This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stokes structure of mild difference modules

Yota Shamoto
Abstract.

We introduce a category of filtered sheaves on a circle to describe the Stokes phenomenon of linear difference equations with mild singularity. The main result is a mild difference analog of the Riemann-Hilbert correspondence for germs of meromorphic connections in one complex variable by Deligne-Malgrange.

1. Introduction

1.1. Mild difference modules

Let 𝒪t{t}\mathscr{O}_{t}\coloneqq\mathbb{C}\{t\} be the ring of convergent power series in a variable tt. Let 𝒪t(0)=({t})\mathscr{O}_{t}(*0)=\mathbb{C}(\!\{t\}\!) be the quotient field. Let ϕt\phi_{t} be an automorphism on 𝒪t(0)\mathscr{O}_{t}(*0) defined as ϕt(f)(t)f(t1+t)\phi_{t}(f)(t)\coloneqq f(\tfrac{t}{1+t}). If we set s=t1s=t^{-1}, we have ϕt(f)(s)=f(s+1)\phi_{t}(f)(s)=f(s+1). By a difference module (over the difference field (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t})), we mean a pair (,ψ)(\mathscr{M},\psi) of a finite-dimensional 𝒪t(0)\mathscr{O}_{t}(*0)-vector space \mathscr{M} and an automorphism ψ:\psi\colon\mathscr{M}\to\mathscr{M} of \mathbb{C}-vector spaces satisfying the relation ψ(fv)=ϕt(f)ψ(v)\psi(fv)=\phi_{t}(f)\psi(v) for any f𝒪t(0)f\in\mathscr{O}_{t}(*0) and vv\in\mathscr{M}.

There is a class of difference modules called mild [Galois]*§9. A difference module is called mild if it is isomorphic to a module of the form (𝒪t(0)r,A(t)ϕtr)(\mathscr{O}_{t}(*0)^{\oplus r},A(t)\phi_{t}^{\oplus r}) where A(t)A(t) has entries in 𝒪t\mathscr{O}_{t} and the constant term A(0)A(0) is invertible.

The purpose of this paper is to establish the Riemann-Hilbert correspondence for mild difference modules as an analog of that for germs of meromorphic connections in one complex variable by Deligne-Malgrange [Deligne, Malgrange]. See also [Sabbah].

1.2. Stokes filtered locally free sheaves for mild difference modules

To formulate the Riemann-Hilbert correspondence for mild difference modules, we introduce the notion of Stokes filtered locally free sheaves for difference modules in §3. We explain the notion briefly, comparing with the case of meromorphic connections.

In the case of germs of meromorphic connections, we consider the notion of a Stokes filtered local system on S1={z|z|=1}S^{1}=\{z\in\mathbb{C}\mid|z|=1\}. It is a pair (,)(\cal{L},\cal{L}_{\bullet}) of a local system \cal{L} of finite-dimensional \mathbb{C}-vector spaces on S1S^{1} and a filtration \cal{L}_{\bullet} on \cal{L} indexed by a sheaf =𝓂0𝓏1𝓂[𝓏1𝓂]\cal{I}=\bigcup_{m\geq 0}z^{-\frac{1}{m}}\mathbb{C}[z^{-\frac{1}{m}}] of ordered abelian groups.

The Deligne-Malgrange theorem claims that there is an equivalence (called the Riemann-Hilbert functor) between the category of germs of meromorphic connections and the category of Stokes filtered local systems on S1S^{1}.

When a Stokes filtered local system (,)(\cal{L},\cal{L}_{\bullet}) corresponds to germs of a meromorphic connection \cal{M} by the Riemann-Hilbert functor, the sheaf \cal{L} is regarded as the sheaf of flat sections of \cal{M} on sectors and the filtration \cal{L}_{\bullet} describes the growth rate of the sections. The filtration \cal{L}_{\bullet} is called the Stokes filtration on \cal{L} since the relation between the splittings of \cal{L}_{\bullet} on different domains describes the classical Stokes phenomenon of the solutions of the differential equation associated to \cal{M}.

In the case of difference modules, we consider a locally free sheaf \mathscr{L} over a sheaf 𝒜per\mathscr{A}_{\mathrm{per}} of rings over S1S^{1}. Here, 𝒜per\mathscr{A}_{\mathrm{per}} is a sheaf of rings over S1S^{1} defined as follows:

𝒜per(U)={({u1})(U(0,π),U)({u})(U(π,0),U)[u±1](U{eiπ,e0}),\displaystyle\mathscr{A}_{\mathrm{per}}(U)=\begin{cases}\mathbb{C}(\!\{u^{-1}\}\!)&(U\subset(0,\pi),U\neq\emptyset)\\ \mathbb{C}(\!\{u\}\!)&(U\subset(-\pi,0),U\neq\emptyset)\\ \mathbb{C}[u^{\pm 1}]&(U\cap\{e^{i\pi},e^{0}\}\neq\emptyset),\end{cases}

where UU is assumed to be connected and we set (a,b){e𝚒θS1a<θ<b}(a,b)\coloneqq\{e^{{\tt{i}}\theta}\in S^{1}\mid a<\theta<b\} for a,ba,b\in\mathbb{R} with a<ba<b. If we put u=exp(2π𝚒t1)u=\exp(2\pi{\tt{i}}t^{-1}), we can regard 𝒜per\mathscr{A}_{\mathrm{per}} as a sheaf of rings of a certain class of ϕt\phi_{t}-invariant (or, periodic with respect to ss+1s\mapsto s+1) functions (see §2 for more details).

Then, we define a filtration \mathscr{L}_{\bullet} on \mathscr{L} indexed by a sheaf of ordered abelian groups. We call it a Stokes filtration. It will be turned out that the filtration describes the growth rate of the solutions of the difference equation associated to the difference module. A new feature of the filtration is the compatibility of the action of uu with the filtration:

u𝔞=𝔞+2π𝚒t1,\displaystyle u\mathscr{L}_{\leqslant\mathfrak{a}}=\mathscr{L}_{\leqslant\mathfrak{a}+2\pi{\tt{i}}t^{-1}},

where 𝔞\mathfrak{a} is an arbitrary index (see §3 for more details).

It is worth mentioning that the Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-module can be non-graded even if it is rank one as a free 𝒜per\mathscr{A}_{\mathrm{per}}-module. This point will be explained in §4.7.

1.3. Main result

Let 𝖣𝗂𝖿𝖿𝖼mild{\mathsf{Diffc}}^{\mathrm{mild}} be the category of mild difference modules. Let 𝖲𝗍(𝒜per){\mathsf{St(\mathscr{A}_{\mathrm{per}})}} be the category of the Stokes filtered locally free 𝒜per\mathscr{A}_{\mathrm{per}}-modules. Then, we can state the main result of the present paper:

Theorem 1.1 (Theorem 4.17).

There is a functor RH:𝖣𝗂𝖿𝖿𝖼mild𝖲𝗍(𝒜per){\mathrm{RH}}\colon{\mathsf{Diffc}}^{\mathrm{mild}}\to{\mathsf{St(\mathscr{A}_{\mathrm{per}})}}, which is an equivalence of categories.

This result is analogous to that of Deligne-Malgrange [Deligne, Malgrange] (See [Sabbah]*Theorem 5.8). The proof of this theorem is similar to that can be found in [Sabbah]. The main difference is the definition of the functor RH{\mathrm{RH}}. See Remark 4.11 for more precise.

The author hopes that this result contributes to the intrinsic understanding of linear difference modules. In particular, it would be interesting to use the result to describe the Stokes structure of the Mellin transformation of a holonomic 𝒟\cal{D}-module concerning recent progress [Bloch, Local, GS, garcia2018mellin] in the study of the Mellin transformations (see Remark 4.4).

1.4. Outline of the paper

In §2, we prepare some notions used throughout the paper. In §3, we introduce the notion of Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules. In §4, we formulate and prove the main theorem assuming a theorem proved in §5.

Acknowledgement

The author would like to express his deep gratitude to Claude Sabbah, who gave the author fruitful comments on preliminary versions of this paper. The author also would like to thank Tatsuki Kuwagaki, Takuro Mochizuki, Fumihiko Sanda, and Takahiro Saito for discussions and encouragement in many occasions. The author is supported by JSPS KAKENHI Grant Number JP 20K14280.

2. Preliminaries

In this section, we prepare some notions used throughout the paper.

2.1. An automorphism on a projective line

Let \mathbb{C} be the set of complex numbers. Set {0}\mathbb{C}^{*}\coloneqq\mathbb{C}\setminus\{0\}. Natural inclusion is denoted by ȷ:\jmath\colon\mathbb{C}^{*}\to\mathbb{C}. When we distinguish a variable such as tt, we use the symbols t\mathbb{C}_{t} and t\mathbb{C}^{*}_{t}. Let S1={e𝚒θθ}S^{1}=\{e^{{\tt{i}}\theta}\in\mathbb{C}\mid\theta\in\mathbb{R}\} be the unit circle, where we set 𝚒=1{\tt{i}}=\sqrt{-1}. For two real numbers a,ba,b with a<ba<b, we set (a,b){e𝚒θS1a<θ<b}(a,b)\coloneqq\{e^{{\tt{i}}\theta}\in S^{1}\mid a<\theta<b\}.

2.1.1. Real blowing up

We set

~={(t,e𝚒θ)×S1t=|t|e𝚒θ},\displaystyle\widetilde{\mathbb{C}}=\{(t,e^{{\tt{i}}\theta})\in\mathbb{C}\times S^{1}\mid t=|t|e^{{\tt{i}}\theta}\},

which is called the real blowing up of \mathbb{C} at the origin. When we distinguish a variable such as tt, we use the notation ~t\widetilde{\mathbb{C}}_{t}. There are maps ϖ:~\varpi\colon\widetilde{\mathbb{C}}\longrightarrow\mathbb{C}, ȷ~:~\widetilde{\jmath}\colon\mathbb{C}^{*}\hookrightarrow\widetilde{\mathbb{C}}, and ı~:S1~\widetilde{\imath}\colon S^{1}\hookrightarrow\widetilde{\mathbb{C}} defined by ϖ(t,e𝚒θ)=t\varpi(t,e^{{\tt{i}}\theta})=t, ȷ~(t)=(t,t/|t|)\widetilde{\jmath}(t)=(t,t/|t|), and ı~(e𝚒θ)=(0,e𝚒θ)\widetilde{\imath}(e^{{\tt{i}}\theta})=(0,e^{{\tt{i}}\theta}), respectively. We sometimes denote the boundary of ~t\widetilde{\mathbb{C}}_{t} by St1S^{1}_{t} to distinguish a variable such as tt.

2.1.2. Unit disc

Let Δ{t|t|<1}\Delta\coloneqq\{t\in\mathbb{C}\mid|t|<1\} be a unit open disc. We set ΔΔ{0}\Delta^{*}\coloneqq\Delta\setminus\{0\} and Δ~{(t,e𝚒θ)~tΔ}.\widetilde{\Delta}\coloneqq\{(t,e^{{\tt{i}}\theta})\in\widetilde{\mathbb{C}}\mid t\in\Delta\}. Let ϖΔ:Δ~Δ\varpi_{\Delta}\colon\widetilde{\Delta}\to\Delta be the projection. When we distinguish a variable such as tt, we use the notations Δt\Delta_{t}, Δt\Delta_{t}^{*} and Δ~t\widetilde{\Delta}_{t}. The natural inclusions are denoted by ȷΔ:ΔΔ\jmath_{\Delta}\colon\Delta^{*}\to\Delta, ı~Δ:S1Δ~\widetilde{\imath}_{\Delta}\colon S^{1}\to\widetilde{\Delta}, and ȷ~Δ:ΔΔ~\widetilde{\jmath}_{\Delta}\colon\Delta^{*}\to\widetilde{\Delta}. Let φt:Δtt\varphi_{t}\colon\Delta_{t}\to\mathbb{C}_{t} be a holomorphic function defined as

φt(t)t1+t.\displaystyle\varphi_{t}(t)\coloneqq\frac{t}{1+t}.

The map uniquely extends to a continuous map φ~t:Δ~t~t\widetilde{\varphi}_{t}\colon\widetilde{\Delta}_{t}\longrightarrow\widetilde{\mathbb{C}}_{t}.

2.1.3. Another coordinate

Let s\mathbb{C}_{s} be a complex plane with a coordinate ss. When we use the two complex variables ss and tt, we implicitly assume the relation

(1) s=t1.\displaystyle s=t^{-1}.

In other words, we consider the complex projective line 1\mathbb{P}^{1} covered by two open subsets s\mathbb{C}_{s} and t\mathbb{C}_{t} with the relation (1). Let φs:ss\varphi_{s}\colon\mathbb{C}_{s}\to\mathbb{C}_{s} be the map defined as

φs(s)=s+1.\displaystyle\varphi_{s}(s)=s+1.

Under the relation (1), the map φs\varphi_{s} coincides with the map φt\varphi_{t} on the domain Δt={ss|s|>1}\Delta_{t}^{*}=\{s\in\mathbb{C}_{s}\mid|s|>1\}. Hence the maps φs\varphi_{s} and φt\varphi_{t} are glued to an automorphism on 1\mathbb{P}^{1}.

2.2. Sheaves of periodic functions

For a point xx in a topological space XX and a sheaf \mathscr{F} on XX, let x\mathscr{F}_{x} denote the set of germs of \mathscr{F} at xx (with some structure). For a continuous map f:XYf\colon X\to Y between topological spaces, ff_{*} denotes the pushing forward of sheaves and f1f^{-1} denotes the pull back of sheaves. If XX is a complex manifold, let 𝒪X\mathscr{O}_{X} denote the sheaf of holomorphic functions on XX. If XX is a Riemann surface and DD is a finite set of points, then let 𝒪X(D)\mathscr{O}_{X}(*D) denote the sheaf of meromorphic functions on XX whose poles are contained in DD.

2.2.1. Functions with fixed asymptotic behavior

Using the notations in §2.1.1, set

𝒪~ı~1ȷ~𝒪,\displaystyle\widetilde{\mathscr{O}}\coloneqq\widetilde{\imath}^{-1}\widetilde{\jmath}_{*}\mathscr{O}_{\mathbb{C}^{*}},

which is a sheaf on S1S^{1}. There are subsheaves 𝒜0\mathscr{A}^{\leqslant 0}, and 𝒜<0\mathscr{A}^{<0} in 𝒪~\widetilde{\mathscr{O}} characterized by their asymptotic behavior as follows (see [Sabbah] for precise definitions):

  • 𝒜0\mathscr{A}^{\leqslant 0} is the sheaf of holomorphic functions which are of moderate growth.

  • 𝒜<0\mathscr{A}^{<0} is the sheaf of holomorphic functions which are of rapid decay.

To emphasize the coordinate function such as tt, we use the notation 𝒪~t\widetilde{\mathscr{O}}_{t}, 𝒜t0\mathscr{A}_{t}^{\leqslant 0}, e.t.c.

