This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of 𝒆+𝒆𝝅𝟎𝑿(𝟑𝟖𝟕𝟐)𝜸e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma and search for 𝒁𝒄(𝟒𝟎𝟐𝟎)𝟎𝑿(𝟑𝟖𝟕𝟐)𝜸Z_{c}(4020)^{0}\rightarrow X(3872)\gamma

M. Ablikim1, M. N. Achasov10,c, P. Adlarson67, S.  Ahmed15, M. Albrecht4, R. Aliberti28, A. Amoroso66A,66C, M. R. An32, Q. An63,49, X. H. Bai57, Y. Bai48, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,k, K. Begzsuren26, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi66A,66C, J Biernat67, J. Bloms60, A. Bortone66A,66C, I. Boyko29, R. A. Briere5, H. Cai68, X. Cai1,49, A. Calcaterra23A, G. F. Cao1,54, N. Cao1,54, S. A. Cetin53A, J. F. Chang1,49, W. L. Chang1,54, G. Chelkov29,b, D. Y. Chen6, G. Chen1, H. S. Chen1,54, M. L. Chen1,49, S. J. Chen35, X. R. Chen25, Y. B. Chen1,49, Z. J Chen20,l, W. S. Cheng66C, G. Cibinetto24A, F. Cossio66C, X. F. Cui36, H. L. Dai1,49, X. C. Dai1,54, A. Dbeyssi15, R.  E. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis66A,66C, F. De Mori66A,66C, Y. Ding33, C. Dong36, J. Dong1,49, L. Y. Dong1,54, M. Y. Dong1,49,54, X. Dong68, S. X. Du71, Y. L. Fan68, J. Fang1,49, S. S. Fang1,54, Y. Fang1, R. Farinelli24A, L. Fava66B,66C, F. Feldbauer4, G. Felici23A, C. Q. Feng63,49, J. H. Feng50, M. Fritsch4, C. D. Fu1, Y. Gao38,k, Y. Gao63,49, Y. Gao64, Y. G. Gao6, I. Garzia24A,24B, P. T. Ge68, C. Geng50, E. M. Gersabeck58, A. Gilman59, K. Goetzen11, L. Gong33, W. X. Gong1,49, W. Gradl28, M. Greco66A,66C, L. M. Gu35, M. H. Gu1,49, S. Gu2, Y. T. Gu13, C. Y Guan1,54, A. Q. Guo22, L. B. Guo34, R. P. Guo40, Y. P. Guo9,h, A. Guskov29,b, T. T. Han41, W. Y. Han32, X. Q. Hao16, F. A. Harris56, N. Hüsken60, K. L. He1,54, F. H. Heinsius4, C. H. Heinz28, T. Held4, Y. K. Heng1,49,54, C. Herold51, M. Himmelreich11,f, T. Holtmann4, G. Y. Hou1,54, Y. R. Hou54, Z. L. Hou1, H. M. Hu1,54, J. F. Hu47,m, T. Hu1,49,54, Y. Hu1, G. S. Huang63,49, L. Q. Huang64, X. T. Huang41, Y. P. Huang1, Z. Huang38,k, T. Hussain65, W. Ikegami Andersson67, W. Imoehl22, M. Irshad63,49, S. Jaeger4, S. Janchiv26,j, Q. Ji1, Q. P. Ji16, X. B. Ji1,54, X. L. Ji1,49, Y. Y. Ji41, H. B. Jiang41, X. S. Jiang1,49,54, J. B. Jiao41, Z. Jiao18, S. Jin35, Y. Jin57, M. Q. Jing1,54, T. Johansson67, N. Kalantar-Nayestanaki55, X. S. Kang33, R. Kappert55, M. Kavatsyuk55, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz60, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu53A,e, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc67, M.  G. Kurth1,54, W. Kühn30, J. J. Lane58, J. S. Lange30, P.  Larin15, A. Lavania21, L. Lavezzi66A,66C, Z. H. Lei63,49, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li32, Cheng Li63,49, D. M. Li71, F. Li1,49, G. Li1, H. Li63,49, H. Li43, H. B. Li1,54, H. J. Li9,h, J. L. Li41, J. Q. Li4, J. S. Li50, Ke Li1, L. K. Li1, Lei Li3, P. R. Li31, S. Y. Li52, W. D. Li1,54, W. G. Li1, X. H. Li63,49, X. L. Li41, Xiaoyu Li1,54, Z. Y. Li50, H. Liang1,54, H. Liang63,49, H.  Liang27, Y. F. Liang45, Y. T. Liang25, G. R. Liao12, L. Z. Liao1,54, J. Libby21, C. X. Lin50, B. J. Liu1, C. X. Liu1, D. Liu63,49, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,54, Huanhuan Liu1, Huihui Liu17, J. B. Liu63,49, J. L. Liu64, J. Y. Liu1,54, K. Liu1, K. Y. Liu33, L. Liu63,49, M. H. Liu9,h, P. L. Liu1, Q. Liu54, Q. Liu68, S. B. Liu63,49, Shuai Liu46, T. Liu1,54, W. M. Liu63,49, X. Liu31, Y. Liu31, Y. B. Liu36, Z. A. Liu1,49,54, Z. Q. Liu41, X. C. Lou1,49,54, F. X. Lu16, F. X. Lu50, H. J. Lu18, J. D. Lu1,54, J. G. Lu1,49, X. L. Lu1, Y. Lu1, Y. P. Lu1,49, C. L. Luo34, M. X. Luo70, P. W. Luo50, T. Luo9,h, X. L. Luo1,49, S. Lusso66C, X. R. Lyu54, F. C. Ma33, H. L. Ma1, L. L.  Ma41, M. M. Ma1,54, Q. M. Ma1, R. Q. Ma1,54, R. T. Ma54, X. X. Ma1,54, X. Y. Ma1,49, F. E. Maas15, M. Maggiora66A,66C, S. Maldaner4, S. Malde61, Q. A. Malik65, A. Mangoni23B, Y. J. Mao38,k, Z. P. Mao1, S. Marcello66A,66C, Z. X. Meng57, J. G. Messchendorp55, G. Mezzadri24A, T. J. Min35, R. E. Mitchell22, X. H. Mo1,49,54, Y. J. Mo6, N. Yu. Muchnoi10,c, H. Muramatsu59, S. Nakhoul11,f, Y. Nefedov29, F. Nerling11,f, I. B. Nikolaev10,c, Z. Ning1,49, S. Nisar8,i, S. L. Olsen54, Q. Ouyang1,49,54, S. Pacetti23B,23C, X. Pan9,h, Y. Pan58, A. Pathak1, P. Patteri23A, M. Pelizaeus4, H. P. Peng63,49, K. Peters11,f, J. Pettersson67, J. L. Ping34, R. G. Ping1,54, R. Poling59, V. Prasad63,49, H. Qi63,49, H. R. Qi52, K. H. Qi25, M. Qi35, T. Y. Qi2, T. Y. Qi9, S. Qian1,49, W. B. Qian54, Z. Qian50, C. F. Qiao54, L. Q. Qin12, X. P. Qin9, X. S. Qin41, Z. H. Qin1,49, J. F. Qiu1, S. Q. Qu36, K. H. Rashid65, K. Ravindran21, C. F. Redmer28, A. Rivetti66C, V. Rodin55, M. Rolo66C, G. Rong1,54, Ch. Rosner15, M. Rump60, H. S. Sang63, A. Sarantsev29,d, Y. Schelhaas28, C. Schnier4, K. Schoenning67, M. Scodeggio24A,24B, D. C. Shan46, W. Shan19, X. Y. Shan63,49, J. F. Shangguan46, M. Shao63,49, C. P. Shen9, H. F. Shen1,54, P. X. Shen36, X. Y. Shen1,54, H. C. Shi63,49, R. S. Shi1,54, X. Shi1,49, X. D Shi63,49, J. J. Song41, W. M. Song27,1, Y. X. Song38,k, S. Sosio66A,66C, S. Spataro66A,66C, K. X. Su68, P. P. Su46, F. F.  