This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

BABAR-PUB-11/002

SLAC-PUB-14446

arXiv:1104.5254

The BABAR Collaboration

Study of radiative bottomonium transitions using converted photons

J. P. Lees    V. Poireau    E. Prencipe    V. Tisserand Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France    J. Garra Tico    E. Grauges Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain    M. Martinelliab    D. A. Milanesa    A. Palanoab    M. Pappagalloab INFN Sezione di Baria; Dipartimento di Fisica, Università di Barib, I-70126 Bari, Italy    G. Eigen    B. Stugu    L. Sun University of Bergen, Institute of Physics, N-5007 Bergen, Norway    D. N. Brown    L. T. Kerth    Yu. G. Kolomensky    G. Lynch Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA    H. Koch    T. Schroeder Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany    D. J. Asgeirsson    C. Hearty    T. S. Mattison    J. A. McKenna University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1    A. Khan Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom    V. E. Blinov    A. R. Buzykaev    V. P. Druzhinin    V. B. Golubev    E. A. Kravchenko    A. P. Onuchin    S. I. Serednyakov    Yu. I. Skovpen    E. P. Solodov    K. Yu. Todyshev    A. N. Yushkov Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia    M. Bondioli    S. Curry    D. Kirkby    A. J. Lankford    M. Mandelkern    D. P. Stoker University of California at Irvine, Irvine, California 92697, USA    H. Atmacan    J. W. Gary    F. Liu    O. Long    G. M. Vitug University of California at Riverside, Riverside, California 92521, USA    C. Campagnari    T. M. Hong    D. Kovalskyi    J. D. Richman    C. A. West University of California at Santa Barbara, Santa Barbara, California 93106, USA    A. M. Eisner    J. Kroseberg    W. S. Lockman    A. J. Martinez    T. Schalk    B. A. Schumm    A. Seiden University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA    C. H. Cheng    D. A. Doll    B. Echenard    K. T. Flood    D. G. Hitlin    P. Ongmongkolkul    F. C. Porter    A. Y. Rakitin California Institute of Technology, Pasadena, California 91125, USA    R. Andreassen    M. S. Dubrovin    B. T. Meadows    M. D. Sokoloff University of Cincinnati, Cincinnati, Ohio 45221, USA    P. C. Bloom    W. T. Ford    A. Gaz    M. Nagel    U. Nauenberg    J. G. Smith    S. R. Wagner University of Colorado, Boulder, Colorado 80309, USA    R. Ayad Now at Temple University, Philadelphia, Pennsylvania 19122, USA    W. H. Toki Colorado State University, Fort Collins, Colorado 80523, USA    B. Spaan Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany    M. J. Kobel    K. R. Schubert    R. Schwierz Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany    D. Bernard    M. Verderi Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France    P. J. Clark    S. Playfer    J. E. Watson University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom    D. Bettonia    C. Bozzia    R. Calabreseab    G. Cibinettoab    E. Fioravantiab    I. Garziaab    E. Luppiab    M. Muneratoab    M. Negriniab    L. Piemontesea INFN Sezione di Ferraraa; Dipartimento di Fisica, Università di Ferrarab, I-44100 Ferrara, Italy    R. Baldini-Ferroli    A. Calcaterra    R. de Sangro    G. Finocchiaro    M. Nicolaci    S. Pacetti    P. Patteri    I. M. Peruzzi Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy    M. Piccolo    M. Rama    A. Zallo INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy    R. Contriab    E. Guidoab    M. Lo Vetereab    M. R. Mongeab    S. Passaggioa    C. Patrignaniab    E. Robuttia INFN Sezione di Genovaa; Dipartimento di Fisica, Università di Genovab, I-16146 Genova, Italy    B. Bhuyan    V. Prasad Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India    C. L. Lee    M. Morii Harvard University, Cambridge, Massachusetts 02138, USA    A. J. Edwards Harvey Mudd College, Claremont, California 91711    A. Adametz    J. Marks    