2.2.2. Periodic functions

The map φ~t:Δ~t~t\widetilde{\varphi}_{t}\colon\widetilde{\Delta}_{t}\to\widetilde{\mathbb{C}}_{t} defined in §2.1.2 naturally induces a morphism φ~t:ȷ~𝒪φ~tȷ~Δ𝒪Δ\widetilde{\varphi}_{t}^{*}\colon\widetilde{\jmath}_{*}\mathscr{O}_{\mathbb{C}^{*}}\longrightarrow\widetilde{\varphi}_{t*}\widetilde{\jmath}_{\Delta*}\mathscr{O}_{\Delta^{*}} defined as the composition with the map φ\varphi restricted to a suitable open subset. We then set

ϕ~tı~1(φ~t):𝒪~t𝒪~t,\displaystyle\widetilde{\phi}_{t}\coloneqq\widetilde{\imath}^{-1}(\widetilde{\varphi}_{t}^{*})\colon\widetilde{\mathscr{O}}_{t}\to\widetilde{\mathscr{O}}_{t},

where we used the relation φ~tı~Δ=ı~\widetilde{\varphi}_{t}\circ\widetilde{\imath}_{\Delta}=\widetilde{\imath}. Note that the subsheaves 𝒜t0\mathscr{A}^{\leqslant 0}_{t} and 𝒜t<0\mathscr{A}^{<0}_{t} are invariant under the automorphism ϕ~t\widetilde{\phi}_{t}. We then set ϕ~tϕ~tid𝒪~.\nabla_{\widetilde{\phi}_{t}}\coloneqq\widetilde{\phi}_{t}-\mathrm{id}_{\widetilde{\mathscr{O}}}. The restrictions of ϕ~t\nabla_{\widetilde{\phi}_{t}} to 𝒜t0\mathscr{A}^{\leqslant 0}_{t} and 𝒜t<0\mathscr{A}^{<0}_{t} are also denoted by the same symbol. Set

(2) uexp(2π𝚒s)=exp(2π𝚒t1)\displaystyle u\coloneqq\exp(2\pi{\tt{i}}s)=\exp(2\pi{\tt{i}}t^{-1})

and v=u1v=u^{-1}. Then, we have the equality ϕ~t(u)=0\nabla_{\widetilde{\phi}_{t}}(u)=0.

Definition 2.1 (Sheaves of periodic functions).

Let 𝒪~per\widetilde{\mathscr{O}}_{{\mathrm{per}}}, 𝒜per<0\mathscr{A}^{<0}_{\mathrm{per}}, and 𝒜per0{\mathscr{A}}_{\mathrm{per}}^{\leqslant 0} denote the kernel of the operator ϕ~t\nabla_{\widetilde{\phi}_{t}} on 𝒪~\widetilde{\mathscr{O}}, 𝒜<0\mathscr{A}^{<0} and 𝒜0{\mathscr{A}}^{\leqslant 0}, respectively.

Lemma 2.2 (c.f. [Galois]*p.117-118).

For a non-empty connected open subset USt1U\subset S^{1}_{t}, we have the following descriptions of 𝒪~per(U)\widetilde{\mathscr{O}}_{\mathrm{per}}(U), 𝒜per0(U)\mathscr{A}^{\leqslant 0}_{\mathrm{per}}(U), and 𝒜per<0(U)\mathscr{A}^{<0}_{\mathrm{per}}(U)::

  • If U(0,π)U\subset(0,\pi), then

    𝒪~per(U)=(ȷ𝒪v)0,𝒜per0(U)=𝒪v,𝒜per<0(U)=v𝒪v.\displaystyle\widetilde{\mathscr{O}}_{\mathrm{per}}(U)=(\jmath_{*}\mathscr{O}_{\mathbb{C}_{v}^{*}})_{0},\quad\mathscr{A}_{\mathrm{per}}^{\leqslant 0}(U)=\mathscr{O}_{v},\quad\mathscr{A}_{\mathrm{per}}^{<0}(U)=v\mathscr{O}_{v}.
  • If U(π,0)U\subset(-\pi,0), then

    𝒪~per(U)=(ȷ𝒪u)0,𝒜per0(U)=𝒪u,𝒜per<0(U)=u𝒪u.\displaystyle\widetilde{\mathscr{O}}_{\mathrm{per}}(U)=(\jmath_{*}\mathscr{O}_{\mathbb{C}_{u}^{*}})_{0},\quad\mathscr{A}_{\mathrm{per}}^{\leqslant 0}(U)=\mathscr{O}_{u},\quad\mathscr{A}_{\mathrm{per}}^{<0}(U)=u\mathscr{O}_{u}.
  • If e0Ue^{0}\in U or eπ𝚒Ue^{\pi{\tt{i}}}\in U, then

    𝒪~per(U)=𝒪u(u),𝒜per0(U)=,𝒜per<0(U)=0.\displaystyle\widetilde{\mathscr{O}}_{\mathrm{per}}(U)=\mathscr{O}_{\mathbb{C}_{u}}(\mathbb{C}_{u}^{*}),\quad\mathscr{A}_{\mathrm{per}}^{\leqslant 0}(U)=\mathbb{C},\quad\mathscr{A}_{\mathrm{per}}^{<0}(U)=0.

Here, the rings (ȷ𝒪u)0(\jmath_{*}\mathscr{O}_{\mathbb{C}_{u}})_{0}, (ȷ𝒪v)0(\jmath_{*}\mathscr{O}_{\mathbb{C}_{v}})_{0}, 𝒪u𝒪u,0\mathscr{O}_{u}\coloneqq\mathscr{O}_{\mathbb{C}_{u},0}, and 𝒪v𝒪v,0\mathscr{O}_{v}\coloneqq\mathscr{O}_{\mathbb{C}_{v},0} are naturally embedded into 𝒪~(U)\widetilde{\mathscr{O}}(U) in each case via the relations (2) and v=u1v=u^{-1}.

Proof.

For a section [f]𝒪~per(U)[f]\in\widetilde{\mathscr{O}}_{\mathrm{per}}(U), there exists a representative f𝒪~(𝒰)f\in\widetilde{\mathscr{O}}(\cal{U}) on an open subset 𝒰~\cal{U}\subset\widetilde{\mathbb{C}} with ~𝒰=𝒰\partial\widetilde{\mathbb{C}}\cap\cal{U}=U. We may assume that we have f(s)=f(s+1)f(s)=f(s+1) for s𝒱𝒰φ~1(𝒰)s\in\cal{V}\coloneqq\cal{U}\cap\widetilde{\varphi}^{-1}(\cal{U}). It then follows that ff can be regarded as a holomorphic function on exp(2π𝚒(𝒱𝒰))\exp(2\pi{\tt{i}}(\cal{V}\setminus U))\subset\mathbb{C}^{*}. Since we have

|u|=exp(2π|s|(𝚒e𝚒arg(s))),\displaystyle|u|=\exp(2\pi|s|\Re({\tt{i}}e^{{\tt{i}}\arg(s)})),
arg(u)=|s|(2π𝚒e𝚒arg(s))mod2π\displaystyle\arg(u)=|s|\Im(2\pi{\tt{i}}e^{{\tt{i}}\arg(s)})\mod 2\pi

for u=exp(2π𝚒s)u=\exp(2\pi{\tt{i}}s), if UU is an open interval in (0,π)(0,\pi), then the family {}exp(2π𝚒(𝒰𝒰))\{\infty\}\cup\exp(2\pi{\tt{i}}(\cal{U}\setminus U)) of open subsets for 𝒰~\cal{U}\subset\widetilde{\mathbb{C}} with ~𝒰=𝒰\partial\widetilde{\mathbb{C}}\cap\cal{U}=U defines a fundamental system of neighborhoods around the infinity of the uu-plane, which implies 𝒪~per(U)=(ȷ𝒪v)0\widetilde{\mathscr{O}}_{\mathrm{per}}(U)=(\jmath_{*}\mathscr{O}_{\mathbb{C}_{v}^{*}})_{0}. Since v=u1v=u^{-1} rapidly decays on 𝒰\cal{U}, we also have 𝒜per0(U)=𝒪v\mathscr{A}_{\mathrm{per}}^{\leqslant 0}(U)=\mathscr{O}_{v}, and 𝒜per<0(U)=v𝒪v\mathscr{A}_{\mathrm{per}}^{<0}(U)=v\mathscr{O}_{v}. The other part of the lemma can be proved in a similar way. We left them to the reader. ∎

Definition 2.3.

We set 𝒜pernun𝒜per0𝒪~\mathscr{A}_{\mathrm{per}}\coloneqq\sum_{n\in\mathbb{Z}}u^{n}\mathscr{A}^{\leqslant 0}_{\mathrm{per}}\subset\widetilde{\mathscr{O}}.

Let [u±1]\mathbb{C}[u^{\pm 1}] denote the ring of Laurent polynomials in uu.

Corollary 2.4.

For a connected open subset USt1\emptyset\neq U\subset S^{1}_{t}, we have the following:

𝒜per(U)={𝒪v(0)(U(0,π))𝒪u(0)(U(π,0))[u±1](U{e0,eπ𝚒})\displaystyle\mathscr{A}_{\mathrm{per}}(U)=\begin{cases}\mathscr{O}_{v}(*0)&(U\subset(0,\pi))\\ \mathscr{O}_{u}(*0)&(U\subset(-\pi,0))\\ \mathbb{C}[u^{\pm 1}]&(U\cap\{e^{0},e^{\pi{\tt{i}}}\}\neq\emptyset)\end{cases}

where we set 𝒪w(0)𝒪w({0})0\mathscr{O}_{w}(*0)\coloneqq\mathscr{O}_{\mathbb{C}_{w}}(*\{0\})_{0} for w=u,vw=u,v. ∎

2.3. Finite maps

Fix a positive integer mm. Let ρ:τt\rho\colon\mathbb{C}_{\tau}\to\mathbb{C}_{t} be the mm-th power map. In other words, we consider another parameter τ\tau with the relation

(3) τm=t.\displaystyle\tau^{m}=t.

There exists a real blow-up ρ~:~τ~t\widetilde{\rho}\colon\widetilde{\mathbb{C}}_{\tau}\longrightarrow\widetilde{\mathbb{C}}_{t} of ρ\rho defined as ρ~(τ,e𝚒ϑ)(ρ(τ),e𝚒mϑ)\widetilde{\rho}(\tau,e^{{\tt{i}}\vartheta})\coloneqq(\rho(\tau),e^{{\tt{i}}m\vartheta}). The restriction of ρ~\widetilde{\rho} to the boundary is denoted by ρ:Sτ1St1{\rho}\colon S^{1}_{\tau}\to S^{1}_{t} or ρm\rho_{m} if we emphasize the dependence on mm. The multiplicative group of the mm-th roots of unity

μm{ζζm=1}.\displaystyle\mu_{m}\coloneqq\{\zeta\in\mathbb{C}\mid\zeta^{m}=1\}.

is regarded as the group of automorphisms on Sτ1S^{1}_{\tau} over St1S^{1}_{t} in a natural way. Let σζ:Sτ1Sτ1\sigma_{\zeta}\colon S^{1}_{\tau}\to S^{1}_{\tau} be the automorphisms corresponding to ζμm\zeta\in\mu_{m}.

3. Stokes filtered locally free sheaves

In this section, we introduce the notion of a Stokes filtered locally free sheaves over the sheaf 𝒜per\mathscr{A}_{\mathrm{per}} of rings, which will be called a Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules. Concrete examples of Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules will be given in the next section.

3.1. Sheaves of indexes

In this subsection, we prepare some sheaves of ordered abelian groups. They will be used to define filtrations on 𝒜per\mathscr{A}_{\mathrm{per}}-modules.

3.1.1. A sheaf on Sτ1S^{1}_{\tau}

Fix m>0m\in\mathbb{Z}_{>0}. Recall the notations in §2.3 such as τ\tau and Sτ1S^{1}_{\tau} corresponding to mm. We recall that there is a sheaf 𝒪~τ\widetilde{\mathscr{O}}_{\tau} on Sτ1{S}^{1}_{\tau} defined in §2.2.1.

Definition 3.1.

Let m,τ𝒪~τ\mathscr{I}_{m,\tau}\subset\widetilde{\mathscr{O}}_{\tau} be a subsheaf of \mathbb{C}-vector spaces locally generated by the sections represented by the functions of the form

(4) 𝔞(τ)==1mcτ\displaystyle\mathfrak{a}(\tau)=\sum_{\ell=1}^{m}c_{\ell}\tau^{-\ell}

where c1,,cmc_{1},\dots,c_{m}\in\mathbb{C}.

Remark 3.2.

The motivation for introducing the sheaf m,τ\mathscr{I}_{m,\tau} comes from the definition of mild difference modules (Definition 4.2).

3.1.2. Sheaves on St1S^{1}_{t}

Let ρ:Sτ1St1\rho\colon S^{1}_{\tau}\to S^{1}_{t} be the map defined in §2.3. Let ρ:𝒪~tρ𝒪~τ\rho^{*}\colon\widetilde{\mathscr{O}}_{t}\to\rho_{*}\widetilde{\mathscr{O}}_{\tau} be the adjoint morphism. We regard 𝒪~t\widetilde{\mathscr{O}}_{t} as a subsheaf of ρ𝒪~τ\rho_{*}\widetilde{\mathscr{O}}_{\tau} by this ρ\rho^{*}.

Definition 3.3.

For a positive integer mm, we set

mρm,τ𝒪~tρ𝒪~τ.\displaystyle\mathscr{I}_{m}\coloneqq\rho_{*}\mathscr{I}_{m,\tau}\cap\widetilde{\mathscr{O}}_{t}\subset\rho_{*}\widetilde{\mathscr{O}}_{\tau}.

We then set m=1m.\mathscr{I}\coloneqq\bigcup_{m=1}^{\infty}\mathscr{I}_{m}.

3.1.3. Orders on local sections

We shall define partial orders on the space of sections of sheaves introduced above.

Definition 3.4.

For an open subset USt1U\subset S^{1}_{t} and sections 𝔞,𝔟(U)\mathfrak{a},\mathfrak{b}\in\mathscr{I}(U), we define

𝔞U𝔟\displaystyle\mathfrak{a}\leqslant_{U}\mathfrak{b} exp(𝔞𝔟)𝒜0(U), and\displaystyle\Longleftrightarrow\exp(\mathfrak{a}-\mathfrak{b})\in\mathscr{A}^{\leqslant 0}(U),\text{ and }
𝔞<U𝔟\displaystyle\mathfrak{a}<_{U}\mathfrak{b} exp(𝔞𝔟)𝒜<0(U).\displaystyle\Longleftrightarrow\exp(\mathfrak{a}-\mathfrak{b})\in\mathscr{A}^{<0}(U).

3.2. Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules

3.2.1. Pre-Stokes filtrations

We shall define the notion of a pre-Stokes filtration on a 𝒜per\mathscr{A}_{{\mathrm{per}}}-module as follows.

Definition 3.5.

Let \mathscr{L} be a 𝒜per\mathscr{A}_{\mathrm{per}}-module. A pre-Stokes filtration on \mathscr{L} is a family

{𝔞|UUS1:open subset,𝔞(U)}\displaystyle\mathscr{L}_{\bullet}\coloneqq\{\mathscr{L}_{\leqslant\mathfrak{a}}\subset\mathscr{L}_{|U}\mid U\subset S^{1}\colon\text{open subset},\ \mathfrak{a}\in\mathscr{I}(U)\}

of 𝒜per|U0\mathscr{A}_{{\mathrm{per}}|U}^{\leqslant 0}-submodules in |U\mathscr{L}_{|U} for all open subsets UU with the following properties:

  1. (1)

    If 𝔞|V=𝔟\mathfrak{a}_{|V}=\mathfrak{b} for VUV\subset U, 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), and 𝔟(V)\mathfrak{b}\in\mathscr{I}(V), then 𝔞|V=𝔟.\mathscr{L}_{\leqslant\mathfrak{a}|V}=\mathscr{L}_{\leqslant\mathfrak{b}}.

  2. (2)

    If 𝔞U𝔟\mathfrak{a}\leqslant_{U}\mathfrak{b} for 𝔞,𝔟(U)\mathfrak{a},\mathfrak{b}\in\mathscr{I}(U), then 𝔞𝔟.\mathscr{L}_{\leqslant\mathfrak{a}}\subset\mathscr{L}_{\leqslant\mathfrak{b}}.

