This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Strong 11-boundedness, L2L^{2}-Betti numbers, algebraic soficity, and graph products

Ian Charlesworth Cardiff University, School of Mathematics, Abacws, Senghennydd Rd, Cardiff CF24 4AG, United Kingdom charlesworthi@cardiff.ac.uk https://www.ilcharle.com/ Rolando de Santiago Department of Mathematics, Purdue University, Mathematical Sciences Bldg, 150 N University St, West Lafayette, IN 47907 desantir@purdue.edu https://www.math.purdue.edu/ desantir Ben Hayes Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall, Charlottesville, VA, 22904 brh5c@virginia.edu https://sites.google.com/site/benhayeshomepage/home David Jekel Department of Mathematics, University of California, San Diego, 9500 Gilman Drive # 0112, La Jolla, CA 92093 djekel@ucsd.edu http://davidjekel.com Srivatsav Kunnawalkam Elayavalli Department of Mathematics, University of California, San Diego, 9500 Gilman Drive # 0112, La Jolla, CA 92093 srivatsav.kunnawalkam.elayavalli@vanderbilt.edu https://sites.google.com/view/srivatsavke  and  Brent Nelson Department of Mathematics, Michigan State University, 619 Red Cedar Road, C212 Wells Hall, East Lansing, MI 48824 brent@math.msu.edu https://users.math.msu.edu/users/banelson/
Abstract.

We show that graph products of non trivial finite dimensional von Neumann algebras are strongly 1-bounded when the underlying *-algebra has vanishing first L2L^{2}-Betti number. The proof uses a combination of the following two key ideas to obtain lower bounds on the Fuglede–Kadison determinant of matrix polynomials in a generating set: a notion called “algebraic soficity” for *-algebras allowing for the existence of Galois bounded microstates with asymptotically constant diagonals; a probabilistic construction of the authors of permutation models for graph independence over the diagonal.

1. Introduction

Finite dimensional approximations of infinite dimensional objects are a common theme in analysis, dynamics, and operator algebras. In the context of groups, they arise in both soficity and Connes embeddability of the group von Neumann algebra (sometimes referred to as hyperlinearity), which are the ability to be approximated by permutations or finite dimensional unitary matrices, respectively. Connes-embeddable tracial von Neumann algebras are those which admit matrix approximations in a weak sense. The quantum complexity result announced in [JNV+20] implies that not all tracial von Neumann algebras have this property; among Connes-embeddable von Neumann algebras, some—such as free products—have an abundance of matrix approximations which can be constructed probabilistically through random matrix theory, while others—such as amenable von Neumann algebras, property (T) von Neumann algebras, or von Neumann algebras with Cartan subalgebras—have very few matrix approximations. More precisely, the latter are strongly 11-bounded in the sense of Jung, or have 11-bounded entropy h(M)<h(M)<\infty in the sense of Hayes [Hay18]. Von Neumann algebras with h(M)=h(M)=\infty enjoy strong indecomposability properties: for instance, they are unable to be decomposed non-trivially as a tensor product, a crossed product, or a join of amenable subalgebras with diffuse intersection; more generally, they cannot be decomposed as a join of subalgebras with finite 11-bounded entropy. Using 1-bounded entropy techniques to study the structure of II1 factors (especially, free group factors) has recently been quite fruitful to approach open problems (see for instance [Hay22, BC22, BC23, CIKE22]).

Graph products of groups, defined by Green in [Gre90], are free products of groups indexed by the vertices of a graph, modulo the relations that Γv\Gamma_{v} and Γw\Gamma_{w} commute when vv and ww are adjacent vertices in the graph. Graph products of von Neumann algebras were introduced by Młotkowski in [Mło04] under a different name, then reintroduced and further studied by Caspers and Fima in [CF17]. From a probabilistic viewpoint, graph products give rise to a notion of “graph independence”, which is a natural way to mix together classical independence and free independence [Mło04, SW16].

Preservation of Connes-embeddability by graph products was proved by Caspers [Cas16]. Collins and Charlesworth described how to construct random matrix approximations for a graph product out of given random matrix approximations for the individual algebras MvM_{v} [CC21]. But despite the matrix approximations being defined by similar techniques as for free products, it was not clear when graph products would have abundant matrix approximations in the sense that h(M)=h(M)=\infty, because the matrix approximations were constructed in a subspace of MNk()M_{N^{k}}({\mathbb{C}}) with much lower dimension than the ambient space. In this paper we make progress toward classifying when a graph product has h(M)<h(M)<\infty, which can be summarized in the following theorem. Here items 2 and 3 give a complete characterization of when h(M)<h(M)<\infty for the case when MvM_{v} is diffuse for every vv, whereas item 1 applies in the much more subtle case when each MvM_{v} is finite dimensional.

Theorem A (Section 5.1).

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a graph with #𝒱>1\#{\mathcal{V}}>1, and for each v𝒱v\in{\mathcal{V}}, let (Mv,τv)(M_{v},\tau_{v}) be a tracial *-algebra. Let (M,τ)=v𝒢(Mv,τv)(M,\tau)=\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(M_{v},\tau_{v}) be their graph product over 𝒢{\mathcal{G}}.

  1. (1)

    Suppose each MvM_{v} is finite dimensional, and the trace of every central projection in MvM_{v} is a rational number. Let AA be the *-subalgebra of MM generated by v𝒱Mv\bigcup_{v\in{\mathcal{V}}}M_{v}. If β(2)1(A,τ)=0\beta^{1}_{(2)}(A,\tau)=0, then MM is strongly 11-bounded.

  2. (2)

    If each MvM_{v} is diffuse and 𝒢{\mathcal{G}} is connected, then MM is strongly 11-bounded (in fact has 11-bounded entropy at most zero).

  3. (3)

    If each MvM_{v} is diffuse and Connes embeddable, and 𝒢{\mathcal{G}} is disconnected, then MM is not strongly 11-bounded.

We remark that in (3) we show something stronger: there is a (potentially infinite) tuple xx of self-adjoint elements of MM so that W(x)=MW^{*}(x)=M and δ0(x)>1\delta_{0}(x)>1. As we show in Theorem 5.1, the second two items in the above theorem can be deduced quickly from the known robust properties of 11-bounded entropy. We turn our attention, instead, to the question of strongly 11-boundedness for graph products of finite dimensional algebras. This focus motivates the results in part (1), which is more subtle; developing the tools for its proof occupies the bulk of this paper, and in the end we are able to prove a more general statement in 5.4.

The final step in our proof is to invoke results of Jung [Jun03, Theorem 6.9] and Shlyakhtenko [Shl21, Theorem 3.2], which apply when an operator naturally arising from “generators and relations” has positive Fuglede–Kadison pseudo-determinant. If each (Mv,τv)(M_{v},\tau_{v}) were a group algebra, it would suffice to note that the graph product is sofic by [CHR14]: the relation matrix in question is a matrix over the rational group ring, and such matrices have positive Fuglede–Kadison pseudo-determinant by [ES05]. However, extending this to arbitrary *-algebras not arising from groups presents substantial challenges.

Our approach is to introduce a notion of algebraic soficity for tracial *-algebras inspired by soficity of groups. This notion of algebraic soficity ensures that if yMn(A)y\in M_{n}(A) can be expressed as a matrix of polynomials in xx with “nice” coefficients (e.g. rational, algebraic, etc.), then yy has positive Fuglede–Kadison pseudo-determinant. Crucially, we establish that this notion of algebraic soficity is closed under graph products.

In order to prove positivity of these Fuglede–Kadison determinants we use our notion of algebraic soficity which, while akin to that of soficity of groups, is not a simple translation of the group case. One naïve approach, sufficient to force the appropriate determinants to be positive, would be to require matrix approximations for our generating tuple xx with integer entries, chosen so that polynomials in these matrix approximations asymptotically have constant diagonals. However, this is impossible even for matrix algebras with matrix units as generators: there are very few projections with integral entries, and such projections do not have constant diagonals unless they are scalars. For similar reasons, it is too much to ask for tracial *-algebras which are only slight modifications of group algebras, such as group algebras twisted by an S1S^{1}-valued 22-cocycle or group measure-space constructions.

We relax this naïve approach by only requiring our matrix approximations to have algebraic integer entries. In order to obtain a lower bound on the pseudo-determinant of these approximations (and thus a lower bound on the Fuglede–Kadison pseudo-determinant of the limiting operator), we use an algebraic number theory argument analogous to [Tho08b, Theorem 4.3] which considers the Galois conjugates of a matrix with algebraic integer entries and converts upper bounds on the number of such Galois conjugates and of the operator norm of these conjugates into lower bounds on the pseudo-determinant. We call matrix approximations Galois bounded microstates when they have algebraic integer entries, a uniform bound on the number of their Galois conjugates, and a uniform bound on the operator norm of these Galois conjugates (see Definition 3.2 for the precise definition). These are the key to our notion of algebraic soficity: a tracial *-algebra (A,τ)(A,\tau) is algebraically sofic when it has a generating tuple xx which admits Galois bounded microstates with asymptotically constant diagonals. It turns out that all finite dimensional tracial *-algebras are algebraically sofic (see Theorem 3.11). From the above discussion, we realize that our proof of Theorem A1 reduces to the following two results.

Theorem B (Theorem 3.4).

If (M,τ)(M,\tau) is a tracial von Neumann algebra, and xx is a generating tuple for MM with a Galois bounded sequence of microstates, then for any matrix polynomial in xx with algebraic coefficients, the Fuglede–Kadison pseudo-determinant is positive.

The proof of Theorem B follows by adapting methods of Thom [Tho08b, Theorem 4.3]. In order to prove that graph products of finite dimensional algebras have Galois bounded microstates, we prove the following.

Theorem C (Theorem 4.2).

Algebraic soficity is preserved by graph products.

Theorem C is just a restatement of Theorem 4.2, which is proved in Section 4. As a consequence of Theorems C and B, we can replace “finite dimensional” in Theorem A (1) with “algebraically sofic,” under a technical condition on traces (see Theorem 5.4 for more details).

Sofic groups themselves have seen numerous applications in recent years: their Bernoulli shift actions can be completely classified (by [Bow10, Bow12, Sew22]); they are known to satisfy the determinant conjecture [ES05](a conjecture arising in the theory of L2L^{2}-invariants) and consequently their L2L^{2}-torsion is well-defined [Lüc02]; they are known to admit a version of Lück approximation [ES05]; they satisfy Gottschalk’s surjunctivity conjecture [Gro99]; and they are known to satisfy Kaplansky’s direct finiteness conjecture [ES04]. In fact, any group for which one of these properties is known is also known to be sofic; it is a large open question whether or not every group is sofic. We refer the reader to [Bow18] for further applications of sofic groups, particularly to ergodic theory.

We expect that our new notion of algebraic soficity will have many similar applications in the theory of von Neumann algebras. Motivated by our work, and using our new notion of algebraic soficity, we make the following conjecture.

Conjecture D.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra. Assume that MM has a weak-dense, finitely presented, algebraically sofic, unital *-subalgebra AA. Then (M,τ)(M,\tau) is strongly 11-bounded if and only if β(2)1(A,τ)=0\beta^{1}_{(2)}(A,\tau)=0.

The fact that if β(2)1(A,τ)=0\beta^{1}_{(2)}(A,\tau)=0 and (A,τ)(A,\tau) is algebraically sofic, then (M,τ)(M,\tau) is strongly 11-bounded is a consequence of [Shl21, Theorem 2.5] (see e.g. the proof of Theorem A (1) in Section 5.1). So the difficulty is in establishing the converse. Partial progress on this has already been made in [Shl09], and as discussed there an inherent part of the difficulty is in exponentiating a derivation to get a one-parameter family of deformations of MM which “move in a free direction”. This conjecture is already interesting to investigate when (M,τ)(M,\tau) is the graph product of finite dimensional tracial von Neumann algebras, and AA is the *-algebra generated by the vertex algebras.

Remark 1.1.

The problem of studying the first L2L^{2}-Betti numbers for graph products of finite groups has been studied extensively in [DDJO07, DO01, DO12]. In particular the authors specify that there are algorithms to compute the first L2L^{2} Betti numbers for certain graph products of finite groups. Combining this with [Shl21] should give examples of strongly 11-bounded group von Neumann algebras. One would expect that these algorithms would generalize to the setting of finite dimensional *-algebras, in which case one could use them in combination with Theorem A(1) to obtain examples of strongly 1-bounded von Neumann algebras not coming from groups.

One special case of Conjecture D that is worth studying is the case where M=L(Γ)M=L(\Gamma) is the von Neumann algebra of a group Γ\Gamma. In this case, we would expect that if Γ\Gamma is sofic, then L(Γ)L(\Gamma) is strongly 11-bounded if and only if β(2)1(Γ)=0\beta^{1}_{(2)}(\Gamma)=0. This is of particular interest for graph products of groups, because of the aforementioned results that give an algorithmic approach to computing their first L2L^{2}-Betti number. For the special setting of group von Neumann algebras, Conjecture D would follow immediately if the following problem has an affirmative answer.

Problem 1.2.

Suppose that Γ\Gamma is a group with positive first L2L^{2}-Betti number. Is it true that L(Γ)L(\Gamma) has a finite index subalgebra which decomposes as a free product of two tracial von Neumann algebras M1,M2M_{1},M_{2}?

Note that if a tracial von Neumann algebra is a nontrivial free product up to finite index, then it has no Cartan subalgebras ([Jun07], [Ioa15]). Note also that absence of Cartan for various subfamilies of groups with positive first L2L^{2}-Betti number has been obtained in the literature (see for instance [CS13, CSU13, Ioa12, PV14a, PV14b, Sin11]), using deformation/rigidity theory. An affirmative answer to Problem 1.2 would of course be a surprising structural property of group von Neumann algebras with positive first L2L^{2}-Betti number. However it is not a possibility that should be ruled out.

Acknowledgements

We thank Dimitri Shlyakhtenko for lively discussions; and we thank IPAM and the Lake Arrowhead Conference Center for hosting the Quantitative Linear Algebra long program second reunion conference, where some of these discussions took place. We thank the American Institute of Mathematics SQuaRES program for hosting us for a week each in April 2022 and April 2023 to collaborate on this project. BH was supported by the NSF grant DMS-2000105. IC was supported by long term structural funding in the form of a Methusalem grant from the Flemish Government. DJ was supported by postdoctoral fellowship from the National Science Foundation (DMS-2002826). BN was supported by NSF grant DMS-1856683.

2. Preliminaries

Definition 2.1.

A (simple undirected) graph is a pair 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) where 𝒱{\mathcal{V}} is a finite set consisting of vertices, and 𝒱×𝒱{\mathcal{E}}\subset{\mathcal{V}}\times{\mathcal{V}} is a set of edges. We insist that {\mathcal{E}} is symmetric (i.e., (x,y)(x,y)\in{\mathcal{E}} if and only if (y,x)(y,x)\in{\mathcal{E}}) and non-reflexive (i.e., (x,x)(x,x)\notin{\mathcal{E}} for any x𝒱x\in{\mathcal{V}}; that is, we do not allow self-loops).

An (undirected) multigraph is the same except {\mathcal{E}} is a multiset, allowing parallel edges.

2.1. Graph products

We will now define the graph product of von Neumann algebras, and some important related notions. Given a graph 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) and a collection of finite tracial von Neumann algebras (Mv,τv)(M_{v},\tau_{v}) for each v𝒱v\in{\mathcal{V}}, the graph product will be constructed as finite von Neumann algebra containing a copy of each MvM_{v} in such a way that MvM_{v} and MvM_{v^{\prime}} are in tensor product position if (v,v)(v,v^{\prime})\in{\mathcal{E}}, and in free position otherwise.

Definition 2.2.

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a graph. We say that a word (v1,,vn)𝒱n(v_{1},\ldots,v_{n})\in{\mathcal{V}}^{n} is 𝒢{\mathcal{G}}-reduced provided that whenever i<ki<k are such that vi=vkv_{i}=v_{k}, there is some jj with i<j<ki<j<k so that (vi,vj)(v_{i},v_{j})\notin{\mathcal{E}}.

If (v1,,vn)𝒱n(v_{1},\ldots,v_{n})\in{\mathcal{V}}^{n} is such a word and xiMvix_{i}\in M_{v_{i}}, then saying the word is not 𝒢{\mathcal{G}}-reduced is exactly saying that two xix_{i}’s from the same algebra could be permuted next to each other and multiplied, giving a shorter word.

Definition 2.3.

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a graph, (M,τ)(M,\tau) be a tracial von Neumann algebra, and for each v𝒱v\in{\mathcal{V}} let MvMM_{v}\subseteq M be a von Neumann sub-algebra. Then the algebras (Mv)v𝒱(M_{v})_{v\in{\mathcal{V}}} are said to be 𝒢{\mathcal{G}}-independent if: MvM_{v} and MwM_{w} commute whenever (v,w)(v,w)\in{\mathcal{E}}; and whenever (v1,,vn)(v_{1},\ldots,v_{n}) is a 𝒢{\mathcal{G}}-reduced word and x1,,xnMx_{1},\ldots,x_{n}\in M are such that xiMvix_{i}\in M_{v_{i}} and τ(xi)=0\tau(x_{i})=0, we have τ(x1xn)=0\tau(x_{1}\cdots x_{n})=0.