Sui41, G. X. Sun1, H. K. Sun1, J. F. Sun16, L. Sun68, S. S. Sun1,54, T. Sun1,54, W. Y. Sun27, W. Y. Sun34, X Sun20,l, Y. J. Sun63,49, Y. K. Sun63,49, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan68, Y. X. Tan63,49, C. J. Tang45, G. Y. Tang1, J. Tang50, J. X. Teng63,49, V. Thoren67, W. H. Tian43, I. Uman53B, B. Wang1, C. W. Wang35, D. Y. Wang38,k, H. J. Wang31, H. P. Wang1,54, K. Wang1,49, L. L. Wang1, M. Wang41, M. Z. Wang38,k, Meng Wang1,54, W. Wang50, W. H. Wang68, W. P. Wang63,49, X. Wang38,k, X. F. Wang31, X. L. Wang9,h, Y. Wang63,49, Y. Wang50, Y. D. Wang37, Y. F. Wang1,49,54, Y. Q. Wang1, Y. Y. Wang31, Z. Wang1,49, Z. Y. Wang1, Ziyi Wang54, Zongyuan Wang1,54, D. H. Wei12, P. Weidenkaff28, F. Weidner60, S. P. Wen1, D. J. White58, U. Wiedner4, G. Wilkinson61, M. Wolke67, L. Wollenberg4, J. F. Wu1,54, L. H. Wu1, L. J. Wu1,54, X. Wu9,h, Z. Wu1,49, L. Xia63,49, H. Xiao9,h, S. Y. Xiao1, Z. J. Xiao34, X. H. Xie38,k, Y. G. Xie1,49, Y. H. Xie6, T. Y. Xing1,54, G. F. Xu1, Q. J. Xu14, W. Xu1,54, X. P. Xu46, Y. C. Xu54, F. Yan9,h, L. Yan9,h, W. B. Yan63,49, W. C. Yan71, Xu Yan46, H. J. Yang42,g, H. X. Yang1, L. Yang43, S. L. Yang54, Y. X. Yang12, Yifan Yang1,54, Zhi Yang25, M. Ye1,49, M. H. Ye7, J. H. Yin1, Z. Y. You50, B. X. Yu1,49,54, C. X. Yu36, G. Yu1,54, J. S. Yu20,l, T. Yu64, C. Z. Yuan1,54, L. Yuan2, X. Q. Yuan38,k, Y. Yuan1, Z. Y. Yuan50, C. X. Yue32, A. Yuncu53A,a, A. A. Zafar65,  Zeng6, Y. Zeng20,l, A. Q. Zhang1, B. X. Zhang1, Guangyi Zhang16, H. Zhang63, H. H. Zhang50, H. H. Zhang27, H. Y. Zhang1,49, J. J. Zhang43, J. L. Zhang69, J. Q. Zhang34, J. W. Zhang1,49,54, J. Y. Zhang1, J. Z. Zhang1,54, Jianyu Zhang1,54, Jiawei Zhang1,54, L. Q. Zhang50, Lei Zhang35, S. Zhang50, S. F. Zhang35, Shulei Zhang20,l, X. D. Zhang37, X. Y. Zhang41, Y. Zhang61, Y. H. Zhang1,49, Y. T. Zhang63,49, Yan Zhang63,49, Yao Zhang1, Yi Zhang9,h, Z. H. Zhang6, Z. Y. Zhang68, G. Zhao1, J. Zhao32, J. Y. Zhao1,54, J. Z. Zhao1,49, Lei Zhao63,49, Ling Zhao1, M. G. Zhao36, Q. Zhao1, S. J. Zhao71, Y. B. Zhao1,49, Y. X. Zhao25, Z. G. Zhao63,49, A. Zhemchugov29,b, B. Zheng64, J. P. Zheng1,49, Y. Zheng38,k, Y. H. Zheng54, B. Zhong34, C. Zhong64, L. P. Zhou1,54, Q. Zhou1,54, X. Zhou68, X. K. Zhou54, X. R. Zhou63,49, A. N. Zhu1,54, J. Zhu36, K. Zhu1, K. J. Zhu1,49,54, S. H. Zhu62, T. J. Zhu69, W. J. Zhu9,h, W. J. Zhu36, Y. C. Zhu63,49, Z. A. Zhu1,54, B. S. Zou1, J. H. Zou1 (BESIII Collaboration) 1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 North China Electric Power University, Beijing 102206, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 South China Normal University, Guangzhou 510006, People’s Republic of China
48 Southeast University, Nanjing 211100, People’s Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People’s Republic of China
53 Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People’s Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
59 University of Minnesota, Minneapolis, Minnesota 55455, USA
60 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
61 University of Oxford, Keble Rd, Oxford, UK OX13RH
62 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
63 University of Science and Technology of China, Hefei 230026, People’s Republic of China
64 University of South China, Hengyang 421001, People’s Republic of China
65 University of the Punjab, Lahore-54590, Pakistan
66 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
67 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
68 Wuhan University, Wuhan 430072, People’s Republic of China
69 Xinyang Normal University, Xinyang 464000, People’s Republic of China
70 Zhejiang University, Hangzhou 310027, People’s Republic of China
71 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Istanbul Arel University, 34295 Istanbul, Turkey
f Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
g Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
h Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
i Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
j Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
k Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
l School of Physics and Electronics, Hunan University, Changsha 410082, China
m Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract

Using data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.178 to 4.600 GeV, we study the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma and search for Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma. We find no significant signal and set upper limits on σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) for each energy point at 90% confidence level, which is of the order of several tenths pb.

