This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Strongly Quasi-local algebras and their KK-theories

Hengda Bao Xiaoman Chen  and  Jiawen Zhang School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China. baohengda@fudan.edu.cn, xchen@fudan.edu.cn, jiawenzhang@fudan.edu.cn
Abstract.

In this paper, we introduce a notion of strongly quasi-local algebras. They are defined for each discrete metric space with bounded geometry, and sit between the Roe algebra and the quasi-local algebra. We show that strongly quasi-local algebras are coarse invariants, hence encoding coarse geometric information of the underlying spaces. We prove that for a discrete metric space with bounded geometry which admits a coarse embedding into a Hilbert space, the inclusion of the Roe algebra into the strongly quasi-local algebra induces an isomorphism in KK-theory.

Key words and phrases:
Roe algebras, Quasi-local algebras, Strong quasi-locality, Coarse embeddability

1. Introduction

Roe algebras are CC^{*}-algebras associated to metric spaces which encode coarse geometric information of the underlying spaces. They were introduced by J. Roe in his pioneering work of higher index theory on open manifolds [9, 11], in which he showed that the KK-theory of Roe algebras serves as receptacles for indices of elliptic differential operators. Hence the computation of their K-theories becomes a central problem in higher index theory.

An efficient and practical approach is to employ the coarse Baum-Connes conjecture, which asserts that the coarse assembly map from the coarse KK-homology of the space to the KK-theory of the Roe algebra is an isomorphism [10, 18]. The coarse Baum-Connes conjecture has fruitful and significant applications in geometry and topology, for instance on the Novikov conjecture and the bounded Borel rigidity conjecture (see e.g. [2, 20, 21]), and on the non-existence of metrics of positive scalar curvature on open Riemannian manifolds (see e.g. [12, 19]).

By definition, the Roe algebra C(X)C^{*}(X) of a discrete metric space (X,d)(X,d) with bounded geometry is defined to be the norm closure of all locally compact operators T𝔅(2(X;))T\in\mathfrak{B}(\ell^{2}(X;\mathscr{H})) (where \mathscr{H} is an infinite-dimensional separable Hilbert space) with finite propagation in following sense: there exists R>0R>0 such that for any f,g(X)f,g\in\ell^{\infty}(X) acting on 2(X;)\ell^{2}(X;\mathscr{H}) by amplified pointwise multiplication, we have fTg=0fTg=0 when their supports are RR-disjoint (i.e., d(suppf,suppg)>Rd(\mathrm{supp}f,\mathrm{supp}g)>R). Since general elements in Roe algebras may not have finite propagation, it is usually hard to detect whether a given operator belongs to them or not.

To overcome this issue, J. Roe suggested an asymptotic version of finite propagation called quasi-locality in [9, 11]. More precisely, an operator T𝔅(2(X;))T\in\mathfrak{B}(\ell^{2}(X;\mathscr{H})) is quasi-local if for any ε>0\varepsilon>0 there exists R>0R>0 such that for any f,g(X)f,g\in\ell^{\infty}(X) with RR-disjoint supports, we have fTg<ε\|fTg\|<\varepsilon. We form the quasi-local algebra111Note that a uniform version was already introduced in [7]. Cq(X)C^{*}_{q}(X) of XX as the CC^{*}-algebra consisting of all locally compact and quasi-local operators in 𝔅(2(X;))\mathfrak{B}(\ell^{2}(X;\mathscr{H})), and show that they are coarse invariants. It is clear that operators with finite propagation are quasi-local, and hence the quasi-local algebra Cq(X)C^{*}_{q}(X) contains the Roe algebra C(X)C^{*}(X).

A natural question is to ask whether these two algebras coincide, which has been extensively studied over the last few decades [1, 6, 8, 11, 13, 14]. Currently the most general result is due to Špakula and the third author [14], which states that C(X)=Cq(X)C^{*}(X)=C^{*}_{q}(X) for any discrete metric space with bounded geometry and having Yu’s property A. Here property A is a coarse geometric property introduced by Yu [21] in his study on the coarse Baum-Connes conjecture. However, the question remains widely open outside the world of property A [4, 7].

On the other hand, the property of quasi-locality is also crucial in the work of Engel [1] on index theory of pseudo-differential operators. He discovered that while indices of genuine differential operators on Riemannian manifolds live in the KK-theory of (appropriate) Roe algebras, the indices of uniform pseudo-differential operators are only known to be in the KK-theory of quasi-local algebras. Hence it is important to study whether the Roe algebra and the quasi-local algebra have the same KK-theory.

In this paper, we introduce a notion of strong quasi-locality and study associated strongly quasi-local algebras. Our main focus is to study their KK-theories, which might be a potential approach to attack the higher indices problem above. To illustrate the idea, let us explain when XX is uniformly discrete (i.e., there exists C>0C>0 such that d(x,y)>Cd(x,y)>C for xyx\neq y). For the general case, see Section 3.1. Fix an infinite-dimensional separable Hilbert space \mathscr{H} and denote by 𝔎()1\mathfrak{K}(\mathscr{H})_{1} the unit ball of the compact operators on \mathscr{H}. We introduce the following:

Definition A.

Let XX be a uniformly discrete metric space with bounded geometry and T𝔅(2(X;))T\in\mathfrak{B}(\ell^{2}(X;\mathscr{H})). We say that TT is strongly quasi-local if for any ε>0\varepsilon>0 there exists L>0L>0 such that for any LL-Lipschitz map g:X𝔎()1g:X\rightarrow\mathfrak{K}(\mathscr{H})_{1}, we have

[TId,Λ(g)]<ε\big{\|}[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}<\varepsilon

where Λ(g)𝔅(2(X;))\Lambda(g)\in\mathfrak{B}(\ell^{2}(X;\mathscr{H}\otimes\mathscr{H})) is defined by Λ(g)(δxξη):=δxξg(x)η\Lambda(g)(\delta_{x}\otimes\xi\otimes\eta):=\delta_{x}\otimes\xi\otimes g(x)\eta for δxξη2(X;)2(X)\delta_{x}\otimes\xi\otimes\eta\in\ell^{2}(X;\mathscr{H}\otimes\mathscr{H})\cong\ell^{2}(X)\otimes\mathscr{H}\otimes\mathscr{H}.

Definition A is inspired by a characterisation for quasi-locality provided in [13] which states that an operator T𝔅(2(X;))T\in\mathfrak{B}(\ell^{2}(X;\mathscr{H})) is quasi-local if and only if for any ε>0\varepsilon>0 there exists L>0L>0 such that for any LL-Lipschitz map g:Xg:X\rightarrow\mathbb{C} with g1\|g\|_{\infty}\leq 1, we have [T,g]<ε\|[T,g]\|<\varepsilon. Hence the notion of strong quasi-locality can be regarded as a compact operator valued version of quasi-locality, and undoubtedly strengthens the original notion (as literally suggested).

Analogous to the case of quasi-locality, we form the strongly quasi-local algebra Csq(X)C^{*}_{sq}(X) as the CC^{*}-algebra consisting of all locally compact and strongly quasi-local operators in 𝔅(2(X;))\mathfrak{B}(\ell^{2}(X;\mathscr{H})). We show that the strongly quasi-local algebra Csq(X)C^{*}_{sq}(X) contains the Roe algebra C(X)C^{*}(X), and is contained in the quasi-local algebra Cq(X)C^{*}_{q}(X) (see Proposition 3.6). We also study coarse geometric features of strongly quasi-local algebras, and show that they are coarse invariants as in the case of Roe algebras and quasi-local algebras (see Corollary 3.12).

Our motivation of introducing strongly quasi-local algebras is that their KK-theory is relatively easy to handle when the underlying space is coarsely embeddable. More precisely, we prove the following:

Theorem B.

Let XX be a discrete metric space of bounded geometry. If XX admits a coarse embedding into a Hilbert space, then the inclusion of the associated Roe algebra C(X)C^{*}(X) into the strongly quasi-local algebra Csq(X)C^{*}_{sq}(X) induces an isomorphism in KK-theory.

Theorem B is the main result of this paper, which is inspired by the well-known theorem of Yu [21] that the coarse Baum-Connes conjecture holds for discrete bounded geometry spaces admitting a coarse embedding into Hilbert space. The proof of Theorem B follows the outline of [17, Section 12] (which originates in [21]), but is more involved and requires new techniques. We divide the proof into several steps, and here let us explain several key ingredients in the proof.

First we prove a coarse Mayer-Vietoris argument for strongly quasi-local algebras (Proposition 4.5), which allows us to cut the space and decompose the associated algebras. Recall that an analogous result for Roe algebras was already established in [3]. This leads to the reduction of the proof for Theorem B to the case of sequences of finite metric spaces with block-diagonal operators thereon (Lemma 4.7).

We would like to highlight a technical lemma used to achieve the coarse Mayer-Vietoris result. Recall that for a quasi-local operator TCq(X)T\in C^{*}_{q}(X), it is clear from definition that the restriction χATχA\chi_{A}T\chi_{A} belongs to Cq(A)C^{*}_{q}(A) for any subspace AA. However, this is not obvious in the case of strongly quasi-local algebras due to certain obstructions on Lipschitz extension (see Remark 3.9). To overcome the issue, we provide a characterisation for strong quasi-locality in terms of compact operator valued Higson functions (Proposition 3.7). Note that these functions appeared in [16, Section 4.2] to study the stable Higson corona and the Baum-Connes conjecture. Thanks to the extendability of Higson functions, we obtain a restriction result (Lemma 3.10) as required. Moreover by some delicate analysis, we obtain a “uniform” version (Proposition 3.8) which plays a key role in following steps.

Then we construct a twisted version of strongly quasi-local algebras (Definition 5.10) for sequences of finite metric spaces, and show that the identity map on the KK-theory of the strongly quasi-local algebra factors through the KK-theory of its twisted counterpart (Proposition 6.8). To achieve, we replace several propagation requirements for twisted Roe algebras by different versions of (strong) quasi-locality, and construct an index map in terms of the Bott-Dirac operators. We would like to point out that for the original quasi-local algebras, there is a technical issue to define the index map (Lemma 6.4) following the methods either in [21, Lemma 7.6] or in [17, Lemma 12.3.9]. Hence we have to move to the world of strong quasi-locality.

Finally we prove that the inclusion map from the twisted Roe algebra into the twisted strongly quasi-local algebra induces an isomorphism in KK-theory (Proposition 7.1). Combining with a diagram-chasing argument, we conclude the proof for Theorem B.

Theorem B should be regarded as a first step to attack the problem whether quasi-local algebras have the same KK-theory as Roe algebras. More precisely, we pose the following open question:

Question C.

Let XX be a metric space with bounded geometry which admits a coarse embedding into Hilbert space. Then do we have K(Csq(X))=K(Cq(X))K_{\ast}(C^{*}_{sq}(X))=K_{\ast}(C^{*}_{q}(X))?

The paper is organised as follows: In Section 2, we collect notions from coarse geometry and recall the definition of Roe algebras. We also define quasi-local algebras and show that they are coarse invariants. In Section 3, we introduce the main concept of this paper—strong quasi-locality and study their permanence property and coarse geometric features. Section 4 is devoted to the coarse Mayer-Vietoris sequence for (strongly) quasi-local algebras, based on which we reduce the proof for Theorem B to the case of sequences of finite metric spaces. We introduce twisted strongly quasi-local algebras in Section 5, and construct the index map in Section 6. In Section 7, we show that twisted Roe algebras and twisted strongly quasi-local algebras have the same KK-theory, and hence conclude the proof in Section 8. The appendix provides a proof for Proposition 5.4 which slightly strengthens [17, Proposition 12.1.10] and is necessary to achieve the main theorem, hence we give detailed proofs for convenience to readers.

Acknowledgments

We wish to thank Jinmin Wang and Rufus Willett for several helpful discussions, and Yijun Yao for useful comments after reading an early version of this paper.

2. Preliminaries

We start with some notions and definitions.

2.1. Notions in coarse geometry

Here we collect several basic notions.

Definition 2.1.

Let (X,dX)(X,d_{X}) be a metric space, AXA\subseteq X and R0R\geq 0.

  1. (1)

    AA is bounded if its diameter diam(A):=sup{dX(x,y):x,yA}\mathrm{diam}(A):=\sup\{d_{X}(x,y):x,y\in A\} is finite.

  2. (2)

    The RR-neighbourhood of AA in XX is 𝒩R(A):={xX:dX(x,A)R}\mathcal{N}_{R}(A):=\{x\in X:d_{X}(x,A)\leq R\}.

  3. (3)

    AA is a net in XX if there exists some C>0C>0 such that 𝒩C(A)=X\mathcal{N}_{C}(A)=X.

  4. (4)

    For x0Xx_{0}\in X, the open RR-ball of x0x_{0} in XX is B(x0;R):={xX:dX(x0,x)<R}B(x_{0};R):=\{x\in X:d_{X}(x_{0},x)<R\}.

  5. (5)

    (X,dX)(X,d_{X}) is said to be proper if every closed bounded subset is compact.

  6. (6)

    If (X,dX)(X,d_{X}) is discrete, we say that XX has bounded geometry if for any r>0r>0 there exists an NN\in\mathbb{N} such that |B(x;r)|N|B(x;r)|\leq N for any xXx\in X, where |B(x;r)||B(x;r)| denotes the cardinality of the set B(x;r)B(x;r).

Definition 2.2.

Let f:(X,dX)(Y,dY)f:(X,d_{X})\to(Y,d_{Y}) be a map between metric spaces.

  1. (1)

    ff is uniformly expansive if there exists a non-decreasing function ρ+:[0,)[0,)\rho_{+}:[0,\infty)\to[0,\infty) such that for any x,yXx,y\in X, we have:

    dY(f(x),f(y))ρ+(dX(x,y)).d_{Y}(f(x),f(y))\leq\rho_{+}(d_{X}(x,y)).
  2. (2)

    ff is proper if for any bounded BYB\subseteq Y, the pre-image f1(B)f^{-1}(B) is bounded in XX.

  3. (3)

    ff is coarse if it is uniformly expansive and proper.

  4. (4)

    ff is effectively proper if there exists a proper non-decreasing function ρ:[0,)[0,)\rho_{-}:[0,\infty)\to[0,\infty) such that for any x,yXx,y\in X, we have:

    ρ(dX(x,y))dY(f(x),f(y)).\rho_{-}(d_{X}(x,y))\leq d_{Y}(f(x),f(y)).
  5. (5)

    ff is a coarse embedding if it is uniformly expansive and effectively proper.

Note that ff is uniformly expansive is equivalent to that the expansion function ρf:[0,)[0,]\rho_{f}:[0,\infty)\rightarrow[0,\infty] of ff, defined as

(2.1) ρf(s):=sup{dY(f(x),f(y)):x,yX with dX(x,y)s},\rho_{f}(s):=\sup\{d_{Y}(f(x),f(y)):x,y\in X\mbox{~{}with~{}}d_{X}(x,y)\leq s\},

is finite-valued.

Definition 2.3.

Let (X,dX)(X,d_{X}) and (Y,dY)(Y,d_{Y}) be metric spaces.

  1. (1)

    Two maps f,g:(X,dX)(Y,dY)f,g:(X,d_{X})\to(Y,d_{Y}) are close if the exists R0R\geq 0 such that for all xXx\in X, we have dY(f(x),g(x))Rd_{Y}(f(x),g(x))\leq R.

  2. (2)

    A coarse map f:(X,dX)(Y,dY)f:(X,d_{X})\to(Y,d_{Y}) is called a coarse equivalence if there exists another coarse map g:(Y,dY)(X,dX)g:(Y,d_{Y})\to(X,d_{X}) such that fgf\circ g and gfg\circ f are close to identities, where gg is called a coarse inverse to ff. It is clear that ff is a coarse equivalence if and only if it is a coarse embedding and f(X)f(X) is a net in YY.

  3. (3)

    (X,dX)(X,d_{X}) and (Y,dY)(Y,d_{Y}) are said to be coarsely equivalent if there exists a coarse equivalence from XX to YY.

For families of metric spaces and maps, we also need the following notions.

Definition 2.4.

Let {(Xn,dXn)}n\{(X_{n},d_{X_{n}})\}_{n\in\mathbb{N}} be a sequence of finite metric spaces. A coarse disjoint union of {(Xn,dXn)}\{(X_{n},d_{X_{n}})\} is a metric space (X,dX)(X,d_{X}) where XX is the disjoint union of {Xn}\{X_{n}\} as a set, and dXd_{X} is a metric on XX satisfying:

  • the restriction of dXd_{X} on XnX_{n} coincides with dXnd_{X_{n}};

  • dX(Xn,XXn)d_{X}(X_{n},X\setminus X_{n})\rightarrow\infty as nn\rightarrow\infty.

Note that any two such metric dXd_{X} are coarsely equivalent. We say that a sequence {(Xn,dXn)}n\{(X_{n},d_{X_{n}})\}_{n\in\mathbb{N}} has uniformly bounded geometry if its coarse disjoint union has bounded geometry.

Definition 2.5.

A family of maps {fi:XiYi}iI\{f_{i}:X_{i}\to Y_{i}\}_{i\in I} between metric spaces is called a uniformly coarse embedding if there are non-decreasing proper functions ρ±:[0,)[0,)\rho_{\pm}:[0,\infty)\to[0,\infty) such that

ρ(dXi(x,y))dYi(fi(x),fi(y))ρ+(dXi(x,y))\rho_{-}(d_{X_{i}}(x,y))\leq d_{Y_{i}}(f_{i}(x),f_{i}(y))\leq\rho_{+}(d_{X_{i}}(x,y))

for all iIi\in I and x,yXix,y\in X_{i}. We say that {Xi}iI\{X_{i}\}_{i\in I} uniformly coarsely embeds into Hilbert spaces if there exists a uniformly coarse embedding {fi:XiEi}iI\{f_{i}:X_{i}\to E_{i}\}_{i\in I} where each EiE_{i} is a Hilbert space.

It is clear that a sequence of finite metric spaces {Xn}n\{X_{n}\}_{n\in\mathbb{N}} uniformly coarsely embeds into Hilbert spaces if and only if its coarse disjoint union nXn\bigsqcup_{n}X_{n} coarsely embeds into some Hilbert space.

2.2. Roe algebras and quasi-local algebras

For a proper metric space (X,dX)(X,d_{X}), recall that an XX-module is a non-degenerate \ast-representation C0(X)𝔅(X)C_{0}(X)\to\mathfrak{B}(\mathcal{H}_{X}) for some infinite-dimensional separable Hilbert space X\mathcal{H}_{X}. We also say that X\mathcal{H}_{X} is an XX-module if the representation is clear from the context. An XX-module is called ample if no non-zero element of C0(X)C_{0}(X) acts as a compact operator on X\mathcal{H}_{X}. Note that every proper metric space XX admits an ample XX-module.

Let X\mathcal{H}_{X} and Y\mathcal{H}_{Y} be ample modules of proper metric spaces XX and YY, respectively. Given an operator T𝔅(X,Y)T\in\mathfrak{B}(\mathcal{H}_{X},\mathcal{H}_{Y}), the support of TT is defined to be

supp(T):={(y,x)Y×X:χVTχU0 for all neighbourhoods U of x and V of y}.\mathrm{supp}(T):=\big{\{}(y,x)\in Y\times X:\chi_{V}T\chi_{U}\neq 0\mbox{~{}for~{}all~{}neighbourhoods~{}}U\mbox{~{}of~{}}x\mbox{~{}and~{}}V\mbox{~{}of~{}}y\big{\}}.

When X=YX=Y, the propagation of T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) is defined to be

prop(T):=sup{dX(x,y):(x,y)supp(T)}.\mathrm{prop}(T):=\sup\{d_{X}(x,y):(x,y)\in\mathrm{supp}(T)\}.

We say that an operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) has finite propagation if prop(T)\mathrm{prop}(T) is finite, and TT is locally compact if fTfT and TfTf are compact for all fC0(X)f\in C_{0}(X) (which is equivalent to that both χKT\chi_{K}T and TχKT\chi_{K} are compact for all compact subset KXK\subseteq X).

Definition 2.6.

For a proper metric space XX and an ample XX-module X\mathcal{H}_{X}, the algebraic Roe algebra [X]\mathbb{C}[\mathcal{H}_{X}] of X\mathcal{H}_{X} is defined to be the *-algebra of locally compact finite propagation operators on X\mathcal{H}_{X}, and the Roe algebra C(X)C^{*}(\mathcal{H}_{X}) of X\mathcal{H}_{X} is defined to be the norm-closure of [X]\mathbb{C}[\mathcal{H}_{X}] in 𝔅(X)\mathfrak{B}(\mathcal{H}_{X}).

It is a standard result that the Roe algebra C(X)C^{*}(\mathcal{H}_{X}) does not depend on the chosen ample module X\mathcal{H}_{X} up to *-isomorphisms, hence denoted by C(X)C^{*}(X) and called the Roe algebra of XX. Furthermore, C(X)C^{*}(X) is a coarse invariant of the metric space XX (up to non-canonical *-isomorphisms), and their K-theories are coarse invariants up to canonical isomorphisms (see, e.g., [10]).

Now we move on to the case of quasi-locality.

Definition 2.7.

Given a proper metric space (X,dX)(X,d_{X}) and an ample XX-module X\mathcal{H}_{X}, an operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) is said to be quasi-local if for any ε>0\varepsilon>0, there exists R>0R>0 such that TT has (ε,R)(\varepsilon,R)-propagation, i.e., for any Borel sets A,BXA,B\subseteq X with dX(A,B)Rd_{X}(A,B)\geq R, we have χATχB<ε\|\chi_{A}T\chi_{B}\|<\varepsilon.

It is clear that the set of all locally compact quasi-local operators on X\mathcal{H}_{X} forms a CC^{*}-subalgebra of 𝔅(X)\mathfrak{B}(\mathcal{H}_{X}), which leads to the following:

Definition 2.8.

For a proper metric space XX and an ample XX-module X\mathcal{H}_{X}, the set of all locally compact quasi-local operators on X\mathcal{H}_{X} is called the quasi-local algebra of X\mathcal{H}_{X}, denoted by Cq(X)C^{*}_{q}(\mathcal{H}_{X}).

As in the case of Roe algebras, we now show that quasi-local algebras do not depend on the chosen ample modules either.

Let XX and YY be proper metric spaces and X,Y\mathcal{H}_{X},\mathcal{H}_{Y} be ample modules, respectively. Let f:XYf:X\to Y be a coarse map. Recall that a covering isometry for ff is an isometry V:XYV:\mathcal{H}_{X}\rightarrow\mathcal{H}_{Y} such that supp(V){(y,x):dY(y,f(x))C}\mathrm{supp}(V)\subseteq\{(y,x):d_{Y}(y,f(x))\leq C\} for some C0C\geq 0. In this case, we also say that VV covers ff. It is shown in [17, Proposition 4.3.4] that covering isometries always exist. Following the case of Roe algebras, we have:

Proposition 2.9.

Let X\mathcal{H}_{X} and Y\mathcal{H}_{Y} be ample modules for proper metric spaces XX and YY, respectively. Let f:XYf:X\to Y be a coarse map with a covering isometry V:XYV:\mathcal{H}_{X}\rightarrow\mathcal{H}_{Y}. Then VV induces the following \ast-homomorphism

AdV:Cq(X)Cq(Y),TVTV.\mathrm{Ad}_{V}:C^{*}_{q}(\mathcal{H}_{X})\longrightarrow C^{*}_{q}(\mathcal{H}_{Y}),\quad T\mapsto VTV^{*}.

Furthermore, the induced K-thoeretic map (AdV):K(Cq(X))K(Cq(Y))(\mathrm{Ad}_{V})_{*}:K_{*}(C^{*}_{q}(\mathcal{H}_{X}))\to K_{*}(C^{*}_{q}(\mathcal{H}_{Y})) does not depend on the choice of the covering isometry VV, hence denoted by ff_{*}.