Conversely, given a collection (Mv,τv)(M_{v},\tau_{v}) of tracial von Neumann algebras, their graph product (M,τ)=v𝒢(Mv,τv)(M,\tau)=\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(M_{v},\tau_{v}) is the von Neumann algebra generated by copies of each MvM_{v} which are 𝒢{\mathcal{G}}-independent, so that τ|Mv=τv\tau|_{M_{v}}=\tau_{v}. (That the graph product exists and is unique was shown in [Mło04]). When the trace is clear from context, we may write simply M=v𝒢MvM=\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}M_{v}.

Notice that if 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},\emptyset) then v𝒢Mv=Mvv𝒱\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}M_{v}={}_{v\in{\mathcal{V}}}M_{v}; on the other hand, if 𝒢{\mathcal{G}} is a complete graph, then v𝒢Mv=v𝒱Mv\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}M_{v}=\bigotimes_{v\in{\mathcal{V}}}M_{v}.

2.2. Laws in tracial von Neumann algebras

A tracial von Neumann algebra is a pair (M,τ)(M,\tau) where MM is a von Neumann algebra and τ:M\tau\colon M\to{\mathbb{C}} is a faithful, normal, tracial state. If aMa\in M is a normal element, we let μa\mu_{a} be the Borel probability measure supported on the spectrum of aa defined by

μa(E)=τ(1E(a)) for all Borel E.\mu_{a}(E)=\tau(1_{E}(a))\textnormal{ for all Borel $E\subseteq{\mathbb{C}}$}.

We then necessarily have that

τ(f(a))=f𝑑μa\tau(f(a))=\int f\,d\mu_{a}

for all complex-valued, bounded Borel functions ff defined on the spectrum of aa.

Given an integer r1r\geq 1, we let T1,T1,T2,,Tr,Tr{\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},\cdots,T_{r},T_{r}^{*}\right\rangle be the algebra of noncommutative *-polynomials in rr-variables (i.e. the universal *-algebra in rr-variables). Given a *-algebra AA and a tuple a=(a1,,ar)Ara=(a_{1},\cdots,a_{r})\in A^{r}, and PT1,T1,T2,,Tr,TrP\in{\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},\cdots,T_{r},T_{r}^{*}\right\rangle, we use P(a)P(a) for the image of PP under the unique *-homomorphism T1,T1,T2,,Tr,TrA{\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},\cdots,T_{r},T_{r}^{*}\right\rangle\to A which sends TjT_{j} to aja_{j}. For later use, if

P=(Pij)1im,1jnMm,n(T1,T1,T2,T2,,Tr,Tr)P=(P_{ij})_{1\leq i\leq m,1\leq j\leq n}\in M_{m,n}({\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},T_{2}^{*},\cdots,T_{r},T_{r}^{*}\right\rangle)

we define P(x)Mm,n(A)P(x)\in M_{m,n}(A) by

(P(x))ij=Pij(x).(P(x))_{ij}=P_{ij}(x).

If (M,τ)(M,\tau) is a tracial von Neumann algebra, and xMrx\in M^{r} is a tuple, we define its law x\ell_{x} to be the linear functional

x:T1,T1,T2,,Tr,Tr\displaystyle\ell_{x}\colon{\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},\cdots,T_{r},T_{r}^{*}\right\rangle \displaystyle\to{\mathbb{C}}
P\displaystyle P τ(P(x)).\displaystyle\mapsto\tau(P(x)).

If nn\in{\mathbb{N}} and AMn()A\in M_{n}({\mathbb{C}}) then we let A\ell_{A} be the law of AA with respect to the normalized tracial state trn\operatorname{tr}_{n} on Mn()M_{n}({\mathbb{C}}), namely

trn(A)=1nj=1nAjj.\operatorname{tr}_{n}(A)=\frac{1}{n}\sum_{j=1}^{n}A_{jj}.

Suppose we are given a sequence (Mn,τn)(M_{n},\tau_{n}) of tracial von Neumann algebras, and anMnra_{n}\in M_{n}^{r}. If (M,τ)(M,\tau) is a tracial von Neumann algebra and aMra\in M^{r} we say that ana\ell_{a_{n}}\to\ell_{a} if for all PT1,T1,T2,,Tr,TrP\in{\mathbb{C}}\left\langle T_{1},T_{1}^{*},T_{2},\cdots,T_{r},T_{r}^{*}\right\rangle we have

a(P)=limnan(P).\ell_{a}(P)=\lim_{n\to\infty}\ell_{a_{n}}(P).

Laws are spectral measures are related by the following fact: suppose we are given

  • (Mn,τn)(M_{n},\tau_{n}) are tracial von Neumann algebras,

  • a C>0C>0 and an integer r1r\geq 1

  • a sequence an(Mn)s.a.ra_{n}\in(M_{n})_{s.a.}^{r} with anC\|a_{n}\|\leq C.

  • a tracial von Neumann algebra (M,τ)(M,\tau) and aMs.a.ra\in M_{s.a.}^{r}

Then anna\ell_{a_{n}}\to_{n\to\infty}\ell_{a} in law if and only if for every self-adjoint P=PT1,T1,,Tr,TrP=P^{*}\in{\mathbb{C}}\left\langle T_{1},T_{1}^{*},\cdots,T_{r},T_{r}^{*}\right\rangle we have μP(an)μP(a)\mu_{P(a_{n})}\to\mu_{P(a)} weak. Moreover, if r=1r=1 these conditions are equivalent to saying that μanμa\mu_{a_{n}}\to\mu_{a} weak. The proof of this fact is an exercise in applying the Stone-Weierstrass theorem.

If (M,τ)(M,\tau) is a tracial von Neumann algebra, and xMm,n(M)x\in M_{m,n}(M), we define the Fuglede–Kadison pseudo-determinant of xx by

detM+(x)=exp(n(0,)logtdμ|x|(t)),\operatorname{det}_{M}^{+}(x)=\exp\left(n\int_{(0,\infty)}\log t\,d\mu_{|x|}(t)\right),

where |x|=(xx)1/2|x|=(x^{*}x)^{1/2}, and μ|x|\mu_{|x|} is the spectral measure with respect to trnτ\operatorname{tr}_{n}\otimes\tau. Here we are following the usual convention that exp()=0\exp(-\infty)=0.

2.3. Galois theory

We fix some notation and recalling some of the fundamental concepts of Galois theory, specific to algebraic field extensions of {\mathbb{Q}}. Let ¯\overline{{\mathbb{Q}}} be the algebraic numbers in {\mathbb{C}}, this is a field by [DF04, Corollary 19 in Section 13.2] We will write 𝒪{\mathcal{O}} for the algebraic integers in {\mathbb{C}}; recall that x𝒪x\in{\mathcal{O}} if there is a monic p[T]p\in{\mathbb{Z}}[T] so that p(x)=0p(x)=0.

The absolute Galois group of {\mathbb{Q}} is defined to be the group Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) of all field automorphisms of ¯\overline{{\mathbb{Q}}} (note that such automorphisms automatically fix {\mathbb{Q}}). Each x¯x\in\overline{{\mathbb{Q}}} has finite orbit Gal(¯/)x:={σ(x):σGal(¯/)}{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot x:=\left\{\sigma(x)\colon\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\right\}; if we equip these sets with their discrete topologies, then x¯(Gal(¯/)x)\prod_{x\in\overline{{\mathbb{Q}}}}({\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot x) is compact by Tychonoff’s Theorem, and contains Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}). Since Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) is closed in this topology, it is a compact group. Note that a sequence σnGal(¯/)\sigma_{n}\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) converges to σGal(¯/)\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) if for every x¯x\in\overline{{\mathbb{Q}}} we have σn(x)=σ(x)\sigma_{n}(x)=\sigma(x) for all sufficiently large nn.

Though we will not need it, we remark to the reader that the usual Galois correspondence between subgroups and subfields extends to this setting. Namely, the closed normal subgroups are in natural bijection with the Galois extensions of {\mathbb{Q}}, via the correspondence that sends a closed, normal subgroup HH of Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) to FixH(¯)={x¯:σ(x)=x for all σH}{\operatorname{Fix}}_{H}(\overline{{\mathbb{Q}}})=\{x\in\overline{{\mathbb{Q}}}:\sigma(x)=x\textnormal{ for all $\sigma\in H$}\}. This correspondence naturally induces an isomorphism Gal(¯/)/HGal(FixH(F)/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})/H\cong{\operatorname{Gal}}({\operatorname{Fix}}_{H}(F)/{\mathbb{Q}}). In particular, if [Gal(¯/):H]<+[{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}):H]<+\infty, then FixH(¯){\operatorname{Fix}}_{H}(\overline{{\mathbb{Q}}}) is a finite Galois extension with degree [Gal(¯/):H][{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}):H].

We remind the reader here some of the core results of Galois theory and algebraic number theory, which we will use in Section 3.

  1. (1)

    If x¯x\in\overline{{\mathbb{Q}}}, then xx\in{\mathbb{Q}} if and only if σ(x)=x\sigma(x)=x for all σGal(¯/)\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) (see [Lan02, Theorem 1.2]),

  2. (2)

    the algebraic integers form a subring of ¯\overline{{\mathbb{Q}}} (see [DF04, Corollary 24 in Section 15.3]),

  3. (3)

    𝒪={\mathcal{O}}\cap{\mathbb{Q}}={\mathbb{Z}} (see [DF04, Proposition 28 in Section 15.3]).

3. Galois bounded microstates and algebraic soficity

In this section we introduce the concepts of Galois bounded sequences of microstates and algebraic soficity. The motivation is to find an analogue of soficity which is better adapted to *-algebras not necessarily arising from groups, which will still be sufficient to give us bounds on certain Fuglede–Kadison pseudodeterminants of operators arising from such algebras.

The generators of a sofic group admit microstates among the permutation matrices, where all the entries are 0 or 11. This suffices to prove that their group algebras satisfy the determinant conjecture [ES05] (in turn implying that L2L^{2}-torsion of modules over them is well-defined [Lüc02]), as well as Lück approximation [ES05]. They are thus of fundamental importance in the study of L2L^{2}-invariance. We will see that the same sort of control can be obtained when a *-algebra has generators admitting microstates whose entries, rather than being integers, are algebraic integers all living in a fixed finite extension of {\mathbb{Q}}. We make these idea precise in Definitions 3.2 and 3.7.

As motivating examples, we show below that Mn()M_{n}({\mathbb{C}}) is algebraically sofic (despite not being a group von Neumann algebra), as is L(Γ)L(\Gamma) for any sofic group Γ\Gamma.

3.1. Galois bounded microstates and the Fuglede–Kadison determinant

Given AMN(¯)A\in M_{N}(\overline{{\mathbb{Q}}}) and σGal(¯/)\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}), we write σ(A)\sigma(A) to mean the matrix obtained by applying σ\sigma to each entry of AA. For σGal(¯/)\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}), we let σ~Gal(¯/)\widetilde{\sigma}\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) be given by σ~(z)=σ(z¯)¯\widetilde{\sigma}(z)=\overline{\sigma(\overline{z})}. Note that if AMN(¯)A\in M_{N}(\overline{{\mathbb{Q}}}), then

(1) σ(A)=σ~(A).\sigma(A^{*})=\widetilde{\sigma}(A)^{*}.

This will be used frequently in this section. For a matrix AMN(¯)A\in M_{N}(\overline{{\mathbb{Q}}}), we use

Gal(¯/)A={σ(A):σGal(¯/)}.{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot A=\{\sigma(A):\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\}.

The following lemma allows us to use number theory to obtain lower estimates on pseudo-determinants of finite dimensional matrices. This lemma will then motivate a special type of microstates approximation sequence whose existence implies positivity of Fuglede–Kadison pseudo-determinants.

Lemma 3.1.

Suppose AMN(𝒪)A\in M_{N}(\mathcal{O}). Set

C=maxσGal(¯/)σ(A),C=\max_{\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})}\|\sigma(A)\|,
d=#(Gal(¯/)A)d=\#({\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot A)

Then

det+(A)1/NCd2+1.\operatorname{det}^{+}(A)^{1/N}\geq C^{-d^{2}+1}.
Proof.

Let Ω=Gal(¯/)(AA)\Omega={\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot(A^{*}A). Following [Tho08b, Theorem 4.3], set

B=SΩS.B=\bigoplus_{S\in\Omega}S.

Then the characteristic polynomial of BB is

kB=SΩkS,k_{B}=\prod_{S\in\Omega}k_{S},

where kSk_{S} is the characteristic polynomial of SS. Let r{0}r\in{\mathbb{N}}\cup\{0\} be such that kAA(T)=Trpk_{A^{*}A}(T)=T^{r}p, where p𝒪[T]p\in\mathcal{O}[T] has p(0)0p(0)\neq 0. Then, for SΩS\in\Omega, we have kS(T)=TrpS(t)k_{S}(T)=T^{r}p_{S}(t) with pS𝒪[T]p_{S}\in\mathcal{O}[T], and pS(0)0p_{S}(0)\neq 0. Hence

kB(T)=Tr#ΩTΩpS(T).k_{B}(T)=T^{r\#\Omega}\prod_{T\in\Omega}p_{S}(T).

Set

q=SΩpS.q=\prod_{S\in\Omega}p_{S}.

Since kBk_{B} is invariant under Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) and has algebraic integer coefficients, we know that its coefficients are in 𝒪={\mathbb{Q}}\cap\mathcal{O}={\mathbb{Z}}. It follows that q[T]q\in{\mathbb{Z}}[T] as well. Further q(0)0q(0)\neq 0. Thus q(0){0}q(0)\in{\mathbb{Z}}\setminus\{0\} so that

1|q(0)|=det+(A)2SΩ{AA}|pS(0)|.1\leq|q(0)|=\operatorname{det}^{+}(A)^{2}\prod_{S\in\Omega\setminus\{A^{*}A\}}|p_{S}(0)|.

For SΩS\in\Omega, we know that pS(0)p_{S}(0) is the product of the nonzero eigenvalues of SS. For σGal(¯/)\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}), we define σ~Gal(¯/)\widetilde{\sigma}\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) by σ~(z)=σ(z¯)¯\widetilde{\sigma}(z)=\overline{\sigma(\overline{z})}. Then,

σ(AA)=σ~(A)σ(A)C2.\|\sigma(A^{*}A)\|=\|\widetilde{\sigma}(A)^{*}\sigma(A)\|\leq C^{2}.

This estimate implies that |pS(0)|C2N|p_{S}(0)|\leq C^{2N} for every SΩS\in\Omega. So

1det+(A)2C2(#Ω1)N.1\leq\operatorname{det}^{+}(A)^{2}C^{2(\#\Omega-1)N}.

Moreover, (1) implies that

Ω{(σ(A))ϕ(A):σ,ϕGal(¯/)}{S1S2:S1,S2Gal(¯/)A}.\Omega\subseteq\{(\sigma(A))^{*}\phi(A):\sigma,\phi\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\}\subseteq\{S_{1}^{*}S_{2}:S_{1},S_{2}\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot A\}.

Thus #Ωd2\#\Omega\leq d^{2}, and this completes the proof. ∎

The preceding lemma suggests the following definition.

Definition 3.2.

Let n(k)n(k) be a sequence of natural numbers. Let Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) be the absolute Galois group of {\mathbb{Q}}. We say that X(k)Mn(k)()X^{(k)}\in M_{n(k)}({\mathbb{C}}) is Galois bounded if

  • the entries of X(k)X^{(k)} are algebraic integers;

  • supkmaxσGal(¯/)σ(X(k))<+\sup_{k}\max_{\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})}\|\sigma(X^{(k)})\|<+\infty; and

  • #(Gal(¯/)X(k))<+\#({\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot X^{(k)})<+\infty.

If X(k)Mn(k)()rX^{(k)}\in M_{n(k)}({\mathbb{C}})^{r} we say that it is Galois bounded if (Xj(k))k=1(X^{(k)}_{j})_{k=1}^{\infty} is Galois bounded for all j=1,,rj=1,\cdots,r. If (M,τ)(M,\tau) is a tracial von Neumann algebra, and if xMrx\in M^{r} has X(k)x\ell_{X^{(k)}}\to\ell_{x}, then we say that X(k)X^{(k)} are a Galois bounded sequence of microstates for xx.