I I. INTRODUCTION

The recent discovery of several charmonium-like states has attracted great experimental and theoretical interests pdg . The charmonium-like states are also called XYZXYZ states where XX is the isospin-singlet state with JPC1J^{PC}\neq 1^{--}, YY is the isospin-singlet state with JPC=1J^{PC}=1^{--}, and ZZ is the isospin-triplet state xyzstates . The masses of these states are above the open-charm thresholds, and due to the unexpected resonance parameters and decay channels, these states can not be described by conventional quark models. Therefore, they are good candidates for exotic states, such as hybrids, tetraquarks, molecules, etc. theory1 ; theory2 ; theory3 .

The first charmonium-like state X(3872)X(3872), which has been recently renamed as χc1(3872)\chi_{c1}(3872) by the Particle Data Group (PDG pdg ), was observed by the Belle experiment in the process B±K±X(3872)K±π+πJ/ψB^{\pm}\rightarrow K^{\pm}X(3872)\rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi x38721 . The X(3872)X(3872) is a rather narrow state with a mass that is consistent with D0D¯0D^{0}\bar{D}^{*0} threshold. It decays through open-charm, radiative and isospin-violating pion emission decays, and is found to be an isospin singlet with JPC=1++J^{PC}=1^{++} pdg . Among these features, the extremely small mass difference between the X(3872)X(3872) and D0D¯0D^{0}\bar{D}^{\ast 0} threshold which we will denote as δ\delta, is of particular interest. Taking the values for the D0D^{0}, D0D^{*0} and X(3872)X(3872) masses from the PDG pdg , δ\delta is calculated to be (10±180)(-10\pm 180) keV/c2c^{2}. Very recently, the LHCb reported a new measurement yielding δ=(70±120)\delta=(70\pm 120) keV/c2c^{2} lhcb1 ; lhcb2 . However the improved precision is still insufficient to tell whether the X(3872)X(3872) mass is above or below the D0D¯0D^{0}\bar{D}^{\ast 0} threshold. Better knowledge of δ\delta will be an important step towards a deeper understanding of the nature of the X(3872)X(3872) x3872-a ; x3872-b , and eventually of other related XYZXYZ states. A completely new method to measure the δ\delta value by measuring the X(3872)γX(3872)\gamma line shape, which is sensitive to the δ\delta value due to a triangle singularity, is proposed by Ref. guo ; ortega ; guob . Here, the X(3872)γX(3872)\gamma needs to be produced associated with another positive CC-parity neutral meson, e.g. e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma. In principle, this method could be applied at the BESIII experiment, based on the sizable data samples taken for XYZXYZ studies. According to the theoretical prediction in Ref. guob , the cross section of the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma is expected to be small. However, there could be other scenarios where the expected cross section is large.

Recently, the BESIII Collaboration reported an enhancement around 4.2 GeV for the e+eγX(3872)e^{+}e^{-}\rightarrow\gamma X(3872) production cross sections x3872-c , which suggests a connection between YY and XX states. BESIII also reported another connection, now between YY and ZZ states, with the observation of a Y(4220)Y(4220) resonance in the process e+eπ0Zc(3900)0e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(3900)^{0} x3872-d . Those observations may indicate some common nature among the XYZXYZ states. Therefore, it is important to search for possible connections between ZZ and XX states. Establishing connections among XYZXYZ states may be a clue that can facilitate a better theoretical interpretation of these. One such connection voloshin could be a transition Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma in the scenario where the X(3872)X(3872) is dominantly an SS-wave D0D¯0D^{0}\bar{D}^{*0} molecule and the Zc(4020)0Z_{c}(4020)^{0} is an isotopic triplet of near-threshold SS-wave DD¯D^{*}\bar{D}^{*} resonances. Therefore, the search for the transition Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma will help to quantitatively study the molecular picture of the X(3872)X(3872). The Zc(4020)Z_{c}(4020) is observed in the e+eπZc(4020)e^{+}e^{-}\rightarrow\pi Z_{c}(4020) process, so the study of e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma allows one to search for the transition Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma.

In this paper, we report the search for the reaction e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma and Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma based on the data of twenty-three energy points recorded with the BESIII detector in the range of 4.178s4.600GeV4.178\leq\sqrt{s}\leq 4.600\,\rm{GeV}. The X(3872)X(3872) state is reconstructed via X(3872)π+πJ/ψX(3872)\rightarrow\pi^{+}\pi^{-}J/\psi, J/ψ+J/\psi\rightarrow\ell^{+}\ell^{-} (=e\ell=e or μ\mu).

II II. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer besiii located at the Beijing Electron Positron Collider (BEPCII) bepcii . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet, providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate chamber muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over the 4π4\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dx\textrm{d}E/\textrm{d}x resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution of the TOF barrel section is 68 ps, while that of the end cap section is 110 ps. The end cap TOF system was upgraded in 2015 with multi-gap resistive plate chamber technology, providing a time resolution of 60 ps etof . About 70% of the data sample used here was taken after this upgrade.

Simulated data samples produced with the geant4-based geant4 Monte Carlo (MC) package, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the background contributions. The simulation includes the beam energy spread and initial-state radiation (ISR) in the e+ee^{+}e^{-} annihilations modeled with the generator kkmc KKMC . The ISR production of vector charmonium(-like) states and the continuum processes are incorporated also in kkmc KKMC . The known decay modes are modeled with evtgen ref:evtgen , using branching fractions summarized and averaged by the PDG pdg , and the remaining unknown decays from the charmonium states are generated with lundcharm ref:lundcharm . Final state radiation from charged final state particles is incorporated with the photos package photos .

Signal MC samples for e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma and e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma are generated according to phase space at each center-of-mass energy point, assuming that the cross section follows the function fit for the e+eπ+πhce^{+}e^{-}\rightarrow\pi^{+}\pi^{-}h_{c} line shape in Ref. twobw . The event selection criteria and the detection efficiencies are determined and studied based on signal MC samples of 1×1051\times 10^{5} signal events generated for each value of s\sqrt{s}. Detection efficiencies are determined by the ratio of the reconstructed event yields (after the selection criteria) and the number of generated events. Inclusive MC samples consisting of open charm production processes are employed to investigate potential backgrounds.