Proof.

Note that there exists a Borel coarse map close to ff by [17, Lemma A.3.12], hence without loss of generality, we can assume that ff is Borel and VV covers ff.

Following the same argument as in the Roe case (see, e.g., [17, Lemma 5.1.12]), VTVVTV^{*} is locally compact. Fix a t0>0t_{0}>0 such that supp(V){(y,x):dY(y,f(x))<t0}\mathrm{supp}(V)\subseteq\{(y,x):d_{Y}(y,f(x))<t_{0}\}. For any ε>0\varepsilon>0, the quasi-locality of TT implies that there exists a R0>0R_{0}>0 such that TT has (ε,R0)(\varepsilon,R_{0})-propagation. We set R=2t0+ρf(R0)+1R=2t_{0}+\rho_{f}(R_{0})+1 where ρf\rho_{f} is defined in Equation (2.1). For any Borel sets C,DYC,D\subseteq Y with dY(C,D)Rd_{Y}(C,D)\geq R, it is clear that dY(𝒩t0(C),𝒩t0(D))ρf(R0)+1>ρf(R0)d_{Y}(\mathcal{N}_{t_{0}}(C),\mathcal{N}_{t_{0}}(D))\geq\rho_{f}(R_{0})+1>\rho_{f}(R_{0}) and hence dX(f1(𝒩t0(C)),f1(𝒩t0(D)))R0d_{X}(f^{-1}(\mathcal{N}_{t_{0}}(C)),f^{-1}(\mathcal{N}_{t_{0}}(D)))\geq R_{0}. Since VV covers ff, we obtain:

χCV=χCVχf1(𝒩t0(C))andVχD=χf1(𝒩t0(D))VχD.\chi_{C}V=\chi_{C}V\chi_{f^{-1}(\mathcal{N}_{t_{0}}(C))}\quad\mathrm{and}\quad V^{*}\chi_{D}=\chi_{f^{-1}(\mathcal{N}_{t_{0}}(D))}V^{*}\chi_{D}.

Hence

χCVTVχD=χCVχf1(𝒩t0(C))Tχf1(𝒩t0(D))VχDχf1(𝒩t0(C))Tχf1(𝒩t0(D))<ε,\|\chi_{C}VTV^{*}\chi_{D}\|=\|\chi_{C}V\chi_{f^{-1}(\mathcal{N}_{t_{0}}(C))}T\chi_{f^{-1}(\mathcal{N}_{t_{0}}(D))}V^{*}\chi_{D}\|\leq\|\chi_{f^{-1}(\mathcal{N}_{t_{0}}(C))}T\chi_{f^{-1}(\mathcal{N}_{t_{0}}(D))}\|<\varepsilon,

which implies that VTVVTV^{*} is quasi-local.

The second statement follows almost the same argument as in the case of Roe algebra (see, e.g., [17, Lemma 5.1.12]), hence omitted. ∎

It is shown in [17, Proposition 4.3.5] that for a coarse equivalence f:XYf:X\to Y, we can always choose an isometry V:XYV:\mathcal{H}_{X}\to\mathcal{H}_{Y} covering ff such that VV is a unitary. Consequently, we obtain the following:

Corollary 2.10.

Let X\mathcal{H}_{X} and Y\mathcal{H}_{Y} be ample modules for proper metric spaces XX and YY, respectively. If XX and YY are coarsely equivalent, then the quasi-local algebra Cq(X)C_{q}^{*}(\mathcal{H}_{X}) is \ast-isomorphic to Cq(Y)C_{q}^{*}(\mathcal{H}_{Y}). In particular, for a proper metric space XX the quasi-local algebra Cq(X)C_{q}^{*}(\mathcal{H}_{X}) does not depend on the chosen ample XX-module X\mathcal{H}_{X} up to \ast-isomorphisms, hence called the quasi-local algebra of XX and denoted by Cq(X)C^{*}_{q}(X).

3. Strongly quasi-local algebras

In this section, we introduce a new class of operator algebras which are called the strongly quasi-local algebras. They sit between Roe algebras and quasi-local algebras and their K-theories will be the main focus of the paper. Here we study their basic properties and coarse geometric features.

Let us begin with some more notions:

Definition 3.1.

Let (X,dX),(Y,dY)(X,d_{X}),(Y,d_{Y}) be metric spaces and g:XYg:X\rightarrow Y be a map.

  1. (1)

    Given L>0L>0, we say that ff is LL-Lipschitz if dY(g(x),g(y))LdX(x,y)d_{Y}(g(x),g(y))\leq Ld_{X}(x,y) for any x,yXx,y\in X.

  2. (2)

    Given AXA\subseteq X, ε>0\varepsilon>0 and R>0R>0, we say that gg has (ε,R)(\varepsilon,R)-variation on AA if for any x,yAx,y\in A with dX(x,y)<Rd_{X}(x,y)<R, we have dY(g(x),g(y))<εd_{Y}(g(x),g(y))<\varepsilon. When A=XA=X, we also say that gg has (ε,R)(\varepsilon,R)-variation.

Definition 3.2.

Let g:Xg:X\to\mathbb{C} be a continuous function on a metric space (X,dX)(X,d_{X}).

  1. (1)

    We say that gg is bounded if its norm g:=supxX|g(x)|<\|g\|_{\infty}:=\sup_{x\in X}|g(x)|<\infty. Denote the set of all bounded continuous functions on XX by Cb(X)C_{b}(X), and by Cb(X)1C_{b}(X)_{1} the subset consisting of functions with norm at most 11.

  2. (2)

    We say that gg is a Higson function if gCb(X)g\in C_{b}(X) and for any ε>0\varepsilon>0 and R>0R>0, there exists a compact subset KXK\subset X such that gg has (ε,R)(\varepsilon,R)-variation on XKX\setminus K. Denote Ch(X)C_{h}(X) the set of all Higson functions on XX.

Our notion of strong quasi-locality is inspired by the following result partially from [13, Theorem 2.8]. Recall that for operators T,S𝔅()T,S\in\mathfrak{B}(\mathcal{H}) on some Hilbert space \mathcal{H}, their commutator is defined to be [T,S]:=TSST[T,S]:=TS-ST.

Proposition 3.3.

Let XX be a proper metric space, X\mathcal{H}_{X} an ample XX-module and T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) be a locally compact operator. Then the following are equivalent:

  1. (1)

    TT is quasi-local in the sense of Definition 2.7;

  2. (2)

    For any ε>0\varepsilon>0, there exists L>0L>0 such that for any LL-Lipschitz function gCb(X)1g\in C_{b}(X)_{1} we have [T,g]<ε\|[T,g]\|<\varepsilon;

  3. (3)

    For any ε>0\varepsilon>0, there exist δ,R>0\delta,R>0 such that for any function gCb(X)1g\in C_{b}(X)_{1} with (δ,R)(\delta,R)-variation we have [T,g]<ε\|[T,g]\|<\varepsilon;

  4. (4)

    [T,h][T,h] is a compact operator for any hCh(X)h\in C_{h}(X).

Note that the equivalence among (1), (2) and (4) are the “easier” part of [13, Theorem 2.8]. And also note that the equivalence between (1) and (3) can be proved using the same argument therein to show “(1) \Leftrightarrow (2)”, hence omitted.

3.1. Strong quasi-locality

Now we introduce the notion of strong quasi-locality, where we consider compact operator valued functions instead of complex valued ones in Proposition 3.3(3).

Throughout the rest of the paper, we only consider proper discrete metric spaces to simplify the notation. We also fix an infinite-dimensional separable Hilbert space \mathscr{H}.

Let XX be a proper discrete metric space and X\mathcal{H}_{X} be an ample XX-module. For each xXx\in X, denote x:=χ{x}X\mathcal{H}_{x}:=\chi_{\{x\}}\mathcal{H}_{X}. An operator S𝔅(X)S\in\mathfrak{B}(\mathcal{H}_{X}\otimes\mathscr{H}) can be regarded as an XX-by-XX matrix (Sx,y)x,yX(S_{x,y})_{x,y\in X}, where Sx,y𝔅(y,x)S_{x,y}\in\mathfrak{B}(\mathcal{H}_{y}\otimes\mathscr{H},\mathcal{H}_{x}\otimes\mathscr{H}). Denote 𝔎()\mathfrak{K}(\mathscr{H}) the CC^{*}-algebra of compact operators on \mathscr{H}, and 𝔎()1\mathfrak{K}(\mathscr{H})_{1} its closed unit ball (with respect to the operator norm).

Recall that a map g:X𝔎()g:X\rightarrow\mathfrak{K}(\mathscr{H}) is bounded if g:=supxXg(x)<\|g\|_{\infty}:=\sup_{x\in X}\|g(x)\|<\infty. Given a bounded map g:X𝔎()g:X\rightarrow\mathfrak{K}(\mathscr{H}), we define an operator Λ(g)𝔅(X)\Lambda(g)\in\mathfrak{B}(\mathcal{H}_{X}\otimes\mathscr{H}) by setting its matrix entry as follows:

(3.1) Λ(g)x,y:={Idxg(x),y=x;0,otherwise.\displaystyle\Lambda(g)_{x,y}:=\begin{cases}~{}\mathrm{Id}_{\mathcal{H}_{x}}\otimes g(x),&y=x;\\ ~{}0,&\mbox{otherwise}.\end{cases}

Note that this is a block-diagonal operator with respect to the decomposition X=xX(x)\mathcal{H}_{X}\otimes\mathscr{H}=\bigoplus_{x\in X}(\mathcal{H}_{x}\otimes\mathscr{H}). We also write ΛX(g)\Lambda_{\mathcal{H}_{X}}(g) instead of Λ(g)\Lambda(g) when we want to emphasise the module X\mathcal{H}_{X} involved.

The following is the main concept of this paper:

Definition 3.4.

Let XX be a proper discrete metric space and X\mathcal{H}_{X} be an ample XX-module. An operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) is called strongly quasi-local if for any ε>0\varepsilon>0 there exist δ,R>0\delta,R>0 such that for any map g:X𝔎()1g:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation, we have

(3.2) [TId,Λ(g)]𝔅(X)<ε.\big{\|}[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}_{\mathfrak{B}(\mathcal{H}_{X}\otimes\mathscr{H})}<\varepsilon.

It is easy to see that the set of all locally compact strongly quasi-local operators on X\mathcal{H}_{X} forms a CC^{*}-algebra, hence called the strongly quasi-local algebra of X\mathcal{H}_{X} and denoted by Csq(X)C^{*}_{sq}(\mathcal{H}_{X}).

Remark 3.5.

A direct calculation shows that for x,yXx,y\in X, the xyxy-matrix entry of the commutator [TId,Λ(g)][T\otimes Id_{\mathscr{H}},\Lambda(g)] in Inequality (3.2) is given by:

(3.3) [TId,Λ(g)]x,y=Tx,y(g(y)g(x)).[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]_{x,y}=T_{x,y}\otimes\big{(}g(y)-g(x)\big{)}.

The following result records the relation amongst Roe algebras, quasi-local algebras and strongly quasi-local algebras.

Proposition 3.6.

Let XX be a proper discrete metric space and X\mathcal{H}_{X} be an ample XX-module. Then we have:

  1. (1)

    Csq(X)Cq(X)C^{*}_{sq}(\mathcal{H}_{X})\subseteq C^{*}_{q}(\mathcal{H}_{X});

  2. (2)

    If XX has bounded geometry, then C(X)Csq(X)C^{*}(\mathcal{H}_{X})\subseteq C^{*}_{sq}(\mathcal{H}_{X});

  3. (3)

    If XX has bounded geometry and Property A, then C(X)=Csq(X)=Cq(X)C^{*}(\mathcal{H}_{X})=C^{*}_{sq}(\mathcal{H}_{X})=C^{*}_{q}(\mathcal{H}_{X}).

Proof.

(1). Fix a rank-one projection p𝔅()p\in\mathfrak{B}(\mathscr{H}). For gCb(X)1g\in C_{b}(X)_{1}, we construct g~:X𝔎()1\tilde{g}:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} by g~(x):=g(x)p\tilde{g}(x):=g(x)p. Since [TId,Λ(g~)]=[T,g]p[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(\tilde{g})]=[T,g]\otimes p, the conclusion follows from the definition of strong quasi-locality and Proposition 3.3(3).

(2). Assume that T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) has propagation at most RR. Then for any g:X𝔎()1g:X\rightarrow\mathfrak{K}(\mathscr{H})_{1}, the commutator [TId,Λ(g)][T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)] has propagation at most RR from (3.3). Since XX has bounded geometry, it is well-known (see, e.g., [17, Lemma 12.2.4]) that there exists an NN depending on RR such that for any g:X𝔎()1g:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} we have:

[TId,Λ(g)]Nsupx,yXd(x,y)RTx,y(g(y)g(x)).\big{\|}[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}\leq N\cdot\sup_{x,y\in X\atop d(x,y)\leq R}\big{\|}T_{x,y}\otimes\big{(}g(y)-g(x)\big{)}\big{\|}.

This concludes the proof.

(3). It follows from [14, Theorem 3.3] that C(X)=Cq(X)C^{*}(\mathcal{H}_{X})=C^{*}_{q}(\mathcal{H}_{X}) under the given assumption, which (together with (1) and (2)) concludes the proof. ∎

Our next aim is to explore characterisations for strong quasi-locality as in Proposition 3.3. First note that Definition 3.4 is a compact operator valued version of condition (3) therein. Unfortunately, we cannot find an appropriate substitute for condition (1) in Proposition 3.3. As for condition (2) therein, it is clear that the compact operator valued version is equivalent to strong quasi-locality provided the underlying space is uniformly discrete (i.e., there exists C>0C>0 such that d(x,y)>Cd(x,y)>C for xyx\neq y in XX). However, it is unclear whether this holds in general.

As for condition (4) in Proposition 3.3, we have the following result concerning compact operator valued Higson functions. Recall that a compact operator valued function h:X𝔎()h:X\to\mathfrak{K}(\mathscr{H}) on a metric space XX is a Higson function if hh is bounded and for any ε>0\varepsilon>0 and R>0R>0, there exists a compact subset KXK\subset X such that hh has (ε,R)(\varepsilon,R)-variation on XKX\setminus K.

Proposition 3.7.

Let XX be a discrete metric space of bounded geometry and X\mathcal{H}_{X} an ample XX-module. Then for a locally compact operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}), the following are equivalent:

  1. (1)

    TT is strongly quasi-local;

  2. (2)

    [TId,Λ(h)]𝔎(X)[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(h)]\in\mathfrak{K}(\mathcal{H}_{X}\otimes\mathscr{H}) for any Higson function h:X𝔎()h:X\to\mathfrak{K}(\mathscr{H}).

The proof of Proposition 3.7 is almost identical to that of [13, Theorem 2.8 “(1) \Leftrightarrow (3)”] with minor changes, hence omitted.

3.2. Strong quasi-locality on subspaces

In this subsection, we study the behaviour of strong quasi-locality under taking subspace. First note that in the case of quasi-locality, we have the following observation (which follows directly from Definition 2.7): given a proper discrete metric space XX and an ample module X\mathcal{H}_{X}, for any quasi-local operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) and any ε>0\varepsilon>0 there exists R>0R>0 such that for any AXA\subseteq X the operator χATχA\chi_{A}T\chi_{A} has (ε,R)(\varepsilon,R)-propagation. In other words, quasi-locality is preserved “uniformly” under taking subspaces.

Now we focus on the case of strongly quasi-local operators, and show that they have similar behaviour when taking subspaces. However, the proof is more involved due to the lack of characterisation in terms of (ε,R)(\varepsilon,R)-propagation.

Proposition 3.8.

Let XX be a discrete metric space with bounded geometry and X\mathcal{H}_{X} an ample XX-module. Assume T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) is locally compact and strongly quasi-local. Then for any ε>0\varepsilon>0, there exist δ,R>0\delta,R>0 such that for any AXA\subseteq X and g:A𝔎()1g:A\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation, we have [(χATχA)Id,Λ(g)]𝔅(A)<ε\big{\|}[(\chi_{A}T\chi_{A})\otimes Id_{\mathscr{H}},\Lambda(g)]\big{\|}_{\mathfrak{B}(\mathcal{H}_{A}\otimes\mathscr{H})}<\varepsilon, where χATχA\chi_{A}T\chi_{A} is naturally regarded as an operator on A:=χAX\mathcal{H}_{A}:=\chi_{A}\mathcal{H}_{X}.

Remark 3.9.

A natural thought for the proof is to extend a function g:A𝔎()1g:A\rightarrow\mathfrak{K}(\mathscr{H})_{1} to XX and preserve the variation (or at least with controlled variations). However (as pointed out by Rufus Willett [15]), this is at least as hard as finding extensions with values in a Hilbert space. The problem of extending Hilbert space valued functions is fairly well-studied [5], and there are known obstructions. In the following, we will bypass the problem using Proposition 3.7.

First we prove a “subspace-wise” version of Proposition 3.8 (note the difference on orders of quantifiers). To simplify the notation, for AXA\subseteq X we will regard the characteristic function χA\chi_{A} either as the multiplication operator on X\mathcal{H}_{X} or the amplified multiplication operator χAId\chi_{A}\otimes\mathrm{Id}_{\mathscr{H}} on X\mathcal{H}_{X}\otimes\mathscr{H} according to the context.

Lemma 3.10.

Let XX be a discrete metric space with bounded geometry and X\mathcal{H}_{X} an ample XX-module. Assume that T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) is locally compact and strongly quasi-local. Then for any AXA\subseteq X and ε>0\varepsilon>0, there exist δ,R>0\delta,R>0 such that for any g:A𝔎()1g:A\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation, we have [(χATχA)Id,Λ(g)]𝔅(A)<ε\big{\|}[(\chi_{A}T\chi_{A})\otimes Id_{\mathscr{H}},\Lambda(g)]\big{\|}_{\mathfrak{B}(\mathcal{H}_{A}\otimes\mathscr{H})}<\varepsilon.

Proof.

By Proposition 3.7, we know that [TId,Λ(h)]𝔎(X)[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(h)]\in\mathfrak{K}(\mathcal{H}_{X}\otimes\mathscr{H}) for any Higson function h:X𝔎()h:X\to\mathfrak{K}(\mathscr{H}). Now fix a subspace AXA\subseteq X. For any Higson function g:A𝔎()g:A\to\mathfrak{K}(\mathscr{H}), it follows from [16, Lemma 4.3.4] that gg can be extended to a Higson function g~:X𝔎()\tilde{g}:X\to\mathfrak{K}(\mathscr{H}). Hence we obtain:

[(χATχA)Id,Λ(g)]=χA[TId,Λ(g~)]χAχA𝔎(X)χA𝔎(A).[(\chi_{A}T\chi_{A})\otimes Id_{\mathscr{H}},\Lambda(g)]=\chi_{A}[T\otimes Id_{\mathscr{H}},\Lambda(\tilde{g})]\chi_{A}\in\chi_{A}\mathfrak{K}(\mathcal{H}_{X}\otimes\mathscr{H})\chi_{A}\subseteq\mathfrak{K}(\mathcal{H}_{A}\otimes\mathscr{H}).

Using Proposition 3.7 again, we obtain that χATχA\chi_{A}T\chi_{A} is strongly quasi-local on A\mathcal{H}_{A}. This concludes the proof. ∎

Proof of Proposition 3.8.

Fix a base point x0Xx_{0}\in X, and write BSB_{S} for B(x0;S)B(x_{0};S) where S>0S>0. Assume the contrary, then there exists some ε0>0\varepsilon_{0}>0 such that for each nn\in\mathbb{N}, there exist AnXA_{n}\subseteq X and gn:An𝔎()1g_{n}:A_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (1n,n)(\frac{1}{n},n)-variation on AnA_{n} such that

(3.4) [χAnTχAnId,Λ(gn)]>ε0.\big{\|}[\chi_{A_{n}}T\chi_{A_{n}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g_{n})]\big{\|}>\varepsilon_{0}.

Without loss of generality, we can assume that each AnA_{n} is finite. For the above ε0\varepsilon_{0}, there exists R0>0R_{0}>0 such that TT has (ε08,R0)(\frac{\varepsilon_{0}}{8},R_{0})-propagation.

Claim. For any R>R0R>R_{0}, there exists NN\in\mathbb{N} such that for any nNn\geq N we have:

[χAnBRTχAnBRId,Λ(gn)]>ε08.\big{\|}[\chi_{A_{n}\setminus B_{R}}T\chi_{A_{n}\setminus B_{R}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g_{n})]\big{\|}>\frac{\varepsilon_{0}}{8}.

We assume the contrary, i.e., assume that there exist some R>R0R>R_{0} and an increasing sequence (nk)k=1(n_{k})_{k=1}^{\infty}\subseteq\mathbb{N} tending to infinity such that

[χAnkBRTχAnkBRId,Λ(gnk)]ε08.\big{\|}[\chi_{A_{n_{k}}\setminus B_{R}}T\chi_{A_{n_{k}}\setminus B_{R}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g_{n_{k}})]\big{\|}\leq\frac{\varepsilon_{0}}{8}.

Since dX(BR,XB2R)R>R0d_{X}(B_{R},X\setminus B_{2R})\geq R>R_{0} we obtain:

χAnkBRTχAnkB2Rε08andχAnkB2RTχAnkBRε08.\big{\|}\chi_{A_{n_{k}}\cap B_{R}}T\chi_{A_{n_{k}}\setminus B_{2R}}\big{\|}\leq\frac{\varepsilon_{0}}{8}\quad\mbox{and}\quad\big{\|}\chi_{A_{n_{k}}\setminus B_{2R}}T\chi_{A_{n_{k}}\cap B_{R}}\big{\|}\leq\frac{\varepsilon_{0}}{8}.

Now we cut up the operator χAnkTχAnk\chi_{A_{n_{k}}}T\chi_{A_{n_{k}}} as follows:

χAnkTχAnk\displaystyle\chi_{A_{n_{k}}}T\chi_{A_{n_{k}}} =\displaystyle= χAnkB2RTχAnkB2R+χAnkBRTχAnkB2R\displaystyle\chi_{A_{n_{k}}\cap B_{2R}}T\chi_{A_{n_{k}}\cap B_{2R}}+\chi_{A_{n_{k}}\setminus B_{R}}T\chi_{A_{n_{k}}\setminus B_{2R}}
+χAnkB2RTχAnk(B2RBR)+χAnkBRTχAnkB2R+χAnkB2RTχAnkBR.\displaystyle+\chi_{A_{n_{k}}\setminus B_{2R}}T\chi_{A_{n_{k}}\cap(B_{2R}\setminus B_{R})}+\chi_{A_{n_{k}}\cap B_{R}}T\chi_{A_{n_{k}}\setminus B_{2R}}+\chi_{A_{n_{k}}\setminus B_{2R}}T\chi_{A_{n_{k}}\cap B_{R}}.

Combining the above inequalities with (3.4), we obtain:

[χAnkB2RTχAnkB2RId,Λ(gnk)]>ε02ε082ε04=ε04,\big{\|}[\chi_{A_{n_{k}}\cap B_{2R}}T\chi_{A_{n_{k}}\cap B_{2R}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g_{n_{k}})]\big{\|}>\varepsilon_{0}-2\cdot\frac{\varepsilon_{0}}{8}-2\cdot\frac{\varepsilon_{0}}{4}=\frac{\varepsilon_{0}}{4},

which is a contradiction since AnkB2RA_{n_{k}}\cap B_{2R} is contained in a fixed finite subset B2RB_{2R} and gnkg_{n_{k}} has (1nk,nk)(\frac{1}{n_{k}},n_{k})-variation on AnkB2RA_{n_{k}}\cap B_{2R}. Hence we prove the Claim.