Recalling the correspondence between finite Galois extensions and finite index normal subgroups of the absolute Galois group discussed in §2.3, one can rephrase being Galois bounded in the following way. A sequence (X(k))k=1kMn(k)(¯)(X^{(k)})_{k=1}^{\infty}\in\prod_{k}M_{n(k)}(\overline{{\mathbb{Q}}}) is Galois bounded if and only if there is a sequence FkF_{k} of subfields of {\mathbb{C}} which are finite Galois extensions of {\mathbb{Q}} such that:

  • we have X(k)Mn(k)(Fk𝒪)X^{(k)}\in M_{n(k)}(F_{k}\cap\mathcal{O}),

  • supk[Fk:]<+,\sup_{k}[F_{k}:{\mathbb{Q}}]<+\infty,

  • supkmaxσGal(Fk/)σ(X(k))<+.\sup_{k}\max_{\sigma\in{\operatorname{Gal}}(F_{k}/{\mathbb{Q}})}\|\sigma(X^{(k)})\|<+\infty.

In fact, it is possible to rephrase all of our proofs in this framework without any reference to the absolute Galois group. However, phrasing everything in terms of the absolute Galois group makes the setup cleaner and simplifies the proofs of closure of Galois bounded elements under various operations such as multiplication, adjoints, and conjugation by permutations.

Proposition 3.3.

Let SS be the set of Galois bounded sequences in kMn(k)()\prod_{k}M_{n(k)}({\mathbb{C}}).

  1. (1)

    SS is a subring of kMn(k)(𝒪)\prod_{k}M_{n(k)}(\mathcal{O}) which is closed under adjoints, and contains all sequences of the form (α1n(k))k=1(\alpha 1_{n(k)})_{k=1}^{\infty} for α𝒪\alpha\in\mathcal{O}.

  2. (2)

    SS is invariant under the conjugation action of kSn(k)\prod_{k}S_{n(k)} on kMn(k)(¯)\prod_{k}M_{n(k)}(\overline{{\mathbb{Q}}}).

  3. (3)

    Suppose X=(Xk)kSX=(X_{k})_{k}\in S and m(k)m(k) any sequence of integers. If (Yk)kkMm(k)(¯)(Y_{k})_{k}\in\prod_{k}M_{m(k)}(\overline{{\mathbb{Q}}}) is Galois bounded, we have that (XkYk)k(X_{k}\otimes Y_{k})_{k} is Galois bounded.

  4. (4)

    If (X(k))kSr(X^{(k)})_{k}\in S^{r}, then for all P¯T1,T1,,Tr,TrP\in\overline{{\mathbb{Q}}}\left\langle T_{1},T_{1}^{*},\cdots,T_{r},T_{r}^{*}\right\rangle we have

    lim infkdet+(P(X(k)))1/n(k)>0.\liminf_{k\to\infty}\operatorname{det}^{+}(P(X^{(k)}))^{1/n(k)}>0.
Proof.

(1): That the norm boundedness condition is closed under sums and products follows from the facts 𝒪{\mathcal{O}} is a ring, that each σ\sigma induces an automorphism of Mn(k)(𝒪)M_{n(k)}(\mathcal{O}), and that the operator norm is submultiplicative. For the last condition, note that for A,BSA,B\in S, we have that

Gal(¯/)(A(k)B(k)){σ(A(k))ϕ(B(k)):σ,ϕGal(¯/)},{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot(A^{(k)}B^{(k)})\subseteq\{\sigma(A^{(k)})\phi(B^{(k)}):\sigma,\phi\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\},

with a similar result for the sum. That SS contains all constant algebraic integer multiples of the identity is an exercise. Finally, to see that SS is closed under adjoints, let A=(A(k))k=1SA=(A^{(k)})_{k=1}^{\infty}\in S. Equation (1) implies that ((A(k)))k=1S((A^{(k)})^{*})_{k=1}^{\infty}\in S. The desired result follows.

(2): This follows from the fact the action of Gal(¯/){\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) on Mn(k)(𝒪)M_{n(k)}(\mathcal{O}) commutes with the conjugation action of Sn(k)S_{n(k)}.

(4): By scaling, we may assume that P𝒪T1,T1,Tr,TrP\in\mathcal{O}\left\langle T_{1},T_{1}^{*}\cdots,T_{r},T_{r}^{*}\right\rangle. By (1), we know that (P(X(k)))k=1S(P(X^{(k)}))_{k=1}^{\infty}\in S. Set

C=supkmaxσGal(¯/)σ(P(X(k)))<+,C=\sup_{k}\max_{\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})}\|\sigma(P(X^{(k)}))\|<+\infty,
d=supk#Gal(¯/)P(X(k))<+.d=\sup_{k}\#{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\cdot P(X^{(k)})<+\infty.

For each kk, we then have by Lemma 3.1,

det+(P(X(k)))1/n(k)Cd2+1.\operatorname{det}^{+}(P(X^{(k)}))^{1/n(k)}\geq C^{-d^{2}+1}.

Taking limit infimums of both sides completes the proof.

(3): Using (1) we may reduce to the case that YkY_{k} is the m(k)×m(k)m(k)\times m(k) identity matrix. This case is an exercise using, for example, that

σ(A1m)=(σ(A)1m)\sigma\cdot(A\otimes 1_{m})=(\sigma(A)\otimes 1_{m})

for m,nm,n\in{\mathbb{N}} and AMn(¯)A\in M_{n}(\overline{{\mathbb{Q}}}).

We now obtain Theorem B from the introduction as a corollary of Proposition 3.3.

Theorem 3.4 (Theorem B).

If (M,τ)(M,\tau) is a tracial von Neumann algebra, and xx is a generating tuple for MM with a Galois bounded sequence of microstates, then for any matrix polynomial in xx with algebraic coefficients, the Fuglede–Kadison pseudo-determinant is positive.

Proof.

Suppose that x=(x1,,xr)x=(x_{1},\cdots,x_{r}), and let PMm,n(¯T1,,Tr).P\in M_{m,n}(\overline{{\mathbb{Q}}}\left\langle T_{1},\cdots,T_{r}\right\rangle). Since

PPMn(¯T1,T1,,Tr,Tr)P^{*}P\in M_{n}(\overline{{\mathbb{Q}}}\left\langle T_{1},T_{1}^{*},\cdots,T_{r},T_{r}^{*}\right\rangle)

we may, and will, assume that case m=nm=n. Let EijE_{ij} be the standard matrix units in Mn()M_{n}({\mathbb{C}}). It follows by Proposition 3.3 (3) that the new tuple

x~=((xlEij)1i,jn,1lr,(1Eij)1i,jn)\widetilde{x}=((x_{l}\otimes E_{ij})_{1\leq i,j\leq n,1\leq l\leq r},(1\otimes E_{ij})_{1\leq i,j\leq n})

has a Galois bounded sequence of microstates. Let

I=[r]×[n]×[n][n]×[n].I=[r]\times[n]\times[n]\sqcup[n]\times[n].

For 1i,jn1\leq i,j\leq n we use (,i,j)(\varnothing,i,j) for the element of II which correspond to (i,j)(i,j) in the copy of [n]×[n][n]\times[n] inside II. Suppose P=i,jPijEijP=\sum_{i,j}P_{ij}\otimes E_{ij}, then as

P(x)=ijPij((xlEii)l=1r)(1Eij),P(x)=\sum_{ij}P_{ij}((x_{l}\otimes E_{ii})_{l=1}^{r})(1\otimes E_{ij}),

we have

P(x)=i,jQij(x~),P(x)=\sum_{i,j}Q_{ij}(\widetilde{x}),

where Qij¯Tβ,Tβ:βIQ_{ij}\in\overline{{\mathbb{Q}}}\left\langle T_{\beta},T_{\beta}^{*}:\beta\in I\right\rangle is given by

Qij=Pij((T(l,i,i))l=1r)T,i,j.Q_{ij}=P_{ij}((T_{(l,i,i)})_{l=1}^{r})T_{\varnothing,i,j}.

This construction allows us to reduce to n=1n=1, by replacing xx with x~\widetilde{x}. Hence we may, and will, assume that n=1n=1.

Let (X(k))k(X^{(k)})_{k} be a Galois bounded sequence of microstates for xx. The fact that (X(k))k(X^{(k)})_{k} are microstates for xx implies that μ|P(X(k))|μ|P(x)|\mu_{|P(X^{(k)})|}\to\mu_{|P(x)|} weak. Thus, by weak-semicontinuity of integrating the logarithm and (4),

logdetM+(P(x))=(0,)log(t)𝑑μ|P(x)|(t)\displaystyle\log\operatorname{det}^{+}_{M}(P(x))=\int_{(0,\infty)}\log(t)\,d\mu_{|P(x)|}(t) lim infk(0,)log(t)𝑑μ|P(X(k))|(t)\displaystyle\geq\liminf_{k\to\infty}\int_{(0,\infty)}\log(t)\,d\mu_{|P(X^{(k)})|}(t)
=lim infklogdet+(P(X(k)))1/n(k)>.\displaystyle=\liminf_{k\to\infty}\log\operatorname{det}^{+}(P(X^{(k)}))^{1/n(k)}>-\infty.\qed

For later use, we record the fact that the existence of Galois boundedness passes to direct sums.

Lemma 3.5.

Let (Mj,τj),j=1,2(M_{j},\tau_{j}),j=1,2 be tracial von Neumann algebras. Suppose that xjMjrjx_{j}\in M_{j}^{r_{j}} for some r1,r2r_{1},r_{2} and each j=1,2j=1,2. Suppose that (nj(k))k=1(n_{j}(k))_{k=1}^{\infty} are sequences of natural numbers for j=1,2j=1,2. Assume we are given for j=1,2j=1,2 microstates sequences Xj(k)Mnj(k)()rjX^{(k)}_{j}\in M_{n_{j}(k)}({\mathbb{C}})^{r_{j}} for xjx_{j}. Finally, assume that (tk,j)k=1,j=1,2(t_{k,j})_{k=1}^{\infty},j=1,2 are sequence of integers so that

α=limktk,1n1(k)tk,1n1(k)+tk,2n2(k)\alpha=\lim_{k\to\infty}\frac{t_{k,1}n_{1}(k)}{t_{k,1}n_{1}(k)+t_{k,2}n_{2}(k)}

exists. Then ((X1(k))tk,10,0(X2(k))tk,2)((X^{(k)}_{1})^{\oplus t_{k,1}}\oplus 0,0\oplus(X^{(k)}_{2})^{\oplus t_{k,2}}) converges in law to the law of (x10,0x2)(x_{1}\oplus 0,0\oplus x_{2}) regarded as an element in α(M1,τ1)(1α)(M2,τ2)\alpha(M_{1},\tau_{1})\oplus(1-\alpha)(M_{2},\tau_{2}). In particular, if there are Galois bounded sequences of microstates for x1,x2x_{1},x_{2} then for every 0α10\leq\alpha\leq 1, there are Galois bounded sequence of microstates for (x10,0x2)(x_{1}\oplus 0,0\oplus x_{2}) regarded as an element in α(M1,τ1)(1α)(M2,τ2)\alpha(M_{1},\tau_{1})\oplus(1-\alpha)(M_{2},\tau_{2}).

3.2. Algebraic soficity

Definition 3.6.

A sequence of matrices X(k)Mn(k)()X^{(k)}\in M_{n(k)}({\mathbb{C}}) is called asymptotically constant on the diagonal if

limkΔn(k)[X(k)]trn(k)[X(k)]12=0,\lim_{k\to\infty}\left\|\Delta_{n(k)}[X^{(k)}]-\operatorname{tr}_{n(k)}[X^{(k)}]1\right\|_{2}=0,

where Δn(k)\Delta_{n(k)} is the conditional expectation onto the diagonal subalgebra of Mn(k)()M_{n(k)}({\mathbb{C}}).

Definition 3.7.

Given a tracial von Neumann algebra (M,τ)(M,\tau) we say that a tuple x=(xi)iIx=(x_{i})_{i\in I} in MIM^{I} is algebraically sofic if for any finite FIF\subseteq I, there is a sequence of microstates (Xi(k))iF(X_{i}^{(k)})_{i\in F} for x|Fx\big{|}_{F} that is Galois bounded (Definition 3.2), such that P(X(k))P(X^{(k)}) is asymptotically constant on the diagonal for every *-polynomial PP. We say that MM is algebraically sofic if it has an algebraically sofic generating tuple.

If (M,τ)(M,\tau) is a tracial von Neumann algebra, and xMIx\in M^{I} is algebraically sofic, we remark that for any set JJ and any P𝒪Ti,Ti:iIJP\in\mathcal{O}\left\langle T_{i},T_{i}^{*}:i\in I\right\rangle^{J} we have that P(x)P(x) is algebraically sofic. The name derives from the case of soficity of groups, as defined by Gromov [Gro99] and named by Weiss [Wei00]. Soficity can be phrased in terms of microstates: a group Γ\Gamma is sofic if and only for every finite FΓF\subseteq\Gamma there is a sequence σkSn(k)F\sigma_{k}\in S_{n(k)}^{F} which, when viewed as matrices, form microstates for FF. If we equip Sn(k)S_{n(k)} with the metric

d(σ,π)=1n(k)|{j:σ(j)π(j)}|,d(\sigma,\pi)=\frac{1}{n(k)}|\{j:\sigma(j)\neq\pi(j)\}|,

then if Σ,Π\Sigma,\Pi are the matrices corresponding to σ,π\sigma,\pi we have

d(σ,π)=12ΣΠ22.d(\sigma,\pi)=\frac{1}{2}\|\Sigma-\Pi\|_{2}^{2}.

If FΓF\subseteq\Gamma is finite, with eFe\in F and if σkSn(k)F\sigma_{k}\in S_{n(k)}^{F} is a microstates sequence for FF, then for every gFg\in F we have

tr(σk,g)kδg=e\operatorname{tr}(\sigma_{k,g})\to_{k\to\infty}\delta_{g=e}

Since

Δn(k)(σk,g)tr(σk,g)22=Δn(k)(σk,g)22tr(σk,g)2=tr(σk,g)(1tr(σk,g))\|\Delta_{n(k)}(\sigma_{k,g})-\operatorname{tr}(\sigma_{k,g})\|_{2}^{2}=\|\Delta_{n(k)}(\sigma_{k,g})\|_{2}^{2}-\operatorname{tr}(\sigma_{k,g})^{2}=\operatorname{tr}(\sigma_{k,g})(1-\operatorname{tr}(\sigma_{k,g}))

being a sequence of microstates forces σk\sigma_{k} to be asymptotically constant on the diagonal. Thus soficity of Γ\Gamma implies that every tuple in Γ\Gamma is algebraically sofic, when we view Γ𝒰(L(Γ))\Gamma\leq\mathcal{U}(L(\Gamma)). We record this observation in the following proposition.

Proposition 3.8.

If Γ\Gamma is a sofic group, then {ug:gΓ}L(Γ)\left\{u_{g}\colon g\in\Gamma\right\}\subseteq L(\Gamma) is algebraically sofic. In particular, L(Γ)L(\Gamma) is algebraically sofic.

In the definition of algebraic soficity, we retain having asymptotically constant diagonals, but we relax the requirement of being a permutation (ill-adapted to a nongroup setting). We instead require entries which are algebraic integers and whose entries have a “size of integrality” (both in absolute value and in terms of how large of a field extension they live) that is controlled. The intuition behind this relaxation is that the fact that permutation matrices have integer entries, and the integrality of permutations is used in the proofs of many applications of soficity.

We want to show that finite-dimensional tracial *-algebras are algebraically sofic, and to this end, we first show that Mn()M_{n}({\mathbb{C}}) is algebraically sofic using the following group-measure-space construction.

Proposition 3.9.

Let Γ\Gamma be a finite abelian group. Let (uχ)χΓ^(u_{\chi})_{\chi\in\widehat{\Gamma}} be the canonical unitaries in L(Γ^)L(\widehat{\Gamma}). Consider the action α\alpha of Γ\Gamma on L(Γ^)L(\widehat{\Gamma}) by αg(uχ)=χ(g)1uχ\alpha_{g}(u_{\chi})=\chi(g)^{-1}u_{\chi} for all gΓ,χΓ^g\in\Gamma,\chi\in\widehat{\Gamma}.

  1. (1)

    We have L(Γ^)ΓM|Γ|()L(\widehat{\Gamma})\rtimes\Gamma\cong M_{|\Gamma|}({\mathbb{C}}).