III III. EVENT SELECTION

For each charged track, the distance of closest approach to the interaction point (IP) is required to be within 1010 cm in the beam direction and within 1 cm in the plane perpendicular to the beam direction. The polar angles (θ\theta) of the tracks with respect to the beam axis (ignoring the small crossing angle), must be within the fiducial volume of the MDC (|cosθ|<0.93)(|\cos\theta|<0.93). Photons are reconstructed from isolated showers in the EMC, which are at least 1010^{\circ} away from the nearest charged track. The photon energy is required to be at least 25 MeV in the barrel region (|cosθ|<0.80)(|\cos\theta|<0.80) or 50 MeV in the end cap region (0.86<|cosθ|<0.92)(0.86<|\cos\theta|<0.92). To suppress electronic noise and energy depositions unrelated to the event, the EMC cluster timing from the reconstructed event start time is further required to satisfy 0t7000\leq t\leq 700 ns.

Since the reaction e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma results in the final states γγγπ+π+\gamma\gamma\gamma\pi^{+}\pi^{-}\ell^{+}\ell^{-}, candidate events are required to have four tracks with zero net charge and at least three photons. Tracks with momenta larger than 1.0 GeV/cc are assigned as leptons from the J/ψJ/\psi decay; otherwise, they are regarded as pions. Leptons from the J/ψJ/\psi decay with energy deposited in the EMC larger than 1.0 GeV are identified as electrons, while those with less than 0.4 GeV as muons. The π0\pi^{0} candidates are reconstructed from photon pairs with invariant mass in the range 110<Mγγ<150MeV/c2110<M_{\gamma\gamma}<150\,{\rm MeV}/c^{2}.

To reduce the background contributions and to improve the mass resolution, a five-constraint (5C) kinematic fit is performed. Four constraints come from the total initial four momentum of the colliding beams; the last one is from constraining the MγγM_{\gamma\gamma} invariant mass to the nominal π0\pi^{0} value pdg . If there is more than one combination in an event, the one with the smallest χ5C2\chi^{2}_{\text{5C}} is chosen. Furthermore, the χ5C2\chi^{2}_{\text{5C}} is required to be less than 60. The J/ψJ/\psi is reconstructed via +\ell^{+}\ell^{-} decays, and the invariant mass of lepton pairs is required to be in the J/ψJ/\psi mass window [3.080,3.120]GeV/c2[3.080,3.120]\,{\rm GeV}/c^{2}.

IV IV. BORN CROSS SECTION MEASUREMENT

IV.1 IV.I e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma

After applying the above requirements, the remaining background is mainly coming from e+eγISRηJ/ψe^{+}e^{-}\rightarrow\gamma_{ISR}\eta J/\psi, ηπ+ππ0\eta\rightarrow\pi^{+}\pi^{-}\pi^{0} and e+eγωJ/ψe^{+}e^{-}\rightarrow\gamma\omega J/\psi, ωπ+ππ0\omega\rightarrow\pi^{+}\pi^{-}\pi^{0} events. In order to veto these events, the π+ππ0\pi^{+}\pi^{-}\pi^{0} invariant mass is required to be outside the η\eta and ω\omega mass regions [0.535,0.560]GeV/c2[0.535,0.560]\,{\rm GeV}/c^{2} and [0.750,0.810]GeV/c2[0.750,0.810]\,{\rm GeV}/c^{2}, respectively. Besides the η\eta and ω\omega backgrounds, the π+πψ(3686)\pi^{+}\pi^{-}\psi(3686), ψ(3686)π0π0J/ψ\psi(3686)\rightarrow\pi^{0}\pi^{0}J/\psi background is removed by requiring the π+π\pi^{+}\pi^{-} recoil mass to be outside the ψ(3686)\psi(3686) mass region of [3.670,3.700]GeV/c2[3.670,3.700]\,{\rm GeV}/c^{2}.

Figure 1 shows distributions of the π+πJ/ψ\pi^{+}\pi^{-}J/\psi invariant mass M(π+πJ/ψ)M(\pi^{+}\pi^{-}J/\psi) for data and the MC samples of e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma. The X(3872)X(3872) signal region is taken as [3.860, 3.885] GeV/c2c^{2}, while the sideband regions are set to be [3.825, 3.850] GeV/c2c^{2} and [3.895, 3.920] GeV/c2c^{2}. No significant X(3872)X(3872) signals are seen at any energies. The signal yield is determined from the event yields in the X(3872)X(3872) signal and sideband regions. The sideband yields are scaled by the ratio of the relevant mass-window widths in order to predict the background expected in the signal region. Upper limits on the number of signal events at the 90% C.L. are calculated by using a frequentist method trolke1 with unbounded profile likelihood treatment of systematic uncertainties, which is implemented by the package trolke trolke2 in the root framework root , where the signal and background obey Poisson statistics, and the efficiencies are Gaussian-distributed. The numerical results are summarized in Table 1.