Now we continue the proof of Proposition 3.8. Set A~1:=A1,n1:=1\tilde{A}_{1}:=A_{1},n_{1}:=1 and choose R1>R0R_{1}>R_{0} such that A~1BR12\tilde{A}_{1}\subseteq B_{R_{1}-2}. We recursively choose subsets A~1,A~2,\tilde{A}_{1},\tilde{A}_{2},\ldots, positive numbers R1<R2<R_{1}<R_{2}<\cdots and natural numbers n1<n2<n_{1}<n_{2}<\cdots as follows. Suppose that A~1,,A~i1\tilde{A}_{1},\ldots,\tilde{A}_{i-1}, R1<<Ri1R_{1}<\cdots<R_{i-1} and n1<<ni1n_{1}<\cdots<n_{i-1} are chosen for i2i\geq 2. The Claim implies that there exists a natural number ni>ni1n_{i}>n_{i-1} such that

[χAniBRi1TχAniBRi1Id,Λ(gni)]>ε08.\big{\|}[\chi_{A_{n_{i}}\setminus B_{R_{i-1}}}T\chi_{A_{n_{i}}\setminus B_{R_{i-1}}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g_{n_{i}})]\big{\|}>\frac{\varepsilon_{0}}{8}.

We take A~i:=AniBRi1\tilde{A}_{i}:=A_{n_{i}}\setminus B_{R_{i-1}} (which is non-empty by the above estimate) and choose Ri>Ri1R_{i}>R_{i-1} such that A~1A~iBRi2i\tilde{A}_{1}\sqcup\cdots\sqcup\tilde{A}_{i}\subseteq B_{R_{i}-2^{i}}. In summary, we obtain non-empty subsets {A~i}i\{\tilde{A}_{i}\}_{i\in\mathbb{N}} and functions gi^:=gni|A~i:A~i𝔎()1\hat{g_{i}}:=g_{n_{i}}|_{\tilde{A}_{i}}:\tilde{A}_{i}\to\mathfrak{K}(\mathscr{H})_{1} with (1ni,ni)(\frac{1}{n_{i}},n_{i})-variation such that

[χA~iTχA~iId,Λ(gi^)]>ε08.\big{\|}[\chi_{\tilde{A}_{i}}T\chi_{\tilde{A}_{i}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(\hat{g_{i}})]\big{\|}>\frac{\varepsilon_{0}}{8}.

Define A:=iA~iA:=\bigsqcup_{i\in\mathbb{N}}\tilde{A}_{i} and extend each gi^\hat{g_{i}} to AA by zero on the complement (still denoted by gi^\hat{g_{i}}). It is clear from the above construction that dX(A~i,AA~i)2i1d_{X}(\tilde{A}_{i},A\setminus\tilde{A}_{i})\geq 2^{i-1}, and hence gi^\hat{g_{i}} has (1i,i)(\frac{1}{i},i)-variation on AA. Moreover, we have:

[χATχAId,Λ(gi^)]>ε08.\big{\|}[\chi_{A}T\chi_{A}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(\hat{g_{i}})]\big{\|}>\frac{\varepsilon_{0}}{8}.

This is a contradiction to Lemma 3.10. Hence we conclude the proof. ∎

3.3. Coarse invariance of strongly quasi-local algebras

In this subsection, we show that strongly quasi-local algebras are coarse invariants provided the underlying spaces have bounded geometry. In particular, this implies that strongly quasi-local algebras are independent of ample modules. The proof follows the outline of that for Proposition 2.9 but is more involved.

Proposition 3.11.

Let X,YX,Y be discrete metric spaces with bounded geometry and X,Y\mathcal{H}_{X},\mathcal{H}_{Y} be ample modules for XX and YY, respectively. Let f:XYf:X\to Y be a coarse map with a covering isometry V:XYV:\mathcal{H}_{X}\rightarrow\mathcal{H}_{Y}. Then VV induces the following \ast-homomorphism

AdV:Csq(X)Csq(Y),TVTV.\mathrm{Ad}_{V}:C^{*}_{sq}(\mathcal{H}_{X})\longrightarrow C^{*}_{sq}(\mathcal{H}_{Y}),T\mapsto VTV^{*}.

Furthermore, the induced K-thoeretic map (AdV):K(Csq(X))K(Csq(Y))(\mathrm{Ad}_{V})_{*}:K_{*}(C^{*}_{sq}(\mathcal{H}_{X}))\to K_{*}(C^{*}_{sq}(\mathcal{H}_{Y})) does not depend on the choice of the covering isometry VV, hence denoted by ff_{*}.

Proof.

We only show that VTVCsq(Y)VTV^{*}\in C^{*}_{sq}(\mathcal{H}_{Y}) if TCsq(X)T\in C^{*}_{sq}(\mathcal{H}_{X}). The “Furthermore” part follows almost the same argument as in the case of Roe algebra, hence omitted.

First note that VTVVTV^{*} is locally compact as in Proposition 2.9. To see that VTVVTV^{*} is strongly quasi-local, we assume that supp(V){(y,x):dY(f(x),y)<R0}\mathrm{supp}(V)\subseteq\{(y,x):d_{Y}(f(x),y)<R_{0}\} for some R0>0R_{0}>0. Since YY has bounded geometry, there exists NN\in\mathbb{N} such that |{yY:dY(f(x),y)<R0}|N\big{|}\{y\in Y:d_{Y}(f(x),y)<R_{0}\}\big{|}\leq N for any xXx\in X. Hence we can write:

V=W1+W2++WNV=W_{1}+W_{2}+\cdots+W_{N}

where each Wi𝔅(X,Y)W_{i}\in\mathfrak{B}(\mathcal{H}_{X},\mathcal{H}_{Y}) satisfies supp(Wi)supp(V)\mathrm{supp}(W_{i})\subseteq\mathrm{supp}(V), supp(Wi)supp(Wj)\mathrm{supp}(W_{i})\cap\mathrm{supp}(W_{j}) is empty for any jij\neq i, and for any pair (y1,x1)(y2,x2)supp(Wi)(y_{1},x_{1})\neq(y_{2},x_{2})\in\mathrm{supp}(W_{i}) we have x1x2x_{1}\neq x_{2}. Set M:=max{Wi:i=1,,N}M:=\max\big{\{}\|W_{i}\|:i=1,\ldots,N\big{\}}. For later use, we denote Di:={xX:yYsuchthat(y,x)supp(Wi)}XD_{i}:=\{x\in X:\exists y\in Y\mathrm{\ such\ that\ }(y,x)\in\mathrm{supp}(W_{i})\}\subseteq X. It follows that for each ii there exists a map ti:DiYt_{i}:D_{i}\to Y such that (y,x)supp(Wi)(y,x)\in\mathrm{supp}(W_{i}) if and only if xDix\in D_{i} and y=ti(x)y=t_{i}(x).

It suffices to show that each WiTWjW_{i}TW_{j}^{*} is strongly quasi-local. Given an ε>0\varepsilon>0, there exist δ,R>0\delta^{\prime},R^{\prime}>0 such that for any φ:X𝔎()1\varphi:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta^{\prime},R^{\prime})-variation, we have [TId,Λ(φ)]<ε2M2\|[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(\varphi)]\|<\frac{\varepsilon}{2M^{2}}. Set

δ=min{ε4M2T,δ}andR=R0+ρf(R),\delta=\min\big{\{}\frac{\varepsilon}{4M^{2}\|T\|},\delta^{\prime}\big{\}}\quad\mbox{and}\quad R=R_{0}+\rho_{f}(R^{\prime}),

where ρf\rho_{f} is defined in (2.1). For any g:Y𝔎()1g:Y\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation and each ii, we construct φi:X𝔎()1\varphi_{i}:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} as follows:

φi(x):={(gti)(x),if xDi;0,otherwise.\varphi_{i}(x):=\begin{cases}~{}(g\circ t_{i})(x),&\mbox{if~{}}x\in D_{i};\\ ~{}0,&\mbox{otherwise}.\end{cases}

It is clear that (ti(x),x)supp(Wi)supp(V){(y,x):dY(f(x),y)<R0}(t_{i}(x),x)\in\mathrm{supp}(W_{i})\subseteq\mathrm{supp}(V)\subseteq\{(y,x):d_{Y}(f(x),y)<R_{0}\} for each ii and xDix\in D_{i}, which implies that dY(ti(x),f(x))<R0Rd_{Y}\big{(}t_{i}(x),f(x)\big{)}<R_{0}\leq R. Hence we obtain

supxDiφi(x)(gf)(x)δ,\sup_{x\in D_{i}}\big{\|}\varphi_{i}(x)-(g\circ f)(x)\big{\|}\leq\delta,

which implies that for each ii we have:

(3.5) Λ(φigf)(WiId)δMand(WiId)Λ(φigf)δM.\|\Lambda(\varphi_{i}-g\circ f)(W_{i}^{*}\otimes\mathrm{Id}_{\mathscr{H}})\|\leq\delta M\quad\mbox{and}\quad\|(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})\Lambda(\varphi_{i}-g\circ f)\|\leq\delta M.

On the other hand, direct calculations show that for each ii we have:

Λ(g)(WiId)=(WiId)Λ(φi)and(WiId)Λ(g)=Λ(φi)(WiId).\Lambda(g)(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})=(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})\Lambda(\varphi_{i})\quad\mbox{and}\quad(W_{i}^{*}\otimes\mathrm{Id}_{\mathscr{H}})\Lambda(g)=\Lambda(\varphi_{i})(W_{i}^{*}\otimes\mathrm{Id}_{\mathscr{H}}).

Hence we obtain:

[(WiTWj)Id,Λ(g)]\displaystyle\big{\|}[(W_{i}TW_{j}^{*})\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}
=\displaystyle= ((WiT)Id)Λ(φj)(WjId)(WiId)Λ(φi)((TWj)Id)\displaystyle\big{\|}\big{(}(W_{i}T)\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\Lambda(\varphi_{j})(W_{j}^{*}\otimes\mathrm{Id}_{\mathscr{H}})-(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})\Lambda(\varphi_{i})\big{(}(TW_{j}^{*})\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\big{\|}
\displaystyle\leq ((WiT)Id)Λ(gf)(WjId)(WiId)Λ(gf)((TWj)Id)+2M2Tδ\displaystyle\big{\|}\big{(}(W_{i}T)\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\Lambda(g\circ f)(W_{j}^{*}\otimes\mathrm{Id}_{\mathscr{H}})-(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})\Lambda(g\circ f)\big{(}(TW_{j}^{*})\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\big{\|}+2M^{2}\|T\|\delta
\displaystyle\leq (WiId)[TId,Λ(gf)](WjId)+ε2,\displaystyle\big{\|}(W_{i}\otimes\mathrm{Id}_{\mathscr{H}})[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g\circ f)](W_{j}^{*}\otimes\mathrm{Id}_{\mathscr{H}})\big{\|}+\frac{\varepsilon}{2},

where we use (3.5) in the second inequality. Note that gf:X𝔎()1g\circ f:X\rightarrow\mathfrak{K}(\mathscr{H})_{1} has (δ,R)(\delta^{\prime},R^{\prime})-variation. Hence [TId,Λ(gf)]<ε2M2\|[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g\circ f)]\|<\frac{\varepsilon}{2M^{2}}, which implies:

[(WiTWj)Id,Λ(g)]<M2ε2M2+ε2=ε.\big{\|}[(W_{i}TW_{j}^{*})\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}<M^{2}\cdot\frac{\varepsilon}{2M^{2}}+\frac{\varepsilon}{2}=\varepsilon.

Hence each WiTWjW_{i}TW_{j}^{*} is strongly quasi-local. ∎

As a direct corollary, we obtain:

Corollary 3.12.

Let X\mathcal{H}_{X} and Y\mathcal{H}_{Y} be ample modules for discrete metric spaces XX and YY of bounded geometry, respectively. If XX and YY are coarsely equivalent, then the strongly quasi-local algebra Csq(X)C^{*}_{sq}(\mathcal{H}_{X}) is \ast-isomorphic to Csq(Y)C^{*}_{sq}(\mathcal{H}_{Y}). In particular, for a discrete metric space XX of bounded geometry the strongly quasi-local algebra Csq(X)C^{*}_{sq}(\mathcal{H}_{X}) does not depend on the chosen ample XX-module X\mathcal{H}_{X} up to \ast-isomorphisms, hence called the strongly quasi-local algebra of XX and denoted by Csq(X)C^{*}_{sq}(X).

3.4. The case for sequences of metric spaces

Here we study the strongly quasi-local algebra for a sequence of metric spaces. This is crucial to analyse the “building blocks” when we prove our main theorem.

Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces and ρn:C0(Xn)𝔅(n)\rho_{n}:C_{0}(X_{n})\to\mathfrak{B}(\mathcal{H}_{n}) an ample module for XnX_{n}. Let XX be a coarse disjoint union of {Xn}\{X_{n}\} and X:=nn\mathcal{H}_{X}:=\bigoplus_{n}\mathcal{H}_{n}. Since C0(X)=nC0(Xn)C_{0}(X)=\bigoplus_{n}C_{0}(X_{n}), we can compose ρn\rho_{n} into a single representation:

ρ=nρn:C0(X)n𝔅(n)𝔅(X).\rho=\bigoplus_{n}\rho_{n}:C_{0}(X)\to\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\subseteq\mathfrak{B}(\mathcal{H}_{X}).

It is clear that ρ\rho is an ample module for XX. In the following, we also regard a sequence (Tn)nn𝔅(n)(T_{n})_{n\in\mathbb{N}}\in\prod_{n}\mathfrak{B}(\mathcal{H}_{n}) as a single operator in 𝔅(X)\mathfrak{B}(\mathcal{H}_{X}).

For a locally compact operator T𝔅(X)T\in\mathfrak{B}(\mathcal{H}_{X}) with finite propagation, it follows directly from definition that TT is block-diagonal upto compact operators. Hence we have the following decomposition for Roe algebras:

Lemma 3.13.

Using the same notation as above, we have:

  1. (1)

    (C(X)n𝔅(n))+𝔎(X)=C(X)\big{(}C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}+\mathfrak{K}(\mathcal{H}_{X})=C^{*}(\mathcal{H}_{X});

  2. (2)

    (C(X)n𝔅(n))𝔎(X)=nC(n)\big{(}C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\cap\mathfrak{K}(\mathcal{H}_{X})=\bigoplus_{n}C^{*}(\mathcal{H}_{n}).

In the case of (strong) quasi-locality, we have similar results as follows. We only need those concerning strong quasi-locality for later use, while we collect them here for completion.

Lemma 3.14.

Using the same notation as above, we have:

  1. (1)

    (Cq(X)n𝔅(n))+𝔎(X)=Cq(X)\big{(}C^{*}_{q}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}+\mathfrak{K}(\mathcal{H}_{X})=C^{*}_{q}(\mathcal{H}_{X});

  2. (2)

    (Cq(X)n𝔅(n))𝔎(X)=nCq(n)\big{(}C^{*}_{q}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\cap\mathfrak{K}(\mathcal{H}_{X})=\bigoplus_{n}C^{*}_{q}(\mathcal{H}_{n});

  3. (3)

    (Csq(X)n𝔅(n))+𝔎(X)=Csq(X)\big{(}C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}+\mathfrak{K}(\mathcal{H}_{X})=C^{*}_{sq}(\mathcal{H}_{X});

  4. (4)

    (Csq(X)n𝔅(n))𝔎(X)=nCsq(n)\big{(}C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\cap\mathfrak{K}(\mathcal{H}_{X})=\bigoplus_{n}C^{*}_{sq}(\mathcal{H}_{n}).

Proof.

The proof is different from that for Roe algebras, and we only prove (3) and (4) since the other two are similar and easier.

For (3): note that 𝔎(X)Csq(X)\mathfrak{K}(\mathcal{H}_{X})\subseteq C^{*}_{sq}(\mathcal{H}_{X}), hence the left hand side is contained in the right one. For the converse, it follows from [13, Corollary 4.3] that for any TCsq(X)Cq(X)T\in C^{*}_{sq}(\mathcal{H}_{X})\subseteq C^{*}_{q}(\mathcal{H}_{X}) and ε>0\varepsilon>0, there exists some NN\in\mathbb{N} such that

T(i=1NχXi)T(i=1NχXi)i>NχXiTχXi<ε.\big{\|}T-\big{(}\sum_{i=1}^{N}\chi_{X_{i}}\big{)}T\big{(}\sum_{i=1}^{N}\chi_{X_{i}}\big{)}-\sum_{i>N}\chi_{X_{i}}T\chi_{X_{i}}\big{\|}<\varepsilon.

Since TT is locally compact, then (i=1NχXi)T(i=1NχXi)(\sum_{i=1}^{N}\chi_{X_{i}})T(\sum_{i=1}^{N}\chi_{X_{i}}) is compact. It suffice to show that i>NχXiTχXiCsq(X)\sum_{i>N}\chi_{X_{i}}T\chi_{X_{i}}\in C^{*}_{sq}(\mathcal{H}_{X}). Given ε>0\varepsilon>0, the strong quasi-locality of TT implies that there exist δ,R>0\delta,R>0 such that for any g:X𝔎()1g:X\to\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation, we have [TId,Λ(g)]<ε\big{\|}[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}<\varepsilon. Now for any such gg, we have:

[(i>NχXiTχXi)Id,Λ(g)]\displaystyle\big{\|}\big{[}\big{(}\sum_{i>N}\chi_{X_{i}}T\chi_{X_{i}}\big{)}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)\big{]}\big{\|} =\displaystyle= supi>N[(χXiTχXi)Id,Λ(g)]\displaystyle\sup_{i>N}\big{\|}[(\chi_{X_{i}}T\chi_{X_{i}})\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}
=\displaystyle= supi>NχXi[TId,Λ(g)]χXi<ε.\displaystyle\sup_{i>N}\big{\|}\chi_{X_{i}}[T\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\chi_{X_{i}}\big{\|}<\varepsilon.

Hence we obtain that i>NχXiTχXi\sum_{i>N}\chi_{X_{i}}T\chi_{X_{i}} is strongly quasi-local, which concludes (3).

For (4): note that C(n)=Cq(n)=Csq(n)=𝔎(n)C^{*}(\mathcal{H}_{n})=C^{*}_{q}(\mathcal{H}_{n})=C^{*}_{sq}(\mathcal{H}_{n})=\mathfrak{K}(\mathcal{H}_{n}) for each nn and hence:

(Csq\displaystyle\big{(}C^{*}_{sq} (X)n𝔅(n))𝔎(X)=Csq(X)(n𝔅(n)𝔎(X))\displaystyle(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\cap\mathfrak{K}(\mathcal{H}_{X})=C^{*}_{sq}(\mathcal{H}_{X})\cap\big{(}\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\cap\mathfrak{K}(\mathcal{H}_{X})\big{)}
=Csq(X)n𝔎(n)=n𝔎(n)=nCsq(n).\displaystyle=C^{*}_{sq}(\mathcal{H}_{X})\cap\bigoplus_{n}\mathfrak{K}(\mathcal{H}_{n})=\bigoplus_{n}\mathfrak{K}(\mathcal{H}_{n})=\bigoplus_{n}C^{*}_{sq}(\mathcal{H}_{n}).

Hence we conclude the proof. ∎

For later use, we introduce the following notion of (strong) quasi-locality for a sequence of operators. Note that the definition is nothing but uniform versions of (strong) quasi-locality.

Definition 3.15.

Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces and ρn:C0(Xn)𝔅(n)\rho_{n}:C_{0}(X_{n})\to\mathfrak{B}(\mathcal{H}_{n}) be ample modules. For a sequence (Tn)n(T_{n})_{n\in\mathbb{N}} where Tn𝔅(n)T_{n}\in\mathfrak{B}(\mathcal{H}_{n}), we say that:

  1. (1)

    (Tn)n(T_{n})_{n\in\mathbb{N}} is uniformly quasi-local if for any ε>0\varepsilon>0 there exists R>0R>0 such that for any nn\in\mathbb{N} and Cn,DnXnC_{n},D_{n}\subseteq X_{n} with d(Cn,Dn)Rd(C_{n},D_{n})\leq R, we have χCnTnχDn<ε\|\chi_{C_{n}}T_{n}\chi_{D_{n}}\|<\varepsilon.

  2. (2)

    (Tn)n(T_{n})_{n\in\mathbb{N}} is uniformly strongly quasi-local if for any ε>0\varepsilon>0 there exist δ,R>0\delta,R>0 such that for any nn\in\mathbb{N} and gn:Xn𝔎()1g_{n}:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation, we have [TnId,Λ(gn)]<ε\|[T_{n}\otimes Id_{\mathscr{H}},\Lambda(g_{n})]\|<\varepsilon.

Lemma 3.16.

Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces, ρn:C0(Xn)𝔅(n)\rho_{n}:C_{0}(X_{n})\to\mathfrak{B}(\mathcal{H}_{n}) be ample modules and X:=nn\mathcal{H}_{X}:=\bigoplus_{n}\mathcal{H}_{n}. For a sequence (Tn)nn𝔎(n)(T_{n})_{n\in\mathbb{N}}\in\prod_{n}\mathfrak{K}(\mathcal{H}_{n}), we have:

  1. (1)

    (Tn)Cq(X)(T_{n})\in C^{*}_{q}(\mathcal{H}_{X}) if and only if (Tn)(T_{n}) is uniformly quasi-local.

  2. (2)

    (Tn)Csq(X)(T_{n})\in C^{*}_{sq}(\mathcal{H}_{X}) if and only if (Tn)(T_{n}) is uniformly strongly quasi-local.

Hence if (Tn)(T_{n}) is uniformly strongly quasi-local then it is uniformly quasi-local.

The proof is straightforward, hence omitted.

Analogous to the coarse invariance of Roe algebras, we have the following result concerning sequences of spaces. The proof is similar, hence omitted.

Proposition 3.17.

Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces with uniformly bounded geometry, and ρn:C0(Xn)𝔅(n)\rho_{n}:C_{0}(X_{n})\to\mathfrak{B}(\mathcal{H}_{n}) be an ample module for XnX_{n}. Let XX be a coarse disjoint union of {Xn}\{X_{n}\} and X:=nn\mathcal{H}_{X}:=\bigoplus_{n}\mathcal{H}_{n}. Then the K-theories K(C(X)n𝔅(n)),K(Cq(X)n𝔅(n))K_{\ast}\big{(}C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)},K_{\ast}\big{(}C^{*}_{q}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)} and K(Csq(X)n𝔅(n))K_{\ast}\big{(}C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)} are independent of ρn\rho_{n} up to canonical isomorphisms.

4. The coarse Mayer-Vietoris sequence

The tool of Mayer-Vietories sequences is widely used within different area of mathematics, especially in algebraic topology. It provides a “cutting and pasting” procedure, which allows us to obtain global information from local pieces.

In coarse geometry, Higson, Roe and Yu introduced a coarse Mayer-Vietoris sequence for K-theories of Roe algebras associated to a suitable decomposition of the underlying metric space in [3]. More precisely, recall that a closed cover (A,B)(A,B) of a metric space XX is said to be ω\omega-excisive if for each r>0r>0 there is some s>0s>0 such that 𝒩r(A)𝒩r(B)𝒩s(AB)\mathcal{N}_{r}(A)\cap\mathcal{N}_{r}(B)\subseteq\mathcal{N}_{s}(A\cap B). Associated to an ω\omega-excisive closed cover (A,B)(A,B) of a metric space XX, we have the following short exact sequence (called the coarse Mayer-Vietoris sequence):

K0(C(AB))K0(C(A))K0(C(B))K0(C(X))K1(C(X))K1(C(A))K1(C(B))K1(C(AB)).\begin{CD}K_{0}(C^{*}(A\cap B))@>{}>{}>K_{0}(C^{*}(A))\oplus K_{0}(C^{*}(B))@>{}>{}>K_{0}(C^{*}(X))\\ @A{}A{}A&&@V{}V{}V\\ K_{1}(C^{*}(X))@<{}<{}<K_{1}(C^{*}(A))\oplus K_{1}(C^{*}(B))@<{}<{}<K_{1}(C^{*}(A\cap B)).\end{CD}

In this section, we explore a coarse Mayer-Vietoris sequence for strongly quasi-local algebras and use it to reduce the proof of Theorem B to the case of “sparse” spaces. Let XX be a discrete metric space with bounded geometry and X\mathcal{H}_{X} be an ample XX-module.