  2. (2)

    Endow L(Γ^)ΓL(\widehat{\Gamma})\rtimes\Gamma with its unique tracial state τ\tau. For gΓg\in\Gamma, let vgv_{g} be the canonical unitaries in L(Γ^)ΓL(\widehat{\Gamma})\rtimes\Gamma implementing the action of Γ\Gamma. Let

    π:L(Γ^)ΓB(L2(L(Γ^)Γ))\pi\colon L(\widehat{\Gamma})\rtimes\Gamma\to B(L^{2}(L(\widehat{\Gamma})\rtimes\Gamma))

    be the GNS representation coming from τ\tau. Then:

    1. (a)

      {uχvg:χΓ^,gG}\{u_{\chi}v_{g}\colon\chi\in\widehat{\Gamma},\ g\in G\} is an orthonormal basis of L2(L(Γ^)Γ)L^{2}(L(\widehat{\Gamma})\rtimes\Gamma);

    2. (b)

      if DD is the MASA in B(L2(L(Γ^)Γ))B(L^{2}(L(\widehat{\Gamma})\rtimes\Gamma)) generated by the rank one projections onto uχvg{\mathbb{C}}u_{\chi}v_{g}, for χΓ^\chi\in\widehat{\Gamma} and gΓg\in\Gamma, then

      𝔼Dπ=τ;{\mathbb{E}}_{D}\circ\pi=\tau;
    3. (c)

      the matrix entries of π(uχvg)\pi(u_{\chi}v_{g}) with respect to (uθvh)θΓ,hG(u_{\theta}v_{h})_{\theta\in\Gamma,h\in G} are elements of {0}{ϕ(k):ϕΓ^,kΓ}\{0\}\cup\{\phi(k):\phi\in\widehat{\Gamma},k\in\Gamma\}.

    4. (d)

      For 1i,j|Γ|1\leq i,j\leq|\Gamma|, let EijE_{ij} be the standard matrix units of M|Γ|()M_{|\Gamma|}({\mathbb{C}}). Let K={ϕ(k):ϕΓ^,kΓ}K=\{\phi(k):\phi\in\widehat{\Gamma},k\in\Gamma\}. Then the isomorphism given in (1)(\ref{item:Takdual}) can be chosen so that the matrix entires of π(Eij)\pi(E_{ij}) with respect to (uθvh)θΓ,hΓ(u_{\theta}v_{h})_{\theta\in\Gamma,h\in\Gamma} lie in 1|Γ|[K]\frac{1}{|\Gamma|}{\mathbb{Z}}[K], for 1i,jΓ1\leq i,j\leq\Gamma.

Proof.

(1): The Fourier transform induces an isomorphism L(Γ^)(Γ)L(\widehat{\Gamma})\cong\ell^{\infty}(\Gamma) which conjugates the action of Γ\Gamma on L(Γ^)L(\widehat{\Gamma}) to the shift action of Γ\Gamma on (Γ)\ell^{\infty}(\Gamma). This induces an isomorphism (Γ)ΓL(Γ^)Γ\ell^{\infty}(\Gamma)\rtimes\Gamma\cong L(\widehat{\Gamma})\rtimes\Gamma, where the action of Γ\Gamma on (Γ)\ell^{\infty}(\Gamma) is the shift action. The algebra (Γ)Γ\ell^{\infty}(\Gamma)\rtimes\Gamma is generated by the family of matrix units {δgugh1δh:g,hΓ}\{\delta_{g}u_{gh^{-1}}\delta_{h}\colon g,h\in\Gamma\} and is therefore isomorphic to M|Γ|()M_{|\Gamma|}({\mathbb{C}}).

(2): The fact that {uχvg:χΓ^,gΓ}\{u_{\chi}v_{g}\colon\chi\in\hat{\Gamma},\ g\in\Gamma\} are pairwise orthogonal is a direct computation. We leave it as an exercise to verify that

π(uχvg)uθvh,uϕvk=θ(g)δχθ=ϕδgh=k,\left\langle\pi(u_{\chi}v_{g})u_{\theta}v_{h},u_{\phi}v_{k}\right\rangle=\theta(g)\delta_{\chi\theta=\phi}\delta_{gh=k},

for all χΓ^,gΓ\chi\in\widehat{\Gamma},g\in\Gamma. This implies that

𝔼D(π(uχvg))=τ(uχvg)1{\mathbb{E}}_{D}(\pi(u_{\chi}v_{g}))=\tau(u_{\chi}v_{g})1

for all χΓ^,gΓ\chi\in\widehat{\Gamma},g\in\Gamma. Since such elements span L(Γ^)ΓL(\widehat{\Gamma})\rtimes\Gamma, it follows that 𝔼Dπ=τ{\mathbb{E}}_{D}\circ\pi=\tau. Part (LABEL:item:matri_entries_algebraic_integers_1) follows from the above computation For part (2d), note that the fact that (uθvh)θ,h(u_{\theta}v_{h})_{\theta,h} is an orthonormal basis implies that

Eij=χ,gtr(Eij(uχvg))uχvg.E_{ij}=\sum_{\chi,g}\operatorname{tr}(E_{ij}(u_{\chi}v_{g})^{*})u_{\chi}v_{g}.

As shown above, the matrix entries of π(uχvg)\pi(u_{\chi}v_{g}) with respect to the basis (uθvh)θ,h(u_{\theta}v_{h})_{\theta,h} are in [K]{\mathbb{Z}}[K], so the above expansion completes the proof. ∎

We start by recording how algebraic soficity behaves under tensor products.

Proposition 3.10.

For j=1,2j=1,2 let (Mj,τj)(M_{j},\tau_{j}) be tracial von Neumann algebras and xjMjrjx_{j}\in M_{j}^{r_{j}} algebraically sofic tuples. Then (x11,1x2)(x_{1}\otimes 1,1\otimes x_{2}) is algebraically sofic.

Proof.

Let Xj(k)Mnj(k)(𝒪)X_{j}^{(k)}\in M_{n_{j}(k)}({\mathcal{O}}) be Galois bounded microstates for xjx_{j} so that polynomials in Xj(k)X_{j}^{(k)} are asymptotically constant on the diagonal. By Proposition 3.3 (3) we know that (X1(k)1n2(k),1n1(k)X2(k))(X_{1}^{(k)}\otimes 1_{n_{2}(k)},1_{n_{1}(k)}\otimes X_{2}^{(k)}) is Galois bounded. Monomials in (X1(k)1n2(k),1n1(k)X2(k))(X_{1}^{(k)}\otimes 1_{n_{2}(k)},1_{n_{1}(k)}\otimes X_{2}^{(k)}) are asymptotically constant on the diagonal, and thus polynomials in (X1(k)1n2(k),1n1(k)X2(k))(X_{1}^{(k)}\otimes 1_{n_{2}(k)},1_{n_{1}(k)}\otimes X_{2}^{(k)}) are asymptotically constant on the diagonal. ∎

This result on tensor products can also be used to show that algebraic soficity is preserved under finite direct sums with rational weights. We show in the next section that the direct sum of two algebraically sofic algebras without rational weights can fail to be algebraically sofic (see Corollary 3.17).

Theorem 3.11.

Suppose that (Mj,τj)(M_{j},\tau_{j}), j=1,2j=1,2 are algebraically sofic, and let q(0,1)q\in(0,1)\cap{\mathbb{Q}}. Let M=M1M2M=M_{1}\oplus M_{2} equipped with the trace

τ(a1,a2)=qτ1(a1)+(1q)τ2(a2).\tau(a_{1},a_{2})=q\tau_{1}(a_{1})+(1-q)\tau_{2}(a_{2}).

Then (M,τ)(M,\tau) is algebraically sofic. In particular, finite dimensional tracial von Neumann algebras where every central projection has trace in {\mathbb{Q}} are algebraically sofic.

Proof.

The “in particular” part follows from the fact that every finite-dimensional von Neumann algebra is a direct sum of matrix algebras.

Note that {ϕ(k):k/n,ϕ(/n)^}=[e2πi/n]\{\phi(k):k\in{\mathbb{Z}}/n{\mathbb{Z}},\phi\in({\mathbb{Z}}/n{\mathbb{Z}})^{\widehat{}}\}={\mathbb{Z}}[e^{2\pi i/n}], and e2πi/ne^{2\pi i/n} is algebraic integer. So the fact that Mn()M_{n}({\mathbb{C}}) is algebraically sofic follows from Proposition 3.9 applied to Γ=/n\Gamma={\mathbb{Z}}/n{\mathbb{Z}}. For later use, we note the following specific consequence. For 1i,jn1\leq i,j\leq n, let EijE_{ij} be the standard matrix units of Mn()M_{n}({\mathbb{C}}). Then Proposition 3.9 shows that (nEi,j)i,j(nE_{i,j})_{i,j} is an algebraically sofic tuple.

Now let (Aj,τj)j=1,2(A_{j},\tau_{j})_{j=1,2} be tracial *-algebras. Let sjAjrjs_{j}\in A_{j}^{r_{j}} be a generating tuple for Aj,j=1,2A_{j},j=1,2 such that there exists Galois bounded microstates (Xj(k))k=1kMnj(k)()(X^{(k)}_{j})_{k=1}^{\infty}\in\prod_{k}M_{n_{j}(k)}({\mathbb{C}}) as in the definition of algebraic soficity.

Let A=A1A2A=A_{1}\oplus A_{2} be endowed with the trace

τ(a1,a2)=tτ1(a1)+(1t)τ2(a2)\tau(a_{1},a_{2})=t\tau_{1}(a_{1})+(1-t)\tau_{2}(a_{2})

for some t(0,1)t\in{\mathbb{Q}}\cap(0,1). Write t=knt=\frac{k}{n} with nn\in{\mathbb{N}} and 0<k<n0<k<n. We use the embedding

π:A1A2Mn()A1A2\pi\colon A_{1}\oplus A_{2}\to M_{n}({\mathbb{C}})\otimes A_{1}\otimes A_{2}

given by π(a1,a2)=(i=1kEii)a11+(i=k+1nEii)1a2.\pi(a_{1},a_{2})=\left(\sum_{i=1}^{k}E_{ii}\right)\otimes a_{1}\otimes 1+\left(\sum_{i=k+1}^{n}E_{ii}\right)\otimes 1\otimes a_{2}. It thus suffices to note that Propositions 3.10 and 3.3 (1) implies that

n((i=1kEii)s11,n(i=k+1nEii)1s2)n\left(\left(\sum_{i=1}^{k}E_{ii}\right)\otimes s_{1}\otimes 1,n\left(\sum_{i=k+1}^{n}E_{ii}\right)\otimes 1\otimes s_{2}\right)

is an algebraically sofic tuple. ∎

3.3. Tracial *-algebras which are not algebraically sofic

In this section, we show that certain *-algebras can fail to be algebraically sofic. In fact, we show that any self-adjoint element which is algebraically sofic (regarded as a 11-tuple) must have transcendental trace. Using, we can show that if we equip A=Mk1()Mk2()A=M_{k_{1}}({\mathbb{C}})\oplus M_{k_{2}}({\mathbb{C}}) with a trace which has a central projection with transcendental trace, then every algebraic sofic element of AA must be a scalar multiple of the identity.

Our starting point is the following result of Thom.

Lemma 3.12 (Lemma 3.1 of [Tho08b]).

Fix kk\in{\mathbb{N}} and C[0,+)C\in[0,+\infty). Let Tk,cT_{k,c} be the set of polynomials in [t]{\mathbb{Z}}[t] of degree at most kk and whose roots in {\mathbb{C}} all have modulus at most CC. Then Tk,CT_{k,C} is finite.

For our purposes, it will be best to rephrase this as follows.

Lemma 3.13.

Fix kk\in{\mathbb{N}} and C[0,+)C\in[0,+\infty). Let Sk,CS_{k,C} be the set of algebraic integers in {\mathbb{C}} which have at most kk Galois conjugates, all of which have modulus at most CC. Then Sk,cS_{k,c} is finite.

Proof.

Let Tk,cT_{k,c} be as in Lemma 3.12. Then

Sk,c=pTk,cp1({0}),S_{k,c}=\bigcup_{p\in T_{k,c}}p^{-1}(\{0\}),

so Sk,CS_{k,C} is a finite union of finite sets.

Corollary 3.14.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra and suppose that xMs.a.x\in M_{s.a.} is algebraically sofic. Then τ(x)\tau(x) is an algebraic integer.

Proof.

Let Sk,cS_{k,c} be as in Lemma 3.13. Let X(N)Mk(N)(𝒪)X^{(N)}\in M_{k(N)}({\mathcal{O}}) be a Galois bounded sequence of microstates which witness that xx is algebraically sofic. Since X(N)X^{(N)} has asymptotically constant diagonal entries and the average of these entries converges to τ(x)\tau(x) we may choose j(N){1,,K(N)}j(N)\in\{1,\cdots,K(N)\} with

Xj(N),j(N)(N)Nτ(x).X^{(N)}_{j(N),j(N)}\to_{N\to\infty}\tau(x).

By definition of Galois boundedness, there is a C[0,+)C\in[0,+\infty) and a kk\in{\mathbb{N}} with Xj(N),j(N)(N)Sk,CX^{(N)}_{j(N),j(N)}\in S_{k,C} for all NN. By Lemma 3.13, we have that τ(x)Sk,C\tau(x)\in S_{k,C} and so τ(x)\tau(x) is an algebraic integer.

Theorem 3.15.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra and xMx\in M algebraically sofic and self-adjoint. Then all the eigenvalues of xx are algebraic integers.

Proof.

Let X(N)Mk(N(𝒪)X^{(N)}\in M_{k(N}({\mathcal{O}}) be a sequence of Galois bounded microstates which witness algebraic soficity. By passing to a subsequence, we may assume that there is an rr\in{\mathbb{N}} with

r=|{σ(X(N)):σGal(¯/)}.r=|\{\sigma(X^{(N)}):\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\}.

For each NN\in{\mathbb{N}}, choose σ0,N,,σr1,NGal(¯/)\sigma_{0,N},\cdots,\sigma_{r-1,N}\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}}) such that σ0,N=id\sigma_{0,N}=\operatorname{id} and

{σ(X(N)):σGal(¯/)}={σj,N(X(N)):j{0,,r1}}.\{\sigma(X^{(N)}):\sigma\in{\operatorname{Gal}}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\}=\{\sigma_{j,N}(X^{(N)}):j\in\{0,\cdots,r-1\}\}.

Set

Y(N)=j=0r1σ(Y(j)).Y^{(N)}=\bigoplus_{j=0}^{r-1}\sigma(Y^{(j)}).

Passing to a further subsequence we may assume that μY(N)\mu_{Y^{(N)}} weak-converges to a probability measure μ\mu. Let μX(N),μY(N)\mu_{X^{(N)}},\mu_{Y^{(N)}} be the spectral measures of X(N),Y(N)X^{(N)},Y^{(N)}. Since the characteristic polynomial of Y(N)Y^{(N)} is invariant under the absolute Galois group, we know it is an integer and thus μY(N)\mu_{Y^{(N)}} is an atomic measure supported on algebraic integers, and by Galois boundedness it is supported in a uniformly bounded set. Thus μ\mu is an integer measure in the sense of [Tho11]. Let μx\mu_{x} be the spectral measure of xx. Since μX(N)rμY(N)\mu_{X^{(N)}}\leq r\mu_{Y^{(N)}} for every NN we have that μxrμ\mu_{x}\leq r\mu. If λ\lambda\in{\mathbb{C}} is not an algebraic integer, then since μ\mu is an integer measure it follows from [Tho11, Theorem 2.8] that

μx({λ})rμ({λ})=0.\mu_{x}(\{\lambda\})\leq r\mu(\{\lambda\})=0.

Corollary 3.16.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra and xMx\in M algebraically sofic and self-adjoint. If the spectral measure μx\mu_{x} of xx is atomic, then μx({λ})\mu_{x}(\{\lambda\}) is algebraic for every λ\lambda\in{\mathbb{C}}.

Proof.

The case where λ\lambda is transcendental follows from the above Theorem. So suppose that λ\lambda is algebraic. Define a polynomial

Fλ(t)=βspec(x),βλ(tβ).F_{\lambda}(t)=\prod_{\beta\in\operatorname{spec}(x),\beta\neq\lambda}(t-\beta).

Note that FλF_{\lambda} has algebraic coefficients. Then

1λ(x)=βspec(x),βλ(λβ)1Fλ(x).1_{\lambda}(x)=\prod_{\beta\in\operatorname{spec}(x),\beta\neq\lambda}(\lambda-\beta)^{-1}F_{\lambda}(x).

So

μx({λ})=βspec(x),βλ(λβ)1τ(Fλ(x)).\mu_{x}(\{\lambda\})=\prod_{\beta\in\operatorname{spec}(x),\beta\neq\lambda}(\lambda-\beta)^{-1}\tau(F_{\lambda}(x)).

We have that τ(Fλ(x))¯\tau(F_{\lambda}(x))\in\overline{{\mathbb{Q}}} by the preceding theorem, since xkx^{k} is algebraically sofic for all k{0}k\in{\mathbb{N}}\cup\{0\}.

Corollary 3.17.

Suppose that k1,k2k_{1},k_{2}\in{\mathbb{N}} and that gcd(k1,k2)=1\gcd(k_{1},k_{2})=1. Let α\alpha\in{\mathbb{C}} be transcendental. Let A=Mk1()Mk2()A=M_{k_{1}}({\mathbb{C}})\oplus M_{k_{2}}({\mathbb{C}}) equipped with a trace

τ(x1,x2)=αtr(x1)+(1α)tr(x2).\tau(x_{1},x_{2})=\alpha\operatorname{tr}(x_{1})+(1-\alpha)\operatorname{tr}(x_{2}).

