*,1}u_{t}^{*,1}+u_{t}^{*,2}u_{t}^{*,2})\Big{]}dt
+12EG(XT1XT1+XT2XT2)\displaystyle+\frac{1}{2}EG(X_{T}^{1}X_{T}^{1}+X_{T}^{2}X_{T}^{2})
\displaystyle\geq E0T[Qt(Xt1+Xt22)2+St(Yt1+Yt22)2+Rt(ut,1+ut,22)2]𝑑t\displaystyle E\int_{0}^{T}\Big{[}Q_{t}\Big{(}\frac{X_{t}^{1}+X_{t}^{2}}{2}\Big{)}^{2}+S_{t}\Big{(}\frac{Y_{t}^{1}+Y_{t}^{2}}{2}\Big{)}^{2}+R_{t}\Big{(}\frac{u_{t}^{*,1}+u_{t}^{*,2}}{2}\Big{)}^{2}\Big{]}dt
+EG(XT1+XT22)2+E0TRt(ut,1ut,22)2𝑑t\displaystyle+EG\Big{(}\frac{X_{T}^{1}+X_{T}^{2}}{2}\Big{)}^{2}+E\int_{0}^{T}R_{t}\Big{(}\frac{u_{t}^{*,1}-u_{t}^{*,2}}{2}\Big{)}^{2}dt
=\displaystyle= 2J(ut,1+ut,22)+E0TRt(ut,1ut,22)2𝑑t\displaystyle 2J\Big{(}\frac{u_{t}^{*,1}+u_{t}^{*,2}}{2}\Big{)}+E\int_{0}^{T}R_{t}\Big{(}\frac{u_{t}^{*,1}-u_{t}^{*,2}}{2}\Big{)}^{2}dt
\displaystyle\geq 2α+δ4E0T|ut,1ut,2|2𝑑t.\displaystyle 2\alpha+\frac{\delta}{4}E\int_{0}^{T}|u_{t}^{*,1}-u_{t}^{*,2}|^{2}dt.

Thus, we have

E0T|ut,1ut,2|2𝑑t0,\displaystyle E\int_{0}^{T}|u_{t}^{*,1}-u_{t}^{*,2}|^{2}dt\leq 0,

which shows that ut,1=ut,2u_{t}^{*,1}=u_{t}^{*,2}.

Acknowledgments

The authors acknowledge the financial support from the National Science Foundation of China (grant no. 11871244).

References

  • 1 Bloom F. Bounds for Solutions to a Class of Integro-differential Equations Associated with a Theory of Rigid Nonconducting Material Dielectrics. SIAM Journal on Mathematical Analysis 1980; 11(2): 265–291.
  • 2 Holmåker K. Global asymptotic stability for a stationary solution of a system of integro-differential equations describing the formation of liver zones. SIAM Journal on Mathematical Analysis 1993; 24(1): 116–128.
  • 3 Forbes LK, Crozier S, Doddrell DM. Caluculating current densities and fields produced by shielded magnetic resonance imaging probes. SIAM Journal on Applied Mathematics 1997; 57(2): 401–425.
  • 4 Du H, Zhao G, Zhao C. Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity. Journal of Computational and Applied Mathematics 2014; 255: 122–132.
  • 5 Mao X, Riedle M. Mean square stability of stochastic Volterra integro-differential equations. Systems &\& Control Letters 2006; 55(6): 459–465.
  • 6 Nesterenko O. Modified projection-iterative method for weakly nonlinear integrodifferential equations with parameters. Journal of Mathematical Sciences 2014; 198(3): 328–336.
  • 7 Dzhumabaev DS. On one approach to solve the linear boundary value problems for Fredholm integro-differential equations. Journal of Computational and Applied Mathematics 2016; 294: 342–357.
  • 8 Zhang W, Liang H, Gao J. Theoretical and numerical analysis of the Euler–Maruyama method for generalized stochastic Volterra integro-differential equations. Journal of Computational and Applied Mathematics 2020; 365: 112364.
  • 9 Kim JU. Control of a second-order integro-differential equation. SIAM journal on control and optimization 1993; 31(1): 101–110.
  • 10 Mashayekhi S, Ordokhani Y, Razzaghi M. Hybrid functions approach for optimal control of systems described by integro-differential equations. Applied Mathematical Modelling 2013; 37(5): 3355–3368.
  • 11 Assanova AT, Bakirova E, Kadirbayeva ZM. Numerical solution to a control problem for integro-differential equations. Computational Mathematics and Mathematical Physics 2020; 60: 203–221.
  • 12 Wang T. Backward stochastic Volterra integro-differential equations and applications in optimal control problems. SIAM Journal on Control and Optimization 2022; 60(4): 2393–2419.
  • 13 El Karoui N, Peng S, Quenez MC. Backward stochastic differential equations in finance. Mathematical finance 1997; 7(1): 1–71.
  • 14 Peng S, Yang Z. Anticipated backward stochastic differential equations. The Annals of Probability 2009; 37(3): 877–902.
  • 15 Yang Z, Elliott R. Some properties of generalized anticipated backward stochastic differential equations. Electronic Communications in Probability 2013; 18: 1–10.