Definition 4.1.

Let AA be a (closed) subset of XX. Denote by Csq(A,X)C^{*}_{sq}(A,X) the norm-closure of the set of all operators TCsq(X)T\in C^{*}_{sq}(\mathcal{H}_{X}) with support contained in 𝒩R(A)×𝒩R(A)\mathcal{N}_{R}(A)\times\mathcal{N}_{R}(A) for some R0R\geq 0.

Lemma 4.2.

Csq(A,X)C^{*}_{sq}(A,X) is a closed two-sided \ast-ideal in Csq(X)C^{*}_{sq}(\mathcal{H}_{X}).

Proof.

It suffices to show that for T,SCsq(X)T,S\in C^{*}_{sq}(\mathcal{H}_{X}) with supp(T)𝒩R(A)×𝒩R(A)\mathrm{supp}(T)\subseteq\mathcal{N}_{R}(A)\times\mathcal{N}_{R}(A) for some R0R\geq 0, then TSTS and STST belong to Csq(A,X)C^{*}_{sq}(A,X). By Proposition 3.6(1), we know that SCq(X)S\in C^{*}_{q}(\mathcal{H}_{X}). Hence for any ε>0\varepsilon>0, there exists R0>0R_{0}>0 such that SS has (εT,R0)(\frac{\varepsilon}{\|T\|},R_{0})-propagation. It follows that

TSχ𝒩R(A)TSχ𝒩R+R0(A)=χ𝒩R(A)T(χ𝒩R(A)Sχ𝒩R(A)Sχ𝒩R+R0(A))<ε.\|TS-\chi_{\mathcal{N}_{R}(A)}TS\chi_{\mathcal{N}_{R+R_{0}}(A)}\|=\|\chi_{\mathcal{N}_{R}(A)}T(\chi_{\mathcal{N}_{R}(A)}S-\chi_{\mathcal{N}_{R}(A)}S\chi_{\mathcal{N}_{R+R_{0}}(A)})\|<\varepsilon.

Hence by definition, we obtain that TSCsq(A,X)TS\in C^{*}_{sq}(A,X). A similar argument shows that STCsq(A,X)ST\in C^{*}_{sq}(A,X) as well, which concludes the proof. ∎

Based on a similar argument as in the proof of [3, Section 5/Lemma 1] together with Corollary 3.12, we have the following:

Lemma 4.3.

For a (closed) subset AXA\subseteq X, take an isometry VV covering the inclusion i:AXi:A\hookrightarrow X. Then the range of AdV:Csq(A)Csq(X)\mathrm{Ad}_{V}:C^{*}_{sq}(A)\to C^{*}_{sq}(X) is contained in Csq(A,X)C^{*}_{sq}(A,X). Furthermore, the map i:K(Csq(A))K(Csq(A,X))i_{*}:K_{*}(C^{*}_{sq}(A))\to K_{*}(C^{*}_{sq}(A,X)) is an isomorphism.

We also have the following result analogous to [3, Section 5/Lemma 2]:

Lemma 4.4.

Let (A,B)(A,B) be an ω\omega-excisive (closed) cover of XX, then we have

Csq(A,X)+Csq(B,X)=Csq(X)C^{*}_{sq}(A,X)+C^{*}_{sq}(B,X)=C^{*}_{sq}(X)

and

Csq(A,X)Csq(B,X)=Csq(AB,X).C^{*}_{sq}(A,X)\cap C^{*}_{sq}(B,X)=C^{*}_{sq}(A\cap B,X).
Proof.

Given TCsq(X)T\in C^{*}_{sq}(X) and ε>0\varepsilon>0, it follows from Proposition 3.6(1) that there exists R>0R>0 such that TT has (ε,R)(\varepsilon,R)-propagation. Note that T=χAT+χBATT=\chi_{A}T+\chi_{B\setminus A}T since AB=XA\cup B=X, then TT is 2ε2\varepsilon-close to χATχ𝒩R(A)+χBATχ𝒩R(BA)\chi_{A}T\chi_{\mathcal{N}_{R}(A)}+\chi_{B\setminus A}T\chi_{\mathcal{N}_{R}(B\setminus A)}. Hence we obtain that Csq(A,X)+Csq(B,X)C^{*}_{sq}(A,X)+C^{*}_{sq}(B,X) is dense in Csq(X)C^{*}_{sq}(X). It follows from a standard argument in CC^{*}-algebras (e.g., [3, Section 3/Lemma 1]) that Csq(A,X)+Csq(B,X)=Csq(X)C^{*}_{sq}(A,X)+C^{*}_{sq}(B,X)=C^{*}_{sq}(X).

Concerning the second equation, we only need to show that Csq(A,X)Csq(B,X)Csq(AB,X)C^{*}_{sq}(A,X)C^{*}_{sq}(B,X)\subseteq C^{*}_{sq}(A\cap B,X). Fix T,SCsq(X)T,S\in C^{*}_{sq}(X) with supp(T)𝒩R(A)×𝒩R(A)\mathrm{supp}(T)\subseteq\mathcal{N}_{R}(A)\times\mathcal{N}_{R}(A) and supp(S)𝒩R(B)×𝒩R(B)\mathrm{supp}(S)\subseteq\mathcal{N}_{R}(B)\times\mathcal{N}_{R}(B) for some R>0R>0. The assumption of ω\omega-excision implies that there exists an L>0L>0 such that 𝒩R(A)𝒩R(B)𝒩L(AB)\mathcal{N}_{R}(A)\cap\mathcal{N}_{R}(B)\subseteq\mathcal{N}_{L}(A\cap B). Hence we have TS=Tχ𝒩L(AB)STS=T\chi_{\mathcal{N}_{L}(A\cap B)}S. For any ε>0\varepsilon>0 there exists an L>0L^{\prime}>0 such that TT has (εS,L)(\frac{\varepsilon}{\|S\|},L^{\prime})-propagation and SS has (εT,L)(\frac{\varepsilon}{\|T\|},L^{\prime})-propagation. Hence we have:

TSχ𝒩L+L(AB)TSχ𝒩L+L(AB)2ε.\|TS-\chi_{\mathcal{N}_{L+L^{\prime}}(A\cap B)}TS\chi_{\mathcal{N}_{L+L^{\prime}}(A\cap B)}\|\leq 2\varepsilon.

Therefore we obtain that TSCsq(AB,X)TS\in C^{*}_{sq}(A\cap B,X), which concludes the proof. ∎

Applying the Mayer-Vietoris sequence in KK-theory for CC^{*}-algebras (see [3, Section 3]) to the ideals Csq(A,X),Csq(B,X)C^{*}_{sq}(A,X),C^{*}_{sq}(B,X) in Csq(X)C^{*}_{sq}(X) and combining with Lemma 4.3 and Lemma 4.4, we obtain the following coarse Mayer-Vietoris principle for strongly quasi-local algebras:

Proposition 4.5.

Let (A,B)(A,B) be a (closed) ω\omega-excisive cover of XX. Then there is a six-term exact sequence

K0(Csq(AB))K0(Csq(A))K0(Csq(B))K0(Csq(X))K1(Csq(X))K1(Csq(A))K1(Csq(B))K1(Csq(AB)).\begin{CD}K_{0}(C^{*}_{sq}(A\cap B))@>{}>{}>K_{0}(C^{*}_{sq}(A))\oplus K_{0}(C^{*}_{sq}(B))@>{}>{}>K_{0}(C^{*}_{sq}(X))\\ @A{}A{}A&&@V{}V{}V\\ K_{1}(C^{*}_{sq}(X))@<{}<{}<K_{1}(C^{*}_{sq}(A))\oplus K_{1}(C^{*}_{sq}(B))@<{}<{}<K_{1}(C^{*}_{sq}(A\cap B)).\end{CD}

For future use, we record that the same argument can be applied to obtain the Mayer-Vietoris principle for quasi-local algebras as follows. However, this will not be used in this paper.

Proposition 4.6.

Let (A,B)(A,B) be a (closed) ω\omega-excisive cover of XX. Then there is a six-term exact sequence

K0(Cq(AB))K0(Cq(A))K0(Cq(B))K0(Cq(X))K1(Cq(X))K1(Cq(A))K1(Cq(B))K1(Cq(AB)).\begin{CD}K_{0}(C^{*}_{q}(A\cap B))@>{}>{}>K_{0}(C^{*}_{q}(A))\oplus K_{0}(C^{*}_{q}(B))@>{}>{}>K_{0}(C^{*}_{q}(X))\\ @A{}A{}A&&@V{}V{}V\\ K_{1}(C^{*}_{q}(X))@<{}<{}<K_{1}(C^{*}_{q}(A))\oplus K_{1}(C^{*}_{q}(B))@<{}<{}<K_{1}(C^{*}_{q}(A\cap B)).\end{CD}

Now we use Proposition 4.5 to reduce the proof of Thereom B to the case of block-diagonal operators:

Lemma 4.7.

To prove Theorem B for all bounded geometry metric spaces that coarsely embed into Hilbert space, it suffices to prove that for any sequence of finite metric spaces {Yn}n=1\{Y_{n}\}_{n=1}^{\infty} which has uniformly bounded geometry and uniformly coarsely embeds into Hilbert space, the inclusion C(Y)n𝔅(n)Csq(Y)n𝔅(n)C^{*}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\hookrightarrow C^{*}_{sq}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}) induces isomorphisms in KK-theory where n\mathcal{H}_{n} is an ample YnY_{n}-module, Y\mathcal{H}_{Y} is their direct sum and YY is a coarse disjoint union of {Yn}\{Y_{n}\}.

Proof.

Lemma 3.13 and 3.14 imply that

C(Y)𝔎(Y)C(Y)n𝔅(n)nC(n)andCsq(Y)𝔎(Y)Csq(Y)n𝔅(n)nCsq(n).\frac{C^{*}(\mathcal{H}_{Y})}{\mathfrak{K}(\mathcal{H}_{Y})}\cong\frac{C^{*}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})}{\bigoplus_{n}C^{*}(\mathcal{H}_{n})}\quad\mathrm{and}\quad\frac{C^{*}_{sq}(\mathcal{H}_{Y})}{\mathfrak{K}(\mathcal{H}_{Y})}\cong\frac{C^{*}_{sq}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})}{\bigoplus_{n}C^{*}_{sq}(\mathcal{H}_{n})}.

Since C(n)=Csq(n)C^{*}(\mathcal{H}_{n})=C^{*}_{sq}(\mathcal{H}_{n}) for each nn, we obtain the following commutative diagram:

\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(nC(n))\textstyle{K_{*}\big{(}\bigoplus_{n}C^{*}(\mathcal{H}_{n})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(C(Y)n𝔅(n))\textstyle{K_{*}(C^{*}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(C(Y)/𝔎(Y))\textstyle{K_{*}(C^{*}(\mathcal{H}_{Y})/\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\cdots}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(nCsq(n))\textstyle{K_{*}\big{(}\bigoplus_{n}C^{*}_{sq}(\mathcal{H}_{n})\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Csq(Y)n𝔅(n))\textstyle{K_{*}(C^{*}_{sq}(\mathcal{H}_{Y})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Csq(Y)/𝔎(Y))\textstyle{K_{*}(C^{*}_{sq}(\mathcal{H}_{Y})/\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}.\textstyle{\cdots.}

Hence the right vertical map is an isomorphism from the assumption and the Five Lemma. Now consider the following commutative diagram:

\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(𝔎(Y))\textstyle{K_{*}(\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(C(Y))\textstyle{K_{*}(C^{*}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(C(Y)/𝔎(Y))\textstyle{K_{*}(C^{*}(\mathcal{H}_{Y})/\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\cdots}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(𝔎(Y))\textstyle{K_{*}(\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Csq(Y))\textstyle{K_{*}(C^{*}_{sq}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Csq(Y)/𝔎(Y))\textstyle{K_{*}(C^{*}_{sq}(\mathcal{H}_{Y})/\mathfrak{K}(\mathcal{H}_{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces},\textstyle{\cdots,}

we obtain that K(C(Y))K(Csq(Y))K_{*}(C^{*}(\mathcal{H}_{Y}))\to K_{*}(C^{*}_{sq}(\mathcal{H}_{Y})) is an isomorphism by the Five Lemma.

Now for a metric space XX satisfying the assumption, we follow the argument in [17, Lemma 12.5.3]. Fix a basepoint x0Xx_{0}\in X and for each n{0}n\in\mathbb{N}\cup\{0\}, we set

Xn:={xX:n3ndX(x,x0)(n+1)3+(n+1)}.X_{n}:=\{x\in X:n^{3}-n\leq d_{X}(x,x_{0})\leq(n+1)^{3}+(n+1)\}.

Let A:=n:evenXnA:=\bigsqcup_{n:even}X_{n} and B:=n:oddXnB:=\bigsqcup_{n:odd}X_{n}. It is obvious that (A,B)(A,B) is an ω\omega-exicisive cover of XX. Applying the coarse Mayer-Vietoris sequences for the associated Roe algebras ([3]) and strongly quasi-local algebras (Proposition 4.5), we obtain the following commutative diagram

K(C(AB))K(C(A))K(C(B))K(C(X))K(Csq(AB))K(Csq(A))K(Csq(B))K(Csq(X)).\begin{CD}\cdots @>{}>{}>K_{*}(C^{*}(A\cap B))@>{}>{}>K_{*}(C^{*}(A))\oplus K_{*}(C^{*}(B))@>{}>{}>K_{*}(C^{*}(X))@>{}>{}>\cdots\\ &&@V{}V{}V@V{}V{}V@V{}V{}V\\ \cdots @>{}>{}>K_{*}(C^{*}_{sq}(A\cap B))@>{}>{}>K_{*}(C^{*}_{sq}(A))\oplus K_{*}(C^{*}_{sq}(B))@>{}>{}>K_{*}(C^{*}_{sq}(X))@>{}>{}>\cdots.\end{CD}

The left and middle vertical maps are isomorphisms according to the previous paragraph, hence we conclude the proof by the Five Lemma again. ∎

5. Twisted strongly quasi-local algebras

In this section, we recall the Bott-Dirac operators which will be used in the next section to construct index maps. We also recall the notion of twisted Roe algebras from [17, Section 12.3] (originally in [21, Section 5]) and introduce their strongly quasi-local analogue.

5.1. The Bott-Dirac operators on Euclidean spaces

Let us start by recalling some elementary properties of the Bott-Dirac operators. Here we only list necessary notions and facts, while guide readers to [17, Section 12.1] for details.

Let EE be a real Hilbert space (also called a Euclidean space) with even dimension dd\in\mathbb{N}. The Clifford algebra of EE, denoted by Cliff(E)\mathrm{Cliff}_{\mathbb{C}}(E), is the universal unital complex algebra containing EE as a real subspace and subject to the multiplicative relations xx=xE2x\cdot x=\|x\|_{E}^{2} for all xEx\in E. It is natural to treat Cliff(E)\mathrm{Cliff}_{\mathbb{C}}(E) as a graded Hilbert space (see for example [17, Example E.2.12]), and in this case we denote it by E\mathcal{H}_{E}.

Denote E2\mathcal{L}_{E}^{2} the graded Hilbert space of square integrable functions from EE to E\mathcal{H}_{E} where the grading is inherited from E\mathcal{H}_{E}, and 𝒮E\mathcal{S}_{E} the dense subspace consisting of Schwartz class functions from EE to E\mathcal{H}_{E}. Fix an orthonormal basis {e1,,ed}\{e_{1},\ldots,e_{d}\} of EE and let x1,,xd:Ex_{1},\ldots,x_{d}:E\to\mathbb{R} be the corresponding coordinates. Recall that the Bott operator CC and the Dirac operator DD are unbounded operators on E2\mathcal{L}_{E}^{2} with domain 𝒮E\mathcal{S}_{E} defined as:

(Cu)(x)=xu(x),and(Du)(x)=i=1dei^uxi(x)(Cu)(x)=x\cdot u(x),\quad\mbox{and}\quad(Du)(x)=\sum_{i=1}^{d}\hat{e_{i}}\cdot\frac{\partial u}{\partial x_{i}}(x)

for u𝒮Eu\in\mathcal{S}_{E} and xEx\in E, where ei^:Cliff(E)Cliff(E)\hat{e_{i}}:\mathrm{Cliff}_{\mathbb{C}}(E)\to\mathrm{Cliff}_{\mathbb{C}}(E) is the operator determined by ei^(w)=(1)wwei\hat{e_{i}}(w)=(-1)^{\partial w}w\cdot e_{i} for any homogeneous element wCliff(E)w\in\mathrm{Cliff}_{\mathbb{C}}(E).

Definition 5.1.

The Bott-Dirac operator is the unbounded operator B:=D+CB:=D+C on E2\mathcal{L}_{E}^{2} with domain 𝒮E\mathcal{S}_{E}.

Given xEx\in E, recall that the left Clifford multiplication operator associated to xx is the bounded operator cxc_{x} on E2\mathcal{L}_{E}^{2} defined as the left Clifford multiplication by the fixed vector xx, and the translation operator associated to xx is the unitary operator VxV_{x} on E2\mathcal{L}_{E}^{2} defined by (Vxu)(y):=u(yx)(V_{x}u)(y):=u(y-x). Given s[1,)s\in[1,\infty), recall that the shrinking operator associated to ss is the unitary operator SsS_{s} on E2\mathcal{L}_{E}^{2} defined by (Ssu)(y):=sd/2u(sy)(S_{s}u)(y):=s^{{-d}/{2}}u(sy).

Definition 5.2.

For s[1,)s\in[1,\infty) and xEx\in E, the Bott-Dirac operator associated to (x,s)(x,s) is the unbounded operator Bs,x:=s1D+CcxB_{s,x}:=s^{-1}D+C-c_{x} on E2\mathcal{L}_{E}^{2} with domain 𝒮E\mathcal{S}_{E}.

Note that B1,0=BB_{1,0}=B and Bs,x=s1/2VxSsBSsVxB_{s,x}=s^{{-1}/{2}}~{}V_{x}S_{\sqrt{s}}BS^{*}_{\sqrt{s}}V_{x}^{*}. It is also known that for each s[1,)s\in[1,\infty) and xEx\in E, the operator Bs,xB_{s,x} is unbounded, odd, essentially self-adjoint and maps 𝒮E\mathcal{S}_{E} to itself (see, e.g., [17, Corollary 12.1.4]).

Definition 5.3.

Let s[1,)s\in[1,\infty), xEx\in E and Bs,xB_{s,x} be the Bott-Dirac operator associated to (x,s)(x,s). Define a bounded operator on E2\mathcal{L}_{E}^{2} by:

Fs,x:=Bs,x(1+Bs,x2)1/2.F_{s,x}:=B_{s,x}(1+B^{2}_{s,x})^{-1/2}.

We list several important properties of the operator Fs,xF_{s,x}. For simplicity, denote χx,R:=χB(x;R)\chi_{x,R}:=\chi_{B(x;R)} for xEx\in E and R0R\geq 0.

Proposition 5.4 ([17, Proposition 12.1.10]).

For each ε>0\varepsilon>0 there exists an odd function Ψ:[1,1]\Psi:\mathbb{R}\rightarrow[-1,1] with Ψ(t)1\Psi(t)\rightarrow 1 as t+t\rightarrow+\infty, satisfying the following:

  1. (1)

    For all s[1,)s\in[1,\infty) and xEx\in E, we have Fs,xΨ(Bs,x)<ε\|F_{s,x}-\Psi(B_{s,x})\|<\varepsilon.

  2. (2)

    There exists R0>0R_{0}>0 such that for all s[1,)s\in[1,\infty) and xEx\in E, we have prop(Ψ(Bs,x))s1R0\mathrm{prop}(\Psi(B_{s,x}))\leq s^{-1}R_{0}.

  3. (3)

    For all s[1,)s\in[1,\infty) and xEx\in E, Ψ(Bs,x)21\Psi(B_{s,x})^{2}-1 is compact.

  4. (4)

    For all s[1,)s\in[1,\infty) and x,yEx,y\in E, Ψ(Bs,x)Ψ(Bs,y)\Psi(B_{s,x})-\Psi(B_{s,y}) is compact.

  5. (5)

    For all s[1,)s\in[1,\infty) and x,yEx,y\in E, Fs,xFs,y3xyE\|F_{s,x}-F_{s,y}\|\leq 3\|x-y\|_{E}. And there exists c>0c>0 such that for all s[1,)s\in[1,\infty) and x,yEx,y\in E, we have

    Ψ(Bs,x)Ψ(Bs,y)cxyE.\|\Psi(B_{s,x})-\Psi(B_{s,y})\|\leq c\|x-y\|_{E}.
  6. (6)

    For all xEx\in E, the function

    [1,)𝔅(E2),sΨ(Bs,x)[1,\infty)\rightarrow\mathfrak{B}(\mathcal{L}_{E}^{2}),\ s\mapsto\Psi(B_{s,x})

    is strong-* continuous.

  7. (7)

    The family of functions

    [1,)𝔅(E2),sΨ(Bs,x)21[1,\infty)\to\mathfrak{B}(\mathcal{L}_{E}^{2}),\ s\mapsto\Psi(B_{s,x})^{2}-1

    is norm equi-continuous as xx varies over EE and ss varies over any fixed compact subset of [1,)[1,\infty).

  8. (8)

    For any r0r\geq 0, the family of functions

    [1,)𝔅(E2),sΨ(Bs,x)Ψ(Bs,y)[1,\infty)\to\mathfrak{B}(\mathcal{L}_{E}^{2}),\ s\mapsto\Psi(B_{s,x})-\Psi(B_{s,y})

    is norm equi-continuous as (x,y)(x,y) varies over the elements of E×EE\times E with |xy|r|x-y|\leq r, and ss varies over any fixed compact subset of [1,)[1,\infty).

  9. (9)

    For any ε1>0\varepsilon_{1}>0, there exists R1>0R_{1}>0 such that for all RR1R\geq R_{1}, s2ds\geq 2d and xEx\in E, we have

    (Ψ(Bs,x)21)(1χx,R)<ε1.\|(\Psi(B_{s,x})^{2}-1)(1-\chi_{x,R})\|<\varepsilon_{1}.
  10. (10)

    For any ε2>0,r>0\varepsilon_{2}>0,r>0 there exists R2>0R_{2}>0 such that for all RR2R\geq R_{2}, s2ds\geq 2d and x,yEx,y\in E with xyEr\|x-y\|_{E}\leq r, we have

    (Ψ(Bs,x)Ψ(Bs,y))(1χx,R)<ε2.\|(\Psi(B_{s,x})-\Psi(B_{s,y}))(1-\chi_{x,R})\|<\varepsilon_{2}.

Moreover, we can require the function Ψ\Psi, constants R0R_{0} in (2), cc in (5), R1R_{1} in (9) and R2R_{2} in (10) are independent of the dimension dd of the Euclidean space EE.

Remark 5.5.

Note that statements (9) and (10) above are slightly stronger than those in [17, Proposition 12.1.10]. For completeness, we give the proofs in Appendix A.