If xAx\in A is algebraically sofic with respect to τ,\tau, then x1x\in{\mathbb{C}}1. In particular, AA is not algebraically sofic.

Proof.

Since x+xx+x^{*} and i(xx)i(x-x^{*}) are algebraically sofic if xx is, we may assume that xx is self-adjoint. Consider the spectral measure μx\mu_{x} of xx. Write x=(x1,x2)x=(x_{1},x_{2}). By Theorem 3.15 and Corollary 3.16, μx\mu_{x} is an atomic measure concentrated on algebraic integers and μx({λ})\mu_{x}(\{\lambda\}) is algebraic for every λ\lambda\in{\mathbb{C}}. Let λ\lambda\in{\mathbb{C}}, and let

ti=dim(ker(xiλ))ki.t_{i}=\frac{\dim(\ker(x_{i}-\lambda))}{k_{i}}\in{\mathbb{Q}}.

Then

μx({λ})=α(t1t2)+t2.\mu_{x}(\{\lambda\})=\alpha(t_{1}-t_{2})+t_{2}.

Note that α\alpha is transcendental, whereas t1,t2,μx({λ})t_{1},t_{2},\mu_{x}(\{\lambda\}) are algebraic. Since algebraic numbers form a field, this forces t1=t2t_{1}=t_{2}. Our assumptions on k1,k2k_{1},k_{2} thus forces that either

dim(ker(x1λ))k1=dim(ker(x2λ))k2=0\frac{\dim(\ker(x_{1}-\lambda))}{k_{1}}=\frac{\dim(\ker(x_{2}-\lambda))}{k_{2}}=0

or

dim(ker(x1λ))k1=dim(ker(x2λ)k2=1.\frac{\dim(\ker(x_{1}-\lambda))}{k_{1}}=\frac{\dim(\ker(x_{2}-\lambda)}{k_{2}}=1.

Since this holds for all λ\lambda and μx\mu_{x} is a probability measure, this forces μx\mu_{x} to be a Dirac mass. Thus x1x\in{\mathbb{C}}1. ∎

4. Algebraic soficity preserved by graph products

In this section, we show that the graph product of algebraically sofic tracial *-algebras is algebraically sofic. In order to obtain the Galois bounded microstates for the graph product from Galois bounded microstates for the individual algebras, we use a construction based on conjugation by random permutation matrices from [CdSH+] (stated as Theorem 4.1 below); this is the analog of Charlesworth and Collins’ construction in the unitary case [CC21], and the proof uses a similar technique as in the free case studied by [ACD+21].

To model graph products, we will need to force certain matrices to commute with each other, and certain matrices to be asymptotically free. As in [CC21], we will accomplish this by taking the models in a tensor product of several copies of MN()M_{N}({\mathbb{C}}), with matrices having only scalar components in certain tensor factors; in this way we can ensure that matrices which are meant to commute do so. Heuristically, the index set of this tensor product will be a finite set of strings. Given a subalgebra of this larger product formed by replacing some of the tensor factors with copies of IN{\mathbb{C}}I_{N}, we will think of its elements as corresponding to collections of beads on the strings where the algebra has a non-trivial factor. Two algebras commute, then, if the beads representing their elements can slide past each other on this collection of strings. For more detail on this picture, refer to [CC21, §3.2] or more generally [CN10].

The information of which tensor factors of a matrix are allowed to be non-scalar is determined by the vertex it corresponds to. We will choose our set of strings and the assignments of vertices to sets of strings in such a way that matrices will share a string in common precisely when the graph product structure insists that the algebras they are modelling should be freely independent. Given a prescribed finite graph 𝒢{\mathcal{G}} it is always possible to choose a set 𝒮{\mathcal{S}} and a relation with this with this property; one approach was given in [CC21, Section 3.1].

The matrices produced by our construction will all live in MN()𝒮M_{N}({\mathbb{C}})^{\otimes{\mathcal{S}}}. The inputs to the construction are deterministic matrices Xj(N)X_{j}^{(N)} which are each assigned a certain vertex χ(j)\chi(j), such that Xj(N)X_{j}^{(N)} is MN()𝒮vM_{N}({\mathbb{C}})^{\otimes{\mathcal{S}}_{v}}, viewed as a subalgebra of MN()𝒮M_{N}({\mathbb{C}})^{\otimes{\mathcal{S}}} in the standard way. Each matrix Xj(N)X_{j}^{(N)} with χ(j)=v\chi(j)=v will be conjugated by a random permutation matrix Σv(N)\Sigma_{v}^{(N)} in 𝒮vMN()\bigotimes_{{\mathcal{S}}_{v}}M_{N}({\mathbb{C}}) to produce a new random matrix X¯¯j(N){\underline{\underline{X}}}_{j}^{(N)} in MN()𝒮M_{N}({\mathbb{C}})^{\otimes{\mathcal{S}}}. When we apply this construction in the proof of Theorem C, Xj(N)X_{j}^{(N)} will be a matrix approximation for some element of Aχ(j)A_{\chi(j)}, more specifically some polynomial evaluated on microstates for our chosen generators of Aχ(j)A_{\chi(j)}.

Theorem 4.1 is a statement about certain polynomials in X¯¯j(N){\underline{\underline{X}}}_{j}^{(N)} given by 𝒢{\mathcal{G}}-reduced words with respect to the graph 𝒢{\mathcal{G}} (see Definition 2.2). The following theorem is a special case and slight reformulation of the main theorem of [CdSH+].

Theorem 4.1.

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a simple graph with vertex set 𝒱{\mathcal{V}}, 𝒮{\mathcal{S}} be a finite set, and be as above so that 𝒮v𝒮v={\mathcal{S}}_{v}\cap{\mathcal{S}}_{v^{\prime}}=\varnothing if and only if (v,v)(v,v^{\prime})\in{\mathcal{E}}.

For NN\in{\mathbb{N}}, let ΔN#𝒮\Delta_{N^{\#{\mathcal{S}}}} be the conditional expectation onto the diagonal *-subalgebra DND_{N} of 𝒮MN()\bigotimes_{{\mathcal{S}}}M_{N}({\mathbb{C}}).

Let NkN_{k} be a sequence of natural numbers with NkN_{k}\to\infty. Let χ:[m]𝒱\chi:[m]\to{\mathcal{V}} be such that χ(1)χ(m)\chi(1)\cdots\chi(m) is a 𝒢{\mathcal{G}}-reduced word, and for i=1,,mi=1,\ldots,m and kk\in{\mathbb{N}}, let Xi(k)Sχ(i)MNk()X_{i}^{(k)}\in\bigotimes_{S_{\chi(i)}}M_{N_{k}}({\mathbb{C}}) be a deterministic matrix, with supk,i,jXi(k)<\sup_{k,i,j}\left\|X_{i}^{(k)}\right\|<\infty.

Further, let {Σv(N):v𝒱}\left\{\Sigma_{v}^{(N)}:v\in{\mathcal{V}}\right\} be a family of independent uniformly random permutation matrices, with Σv𝒮vMN()\Sigma_{v}\in\bigotimes_{{\mathcal{S}}_{v}}M_{N}({\mathbb{C}}), and write

X¯¯i(k)=(Σχ(i)(k))Xi(k)Σχ(i)(k)INk𝒮𝒮χ(i)𝒮MN().{\underline{\underline{X}}}_{i}^{(k)}=\left(\Sigma_{\chi(i)}^{(k)}\right)^{*}X_{i}^{(k)}\Sigma_{\chi(i)}^{(k)}\otimes I_{N_{k}}^{\otimes{\mathcal{S}}\setminus{\mathcal{S}}_{\chi(i)}}\in\bigotimes_{{\mathcal{S}}}M_{N}({\mathbb{C}}).

Then

(2) limkΔNk#𝒮[(X¯¯1(k)ΔN#𝒮[X¯¯1(k)])(X¯¯k(k)ΔN#𝒮[X¯¯m(k)])]2=0 almost surely.\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[({\underline{\underline{X}}}_{1}^{(k)}-\Delta_{N^{\#{\mathcal{S}}}}[{\underline{\underline{X}}}_{1}^{(k)}])\dots({\underline{\underline{X}}}_{k}^{(k)}-\Delta_{N^{\#{\mathcal{S}}}}[{\underline{\underline{X}}}_{m}^{(k)}])]\right\|_{2}=0\text{ almost surely.}

Note in [CdSH+], 𝒞\mathcal{C} rather than 𝒱\mathcal{V} is used for the set of vertices of 𝒢\mathcal{G}. In the notation of [CdSH+], we have taken the diagonal matrices Λi,j(n)\Lambda_{i,j}^{(n)} to be identity. Moreover, rather than having matrices Xi,j(N)X_{i,j}^{(N)} with j=1j=1, …, (i)\ell(i), we have a single matrix Xi(N)X_{i}^{(N)} (we take (i)=1\ell(i)=1). We used mm here rather than kk to denote the length of the word. Finally, we rather than having a sequence X¯¯(N){\underline{\underline{X}}}^{(N)} of matrices of size N#𝒮N^{\#{\mathcal{S}}}, we consider a sequence X¯¯(Nk){\underline{\underline{X}}}^{(N_{k})} of matrices of size Nk#𝒮N_{k}^{\#{\mathcal{S}}}; the theorem clearly still holds in this setting, since the proof is based on computing expectations and analyzing their dependence on NN, for which can simply substitute NkN_{k}.

We are now ready to prove Theorem C, which we restate here.

Theorem 4.2 (Theorem  C).

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a finite simple graph and let (Av,τv)(A_{v},\tau_{v}) for a v𝒱v\in{\mathcal{V}} be a family of tracial *-algebras. If each (Av,τv)(A_{v},\tau_{v}) is algebraically sofic, then so is v𝒢(Av,τv)\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(A_{v},\tau_{v}).

Proof.

Suppose that (Av,τv)(A_{v},\tau_{v}) for v𝒱v\in{\mathcal{V}} are algebraically sofic, and let us prove that the graph product v𝒢(Av,τv)\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(A_{v},\tau_{v}) is algebraically sofic.

For each vv, fix a generating tuple yvy_{v} for AvA_{v}. Fix Galois bounded sequences of microstates Y~v(k)\tilde{Y}_{v}^{(k)} in MNv,k()M_{N_{v,k}}({\mathbb{C}}) for yvy_{v}. Let Nk=v𝒱Nv,kN_{k}=\prod_{v\in{\mathcal{V}}}N_{v,k}, and let Yv(k)=Y~v(k)INk/Nk,vY_{v}^{(k)}=\tilde{Y}_{v}^{(k)}\otimes I_{N_{k}/N_{k,v}}. Note that Yv(k)Y_{v}^{(k)} is a Galois bounded sequence of microstates for yvy_{v}, but these microstates now come from the same matrix algebra MNk()M_{N_{k}}({\mathbb{C}}) for all vertices vv.

Let 𝒮{\mathcal{S}} be a finite set and a relation between 𝒮{\mathcal{S}} and 𝒱{\mathcal{V}} so that for v1,v2𝒱v_{1},v_{2}\in{\mathcal{V}}, (v1,v2)(v_{1},v_{2})\in{\mathcal{E}} if and only if 𝒮v1𝒮v2={\mathcal{S}}_{v_{1}}\cap{\mathcal{S}}_{v_{2}}=\emptyset. For each v𝒱v\in{\mathcal{V}}, fix some sv𝒮vs_{v}\in{\mathcal{S}}_{v}. Let {Σv(k):v𝒱}\left\{\Sigma_{v}^{(k)}\colon v\in{\mathcal{V}}\right\} be a family of independent uniformly random permutation matrices, with Σv𝒮vMNk()\Sigma_{v}\in\bigotimes_{{\mathcal{S}}_{v}}M_{N_{k}}({\mathbb{C}}). Let

Zv(k)=[(Σv(k))t(Xv(k)IN𝒮v{sv})Σv(k)]IN𝒮𝒮v.Z_{v}^{(k)}=\left[(\Sigma_{v}^{(k)})^{t}(X_{v}^{(k)}\otimes I_{N}^{\otimes{\mathcal{S}}_{v}\setminus\{s_{v}\}})\Sigma_{v}^{(k)}\right]\otimes I_{N}^{\otimes{\mathcal{S}}\setminus{\mathcal{S}}_{v}}.

Let yy and Z(k)Z^{(k)} be the tuples obtained by concatenating the tuples yvy_{v} and Zv(k)Z_{v}^{(k)} respectively, over all v𝒱v\in{\mathcal{V}}. It is immediate that each random outcome of (Z(k))k(Z^{(k)})_{k\in{\mathbb{N}}} is Galois bounded.

It remains to show that almost surely Z(k)Z^{(k)} is a microstate sequence for yy and has asymptotically constant diagonal. Being a microstate sequence means that for every non-commutative polynomial pp, we have

limk|trNk#𝒮(p(Z(k)))τ(p(y))|=0,\lim_{k\to\infty}|\operatorname{tr}_{N_{k}^{\#{\mathcal{S}}}}(p(Z^{(k)}))-\tau(p(y))|=0,

while being asymptotically constant on the diagonal means that

limkΔNk#𝒮[p(Z(k)]trNk#𝒮(p(Z(k)))INk#𝒮2=0.\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[p(Z^{(k)}]-\operatorname{tr}_{N_{k}^{\#{\mathcal{S}}}}(p(Z^{(k)}))I_{N_{k}^{\#{\mathcal{S}}}}\right\|_{2}=0.

In fact, the combination of these two conditions is equivalent to

(3) limkΔNk#𝒮[p(Z(k)]τ(p(y))INk#𝒮2=0;\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[p(Z^{(k)}]-\tau(p(y))I_{N_{k}^{\#{\mathcal{S}}}}\right\|_{2}=0;

this follows from the triangle inequality and the fact that trNk#𝒮ΔNk#𝒮=trNk#𝒮\operatorname{tr}_{N_{k}^{\#{\mathcal{S}}}}\circ\Delta_{N_{k}^{\#{\mathcal{S}}}}=\operatorname{tr}_{N_{k}^{\#{\mathcal{S}}}}. By linearity, it suffices to check (3) for a spanning set of polynomials. Recall [CF17, Remark 2.7] that polynomials in yy are spanned by 11 and polynomials of the form

(4) p(z)=(p1(zχ(1))τ(p1(yχ(1))))(p(zχ())τ(p(yχ())))p(z)=(p_{1}(z_{\chi(1)})-\tau(p_{1}(y_{\chi(1)})))\dots(p_{\ell}(z_{\chi(\ell)})-\tau(p_{\ell}(y_{\chi(\ell)})))

for 𝒢{\mathcal{G}}-reduced words χ(1)χ()\chi(1)\dots\chi(\ell), with 1\ell\geq 1. The claim (3) is immediate when p=1p=1. Thus, it remains to show (3) in the case when pp has the form (4), and note that in this case the term τ(p(y))\tau(p(y)) in (3) vanishes by graph independence of (yv)v𝒱(y_{v})_{v\in{\mathcal{V}}}. Hence, our goal (3) reduces to showing that almost surely

(5) limkΔNk#𝒮[(p1(Zχ(1)(k))τ(p1(yχ(1))))(p(Zχ()(k))τ(p(yχ())))]2=0.\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[(p_{1}(Z_{\chi(1)}^{(k)})-\tau(p_{1}(y_{\chi(1)})))\dots(p_{\ell}(Z_{\chi(\ell)}^{(k)})-\tau(p_{\ell}(y_{\chi(\ell)})))]\right\|_{2}=0.

Now we assumed that Yv(k)Y_{v}^{(k)} is a microstate sequence for yy that is asymptotically constant on the diagonal, and Zv(k)Z_{v}^{(k)} is obtained from Yv(k)Y_{v}^{(k)} by tensoring with the identity and conjugating by a permutation matrix, and so

limkΔNk#𝒮[pj(Zχ(j)(k))]τ(pj(y))INk#𝒮2=limkΔNk[pj(Yχ(j)(k))]τ(pj(y))INk2=0.\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[p_{j}(Z_{\chi(j)}^{(k)})]-\tau(p_{j}(y))I_{N_{k}^{\#{\mathcal{S}}}}\right\|_{2}=\lim_{k\to\infty}\left\|\Delta_{N_{k}}[p_{j}(Y_{\chi(j)}^{(k)})]-\tau(p_{j}(y))I_{N_{k}}\right\|_{2}=0.