\begin{overpic}[width=390.25534pt]{allx} \end{overpic}
Figure 1: The distribution of M(π+πJ/ψ)M(\pi^{+}\pi^{-}J/\psi) for each energy point and the sum (all). Dots with error bars denote data, and the red histogram denotes the MC simulation of e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma. The blue solid lines mark the signal region of X(3872)X(3872), and the pink dashed lines mark the sideband regions of X(3872)X(3872).
Table 1: The upper limits (calculated including the systematic uncertainties) on σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) at the 90% C.L. for each energy point, together with integrated luminosities int\mathcal{L}_{\rm int}, the number of events in signal region NobsN^{\text{obs}}, the number of events in sideband region NsbN^{\text{sb}}, the number of signal events NN at the 90% C.L., radiative correction factors 1+δ\delta(s), vacuum polarization factors 1|1Π|2\frac{1}{|1-\Pi|^{2}}, and efficiencies without intermediate branching fractions ϵ\epsilon. Here, σ\sigma\cdot\mathcal{B} represents σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) or σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi). The first values in brackets are for the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma, and the second for the process e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma. The low efficiency at 4.467 GeV is caused by the cut on the π+π\pi^{+}\pi^{-} recoil mass.
   s\sqrt{s} (GeV)    int\mathcal{L}_{\rm int}(pb-1)    NobsN^{\text{obs}}    NsbN^{\text{sb}}    NN    1+δ\delta(s)    1|1Π|2\frac{1}{|1-\Pi|^{2}}    ϵ(%)\epsilon(\%)    σ\sigma\cdot\mathcal{B}(pb)
4.178 3195 (1, 0) (1, 1) (<3.27,<1.26<3.27,<1.26) (0.70, 0.69) 1.055 (14.02, 13.97) (<0.08,<0.03<0.08,<0.03)
4.189 527 (0, 0) (0, 2) (<2.00,<0.52<2.00,<0.52) (0.70, 0.70) 1.056 (14.12, 14.02) (<0.31,<0.08<0.31,<0.08)
4.199 526 (0, 0) (0, 0) (<2.00,<2.00<2.00,<2.00) (0.70, 0.70) 1.057 (14.13, 14.24) (<0.31,<0.31<0.31,<0.31)
4.209 517 (0, 0) (0, 0) (<2.00,<2.00<2.00,<2.00) (0.71, 0.71) 1.057 (14.29, 13.75) (<0.31,<0.32<0.31,<0.32)
4.219 515 (0, 0) (0, 0) (<2.00,<2.00<2.00,<2.00) (0.72, 0.72) 1.057 (14.07, 13.74) (<0.31,<0.31<0.31,<0.31)
4.226 1056 (0, 0) (0, 0) (<2.00,<2.00<2.00,<2.00) (0.74, 0.74) 1.057 (14.51, 14.11) (<0.14,<0.15<0.14,<0.15)
4.236 530 (0, 0) (0, 0) (<1.99,<2.00<1.99,<2.00) (0.76, 0.76) 1.056 (14.50, 13.43) (<0.27,<0.30<0.27,<0.30)
4.244 538 (0, 0) (0, 0) (<2.00,<2.00<2.00,<2.00) (0.78, 0.78) 1.056 (14.03, 13.20) (<0.27,<0.29<0.27,<0.29)
4.258 828 (1, 0) (0, 0) (<3.69,<2.01<3.69,<2.01) (0.81, 0.81) 1.054 (14.00, 12.99) (<0.32,<0.19<0.32,<0.19)
4.267 531 (0, 0) (0, 0) (<2.00,<2.01<2.00,<2.01) (0.83, 0.83) 1.053 (13.78, 12.23) (<0.27,<0.30<0.27,<0.30)
4.278 176 (0, 0) (0, 0) (<2.00,<2.02<2.00,<2.02) (0.84, 0.84) 1.053 (13.44, 11.89) (<0.81,<0.93<0.81,<0.93)
4.288 502 (0, 0) (0, 0) (<2.00,<2.01<2.00,<2.01) (0.84, 0.84) 1.053 (13.29, 11.74) (<0.29,<0.33<0.29,<0.33)
4.312 501 (0, 0) (0, 0) (<2.00,<2.02<2.00,<2.02) (0.84, 0.84) 1.052 (13.35, 11.68) (<0.29,<0.33<0.29,<0.33)
4.338 505 (0, 0) (0, 0) (<2.00,<2.02<2.00,<2.02) (0.83, 0.83) 1.051 (13.76, 12.03) (<0.28,<0.32<0.28,<0.32)
4.358 544 (0, 0) (1, 0) (<1.57,<2.02<1.57,<2.02) (0.83, 0.83) 1.051 (14.11, 12.42) (<0.20,<0.29<0.20,<0.29)
4.378 523 (0, 0) (4, 0) (<0.30,<2.02<0.30,<2.02) (0.84, 0.84) 1.052 (14.06, 12.47) (<0.04,<0.30<0.04,<0.30)
4.397 508 (0, 0) (0, 0) (<2.00,<2.02<2.00,<2.02) (0.86, 0.86) 1.052 (13.60, 12.34) (<0.27,<0.30<0.27,<0.30)
4.416 1044 (0, 0) (0, 0) (<2.00,<2.03<2.00,<2.03) (0.90, 0.90) 1.053 (13.04, 12.10) (<0.13,<0.14<0.13,<0.14)
4.437 570 (2, 0) (1, 1) (<4.93,<1.57<4.93,<1.57) (0.97, 0.97) 1.054 (9.94, 11.47) (<0.72,<0.20<0.72,<0.20)
4.467 111 (0, 0) (0, 0) (<2.00,<2.03<2.00,<2.03) (1.09, 1.09) 1.055 (5.25, 10.39) (<2.53,<1.30<2.53,<1.30)
4.527 112 (0, 0) (0, 0) (<2.00,<2.02<2.00,<2.02) (1.38, 1.38) 1.055 (9.19, 8.56) (<1.13,<1.23<1.13,<1.23)
4.574 49 (0, 0) (0, 0) (<2.00,<2.03<2.00,<2.03) (1.62, 1.62) 1.055 (8.11, 7.31) (<2.50,<2.81<2.50,<2.81)
4.600 587 (0, 0) (2, 0) (<1.15,<2.02<1.15,<2.02) (1.76, 1.75) 1.055 (7.71, 7.06) (<0.12,<0.22<0.12,<0.22)
\begin{overpic}[width=186.45341pt]{crossupperx} \put(48.0,129.0){\LARGE{(a)}} \end{overpic}\begin{overpic}[width=186.45341pt]{crossupperz} \put(48.0,129.0){\LARGE{(b)}} \end{overpic}
Figure 2: The upper limits at the 90% C.L. on σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) (a) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) (b) for each energy point.

The Born cross section multiplied by the branching fraction σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) is calculated as:

σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)=\displaystyle\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi)= (1)
NX(3872)ϵint(1+δ(s))1|1Π|2(J/ψ+)(π0γγ),\displaystyle\frac{N_{X(3872)}}{\epsilon\,\mathcal{L}_{\rm int}\,(1+\delta(s))\,\frac{1}{|1-\Pi|^{2}}\,{\mathcal{B}(J/\psi\rightarrow\ell^{+}\ell^{-})}\,{\mathcal{B}(\pi^{0}\rightarrow\gamma\gamma)}},

where NX(3872)N_{X(3872)} is the number of X(3872)X(3872) signal events, ϵ\epsilon is the detection efficiency (excluding intermediate branching fractions), int\mathcal{L}_{\rm int} is the integrated luminosity luminosity , 1+δ(s)\delta(s) is the ISR correction factor obtained from a quantum electrodynamics calculations QED ; KKMC , 1|1Π|2\frac{1}{|1-\Pi|^{2}} is vacuum polarization factor vacuum . The corresponding upper limits for this cross section at the 90% C.L. for each energy point are listed in Table 1 and shown in Fig. 2 (a).

Assuming the Born cross section of e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma is constant at 4.178s4.6004.178\leq\sqrt{s}\leq 4.600 GeV, the average Born cross section multiplied by the branching fraction σ¯(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\bar{\sigma}(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) for data is calculated as:

σ¯(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)=\displaystyle\bar{\sigma}(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi)= (2)
NX(3872)totali(ϵint(1+δ(s))1|1Π|2)i(J/ψ+)(π0γγ),\displaystyle\frac{N_{X(3872)}^{\text{total}}}{\sum\limits_{i}(\epsilon\,\mathcal{L}_{\rm int}\,(1+\delta(s))\,\frac{1}{|1-\Pi|^{2}})_{i}\,{\mathcal{B}(J/\psi\rightarrow\ell^{+}\ell^{-})}\,{\mathcal{B}(\pi^{0}\rightarrow\gamma\gamma)}},

where NX(3872)totalN_{X(3872)}^{\text{total}} is the total number of X(3872)X(3872) signal events, and ii denotes each energy point. The corresponding upper limit for the average Born cross section multiplied by the branching fraction is determined to be 21.9 fb at the 90% C.L.