5.2. Twisted Roe and strongly quasi-local algebras

Thanks to Lemma 4.7, we only focus on sequences of finite metric spaces with uniformly bounded geometry.

We fix some notation first. Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces with uniformly bounded geometry which admits a uniformly coarse embedding into Euclidean spaces {fn:XnEn}\{f_{n}:X_{n}\rightarrow E_{n}\} where each EnE_{n} is a Euclidean space of even dimension dnd_{n}. Let XX be a coarse disjoint union of {Xn}\{X_{n}\} and denote E:={En}nE:=\{E_{n}\}_{n\in\mathbb{N}}.

Recall that \mathscr{H} is a fixed infinite-dimensional separable Hilbert space. Denote n:=2(Xn)\mathcal{H}_{n}:=\ell^{2}(X_{n})\otimes\mathscr{H}, which is an ample XnX_{n}-module under the amplified multiplication representation. Denote n,En:=nEn2\mathcal{H}_{n,E_{n}}:=\mathcal{H}_{n}\otimes\mathcal{L}^{2}_{E_{n}}, which is both an ample XnX_{n}-module and an ample EnE_{n}-module similarly. Also define X:=nn\mathcal{H}_{X}:=\bigoplus_{n}\mathcal{H}_{n} and X,E:=nn,En\mathcal{H}_{X,E}:=\bigoplus_{n}\mathcal{H}_{n,E_{n}}, both of which are ample XX-modules. For Tn𝔅(n,En)T_{n}\in\mathfrak{B}(\mathcal{H}_{n,E_{n}}), write propXn(Tn)\mathrm{prop}_{X_{n}}(T_{n}) and propEn(Tn)\mathrm{prop}_{E_{n}}(T_{n}) for the propagation of TnT_{n} with respect to the XnX_{n}-module structure and the EnE_{n}-module structure, respectively. From Definition 2.6 and Definition 3.4, we form the Roe algebras C(n,En)C^{*}(\mathcal{H}_{n,E_{n}}) of XnX_{n} and C(X,E)C^{*}(\mathcal{H}_{X,E}) of XX, and the strongly quasi-local algebras Csq(n,En)C^{*}_{sq}(\mathcal{H}_{n,E_{n}}) of XnX_{n} and Csq(X,E)C^{*}_{sq}(\mathcal{H}_{X,E}) of XX.

To introduce the twisted Roe and strongly quasi-local algebras, we need an extra construction from [17, Definition 12.3.1] which involves the information of uniformly coarse embedding as follows:

Definition 5.6.

Given nn\in\mathbb{N} and T𝔅(En2)T\in\mathfrak{B}(\mathcal{L}_{E_{n}}^{2}), we define a bounded operator TVT^{V} on n,En=2(Xn)En2\mathcal{H}_{n,E_{n}}=\ell^{2}(X_{n})\otimes\mathscr{H}\otimes\mathcal{L}^{2}_{E_{n}} by the formula

TV:δxξuδxξVfn(x)TVfn(x)u,T^{V}:\delta_{x}\otimes\xi\otimes u\mapsto\delta_{x}\otimes\xi\otimes V_{f_{n}(x)}TV_{f_{n}(x)}^{*}u,

for xXnx\in X_{n}, ξ\xi\in\mathscr{H} and uEn2u\in\mathcal{L}^{2}_{E_{n}}, where fnf_{n} is the uniformly coarse embedding and Vfn(x)V_{f_{n}(x)} is the translation operator defined in Section 5.1.

For each nn, decompose n=xXnn,x\mathcal{H}_{n}=\bigoplus_{x\in X_{n}}\mathcal{H}_{n,x} where n,x:=χ{x}n\mathcal{H}_{n,x}:=\chi_{\{x\}}\mathcal{H}_{n} for xXnx\in X_{n} and n,En=xXnn,xEn2\mathcal{H}_{n,E_{n}}=\bigoplus_{x\in X_{n}}\mathcal{H}_{n,x}\otimes\mathcal{L}_{E_{n}}^{2}. Hence T𝔅(n,En)T\in\mathfrak{B}(\mathcal{H}_{n,E_{n}}) can be considered as an XnX_{n}-by-XnX_{n} matrix operator (Tx,y)x,yXn(T_{x,y})_{x,y\in X_{n}} where Tx,yT_{x,y} is a bounded operator from n,yEn2\mathcal{H}_{n,y}\otimes\mathcal{L}_{E_{n}}^{2} to n,xEn2\mathcal{H}_{n,x}\otimes\mathcal{L}_{E_{n}}^{2}. It is clear that for T𝔅(En2)T\in\mathfrak{B}(\mathcal{L}_{E_{n}}^{2}) we have:

Tx,yV={IdVfn(x)TVfn(x),y=x;0,otherwise.T^{V}_{x,y}=\begin{cases}~{}\mathrm{Id}_{\mathscr{H}}\otimes V_{f_{n}(x)}TV_{f_{n}(x)}^{*},&y=x;\\ ~{}0,&\mbox{otherwise}.\end{cases}

Hence TVT^{V} is a block-diagonal operator with respect to the above decomposition.

Now we introduce the following twisted Roe algebras from [17, Section 12.6].

Definition 5.7.

Let nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})) denote the product CC^{*}-algebra of all bounded continuous functions from [1,)[1,\infty) to 𝔎(n,En)\mathfrak{K}(\mathcal{H}_{n,E_{n}}) with supremum norm. Write elements of this CC^{*}-algebra as a collection (Tn,s)n,s[1,)(T_{n,s})_{n\in\mathbb{N},s\in[1,\infty)} for Tn,s𝔎(n,En)T_{n,s}\in\mathfrak{K}(\mathcal{H}_{n,E_{n}}), whose norm is

(Tn,s)=supn,s[1,)Tn,s𝔅(n,En).\|(T_{n,s})\|=\sup_{n\in\mathbb{N},s\in[1,\infty)}\|T_{n,s}\|_{\mathfrak{B}(\mathcal{H}_{n,E_{n}})}.

Let 𝔸(X;E)\mathbb{A}(X;E) denote the *-algebra of nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})) consisting of elements satisfying the following conditions:

  1. (1)

    sups[1,),npropXn(Tn,s)<\sup\limits_{s\in[1,\infty),n\in\mathbb{N}}\mathrm{prop}_{X_{n}}(T_{n,s})<\infty;

  2. (2)

    limssupnpropEn(Tn,s)=0\lim\limits_{s\rightarrow\infty}\sup\limits_{n\in\mathbb{N}}\mathrm{prop}_{E_{n}}(T_{n,s})=0;

  3. (3)

    limRsups[1,),nχ0,RVTn,sTn,s=limRsups[1,),nTn,sχ0,RVTn,s=0\lim\limits_{R\rightarrow\infty}\sup\limits_{s\in[1,\infty),n\in\mathbb{N}}\|\chi_{0,R}^{V}T_{n,s}-T_{n,s}\|=\lim\limits_{R\rightarrow\infty}\sup\limits_{s\in[1,\infty),n\in\mathbb{N}}\|T_{n,s}\chi_{0,R}^{V}-T_{n,s}\|=0.

The twisted Roe algebra A(X;E)A(X;E) of {Xn}n\{X_{n}\}_{n\in\mathbb{N}} is defined to be the norm-closure of 𝔸(X;E)\mathbb{A}(X;E) in nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})).

Remark 5.8.

The above definition appears different from [17, Definition 12.6.2], while it coincides with the case of r=0r=0 therein. To see this, note that each XnX_{n} is finite hence C(n,En)=𝔎(n,En)C^{*}(\mathcal{H}_{n,E_{n}})=\mathfrak{K}(\mathcal{H}_{n,E_{n}}) for nn\in\mathbb{N}. Then the following lemma shows that we can recover condition (4) in [17, Definition 12.6.2].

Lemma 5.9.

Given nn\in\mathbb{N} and a compact operator T𝔎(n,En)T\in\mathfrak{K}(\mathcal{H}_{n,E_{n}}), we have

limiIpiVTT=limiITpiVT=0\lim_{i\in I}\|p_{i}^{V}T-T\|=\lim_{i\in I}\|Tp_{i}^{V}-T\|=0

where {pi}iI\{p_{i}\}_{i\in I} is the net of finite rank projections on En2\mathcal{L}_{E_{n}}^{2}.

Proof.

Given ε>0\varepsilon>0, it suffices to find a finite rank projection p𝔅(En2)p\in\mathfrak{B}(\mathcal{L}_{E_{n}}^{2}) such that pVTT<ε\|p^{V}T-T\|<\varepsilon. Replacing TT by its adjoint TT^{*}, we obtain the other equality as well.

Since TT is compact, there exists a finite rank projection P𝔅(n,En)P\in\mathfrak{B}(\mathcal{H}_{n,E_{n}}) such that PTT<ε2\|PT-T\|<\frac{\varepsilon}{2}. Moreover, we can assume that the image of PP is contained in the subspace spanned by the finite set:

{δxξiuj:xXn,ξi,ujE2 for i,j=1,2,,N}.\big{\{}\delta_{x}\otimes\xi_{i}\otimes u_{j}:x\in X_{n},\xi_{i}\in\mathscr{H},u_{j}\in\mathcal{L}_{E}^{2}\mbox{~{}for~{}}i,j=1,2,\ldots,N\big{\}}.

Hence for each xXnx\in X_{n}, there exists a finite rank projection qx𝔅(En2)q_{x}\in\mathfrak{B}(\mathcal{L}_{E_{n}}^{2}) such that

PxXnpxIdqx,P\leq\sum_{x\in X_{n}}p_{x}\otimes\mathrm{Id}_{\mathscr{H}}\otimes q_{x},

where pxp_{x} is the orthogonal projection onto δx2(Xn)\mathbb{C}\delta_{x}\subseteq\ell^{2}(X_{n}). Take an arbitrary finite rank projection p𝔅(E2)p\in\mathfrak{B}(\mathcal{L}^{2}_{E}) with pVfn(x)qxVfn(x)p\geq V_{f_{n}(x)}^{*}q_{x}V_{f_{n}(x)} for each xXnx\in X_{n}. Then we have:

pV\displaystyle p^{V} =xXnpxIdVfn(x)pVfn(x)xXnpxIdqxP\displaystyle=\sum_{x\in X_{n}}p_{x}\otimes\mathrm{Id}_{\mathscr{H}}\otimes V_{f_{n}(x)}pV_{f_{n}(x)}^{*}\geq\sum_{x\in X_{n}}p_{x}\otimes\mathrm{Id}_{\mathscr{H}}\otimes q_{x}\geq P

This implies that pVP=Pp^{V}P=P. Hence we obtain

pVTTpVTpVPT+PTT2PTT<ε,\|p^{V}T-T\|\leq\|p^{V}T-p^{V}PT\|+\|PT-T\|\leq 2\|PT-T\|<\varepsilon,

which concludes the proof. ∎

Definition 5.10.

Let nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})) denote the product CC^{*}-algebra of all bounded continuous functions from [1,)[1,\infty) to 𝔎(n,En)\mathfrak{K}(\mathcal{H}_{n,E_{n}}) with supremum norm. Write elements of this CC^{*}-algebra as a collection (Tn,s)n,s[1,)(T_{n,s})_{n\in\mathbb{N},s\in[1,\infty)} for Tn,s𝔎(n,En)T_{n,s}\in\mathfrak{K}(\mathcal{H}_{n,E_{n}}), whose norm is

(Tn,s)=supn,s[1,)Tn,s𝔅(n,En).\|(T_{n,s})\|=\sup_{n\in\mathbb{N},s\in[1,\infty)}\|T_{n,s}\|_{\mathfrak{B}(\mathcal{H}_{n,E_{n}})}.

Let 𝔸sq(X;E)\mathbb{A}_{sq}(X;E) denote the *-algebra of nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})) consisting of elements satisfying the following conditions:

  1. (1)

    For any ε>0\varepsilon>0, there exists δ,R>0\delta,R>0 such that for any n,s[1,)n\in\mathbb{N},s\in[1,\infty) and gn:Xn𝔎()1g_{n}:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta,R)-variation we have [Tn,sId,Λn,En(gn)]<ε\|[T_{n,s}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g_{n})]\|<\varepsilon, where \mathscr{H} is the fixed Hilbert space and Λ\Lambda is from (3.1).

  2. (2)

    limssupnpropEn(Tn,s)=0\lim\limits_{s\rightarrow\infty}\sup\limits_{n\in\mathbb{N}}\mathrm{prop}_{E_{n}}(T_{n,s})=0.

  3. (3)

    For any ε>0\varepsilon>0, there exists R>0R^{\prime}>0 such that for each nn, CnXnC_{n}\subseteq X_{n} and Borel set DnEnD_{n}\subseteq E_{n} with dEn(fn(Cn),Dn)Rd_{E_{n}}(f_{n}(C_{n}),D_{n})\geq R^{\prime} we have χCnTn,sχDn<ε\|\chi_{C_{n}}T_{n,s}\chi_{D_{n}}\|<\varepsilon and χDnTn,sχCn<ε\|\chi_{D_{n}}T_{n,s}\chi_{C_{n}}\|<\varepsilon for all s[1,)s\in[1,\infty).

The twisted strongly quasi-local algebra Asq(X;E)A_{sq}(X;E) of {Xn}n\{X_{n}\}_{n\in\mathbb{N}} is defined to be the norm-closure of 𝔸sq(X;E)\mathbb{A}_{sq}(X;E) in nCb([1,),𝔎(n,En))\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})).

Remark 5.11.

We provide some explanation on condition (3) in Definition 5.10. Recall that n,En\mathcal{H}_{n,E_{n}} is both an XnX_{n}-module and an EnE_{n}-module, so we can consider the (Xn×En)(X_{n}\times E_{n})-support of a given operator T𝔅(n,En)T\in\mathfrak{B}(\mathcal{H}_{n,E_{n}}) defined as

suppXn×En(T):={(x,v)Xn×En:χ{x}TχU0 for all neighbourhoods U of v}.\mathrm{supp}_{X_{n}\times E_{n}}(T):=\big{\{}(x,v)\in X_{n}\times E_{n}:\chi_{\{x\}}T\chi_{U}\neq 0\mbox{~{}for~{}all~{}neighbourhoods~{}}U\mbox{~{}of~{}}v\big{\}}.

We define the associated (Xn×En)(X_{n}\times E_{n})-propagation of TT to be

propXn,En(T):=sup{fn(x)vEn:(x,v)suppXn×En(T)}.\mathrm{prop}_{X_{n},E_{n}}(T):=\sup\big{\{}\|f_{n}(x)-v\|_{E_{n}}:(x,v)\in\mathrm{supp}_{X_{n}\times E_{n}}(T)\big{\}}.

Definition 5.10(3) says that Tn,sT_{n,s} and Tn,sT_{n,s}^{*} are uniformly (Xn×En)(X_{n}\times E_{n})-quasi-local in the sense that for any ε>0\varepsilon>0 there exists R>0R>0 such that for each nn, CnXnC_{n}\subseteq X_{n} and Borel set DnEnD_{n}\subseteq E_{n} with Cn×Dn{(x,v)Xn×En:fn(x)vER}C_{n}\times D_{n}\subseteq\big{\{}(x,v)\in X_{n}\times E_{n}:\|f_{n}(x)-v\|_{E}\geq R\big{\}}, we have χCnTn,sχDn<ε\|\chi_{C_{n}}T_{n,s}\chi_{D_{n}}\|<\varepsilon and χCnTn,sχDn<ε\|\chi_{C_{n}}T^{*}_{n,s}\chi_{D_{n}}\|<\varepsilon for all s[1,)s\in[1,\infty). It is clear that limits of uniformly finite (Xn×En)(X_{n}\times E_{n})-propagation operators are uniformly (Xn×En)(X_{n}\times E_{n})-quasi-local.

Lemma 5.12.

We have A(X;E)Asq(X;E)nCb([1,),𝔎(n,En))A(X;E)\subseteq A_{sq}(X;E)\subseteq\prod_{n\in\mathbb{N}}C_{b}([1,\infty),\mathfrak{K}(\mathcal{H}_{n,E_{n}})).

Proof.

Given T=(Tn,s)n,s[1,)𝔸(X;E)T=(T_{n,s})_{n\in\mathbb{N},s\in[1,\infty)}\in\mathbb{A}(X;E), condition (1) in Definition 5.10 follows from Proposition 3.6 and Lemma 3.16. We only need to check condition (3). Given R>0R>0, Remark 5.11 implies that it suffices to show that Tn,sχ0,RVT_{n,s}\chi_{0,R}^{V} and (Tn,sχ0,RV)=χ0,RVTn,s(T_{n,s}\chi_{0,R}^{V})^{\ast}=\chi_{0,R}^{V}T_{n,s}^{\ast} have uniformly finite (Xn×En)(X_{n}\times E_{n})-propagation for nn\in\mathbb{N} and s[1,)s\in[1,\infty). Now Definition 5.7(1) implies that there exists an M>0M>0 such that propXn(Tn,s)M\mathrm{prop}_{X_{n}}(T_{n,s})\leq M and propXn(Tn,s)M\mathrm{prop}_{X_{n}}(T_{n,s}^{\ast})\leq M for all nn\in\mathbb{N} and s[1,)s\in[1,\infty). Since {fn:XnEn}n\{f_{n}:X_{n}\to E_{n}\}_{n\in\mathbb{N}} is a uniformly coarse embedding, there exists some ρ+:++\rho_{+}:\mathbb{R}^{+}\to\mathbb{R}^{+} such that fn(x)fn(y)Eρ+(dXn(x,y))\|f_{n}(x)-f_{n}(y)\|_{E}\leq\rho_{+}(d_{X_{n}}(x,y)) for nn\in\mathbb{N} and x,yXnx,y\in X_{n}. It follows directly from definition that propXn,En(Tn,sχ0,RV)ρ+(M)+R\mathrm{prop}_{X_{n},E_{n}}(T_{n,s}\chi_{0,R}^{V})\leq\rho_{+}(M)+R and propXn,En(χ0,RVTn,s)ρ+(M)+R\mathrm{prop}_{X_{n},E_{n}}(\chi_{0,R}^{V}T_{n,s}^{\ast})\leq\rho_{+}(M)+R for all nn\in\mathbb{N} and s[1,)s\in[1,\infty). ∎

Finally, we introduce the following operators:

Definition 5.13 ([17, Section 12.3 and 12.6]).

For each nn\in\mathbb{N}, s[1,)s\in[1,\infty) and xEnx\in E_{n}, Definition 5.3 provides a bounded operator Fs,x𝔅(En2)F_{s,x}\in\mathfrak{B}(\mathcal{L}_{E_{n}}^{2}), also denoted by Fn,s,xF_{n,s,x}. Applying Definition 5.6, we obtain an operator Fn,s:=Fn,s+2dn,0VF_{n,s}:=F^{V}_{n,s+2d_{n},0} in 𝔅(n,En)\mathfrak{B}(\mathcal{H}_{n,E_{n}}) where dnd_{n} is the dimension of EnE_{n}. Let FsF_{s} be the block diagonal operator in n𝔅(n,En)𝔅(X,E)\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}})\subseteq\mathfrak{B}(\mathcal{H}_{X,E}) defined by Fs:=(Fn,s+2dn,0V)nF_{s}:=(F^{V}_{n,s+2d_{n},0})_{n}. Finally, we define FF to be an element in n𝔅(L2([1,);n,En))𝔅(L2([1,);X,E))\prod_{n}\mathfrak{B}(L^{2}([1,\infty);\mathcal{H}_{n,E_{n}}))\subseteq\mathfrak{B}(L^{2}([1,\infty);\mathcal{H}_{X,E})) defined by (F(u))(s):=Fsu(s)(F(u))(s):=F_{s}u(s).

Similarly, given ε>0\varepsilon>0 let Ψ\Psi be a function as in Proposition 5.4 and FsΨF^{\Psi}_{s} be the bounded diagonal operator on X,E\mathcal{H}_{X,E} defined by FsΨ:=(Fn,sΨ)nF^{\Psi}_{s}:=(F^{\Psi}_{n,s})_{n} where Fn,sΨ=Ψ(Bn,s+2dn,0)VF^{\Psi}_{n,s}=\Psi(B_{n,s+2d_{n},0})^{V}. Let FΨF^{\Psi} be the bounded operator on nL2([1,),n,En)\bigoplus_{n}L^{2}([1,\infty),\mathcal{H}_{n,E_{n}}) defined by (FΨ(u))(s):=FsΨu(s)(F^{\Psi}(u))(s):=F^{\Psi}_{s}u(s).

6. The index map

Recall that in [17, Secition 12.3 and 12.6], Willett and Yu construct an index map (with notation as in Section 5.2):

IndF:K(C(X)n𝔅(n))K(A(X;E)),\mathrm{Ind}_{F}:K_{*}\big{(}C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\rightarrow K_{*}(A(X;E)),

where FF is the operator in Definition 5.13. They use IndF\mathrm{Ind}_{F} to transfer KK-theoretic information from Roe algebras to their twisted counterparts, which allow them to reprove the coarse Baum-Connes conjecture via local isomorphisms. More precisely, they prove the following:

Proposition 6.1 ([17, Proposition 12.6.3]).

With notation as in Section 5.2, for each s[1,)s\in[1,\infty) the composition

K(C(X)n𝔅(n))IndFK(A(X;E))ιsK(C(X,E)n𝔅(n,En))K_{*}\big{(}C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\stackrel{{\scriptstyle\mathrm{Ind}_{F}}}{{\longrightarrow}}K_{*}(A(X;E))\stackrel{{\scriptstyle\iota^{s}_{*}}}{{\longrightarrow}}K_{*}\big{(}C^{*}(\mathcal{H}_{X,E})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}})\big{)}

is an isomorphism, where ιs:A(X;E)C(Y,E)\iota^{s}:A(X;E)\rightarrow C^{*}(\mathcal{H}_{Y,E}) is the evaluation map at ss.

In this section, we construct index maps in the strongly quasi-local setting and prove similar results. This allows us to prove certain isomorphisms in KK-theory to attack Theorem B later. We follow the procedure in [17, Section 12.3], while more technical analysis is required.

We follow the same notation as in Section 5.2. Let {Xn}n\{X_{n}\}_{n\in\mathbb{N}} be a sequence of finite metric spaces with uniformly bounded geometry which admits a uniformly coarse embedding into Euclidean spaces {fn:XnEn}\{f_{n}:X_{n}\rightarrow E_{n}\} where each EnE_{n} is a Euclidean space of even dimension dnd_{n}.

Let us start with several lemmas to analyse relations between the operator FF from Definition 5.13 and the twisted strongly quasi-local algebra Asq(X;E)A_{sq}(X;E).

Lemma 6.2.

The operator FF is a self-adjoint, norm one, odd operator in the multiplier algebra of Asq(X;E)A_{sq}(X;E).

Proof.

The operator FF is self-adjoint, norm one and odd since each Fn,s,xF_{n,s,x} is. Given ε>0\varepsilon>0, let Ψ:[1,1]\Psi:\mathbb{R}\to[-1,1] be a function as in Proposition 5.4 for this ε\varepsilon. Then Proposition 5.4(1) implies:

FFΨsupn,s[1,)Fn,s,0VΨ(Bn,s,0)Vsupn,s[1,)supxXnFn,s,fn(x)Ψ(Bn,s,fn(x))ε.\|F-F^{\Psi}\|\leq\sup_{n\in\mathbb{N},s\in[1,\infty)}\|F^{V}_{n,s,0}-\Psi(B_{n,s,0})^{V}\|\leq\sup_{n\in\mathbb{N},s\in[1,\infty)}\sup_{x\in X_{n}}\|F_{n,s,f_{n}(x)}-\Psi(B_{n,s,f_{n}(x)})\|\leq\varepsilon.