Thus, by swapping out each τ(pj(y))\tau(p_{j}(y)) term (5) for ΔNk#𝒮[pj(Zχ(j)(k))]\Delta_{N_{k}^{\#{\mathcal{S}}}}[p_{j}(Z_{\chi(j)}^{(k)})], using the fact that pj(Zχ(j)(k))p_{j}(Z_{\chi(j)}^{(k)}) is uniformly bounded in operator norm as kk\to\infty, we obtain

limkΔNk#𝒮[(p1(Zχ(1)(k))τ(p1(yχ(1))))(p(Zχ()(k))τ(p(yχ())))]ΔNk#𝒮[(p1(Zχ(1)(k))ΔNk#𝒮[p1(Zχ(1)(k))])(p(Zχ()(k))ΔNk#𝒮(p(Zχ()(k))))]=0,\lim_{k\to\infty}\Bigl{\lVert}\Delta_{N_{k}^{\#{\mathcal{S}}}}[(p_{1}(Z_{\chi(1)}^{(k)})-\tau(p_{1}(y_{\chi(1)})))\dots(p_{\ell}(Z_{\chi(\ell)}^{(k)})-\tau(p_{\ell}(y_{\chi(\ell)})))]\\ -\Delta_{N_{k}^{\#{\mathcal{S}}}}[(p_{1}(Z_{\chi(1)}^{(k)})-\Delta_{N_{k}^{\#{\mathcal{S}}}}[p_{1}(Z_{\chi(1)}^{(k)})])\dots(p_{\ell}(Z_{\chi(\ell)}^{(k)})-\Delta_{N_{k}^{\#{\mathcal{S}}}}(p_{\ell}(Z_{\chi(\ell)}^{(k)})))]\Bigr{\rVert}=0,

so now the claim (5) to be proved reduces to

(6) limkΔNk#𝒮[(p1(Zχ(1)(k))ΔNk#𝒮[p1(yχ(1))])(p(Zχ()(k))ΔNk#𝒮(p(Zχ()(k))))]2=0.\lim_{k\to\infty}\left\|\Delta_{N_{k}^{\#{\mathcal{S}}}}[(p_{1}(Z_{\chi(1)}^{(k)})-\Delta_{N_{k}^{\#{\mathcal{S}}}}[p_{1}(y_{\chi(1)})])\dots(p_{\ell}(Z_{\chi(\ell)}^{(k)})-\Delta_{N_{k}^{\#{\mathcal{S}}}}(p_{\ell}(Z_{\chi(\ell)}^{(k)})))]\right\|_{2}=0.

Now we can apply Theorem 4.1, taking

Xj(k)=pj(Yχ(j)(k))IN𝒮v{sv},X_{j}^{(k)}=p_{j}(Y_{\chi(j)}^{(k)})\otimes I_{N}^{\otimes{\mathcal{S}}_{v}\setminus\{s_{v}\}},

so that

X¯¯j(k)=(Σχ(j)(k))(pj(Yχ(j))IN𝒮v{sv})Σχ(j)(k)=pj((Σχ(j)(k))(Yχ(j)IN𝒮v{sv})Σχ(j)(k))=pj(Zχ(j)(k)).{\underline{\underline{X}}}_{j}^{(k)}=(\Sigma_{\chi(j)}^{(k)})^{*}(p_{j}(Y_{\chi(j)})\otimes I_{N}^{\otimes{\mathcal{S}}_{v}\setminus\{s_{v}\}})\Sigma_{\chi(j)}^{(k)}=p_{j}((\Sigma_{\chi(j)}^{(k)})^{*}(Y_{\chi(j)}\otimes I_{N}^{\otimes{\mathcal{S}}_{v}\setminus\{s_{v}\}})\Sigma_{\chi(j)}^{(k)})=p_{j}(Z_{\chi(j)}^{(k)}).

Thus, Theorem 4.1 implies that (6) holds, which completes the proof. ∎

5. Strong 11-boundedness for graph products

Strong 1-boundedness is a von Neumann algebraic property introduced by Jung in [Jun07]. It implies the lack of a robust space of microstates up to conjugacy for any generating set of a von Neumann algebra. This typically is achieved when the von Neumann algebra is hyperfinite (see in connection, [Jun03, Jun06]) or admits algebraic rigidity in the form of abundant commutation (see [Ge98, GS00, Voi99]) or existence of diffuse regular hyperfinite subalgebras (see [Voi95, Hay18]), or even in the analytic setting of Property (T) which allows for discretizing the microstate space (see [JS07, HJKE21]). On the other hand, strong 1-boundedness implies that every generating set has microstates free entropy dimension δ0(x)=1\delta_{0}(x)=1, hence the free group factors are not strongly 1-bounded. Hayes refined this notion by extracting a numerical invariant, implicit in [Jun07], for von Neumann algebras called the 1-bounded entropy hh (see [Hay18]). This is the main framework in which the modern theory of strong 1-boundedness is carried out. Non-strongly 1-bounded algebras often exhibit indecomposability relative to strongly 1-bounded subalgebras, which can be used to prove non-isomorphism results or rule out possible structural properties. As a precise example, non-strongly 1-bounded algebras cannot be generated by two strongly 1-bounded subalgebras with diffuse intersection. Another application is a free absorption theorem for strongly 1-bounded subalgebras in free products ([HJNS21]).

Such indecomposability phenomena in the setting of groups in many instances can be encapsulated in L2L^{2}-invariants, such as the first L2L^{2}-Betti number (see [Lüc02]). This cohomological invariant has been of extreme use in the analytic study of groups, and has been increasingly incorporated as far as possible into the study of von Neumann algebras due to its rich applications (see [CS05, Pet09]). Having positive first L2L^{2}-Betti number automatically implies the lack of the sort of algebraic rigidity described above in the group level. See [PT11] for such results. The relationship between the first 2\ell^{2}-Betti number and free entropy theory is a difficult subject that has been heavily investigated ([CS05, Jun, Shl21, HJKE]). Strong 1-boundedness for Connes-embeddable group von Neumann algebras is believed to coincide with vanishing first 2\ell^{2}-Betti number for the group. However, this has been checked only in certain cases, particularly in one direction as outlined in [Shl09, Shl21], and remains a challenging open problem.

Given a tracial von Neumann algebra (M,τ)(M,\tau) and NN a von Neumann subalgebra of MM, the 11-bounded entropy of NN in the presence of MM is denoted h(N:M)h(N:M). We set h(M)=h(M:M)h(M)=h(M:M) and call this the 11-bounded entropy of MM. Roughly speaking, the quantity h(N:M)h(N:M) is a measurement of “how many” finite-dimensional approximations of NN there are which extend to MM, We will not need the technical definition of 11-bounded entropy, and refer the reader to [Hay18, Definition 2.2 and Definition A.2] for the precise definition. We enumerate below the most essential properties of this quantity for our purposes:

  1. (1)

    (see [HJKE21, §2.3.3]) h(N1:M1)h(N2:M2)h(N_{1}:M_{1})\leq h(N_{2}:M_{2}) if N1N2M2M1N_{1}\subset N_{2}\subset M_{2}\subset M_{1}.

  2. (2)

    (see [Hay18, Lemma A.12]) h(N1N2:M)h(N1:M)+h(N2:M)h(N_{1}\vee N_{2}:M)\leq h(N_{1}:M)+h(N_{2}:M) if N1,N2MN_{1},N_{2}\subset M and N1N2N_{1}\cap N_{2} is diffuse. In particular, h(N1N2)h(N1)+h(N2)h(N_{1}\vee N_{2})\leq h(N_{1})+h(N_{2}).

  3. (3)

    (see [Hay18]) h(N1:N2)h(W(𝒩N2(N1)):N2)h(N_{1}:N_{2})\leq h(W^{*}(\mathcal{N}_{N_{2}}(N_{1})):N_{2}) if N1N2N_{1}\subset N_{2} is diffuse.

  4. (4)

    If NMN\subseteq M and NN is hyperfinite, then h(N:M)0h(N:M)\leq 0.

We will also need Voiculescu’s microstates free entropy dimension =δ0(x)\delta_{0}(x) of a self-adjoint tuple xx in a tracial von Neumann algebra, define by Voiculescu [Voi96]. We will need to allow xx to be an infinite tuple, as opposed to a finite tuple in Voiculescu’s original definition. It is well known to experts how to extend the definition to this setting, for a precise discussion see e.g. the discussion in Section 4 of [HJKE21]. We use δ¯0(x)\underline{\delta}_{0}(x) for the version of microstates free entropy dimension where we replace a limit supremum in the definition with a limit infimum.

In contrast to the rest of the paper, we will need to restrict ourselves to self-adjoint generating tuples. For an integer rr\in{\mathbb{N}}, we let S1,,Sr{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle be the algebra of noncommutative polynomials in abstract variables S1,,SrS_{1},\cdots,S_{r}. We give S1,,Sr{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle the unique *-structure which makes each XjX_{j} self-adjoint. Given a von Neumann algebra MM and a xMs.a.rx\in M_{s.a.}^{r} there is a unique *-homomorphism

evx:S1,,SrM\operatorname{ev}_{x}\colon{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle\to M

satisfying evx(Sj)=xj\operatorname{ev}_{x}(S_{j})=x_{j}. We set P(x)=evx(P)P(x)=\operatorname{ev}_{x}(P) for PS1,,SrP\in{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle. We will use 𝒪S1,,Sr{\mathcal{O}}\left\langle S_{1},\cdots,S_{r}\right\rangle, ¯S1,,Sr\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle etc. for the noncommutative polynomials in rr-variables whose coefficients are in 𝒪,¯{\mathcal{O}},\overline{{\mathbb{Q}}} etc.

5.1. Proof of Theorem A

We are now ready to prove Theorem A. For simplicity, we treat its parts 2 and 3 separately from part 1.

Theorem 5.1.

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a graph with #𝒱>1\#{\mathcal{V}}>1, and for each v𝒱v\in{\mathcal{V}}, let (Mv,τv)(M_{v},\tau_{v}) be a tracial *-algebra. Let (M,τ)=v𝒢(Mv,τv)(M,\tau)=\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(M_{v},\tau_{v}).

  1. (1)

    If each MvM_{v} is diffuse and 𝒢{\mathcal{G}} is connected, then MM is strongly 11-bounded (in fact has 11-bounded entropy at most zero).

  2. (2)

    If each MvM_{v} is diffuse and Connes embeddable, and 𝒢{\mathcal{G}} is disconnected, then there is an index set II and a generating tuple xMs.a.Ix\in M_{s.a.}^{I} so that δ0(x)>1\delta_{0}(x)>1. In particular, MM is not strongly 11-bounded.

Proof.

(1): Since 𝒢{\mathcal{G}} is connected, we can find a walk v1,v2,,vkv_{1},v_{2},\cdots,v_{k} which visits every vertex of 𝒢{\mathcal{G}} at least once. Let us denote by MjM_{\leq j} the algebra generated by Mv1,,MvjM_{v_{1}},\ldots,M_{v_{j}} within MM. We claim that h(Mj)0h(M_{\leq j})\leq 0 for all j2j\geq 2.

Because Mv1M_{v_{1}} and Mv2M_{v_{2}} are diffuse, we may choose diffuse abelian subalgebras A1Mv1A_{1}\leq M_{v_{1}} and A2Mv2A_{2}\leq M_{v_{2}}. Using Properties (1), (3), (4) of 11-bounded entropy,

h(Mv1A2)\displaystyle h(M_{v_{1}}\vee A_{2}) =h(Mv1A2:Mv1A2)\displaystyle=h(M_{v_{1}}\vee A_{2}:M_{v_{1}}\vee A_{2})
h(W(𝒩Mv1A2(A2)):Mv1A2))\displaystyle\leq h(W^{*}({\mathcal{N}}_{M_{v_{1}}\vee A_{2}}(A_{2})):M_{v_{1}}\vee A_{2}))
h(A2:Mv1A2)\displaystyle\leq h(A_{2}:M_{v_{1}}\vee A_{2})
0.\displaystyle\leq 0.

Similarly, h(A1Mv2)0h(A_{1}\vee M_{v_{2}})\leq 0. As

Mv1A2(A1Mv2)A1A2,M_{v_{1}}\vee A_{2}\cap(A_{1}\vee M_{v_{2}})\supseteq A_{1}\vee A_{2},

we know that Mv1A2(A1Mv2)M_{v_{1}}\vee A_{2}\cap(A_{1}\vee M_{v_{2}}) is diffuse. Thus, by Property (2) of 11-bounded entropy:

h(M2)h(Mv1A2)+h(A1Mv2)0.h(M_{\leq 2})\leq h(M_{v_{1}}\vee A_{2})+h(A_{1}\vee M_{v_{2}})\leq 0.

For the general case, note for every 2i<n2\leq i<n, we have (MviMvi+1)MiMvi(M_{v_{i}}\vee M_{v_{i+1}})\cap M_{\leq i}\supseteq M_{v_{i}}, which is diffuse. Thus by Property (2) of 11-bounded entropy:

h(Mi+1)h(MviMvi+1)+h(Mi)h(Mi),h(M_{\leq i+1})\leq h(M_{v_{i}}\vee M_{v_{i+1}})+h(M_{\leq i})\leq h(M_{\leq i}),

the last inequality following from an argument identical to the case of M2M_{\leq 2}. We thus inductively see that h(M)=h(Mn)0h(M)=h(M_{\leq n})\leq 0.

(2): Let 𝒱1,,𝒱l{\mathcal{V}}_{1},\ldots,{\mathcal{V}}_{l} be the connected components of 𝒢{\mathcal{G}}, and note that l2l\geq 2 by assumption. Let MiM_{i} be the graph product corresponding to the subgraph induced by 𝒱i{\mathcal{V}}_{i}. Then the (Mi)i=1l(M_{i})_{i=1}^{l} are freely independent. Let xi(Mi)s.a.Jix_{i}\in(M_{i})_{s.a.}^{J_{i}} be a generating tuple. Set J=iJiJ=\bigsqcup_{i}J_{i}, and let xMs.a.Jx\in M_{s.a.}^{J} be defined by x|Ji=xix\big{|}_{J_{i}}=x_{i}. Since each MvM_{v} is embeddable, we know that MiM_{i} is embeddable by [Cas16]. Since MiM_{i} is diffuse, this implies by the proof of [Jun03, Corollary 4.7]) that δ¯0(xi)1\underline{\delta}_{0}(x_{i})\geq 1. Thus, by the proof of [Voi98b][Remark 4.8],

δ0(x)=δ0(x1)+i=1lδ¯0(x)l>1,\delta_{0}(x)=\delta_{0}(x_{1})+\sum_{i=1}^{l}\underline{\delta}_{0}(x)\geq l>1,

the last inequality following as 𝒱{\mathcal{V}} is disconnected.

To deduce strong 11-boundedness from vanishing first L2L^{2}-Betti number, we will apply the results in [Shl21] which require positive of certain Fuglede–Kadison pseudo-determinants associated to our relations. To get this positivity, we will use Theorem B which requires polynomials with algebraic coefficients. This will force us to reduce general relations among generators for our tracial von Neumann algebras to only relations that have algebraic coefficients. For this, the following lemma will be useful.

Lemma 5.2.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra and x=(x1,,xr)Ms.a.rx=(x_{1},\cdots,x_{r})\in M_{s.a.}^{r}. Suppose that for all P¯S1,,SrP\in\overline{{\mathbb{Q}}}{S_{1},\cdots,S_{r}} we have that τ(P(x))¯\tau(P(x))\in\overline{{\mathbb{Q}}}. Let evx:S1,,SrM\operatorname{ev}_{x}\colon{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle\to M be the *-homomorphism evx(P)=P(x).\operatorname{ev}_{x}(P)=P(x). Then:

  1. (a)

    ker(evx)\ker(\operatorname{ev}_{x}) is the complex linear span of ker(evx)¯S1,,Sr\ker(\operatorname{ev}_{x})\cap\overline{{\mathbb{Q}}}\left\langle S_{1},\cdot,S_{r}\right\rangle.

  2. (b)

    If ker(evx)\ker(\operatorname{ev}_{x}) is finitely generated as a two-sided ideal, then there is a finite set

    F¯S1,,SrF\subseteq\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle

    which generates ker(evx)\ker(\operatorname{ev}_{x}) as a two-sided ideal.

Proof.

(a). Let Pker(evx)P\in\ker(\operatorname{ev}_{x}). Then there are monic monomials m1,,mdm_{1},\cdots,m_{d} and λ1,,λd\lambda_{1},\cdots,\lambda_{d}\in{\mathbb{C}} with P=j=1dλjmjP=\sum_{j=1}^{d}\lambda_{j}m_{j}. Let AMd()A\in M_{d}({\mathbb{C}}) be the matrix whose ijthij^{th} entry is τ(mj(x)mi(x))\tau(m_{j}(x)^{*}m_{i}(x)). Since τ\tau is a state, AA is positive semidefinite. Let

λ=[λ1λ2λd]d.\lambda=\begin{bmatrix}\lambda_{1}\\ \lambda_{2}\\ \vdots\\ \lambda_{d}\end{bmatrix}\in{\mathbb{C}}^{d}.

By direct calculation,

P(x)22=Aλ,λ.\|P(x)\|_{2}^{2}=\left\langle A\lambda,\lambda\right\rangle.