  3. (3)

    For any nn\in\mathbb{Z} and 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), we have un𝔞=𝔞+2nπ𝚒s.u^{n}\mathscr{L}_{\leqslant\mathfrak{a}}=\mathscr{L}_{\leqslant\mathfrak{a}+2n\pi{\tt{i}}s}.

A pair (,)(\mathscr{L},\mathscr{L}_{\bullet}) of a 𝒜per\mathscr{A}_{{\mathrm{per}}}-module and a pre-Stokes filtration on it is called a pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module. A morphism between two pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules (,)(\mathscr{L},\mathscr{L}_{\bullet}), and (,)(\mathscr{L}^{\prime},\mathscr{L}_{\bullet}^{\prime}) is a morphism λ:\lambda\colon\mathscr{L}\to\mathscr{L}^{\prime} of 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules such that λ|U(𝔞)𝔞\lambda_{|U}(\mathscr{L}_{\leqslant\mathfrak{a}})\subset\mathscr{L}^{\prime}_{\leqslant\mathfrak{a}} for any 𝔞(U)\mathfrak{a}\in\mathscr{I}{(U)}.

3.2.2. Grading

For each 𝔞(U)\mathfrak{a}\in\mathscr{I}(U) and a pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module =(,)\mathscr{L}=(\mathscr{L},\mathscr{L}_{\bullet}), we set

<𝔞𝔟<U𝔞𝔟\displaystyle\mathscr{L}_{<\mathfrak{a}}\coloneqq\sum_{\mathfrak{b}<_{U}\mathfrak{a}}\mathscr{L}_{\leqslant\mathfrak{b}}

and gr𝔞𝔞/<𝔞{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}\coloneqq\mathscr{L}_{\leqslant\mathfrak{a}}/\mathscr{L}_{<\mathfrak{a}}. By condition (3) in the Definition, we have the inclusion 𝒜|U<0𝔞<𝔞.\mathscr{A}^{<0}_{|U}\cdot\mathscr{L}_{\leqslant\mathfrak{a}}\subset\mathscr{L}_{<\mathfrak{a}}. Hence it is natural to regard gr𝔞{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L} as a module over 𝒜per|U0/𝒜per|U<0=U\mathscr{A}^{\leqslant 0}_{{\mathrm{per}}|U}/\mathscr{A}_{{\mathrm{per}}|U}^{<0}=\mathbb{C}_{U}. Again by condition (3), we have an isomorphism

(5) un:gr𝔞gr𝔞+2π𝚒sn\displaystyle u^{n}\colon{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}\xrightarrow{\sim}{\mathrm{gr}}_{\mathfrak{a}+2\pi{\tt{i}}sn}\mathscr{L}

for any nn\in\mathbb{Z}. Hence 𝔞(U)gr𝔞\bigoplus_{\mathfrak{a}\in\mathscr{I}(U)}{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L} is naturally equipped with the structure of a sheaf of [u±1]\mathbb{C}[u^{\pm 1}]-modules over UU. Then the sheaf Σ()\Sigma(\mathscr{L}) of sets defined as

Σ()(U){𝔞(U)gr𝔞0},\displaystyle\Sigma(\mathscr{L})(U)\coloneqq\{\mathfrak{a}\in\mathscr{I}(U)\mid{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}\neq 0\},

is equipped with the the action of the additive group 2π𝚒sS12\pi{\tt{i}}s\mathbb{Z}_{S^{1}} in a natural way.

Lemma 3.6.

Let (,)(\mathscr{L},\mathscr{L}_{\bullet}) be a pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module. There exists a unique sheaf gr{\mathrm{gr}}\mathscr{L} of [u±1]\mathbb{C}[u^{\pm 1}]-modules such that for any open subset US1U\subset S^{1}, we have

gr|U=𝔞(U)gr𝔞.\displaystyle{\mathrm{gr}}\mathscr{L}_{|U}=\bigoplus_{\mathfrak{a}\in\mathscr{I}(U)}{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}.

Moreover, gr{\mathrm{gr}}\mathscr{L} is a local system of finitely generated free [u±1]\mathbb{C}[u^{\pm 1}]-modules if and only if the following conditions are satisfied:

  • For each 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), the sheaf gr𝔞{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L} is a local system of \mathbb{C}-vector spaces.

  • The sheaf Σ()\Sigma(\mathscr{L}) has locally finitely many 2π𝚒sS12\pi{\tt{i}}s\mathbb{Z}_{S^{1}}-orbits.

Proof.

For two connected open subsets VUSt1V\subset U\subsetneq S^{1}_{t}, the restriction map (U)(V)\mathscr{I}(U)\to\mathscr{I}(V) is an isomorphism. Then, by condition (1) in Definition 3.5, we have

𝔞(U)gr𝔞|V=𝔟(V)gr𝔟.\displaystyle\bigoplus_{\mathfrak{a}\in\mathscr{I}(U)}{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}_{|V}=\bigoplus_{\mathfrak{b}\in\mathscr{I}(V)}{\mathrm{gr}}_{\mathfrak{b}}\mathscr{L}.

The first assertion follows from this equality. By (5), we have a natural isomorphism

gr𝔞[u±1]ngr𝔞+2π𝚒n\displaystyle{\mathrm{gr}}_{\mathfrak{a}}\mathscr{L}\otimes\mathbb{C}[u^{\pm 1}]\simeq\bigoplus_{n\in\mathbb{Z}}{\mathrm{gr}}_{\mathfrak{a}+2\pi{\tt{i}}n}\mathscr{L}

for each 𝔞(U)\mathfrak{a}\in\mathscr{I}{(U)}. The second assertion follows from this isomorphism. ∎

3.2.3. Stokes filtration

Definition 3.7.

Let \mathscr{L} be a 𝒜per\mathscr{A}_{\mathrm{per}}-module. A pre-Stokes filtration \mathscr{L}_{\bullet} on \mathscr{L} is called a Stokes filtration if the following conditions are satisfied:

  1. (1)

    The graded sheaf gr{\mathrm{gr}}\mathscr{L} is a local system of finitely generated [u±1]\mathbb{C}[u^{\pm 1}]-modules.

  2. (2)

    For each point xS1x\in S^{1}, there exist a neighborhood UU of xx and an isomorphism

    η:𝒜per|U[u±1]gr|U|U\displaystyle\eta\colon\mathscr{A}_{{\mathrm{per}}|U}\otimes_{\mathbb{C}[u^{\pm 1}]}{\mathrm{gr}}\mathscr{L}_{|U}\overset{\sim}{\longrightarrow}\mathscr{L}_{|U}

    of filtered 𝒜per|U\mathscr{A}_{{\mathrm{per}}|U}-modules such that gr(η)=idgr|U{\mathrm{gr}}(\eta)=\mathrm{id}_{{\mathrm{gr}}\mathscr{L}_{|U}}.

A pair (,)(\mathscr{L},\mathscr{L}_{\bullet}) of a 𝒜per\mathscr{A}_{{\mathrm{per}}}-module and a Stokes filtration on it is called a Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module. The category of Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module is denoted by 𝖲𝗍(𝒜per){\mathsf{St(\mathscr{A}_{\mathrm{per}})}}, which is defined to be a full subcategory of the category of pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules.

Remark 3.8.

By Lemma 3.6, the sheaf \mathscr{L} should be finitely generated and locally free over 𝒜per\mathscr{A}_{\mathrm{per}} if it admits a Stokes filtration.

3.2.4. Graded Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules and some operations

Definition 3.9.

A Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-module (𝒢,𝒢)(\mathscr{G},\mathscr{G}_{\bullet}) is called graded if we have an isomorphism

η:𝒢𝒜pergr(𝒢)\displaystyle\eta\colon\mathscr{G}\overset{\sim}{\longrightarrow}\mathscr{A}_{\mathrm{per}}\otimes{\mathrm{gr}}(\mathscr{G})

of Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules such that gr(η)=id{\mathrm{gr}}(\eta)=\mathrm{id}.

For two (pre-)Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules (1,1,)(\mathscr{L}_{1},\mathscr{L}_{1,\bullet}) and (2,2,)(\mathscr{L}_{2},\mathscr{L}_{2,\bullet}) we can define the (pre-)Stokes filtrations on the tensor product 12\mathscr{L}_{1}\otimes\mathscr{L}_{2} and the sheaf of internal-homs om(1,2){\mathscr{H}\!\!om}(\mathscr{L}_{1},\mathscr{L}_{2}) as follows:

(12)𝔞\displaystyle(\mathscr{L}_{1}\otimes\mathscr{L}_{2})_{\leqslant\mathfrak{a}} 𝔟(U)1,𝔟𝒜per02,𝔞𝔟,\displaystyle\coloneqq\sum_{\mathfrak{b}\in\mathscr{I}(U)}\mathscr{L}_{1,\leqslant\mathfrak{b}}\otimes_{\mathscr{A}_{\mathrm{per}}^{\leqslant 0}}\mathscr{L}_{2,\leqslant\mathfrak{a}-\mathfrak{b}},
om(1,2)𝔞\displaystyle{\mathscr{H}\!\!om}(\mathscr{L}_{1},\mathscr{L}_{2})_{\leqslant\mathfrak{a}} 𝔟(U)om𝒜per0(1,𝔟,2,𝔞+𝔟).\displaystyle\coloneqq\sum_{\mathfrak{b}\in\mathscr{I}(U)}{\mathscr{H}\!\!om}_{\mathscr{A}_{\mathrm{per}}^{\leqslant 0}}(\mathscr{L}_{1,\leqslant\mathfrak{b}},\mathscr{L}_{2,\leqslant\mathfrak{a}+\mathfrak{b}}).

We also use the notation nd()om(,)\mathscr{E}nd(\mathscr{L})\coloneqq{\mathscr{H}\!\!om}(\mathscr{L},\mathscr{L}).

3.3. Classification

For a Stokes 𝒜per\mathscr{A}_{{\mathrm{per}}}-module =(,)\mathscr{L}=(\mathscr{L},\mathscr{L}_{\bullet}), we set

𝒜ut<0()id+nd()<0.{\mathscr{A}ut}^{<0}(\mathscr{L})\coloneqq\mathrm{id}_{\mathscr{L}}+\mathscr{E}nd({\mathscr{L}})_{<0}.
Theorem 3.10.

Let 𝒢\mathscr{G} be a graded Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-module. Then, there is a natural one-to-one correspondence between the cohomology set

H1(S1,𝒜ut<0(𝒢))\displaystyle H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{G}))

and the set of isomorphism classes of pairs ((,),Ξgr)((\mathscr{L},\mathscr{L}_{\bullet}),\Xi_{{\mathrm{gr}}}) of

  • a Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-module =(,)\mathscr{L}=(\mathscr{L},\mathscr{L}_{\bullet}), and

  • an isomorphism Ξgr:𝒜per[u±1]gr𝒢\Xi_{\mathrm{gr}}\colon\mathscr{A}_{\mathrm{per}}\otimes_{\mathbb{C}[u^{\pm 1}]}{\mathrm{gr}}\mathscr{L}\xrightarrow{\sim}\mathscr{G} of Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-modules.

Proof.

Since this is standard, we only give the construction of the cohomology class. Let ((,),Ξgr)((\mathscr{L},\mathscr{L}_{\bullet}),\Xi_{{\mathrm{gr}}}) be the pair in the statement. We can take a finite open covering S1=αΛUαS^{1}=\bigcup_{\alpha\in\Lambda}U_{\alpha} such that

  • Λ=/N\Lambda=\mathbb{Z}/N\mathbb{Z} for a positive integer NN,

  • UαU_{\alpha} is an open interval for each αΛ\alpha\in\Lambda, and

  • UαUβ=U_{\alpha}\cap U_{\beta}=\emptyset for β{α1,α,α+1}\beta\notin\{\alpha-1,\alpha,\alpha+1\}

and isomorphisms

ηα:ρ1𝒜per|Uα[u±1]gr|Uα|Uα\displaystyle\eta_{\alpha}\colon\rho^{-1}\mathscr{A}_{{\mathrm{per}}|U_{\alpha}}\otimes_{\mathbb{C}[u^{\pm 1}]}{\mathrm{gr}}\mathscr{L}_{|U_{\alpha}}\overset{\sim}{\longrightarrow}\mathscr{L}_{|U_{\alpha}}

of filtered ρ1𝒜per|Uα\rho^{-1}\mathscr{A}_{{\mathrm{per}}|U_{\alpha}}-modules such that gr(ηα)=idgr|Uα{\mathrm{gr}}(\eta_{\alpha})=\mathrm{id}_{{\mathrm{gr}}\mathscr{L}_{|U_{\alpha}}}. Then, the tuple

(Ξgr|Uα,α+1ηα+1|Uα,α+11ηα|Uα,α+1Ξgr|Uα,α+11)αΛ\left(\Xi_{{\mathrm{gr}}|U_{\alpha,\alpha+1}}\circ\eta_{\alpha+1|U_{\alpha,\alpha+1}}^{-1}\circ\eta_{\alpha|U_{\alpha,\alpha+1}}\circ\Xi^{-1}_{{\mathrm{gr}}|U_{\alpha,\alpha+1}}\right)_{\alpha\in\Lambda}

defines a class in H1(S1,𝒜ut<0(𝒢))H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{G})), where we put Uα,α+1=UαUα+1U_{\alpha,\alpha+1}=U_{\alpha}\cap U_{\alpha+1}. ∎

4. Riemann-Hilbert correspondence for mild difference modules

In this section, we formulate and prove a part of Riemann-Hilbert correspondence for mild difference modules assuming a vanishing theorem (Theorem 4.7).

4.1. Definition of mild difference modules

We fix some notations and terminologies of difference modules and recall the definition of the mild difference modules in the sense of van der Put and Singer [Galois].

4.1.1. Difference modules

Recall that a difference ring is a pair (R,Φ)(R,\Phi) of a commutative ring RR with a unit 11 and a ring automorphism Φ\Phi on RR. If RR is a field, then (R,Φ)(R,\Phi) is called a difference field. Let 𝒪t(0)=𝒪t(0)0=({t})\mathscr{O}_{t}(*0)=\mathscr{O}_{\mathbb{C}_{t}}(*0)_{0}=\mathbb{C}(\!\{t\}\!) be the field of convergent Laurent series in tt. Let ϕt:𝒪t(0)𝒪t(0)\phi_{t}\colon\mathscr{O}_{t}(*0)\to\mathscr{O}_{t}(*0) be the automorphism defined by ϕt(f)(t)f(t(1+t)1)\phi_{t}(f)(t)\coloneqq f(t(1+t)^{-1}). Then the pair (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) is an example of a difference field. The pair (𝒪^t(0),ϕ^t)(\widehat{\mathscr{O}}_{t}(*0),\widehat{\phi}_{t}) of the formal completion 𝒪^t(0)((t))\widehat{\mathscr{O}}_{t}(*0)\coloneqq\mathbb{C}(\!(t)\!) of 𝒪t(0)\mathscr{O}_{t}(*0) and the automorphism ϕ^t\widehat{\phi}_{t} defined in a similar way as ϕt\phi_{t} is also an instance of a difference field.

A(n invertible) difference module over a difference ring (R,Φ)(R,\Phi) is a pair (M,Ψ)(M,\Psi) of a finitely generated RR-module MM and an automorphism Ψ:MM\Psi\colon M\to M of abelian groups such that Ψ(rm)=Φ(r)Ψ(m)\Psi(rm)=\Phi(r)\Psi(m) for any rRr\in R and mMm\in M. We abbreviate (M,Ψ)(M,\Psi) by omitting Ψ\Psi if there is no fear of confusion. The category of difference modules over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) is denoted by 𝖣𝗂𝖿𝖿𝖼{\mathsf{Diffc}}, which is an abelian category.