Hence it suffices to show that (Tn,s)FΨ=(Tn,sFn,sΨ)(T_{n,s})F^{\Psi}=(T_{n,s}F^{\Psi}_{n,s}) belongs to 𝔸sq(X;E)\mathbb{A}_{sq}(X;E) for any (Tn,s)𝔸sq(X;E)(T_{n,s})\in\mathbb{A}_{sq}(X;E).

First it follows from [17, Lemma 12.3.5] that for each nn\in\mathbb{N}, the map sTn,sFn,sΨs\mapsto T_{n,s}F^{\Psi}_{n,s} is norm-continuous. Now we verify conditions (1)-(3) in Definition 5.10 for (Tn,sFn,sΨ)(T_{n,s}F^{\Psi}_{n,s}). Note that condition (2) follows directly from Proposition 5.4(2) and (3) holds since propEn(Fn,sΨ)\mathrm{prop}_{E_{n}}(F^{\Psi}_{n,s}) are uniformly finite for all nn\in\mathbb{N} and s[1,)s\in[1,\infty). For condition (1), note that for any nn\in\mathbb{N}, s[1,)s\in[1,\infty) and g:Xn𝔎()1g:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1}, we have

(Fn,sΨId)Λ(g)=Λ(g)(Fn,sΨId).\big{(}F^{\Psi}_{n,s}\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\cdot\Lambda(g)=\Lambda(g)\cdot\big{(}F^{\Psi}_{n,s}\otimes\mathrm{Id}_{\mathscr{H}}\big{)}.

Hence we obtain:

[(Tn,sFn,sΨ)Id,Λ(g)]=([Tn,sId,Λ(g)])(Fn,sΨId)[Tn,sId,Λ(g)],\big{\|}[(T_{n,s}F^{\Psi}_{n,s})\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}=\big{\|}\big{(}[T_{n,s}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{)}\cdot\big{(}F^{\Psi}_{n,s}\otimes\mathrm{Id}_{\mathscr{H}}\big{)}\big{\|}\leq\big{\|}[T_{n,s}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|},

which concludes the proof. ∎

Lemma 6.3.

Considered as represented on L2([1,))X,EL^{2}([1,\infty))\otimes\mathcal{H}_{X,E} via amplification of identity, Csq(X)n𝔅(n)C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}) is a subalgebra of the multiplier algebra of Asq(X;E)A_{sq}(X;E).

Proof.

It suffices to show that (SnTn,s)𝔸sq(X;E)(S_{n}T_{n,s})\in\mathbb{A}_{sq}(X;E) for any (Tn,s)𝔸sq(X;E)(T_{n,s})\in\mathbb{A}_{sq}(X;E) and (Sn)Csq(X)n𝔅(n)(S_{n})\in C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}).222To be more precise, (SnTn,s)(S_{n}T_{n,s}) stands for ((SnIdEn2)Tn,s)\big{(}(S_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}})\cdot T_{n,s}\big{)}. It is clear that the map sSnTn,ss\mapsto S_{n}T_{n,s} is norm-continuous and bounded for each nn\in\mathbb{N}.

Now we verify conditions (1)-(3) in Definition 5.10 for s(SnTn,s)s\mapsto(S_{n}T_{n,s}). First note that for any nn\in\mathbb{N}, s[1,)s\in[1,\infty) and g:Xn𝔎()1g:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} we have

(6.1) [SnIdEn2Id,Λn,En(g)]=[SnId,Λn(g)].\big{\|}[S_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)]\big{\|}=\big{\|}[S_{n}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n}}(g)]\big{\|}.

Hence condition (1) follows from direct calculations together with Lemma 3.16.

Condition (2) follows from the fact that each SnIdEn2S_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}} has zero EnE_{n}-propagation. Now we check condition (3). Given ε>0\varepsilon>0, it follows from (Sn)Csq(X)Cq(X)(S_{n})\in C^{*}_{sq}(\mathcal{H}_{X})\subseteq C^{*}_{q}(\mathcal{H}_{X}) that there exists R1>0R_{1}>0 such that SnS_{n} has (ε2(Tn,s),R1)(\frac{\varepsilon}{2\|(T_{n,s})\|},R_{1})-propagation for all nn\in\mathbb{N}. On the other hand, there exists R2>0R_{2}>0 such that for any nn\in\mathbb{N}, s[1,)s\in[1,\infty), CnXnC_{n}\subseteq X_{n} and Borel set DnEnD_{n}\subseteq E_{n} with dEn(fn(Cn),Dn)R2d_{E_{n}}(f_{n}(C_{n}),D_{n})\geq R_{2} we have χCnTn,sχDn<ε2(Sn)\|\chi_{C_{n}}T_{n,s}\chi_{D_{n}}\|<\frac{\varepsilon}{2\|(S_{n})\|} and χDnTn,sχCn<ε2(Sn)\|\chi_{D_{n}}T_{n,s}\chi_{C_{n}}\|<\frac{\varepsilon}{2\|(S_{n})\|}. Now let R=ρ+(R1)+R2R=\rho_{+}(R_{1})+R_{2} where ρ+\rho_{+} comes from the uniformly coarse embedding {fn:XnEn}\{f_{n}:X_{n}\rightarrow E_{n}\}. For any nn\in\mathbb{N}, CnXnC_{n}^{\prime}\subseteq X_{n} and Borel set DnEnD_{n}^{\prime}\subseteq E_{n} with dEn(fn(Cn),Dn)Rd_{E_{n}}(f_{n}(C_{n}^{\prime}),D_{n}^{\prime})\geq R we have fn(𝒩R1(Cn))𝒩ρ+(R1)(fn(Cn))f_{n}(\mathcal{N}_{R_{1}}(C_{n}^{\prime}))\subseteq\mathcal{N}_{\rho_{+}(R_{1})}(f_{n}(C_{n}^{\prime})), which implies that dEn(fn(𝒩R1(Cn)),Dn)R2d_{E_{n}}(f_{n}(\mathcal{N}_{R_{1}}(C_{n}^{\prime})),D_{n}^{\prime})\geq R_{2}. Therefore, we obtain:

χCnSnTn,sχDn\displaystyle\|\chi_{C_{n}^{\prime}}S_{n}T_{n,s}\chi_{D_{n}^{\prime}}\|\leq χCnSnTn,sχDnχCnSnχ𝒩R1(Cn)Tn,sχDn+χCnSnχ𝒩R1(Cn)Tn,sχDn\displaystyle\|\chi_{C_{n}^{\prime}}S_{n}T_{n,s}\chi_{D_{n}^{\prime}}-\chi_{C_{n}^{\prime}}S_{n}\chi_{\mathcal{N}_{R_{1}}(C_{n}^{\prime})}T_{n,s}\chi_{D_{n}^{\prime}}\|+\|\chi_{C_{n}^{\prime}}S_{n}\chi_{\mathcal{N}_{R_{1}}(C_{n}^{\prime})}T_{n,s}\chi_{D_{n}^{\prime}}\|
\displaystyle\leq χCnSnχ(𝒩R1(Cn))cTn,s+Snχ𝒩R1(Cn)Tn,sχDn\displaystyle\|\chi_{C_{n}^{\prime}}S_{n}\chi_{(\mathcal{N}_{R_{1}}(C_{n}^{\prime}))^{c}}\|\cdot\|T_{n,s}\|+\|S_{n}\|\cdot\|\chi_{\mathcal{N}_{R_{1}}(C_{n}^{\prime})}T_{n,s}\chi_{D_{n}^{\prime}}\|
<\displaystyle< ε2(Tn,s)(Tn,s)+(Sn)ε2(Sn)=ε\displaystyle\frac{\varepsilon}{2\|(T_{n,s})\|}\cdot\|(T_{n,s})\|+\|(S_{n})\|\cdot\frac{\varepsilon}{2\|(S_{n})\|}=\varepsilon

for all s[1,)s\in[1,\infty). On the other hand, we have:

χDnSnTn,sχCn=SnχDnTn,sχCnSnχDnTn,sχCn<ε\|\chi_{D_{n}^{\prime}}S_{n}T_{n,s}\chi_{C_{n}^{\prime}}\|=\|S_{n}\chi_{D_{n}^{\prime}}T_{n,s}\chi_{C_{n}^{\prime}}\|\leq\|S_{n}\|\cdot\|\chi_{D_{n}^{\prime}}T_{n,s}\chi_{C_{n}^{\prime}}\|<\varepsilon

for all s[1,)s\in[1,\infty). So we finish the proof. ∎

Regarding Csq(X)n𝔅(n)C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}) as a subalgebra in 𝔅(L2([1,))X,E)\mathfrak{B}(L^{2}([1,\infty))\otimes\mathcal{H}_{X,E}) as in Lemma 6.3, we have the following:

Lemma 6.4.

For any (Sn)Csq(X)n𝔅(n)(S_{n})\in C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}), we have [(Sn),F]Asq(X;E)[(S_{n}),F]\in A_{sq}(X;E).

Proof.

From Proposition 5.4(1), it suffices to show that the map

s[(Sn),FsΨ]=[(Sn),(Ψ(Bn,s+2dn,0)V)]s\mapsto[(S_{n}),F_{s}^{\Psi}]=[(S_{n}),(\Psi(B_{n,s+2d_{n},0})^{V})]

belongs to 𝔸sq(X;E)\mathbb{A}_{sq}(X;E) for any Ψ\Psi as in Proposition 5.4, i.e., to verify conditions (1)-(3) in Definition 5.10.

First note that for any nn\in\mathbb{N}, s[1,)s\in[1,\infty) and g:Xn𝔎()1g:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} we have

[[Sn,Ψ(Bn,s+2dn,0)V]Id,Λn,En(g)]\displaystyle\big{[}[S_{n},\Psi(B_{n,s+2d_{n},0})^{V}]\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)\big{]}
=[SnIdEn2Id,Λn,En(g)]Ψ(Bn,s+2dn,0)V+Ψ(Bn,s+2dn,0)V[Λn,En(g),SnIdEn2Id],\displaystyle=[S_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)]\Psi(B_{n,s+2d_{n},0})^{V}+\Psi(B_{n,s+2d_{n},0})^{V}[\Lambda_{\mathcal{H}_{n,E_{n}}}(g),S_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\otimes\mathrm{Id}_{\mathscr{H}}],

which has norm at most 2[SnId,Λn(g)]2\|[S_{n}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n}}(g)]\| according to (6.1). Hence we conclude condition (1) from the strong quasi-locality of (Sn)(S_{n}). Condition (2) follows from Propostion 5.4(2) and that fact that SnS_{n} has zero EnE_{n}-propagation.

To check condition (3), we fix an ε>0\varepsilon>0. It follows from Proposition 3.8 that there exist δ,R>0\delta^{\prime},R^{\prime}>0 such that for any nn\in\mathbb{N}, AXnA\subseteq X_{n} and g:A𝔎()1g:A\rightarrow\mathfrak{K}(\mathscr{H})_{1} with (δ,R)(\delta^{\prime},R^{\prime})-variation we have [χASnχAId,Λ(g)]<ε4\big{\|}[\chi_{A}S_{n}\chi_{A}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda(g)]\big{\|}<\frac{\varepsilon}{4}. Moreover since Csq(X)Cq(X)C^{*}_{sq}(\mathcal{H}_{X})\subseteq C^{*}_{q}(\mathcal{H}_{X}), we assume that (Sn)(S_{n}) has (ε4,R)(\frac{\varepsilon}{4},R^{\prime})-propagation. Denote by ρ+\rho_{+} the parameter function from the uniformly coarse embedding {fn:XnEn}\{f_{n}:X_{n}\rightarrow E_{n}\}.

By Proposition 5.4(10), there exists R′′>0R^{\prime\prime}>0 such that for all n,s2dnn\in\mathbb{N},s\geq 2d_{n} and x,yEnx,y\in E_{n} with xyEnρ+(R)\|x-y\|_{E_{n}}\leq\rho_{+}(R^{\prime}) we have (Ψ(Bn,s,x)Ψ(Bn,s,y))(1χB(x,R′′))<δ\|(\Psi(B_{n,s,x})-\Psi(B_{n,s,y}))(1-\chi_{B(x,R^{\prime\prime})})\|<\delta^{\prime}. Set R=R′′+ρ+(R)R=R^{\prime\prime}+\rho_{+}(R^{\prime}). For any nn\in\mathbb{N}, s[1,)s\in[1,\infty), CXnC\subseteq X_{n} and Borel set DEnD\subseteq E_{n} with dEn(fn(C),D)Rd_{E_{n}}(f_{n}(C),D)\geq R, we are going to estimate the norm χC[Sn,Fn,sΨ]χD\|\chi_{C}[S_{n},F_{n,s}^{\Psi}]\chi_{D}\|.

Denote C:=𝒩R(C)XnC^{\prime}:=\mathcal{N}_{R^{\prime}}(C)\subseteq X_{n}. Since (Sn)(S_{n}) has (ε4,R)(\frac{\varepsilon}{4},R^{\prime})-propagation, we obtain:

(6.2) χC[Sn,FsΨ]χD<2ε4+χC[χCSnχC,FsΨχD].\big{\|}\chi_{C}[S_{n},F_{s}^{\Psi}]\chi_{D}\big{\|}<2\cdot\frac{\varepsilon}{4}+\big{\|}\chi_{C}[\chi_{C^{\prime}}S_{n}\chi_{C^{\prime}},F_{s}^{\Psi}\chi_{D}]\big{\|}.

Consider the function

g:Xn𝔅(En2)1byxΨ(Bn,s+2dn,fn(x))χD.g:X_{n}\to\mathfrak{B}(\mathcal{L}_{E_{n}}^{2})_{1}\quad\mbox{by}\quad x\mapsto\Psi(B_{n,s+2d_{n},f_{n}(x)})\chi_{D}.

Proposition 5.4(4) implies that g(x)g(y)𝔎(En2)g(x)-g(y)\in\mathfrak{K}(\mathcal{L}_{E_{n}}^{2}) for any x,yXnx,y\in X_{n}. Moreover, we claim that gg has (δ,R)(\delta^{\prime},R^{\prime})-variation on CC^{\prime}. In fact, for any x,yCx,y\in C^{\prime} with dXn(x,y)<Rd_{X_{n}}(x,y)<R^{\prime} we have fn(x)fn(y)Enρ+(R)\|f_{n}(x)-f_{n}(y)\|_{E_{n}}\leq\rho_{+}(R^{\prime}). Note that dEn(fn(C),D)Rd_{E_{n}}(f_{n}(C),D)\geq R and xC=𝒩R(C)x\in C^{\prime}=\mathcal{N}_{R^{\prime}}(C), hence DEnB(fn(x),R′′)D\subseteq E_{n}\setminus B(f_{n}(x),R^{\prime\prime}). Therefore by the choice of R′′R^{\prime\prime} above, we obtain that gg has (δ,R)(\delta^{\prime},R^{\prime})-variation on CC^{\prime}.

Finally, note that each En2\mathcal{L}_{E_{n}}^{2} is separable and infinite dimensional, hence isomorphic to the fixed Hilbert space \mathscr{H}. Fixing an x0Xnx_{0}\in X_{n}, we define g^:Xn𝔎(En2)1\hat{g}:X_{n}\to\mathfrak{K}(\mathcal{L}_{E_{n}}^{2})_{1} by g^(x):=g(x)g(x0)2\hat{g}(x):=\frac{g(x)-g(x_{0})}{2}. It follows from the above analysis that g^\hat{g} has (δ,R)(\delta^{\prime},R^{\prime})-variation on CC^{\prime}. Hence by the choice of δ,R\delta^{\prime},R^{\prime} at the beginning, we obtain that

[χCSnχC,FsΨχD]=[(χCSnχC)IdEn2,2Λn(g^)][\chi_{C^{\prime}}S_{n}\chi_{C^{\prime}},F_{s}^{\Psi}\chi_{D}]=\big{[}(\chi_{C^{\prime}}S_{n}\chi_{C^{\prime}})\otimes\mathrm{Id}_{\mathcal{L}_{E_{n}}^{2}},2\Lambda_{\mathcal{H}_{n}}(\hat{g})\big{]}

has norm at most ε2\frac{\varepsilon}{2}. Combining with (6.2), we obtain:

χC[Sn,FsΨ]χD<2ε4+χC[χCSnχC,FsΨχD]ε2+ε2=ε.\big{\|}\chi_{C}[S_{n},F_{s}^{\Psi}]\chi_{D}\big{\|}<2\cdot\frac{\varepsilon}{4}+\big{\|}\chi_{C}[\chi_{C^{\prime}}S_{n}\chi_{C^{\prime}},F_{s}^{\Psi}\chi_{D}]\big{\|}\leq\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.

Similarly, we have χD[Sn,Fn,sΨ]χC<ε\|\chi_{D}[S_{n},F_{n,s}^{\Psi}]\chi_{C}\|<\varepsilon. Hence we conclude the proof. ∎

Lemma 6.5.

For any projection (pn)Csq(X)n𝔅(n)(p_{n})\in C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}), the function

s((pn)Fs(pn))2(pn)s\mapsto((p_{n})F_{s}(p_{n}))^{2}-(p_{n})

is in (pn)Asq(X;E)(pn)(p_{n})A_{sq}(X;E)(p_{n}).

Proof.

From Lemma 6.4, it suffices to show that the function s(pn)Fs2(pn)s\mapsto(p_{n})F_{s}^{2}-(p_{n}) is in Asq(X;E)A_{sq}(X;E). Moreover, we only need to show that the function

s(pn)(Fn,sΨ)2(pn)=(pn(Ψ(Bn,s+2dn,0)V)2)(pn)s\mapsto(p_{n})(F_{n,s}^{\Psi})^{2}-(p_{n})=(p_{n}(\Psi(B_{n,s+2d_{n},0})^{V})^{2})-(p_{n})

is in 𝔸sq(X;E)\mathbb{A}_{sq}(X;E) for any Ψ\Psi as in Proposition 5.4. For nn\in\mathbb{N}, it follows from Proposition 5.4(7) that the function spn(Fn,sΨ)2pns\mapsto p_{n}(F_{n,s}^{\Psi})^{2}-p_{n} is bounded and continuous.

Now we verify conditions (1)-(3) in Definition 5.10. First note that for any nn\in\mathbb{N}, s[1,)s\in[1,\infty) and g:Xn𝔎()1g:X_{n}\rightarrow\mathfrak{K}(\mathscr{H})_{1} we have

[\displaystyle\big{[} (pn(Ψ(Bn,s+2dn,0)V)2pn)Id,Λn,En(g)]\displaystyle(p_{n}(\Psi(B_{n,s+2d_{n},0})^{V})^{2}-p_{n})\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)\big{]}
=[pnIdEn2Id,Λn,En(g)]((Ψ(Bn,s+2dn,0)V)2Id)[pnIdEn2Id,Λn,En(g)],\displaystyle=\big{[}p_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)\big{]}\cdot\big{(}(\Psi(B_{n,s+2d_{n},0})^{V})^{2}\otimes\mathrm{Id}_{\mathscr{H}}\big{)}-\big{[}p_{n}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n,E_{n}}}(g)\big{]},

which has norm at most 2[pnId,Λn(g)]2\|[p_{n}\otimes\mathrm{Id}_{\mathscr{H}},\Lambda_{\mathcal{H}_{n}}(g)]\| according to (6.1). Hence we conclude condition (1) from the strong quasi-locality of (pn)(p_{n}). Condition (2) follows from Propostion 5.4(2) and that fact that pnp_{n} has zero EnE_{n}-propagation. Finally, condition (3) follows from the uniform quasi-locality of (pn)(p_{n}) together with Proposition 5.4(9). Hence we conclude the proof. ∎

Having obtained the above essential ingredients, we are now in the position to construct the index map. It follows from a standard construction in KK-theories (see, e.g., [17, Definitoin 2.8.5]):

Definition 6.6.

Let =+\mathcal{H}=\mathcal{H}^{+}\oplus\mathcal{H}^{-} be a graded Hilbert space with grading operator UU (i.e., UU is a self-adjoint unitary operator in 𝔅()\mathfrak{B}(\mathcal{H}) such that ±\mathcal{H}^{\pm} coincides with the (±1)(\pm 1)-eigenspace of UU), and AA be a CC^{*}-subalgebra of 𝔅()\mathfrak{B}(\mathcal{H}) such that UU is in the multiplier algebra of AA. Let F𝔅()F\in\mathfrak{B}(\mathcal{H}) be an odd operator of the form

F=(0VW0)F=\begin{pmatrix}0&V\\ W&0\end{pmatrix}

for some operators V:+V:\mathcal{H}^{-}\rightarrow\mathcal{H}^{+} and W:+W:\mathcal{H}^{+}\rightarrow\mathcal{H}^{-}. Suppose FF satisfies:

  • FF is in the multiplier algebra of AA;

  • F21F^{2}-1 is in AA.

Then we define the index class Ind[F]K0(A)\mathrm{Ind}[F]\in K_{0}(A) of FF to be

Ind[F]:=[(1VW)2V(1WV)W(2VW)(1VW)WV(2WV)][0001].\mathrm{Ind}[F]:=\begin{bmatrix}(1-VW)^{2}&V(1-WV)\\ W(2-VW)(1-VW)&WV(2-WV)\end{bmatrix}-\begin{bmatrix}0&0\\ 0&1\end{bmatrix}.

Combining Lemma 6.2\simLemma 6.5, we obtain that for any projection (pn)Csq(X)n𝔅(n)(p_{n})\in C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}) the operator ((pn)Fs(pn))((p_{n})F_{s}(p_{n})) is an odd self-adjoint operator on the graded Hilbert space npn(L2([1,),n,En))\bigoplus_{n}p_{n}(L^{2}([1,\infty),\mathcal{H}_{n,E_{n}})) satisfying:

  • ((pn)Fs(pn))((p_{n})F_{s}(p_{n})) is in the multiplier algebra of (pn)Asq(X;E)(pn)(p_{n})A_{sq}(X;E)(p_{n});

  • ((pn)Fs(pn))2(pn)((p_{n})F_{s}(p_{n}))^{2}-(p_{n}) is in (pn)Asq(X;E)(pn)(p_{n})A_{sq}(X;E)(p_{n}).

Hence Definition 6.6 produces an index class in K0((pn)Asq(X;E)(pn))K_{0}((p_{n})A_{sq}(X;E)(p_{n})). Composing with the K0K_{0}-map induced by the inclusion (pn)Asq(X;E)(pn)Asq(X;E)(p_{n})A_{sq}(X;E)(p_{n})\hookrightarrow A_{sq}(X;E), we get an element in K0(Asq(X;E))K_{0}(A_{sq}(X;E)), denoted by IndF,sq[(pn)]\mathrm{Ind}_{F,sq}[(p_{n})]. Analogous to [17, Lemma 12.3.11], we obtain the following:

Proposition 6.7.

Through the process above together with a suspension argument, we get well-defined KK_{\ast}-maps for =0,1:\ast=0,1:

IndF,sq:K(Csq(X)n𝔅(n))K(Asq(X;E)),\mathrm{Ind}_{F,sq}:K_{\ast}\big{(}C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\rightarrow K_{\ast}(A_{sq}(X;E)),

which are called the strongly quasi-local index maps.

Finally, we have the follwing result (comparing with Proposition 6.1). The proof is almost identical to that for [17, Proposition 12.3.13 and Proposition 12.6.3], hence omitted.

Proposition 6.8.