IV.2 IV.II Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma

The possible connection between XX and ZZ charmonium-like states can be studied via the decay Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma. In order to search for the process, the X(3872)X(3872) signal region is set to be [3.860, 3.885] GeV/c2c^{2}, which is the same as for the e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma study. As we do not observe any X(3872)X(3872) signal, there cannot be any Zc(4020)0Z_{c}(4020)^{0} being produced in the given channel. Still, we provide corresponding upper limits, since a quantification might well be helpful in the understanding of the involved states. After the requirement of the X(3872)X(3872) mass window no significant η\eta, ω\omega and ψ(3686)\psi(3686) background remain. Figure 3 shows the X(3872)γX(3872)\gamma invariant mass distributions for data and MC samples of e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma. No Zc(4020)0Z_{c}(4020)^{0} candidates are found. Therefore, the same method as before is employed to calculate the upper limits for this process. For data samples taken above s=4.280GeV\sqrt{s}=4.280\,\rm{GeV}, the Zc(4020)0Z_{c}(4020)^{0} signal region is set to be [3.995, 4.055] GeV/c2c^{2}, and the sideband regions are set to be [3.900,3.960]GeV/c2[3.900,3.960]\,{\rm GeV}/c^{2} and [4.090,4.150]GeV/c2[4.090,4.150]\,{\rm GeV}/c^{2}. At lower energies, kinematics dictates that Zc(4020)0Z_{c}(4020)^{0} candidates cannot have a mass above 4.28Mπ0=4.145GeV/c24.28-M_{\pi^{0}}=4.145\,{\rm GeV}/c^{2}, where Mπ0M_{\pi^{0}} is π0\pi^{0} nominal mass. Accordingly, we use a single sideband region of [3.900, 3.960] GeV/c2c^{2}.

\begin{overpic}[width=390.25534pt]{allz} \end{overpic}
Figure 3: The distribution of M(X(3872)γ)M(X(3872)\gamma) for each energy point and the sum (all). Dots with error bars denote data, and the red histogram denotes the MC simulation of e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma. The blue solid lines mark the signal region of Zc(4020)0Z_{c}(4020)^{0}, and the pink dashed lines mark the sideband regions of Zc(4020)0Z_{c}(4020)^{0}.

The Born cross section multiplied by branching fractions σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) is calculated with the following formula:

σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)\displaystyle\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma) (3)
(X(3872)π+πJ/ψ)=\displaystyle\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi)=
NZc(4020)0ϵint(1+δ(s))1|1Π|2(J/ψ+)(π0γγ),\displaystyle\frac{N_{Z_{c}(4020)^{0}}}{\epsilon\,\mathcal{L}_{\rm int}\,(1+\delta(s))\,\frac{1}{|1-\Pi|^{2}}\,{\mathcal{B}(J/\psi\rightarrow\ell^{+}\ell^{-})}\,{\mathcal{B}(\pi^{0}\rightarrow\gamma\gamma)}},

where NZc(4020)0N_{Z_{c}(4020)^{0}} is the number of Zc(4020)0Z_{c}(4020)^{0} signal events. The corresponding upper limits at the 90% C.L. for each energy are listed in Table 1 and shown in Fig. 2 (b).

Assuming the Born cross section of e+eπ0Zc(4020)0e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0} is constant at 4.178s4.6004.178\leq\sqrt{s}\leq 4.600 GeV, the average Born cross section multiplied by branching fractions σ¯(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\bar{\sigma}(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) for data is calculated with the following formula:

σ¯(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)\displaystyle\bar{\sigma}(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma) (4)
(X(3872)π+πJ/ψ)=\displaystyle\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi)=
NZc(4020)0totali(ϵint(1+δ(s))1|1Π|2)i(J/ψ+)(π0γγ),\displaystyle\frac{N_{Z_{c}(4020)^{0}}^{\text{total}}}{\sum\limits_{i}(\epsilon\,\mathcal{L}_{\rm int}\,(1+\delta(s))\,\frac{1}{|1-\Pi|^{2}})_{i}\,{\mathcal{B}(J/\psi\rightarrow\ell^{+}\ell^{-})}\,{\mathcal{B}(\pi^{0}\rightarrow\gamma\gamma)}},

where NZc(4020)0totalN_{Z_{c}(4020)^{0}}^{\text{total}} is the total number of Zc(4020)0Z_{c}(4020)^{0} signal events. The corresponding upper limit for the average Born cross section multiplied by the branching fraction is determined to be 1.6 fb at the 90% C.L.

V V. SYSTEMATIC UNCERTAINTY ESTIMATION

The systematic uncertainties of σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) originate from the luminosity measurement, the tracking efficiency, the photon detection efficiency, the kinematic fit, the J/ψJ/\psi mass window, the X(3872)X(3872) mass window, the Zc(4020)0Z_{c}(4020)^{0} parameters, the line shape, the generator model, the ISR correction, and the input branching fractions.

The integrated luminosity at each point has been measured with a precision of 1.0%1.0\% using the Bhabha process luminosity .

The uncertainty from the tracking efficiency is 1.0%1.0\% per track omegachic0 and the uncertainty in photon detection efficiency is 1.0%1.0\% per photon photon .

The uncertainty due to the kinematic fit requirements is estimated by correcting the helix parameters of charged tracks according to the method described in Ref. helix . The difference between detection efficiencies obtained from MC samples with and without this correction is taken as the uncertainty.

The uncertainty for the J/ψJ/\psi mass window is estimated using the control sample of e+eγISRψ(3686),ψ(3686)π+πJ/ψe^{+}e^{-}\rightarrow\gamma_{\rm ISR}\psi(3686),\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi. The difference of the efficiency between data and MC simulation is found to be 1.6%\% jpsimasswindow , which is taken as the uncertainty.

The uncertainty from the X(3872)X(3872) mass window is estimated by changing the window range by ±\pm10%, and the largest efficiency change is taken as the uncertainty.

The uncertainties arising from the Zc(4020)0Z_{c}(4020)^{0} mass and width are estimated by changing them by one standard deviation values pdg while generating the signal MC. The largest efficiency difference relative to the nominal one is taken as the uncertainty.