For a difference module (,ψ)(\mathscr{M},\psi) over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}), the automorphism ψ\psi naturally extends to an automorphism ψ^\widehat{\psi} on ^𝒪^t(0)𝒪t(0)\widehat{\mathscr{M}}\coloneqq\widehat{\mathscr{O}}_{t}(*0)\otimes_{\mathscr{O}_{t}{(*0)}}\mathscr{M}. The pair (^,ψ^)(\widehat{\mathscr{M}},\widehat{\psi}{}) is called the formal completion of (,ψ)(\mathscr{M},\psi{}), which is a difference module over 𝒪^t(0)((t))\widehat{\mathscr{O}}_{t}(*0)\coloneqq\mathbb{C}(\!(t)\!).

4.1.2. Regular singular difference modules

For a constant matrix GEnd(r)G\in\mathrm{End}(\mathbb{C}^{r}), we let G=(𝒪t(0)r,ψG)\mathscr{R}_{G}=(\mathscr{O}_{t}(*0)^{\oplus r},\psi_{G}) be a difference module defined by ψG=(1+t)Gϕtr\psi_{G}=(1+t)^{-G}\phi_{t}^{\oplus r}, where we set (1+t)G=exp(Glog(1+t))(1+t)^{-G}=\exp(-G\log(1+t)) with log(1+t)=n=1n1(t)n\log(1+t)=-\sum_{n=1}^{\infty}n^{-1}(-t)^{n}. The formal completion of G\mathscr{R}_{G} is denoted by ^G\widehat{\mathscr{R}}_{G}.

Definition 4.1.

A difference module (,ψ)(\mathscr{M},\psi) over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) is called regular singular if its formal completion (^,ψ^)(\widehat{\mathscr{M}},\widehat{\psi}) is isomorphic to ^G\widehat{\mathscr{R}}_{G} for a matrix GEnd(r)G\in\mathrm{End}(\mathbb{C}^{r}). The trivial difference module 0 is regarded as a regular singular difference module.

4.1.3. Difference modules over an extended field

Fix a positive integer mm. We use the notations in §2.3. There is a natural inclusion ρ:𝒪t(0)𝒪τ(0)\rho^{*}\colon\mathscr{O}_{t}(*0)\to\mathscr{O}_{\tau}(*0). Regard t=τmt=\tau^{m} as an element of 𝒪τ(0)\mathscr{O}_{\tau}(*0). The pair of the field 𝒪τ(0)\mathscr{O}_{\tau}(*0) and an automorphism ϕτ:𝒪τ(0)𝒪τ(0)\phi_{\tau}\colon\mathscr{O}_{\tau}(*0)\to\mathscr{O}_{\tau}(*0) defined as ϕτ(τ)τ(1+t)1/m\phi_{\tau}(\tau)\coloneqq\tau(1+t)^{-1/m} forms a difference field. The notion of formal completion is defined analogously as in the case of (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}). For a difference module \mathscr{M} over (𝒪t(0),ϕt)(\mathscr{O}_{t}{(*0)},\phi_{t}), the pull back ρ𝒪τ(0)\rho^{*}\mathscr{M}\coloneqq\mathscr{O}_{\tau}(*0)\otimes\mathscr{M} is a difference module over (𝒪τ(0),ϕτ)(\mathscr{O}_{\tau}(*0),\phi_{\tau}) in a natural way.

4.1.4. Mild exponential factors

Fix a positive integer mm as in §4.1.3. Let 𝔞=𝔞(τ)\mathfrak{a}=\mathfrak{a}(\tau) be as (4) in Definition 3.1. We note that exp(ϕτ(𝔞)𝔞)\exp(\phi_{\tau}(\mathfrak{a})-\mathfrak{a}) is a well defined element in 𝒪τ\mathscr{O}_{\tau}. We define a difference module 𝔞(𝒪τ(0),ψ𝔞)\mathscr{E}^{\mathfrak{a}}\coloneqq(\mathscr{O}_{\tau}{(*0)},\psi_{\mathfrak{a}}) by ψ𝔞(1)exp(ϕτ(𝔞)𝔞)\psi_{\mathfrak{a}}(1)\coloneqq\exp(\phi_{\tau}(\mathfrak{a})-\mathfrak{a}). The formal completion of 𝔞\mathscr{E}^{\mathfrak{a}} will be denoted by ^𝔞\widehat{\mathscr{E}}^{\mathfrak{a}}{}. For two such difference modules 𝔞\mathscr{E}^{\mathfrak{a}} and 𝔟\mathscr{E}^{\mathfrak{b}}, we have 𝔞𝔟\mathscr{E}^{\mathfrak{a}}\simeq\mathscr{E}^{\mathfrak{b}} if and only if 𝔞𝔟2π𝚒s\mathfrak{a}-\mathfrak{b}\in 2\pi{\tt{i}}s\mathbb{Z}.

4.1.5. Formal decomposition and mild difference modules

We recall the definition of mild difference modules:

Definition 4.2 ([Galois, §7.1, p.71]).

A difference module over (𝒪τ(0),ϕτ)(\mathscr{O}_{\tau}(*0),\phi_{\tau}) is called

  1. (1)

    mild elementary if it is a direct sum of the modules of the form 𝔞ρG\mathscr{E}^{\mathfrak{a}}\otimes\rho^{*}\mathscr{R}_{G}, and

  2. (2)

    mild unramified if it is formally isomorphic to a mild elementary module.

A difference module \mathscr{M} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) is called mild (resp. mild graded) if there exists a positive integer mm such that ρ\rho^{*}\mathscr{M} is mild unramified (resp. mild elementary). The category of mild difference modules is denoted by 𝖣𝗂𝖿𝖿𝖼mild{\mathsf{Diffc}}^{\mathrm{mild}}.

Remark 4.3.

The terms “mild elementary”, “mild unramified”, and “mild graded” cannot be found in [Galois]. We introduced them to clarify the analogy to the theory of differential modules. Mild difference modules form a special class of difference modules. By [Galois, Lemma 7.4], a difference module is mild if and only if it is isomorphic to a module (𝒪t(0)r,A(t)ϕtr)(\mathscr{O}_{t}(*0)^{\oplus r},A(t)\phi^{\oplus r}_{t}) where A(t)A(t) has no pole and the constant term A(0)A(0) is invertible. The most general case is called wild in [Galois].

Remark 4.4.

Let 𝕄\mathbb{M} be a holonomic 𝒟\cal{D}-module over 𝔾m=Spec([x,x1])\mathbb{G}_{m}=\mathrm{Spec}(\mathbb{C}[x,x^{-1}]). The algebraic Mellin transformation 𝔐(𝕄)\mathfrak{M}(\mathbb{M}) of 𝕄\mathbb{M} is a difference module over the difference ring ([s],ϕs)(\mathbb{C}[s],\phi_{s}) where ϕs(P(s))=P(s+1)\phi_{s}(P(s))=P(s+1) for P(s)[s]P(s)\in\mathbb{C}[s]. Then 𝔐(𝕄)[s]𝒪t(0)\mathfrak{M}(\mathbb{M})\otimes_{\mathbb{C}[s]}\mathscr{O}_{t}(*0) is mild if 𝕄\mathbb{M} is regular singular at 0 and \infty by [garcia2018mellin, Theorem 1, Lemma 3].

Lemma 4.5.

Let \mathscr{M} be a mild difference module over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}). Let 𝒩\mathscr{N}^{\prime} be a mild elementary module over (𝒪τ(0),ϕτ)(\mathscr{O}_{\tau}(*0),\phi_{\tau}) such that the formal completion 𝒩^\widehat{\mathscr{N}}^{\prime} is isomorphic to ρ^\rho^{*}\widehat{\mathscr{M}}. Then, there exists a mild graded difference module 𝒩\mathscr{N} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) such that ρ𝒩\rho^{*}\mathscr{N} is isomorphic to 𝒩\mathscr{N}^{\prime}.

Proof.

Since the formal completion of 𝒩\mathscr{N}^{\prime} is isomorphic to ρ\rho^{*}\mathscr{M}, it is naturally equipped with the action of μm\mu_{m}. Since 𝒩\mathscr{N}^{\prime} is elementary, the action naturally lifts to the action on 𝒩\mathscr{N}^{\prime}. The desired module 𝒩\mathscr{N} is the decent of 𝒩\mathscr{N}^{\prime} by this action. ∎

The module 𝒩\mathscr{N} in this lemma will be called the graded module of \mathscr{M}.

4.2. Riemann-Hilbert functor

We shall define a functor from the category 𝖣𝗂𝖿𝖿𝖼mild{\mathsf{Diffc}}^{\mathrm{mild}} of mild difference modules over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) to the category 𝖲𝗍(𝒜per){\mathsf{St(\mathscr{A}_{\mathrm{per}})}} of Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules.

4.2.1. Sheaves of difference rings

The pair (𝒪~t,ϕ~t)(\widetilde{\mathscr{O}}_{t},\widetilde{\phi}_{t}) of the sheaf 𝒪~t\widetilde{\mathscr{O}}_{t} of rings on St1S^{1}_{t} and the automorphism ϕ~t\widetilde{\phi}_{t} on 𝒪~t\widetilde{\mathscr{O}}_{t} defined in §2.2.2 is a sheaf of difference rings on St1S^{1}_{t}. The pairs (𝒜0,ϕ~t)(\mathscr{A}^{\leqslant 0},\widetilde{\phi}_{t}{}) and (𝒜<0,ϕ~t)(\mathscr{A}^{<0},\widetilde{\phi}_{t}{}) are difference subrings in (𝒪~t,ϕ~t)(\widetilde{\mathscr{O}}_{t},\widetilde{\phi}_{t}).

Let 𝒪t(0)S1\mathscr{O}_{t}(*0)_{S^{1}} be the constant sheaf on St1S^{1}_{t} with fiber 𝒪t(0)\mathscr{O}_{t}(*0). The automorphism induced from ϕt\phi_{t} on 𝒪t(0)S1\mathscr{O}_{t}(*0)_{S^{1}} is denoted by the same letter ϕt\phi_{t}. We note that the sheaves 𝒪~t\widetilde{\mathscr{O}}_{t}, 𝒜t0\mathscr{A}^{\leqslant 0}_{t}, and 𝒜t<0\mathscr{A}^{<0}_{t} are sheaves of difference algebras over (𝒪t(0)S1,ϕt)(\mathscr{O}_{t}(*0)_{S^{1}},\phi_{t}) in a natural way. For a difference module (,ψ)(\mathscr{M},\psi) over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}), let (S1,ψ)(\mathscr{M}_{S^{1}},\psi) denote the associated constant sheaf of difference modules over (𝒪t(0)S1,ϕt)(\mathscr{O}_{t}(*0)_{S^{1}},\phi_{t}). For an open subset US1U\subset S^{1}, we also use the notation

|U(𝒜0𝒪t(0)S1S1)|U\mathscr{M}_{|U}\coloneqq(\mathscr{A}^{\leqslant 0}\otimes_{\mathscr{O}_{t}(*0)_{S^{1}}}\mathscr{M}_{S^{1}})_{|U}

for simplicity.

4.2.2. Sheaves with asymptotic behavior

For 𝔞(U)\mathfrak{a}\in\mathscr{I}(U) on an open subset USt1U\subset S^{1}_{t}, let 𝒜𝔞\mathscr{A}^{\leqslant\mathfrak{a}} (resp. 𝒜<𝔞\mathscr{A}^{<\mathfrak{a}}) denote the subsheaf exp(𝔞)𝒜|U0\exp(\mathfrak{a})\mathscr{A}^{\leqslant 0}_{|U} (resp. exp(𝔞)𝒜|U<0\exp(\mathfrak{a})\mathscr{A}^{<0}_{|U}) in 𝒪~|U\widetilde{\mathscr{O}}_{|U}. For a local section 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), the sheaves 𝒜𝔞\mathscr{A}^{\leqslant\mathfrak{a}} and 𝒜<𝔞\mathscr{A}^{<\mathfrak{a}} are modules over 𝒜|U0\mathscr{A}_{|U}^{\leqslant 0}.

4.2.3. The de Rham complexes for difference modules

For a sheaf of difference module (,ψ)(\cal{M},\psi) over a sheaf of difference rings, we set

ψψidM.\nabla_{\psi}\coloneqq\psi-\mathrm{id}{M}.
Definition 4.6.

For a difference module \mathscr{M} over (𝒪t,ϕt)(\mathscr{O}_{t},\phi_{t}), we set

DR~()\displaystyle\widetilde{{\mathrm{DR}}}(\mathscr{M}) [𝒪~S1ψ~𝒪~S1],\displaystyle\coloneqq[\widetilde{\mathscr{O}}\otimes\mathscr{M}_{S^{1}}\xrightarrow{{\nabla}_{\widetilde{\psi}}}\widetilde{\mathscr{O}}\otimes\mathscr{M}_{S^{1}}],
DR0()\displaystyle{\mathrm{DR}}_{\leqslant 0}(\mathscr{M}) [𝒜0S1ψ~𝒜0S1], and\displaystyle\coloneqq[{\mathscr{A}}^{\leqslant 0}\otimes\mathscr{M}_{S^{1}}\xrightarrow{{\nabla}_{\widetilde{\psi}}}{\mathscr{A}}^{\leqslant 0}\otimes\mathscr{M}_{S^{1}}],\text{ and }
DR<0()\displaystyle{\mathrm{DR}}_{<0}(\mathscr{M}) [𝒜<0S1ψ~𝒜<0S1],\displaystyle\coloneqq[{\mathscr{A}}^{<0}\otimes\mathscr{M}_{S^{1}}\xrightarrow{{\nabla}_{\widetilde{\psi}}}{\mathscr{A}}^{<0}\otimes\mathscr{M}_{S^{1}}],

where the automorphisms on 𝒪~S1\widetilde{\mathscr{O}}\otimes\mathscr{M}_{S^{1}}, 𝒜0S1{\mathscr{A}}^{\leqslant 0}\otimes\mathscr{M}_{S^{1}}, and 𝒜<0S1{\mathscr{A}}^{<0}\otimes\mathscr{M}_{S^{1}} are denoted by ψ~\widetilde{\psi}, and the complexes are concentrated on degrees zero and one.

The proof of the following vanishing theorem will be given in the next section:

Theorem 4.7.

Assume that \mathscr{M} is a mild difference module over (𝒪t,ϕt)(\mathscr{O}_{t},\phi_{t}), then the complexes DR0(){\mathrm{DR}}_{\leqslant 0}(\mathscr{M}) and DR<0(){\mathrm{DR}}_{<0}(\mathscr{M}) have non-zero cohomology in degree zero at most. Moreover, the natural morphisms DR<0()DR0()DR~(){\mathrm{DR}}_{<0}(\mathscr{M})\to{\mathrm{DR}}_{\leqslant 0}(\mathscr{M})\to\widetilde{{\mathrm{DR}}}(\mathscr{M}) induce injections 0DR<0()0DR0()0DR~()\mathscr{H}^{0}{\mathrm{DR}}_{<0}(\mathscr{M})\to\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}(\mathscr{M})\to\mathscr{H}^{0}\widetilde{{\mathrm{DR}}}(\mathscr{M}).

The following corollary will also be proved in the next section:

Corollary 4.8.