Given s[1,)s\in[1,\infty), let ιs:Asq(X;E)Csq(X,E)n𝔅(n,En)\iota^{s}:A_{sq}(X;E)\rightarrow C^{*}_{sq}(\mathcal{H}_{X,E})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}}) be the evaluation map at ss . Then the composition

K(Csq(X)n𝔅(n))IndF,sqK(Asq(X;E))ιsK(Csq(X,E)n𝔅(n,En))K_{*}\big{(}C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\big{)}\stackrel{{\scriptstyle\mathrm{Ind}_{F,sq}}}{{\longrightarrow}}K_{*}(A_{sq}(X;E))\stackrel{{\scriptstyle\iota^{s}_{*}}}{{\longrightarrow}}K_{*}\big{(}C^{*}_{sq}(\mathcal{H}_{X,E})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}})\big{)}

is an isomorphism.

7. Isomorphisms between twisted algebras in KK-theory

In this section, we study the KK-theory of the twisted algebras A(X;E)A(X;E) and Asq(X;E)A_{sq}(X;E) defined in Section 5.2. The main result is the following:

Proposition 7.1.

The inclusion map from A(X;E)A(X;E) to Asq(X;E)A_{sq}(X;E) induces an isomorphism in KK-theory.

The proof follows the outline of that in [17, Section 12.4], and the main ingredient is to use appropriate Mayer-Vietoris arguments for twisted algebras (Proposition 7.4). This allows us to chop the space into easily-handled pieces, on which we prove the required local isomorphisms (Proposition 7.5).

By saying that (Fn)n(F_{n})_{n\in\mathbb{N}} is a sequence of closed subsets in (En)(E_{n}), we mean that FnF_{n} is a closed subset of EnE_{n} for each nn. Firstly we define the following subalgebras associated to (Fn)(F_{n}), which is inspired by [17, Definition 6.3.5].

Definition 7.2.

For a sequence of closed subsets (Fn)(F_{n}) in (En)(E_{n}), we define 𝔸sq,(Fn)(X;E)\mathbb{A}_{sq,(F_{n})}(X;E) to be the set of elements (Tn,s)𝔸sq(X;E)(T_{n,s})\in\mathbb{A}_{sq}(X;E) satisfying the following: for each nn and ε>0\varepsilon>0 there exists sn,ε>0s_{n,\varepsilon}>0 such that for ssn,εs\geq s_{n,\varepsilon} we have

suppEn(Tn,s)𝒩ε(Fn)×𝒩ε(Fn).\mathrm{supp}_{E_{n}}(T_{n,s})\subseteq\mathcal{N}_{\varepsilon}(F_{n})\times\mathcal{N}_{\varepsilon}(F_{n}).

Denote by Asq,(Fn)(X;E)A_{sq,(F_{n})}(X;E) the norm closure of 𝔸sq,(Fn)(X;E)\mathbb{A}_{sq,(F_{n})}(X;E) in Asq(X;E)A_{sq}(X;E). Similarly, we define A(Fn)(X;E)A(X;E)A_{(F_{n})}(X;E)\subseteq A(X;E) in the case of twisted Roe algebra.

It is easy to see that Asq,(Fn)(X;E)A_{sq,(F_{n})}(X;E) and A(Fn)(X;E)A_{(F_{n})}(X;E) are closed two-side ideals in Asq(X;E)A_{sq}(X;E) and A(X;E)A(X;E) respectively. Moreover, we have the following:

Lemma 7.3.

Let (Fn)(F_{n}) and (Gn)(G_{n}) be two sequences of compact subsets in (En)(E_{n}). Then

Asq,(Fn)(X;E)Asq,(Gn)(X;E)=Asq,(FnGn)(X;E)A_{sq,(F_{n})}(X;E)\cap A_{sq,(G_{n})}(X;E)=A_{sq,(F_{n}\cap G_{n})}(X;E)

and

Asq,(Fn)(X;E)+Asq,(Gn)(X;E)=Asq,(FnGn)(X;E).A_{sq,(F_{n})}(X;E)+A_{sq,(G_{n})}(X;E)=A_{sq,(F_{n}\cup G_{n})}(X;E).

The same holds for twisted Roe algebras.

Proof.

We only prove the case of twisted strongly quasi-local algebras, while the Roe algebra case is similar. The first equation follows from a CC^{*}-algebraic fact that two intersections of ideals coincides with their product together with a basic fact for metric space: For a compact metric space KK, a closed cover (C,D)(C,D) of KK and ε>0\varepsilon>0, there exists δ>0\delta>0 such that 𝒩δ(C)𝒩δ(D)𝒩ε(CD)\mathcal{N}_{\delta}(C)\cap\mathcal{N}_{\delta}(D)\subseteq\mathcal{N}_{\varepsilon}(C\cap D).

For the second, we fix (Tn,s)𝔸sq,(FnGn)(X;E)(T_{n,s})\in\mathbb{A}_{sq,(F_{n}\cup G_{n})}(X;E). By definition, for each nn there is a strictly increasing sequence (sn,k)k(s_{n,k})_{k\in\mathbb{N}} in [1,)[1,\infty) tending to infinity such that for ssn,ks\geq s_{n,k} we have

suppEn(Tn,s)𝒩1k+1(FnGn)×𝒩1k+1(FnGn).\mathrm{supp}_{E_{n}}(T_{n,s})\subseteq\mathcal{N}_{\frac{1}{k+1}}(F_{n}\cup G_{n})\times\mathcal{N}_{\frac{1}{k+1}}(F_{n}\cup G_{n}).

For each nn, we construct an operator (Wn,s)s(W_{n,s})_{s} on L2((1,])n,EnL^{2}((1,\infty])\otimes\mathcal{H}_{n,E_{n}} as follows, where Wn,s𝔅(n,En)W_{n,s}\in\mathfrak{B}(\mathcal{H}_{n,E_{n}}). We set:

Wn,s={χ𝒩1(Fn),if 1ssn,1;sn,k+1ssn,k+1sn,kχ𝒩1k(Fn)+ssn,ksn,k+1sn,kχ𝒩1k+1(Fn),if sn,kssn,k+1,k.W_{n,s}=\begin{cases}~{}\chi_{\mathcal{N}_{1}(F_{n})},&\mbox{if~{}}1\leq s\leq s_{n,1};\\[8.5359pt] ~{}\frac{s_{n,k+1}-s}{s_{n,k+1}-s_{n,k}}\chi_{\mathcal{N}_{\frac{1}{k}}(F_{n})}+\frac{s-s_{n,k}}{s_{n,k+1}-s_{n,k}}\chi_{\mathcal{N}_{\frac{1}{k+1}}(F_{n})},&\mbox{if~{}}s_{n,k}\leq s\leq s_{n,k+1},k\in\mathbb{N}.\end{cases}

Then (Wn,s)(W_{n,s}) is in the multiplier algebra of Asq(X;E)A_{sq}(X;E). Now we consider:

(Tn,s)=(Wn,s)(Tn,s)+(1Wn,s)(Tn,s)(Wn,s)+(1Wn,s)(Tn,s)(1Wn,s).(T_{n,s})=(W_{n,s})(T_{n,s})+(1-W_{n,s})(T_{n,s})(W_{n,s})+(1-W_{n,s})(T_{n,s})(1-W_{n,s}).

It is clear that (Wn,s)(Tn,s)(W_{n,s})(T_{n,s}) and (1Wn,s)(Tn,s)(Wn,s)(1-W_{n,s})(T_{n,s})(W_{n,s}) are in Asq,(Fn)(X;E)A_{sq,(F_{n})}(X;E). Also note that from the construction above, for each nn and ssn,ks\geq s_{n,k} we have:

suppEn((1Wn,s)Tn,s(1Wn,s))𝒩1k+1(Gn)×𝒩1k+1(Gn).\mathrm{supp}_{E_{n}}((1-W_{n,s})T_{n,s}(1-W_{n,s}))\subseteq\mathcal{N}_{\frac{1}{k+1}}(G_{n})\times\mathcal{N}_{\frac{1}{k+1}}(G_{n}).

Hence we obtain that Asq,(Fn)(X;E)+Asq,(Gn)(X;E)A_{sq,(F_{n})}(X;E)+A_{sq,(G_{n})}(X;E) is dense in Asq,(FnGn)(X;E)A_{sq,(F_{n}\cup G_{n})}(X;E), which concludes the proof. ∎

Consequently, we obtain the following Mayer-Vietoris sequences for twisted algebras:

Proposition 7.4.

Let (Fn)(F_{n}) and (Gn)(G_{n}) be two sequences of compact subsets in (En)(E_{n}). Then we have the following six-term exact sequence:

K0(Asq,(FnGn)(X;E))K0(Asq,(Fn)(X;E))K0(Asq,(Gn)(X;E))K0(Asq,(FnGn)(X;E))K1(Asq,(FnGn)(X;E))K1(Asq,(Fn)(X;E))K1(Asq,(Gn)(X;E))K1(Asq,(FnGn)(X;E)).\begin{CD}K_{0}(A_{sq,(F_{n}\cap G_{n})}(X;E))@>{}>{}>K_{0}(A_{sq,(F_{n})}(X;E))\oplus K_{0}(A_{sq,(G_{n})}(X;E))@>{}>{}>K_{0}(A_{sq,(F_{n}\cup G_{n})}(X;E))\\ @A{}A{}A&&@V{}V{}V\\ K_{1}(A_{sq,(F_{n}\cup G_{n})}(X;E))@<{}<{}<K_{1}(A_{sq,(F_{n})}(X;E))\oplus K_{1}(A_{sq,(G_{n})}(X;E))@<{}<{}<K_{1}(A_{sq,(F_{n}\cap G_{n})}(X;E)).\end{CD}

The same holds in the case of twisted Roe algebra. Furthermore, we have the following commutative diagram:

\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(A(FnGn)(X;E))\textstyle{K_{*}(A_{(F_{n}\cap G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(A(Fn)(X;E))K(A(Gn)(X;E))\textstyle{K_{*}(A_{(F_{n})}(X;E))\oplus K_{*}(A_{(G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(A(FnGn)(X;E))\textstyle{K_{*}(A_{(F_{n}\cup G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\cdots}\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Asq,(FnGn)(X;E))\textstyle{K_{*}(A_{sq,(F_{n}\cap G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Asq,(Fn)(X;E))K(Asq,(Gn)(X;E))\textstyle{K_{*}(A_{sq,(F_{n})}(X;E))\oplus K_{*}(A_{sq,(G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K(Asq,(FnGn)(X;E))\textstyle{K_{*}(A_{sq,(F_{n}\cup G_{n})}(X;E))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\cdots}

where the vertical maps are induced by inclusions.

Proposition 7.4 allows us to chop the space into small pieces, on which we have the following “local isomorphism” result. Recall that a family {Yi}iI\{Y_{i}\}_{i\in I} of subspaces in a metric space YY is mutually RR-separated for some R>0R>0 if d(Yi,Yj)>Rd(Y_{i},Y_{j})>R for iji\neq j.

Proposition 7.5.

Let (Fn)(F_{n}) be a sequence of closed subsets in (En)(E_{n}) such that Fn=j=1Fj(n)F_{n}=\bigsqcup_{j=1}^{\infty}F_{j}^{(n)} for a mutually 33-separated family {Fj(n)}j\{F_{j}^{(n)}\}_{j} and there exist R>0R>0 and xj(n)Xnx^{(n)}_{j}\in X_{n} such that Fj(n)B(f(xj(n));R)F^{(n)}_{j}\subseteq B(f(x^{(n)}_{j});R). Then the inclusion map from A(Fn)(X;E)A_{(F_{n})}(X;E) to Asq,(Fn)(X;E)A_{sq,(F_{n})}(X;E) induces an isomorphism in KK-theory.

Before we prove Proposition 7.5, let us use it to finish the proof of Proposition 7.1. To achieve that, we need an extra lemma from [17, Lemma 12.4.5]:

Lemma 7.6.

For any s>0s>0, there exist MM\in\mathbb{N} and decompositions

Xn=Xn,1Xn,2Xn,M,for all n,X_{n}=X_{n,1}\sqcup X_{n,2}\sqcup\cdots\sqcup X_{n,M},\quad\mbox{for all }n\in\mathbb{N},

such that the family {B(fn(x);s)¯}xXn,i\big{\{}\overline{B(f_{n}(x);s)}\big{\}}_{x\in X_{n,i}} is mutually 33-separated for each nn\in\mathbb{N} and i=1,2,,Mi=1,2,\ldots,M,.

Proof of Proposition 7.1.

Given s>0s>0, let MM\in\mathbb{N} and {Xn,i}n,1iM\{X_{n,i}\}_{n\in\mathbb{N},1\leq i\leq M} be obtained by Lemma 7.6. Setting Wns:=𝒩s(fn(Xn))W^{s}_{n}:=\mathcal{N}_{s}(f_{n}(X_{n})) and Wn,is:=xXn,iB(fn(x);s)¯W_{n,i}^{s}:=\bigsqcup_{x\in X_{n,i}}\overline{B(f_{n}(x);s)}, we have Wns=i=1MWn,isW^{s}_{n}=\bigcup_{i=1}^{M}W_{n,i}^{s}. For each ii applying Proposition 7.5 to the sequence of subsets (Wn,is)n(W_{n,i}^{s})_{n}, we obtain that the inclusion map

A(Wn,is)(X;E)Asq,(Wn,is)(X;E)A_{(W_{n,i}^{s})}(X;E)\rightarrow A_{sq,(W_{n,i}^{s})}(X;E)

induces an isomorphism in KK-theory. Applying the Mayer-Vietoris sequence from Proposition 7.4 (M1)(M-1)-times (and Proposition 7.5 again to deal with the intersection) together with the Five Lemma, we obtain that the inclusion map

A(Wns)(X;E)Asq,(Wns)(X;E)A_{(W^{s}_{n})}(X;E)\rightarrow A_{sq,(W^{s}_{n})}(X;E)

induces an isomorphism in KK-theory. Finally, note that condition (3)(3) in Definition 5.7 and condition (3)(3) in Definition 5.10 imply that

A(X;E)=limsA(Wns)(X;E)andAsq(X;E)=limsAsq,(Wns)(X;E).A(X;E)=\lim_{s\rightarrow\infty}A_{(W^{s}_{n})}(X;E)\quad\mbox{and}\quad A_{sq}(X;E)=\lim_{s\rightarrow\infty}A_{sq,(W^{s}_{n})}(X;E).

Hence we conclude the proof. ∎

The rest of this section is devote to the proof of Proposition 7.5. First let us introduce some more notation:

Let (Fn)(F_{n}) and (Gn)(G_{n}) be sequences of closed subsets in (En)(E_{n}). We define:

Asq(X;(Gn)):=(1nχGn)nAsq(X;E)(1nχGn)nA_{sq}(X;(G_{n})):=(1_{\mathcal{H}_{n}}\otimes\chi_{G_{n}})_{n}\cdot A_{sq}(X;E)\cdot(1_{\mathcal{H}_{n}}\otimes\chi_{G_{n}})_{n}

and

Asq,(Fn)(X;(Gn)):=Asq(X;(Gn))Asq,(Fn)(X;E).A_{sq,(F_{n})}(X;(G_{n})):=A_{sq}(X;(G_{n}))\cap A_{sq,(F_{n})}(X;E).

Also define A(X;(Gn))A(X;(G_{n})) and A(Fn)(X;(Gn))A_{(F_{n})}(X;(G_{n})) in a similar way. Moreover, given a sequence of subspaces ZnXn(n)Z_{n}\subseteq X_{n}~{}(n\in\mathbb{N}) we define:

Asq((Zn);(Gn)):=(χZnIdEn2)nAsq(X;(Gn))(χZnIdEn2)nA_{sq}((Z_{n});(G_{n})):=\big{(}\chi_{Z_{n}}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\big{)}_{n}\cdot A_{sq}(X;(G_{n}))\cdot\big{(}\chi_{Z_{n}}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\big{)}_{n}

and

Asq,(Fn)((Zn);(Gn)):=(χZnIdEn2)nAsq,(Fn)(X;(Gn))(χZnIdEn2)n.A_{sq,(F_{n})}((Z_{n});(G_{n})):=\big{(}\chi_{Z_{n}}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\big{)}_{n}\cdot A_{sq,(F_{n})}(X;(G_{n}))\cdot\big{(}\chi_{Z_{n}}\otimes\mathrm{Id}_{\mathcal{L}^{2}_{E_{n}}}\big{)}_{n}.

Also define A((Zn);(Gn))A((Z_{n});(G_{n})) and A(Fn)((Zn);(Gn))A_{(F_{n})}((Z_{n});(G_{n})) in a similar way.

Now we move back to the setting of Proposition 7.5. Let (Fn)(F_{n}) be a sequence of closed subsets in (En)(E_{n}) such that Fn=j=1Fj(n)F_{n}=\bigsqcup_{j=1}^{\infty}F_{j}^{(n)} for a mutually 33-separated family {Fj(n)}j\{F_{j}^{(n)}\}_{j}. Taking Gj(n)=𝒩1(Fj(n))G_{j}^{(n)}=\mathcal{N}_{1}(F_{j}^{(n)}) for each jj and nn, we define the “restricted product”:

jresAsq,(Fj(n))(X;(Gj(n))):=(jAsq,(Fj(n))(X;(Gj(n))))Asq,(Fn)(X;E).\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)})):=\big{(}\prod_{j}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\big{)}\cap A_{sq,(F_{n})}(X;E).

Similarly, we define jresA(Fj(n))(X;(Gj(n)))\prod_{j}^{res}A_{(F_{j}^{(n)})}(X;(G_{j}^{(n)})) in the case of twisted Roe algebra.

The following lemma is a key step in the proof of Proposition 7.5:

Lemma 7.7.

Using the same notation as above, the inclusion

i:jresAsq,(Fj(n))(X;(Gj(n)))Asq,(Fn)(X;E)i:\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\hookrightarrow A_{sq,(F_{n})}(X;E)

induces an isomorphism in KK-theory. The same holds for the twisted Roe algebra case.

Proof.

We only prove the case of twisted strongly quasi-local algebras, and the Roe case is similar. The proof follows the outline of [17, Theorem 6.4.20].

Consider the following quotient algebras:

Asq,(Fn),Q(X;E):=Asq,(Fn)(X;E)Asq,(Fn),0(X;E)andjres,QAsq,(Fj(n))(X;(Gj(n))):=jresAsq,(Fj(n))(X;(Gj(n)))jresAsq,(Fj(n)),0(X;(Gj(n))),A_{sq,(F_{n}),Q}(X;E):=\frac{A_{sq,(F_{n})}(X;E)}{A_{sq,(F_{n}),0}(X;E)}\quad\mbox{and}\quad\prod_{j}^{res,Q}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)})):=\frac{\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))}{\prod_{j}^{res}A_{sq,(F_{j}^{(n)}),0}(X;(G_{j}^{(n)}))},

where Asq,(Fn),0(X;E)A_{sq,(F_{n}),0}(X;E) consists of elements (Tn,s)Asq,(Fn)(X;E)(T_{n,s})\in A_{sq,(F_{n})}(X;E) such that limsTn,s=0\lim\limits_{s\rightarrow\infty}T_{n,s}=0 for each nn, and Asq,(Fj(n)),0(X;(Gj(n)))A_{sq,(F_{j}^{(n)}),0}(X;(G_{j}^{(n)})) is defined in a simialr way. From a standard Eilenberg Swindle argument (see for example [17, Lemma 6.4.11]), Asq,(Fn),0(X;E)A_{sq,(F_{n}),0}(X;E) and jresAsq,(Fj(n)),0(X;(Gj(n)))\prod_{j}^{res}A_{sq,(F_{j}^{(n)}),0}(X;(G_{j}^{(n)})) both have trivial KK-theories. Hence the quotient maps

Asq,(Fn)(X;E)Asq,(Fn),Q(X;E)andjresAsq,(Fj(n))(X;(Gj(n)))jres,QAsq,(Fj(n))(X;(Gj(n)))A_{sq,(F_{n})}(X;E)\rightarrow A_{sq,(F_{n}),Q}(X;E)\quad\mbox{and}\quad\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\rightarrow\prod_{j}^{res,Q}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))

induce isomophisms in KK-theory.

It is clear that the inclusion ii induces a *-homomorphism:

iQ:jres,QAsq,(Fj(n))(X;(Gj(n)))Asq,(Fn),Q(X;E).i_{Q}:\prod_{j}^{res,Q}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\rightarrow A_{sq,(F_{n}),Q}(X;E).

We also define a map

γ:Asq,(Fn)(X;E)jresAsq,(Fj(n))(X;(Gj(n)))by(Tn,s)j(χGj(n)Tn,sχGj(n)),\gamma:A_{sq,(F_{n})}(X;E)\rightarrow\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\quad\mbox{by}\quad(T_{n,s})\mapsto\prod_{j}(\chi_{G_{j}^{(n)}}T_{n,s}\chi_{G_{j}^{(n)}}),

which induces a *-homomorphism

γQ:Asq,(Fn),Q(X;E)jres,QAsq,(Fj(n))(X;(Gj(n))).\gamma_{Q}:A_{sq,(F_{n}),Q}(X;E)\rightarrow\prod_{j}^{res,Q}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)})).

We can check that the compositions iQγQi_{Q}\circ\gamma_{Q} and γQiQ\gamma_{Q}\circ i_{Q} are both the identity maps. Hence iQi_{Q} is an isomorphism in KK-theory, which implies that the inclusion ii induces an isomorphism in KK-theory. ∎

Proof of Proposition 7.5.

We use the same notation as above and define Gj(n)=𝒩1(Fj(n))G_{j}^{(n)}=\mathcal{N}_{1}(F_{j}^{(n)}) for each nn\in\mathbb{N} and jj. Then there is a commutative diagram

A(Fn)(X;E)Asq,(Fn)(X;E)jresA(Fj(n))(X;(Gj(n)))jresAsq,(Fj(n))(X;(Gj(n)))\begin{CD}A_{(F_{n})}(X;E)@>{}>{}>A_{sq,(F_{n})}(X;E)\\ @A{}A{}A@A{}A{}A\\ \prod_{j}^{res}A_{(F_{j}^{(n)})}(X;(G_{j}^{(n)}))@>{}>{}>\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))\end{CD}

where all maps involved are inclusion maps. It follows from Lemma 7.7 that vertical maps induce isomorphisms in KK-theory. Hence it suffices to show that the bottom horizontal map induces an isomorphism in KK-theory.

Note that conditions (3) in Definition 5.7 and 5.10 imply that

jresA(Fj(n))(X;(Gj(n)))=limmjresA(Fj(n))((B(xj(n);m));(Gj(n)))\prod_{j}^{res}A_{(F_{j}^{(n)})}(X;(G_{j}^{(n)}))=\lim_{m\rightarrow\infty}\prod_{j}^{res}A_{(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}

and

jresAsq,(Fj(n))(X;(Gj(n)))=limmjresAsq,(Fj(n))((B(xj(n);m));(Gj(n))).\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}(X;(G_{j}^{(n)}))=\lim_{m\rightarrow\infty}\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}.

Hence it suffices to show that for each fixed mm, the inclusion

jresA(Fj(n))((B(xj(n);m));(Gj(n)))jresAsq,(Fj(n))((B(xj(n);m));(Gj(n)))\prod_{j}^{res}A_{(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}\hookrightarrow\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}

induces an isomorphism in KK-theory.