The line shape affects the ISR correction factor and the efficiency. No obvious signal was found for our Zc(4020)0Z_{c}(4020)^{0} search, so we use the line shape from e+eπ+πhce^{+}e^{-}\rightarrow\pi^{+}\pi^{-}h_{c} in Ref. twobw as the input line shape to get the nominal results. To get the uncertainty introduced by the line shape, we change it to a Breit-Wigner function describing the ψ(4230)\psi(4230) or ψ(4415)\psi(4415), with the masses and widths fixed to the values from PDG pdg . The largest difference of the final result is taken as a systematic uncertainty.

For the systematic uncertainty from the MC simulation describing the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma, we use the three-body phase space MC simulation to get the nominal efficiency, then change to the e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma. The difference on the detection efficiency with and without the intermediate resonant state is taken as the uncertainty due to the MC generator model.

The systematic uncertainty from the MC simulation describing the process e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma is estimated by varying the distribution of the π0\pi^{0} polar angle θ\theta. The nominal efficiency is determined assuming a flat distribution in cosθ\cos{\theta}. A conservative estimate of the systematic uncertainty is obtained using alternative MC samples with angular distributions of 1±cos2θ1\pm\cos^{2}{\theta}. The largest change of efficiency is taken as the uncertainty due to the MC generator model.

The ISR correction factor is obtained from quantum electrodynamics calculations QED ; KKMC . We also analyze MC samples with and without ISR effects considered to get the ISR correction factor, the difference of the two results is taken as the systematic uncertainty on the ISR correction factor.

As uncertainties introduced by the branching fractions of J/ψ+J/\psi\rightarrow\ell^{+}\ell^{-} and π0γγ\pi^{0}\rightarrow\gamma\gamma we use those quoted by the PDG pdg .

Table 2 summarizes all the systematic uncertainties related to σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) for each center-of-mass energy. The total systematic uncertainty for each energy point is calculated as the quadratic sum of the individual uncertainties, assuming them to be uncorrelated.

Table 2: Summary of relative systematic uncertainties (%) associated with luminosity(int\mathcal{L}_{\rm int}), tracking efficiency (Tracks), photon detection efficiency (Photons), kinematic fitting (χ5C2\chi^{2}_{5C}), J/ψJ/\psi mass window (J/ψJ/\psi), X(3872)X(3872) mass window (X(3872)X(3872)), Zc(4020)0Z_{c}(4020)^{0} parameters (Zc(4020)0Z_{c}(4020)^{0}), line shape (Line shape), generator model (Generator), ISR correction factor (ISR) and branching fraction (\mathcal{B}). The first values in brackets are for the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma, and the second for the process e+eπ0Zc(4020)0π0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0}\rightarrow\pi^{0}X(3872)\gamma. A dash indicates that a systematic effect is not applicable.
s\sqrt{s} (GeV) int\mathcal{L}_{\rm int} Tracks Photons χ5C2\chi^{2}_{5C} J/ψJ/\psi X(3872)X(3872) Zc(4020)0Z_{c}(4020)^{0} Line shape Generator ISR \mathcal{B} Sum
4.178 1.0 4.0 3.0 (2.6, 2.0) 1.6 1.3 (-, 4.2) (5.6, 6.0) (7.4, 2.4) (0.7, 0.7) 0.4 (11.1, 9.7)
4.189 1.0 4.0 3.0 (2.8, 2.1) 1.6 1.3 (-, 3.5) (6.4, 6.8) (5.7, 3.9) (0.7, 0.6) 0.4 (10.6, 10.4)
4.199 1.0 4.0 3.0 (2.1, 2.2) 1.6 1.3 (-, 4.3) (6.7, 4.7) (7.5, 3.9) (0.5, 0.5) 0.4 (11.7, 9.6)
4.209 1.0 4.0 3.0 (2.0, 2.1) 1.6 1.4 (-, 4.1) (4.9, 6.3) (3.5, 6.6) (0.2, 0.3) 0.4 (8.4, 11.6)
4.219 1.0 4.0 3.0 (2.4, 2.6) 1.6 1.5 (-, 5.7) (4.3, 3.5) (5.2, 7.7) (0.1, 0.1) 0.4 (9.1, 11.9)
4.226 1.0 4.0 3.0 (2.3, 2.1) 1.6 1.5 (-, 5.6) (1.5, 2.3) (5.1, 7.1) (0.1, 0.1) 0.4 (8.0, 11.1)
4.236 1.0 4.0 3.0 (2.3, 2.1) 1.6 1.5 (-, 6.3) (2.1, 2.2) (1.3, 9.2) (0.1, 0.1) 0.4 (6.5, 12.8)
4.244 1.0 4.0 3.0 (2.1, 2.3) 1.6 1.3 (-, 4.6) (4.4, 1.3) (3.3, 9.7) (0.2, 0.1) 0.4 (8.1, 12.4)
4.258 1.0 4.0 3.0 (2.3, 2.6) 1.6 1.6 (-, 5.8) (6.4, 4.4) (3.3, 9.5) (0.2, 0.3) 0.4 (9.4, 13.5)
4.267 1.0 4.0 3.0 (2.0, 2.0) 1.6 1.3 (-, 5.9) (5.7, 6.8) (0.2, 12.9) (0.2, 0.1) 0.4 (8.2, 16.8)
4.278 1.0 4.0 3.0 (2.4, 2.1) 1.6 1.5 (-, 5.6) (6.9, 7.2) (1.0, 13.6) (0.2, 0.1) 0.4 (9.2, 17.4)
4.288 1.0 4.0 3.0 (2.1, 2.2) 1.6 1.4 (-, 5.9) (7.9, 6.0) (1.3, 13.5) (0.2, 0.1) 0.4 (10.0, 17.0)
4.312 1.0 4.0 3.0 (2.8, 2.1) 1.6 1.3 (-, 6.6) (5.8, 5.9) (2.2, 15.4) (0.1, 0.2) 0.4 (8.8, 18.7)
4.338 1.0 4.0 3.0 (2.1, 2.2) 1.6 1.5 (-, 5.4) (7.0, 5.6) (2.9, 16.0) (0.1, 0.1) 0.4 (9.6, 18.8)
4.358 1.0 4.0 3.0 (2.0, 1.8) 1.6 1.2 (-, 5.6) (7.6, 6.1) (2.8, 15.5) (0.1, 0.1) 0.4 (10.0, 18.5)
4.378 1.0 4.0 3.0 (2.1, 1.8) 1.6 1.5 (-, 6.0) (7.0, 3.9) (3.5, 14.9) (0.1, 0.1) 0.4 (9.8, 17.5)
4.397 1.0 4.0 3.0 (2.1, 1.8) 1.6 1.3 (-, 7.4) (5.3, 5.5) (5.3, 16.4) (0.1, 0.1) 0.4 (9.5, 19.7)
4.416 1.0 4.0 3.0 (1.8, 1.7) 1.6 1.3 (-, 7.1) (4.4, 5.5) (4.3, 19.0) (0.1, 0.1) 0.4 (8.5, 21.8)
4.437 1.0 4.0 3.0 (2.1, 2.0) 1.6 1.4 (-, 7.1) (3.1, 1.2) (5.9, 17.4) (0.1, 0.2) 0.4 (8.9, 19.7)
4.467 1.0 4.0 3.0 (2.4, 2.2) 1.6 1.5 (-, 7.3) (3.7, 5.5) (9.8, 18.2) (0.1, 0.1) 0.4 (12.1, 21.2)
4.527 1.0 4.0 3.0 (2.6, 1.5) 1.6 1.5 (-, 7.4) (5.8, 2.1) (5.5, 17.8) (0.2, 0.3) 0.4 (10.1, 20.2)
4.575 1.0 4.0 3.0 (2.3, 1.5) 1.6 1.4 (-, 7.2) (4.1, 3.0) (7.4, 20.1) (0.5, 0.5) 0.4 (10.4, 22.3)
4.600 1.0 4.0 3.0 (2.3, 1.9) 1.6 1.4 (-, 6.6) (0.4, 1.1) (8.1, 16.2) (0.5, 0.6) 0.4 (10.1, 18.5)