Let \mathscr{M} be a mild difference module and 𝔞(U)\mathfrak{a}\in\mathscr{I}(U). If we set

DR𝔞()\displaystyle{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M}) =[𝒜𝔞|Uψ~𝒜𝔞|U], and\displaystyle=[\mathscr{A}^{\leqslant\mathfrak{a}}\otimes\mathscr{M}_{|U}\xrightarrow{\nabla_{\widetilde{\psi}}}\mathscr{A}^{\leqslant\mathfrak{a}}\otimes\mathscr{M}_{|U}],\text{ and}
DR<𝔞()\displaystyle{\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{M}) =[𝒜<𝔞|Uψ~𝒜<𝔞|U],\displaystyle=[\mathscr{A}^{<\mathfrak{a}}\otimes\mathscr{M}_{|U}\xrightarrow{\nabla_{\widetilde{\psi}}}\mathscr{A}^{<\mathfrak{a}}\otimes\mathscr{M}_{|U}],

then these complexes have non-zero cohomology in degree zero at most. Moreover, the natural morphisms DR<𝔞()DR𝔞()DR~(){\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{M})\to{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\to\widetilde{{\mathrm{DR}}}(\mathscr{M}) induce injections 0DR<𝔞()0DR𝔞()0DR~()\mathscr{H}^{0}{\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{M})\to\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\to\mathscr{H}^{0}\widetilde{{\mathrm{DR}}}(\mathscr{M}). The quotient

gr𝔞0DR()0DR𝔞()/0DR<𝔞()\displaystyle{\mathrm{gr}}_{\mathfrak{a}}\mathscr{H}^{0}{\mathrm{DR}}(\mathscr{M})\coloneqq\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})/\mathscr{H}^{0}{\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{M})

is a local system of \mathbb{C}-vector space over UU.

Remark 4.9.

Let US1U\subset S^{1} be an open subset and 𝔞(U)\mathfrak{a}\in\mathscr{I}(U). For a sheaf of difference module 𝒩\mathscr{N} over (𝒜|U0,ϕ~t)(\mathscr{A}^{\leqslant 0}_{|U},\widetilde{\phi}_{t}), we can define the complexes DR𝔞(𝒩){\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{N}) and DR<𝔞(𝒩){\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{N}) in a similar way. These complexes are natural in the sense that a morphism ξ:𝒩𝒩\xi\colon\mathscr{N}\to\mathscr{N}^{\prime} of (𝒜|U0,ϕ~t)(\mathscr{A}^{\leqslant 0}_{|U},\widetilde{\phi}_{t})-modules induces morphisms of the complexes DR<𝔞(𝒩)DR<𝔞(𝒩){\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{N})\to{\mathrm{DR}}_{<\mathfrak{a}}(\mathscr{N}^{\prime}) and DR𝔞(𝒩)DR𝔞(𝒩){\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{N})\to{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{N}^{\prime}) in a natural way.

Note that we have un:DR𝔞()DR𝔞+2π𝚒ns()u^{n}\colon{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\xrightarrow{\sim}{\mathrm{DR}}_{\leqslant\mathfrak{a}+2\pi{\tt{i}}ns}(\mathscr{M}) for nn\in\mathbb{Z}.

Lemma 4.10.

There exists a unique sub sheaf Per()DR~(){\mathrm{Per}}(\mathscr{M})\subset\widetilde{{\mathrm{DR}}}{(\mathscr{M})} of 𝒜per\mathscr{A}_{\mathrm{per}}-modules such that Per()|U=𝔞(U)0DR𝔞(){\mathrm{Per}}(\mathscr{M})_{|U}=\sum_{\mathfrak{a}\in\mathscr{I}(U)}\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M}) for any open subset US1U\subsetneq S^{1}.

Proof.

If two open subsets UU and VV with VUSt1\emptyset\neq V\subset U\subsetneq S^{1}_{t} are connected, the restriction map (U)(V)\mathscr{I}(U)\to\mathscr{I}{(V)} is an isomorphism. Then the restriction map 𝔞(U)DR𝔞()𝔟(V)DR𝔟()\sum_{\mathfrak{a}\in\mathscr{I}(U)}{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\to\sum_{\mathfrak{b}\in\mathscr{I}(V)}{\mathrm{DR}}_{\leqslant\mathfrak{b}}(\mathscr{M}) is isomorphism. The lemma follows from this fact. ∎

Remark 4.11.

We do not have Per()=0DR~(){\mathrm{Per}}(\mathscr{M})=\mathscr{H}^{0}\widetilde{{\mathrm{DR}}}(\mathscr{M}) in general. In other words, the filtration 0DR()\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant\bullet}(\mathscr{M}) on 0DR~()\mathscr{H}^{0}\widetilde{{\mathrm{DR}}}(\mathscr{M}) is not exhaustive in general. This is one of the differences between our setting and the case of meromorphic connections. We also use the notation Per{\mathrm{Per}} for difference modules over (𝒜|U0,ϕ~t)(\mathscr{A}_{|U}^{\leqslant 0},\widetilde{\phi}_{t}) in a similar way.

We set

0DR(){0DR𝔞()USt1:open subset, 𝔞(U)}.\displaystyle\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M})\coloneqq\{\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\mid U\subset S^{1}_{t}\colon\text{open subset, }\mathfrak{a}\in\mathscr{I}(U)\}.

It is easy to see that 0DR()\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}) is a pre-Stokes filtration on DR(){\mathrm{DR}}(\mathscr{M}). For a morphism ξ:\xi\colon\mathscr{M}\to\mathscr{M}^{\prime} of analytic difference modules, we naturally obtain a morphism RH(ξ):(Per(),0DR())(Per(),0DR()){\mathrm{RH}}(\xi)\colon({\mathrm{Per}}(\mathscr{M}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}))\to({\mathrm{Per}}(\mathscr{M}^{\prime}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}^{\prime})) of pre-Stokes filtered 𝒜per\mathscr{A}_{{\mathrm{per}}}-modules.

Definition 4.12.

We define a functor RH:𝖣𝗂𝖿𝖿𝖼mild𝖲𝗍pre(𝒜per){\mathrm{RH}}\colon{\mathsf{Diffc}}^{\mathrm{mild}}\to{\mathsf{St}^{\rm pre}(\mathscr{A}_{\mathrm{per}})} by

RH()(Per(),0DR())\displaystyle{\mathrm{RH}}(\mathscr{M})\coloneqq({\mathrm{Per}}(\mathscr{M}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}))

for an object 𝖣𝗂𝖿𝖿𝖼mild\mathscr{M}\in{{\mathsf{Diffc}}}^{\mathrm{mild}} and RH(ξ){\mathrm{RH}}(\xi) for a morphism ξ\xi in 𝖣𝗂𝖿𝖿𝖼mild{\mathsf{Diffc}}^{\mathrm{mild}}.

4.2.4. An example

Let 𝒪t(0)\mathscr{O}_{t}(*0) denote the difference module (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) over itself.

Theorem 4.13.

Per(𝒪t(0))=𝒜per{\mathrm{Per}}(\mathscr{O}_{t}(*0))=\mathscr{A}_{{\mathrm{per}}}.

Proof.

By definition, we have DR2π𝚒ns(𝒪t(0))=un𝒜per0{\mathrm{DR}}_{\leqslant 2\pi{\tt{i}}ns}(\mathscr{O}_{t}(*0))=u^{n}\mathscr{A}_{{\mathrm{per}}}^{\leqslant 0} for every nn\in\mathbb{Z}. It follows that 𝒜perPer(𝒪t(0))\mathscr{A}_{{\mathrm{per}}}\subset{\mathrm{Per}}(\mathscr{O}_{t}(*0)). It then remains to prove the relation

(6) 𝒪~per|U𝒜𝔞𝒜per|U\displaystyle\widetilde{\mathscr{O}}_{{\mathrm{per}}|U}\cap\mathscr{A}^{\leqslant\mathfrak{a}}\subset\mathscr{A}_{{\mathrm{per}}|U}

for any 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), where US1U\subset S^{1} is an open interval. To see the relation (6), we use the presentation 𝔞(t)==1mcτ\mathfrak{a}(t)=\sum_{\ell=1}^{m}c_{\ell}\tau^{-\ell} as in (4). Here, we fix a branch of logt\log t on UU and put τexp(m1logt)\tau\coloneqq\exp(m^{-1}\log t) for a positive integer mm.

The relation (6) is shown as follows. Take an integer maxmax{c0}\ell_{\max}\coloneqq\max\{\ell\mid c_{\ell}\neq 0\}. If maxm\ell_{\max}\neq m, then using the open subset

U(𝔞){e𝚒θU(exp(𝚒θmax/m)cmax)>0},\displaystyle U(\mathfrak{a})\coloneqq\{e^{{\tt{i}}\theta}\in U\mid\Re(\exp(-{\tt{i}}\theta\ell_{\max}/m)c_{\ell_{\max}})>0\},

where θ=(logt)\theta=\Im(\log t), we have

(𝒪~per𝒜𝔞)(V)={𝒜per0(V)(VU(𝔞))𝒜per<0(V)(VU(𝔞)).\displaystyle(\widetilde{\mathscr{O}}_{{\mathrm{per}}}\cap\mathscr{A}^{\leqslant\mathfrak{a}})(V)=\begin{cases}\mathscr{A}_{{\mathrm{per}}}^{\leqslant 0}(V)&(V\subset U(\mathfrak{a}))\\ \mathscr{A}_{{\mathrm{per}}}^{<0}(V)&(V\not\subset U(\mathfrak{a})).\end{cases}

This implies (6) in this case. The case max=m\ell_{\max}=m and cm2π𝚒c_{m}\in 2\pi{\tt{i}}\mathbb{Z} is reduced to the case above. Assume that max=m\ell_{\max}=m and cm2π𝚒c_{m}\notin 2\pi{\tt{i}}\mathbb{Z}. In this case, for each point e𝚒θU{e0,eπ𝚒}e^{{\tt{i}}\theta}\in U\setminus\{e^{0},e^{\pi{\tt{i}}}\}, there exists an integer nn such that

(𝒪~per|U𝒜𝔞)e𝚒θun𝒜per,e𝚒θ0𝒜per,e𝚒θ,\displaystyle(\widetilde{\mathscr{O}}_{{\mathrm{per}}|U}\cap\mathscr{A}^{\leqslant\mathfrak{a}})_{e^{{\tt{i}}\theta}}\subset u^{n}\mathscr{A}_{{\mathrm{per}},e^{{\tt{i}}\theta}}^{\leqslant 0}\subset\mathscr{A}_{{\mathrm{per}},e^{{\tt{i}}\theta}},

which implies (6) at e𝚒θe^{{\tt{i}}\theta}. Since cm2π𝚒c_{m}\notin 2\pi{\tt{i}}\mathbb{Z}, we have (𝒪~per|U𝒜𝔞)±1=0(\widetilde{\mathscr{O}}_{{\mathrm{per}}|U}\cap\mathscr{A}^{\leqslant\mathfrak{a}})_{\pm 1}=0. ∎

4.2.5. Elementary examples

Let US1U\subset S^{1} be an open subset. For each 𝔞(U)\mathfrak{a}\in\mathscr{I}(U) and GEnd(r)G\in\mathrm{End}(\mathbb{C}^{r}) we consider a (𝒜|U0,ϕ~t)(\mathscr{A}^{\leqslant 0}_{|U},\widetilde{\phi}_{t})-module 𝔞G|U\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U}, where we have set 𝔞(𝒜|U0,exp(ϕ~t(𝔞)𝔞)ϕ~t)\mathscr{E}^{\mathfrak{a}}\coloneqq(\mathscr{A}^{\leqslant 0}_{|U},\exp(\widetilde{\phi}_{t}(\mathfrak{a})-\mathfrak{a})\widetilde{\phi}_{t}) similarly as in §4.1.4. Then we obtain the following:

Corollary 4.14.

Per(𝔞G|U))=exp(𝔞)tG𝒜rper|U{\mathrm{Per}}(\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U}))=\exp(-\mathfrak{a})t^{-G}\mathscr{A}^{\oplus r}_{{\mathrm{per}}|U}.

Proof.

The claim follows from Theorem 4.13 and the following isomorphism of (𝒜|U0,ϕ~t)(\mathscr{A}^{\leqslant 0}_{|U},\widetilde{\phi}_{t}) -modules:

(𝒜𝔟+𝔞)r𝒜𝔟,𝒇exp(𝔞)tG𝒇\displaystyle(\mathscr{A}^{\leqslant\mathfrak{b}+\mathfrak{a}})^{\oplus r}\xrightarrow{\sim}\mathscr{A}^{\leqslant\mathfrak{b}}\otimes\mathscr{M},\quad\bm{f}\mapsto\exp(-\mathfrak{a})t^{-G}\bm{f}

where we put 𝒇=(f1,,fr)t\bm{f}={}^{t}(f_{1},\dots,f_{r}), =𝔞G|U\mathscr{M}=\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U}, and 𝔟(U)\mathfrak{b}\in\mathscr{I}(U). ∎

A proof of Corollary 4.8.

The fact that Theorem 4.7 implies Corollary 4.8 easily follows from the isomorphism

DR𝔞()DR0(𝔞|U)\displaystyle{\mathrm{DR}}_{\leqslant\mathfrak{a}}(\mathscr{M})\xrightarrow{\sim}{\mathrm{DR}}_{\leqslant 0}(\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{M}_{|U})

given by the multiplication of exp(𝔞)\exp(-\mathfrak{a}). ∎

4.3. Existence of local splittings

In this subsection, we prove the following:

Theorem 4.15.

If 𝖣𝗂𝖿𝖿𝖼mild\mathscr{M}\in{\mathsf{Diffc}}^{\mathrm{mild}}, then RH(){\mathrm{RH}}(\mathscr{M}) is a Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-module.

4.3.1. Asymptotic expansions

As a preliminary, we recall the basic theory of asymptotic expansions. Let 𝒜\cal{A} be the subsheaf of 𝒪~\widetilde{\mathscr{O}} whose sections have the asymptotic expansion in 𝒪^(0)\widehat{\mathscr{O}}(*0). By the Borel-Ritt theorem, we have an exact sequence

(7) 0𝒜<0𝒜asyϖ1𝒪^(0)0\displaystyle 0\longrightarrow\mathscr{A}^{<0}\longrightarrow\cal{A}\xrightarrow{{\mathrm{asy}}}\varpi^{-1}\widehat{\mathscr{O}}{(*0)}{\longrightarrow}0

where the symbol ‘asy{\mathrm{asy}}’ denotes the asymptotic expansion. We note that the relation 𝒜𝒜0\cal{A}\subset\mathscr{A}^{\leqslant 0} holds as subsheaves of 𝒪~\widetilde{\mathscr{O}}.

Take a positive integer mm and let ρ:Sτ1St1\rho\colon S^{1}_{\tau}\to S^{1}_{t} be a finite covering as in §2.3. Take a local section 𝔰:USτ1\mathfrak{s}\colon U\to S^{1}_{\tau} of ρ\rho (i.e. fix a branch of τ=t1/m\tau=t^{1/m}). Then we have an exact sequence

(8) 0𝒜t|U<0𝒜|𝒰(𝓂)asy𝔰𝒪^τ(0)𝒮1|𝒰0\displaystyle 0\longrightarrow\mathscr{A}^{<0}_{t|U}\longrightarrow\cal{A}_{|U}^{(m)}\xrightarrow{{\mathrm{asy}}_{\mathfrak{s}}}\widehat{\mathscr{O}}_{\tau}{(*0)}_{S^{1}|U}{\longrightarrow}0

by the pull back of (7), where we put 𝒜(𝓂)ρ𝒜𝒜0ρ𝒪~τ\cal{A}^{(m)}\coloneqq\rho_{*}\cal{A}\cap\mathscr{A}^{\leqslant 0}\subset\rho_{*}\widetilde{\mathscr{O}}_{\tau}, and asy𝔰=𝔰1asy{\mathrm{asy}}_{\mathfrak{s}}=\mathfrak{s}^{-1}{\mathrm{asy}}.