Note that the inclusion {xj(n)}B(xj(n);m)\{x^{(n)}_{j}\}\hookrightarrow B(x^{(n)}_{j};m) induces a commutative diagram

jresA(Fj(n))((B(xj(n);m));(Gj(n)))jresAsq,(Fj(n))((B(xj(n);m));(Gj(n)))jresA(Fj(n))(({xj(n)});(Gj(n)))jresAsq,(Fj(n))(({xj(n)});(Gj(n)))\begin{CD}\prod_{j}^{res}A_{(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}@>{}>{}>\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}\big{(}(B(x^{(n)}_{j};m));(G_{j}^{(n)})\big{)}\\ @A{}A{}A@A{}A{}A\\ \prod_{j}^{res}A_{(F_{j}^{(n)})}\big{(}(\{x^{(n)}_{j}\});(G_{j}^{(n)})\big{)}@>{}>{}>\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}\big{(}(\{x^{(n)}_{j}\});(G_{j}^{(n)})\big{)}\end{CD}

where the vertical maps are *-isomorphisms by standard arguments (see for example Proposition 2.9). Also note that the bottom horizontal inclusion map jresA(Fj(n))(({xj(n)});(Gj(n)))jresAsq,(Fj(n))(({xj(n)});(Gj(n)))\prod_{j}^{res}A_{(F_{j}^{(n)})}((\{x^{(n)}_{j}\});(G_{j}^{(n)}))\hookrightarrow\prod_{j}^{res}A_{sq,(F_{j}^{(n)})}((\{x^{(n)}_{j}\});(G_{j}^{(n)})) is a *-isomorphism as well, since conditions (1)(1) and (3)(3) in Definition 5.7 and 5.10 are equivalent in this case. Hence we conclude the proof. ∎

8. Proof of Theorem B

In this final section, we finish the proof of the main result.

Proof of Theorem B.

Consider the following commutative diagram

K(C(X)n𝔅(n))K(A(X;E))K(C(X,E)n𝔅(n,En))K(Csq(X)n𝔅(n))K(Asq(X;E))K(Csq(X,E)n𝔅(n,En)),\begin{CD}K_{*}(C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}))@>{}>{}>K_{*}(A(X;E))@>{}>{}>K_{*}(C^{*}(\mathcal{H}_{X,E})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}}))\\ @V{}V{}V@V{}V{}V@V{}V{}V\\ K_{*}(C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n}))@>{}>{}>K_{*}(A_{sq}(X;E))@>{}>{}>K_{*}(C^{*}_{sq}(\mathcal{H}_{X,E})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n,E_{n}})),\end{CD}

where the horizontal maps come from Proposition 6.1 and Proposition 6.8 and all vertical maps are induced by inclusions. From Proposition 6.1 and Proposition 6.8 again, we know that the compositions of horizontal maps are isomorphisms. The middle vertical map is an isomorphism by Proposition 7.1, and the left vertical map identifies with the right one due to Proposition 3.17. Hence the inclusion map

C(X)n𝔅(n)Csq(X)n𝔅(n)C^{*}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})\hookrightarrow C^{*}_{sq}(\mathcal{H}_{X})\cap\prod_{n}\mathfrak{B}(\mathcal{H}_{n})

induces an isomorphism in KK-theory from diagram chasing. Finally combining with Lemma 4.7, we finish the proof. ∎

Appendix A Proof of Proposition 5.4

This appendix is devoted to the proof of Proposition 5.4. We follow the outline of that for [17, Proposition 12.1.10] and use the same notation as in Section 5.1.

Define a function f:[1,1]f:\mathbb{R}\to[-1,1] by f(x)=x1+x2f(x)=\frac{x}{\sqrt{1+x^{2}}}, xx\in\mathbb{R}. Also fix a smooth even function g:[0,)g:\mathbb{R}\rightarrow[0,\infty) of integral one and having compactly supported Fourier transform. It follows from the proof of [17, Proposition 12.1.10] that given ε>0\varepsilon>0 there exists δ>0\delta>0 such that the convolution Ψ:=fgδ\Psi:=f\ast g_{\delta} satisfies condition (1)-(8) in Proposition 5.4, where gδ(x):=1δg(xδ)g_{\delta}(x):=\frac{1}{\delta}g(\frac{x}{\delta}) for xx\in\mathbb{R}. In the following, we will prove condition (9) and (10) therein.

Let us recall the following two lemmas, which follow from [17, Lemma 12.1.6 and 12.1.8].

Lemma A.1.

For all s[1,)s\in[1,\infty), xEx\in E and tt\in\mathbb{R}, we have that

f(Bs,xt)=2π0(Bs,xt)(1+λ2+(Bs,xt)2)1dλ,f(B_{s,x}-t)=\frac{2}{\pi}\int_{0}^{\infty}(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}\mathrm{d}\lambda,

where the integral on the right converges in the strong-\ast operator topology.

Moreover for any s[1,)s\in[1,\infty), x,yEx,y\in E and tt\in\mathbb{R}, we have that

f(Bs,xt)f(Bs,yt)=\displaystyle f(B_{s,x}-t)-f(B_{s,y}-t)= cxy(1+(Bs,xt)2)12+2π0(Bs,yt)(1+λ2+(Bs,yt)2)1\displaystyle c_{x-y}(1+(B_{s,x}-t)^{2})^{-\frac{1}{2}}+\frac{2}{\pi}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}
((Bs,yt)cyx+cyx(Bs,xt))(1+λ2+(Bs,xt)2)1dλ,\displaystyle\cdot\big{(}(B_{s,y}-t)c_{y-x}+c_{y-x}(B_{s,x}-t)\big{)}(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}\mathrm{d}\lambda,

where the integral on the right again converges in the strong-\ast topology.

Proof.

The first formula follows from that for any tt\in\mathbb{R}, we have the formula

xt1+(xt)2=2π0xt1+λ2+(xt)2dλ\frac{x-t}{\sqrt{1+(x-t)^{2}}}=\frac{2}{\pi}\int_{0}^{\infty}\frac{x-t}{1+\lambda^{2}+(x-t)^{2}}\mathrm{d}\lambda

and functional calculus. And the second formula follows by easy computations as in the proof of [17, Lemma 12.1.6]. ∎

Lemma A.2.

For any R0R\geq 0, λ[0,)\lambda\in[0,\infty), xEx\in E and s2ds\geq 2d, we have that

(1+λ2+Bs,x2)12(1χx,R)(12+λ2+R2)14.\|(1+\lambda^{2}+B_{s,x}^{2})^{-\frac{1}{2}}(1-\chi_{x,R})\|\leq\big{(}\frac{1}{2}+\lambda^{2}+R^{2}\big{)}^{-\frac{1}{4}}.
Proof of Proposition 5.4(9)..

Given ε1>0\varepsilon_{1}>0, there exists a compact subset KK\subseteq\mathbb{R} and a function h:[0,)h:\mathbb{R}\to[0,\infty) of integral one and support in KK such that gδh1<ε14\|g_{\delta}-h\|_{1}<\frac{\varepsilon_{1}}{4}. Setting Φ:=fh\Phi:=f\ast h, we have:

ΨΦ=fgδfh=f(gδh)fgδh1<ε14,\|\Psi-\Phi\|_{\infty}=\|f\ast g_{\delta}-f\ast h\|_{\infty}=\|f\ast(g_{\delta}-h)\|_{\infty}\leq\|f\|_{\infty}\cdot\|g_{\delta}-h\|_{1}<\frac{\varepsilon_{1}}{4},

which implies Φ(Bs,x)Ψ(Bs,x)<ε14\|\Phi(B_{s,x})-\Psi(B_{s,x})\|<\frac{\varepsilon_{1}}{4}. Hence it suffices to show that there exists R1>0R_{1}>0 such that for all s2ds\geq 2d and xEx\in E, we have

(Φ(Bs,x)21)(1χx,R1)<ε14.\|(\Phi(B_{s,x})^{2}-1)(1-\chi_{x,R_{1}})\|<\frac{\varepsilon_{1}}{4}.

Now we set ω:\omega:\mathbb{R}\to\mathbb{R} by ω(x):=11+x2\omega(x):=\frac{1}{1+x^{2}}. For any R0R\geq 0, we have:

(Φ(Bs,x)21)(1χx,R)\displaystyle\|(\Phi(B_{s,x})^{2}-1)(1-\chi_{x,R})\| =((fh)21)(Bs,x)(1χx,R)\displaystyle=\big{\|}\big{(}(f\ast h)^{2}-1\big{)}(B_{s,x})\cdot(1-\chi_{x,R})\big{\|}
=((fh)21ω)(Bs,x)ω(Bs,x)(1χx,R)\displaystyle=\big{\|}\big{(}\frac{(f\ast h)^{2}-1}{\omega}\big{)}(B_{s,x})\cdot\omega(B_{s,x})(1-\chi_{x,R})\big{\|}
((fh)21ω)(Bs,x)(1+Bs,x2)12(1+Bs,x2)12(1χx,R)\displaystyle\leq\big{\|}\big{(}\frac{(f\ast h)^{2}-1}{\omega}\big{)}(B_{s,x})\big{\|}\cdot\big{\|}(1+B_{s,x}^{2})^{-\frac{1}{2}}\big{\|}\cdot\big{\|}(1+B_{s,x}^{2})^{-\frac{1}{2}}(1-\chi_{x,R})\big{\|}
((fh)21ω)(Bs,x)(1+Bs,x2)12(12+R2)14,\displaystyle\leq\big{\|}\big{(}\frac{(f\ast h)^{2}-1}{\omega}\big{)}(B_{s,x})\big{\|}\cdot\big{\|}(1+B_{s,x}^{2})^{-\frac{1}{2}}\big{\|}\cdot\big{(}\frac{1}{2}+R^{2}\big{)}^{-\frac{1}{4}},

where the last inequality comes from Lemma A.2 for λ=0\lambda=0. We claim that the function (fh)21ω\frac{(f\ast h)^{2}-1}{\omega} is bounded on \mathbb{R}. Indeed, since hh has support on KK and integral one we have:

((fh)21ω)(x)\displaystyle\big{(}\frac{(f\ast h)^{2}-1}{\omega}\big{)}(x) =(f(xt)h(t)dt+1)(f(xt)h(t)dt1)(1+x2)\displaystyle=\big{(}\int_{\mathbb{R}}f(x-t)h(t)\mathrm{d}t+1\big{)}\big{(}\int_{\mathbb{R}}f(x-t)h(t)\mathrm{d}t-1\big{)}(1+x^{2})
=(K(f(xt)+1)h(t)dt)(K(f(xt)1)h(t)dt)(1+x2).\displaystyle=\big{(}\int_{K}\big{(}f(x-t)+1\big{)}h(t)\mathrm{d}t\big{)}\big{(}\int_{K}\big{(}f(x-t)-1\big{)}h(t)\mathrm{d}t\big{)}(1+x^{2}).

Direct calculation shows that

(f(xt)1)(1+x2)\displaystyle\big{(}f(x-t)-1\big{)}(1+x^{2}) =x1+(xt)2x(xt)+1+(xt)21+x2x2,\displaystyle=-\frac{x}{\sqrt{1+(x-t)^{2}}}\cdot\frac{x}{(x-t)+\sqrt{1+(x-t)^{2}}}\cdot\frac{1+x^{2}}{x^{2}},

which is uniformly bounded on [0,+)[0,+\infty) for tKt\in K. Similarly, (f(xt)+1)(1+x2)\big{(}f(x-t)+1\big{)}(1+x^{2}) is uniformly bounded on (,0](-\infty,0] for tKt\in K. Hence (fh)21ω\frac{(f\ast h)^{2}-1}{\omega} is bounded on \mathbb{R}.

On the other hand, note that (1+Bs,x2)121\|(1+B_{s,x}^{2})^{-\frac{1}{2}}\|\leq 1 from functional calculus. Hence we obtain that (Φ(Bs,x)21)(1χx,R)\|(\Phi(B_{s,x})^{2}-1)(1-\chi_{x,R})\| tends to zero as RR tends to infinity, which conclude the proof. ∎

Proof of Proposition 5.4(10)..

Given ε2>0\varepsilon_{2}>0, there exists a compact subset KK\subseteq\mathbb{R} and a function h:[0,)h:\mathbb{R}\to[0,\infty) of integral one and support in KK such that gδh1<ε23\|g_{\delta}-h\|_{1}<\frac{\varepsilon_{2}}{3}. Setting Φ:=fh\Phi:=f\ast h, we have Φ(Bs,x)Ψ(Bs,x)<ε23\|\Phi(B_{s,x})-\Psi(B_{s,x})\|<\frac{\varepsilon_{2}}{3}. Hence it suffices to show that for any r>0r>0 there exists R2>0R_{2}>0 such that for any s2ds\geq 2d and x,yEx,y\in E with dE(x,y)rd_{E}(x,y)\leq r, we have

(Φ(Bs,x)Φ(Bs,y))(1χx,R2)<ε23.\|(\Phi(B_{s,x})-\Phi(B_{s,y}))(1-\chi_{x,R_{2}})\|<\frac{\varepsilon_{2}}{3}.

For any R>0R>0, we have:

(Φ\displaystyle(\Phi (Bs,x)Φ(Bs,y))(1χx,R)=((fh)(Bs,x)(fh)(Bs,y))(1χx,R)\displaystyle(B_{s,x})-\Phi(B_{s,y}))(1-\chi_{x,R})=\big{(}(f\ast h)(B_{s,x})-(f\ast h)(B_{s,y})\big{)}(1-\chi_{x,R})
=(f(Bs,xt)f(Bs,yt))h(t)dt(1χx,R).\displaystyle=\int_{\mathbb{R}}\big{(}f(B_{s,x}-t)-f(B_{s,y}-t)\big{)}h(t)\mathrm{d}t\cdot(1-\chi_{x,R}).

Combining with Lemma A.1, we have

(Φ(Bs,x)Φ(Bs,y))(1χx,R)\displaystyle(\Phi(B_{s,x})-\Phi(B_{s,y}))(1-\chi_{x,R})
=(cxy(1+(Bs,xt)2)12+2π0(Bs,yt)(1+λ2+(Bs,yt)2)1\displaystyle=\int_{\mathbb{R}}\Bigg{(}c_{x-y}(1+(B_{s,x}-t)^{2})^{-\frac{1}{2}}+\frac{2}{\pi}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}
((Bs,yt)cyx+cyx(Bs,xt))(1+λ2+(Bs,xt)2)1dλ)h(t)dt(1χx,R)\displaystyle\quad\cdot\big{(}(B_{s,y}-t)c_{y-x}+c_{y-x}(B_{s,x}-t)\big{)}(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}\mathrm{d}\lambda\Bigg{)}h(t)\mathrm{d}t\cdot(1-\chi_{x,R})
=Kcxy(1+(Bs,xt)2)12(1χx,R)h(t)dt\displaystyle=\int_{K}c_{x-y}(1+(B_{s,x}-t)^{2})^{-\frac{1}{2}}(1-\chi_{x,R})h(t)\mathrm{d}t
+2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1(Bs,yt)cyx(1+λ2+(Bs,xt)2)1(1χx,R)dλh(t)dt\displaystyle\quad+\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}(B_{s,y}-t)c_{y-x}(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t
+2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1cyx(Bs,xt)(1+λ2+(Bs,xt)2)1(1χx,R)dλh(t)dt.\displaystyle\quad+\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}c_{y-x}(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t.

Then it is suffices to show that each of the three terms on the right side tends to zero as RR tends to infinity.

For the first term, note that the following constant

N1:=suptK,x1+x21+(xt)2N_{1}:=\sup_{t\in K,x\in\mathbb{R}}\frac{\sqrt{1+x^{2}}}{\sqrt{1+(x-t)^{2}}}

is finite since KK is compact. Hence using Lemma A.2 for λ=0\lambda=0, we obtain

K\displaystyle\Big{\|}\int_{K} cxy(1+(Bs,xt)2)12(1χx,R)h(t)dt\displaystyle c_{x-y}(1+(B_{s,x}-t)^{2})^{-\frac{1}{2}}(1-\chi_{x,R})h(t)\mathrm{d}t\Big{\|}
Kcxy(1+(Bs,xt)2)12(1+Bs,x2)12(1+Bs,x2)12(1χx,R)h(t)dt\displaystyle\leq\int_{K}\|c_{x-y}\|\cdot\|(1+(B_{s,x}-t)^{2})^{-\frac{1}{2}}(1+B_{s,x}^{2})^{\frac{1}{2}}\|\cdot\|(1+B_{s,x}^{2})^{-\frac{1}{2}}(1-\chi_{x,R})\|h(t)\mathrm{d}t
rN1(12+R2)14,\displaystyle\leq r\cdot N_{1}\cdot\big{(}\frac{1}{2}+R^{2}\big{)}^{-\frac{1}{4}},

which tends to zero as RR tends to infinity.

For the second term, note that

2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1(Bs,yt)cyx(1+λ2+(Bs,xt)2)1(1χx,R)dλh(t)dt\displaystyle\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}(B_{s,y}-t)c_{y-x}(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t
=2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1(Bs,yt)cyx(1+λ2+(Bs,xt)2)12\displaystyle=\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}(B_{s,y}-t)\cdot c_{y-x}\cdot(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}
(1+λ2+(Bs,xt)2)12(1+λ2+Bs,x2)12(1+λ2+Bs,x2)12(1χx,R)dλh(t)dt\displaystyle\quad\cdot(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}(1+\lambda^{2}+B_{s,x}^{2})^{\frac{1}{2}}\cdot(1+\lambda^{2}+B_{s,x}^{2})^{-\frac{1}{2}}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t

From functional calculus, for any tKt\in K and λ[0,)\lambda\in[0,\infty) we have

(Bs,yt)(1+λ2+(Bs,yt)2)1(Bs,yt)1\|(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}(B_{s,y}-t)\|\leq 1

and

(1+λ2+(Bs,xt)2)12(1+λ2)12.\|(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}\|\leq(1+\lambda^{2})^{-\frac{1}{2}}.

Also note that the constant

N2:=suptK,x,λ[0,)1+λ2+x21+λ2+(xt)2N_{2}:=\sup_{t\in K,x\in\mathbb{R},\lambda\in[0,\infty)}\frac{\sqrt{1+\lambda^{2}+x^{2}}}{\sqrt{1+\lambda^{2}+(x-t)^{2}}}

is finite since KK is compact. Hence using Lemma A.2, we obtain

2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1(Bs,yt)cyx(1+λ2+(Bs,xt)2)1(1χx,R)dλh(t)dt\displaystyle\Big{\|}\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}(B_{s,y}-t)c_{y-x}(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t\Big{\|}
2π1rN20(1+λ2)12(12+λ2+R2)14dλ,\displaystyle\leq\frac{2}{\pi}\cdot 1\cdot r\cdot N_{2}\cdot\int_{0}^{\infty}(1+\lambda^{2})^{-\frac{1}{2}}\big{(}\frac{1}{2}+\lambda^{2}+R^{2}\big{)}^{-\frac{1}{4}}\mathrm{d}\lambda,

which tends to zero as RR tends to infinity.

Finally, let us look at the last term. Note that

2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1cyx(Bs,xt)(1+λ2+(Bs,xt)2)1(1χx,R)dλh(t)dt\displaystyle\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}c_{y-x}(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t
=2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1cyx(Bs,xt)(1+λ2+(Bs,xt)2)12\displaystyle=\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}\cdot c_{y-x}\cdot(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}
(1+λ2+(Bs,xt)2)12(1+λ2+Bs,x2)12(1+λ2+Bs,x2)12(1χx,R)dλh(t)dt.\displaystyle\quad\cdot(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}(1+\lambda^{2}+B_{s,x}^{2})^{\frac{1}{2}}\cdot(1+\lambda^{2}+B_{s,x}^{2})^{-\frac{1}{2}}(1-\chi_{x,R})\mathrm{d}\lambda h(t)\mathrm{d}t.

It is easy to see that

supx|x1+λ2+x2|12(1+λ2)12.\sup_{x\in\mathbb{R}}\big{|}\frac{x}{1+\lambda^{2}+x^{2}}\big{|}\leq\frac{1}{2}(1+\lambda^{2})^{-\frac{1}{2}}.

Hence functional calculus gives that for any tKt\in K,

(Bs,yt)(1+λ2+(Bs,yt)2)112(1+λ2)12.\|(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}\|\leq\frac{1}{2}(1+\lambda^{2})^{-\frac{1}{2}}.

Note also that functional calculus give that for any tKt\in K and λ[0,)\lambda\in[0,\infty),

(Bs,xt)(1+λ2+(Bs,xt)2)121.\|(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-\frac{1}{2}}\|\leq 1.

Then using Lemma A.2, we have

2πK0(Bs,yt)(1+λ2+(Bs,yt)2)1cyx(Bs,xt)(1+λ2+(Bs,xt)2)1(1χx,R)dλg(t)dt\displaystyle\Big{\|}\frac{2}{\pi}\int_{K}\int_{0}^{\infty}(B_{s,y}-t)(1+\lambda^{2}+(B_{s,y}-t)^{2})^{-1}c_{y-x}(B_{s,x}-t)(1+\lambda^{2}+(B_{s,x}-t)^{2})^{-1}(1-\chi_{x,R})\mathrm{d}\lambda g(t)\mathrm{d}t\Big{\|}
2πr1N2012(1+λ2)12(12+λ2+R2)14dλ,\displaystyle\leq\frac{2}{\pi}\cdot r\cdot 1\cdot N_{2}\cdot\int_{0}^{\infty}\frac{1}{2}(1+\lambda^{2})^{-\frac{1}{2}}\big{(}\frac{1}{2}+\lambda^{2}+R^{2}\big{)}^{-\frac{1}{4}}\mathrm{d}\lambda,

which tends to zero as RR tends to infinity. Hence we conclude the proof. ∎

References

  • [1] Alexander Engel, Rough index theory on spaces of polynomial growth and contractibility, arXiv preprint arXiv:1505.03988 (2015).
  • [2] Erik Guentner, Romain Tessera, and Guoliang Yu, A notion of geometric complexity and its application to topological rigidity, Invent. Math. 189 (2012), no. 2, 315–357. MR 2947546
  • [3] Nigel Higson, John Roe, and Guoliang Yu, A coarse Mayer-Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 1, 85–97.
  • [4] Ana Khukhro, Kang Li, Federico Vigolo, and Jiawen Zhang, On the structure of asymptotic expanders, arXiv:1910.13320v2 (2019).
  • [5] Mojzesz Kirszbraun, Über die zusammenziehende und lipschitzsche transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77–108.
  • [6] B. V. Lange and V. S. Rabinovich, Noethericity of multidimensional discrete convolution operators, Mat. Zametki 37 (1985), no. 3, 407–421, 462. MR 790430
  • [7] Kang Li, Piotr Nowak, Ján Špakula, and Jiawen Zhang, Quasi-local algebras and asymptotic expanders, arXiv:1908.07814, to appear in Groups, Geometry and Dynamics.
  • [8] Kang Li, Zhijie Wang, and Jiawen Zhang, A quasi-local characterisation of LpL^{p}-Roe algebras, Journal of Mathematical Analysis and Applications 474 (2019), no. 2, 1213–1237.
  • [9] John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87–113, 115–136. MR 918459
  • [10] by same author, Coarse cohomology and index theory on complete riemannian manifolds, vol. 497, American Mathematical Soc., 1993.
  • [11] by same author, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1399087
  • [12] Thomas Schick, The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1285–1307. MR 3728662
  • [13] Ján Špakula and Aaron Tikuisis, Relative Commutant Pictures of Roe Algebras, Comm. Math. Phys. 365 (2019), no. 3, 1019–1048.
  • [14] Ján Špakula and Jiawen Zhang, Quasi-locality and property A, Journal of Functional Analysis 278 (2020), no. 1, 108299.
  • [15] R. Willett, personal communications, 2021.
  • [16] Rufus Willett, Band-dominated operators and the stable Higson corona, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.)–The Pennsylvania State University.
  • [17] Rufus Willett and Guoliang Yu, Higher index theory, vol. 189, Cambridge University Press, 2020.
  • [18] Guoliang Yu, Coarse Baum-Connes conjecture, KK-Theory 9 (1995), no. 3, 199–221. MR 1344138
  • [19] by same author, Zero-in-the-spectrum conjecture, positive scalar curvature and asymptotic dimension, Invent. Math. 127 (1997), no. 1, 99–126. MR 1423027
  • [20] by same author, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325–355. MR 1626745
  • [21] by same author, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201–240.