VI VI. SUMMARY

Using data samples collected at the center-of-mass energies between 4.178 and 4.600 GeV, the processes e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma and Zc(4020)0X(3872)γZ_{c}(4020)^{0}\rightarrow X(3872)\gamma are investigated. In neither of the two processes are significant signals observed. Upper limits at the 90% C.L. on the cross sections multiplied by the branching fractions, σ(e+eπ0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi) and σ(e+eπ0Zc(4020)0)(Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi), are reported for each energy point. The average cross sections multiplied by branching fractions are also determined. The measured results of the process e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma are not in conflict with the theoretical expectation of about 0.1 fb guob . A three orders of magnitude increase in statistics is needed to test these models.

Using the experimental results on the σ(e+eπ0Zc(4020)0)(Zc(4020)0(DD¯)0)\sigma(e^{+}e^{-}\rightarrow\pi^{0}Z_{c}(4020)^{0})\cdot\mathcal{B}(Z_{c}(4020)^{0}\rightarrow(D^{\ast}\bar{D}^{\ast})^{0}) at s=4.226\sqrt{s}=4.226 and 4.2584.258 GeV zc40202 , the ratio (Zc(4020)0X(3872)γ)(X(3872)π+πJ/ψ)(Zc(4020)0(DD¯)0)\frac{\mathcal{B}(Z_{c}(4020)^{0}\rightarrow X(3872)\gamma)\cdot\mathcal{B}(X(3872)\rightarrow\pi^{+}\pi^{-}J/\psi)}{\mathcal{B}(Z_{c}(4020)^{0}\rightarrow(D^{\ast}\bar{D}^{\ast})^{0})} is determined to be less than 0.15% at the 90% C.L. The ratio does not contradict the prediction reported in Ref. voloshin based on the molecular picture. Since no significant e+eπ0X(3872)γe^{+}e^{-}\rightarrow\pi^{0}X(3872)\gamma signals are observed, we cannot study the lineshape as proposed in Ref. guo ; ortega ; this may be achieved at future super tau-charm facilities supertaocharm1 ; supertaocharm2 .

VII ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11905179, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; Nanhu Scholars Program for Young Scholars of Xinyang Normal University; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References

  • (1) P. A. Zyla et al. (Particle Data Group), Prog. Theor. Phys. 2020, 083C01 (2020).
  • (2) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 108, 232001 (2012).
  • (3) N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
  • (4) R. A. Briceno et al., Chin. Phys. C 40, 042001 (2016).
  • (5) H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rept.  639, 1 (2016).
  • (6) S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
  • (7) R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 08, 123 (2020).
  • (8) R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 102, 092005 (2020).
  • (9) C. Hanhart, Y. S. Kalashnikova, A. E. Kudryavtsev, and A. V. Nefediev, Phys. Rev. D 76, 034007 (2007).
  • (10) P. Artoisenet, E. Braaten, and D. Kang, Phys. Rev. D 82, 014013 (2010).
  • (11) F. K. Guo, Phys. Rev. Lett. 122, 202002 (2019).
  • (12) P. G. Ortega and E. R. Arriola, arXiv:2007.11608.
  • (13) S. Sakai, H. J. Jing, and F. K. Guo, Phys. Rev. D 102, 114041 (2020).
  • (14) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 122, 232002 (2019).
  • (15) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 102, 012009 (2020).
  • (16) M. B. Voloshin, Phys. Rev. D 99, 054028 (2019).
  • (17) M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010); M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44, 040001 (2020).
  • (18) C. H. Yu et al., Proceedings of IPAC2016, Busan, Korea, 2016, doi:10.18429/JACoW-IPAC2016-TUYA01.
  • (19) X. Li et al., Rad. Det. Tech. Meth. 1, 13 (2017); Y. X. Guo et al., Rad. Det. Tech. Meth. 1, 15 (2017).
  • (20) S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
  • (21) S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun.  130, 260 (2000).
  • (22) D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
  • (23) J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping, and H. Chen, Chin. Phys. Lett.  31, 061301 (2014).
  • (24) E. Richter-Was, Phys. Lett. B 303, 163 (1993).
  • (25) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092002 (2017).
  • (26) W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Instrum. Methods Phys. Res., Sect. A 551, 493-503 (2005).
  • (27) https://root.cern.ch/root/html604/TRolke.html
  • (28) https://root.cern/manual
  • (29) M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 39, 093001 (2015).
  • (30) E. A. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys.  41, 466 (1985).
  • (31) S. Actis et al. (Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies), Eur. Phys. J. C 66, 585 (2010).
  • (32) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 091103 (R) (2019).
  • (33) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 101, 012008 (2020).
  • (34) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87, 012002 (2013).
  • (35) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 93, 011102 (R) (2016); Phys. Rev. D 103, L091102 (2021).
  • (36) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 115, 182002 (2015).
  • (37) A. E. Bondar et al. (Charm-Tau Factory Collaboration), Phys. Atom. Nucl. 76, 1072 (2013).
  • (38) Z. Zhou et al., 7th7^{th} International Particle Accelerator Conference (IPAC 2016), Busan, Korea (2016), http://jacow.org/ipac2016/papers/thpor047.pdf.