Since P(x)=0P(x)=0 and AA is positive semidefinite, we know that Aλ=0A\lambda=0. Observe that AA has algebraic entries, by assumption. Since AA has algebraic entries, it follows from linear algebra that the kernel of AA (regarded as a linear transformation on d{\mathbb{C}}^{d}) has a basis v1,,vs¯dv_{1},\cdots,v_{s}\in\overline{{\mathbb{Q}}}^{d}. Choose complex numbers α1,,αs\alpha_{1},\cdots,\alpha_{s} so that

λ=k=1sαkvk\lambda=\sum_{k=1}^{s}\alpha_{k}v_{k}

For k=1,,sk=1,\cdots,s write vk=(vkj)j=1d¯dv_{k}=(v_{kj})_{j=1}^{d}\in\overline{{\mathbb{Q}}}^{d} and set Pk=j=1dvkjmjP_{k}=\sum_{j=1}^{d}v_{kj}m_{j}. Since vkker(A)v_{k}\in\ker(A), we have that

Pk(x)22=Avk,vk=0.\|P_{k}(x)\|_{2}^{2}=\left\langle Av_{k},v_{k}\right\rangle=0.

So Pkker(evx)¯S1,,SrP_{k}\in\ker(\operatorname{ev}_{x})\cap\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle and

P=k=1sαkPk.P=\sum_{k=1}^{s}\alpha_{k}P_{k}.

(b) Suppose that F1,,FpS1,,SrF_{1},\cdots,F_{p}\in{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle generate ker(evx)\ker(\operatorname{ev}_{x}) as a two-sided ideal. By (a), we may find a tt\in{\mathbb{N}} and λij\lambda_{ij}\in{\mathbb{C}}, Fijker(evx)¯S1,,SrF_{ij}\in\ker(\operatorname{ev}_{x})\cap\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle for 1ip,1tj1\leq i\leq p,1\leq t\leq j so that

Fi=jλijFij.F_{i}=\sum_{j}\lambda_{ij}F_{ij}.

Then {Fij}1ip,1tj\{F_{ij}\}_{1\leq i\leq p,1\leq t\leq j} generate ker(evx)\ker(\operatorname{ev}_{x}) as a two-sided ideal. ∎

We will also need to pass to direct sums of algebras for which the above lemma applies. For this we use the following lemma.

Lemma 5.3.

Let A1A_{1}, A2A_{2} be two *-algebras which are generated by x(A1)s.a.r1x\in(A_{1})_{s.a.}^{r_{1}} and y(A2)s.a.r2y\in(A_{2})_{s.a.}^{r_{2}}. Suppose that

E1S1,,Sr1 and E2T1,,Tr2E_{1}\subseteq{\mathbb{C}}\left\langle S_{1},\cdots,S_{r_{1}}\right\rangle\qquad\text{ and }\qquad E_{2}\subseteq{\mathbb{C}}\left\langle T_{1},\cdots,T_{r_{2}}\right\rangle

generate ker(evx)\ker(\operatorname{ev}_{x}) and ker(evy)\ker(\operatorname{ev}_{y}), respectively, as two-sided ideals. Denote

x~\displaystyle\tilde{x} :=(10,x10,,xr10)\displaystyle:=(1\oplus 0,x_{1}\oplus 0,\ldots,x_{r_{1}}\oplus 0)
y~\displaystyle\tilde{y} :=(01,0y1,,0yr2).\displaystyle:=(0\oplus 1,0\oplus y_{1},\ldots,0\oplus y_{r_{2}}).

Then ker(evx~,y~)S0,S1,,Sr1,T0,T1,,Tr2\ker(\operatorname{ev}_{\tilde{x},\tilde{y}})\subset{\mathbb{C}}\left\langle S_{0},S_{1},\ldots,S_{r_{1}},T_{0},T_{1},\ldots,T_{r_{2}}\right\rangle is generated as a two-sided ideal by the union

{S0P:PE1}\displaystyle\{S_{0}P:P\in E_{1}\}
\displaystyle\cup {T0P:PE2}\displaystyle\{T_{0}P:P\in E_{2}\}
\displaystyle\cup {SiTj:0ir1, 0jr2}\displaystyle\{S_{i}T_{j}\colon 0\leq i\leq r_{1},\ 0\leq j\leq r_{2}\}
\displaystyle\cup {S0SiSi,SiS0Si:1ir1}\displaystyle\{S_{0}S_{i}-S_{i},S_{i}S_{0}-S_{i}\colon 1\leq i\leq r_{1}\}
\displaystyle\cup {T0TjTj,TjT0Tj:1jr2}\displaystyle\{T_{0}T_{j}-T_{j},T_{j}T_{0}-T_{j}\colon 1\leq j\leq r_{2}\}
\displaystyle\cup {S0+T01}.\displaystyle\{S_{0}+T_{0}-1\}.
Proof.

Let JJ be the two-sided ideal in S0,,Sr1,T0,,Tr2{\mathbb{C}}\left\langle S_{0},\ldots,S_{r_{1}},T_{0},\ldots,T_{r_{2}}\right\rangle generated by the above union, and let B:=S0,,Sr1,T0,,Tr2/JB:={\mathbb{C}}\left\langle S_{0},\cdots,S_{r_{1}},T_{0},\ldots,T_{r_{2}}\right\rangle/J. Then Jker(evx~,y~)J\subseteq\ker(\operatorname{ev}_{\tilde{x},\tilde{y}}) and this inclusion induces a unique homomorphism

ψ:BA1A2\psi\colon B\to A_{1}\oplus A_{2}

satisfying ψq=evx~,y~\psi\circ q=\operatorname{ev}_{\tilde{x},\tilde{y}}, where qq is the quotient map onto BB. To prove the lemma, it suffices to show that this homomorphism is an isomorphism.

To see this, let z1=S0+J,z2=T0+Jz_{1}=S_{0}+J,z_{2}=T_{0}+J. Then z1,z2z_{1},z_{2} are orthogonal projections which sum to 11. Observe that for all PS1,,Sr1P\in{\mathbb{C}}\left\langle S_{1},\cdots,S_{r_{1}}\right\rangle we have

q(S0P(S1,,Sr1))=q(P(S0S1,,S0Sr1))q(S_{0}P(S_{1},\cdots,S_{r_{1}}))=q(P(S_{0}S_{1},\cdots,S_{0}S_{r_{1}}))

Thus for PE1P\in E_{1} we have

q(P(S0S1,,S0Sr1))=q(S0P(S1,,Sr1))=0.q(P(S_{0}S_{1},\cdots,S_{0}S_{r_{1}}))=q(S_{0}P(S_{1},\cdots,S_{r_{1}}))=0.

Since E1E_{1} generates ker(evx)\ker(\operatorname{ev}_{x}) as a two-sided ideal and A1S1,,Sr1/ker(evx1)A_{1}\cong{\mathbb{C}}\left\langle S_{1},\cdots,S_{r_{1}}\right\rangle/\ker(\operatorname{ev}_{x_{1}}), we may find a unique homomorphism ϕ1:A1z1B\phi_{1}\colon A_{1}\to z_{1}B satisfying ϕ1(P(x))=S0P+J\phi_{1}(P(x))=S_{0}P+J for all PS1,,Sr1P\in{\mathbb{C}}\left\langle S_{1},\cdots,S_{r_{1}}\right\rangle. Similarly, we may find a unique homomorphism ϕ2:A2z2B\phi_{2}\colon A_{2}\to z_{2}B satisfying ϕ2(P(y))=T0P+J\phi_{2}(P(y))=T_{0}P+J for all PT1,,Tr2P\in{\mathbb{C}}\left\langle T_{1},\cdots,T_{r_{2}}\right\rangle. The relations imposed on BB imply that ziz_{i} acts as the identity on the image of ϕi\phi_{i}. Since z1,z2z_{1},z_{2} are orthogonal projections which sum to 11, this implies that the map ϕ:A1A2B\phi\colon A_{1}\oplus A_{2}\to B defined by ϕ(a1,a2)=ϕ1(a1)+ϕ2(a2)\phi(a_{1},a_{2})=\phi_{1}(a_{1})+\phi_{2}(a_{2}) is a homomorphism. Moreover, ϕ\phi is the inverse to ψ\psi. Thus ψ\psi is an isomorphism, as desired. ∎

We are now ready to prove a general theorem from which we will quickly deduce Theorem A (1) as a corollary. For this we need the first L2L^{2}-Betti number of a *-subalgebra of a tracial von Neumann algebra. The L2L^{2}-Betti number of von Neumann algebras was first defined in [CS05, Definition 2.1] in terms of homology. Thom later gave a definition in terms of cohomology, see [Tho08a, Section 1].

Theorem 5.4 (Theorem A (1)).

Let 𝒢=(𝒱,){\mathcal{G}}=({\mathcal{V}},{\mathcal{E}}) be a graph with #𝒱>1\#{\mathcal{V}}>1, and for each v𝒱v\in{\mathcal{V}}, let (Mv,τv)(M_{v},\tau_{v}) be a tracial *-algebra. Let (M,τ)=v𝒢(Mv,τv)(M,\tau)=\mathop{\leavevmode\hbox to15.4pt{\vbox to13.79pt{\pgfpicture\makeatletter\hbox{\hskip 7.7pt\lower-4.39616pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {{{}{}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{2.5pt}\pgfsys@curveto{1.5pt}{3.32843pt}{0.82843pt}{4.0pt}{0.0pt}{4.0pt}\pgfsys@curveto{-0.82843pt}{4.0pt}{-1.5pt}{3.32843pt}{-1.5pt}{2.5pt}\pgfsys@curveto{-1.5pt}{1.67157pt}{-0.82843pt}{1.0pt}{0.0pt}{1.0pt}\pgfsys@curveto{0.82843pt}{1.0pt}{1.5pt}{1.67157pt}{1.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{7.5pt}{2.5pt}\pgfsys@curveto{7.5pt}{3.32843pt}{6.82843pt}{4.0pt}{6.0pt}{4.0pt}\pgfsys@curveto{5.17157pt}{4.0pt}{4.5pt}{3.32843pt}{4.5pt}{2.5pt}\pgfsys@curveto{4.5pt}{1.67157pt}{5.17157pt}{1.0pt}{6.0pt}{1.0pt}\pgfsys@curveto{6.82843pt}{1.0pt}{7.5pt}{1.67157pt}{7.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{4.3pt}{2.5pt}\pgfsys@lineto{1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{7.69617pt}\pgfsys@curveto{4.5pt}{8.5246pt}{3.82843pt}{9.19617pt}{3.0pt}{9.19617pt}\pgfsys@curveto{2.17157pt}{9.19617pt}{1.5pt}{8.5246pt}{1.5pt}{7.69617pt}\pgfsys@curveto{1.5pt}{6.86774pt}{2.17157pt}{6.19617pt}{3.0pt}{6.19617pt}\pgfsys@curveto{3.82843pt}{6.19617pt}{4.5pt}{6.86774pt}{4.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{6.22392pt}\pgfsys@lineto{0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{7.69617pt}\pgfsys@curveto{-1.5pt}{8.5246pt}{-2.17157pt}{9.19617pt}{-3.0pt}{9.19617pt}\pgfsys@curveto{-3.82843pt}{9.19617pt}{-4.5pt}{8.5246pt}{-4.5pt}{7.69617pt}\pgfsys@curveto{-4.5pt}{6.86774pt}{-3.82843pt}{6.19617pt}{-3.0pt}{6.19617pt}\pgfsys@curveto{-2.17157pt}{6.19617pt}{-1.5pt}{6.86774pt}{-1.5pt}{7.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{7.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{7.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{6.22392pt}\pgfsys@lineto{-0.84999pt}{3.97224pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-4.5pt}{2.5pt}\pgfsys@curveto{-4.5pt}{3.32843pt}{-5.17157pt}{4.0pt}{-6.0pt}{4.0pt}\pgfsys@curveto{-6.82843pt}{4.0pt}{-7.5pt}{3.32843pt}{-7.5pt}{2.5pt}\pgfsys@curveto{-7.5pt}{1.67157pt}{-6.82843pt}{1.0pt}{-6.0pt}{1.0pt}\pgfsys@curveto{-5.17157pt}{1.0pt}{-4.5pt}{1.67157pt}{-4.5pt}{2.5pt}\pgfsys@closepath\pgfsys@moveto{-6.0pt}{2.5pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.0pt}{2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-4.3pt}{2.5pt}\pgfsys@lineto{-1.7pt}{2.5pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{-1.5pt}{-2.69617pt}\pgfsys@curveto{-1.5pt}{-1.86774pt}{-2.17157pt}{-1.19617pt}{-3.0pt}{-1.19617pt}\pgfsys@curveto{-3.82843pt}{-1.19617pt}{-4.5pt}{-1.86774pt}{-4.5pt}{-2.69617pt}\pgfsys@curveto{-4.5pt}{-3.5246pt}{-3.82843pt}{-4.19617pt}{-3.0pt}{-4.19617pt}\pgfsys@curveto{-2.17157pt}{-4.19617pt}{-1.5pt}{-3.5246pt}{-1.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{-3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{-2.15001pt}{-1.22392pt}\pgfsys@lineto{-0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}{}{{}{}{{}}{}}{}{{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,1,1}\pgfsys@color@cmyk@fill{1}{0}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{4.5pt}{-2.69617pt}\pgfsys@curveto{4.5pt}{-1.86774pt}{3.82843pt}{-1.19617pt}{3.0pt}{-1.19617pt}\pgfsys@curveto{2.17157pt}{-1.19617pt}{1.5pt}{-1.86774pt}{1.5pt}{-2.69617pt}\pgfsys@curveto{1.5pt}{-3.5246pt}{2.17157pt}{-4.19617pt}{3.0pt}{-4.19617pt}\pgfsys@curveto{3.82843pt}{-4.19617pt}{4.5pt}{-3.5246pt}{4.5pt}{-2.69617pt}\pgfsys@closepath\pgfsys@moveto{3.0pt}{-2.69617pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.0pt}{-2.69617pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}} {{{{{}}{}{}{}{}{{}}}}}{}{{{{{}}{}{}{}{}{{}}}}}{{}}{}{}{}{}\pgfsys@moveto{2.15001pt}{-1.22392pt}\pgfsys@lineto{0.84999pt}{1.02776pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{v\in{\mathcal{G}}}(M_{v},\tau_{v}). Suppose that for all v𝒱v\in{\mathcal{V}}, we can write Mv=i=1gvMv,iM_{v}=\bigoplus_{i=1}^{g_{v}}M_{v,i} with gv,ig_{v,i}\in{\mathbb{N}}. Further assume that:

  • τ(1Mv,i)\tau(1_{M_{v,i}})\in{\mathbb{Q}}, for all v𝒱v\in{\mathcal{V}} and i=1,,gv,ii=1,\cdots,g_{v,i},

  • for all vv and all 1igv,1\leq i\leq g_{v}, there is a xv,iMv,irv,ix_{v,i}\in M_{v,i}^{r_{v,i}} which is algebraically sofic and generates Mv,iM_{v,i} as a von Neumann algebra,

  • for all v𝒱,1igvv\in{\mathcal{V}},1\leq i\leq g_{v}, τv(P(xv,i))¯\tau_{v}(P(x_{v,i}))\in\overline{{\mathbb{Q}}} for all P¯T1,T1,,Tr,TrP\in\overline{{\mathbb{Q}}}\left\langle T_{1},T_{1}^{*},\cdots,T_{r},T_{r}^{*}\right\rangle

  • ker(evxv,i)\ker(\operatorname{ev}_{x_{v,i}}) is finitely generated as a two-sided ideal in T1,T1,,Trv,i,Trv,i{\mathbb{C}}\left\langle T_{1},T_{1}^{*},\cdots,T_{r_{v,i}},T_{r_{v,i}}^{*}\right\rangle for all v𝒱,v\in{\mathcal{V}}, 1igv1\leq i\leq g_{v}.

Let AA be the *-subalgebra of MM generated by vVMv\bigcup_{v\in V}M_{v}. If β(2)1(A,τ)=0\beta^{1}_{(2)}(A,\tau)=0, then MM is strongly 11-bounded.

Proof.

First, notice that by considering the real and imaginary parts of coordinates of xv,ix_{v,i}, we may assume that xv,ix_{v,i} is a tuple of self-adjoint elements. Let AA be the *-algebra generated by the MvM_{v} for v𝒱v\in{\mathcal{V}}. Then AA is finitely presented, namely there is an rr\in{\mathbb{N}}, a tuple xAs.a.rx\in A_{s.a.}^{r} so that:

  1. (1)

    the evaluation homomorphism evx:S1,,SrA\operatorname{ev}_{x}\colon{\mathbb{C}}\left\langle S_{1},\cdots,S_{r}\right\rangle\to A given by evx(P)=P(x)\operatorname{ev}_{x}(P)=P(x) is surjective,

  2. (2)

    if J=ker(evx)J=\ker(\operatorname{ev}_{x}), then JJ is finitely generated as a two-sided ideal say by (F1,,Fl)(F_{1},\cdots,F_{l}).