4.3.2. Key fact

Let \mathscr{M} be a mild difference module. By Lemma 4.5, we have a graded module 𝒩\mathscr{N} of \mathscr{M}. Let mm be a positive integer and use the notations in §2.3 and §4.1.3. Assume that there exists an isomorphism Ξ^:ρ^ρ𝒩^\widehat{\Xi}\colon\rho^{*}\widehat{\mathscr{M}}\xrightarrow{\sim}\rho^{*}\widehat{\mathscr{N}} of difference modules over (𝒪^τ(0),ϕ^τ)(\widehat{\mathscr{O}}_{\tau}(*0),\widehat{\phi}_{\tau}).

Theorem 4.16 ([BF, Galois]).

Let ,𝒩,m,\mathscr{M},\mathscr{N},m, and Ξ^\widehat{\Xi} be as above. Then, for any point e𝚒θSt1e^{{\tt{i}}\theta}\in S^{1}_{t}, there exist an open neighborhood UU of e𝚒θe^{{\tt{i}}\theta}, an isomorphism

ΞU\displaystyle\Xi_{U} :(𝒜(𝓂)𝒮1)|𝒰(𝒜(𝓂)𝒩𝒮1)|𝒰,\displaystyle\colon(\cal{A}^{(m)}{\otimes}\mathscr{M}_{S^{1}})_{|U}\xrightarrow{\sim}(\cal{A}^{(m)}{\otimes}\mathscr{N}_{S^{1}})_{|U},

and a section 𝔰:USτ1\mathfrak{s}:U\to S^{1}_{\tau} such that the formal completion

id𝒪^τ(0)ΞU:ρ^ρ𝒩^\displaystyle\mathrm{id}_{\widehat{\mathscr{O}}_{\tau}(*0)}\otimes{\Xi}_{U}\colon\rho^{*}\widehat{\mathscr{M}}\longrightarrow\rho^{*}\widehat{\mathscr{N}}

via asy𝔰{\mathrm{asy}}_{\mathfrak{s}} coincides with Ξ^\widehat{\Xi}, where we have used the identifications

𝒪^τ(0)(𝒜(𝓂)𝒮1)|𝒰=ρ^, and 𝒪^τ(0)(𝒜(𝓂)𝒩𝒮1)|𝒰=ρ𝒩^.\displaystyle\widehat{\mathscr{O}}_{\tau}(*0)\otimes(\cal{A}^{(m)}{\otimes}\mathscr{M}_{S^{1}})_{|U}=\rho^{*}\widehat{\mathscr{M}},\text{ and }\widehat{\mathscr{O}}_{\tau}(*0)\otimes(\cal{A}^{(m)}{\otimes}\mathscr{N}_{S^{1}})_{|U}=\rho^{*}\widehat{\mathscr{N}}.
Proof.

Take a basis e1,,ere_{1},\dots,e_{r} of \mathscr{M} over 𝒪t(0)\mathscr{O}_{t}(*0). Take a basis f1,,frf_{1},\dots,f_{r} of 𝒩\mathscr{N} over 𝒪t(0)\mathscr{O}_{t}(*0). Let ψ\psi_{\mathscr{M}} and ψ𝒩\psi_{\mathscr{N}} be the automorphisms on \mathscr{M} and 𝒩\mathscr{N}, respectively. Then we have ψ𝒆=A(t)𝒆\psi_{\mathscr{M}}\bm{e}=A(t)\bm{e} and ψ𝒩𝒇=B(t)𝒇\psi_{\mathscr{N}}\bm{f}=B(t)\bm{f} where we put 𝒆=(e1er)t\bm{e}={}^{t}(e_{1}\ \cdots\ e_{r}) and 𝒇=(f1fr)t\bm{f}={}^{t}(f_{1}\ \cdots\ f_{r}). By assumption, there exists a invertible matrix Y^(τ)GLr(𝒪^τ(0))\widehat{Y}(\tau)\in{\mathrm{GL}}_{r}(\widehat{\mathscr{O}}_{\tau}(*0)) which satisfies the difference equation ϕ^τ(Y^)(τ)=B(τm)Y^(τ)A(τm)1\widehat{\phi}_{\tau}(\widehat{Y})({\tau})=B(\tau^{m})\widehat{Y}(\tau)A(\tau^{m})^{-1}. By [Galois, Theorem 9.1, Theorem 11.1], which is essentially due to Braaksma-Faber [BF, Theorem 4.1] (or, more generally, [Galois, Theorem 11.7, Remarks 11.9, Theorem 11.10, Remark 11.11], which uses the result of Immink [Immink, Immink2]) for any point e𝚒θS1e^{{\tt{i}}\theta}\in S^{1} for sufficiently small UU and a choice 𝔰:USτ1\mathfrak{s}\colon U\to S^{1}_{\tau} of the branch of τ=t1/m\tau=t^{1/m}, there exists a section Y(t)GLr(𝒜(𝓂)(𝒰))Y(t)\in{\mathrm{GL}}_{r}(\cal{A}^{(m)}(U)) such that asy𝔰(Y)=Y^{\mathrm{asy}}_{\mathfrak{s}}(Y)=\widehat{Y} and ϕ~t(Y)(t)=B(t)Y(t)A(t)1.\widetilde{\phi}_{t}({Y})(t)=B(t){Y}(t)A(t)^{-1}. Set ΞU𝒆=Y(t)𝒇\Xi_{U}\bm{e}=Y(t)\bm{f}. Then it follows that ΞU\Xi_{U} is a morphism that satisfies the conditions. ∎

4.3.3. A proof of Theorem 4.15

Let \mathscr{M} be a mild difference module. Let 𝒩\mathscr{N} be the graded module of \mathscr{M}.

Then, by Theorem 4.16, for each point eSt1e\in S^{1}_{t}, there is an open neighborhood UU of ee and an isomorphism

ΞU:|U𝒩|U\displaystyle\Xi_{U}\colon\mathscr{M}_{|U}\xrightarrow{\sim}\mathscr{N}_{|U}

of difference modules over (𝒜|U0,ϕ~t)(\mathscr{A}^{\leqslant 0}_{|U},\widetilde{\phi}_{t}). We obtain the theorem by Corollary 4.14. ∎

4.4. Statement of the main theorem

We are now in the position to state the main result of this paper:

Theorem 4.17.

The induced functor

RH:𝖣𝗂𝖿𝖿𝖼mild𝖲𝗍(𝒜per),RH()=(Per(),0DR())\displaystyle{\mathrm{RH}}\colon{\mathsf{Diffc}}^{\mathrm{mild}}\to{\mathsf{St(\mathscr{A}_{\mathrm{per}})}},\quad\mathscr{M}\mapsto{\mathrm{RH}}(\mathscr{M})=({\mathrm{Per}}(\mathscr{M}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}))

is an equivalence of categories.

We give a proof of the fact that RH{\mathrm{RH}} is fully faithful in §4.5. Then we use the fact to prove that RH{\mathrm{RH}} is essentially surjective in §4.6.

4.5. Fully faithfulness

We shall prove that the functor RH{\mathrm{RH}} is fully faithful.

4.5.1.

Let =(,ψ)\mathscr{M}=(\mathscr{M},\psi) and =(,ψ)\mathscr{M}^{\prime}=(\mathscr{M},\psi^{\prime}) be difference modules over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}). The module om𝒪(,){\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime}) of morphisms of 𝒪t(0)\mathscr{O}_{t}(*0)-modules from \mathscr{M} to \mathscr{M}^{\prime} is equipped with the automorphism ψ,(h)ψhψ1\psi_{\mathscr{M},\mathscr{M}^{\prime}}(h)\coloneqq\psi^{\prime}\circ h\circ\psi^{-1} for hom𝒪(,)h\in{\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime}). For simplicity of the notations, we set (,)(Per(),0DR())(\mathscr{L},\mathscr{L}_{\bullet})\coloneqq({\mathrm{Per}}(\mathscr{M}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}{})) and (,)(Per(),0DR()).(\mathscr{L}^{\prime},\mathscr{L}^{\prime}_{\bullet})\coloneqq({\mathrm{Per}}(\mathscr{M}^{\prime}),\mathscr{H}^{0}{\mathrm{DR}}_{\bullet}(\mathscr{M}^{\prime})).

Lemma 4.18.

There is a natural morphism

RH0:0DR0(om𝒪(,))om(,)0.\displaystyle{\mathrm{RH}}_{\leqslant 0}\colon\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}({\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime}))\longrightarrow{\mathscr{H}\!\!om}(\mathscr{L},\mathscr{L}^{\prime})_{\leqslant 0}.
Proof.

A local section on an open subset UU of 0DR0(om𝒪(,))\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}({\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime})) is regarded as a morphism

ξ:|U|U\displaystyle\xi\colon\mathscr{M}_{|U}\to\mathscr{M}_{|U}

which is compatible with the difference operators. For each 𝔞(U)\mathfrak{a}\in\mathscr{I}(U), it also sends 𝒜𝔞|U\mathscr{A}^{\leqslant\mathfrak{a}}\otimes\mathscr{M}_{|U} into 𝒜𝔞|U\mathscr{A}^{\leqslant\mathfrak{a}}\otimes\mathscr{M}^{\prime}_{|U}. It follows that ξ\xi sends 𝔞\mathscr{L}_{\leqslant\mathfrak{a}} into 𝔞\mathscr{L}^{\prime}_{\leqslant\mathfrak{a}}. Hence it defines a local section RH0(ξ)om(,)0{\mathrm{RH}}_{\leqslant 0}(\xi)\in{\mathscr{H}\!\!om}(\mathscr{L},\mathscr{L^{\prime}})_{\leqslant 0}. ∎

4.5.2.

For each point eSt1e\in S^{1}_{t}, there is an open neighborhood UU of ee such that RH0{\mathrm{RH}}_{\leqslant 0} is isomorphic to the direct sum of the morphisms of the form

0DR0(om(𝔞G|U,𝔟H|U))\displaystyle\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}({\mathscr{H}\!\!om}(\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U},\mathscr{E}^{\mathfrak{b}}\otimes\mathscr{R}_{H|U}))
om(exp(𝔞)tG𝒜per|Ur,exp(𝔟)tH𝒜per|Ur)0\displaystyle\longrightarrow{\mathscr{H}\!\!om}(\exp(-\mathfrak{a})t^{-G}\mathscr{A}^{\oplus r}_{{\mathrm{per}}|U},\exp(-\mathfrak{b})t^{-H}\mathscr{A}^{\oplus r^{\prime}}_{{\mathrm{per}}|U})_{\leqslant 0}

where 𝔞,𝔟(U)\mathfrak{a},\mathfrak{b}\in\mathscr{I}(U), GEnd(r)G\in\mathrm{End}(\mathbb{C}^{r}), and HEnd(r)H\in\mathrm{End}(\mathbb{C}^{r^{\prime}}) by Theorem 4.16. It then follows that the morphism RH0{\mathrm{RH}}_{\leqslant 0} is an isomorphism.

4.5.3.

Let us set 𝒩=om𝒪(,)\mathscr{N}={\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime}) and we define DR(𝒩){\mathrm{DR}}(\mathscr{N}) by the complex 𝒩ψid𝒩\mathscr{N}\xrightarrow{\psi-\mathrm{id}}\mathscr{N} in degree zero and one, where ψ\psi denotes the automorphism on 𝒩\mathscr{N} naturally induced from \mathscr{M} and \mathscr{M}^{\prime}. Then we have 0DR(𝒩)=Hom(,)\mathscr{H}^{0}{\mathrm{DR}}(\mathscr{N})=\mathrm{Hom}(\mathscr{M},\mathscr{M}^{\prime}). By the projection formula, we have DR(𝒩)=ϖDR0(𝒩){\mathrm{DR}}(\mathscr{N})=\mathbb{R}\varpi_{*}{\mathrm{DR}}_{\leqslant 0}(\mathscr{N}). By Theorem 4.7, we obtain ϖDR0(𝒩)=ϖ0DR0(𝒩)\mathbb{R}\varpi_{*}{\mathrm{DR}}_{\leqslant 0}(\mathscr{N})=\mathbb{R}\varpi_{*}\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}(\mathscr{N}) and hence

Hom(,)=ϖ0DR0(om𝒪(,)).\displaystyle\mathrm{Hom}(\mathscr{M},\mathscr{M}^{\prime})=\varpi_{*}\mathscr{H}^{0}{\mathrm{DR}}_{\leqslant 0}({\mathscr{H}\!\!om}_{\mathscr{O}}(\mathscr{M},\mathscr{M}^{\prime})).

Then, the morphism RH=ϖRH0{\mathrm{RH}}=\varpi_{*}{\mathrm{RH}}_{\leqslant 0} gives an isomorphism between Hom(,)\mathrm{Hom}(\mathscr{M},\mathscr{M}^{\prime}) and ϖom(,)0=Hom𝖲𝗍(𝒜per)(,)\varpi_{*}{\mathscr{H}\!\!om}(\mathscr{L},\mathscr{L}^{\prime})_{\leqslant 0}=\mathrm{Hom}_{{\mathsf{St(\mathscr{A}_{\mathrm{per}})}}}(\mathscr{L},\mathscr{L}^{\prime}).

4.6. Essential surjectivity

To complete the proof of Theorem 4.17, we shall prove the essential surjectivity of the functor RH{\mathrm{RH}}.

4.6.1. Graded case

We shall firstly show the essential surjectivity of RH{\mathrm{RH}} in the graded case:

Lemma 4.19.

Let 𝒢\mathscr{G} be a graded Stokes filtered 𝒜per\mathscr{A}_{\mathrm{per}}-module. There exists a mild graded difference module 𝒩\mathscr{N} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) such that RH(𝒩)𝒢{\mathrm{RH}}(\mathscr{N})\simeq\mathscr{G}.

Proof.

Take a positive integer mm such that Σ(𝒢)m\Sigma(\mathscr{G})\subset\mathscr{I}_{m}. Then ρ1Σ(𝒢)ρ1m=m,τ\rho^{-1}\Sigma(\mathscr{G})\subset\rho^{-1}\mathscr{I}_{m}=\mathscr{I}_{m,\tau} is a trivial sheaf of finitely many (2π𝚒s)(2\pi{\tt{i}}\mathbb{Z}s)-orbits, which admits a μm\mu_{m}-action. Take a section 𝔞i\mathfrak{a}_{i} for each i=1,,i=1,\dots,\ell in the orbit, so that

ρm1Σ(𝒢)=i=1(𝔞i+2π𝚒sS1).\rho^{-1}_{m}\Sigma(\mathscr{G})=\bigsqcup_{i=1}^{\ell}(\mathfrak{a}_{i}+2\pi{\tt{i}}s\mathbb{Z}_{S^{1}}).