In fact, we may choose xx to be algebraically sofic and to choose Fi¯S1,,SrF_{i}\in\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle. One way to see this is as follows.

By assumption, ker(evxv,i)\ker(\operatorname{ev}_{x_{v,i}}) can be generated as a two-sided ideal by (Fh(v,i))h=1kv,i(F^{(v,i)}_{h})_{h=1}^{k_{v,i}}. Our assumptions on traces of algebraic polynomials in xv,ix_{v,i} and Lemma 5.2 (b) implies we can choose Fh(v,i)F^{(v,i)}_{h} to be in ¯S1,,Srv,i\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r_{v,i}}\right\rangle. Set rv=gv+irv,ir_{v}=g_{v}+\sum_{i}r_{v,i} and let

xv=(10gv1,010gv2,,0gv11,xv,10gv1,0xv,20gv2,,0gv1xv,gv).x_{v}=(1\oplus 0^{\oplus g_{v}-1},0\oplus 1\oplus 0^{\oplus g_{v}-2},\cdots,0^{\oplus g_{v}-1}\oplus 1,x_{v,1}\oplus 0^{\oplus g_{v}-1},0\oplus x_{v,2}\oplus 0^{\oplus g_{v}-2},\cdots,0^{\oplus g_{v}-1}\oplus x_{v,g_{v}}).

Let r=rvr=\sum r_{v}, kv=ikv,ik_{v}=\sum_{i}k_{v,i} and xMs.a.rx\in M_{s.a.}^{r} be given by concatenating the xvx_{v}. We relabel the abstract variables S1,,SrS_{1},\cdots,S_{r} as Sj(v)S^{(v)}_{j} with v𝒱v\in{\mathcal{V}} and 1jrv1\leq j\leq r_{v}, and set S(v)=(Sj(v))1jrvS^{(v)}=(S^{(v)}_{j})_{1\leq j\leq r_{v}}. By iterated applications of Lemma 5.3, we can find a finite tuple F(v)(¯S1,,Srv)kvF^{(v)}\in(\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r_{v}}\right\rangle)^{\oplus k_{v}} which generates ker(evxv)\ker(\operatorname{ev}_{x_{v}}) as a two-sided ideal in S1,,Srv{\mathbb{C}}\left\langle S_{1},\cdots,S_{r_{v}}\right\rangle.

To generated ker(evx)\ker(\operatorname{ev}_{x}), we need to take all the F(v)(S(v))F^{(v)}(S^{(v)}) and also polynomials of the form

Sj(v1)Sp(v2)Sp(v2)Sj(v1)S^{(v_{1})}_{j}S^{(v_{2})}_{p}-S^{(v_{2})}_{p}S^{(v_{1})}_{j}

for all (v1,v2)(v_{1},v_{2})\in{\mathcal{E}}, 1jkv11\leq j\leq k_{v_{1}},1pkv21\leq p\leq k_{v_{2}}. Then these polynomials generate ker(evx)\ker(\operatorname{ev}_{x}) and have algebraic coefficients. Moreover, xx is an algebraically sofic tuple by the proof of Theorem 3.11, and Theorem 4.2.

Let F=(F1,,Fl)¯S1,,SrlF=(F_{1},\cdots,F_{l})\in\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle^{\oplus l}. For i=1,,ri=1,\cdots,r define

(iF)Ml,1(¯S1,,Sr¯S1,,Sr)(\partial_{i}F)\in M_{l,1}(\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle\otimes\overline{{\mathbb{Q}}}\left\langle S_{1},\cdots,S_{r}\right\rangle)

by (iF)j1=iFj.(\partial_{i}F)_{j1}=\partial_{i}F_{j}. Here i:¯S1,,Sr¯S1,,Sr¯S1,,Sr\partial_{i}:\overline{{\mathbb{Q}}}\left\langle S_{1},\ldots,S_{r}\right\rangle\to\overline{{\mathbb{Q}}}\left\langle S_{1},\ldots,S_{r}\right\rangle\otimes\overline{{\mathbb{Q}}}\left\langle S_{1},\ldots,S_{r}\right\rangle are Voiculescu’s free difference quotients (see [Voi98a, Section 2]), i.e., the unique derivations with i(Tj)=δi=j11\partial_{i}(T_{j})=\delta_{i=j}1\otimes 1. Finally, set

DF=[S111S1S211S2Sr11Sr1F2FrF]D_{F}=\begin{bmatrix}S_{1}\otimes 1-1\otimes S_{1}&S_{2}\otimes 1-1\otimes S_{2}&\cdots&S_{r}\otimes 1-1\otimes S_{r}\\ \partial_{1}F&\partial_{2}F&\cdots&\partial_{r}F\end{bmatrix}

Which is an element of Ml+1,r(¯T1,,Tr¯T1,,Tr)M_{l+1,r}(\overline{{\mathbb{Q}}}\left\langle T_{1},\cdots,T_{r}\right\rangle\otimes\overline{{\mathbb{Q}}}\left\langle T_{1},\cdots,T_{r}\right\rangle). It is then a folklore result (see e.g the proofs of [HJKE, Theorem 1.1], [BV18, Lemma 4.1]) that

dimM¯Mop(ker(DF(x)))=β(2)1(A,τ)=0.\dim_{M\overline{\otimes}M^{op}}(\ker(D_{F}(x)))=\beta^{1}_{(2)}(A,\tau)=0.

Thus if β(2)1(A,τ)=0\beta^{1}_{(2)}(A,\tau)=0, then DF(x)D_{F}(x) is injective, and so μ|DF(x)|({0})=0\mu_{|D_{F}(x)|}(\{0\})=0. Since xx is algebraically sofic, it follows by Proposition 3.10 and Theorem B that

detM+(DF(x))>0.\operatorname{det}_{M}^{+}(D_{F}(x))>0.

Moreover, F(x)=0F(x)=0 by construction. Hence it follows by [Shl21, Theorem 1.5], [HJKE, Theorem 1.2] that MM is strongly 11-bounded. ∎

We remark that this theorem implies Theorem A (1) by taking each MvM_{v} to be finite-dimensional tracial algebras where every central projection has rational trace. Indeed in this case we may take each Mv,iM_{v,i} to be a matrix algebra. Now use the isomorphism Mn()L(/n)/nM_{n}({\mathbb{C}})\cong L({\mathbb{Z}}/n{\mathbb{Z}})\rtimes{\mathbb{Z}}/n{\mathbb{Z}} from Proposition 3.9. The generators for Mn()M_{n}({\mathbb{C}}) given in Proposition 3.9 (2) are algebraically sofic, by Proposition 3.9, and it is direct to check that monic monomials in these generators have algebraic traces.

References

  • [ACD+21] Benson Au, Guillaume Cébron, Antoine Dahlqvist, Franck Gabriel, and Camille Male, Freeness over the diagonal for large random matrices, The Annals of Probability 49 (2021), no. 1, 157 – 179.
  • [BC22] Serban Belinschi and Mireille Capitaine, Strong convergence of tensor products of independent G.U.E. matrices, 2022.
  • [BC23] Charles Bordenave and Benoit Collins, Norm of matrix-valued polynomials in random unitaries and permutations, 2023.
  • [Bow10] Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. MR 2552252
  • [Bow12] L. Bowen, Every countably infinite group is almost Ornstein, Dynamical systems and group actions, Contemp. Math, vol. 567, Amer. Math. Soc, Providence, RI, 2012, pp. 67–78.
  • [Bow18] Lewis P. Bowen, A brief introduction of sofic entropy theory, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1847–1866. MR 3966832
  • [BV18] Michael Brannan and Roland Vergnioux, Orthogonal free quantum group factors are strongly 1-bounded, Adv. Math. 329 (2018), 133–156. MR 3783410
  • [Cas16] Martijn Caspers, Connes embeddability of graph products, Infinite Dimensional Analysis, Quantum Probability and Related Topics 19 (2016), no. 01, 1650004.
  • [CC21] Ian Charlesworth and Benoît Collins, Matrix models for ε\varepsilon-free independence, Archiv der Mathematik 116 (2021), no. 1, 585–605.
  • [CdSH+] Ian Charlesworth, Rolando de Santiago, Ben Hayes, David Jekel, Srivatsav Kunnawalkam Elayavalli, and Brent Nelson, Random permutation matrix models for graph products, in progress.
  • [CF17] Martijn Caspers and Pierre Fima, Graph products of operator algebras, J. Noncommut. Geom 11 (2017), no. 1, 367–411.
  • [CHR14] Laura Ciobanu, Derek F. Holt, and Sarah Rees, Sofic groups: graph products and graphs of groups, Pacific Journal of Mathematics 271 (2014), no. 1, 53–64.
  • [CIKE22] Ionut Chifan, Adrian Ioana, and Srivatsav Kunnawalkam Elayavalli, Two non-elementarily equivalent II1 factors without property gamma, 2022.
  • [CN10] Benoît Collins and Ion Nechita, Random quantum channels I: graphical calculus and the Bell state phenomenon, Comm. Math. Phys. 297 (2010), no. 2, 345–370. MR 2651902
  • [CS05] Alain Connes and Dimitri Shlyakhtenko, L2L^{2}-homology for von Neumann algebras, J. Reine Angew. Math. 586 (2005), 125–168. MR 2180603
  • [CS13] Ionut Chifan and Thomas Sinclair, On the structural theory of II1{\rm II}_{1} factors of negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 1, 1–33 (2013).
  • [CSU13] Ionut Chifan, Thomas Sinclair, and Bogdan Udrea, On the structural theory of II1\textrm{II}_{1} factors of negatively curved groups, II: Actions by product groups, Adv. Math. 245 (2013), 208–236. MR 3084428
  • [DDJO07] Michael W. Davis, Jan Dymara, Tadeusz Januszkiewicz, and Boris Okun, Weighted L2L^{2}-cohomology of Coxeter groups, Geom. Topol. 11 (2007), 47–138. MR 2287919
  • [DF04] David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley & Sons, Inc., Hoboken, NJ, 2004. MR 2286236
  • [DO01] Michael W. Davis and Boris Okun, Vanishing theorems and conjectures for the 2\ell^{2}-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001), 7–74. MR 1812434
  • [DO12] by same author, Cohomology computations for Artin groups, Bestvina-Brady groups, and graph products, Groups Geom. Dyn. 6 (2012), no. 3, 485–531. MR 2961283
  • [ES04] Gábor Elek and Endre Szabó, Sofic groups and direct finiteness, J. Algebra 280 (2004), no. 2, 426–434. MR 2089244
  • [ES05] by same author, Hyperlinearity, essentially free actions and L2L^{2}-invariants. The sofic property, Math. Ann. 332 (2005), no. 2, 421–441. MR 2178069
  • [Ge98] Liming Ge, Applications of free entropy to finite von Neumann algebras. II, Ann. of Math. (2) 147 (1998), no. 1, 143–157. MR 1609522
  • [Gre90] Elisabeth Ruth Green, Graph products of groups, Ph.D. thesis, University of Leeds, 1990.
  • [Gro99] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 109–197. MR 1694588
  • [GS00] Liming Ge and Junhao Shen, Free entropy and property TT factors, Proc. Natl. Acad. Sci. USA 97 (2000), no. 18, 9881–9885. MR 1773835
  • [Hay18] Ben Hayes, 1-bounded entropy and regularity problems in von Neumann algebras, Int. Math. Res. Not. IMRN (2018), no. 1, 57–137. MR 3801429
  • [Hay22] by same author, A random matrix approach to the Peterson-Thom conjecture, Indiana Univ. Math. J. 71 (2022), no. 3, 1243–1297. MR 4448584
  • [HJKE] Ben Hayes, David Jekel, and Srivatsav Kunnawalkam Elayavalli, Vanishing cohomology and strong 11-boundedness for von Neumann algebras, J. Noncommut. Geom., to appear.
  • [HJKE21] by same author, Property (T) and strong 11-boundedness for von Neumann algebras, 2021.
  • [HJNS21] Ben Hayes, David Jekel, Brent Nelson, and Thomas Sinclair, A random matrix approach to absorption in free products, Int. Math. Res. Not. IMRN (2021), no. 3, 1919–1979. MR 4206601
  • [Ioa12] Adrian Ioana, Compact actions and uniqueness of the group measure space decomposition of II1{\rm II}_{1} factors, J. Funct. Anal. 262 (2012), no. 10, 4525–4533. MR 2900475
  • [Ioa15] by same author, Cartan subalgebras of amalgamated free product II1{\rm II}_{1} factors, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 1, 71–130, With an appendix by Ioana and Stefaan Vaes. MR 3335839
  • [JNV+20] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen, Mip*=re, 2020.
  • [JS07] Kenley Jung and Dimitri Shlyakhtenko, Any generating set of an arbitrary property T von Neumann algebra has free entropy dimension 1\leq 1, J. Noncommut. Geom. 1 (2007), no. 2, 271–279. MR 2308307
  • [Jun] Kenley Jung, The rank theorem and L2{L}^{2}-invariants in free entropy: Global upper bounds, arXiv:1602.04726.
  • [Jun03] by same author, The free entropy dimension of hyperfinite von Neumann algebras, Trans. Amer. Math. Soc. 355 (2003), no. 12, 5053–5089. MR 1997595
  • [Jun06] by same author, A hyperfinite inequality for free entropy dimension, Proc. Amer. Math. Soc. 134 (2006), no. 7, 2099–2108. MR 2215780
  • [Jun07] by same author, Strongly 11-bounded von Neumann algebras, Geom. Funct. Anal. 17 (2007), no. 4, 1180–1200. MR 2373014
  • [Lan02] Serge Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556
  • [Lüc02] Wolfgang Lück, L2L^{2}-invariants: theory and applications to geometry and KK-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649
  • [Mło04] W. Młotkowski, λ\lambda-free probability, Infinite Dimensional Analysis. Quantum Probability and Related Topics 7 (2004), no. 1, 27–41.
  • [Pet09] Jesse Peterson, L2L^{2}-rigidity in von Neumann algebras, Invent. Math. 175 (2009), no. 2, 417–433. MR 2470111
  • [PT11] Jesse Peterson and Andreas Thom, Group cocycles and the ring of affiliated operators, Invent. Math. 185 (2011), no. 3, 561–592. MR 2827095
  • [PV14a] Sorin Popa and Stefaan Vaes, Unique Cartan decomposition for II1\rm II_{1} factors arising from arbitrary actions of free groups, Acta Math. 212 (2014), no. 1, 141–198. MR 3179609
  • [PV14b] by same author, Unique Cartan decomposition for II1\rm II_{1} factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. 694 (2014), 215–239. MR 3259044
  • [Sew22] Brandon Seward, Bernoulli shifts with bases of equal entropy are isomorphic, J. Mod. Dyn. 18 (2022), 345–362. MR 4459630
  • [Shl09] Dimitri Shlyakhtenko, Lower estimates on microstates free entropy dimension, Anal. PDE 2 (2009), no. 2, 119–146. MR 2547131
  • [Shl21] by same author, Von Neumann algebras of sofic groups with β1(2)=0\beta^{(2)}_{1}=0 are strongly 1-bounded, J. Operator Theory 85 (2021), no. 1, 217–228.
  • [Sin11] Thomas Sinclair, Strong solidity of group factors from lattices in SO(n,1){\rm SO}(n,1) and SU(n,1){\rm SU}(n,1), J. Funct. Anal. 260 (2011), no. 11, 3209–3221. MR 2776567
  • [SW16] Roland Speicher and Janusz Wysoczański, Mixtures of classical and free independence, Archiv der Mathematik 107 (2016), 445–453.
  • [Tho08a] Andreas Thom, L2L^{2}-cohomology for von Neumann algebras, Geom. Funct. Anal. 18 (2008), no. 1, 251–270. MR 2399103
  • [Tho08b] by same author, Sofic groups and Diophantine approximation, Comm. Pure Appl. Math. 61 (2008), no. 8, 1155–1171. MR 2417890
  • [Tho11] by same author, Integer operators in finite von Neumann algebras, J. Topol. Anal. 3 (2011), no. 4, 433–450. MR 2887671
  • [Voi95] Dan-Virgil Voiculescu, Operations on certain non-commutative operator-valued random variables, Recent advances in operator algebras, Astérisque, no. 232, Societe mathematique de France, 1995, pp. 243–275.
  • [Voi96] by same author, The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), no. 1, 172–199. MR 1371236
  • [Voi98a] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), no. 1, 189–227.
  • [Voi98b] Dan-Virgil Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Not. IMRN (1998), no. 1, 41–63. MR 1601878
  • [Voi99] Dan Voiculescu, Free entropy dimension 1\leq 1 for some generators of property TT factors of type II1{\rm II}_{1}, J. Reine Angew. Math. 514 (1999), 113–118. MR 1711283
  • [Wei00] Benjamin Weiss, Sofic groups and dynamical systems, Sankhyā Ser. A 62 (2000), no. 3, 350–359, Ergodic theory and harmonic analysis (Mumbai, 1999). MR 1803462