For each ii, let gr𝔞i(ρ1𝒢){\mathrm{gr}}_{\mathfrak{a}_{i}}(\rho^{-1}\mathscr{G}) be a local system of \mathbb{C}-vector space defined as follows:

gr𝔞i(ρ1𝒢)(U)=gr𝔞i,U𝒢(ρ(U))\displaystyle{\mathrm{gr}}_{\mathfrak{a}_{i}}(\rho^{-1}\mathscr{G})(U)={\mathrm{gr}}_{\mathfrak{a}_{i,U}}\mathscr{G}(\rho(U))

where UU is an open subset such that ρ|U\rho_{|U} is a homeomorphism and 𝔞i,Um(U)\mathfrak{a}_{i,U}\in\mathscr{I}_{m}(U) is a section such that ρ|U𝔞i,U=𝔞i|U\rho_{|U}^{*}\mathfrak{a}_{i,U}=\mathfrak{a}_{i|U}. Then, there is a matrix GiG_{i} such that the monodromy of gr𝔞i(𝒢){\mathrm{gr}}_{\mathfrak{a}_{i}}(\mathscr{G}) is given by exp(2π𝚒mGi)\exp(2\pi{\tt{i}}mG_{i}) for some basis at a fiber. Set 𝒩i𝔞iρGi\mathscr{N}^{\prime}\coloneqq\bigoplus_{i}\mathscr{E}^{\mathfrak{a}_{i}}\otimes\rho^{*}\mathscr{R}_{G_{i}}. Then, by the μm\mu_{m}-invariant construction given above, there is a mild graded difference module 𝒩\mathscr{N} such that ρ𝒩𝒩\rho^{*}\mathscr{N}\simeq\mathscr{N}^{\prime}. We can easily check that RH(𝒩)𝒢{\mathrm{RH}}(\mathscr{N})\simeq\mathscr{G}. ∎

4.6.2. Classification theorem

For a difference module 𝒩\mathscr{N} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}), we set

𝒜ut<0(𝒩)=id𝒩+0DR<0(nd(𝒩)).\displaystyle{\mathscr{A}ut}^{<0}(\mathscr{N})=\mathrm{id}_{\mathscr{N}}+\mathscr{H}^{0}{\mathrm{DR}}_{<0}(\mathscr{E}nd(\mathscr{N})).

The following Malgrange-Sibuya type classification theorem for difference modules plays a key role in the proof of essential surjectivity of RH{\mathrm{RH}}:

Theorem 4.20.

Let 𝒩\mathscr{N} be a mild graded difference module over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}). Let mm be a positive integer such that ρm𝒩\rho^{*}_{m}\mathscr{N} is mild elementary. Then there is a natural one-to-one correspondence between the set

H1(S1,𝒜ut<0(𝒩))\displaystyle H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{N}))

and the set of isomorphism classes of pairs (,Ξ^)(\mathscr{M},\widehat{\Xi}) of

  • a mild difference module \mathscr{M} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}), and

  • an isomorphism Ξ^:ρ^ρ𝒩^\widehat{\Xi}\colon\rho^{*}\widehat{\mathscr{M}}\xrightarrow{\sim}\rho^{*}\widehat{\mathscr{N}} of difference modules over (𝒪^τ(0),ϕ^τ)(\widehat{\mathscr{O}}_{\tau}(*0),\widehat{\phi}_{\tau}).

Proof.

This theorem is essentially proved in [Galois, Theorem 11.12]. We shall recall the construction of the pair (𝒩,Ξ^)(\mathscr{N},\widehat{\Xi}) from the cohomology class [g][g] for the convenience of the reader. Take a finite open covering S1=αΛUαS^{1}=\bigcup_{\alpha\in\Lambda}U_{\alpha} such that

  • Λ=/N\Lambda=\mathbb{Z}/N\mathbb{Z} for a positive integer NN such that,

  • UαU_{\alpha} is an open interval for each αΛ\alpha\in\Lambda, and

  • UαUβ=U_{\alpha}\cap U_{\beta}=\emptyset for β{α1,α,α+1}\beta\notin\{\alpha-1,\alpha,\alpha+1\},

and a representative g=(gα)ααΛH0(Vα,𝒜ut<0(𝒩))g=(g_{\alpha})_{\alpha}\in\prod_{\alpha\in\Lambda}H^{0}(V_{\alpha},{\mathscr{A}ut}^{<0}(\mathscr{N})), where VαUαUα+1V_{\alpha}\coloneqq U_{\alpha}\cap U_{\alpha+1}. Fix a frame 𝒩=i=1r𝒪t(0)ei\mathscr{N}=\bigoplus_{i=1}^{r}\mathscr{O}_{t}(*0)e_{i}, then, for each α\alpha, the section gαg_{\alpha} is identified with a section (gα,ij)GLr(𝒜(𝓂)(𝒱α))(g_{\alpha,ij})\in{\mathrm{GL}}_{r}(\cal{A}^{(m)}(V_{\alpha})) via gα(ei)=jgα,ijejg_{\alpha}(e_{i})=\sum_{j}g_{\alpha,ij}e_{j}. Then we obtain the map

H1(S1,𝒜ut<0(𝒩))H1(S1,GLr(𝒜(𝓂))).H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{N}))\to H^{1}(S^{1},{\mathrm{GL}}_{r}(\cal{A}^{(m)})).

By the Malgrange-Sibuya theorem, this map is trivial. It implies that there exists a family (hα)ααΛH0(Uα,GLr(𝒜(𝓂)))(h_{\alpha})_{\alpha}\in\prod_{\alpha\in\Lambda}H^{0}(U_{\alpha},{\mathrm{GL}}_{r}(\cal{A}^{(m)})) such that gα=hα1hα+1g_{\alpha}=h_{\alpha}^{-1}h_{\alpha+1} on VαV_{\alpha} (taking finer covering if necessary). Let ψ\psi be the difference operator on 𝒩\mathscr{N}. Using the frame, we have ψ=A0(t)ϕtr\psi=A^{0}(t)\phi_{t}^{\oplus r} for some A0(t)GLr(𝒪t(0))A^{0}(t)\in{\mathrm{GL}}_{r}(\mathscr{O}_{t}(*0)). Note that we have the equality ϕ~t(gα)=A0gα(A0)1\widetilde{\phi}_{t}(g_{\alpha})=A^{0}g_{\alpha}(A^{0})^{-1}. We then set

A~α(t)=ϕ~t(hα)A0(t)hα1GLr(𝒜(𝓂)(𝒰α))\widetilde{A}_{\alpha}(t)=\widetilde{\phi}_{t}(h_{\alpha})A^{0}(t)h_{\alpha}^{-1}\in{\mathrm{GL}}_{r}(\cal{A}^{(m)}(U_{\alpha}))

for each αΛ\alpha\in\Lambda. Since we have

A~αA~α+11=ϕ~τ(hα)A0(t)hα1hα+1A0(t)1ϕ~τ(hα+11)=id\displaystyle\widetilde{A}_{\alpha}\widetilde{A}_{\alpha+1}^{-1}=\widetilde{\phi}_{\tau}(h_{\alpha})A^{0}(t)h_{\alpha}^{-1}h_{\alpha+1}A^{0}(t)^{-1}\widetilde{\phi}_{\tau}(h_{\alpha+1}^{-1})=\mathrm{id}

on VαV_{\alpha}, there exists a unique A(t)GLr(𝒪τ(0))A(t)\in{\mathrm{GL}}_{r}(\mathscr{O}_{\tau}(*0)) such that A(t)|Uα=A~αA(t)_{|U_{\alpha}}=\widetilde{A}_{\alpha}. Then ψA(t)ϕtr\psi\coloneqq A(t)\phi_{t}^{\oplus r} on 𝒩=i=1r𝒪τ(0)ei\mathscr{M}\coloneqq\mathscr{N}=\bigoplus_{i=1}^{r}\mathscr{O}_{\tau}(*0)e_{i} defines a new difference module (𝒩,ψ)(\mathscr{N},\psi) with the trivial isomorphism Ξ^\widehat{\Xi} between the formal completions. ∎

4.6.3. End of the proof of Theorem 4.17 ((Essential surjectivity))

Let (,)(\mathscr{L},\mathscr{L}_{\bullet}) be an object in 𝖲𝗍(𝒜per){\mathsf{St(\mathscr{A}_{\mathrm{per}})}}. There exists a positive integer mm such that Σ()m\Sigma(\mathscr{L})\subset\mathscr{I}_{m}. By Theorem 3.10, the pair (,)(\mathscr{L},\mathscr{L}_{\bullet}) corresponds to a cohomology class [,][\mathscr{L},\mathscr{L}_{\bullet}] in H1(S1,𝒜ut<0(𝒢))H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{G})) with 𝒢=𝒜pergr\mathscr{G}=\mathscr{A}_{{\mathrm{per}}}\otimes{\mathrm{gr}}\mathscr{L}. There exists a mild difference module 𝒩\mathscr{N} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) such that RH(𝒩)=𝒢{\mathrm{RH}}(\mathscr{N})=\mathscr{G} by Lemma 4.19. By the fully-faithfulness of RH{\mathrm{RH}}, we have an isomorphism

H1(S1,𝒜ut<0(𝒩))H1(S1,𝒜ut<0(𝒢)).\displaystyle H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{N}))\simeq H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{G})).

Let [][\mathscr{M}] be the class in H1(S1,𝒜ut<0(𝒩))H^{1}(S^{1},{\mathscr{A}ut}^{<0}(\mathscr{N})) which corresponds to [,][\mathscr{L},\mathscr{L}_{\bullet}] by the above isomorphism. By Theorem 4.20, there exists a difference module \mathscr{M} over (𝒪t(0),ϕt)(\mathscr{O}_{t}(*0),\phi_{t}) which corresponds to the class [][\mathscr{M}]. Then, by the construction, we have RH()(,){\mathrm{RH}}(\mathscr{M})\simeq(\mathscr{L},\mathscr{L}_{\bullet}), which implies the essential surjectivity of RH{\mathrm{RH}}. ∎

4.7. Rank one non-trivial examples

4.7.1. A regular singular difference module

For a complex number α\alpha\in\mathbb{C}\setminus\mathbb{Z}, we consider a difference module α(𝒪t(0),ψα)\mathscr{B}_{\alpha}\coloneqq(\mathscr{O}_{t}(*0),\psi_{\alpha}) defined as ψα=(1+αt)ϕt\psi_{\alpha}=(1+\alpha t)\phi_{t}. It is easy to see that the formal completion ^α\widehat{\mathscr{B}}_{\alpha} is isomorphic to ^α\widehat{\mathscr{R}}_{\alpha}, where α\alpha is regarded as a (1×1)(1\times 1)-matrix.

Proposition 4.21.

We have the following description of Per(α):{\mathrm{Per}}({\mathscr{B}}_{\alpha}):

Per(α)|U={𝒜per|UΓ(s)/Γ(s+α)(eπ𝚒U)𝒜per|U(1u)Γ(s)/(1e2π𝚒αu)Γ(s+α)(e0U),\displaystyle{\mathrm{Per}}({\mathscr{B}}_{\alpha})_{|U}=\begin{cases}\mathscr{A}_{{\mathrm{per}}|U}\Gamma(s)/\Gamma(s+\alpha)&(e^{\pi{\tt{i}}}\notin U)\\ \mathscr{A}_{{\mathrm{per}}|U}(1-u)\Gamma(s)/(1-e^{2\pi{\tt{i}}\alpha}u)\Gamma(s+\alpha)&(e^{0}\notin U),\end{cases}

where UU is an open subset in S1S^{1}, the symbol Γ(s)\Gamma(s) denotes the Gamma function, and we set s=t1s=t^{-1} and u=exp(2π𝚒s)u=\exp(2\pi{\tt{i}}s) as in §2.1.3\S\ref{Another}.

Proof.

By the relation Γ(s+1)=sΓ(s)\Gamma(s+1)=s\Gamma(s), the equality

ψα(Γ(s)/Γ(s+α))=Γ(s)/Γ(s+α)\psi_{\alpha}(\Gamma(s)/\Gamma(s+\alpha))=\Gamma(s)/\Gamma(s+\alpha)

holds, which implies that Γ(s)/Γ(s+α)DR~(α)(U+)\Gamma(s)/\Gamma(s+\alpha)\in\widetilde{{\mathrm{DR}}}({\mathscr{B}_{\alpha}})(U_{+}) for U+=S1{eπ𝚒}U_{+}=S^{1}\setminus\{e^{\pi{\tt{i}}}\}. By the Stirling formula, we moreover obtain that Γ(s)/Γ(s+α)DR0(α)(U+)\Gamma(s)/\Gamma(s+\alpha)\in{\mathrm{DR}}_{\leqslant 0}(\mathscr{B}_{\alpha})(U_{+}), whose germ at each point xU+x\in U_{+} is not in DR<0(α)x{\mathrm{DR}}_{<0}(\mathscr{B}_{\alpha})_{x}. By Theorem 4.13, we obtain the first half of the proposition. The latter half can be proved in a similar way by using the reflection formula: (1u)Γ(s)=(2π𝚒)eπ𝚒s/Γ(1s)(1-u)\Gamma(s)=(-2\pi{\tt{i}})e^{\pi{\tt{i}}s}/\Gamma(1-s). ∎

4.7.2. A mild difference module

Let Γ(𝒪t(0),ψΓ)\mathscr{E}_{\Gamma}\coloneqq(\mathscr{O}_{t}(*0),\psi_{\Gamma}) be a difference module with ψΓ=exp(𝔩(s+1)𝔩(s))tϕt\psi_{\Gamma}=\exp(\mathfrak{l}(s+1)-\mathfrak{l}(s))t\phi_{t} where 𝔩(s)=slogs\mathfrak{l}(s)=s\log s. It is not difficult to see that the formal completion ^Γ\widehat{\mathscr{E}}_{\Gamma} is isomorphic to 𝔞Γ1/2\mathscr{E}^{\mathfrak{a}_{\Gamma}}\otimes\mathscr{R}_{-1/2} where 𝔞Γ(s)=s\mathfrak{a}_{\Gamma}(s)=-s.

Proposition 4.22.

We have the following description of Per(Γ){\mathrm{Per}}(\mathscr{E}_{\Gamma})::

Per(Γ)|U={𝒜per|UssΓ(s)(e𝚒πU)𝒜per|U(1u)ssΓ(s)(e0U)\displaystyle{\mathrm{Per}}(\mathscr{E}_{\Gamma})_{|U}=\begin{cases}\mathscr{A}_{{\mathrm{per}}|U}s^{-s}\Gamma(s)&(e^{{\tt{i}}\pi}\notin U)\\ \mathscr{A}_{{\mathrm{per}}|U}(1-u)s^{-s}\Gamma(s)&(e^{0}\notin U)\end{cases}

where the notations except sss^{-s} are defined as in Proposition 4.21 and we define ss=exp(slogs)s^{-s}=\exp(-s\log s). Note that the choice of the branch of logslogs does not matter in the definition of the modules.

Proof.

The proof is parallel to that for Proposition 4.21 and left to the reader. ∎

5. Proof of Theorem 4.7

In this section, we give a proof of Theorem 4.7 using the method in [Immink].

5.1. Preliminary

5.1.1. Reduction

By Theorem 4.16, we may assume that for any e𝚒θS1e^{{\tt{i}}\theta}\in S^{1}, there exists an open neighborhood UU of e𝚒θe^{{\tt{i}}\theta} such that the restriction of the difference module \mathscr{M} in the statement of the Theorem 4.7 to UU is isomorphic to the direct sum of the difference module of the form 𝔞G|U\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U}, where notations are as in §4.2.5. We may also assume that GG is of the form G=γidr+NG=\gamma\mathrm{id}_{\mathbb{C}^{r}}+N where NN is a nilpotent Jordan matrix and γ\gamma\in\mathbb{C}. Hence it reduces to prove the following claim:

Claim 5.1.

Assume that |U=𝔞G|U\mathscr{M}_{|U}=\mathscr{E}^{\mathfrak{a}}\otimes\mathscr{R}_{G|U} for 𝔞(U)\mathfrak{a}\in\mathscr{I}(U) and G=γidr+NG=\gamma\mathrm{id}_{\mathbb{C}^{r}}+N with γ\gamma\in\mathbb{C} and a nilpotent matrix NEnd(r)N\in\mathrm{End}(\mathbb{C}^{r}). Then, for any 𝐟|U,e𝚒θ\bm{f}\in\mathscr{M}_{|U,e^{{\tt{i}}\theta}} there exists Λθ(𝐟)|U,e𝚒θ\Lambda_{\theta}(\bm{f})\in\mathscr{M}_{|U,e^{{\tt{i}}\theta}} such that ψ~Λθ(𝐟)=𝐟\nabla_{\widetilde{\psi}}\Lambda_{\theta}(\bm{f})=\bm{f}. Moreover, if 𝐟(𝒜<0S1)e𝚒θ\bm{f}\in(\mathscr{A}^{<0}\otimes\mathscr{M}_{S^{1}})_{e^{{\tt{i}}\theta}}, then we have Λθ(𝐟)(𝒜<0S1)e𝚒θ\Lambda_{\theta}(\bm{f})\in(\mathscr{A}^{<0}\otimes\mathscr{M}_{S^{1}})_{e^{{\tt{i}}\theta}}.

The remaining part of the theorem is easy and left to the reader. We shall prove this claim in the case 0<θ<π0<\theta<{\pi}. The proof in the case π<θ<2π\pi<\theta<2\pi is similar to that in the case above. The proof in the case θ{0,π}\theta\in\{0,\pi\} is essentially given in [Immink]*§9.3.

5.1.2. Notations

We shall fix some notations. Let cc be a point in \mathbb{C}. Let θ\theta be real number and ε\varepsilon be a positive number. Then we set

Sc(θ;ε)={ss=c+Re𝚒ϑ for |θϑ|<ε and R>0}.\displaystyle S_{c}(\theta;\varepsilon)=\{s\in\mathbb{C}\mid s=c+Re^{{\tt{i}}\vartheta}\text{ for }|\theta-\vartheta|<\varepsilon\text{ and }R>0\}.

For 𝒇|U,e𝚒θ\bm{f}\in\mathscr{M}_{|U,e^{{\tt{i}}\theta}}, using the notation §2.1.3, we take a representative f=(f1,,fr)tf={}^{t}(f_{1},\dots,f_{r}) of 𝒇\bm{f} defined on Sc(θ;ε)S_{c}(\theta;\varepsilon) for sufficiently small ε>0\varepsilon>0 and a suitable point cc\in\mathbb{C}. Without loss of generality, we may assume that |c|>1|c|>1 and that there exist positive constants CC and NN such that

(9) |f(s)|C|s|N\displaystyle|f(s)|\leq C|s|^{N}

for sSc(θ;ε)s\in S_{c}(\theta;\varepsilon), where we put |f(s)|=i=1r|fi(s)|2|f(s)|=\sqrt{\sum_{i=1}^{r}|f_{i}(s)|^{2}}. In the case where we have 𝒇(𝒜<0S1)e𝚒θ\bm{f}\in(\mathscr{A}^{<0}\otimes\mathscr{M}_{S^{1}})_{e^{{\tt{i}}\theta}}, for any positive constant NN^{\prime}, there exist a point cNScc^{\prime}_{N^{\prime}}\in S_{c} and a constant CNC_{N^{\prime}} such that we have

(10) |f(s)|CN|s|N\displaystyle|f(s)|\leq C_{N^{\prime}}|s|^{-N^{\prime}}

for sScN(θ,ε)s\in S_{c_{N^{\prime}}}(\theta,\varepsilon).

We fix the branch of logs\log s on Sc(θ;ε)S_{c}(\theta;\varepsilon) and set s1/mexp(m1logt)s^{-1/m}\coloneqq\exp(m^{-1}\log t). Then, 𝔞\mathfrak{a} is expressed as

𝔞(s)=k=1mcksk/m(ck).\displaystyle\mathfrak{a}(s)=\sum_{k=1}^{m}c_{k}s^{k/m}\quad(c_{k}\in\mathbb{C}).

Taking the shift by 2π𝚒s2\pi{\tt{i}}\mathbb{Z}s if necessarily, we may assume that cmc_{m} satisfies the inequality

(11) 2π+R(cm,θ,ε)+Im(cm)<0,\displaystyle-2\pi+{R}(c_{m},\theta,\varepsilon)+\mathrm{Im}(c_{m})<0,

where we set

R(cm,θ,ε)=max{0,Re(cm)}max{tan1(θε),tan1(θ+ε)}.\displaystyle R(c_{m},\theta,\varepsilon)=\max\{0,-\mathrm{Re}(c_{m})\}\max\{\tan^{-1}(\theta-\varepsilon),\tan^{-1}(\theta+\varepsilon)\}.

We set A(s)=exp(𝔞(s+1)𝔞(s))(1+s1)GA(s)=\exp(\mathfrak{a}(s+1)-\mathfrak{a}(s))(1+s^{-1})^{-G}. Then |U\mathscr{M}_{|U} is identified with the module ((𝒜|U0)r,A(s)ϕ~tr)\left((\mathscr{A}_{|U}^{\leqslant 0})^{\oplus r},A(s)\widetilde{\phi}_{t}^{\oplus r}\right). We also use the notation Y(s)=exp(𝔞(s))sGY(s)=\exp(-\mathfrak{a}(s))s^{G} with sG=exp(Glogs)s^{G}=\exp(G\log s), which is also defined on Sc(θ;ε)S_{c}(\theta;\varepsilon).

5.1.3. Preliminary estimate

We shall recall an estimate by Immink:

Lemma 5.2 ([Immink]*Lemma 8.12).

Let SS\subset\mathbb{C} be a connected open subset such that |𝗌|1|{\sf s}|\geq 1 for 𝗌S{\sf s}\in S. For μ\mu\in\mathbb{C}, ν\nu\in\mathbb{R}, and a holomorphic function Ψ:S{\Psi}\colon S\to\mathbb{C}, we set

Φ(ζ)μζ+νlog|ζ|+Ψ(ζ),(ζS).\displaystyle{\Phi}(\zeta)\coloneqq\mu\zeta+\nu\log|\zeta|+\Psi(\zeta),\quad\quad(\zeta\in S).

Assume that we have the inequalities

(12) |Ψ(ζ)|C|ζ|1ϵ\displaystyle|\Psi(\zeta)|\leq C|\zeta|^{1-\epsilon} (ζS)\displaystyle(\zeta\in S)
(13) |Ψ(ζ)|C|ζ|ϵ\displaystyle|\Psi^{\prime}(\zeta)|\leq C|\zeta|^{-\epsilon} (ζS)\displaystyle(\zeta\in S)

where CC and ϵ\epsilon are positive numbers. For 𝗌S{\sf s}\in S, and α\alpha\in\mathbb{R}, set

(𝗌;α){ζζ=𝗌+Te𝚒α,0<T}.\displaystyle\ell(\mathsf{s};\alpha)\coloneqq\{\zeta\in\mathbb{C}\mid\zeta={\sf s}+Te^{{\tt{i}}\alpha},0<T\}.

We also assume that there exists a positive constant δ\delta the inequality Re(μe𝚒α)δ\mathrm{Re}(\mu e^{{\tt{i}}\alpha})\geq\delta holds. Further, let PP be a polynomial with positive coefficients. Then there exists a positive number KK which is fully determined by the constants δ,ν,C\delta,\nu,C and ϵ\epsilon, and the polynomial PP such that

|exp(Φ(𝗌)Φ(ζ))P(log|𝗌/ζ|)dζ|K.\displaystyle\int_{\ell}\left|\exp(\Phi({\sf s})-\Phi(\zeta))P(\log|{\sf s}/\zeta|)d\zeta\right|\leq K.

5.2. Definition of the Splitting

5.2.1. Family of paths

Take a point pSc(θ;ε)p\in S_{c}(\theta;\varepsilon) and qSp(θ;ε)q\in S_{p}(\theta;\varepsilon) such that the point q+1q+1 is in Sp(θ;ε)S_{p}(\theta;\varepsilon). For sSq(θ;ε)s\in S_{q}(\theta;\varepsilon), set s=s+12s^{\prime}=s+\tfrac{1}{2}. Then we define the family of paths

C(s)=p+>0(sp)={p+T(sp)T>0}\displaystyle C(s)=p+\mathbb{R}_{>0}(s^{\prime}-p)=\{p+T(s^{\prime}-p)\mid T>0\}

for each sSq(θ;ε)s\in S_{q}(\theta;\varepsilon).

5.2.2. Integral operator

We consider the following integral

(14) Λθ(f)(s)f(s)+Y(s)C(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ\displaystyle\Lambda_{\theta}(f)(s)\coloneqq-f(s)+Y(s)\int_{{{C}}(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta

for the family of paths C(s)C(s), sSq(θ;ε)s\in S_{q}(\theta;\varepsilon). The proof of the following lemma will be given in the next subsection:

Lemma 5.3.

There exist positive constants KK and N{N} such that the inequality

(15) |Y(s)C(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ|K|s|N\displaystyle\left|Y(s)\int_{C(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta\right|\leq K|s|^{{N}}

holds for sSq(θ,ε)s\in S_{q}(\theta,\varepsilon). In particular, the integral is well defined. If moreover ff rapid decays, then for any positive NN^{\prime} there are positive constants K,εK^{\prime},\varepsilon^{\prime} and a point cNSc(θ,ε)c_{N^{\prime}}\in S_{c}(\theta,\varepsilon) such that the inequality

(16) |Y(s)C(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ|K|s|N\displaystyle\left|Y(s)\int_{C(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta\right|\leq K^{\prime}|s|^{-N^{\prime}}

holds for sScN(θ,ε)s\in S_{c_{N^{\prime}}}(\theta,\varepsilon^{\prime}).

By this lemma, Λθ(f)(s)\Lambda_{\theta}(f)(s) is a holomorphic function on Sq(θ;ε)S_{q}(\theta;\varepsilon). We shall check that this lemma implies Claim 5.1 in the case 0<θ<π0<\theta<\pi:

Lemma 5.4.

We have ψ~Λθ(f)(s)=f(s)\nabla_{\widetilde{\psi}}\Lambda_{\theta}(f)(s)=f(s) on sSq(θ;ε)Sq+1(θ;ε)s\in S_{q}(\theta;\varepsilon)\cap S_{q+1}(\theta;\varepsilon).

Proof.

Note that A(s)Y(s+1)=Y(s)A(s)Y(s+1)=Y(s). Then we have

ψ~Λθ(f)=\displaystyle\nabla_{\widetilde{\psi}}\Lambda_{\theta}(f)= A(s)f(s+1)+A(s)Y(s+1)C(s+1)Y(ζ)1f(ζ)1e2π𝚒(sζ)\displaystyle-A(s)f(s+1)+A(s)Y(s+1)\int_{C(s+1)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}
+f(s)Y(s)C(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ\displaystyle+f(s)-Y(s)\int_{C(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta
=\displaystyle= A(s)f(s+1)+f(s)+A(s)Y(s+1)C(s+1)C(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ\displaystyle-A(s)f(s+1)+f(s)+A(s)Y(s+1)\int_{C(s+1)-C(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta
=\displaystyle= A(s)f(s+1)+f(s)+A(s)Y(s+1)Y(s+1)1f(s+1)\displaystyle-A(s)f(s+1)+f(s)+A(s)Y(s+1)Y(s+1)^{-1}f(s+1)
=\displaystyle= f(s).\displaystyle f(s).

This completes the proof. ∎

This lemma implies the first part of Claim 5.1. The last part follows from (16).

5.3. Estimates

We shall give a proof of the first part of Lemma 5.3. The latter part can be shown in a similar way and is left to the reader.

5.3.1.

By the definition of Y(s)Y(s), the matrix-valued function Y(s)Y(s)1Y(s)Y(s^{\prime})^{-1} is bounded on Sc(θ;ε)S_{c}(\theta;\varepsilon), and hence there is a positive constant K1K_{1} such that

(17) |Y(s)Y(ζ)1|<K1|Y(s)Y(ζ)1|sSc(θ;ε).\displaystyle|Y(s)Y(\zeta)^{-1}|<K_{1}|Y(s^{\prime})Y(\zeta)^{-1}|\quad s\in S_{c}(\theta;\varepsilon).

Since arg(s)\arg(s) is bounded on Sc(θ;ε)S_{c}(\theta;\varepsilon) and the matrix NN in the sum G=γid+NG=\gamma\mathrm{id}+N is a Jordan nilpotent matrix, there is a polynomial PP with positive coefficients such that

(18) |(s/ζ)G||s/ζ|Re(γ)|P(log|s/ζ|)|,\displaystyle|(s^{\prime}/\zeta)^{G}|\leq|s^{\prime}/\zeta|^{\mathrm{Re}(\gamma)}|P(\log|s^{\prime}/\zeta|)|,

where |(s/ζ)G||(s^{\prime}/\zeta)^{G}| denotes an operator norm. We also have a positive constant K2K_{2}, which is independent of ζC(s)\zeta\in C(s) such that

(19) |1e2π𝚒(sζ)|K2|e2π𝚒(sζ)|\displaystyle|1-e^{2\pi{\tt{i}}(s-\zeta)}|\leq K_{2}|e^{-2\pi{\tt{i}}(s^{\prime}-\zeta)}|

for sSc(θ;ε)s\in S_{c}(\theta;\varepsilon) and ζC(s)\zeta\in C(s).

5.3.2.

We shall divide the path C(s)C(s) into two terms as follows:

0(s)\displaystyle\ell_{0}(s) ={(p+T(sp)0<T1},\displaystyle=\{(p+T(s^{\prime}-p)\mid 0<T\leq 1\},
1(s)\displaystyle\ell_{1}(s) ={(p+T(sp)T1}.\displaystyle=\{(p+T(s^{\prime}-p)\mid T\geq 1\}.

We then set

Ij(s)Y(s)j(s)Y(ζ)1f(ζ)1e2π𝚒(sζ)𝑑ζ\displaystyle I_{j}(s)\coloneqq Y(s)\int_{{{\ell}_{j}}(s)}\frac{Y(\zeta)^{-1}f(\zeta)}{1-e^{2\pi{\tt{i}}(s-\zeta)}}d\zeta

for j=0,1j=0,1. It is not difficult to see that I0(s)I_{0}(s) is of moderate growth (resp. rapidly decay) when ff has the same property. We shall give an estimate on I1(s)I_{1}(s). Set 𝝍(s)𝔞(s)cms\bm{\psi}(s)\coloneqq\mathfrak{a}(s)-c_{m}s, 𝝋(ζ)𝝁ζ+𝝂logζ+𝝍(ζ)\bm{\varphi}(\zeta)\coloneqq\bm{\mu}\zeta+\bm{\nu}\log\zeta+\bm{\psi}(\zeta) where we put 𝝁=cm2π𝚒\bm{\mu}=c_{m}-2\pi{\tt{i}}, and 𝝂=N+Re(γ)\bm{\nu}=-N+\mathrm{Re}(\gamma). Then, combining (17), (18), and (19), and the assumption (9), there exist positive constants K3K_{3} and NN such that

|I1(s)|\displaystyle|I_{1}(s)| K3|s|N1(s)|exp(𝝋(s)𝝋(ζ))P(log|s/ζ|)dζ|\displaystyle\leq K_{3}|s^{\prime}|^{N}\int_{\ell_{1}(s)}|\exp(\bm{\varphi}(s^{\prime})-\bm{\varphi}(\zeta))P(\log|s^{\prime}/\zeta|)d\zeta|

Then we can apply Lemma 5.2 to the integral by the inequality (11). ∎

References