U. Uwer Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany    F. U. Bernlochner    M. Ebert    H. M. Lacker    T. Lueck Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany    P. D. Dauncey    M. Tibbetts Imperial College London, London, SW7 2AZ, United Kingdom    P. K. Behera    U. Mallik University of Iowa, Iowa City, Iowa 52242, USA    C. Chen    J. Cochran    H. B. Crawley    W. T. Meyer    S. Prell    E. I. Rosenberg    A. E. Rubin Iowa State University, Ames, Iowa 50011-3160, USA    A. V. Gritsan    Z. J. Guo Johns Hopkins University, Baltimore, Maryland 21218, USA    N. Arnaud    M. Davier    D. Derkach    G. Grosdidier    F. Le Diberder    A. M. Lutz    B. Malaescu    P. Roudeau    M. H. Schune    A. Stocchi    G. Wormser Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France    D. J. Lange    D. M. Wright Lawrence Livermore National Laboratory, Livermore, California 94550, USA    I. Bingham    C. A. Chavez    J. P. Coleman    J. R. Fry    E. Gabathuler    D. E. Hutchcroft    D. J. Payne    C. Touramanis University of Liverpool, Liverpool L69 7ZE, United Kingdom    A. J. Bevan    F. Di Lodovico    R. Sacco    M. Sigamani Queen Mary, University of London, London, E1 4NS, United Kingdom    G. Cowan    S. Paramesvaran University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom    D. N. Brown    C. L. Davis University of Louisville, Louisville, Kentucky 40292, USA    A. G. Denig    M. Fritsch    W. Gradl    A. Hafner Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany    K. E. Alwyn    D. Bailey    R. J. Barlow    G. Jackson    G. D. Lafferty University of Manchester, Manchester M13 9PL, United Kingdom    R. Cenci    B. Hamilton    A. Jawahery    D. A. Roberts    G. Simi University of Maryland, College Park, Maryland 20742, USA    C. Dallapiccola    E. Salvati University of Massachusetts, Amherst, Massachusetts 01003, USA    R. Cowan    D. Dujmic    G. Sciolla Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA    D. Lindemann    P. M. Patel    S. H. Robertson    M. Schram McGill University, Montréal, Québec, Canada H3A 2T8    P. Biassoniab    A. Lazzaroab    V. Lombardoa    F. Palomboab    S. Strackaab INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanob, I-20133 Milano, Italy    L. Cremaldi    R. Godang Now at University of South Alabama, Mobile, Alabama 36688, USA    R. Kroeger    P. Sonnek    D. J. Summers University of Mississippi, University, Mississippi 38677, USA    X. Nguyen    P. Taras Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7    G. De Nardoab    D. Monorchioab    G. Onoratoab    C. Sciaccaab INFN Sezione di Napolia; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIb, I-80126 Napoli, Italy    G. Raven    H. L. Snoek NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands    C. P. Jessop    K. J. Knoepfel    J. M. LoSecco    W. F. Wang University of Notre Dame, Notre Dame, Indiana 46556, USA    K. Honscheid    R. Kass Ohio State University, Columbus, Ohio 43210, USA    J. Brau    R. Frey    N. B. Sinev    D. Strom    E. Torrence University of Oregon, Eugene, Oregon 97403, USA    E. Feltresiab    N. Gagliardiab    M. Margoniab    M. Morandina    M. Posoccoa    M. Rotondoa    F. Simonettoab    R. Stroiliab INFN Sezione di Padovaa; Dipartimento di Fisica, Università di Padovab, I-35131 Padova, Italy    E. Ben-Haim    M. Bomben    G. R. Bonneaud    H. Briand    G. Calderini    J. Chauveau    O. Hamon    Ph. Leruste    G. Marchiori    J. Ocariz    S. Sitt Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France    M. Biasiniab    E. Manoniab    A. Rossiab INFN Sezione di Perugiaa; Dipartimento di Fisica, Università di Perugiab, I-06100 Perugia, Italy    C. Angeliniab    G. Batignaniab    S. Bettariniab    M. Carpinelliab Also with Università di Sassari, Sassari, Italy    G. Casarosaab    A. Cervelliab    F. Fortiab    M. A. Giorgiab    A. Lusianiac    N. Neriab    B. Oberhofab    E. Paoloniab    A. Pereza    G. Rizzoab    J. J. Walsha INFN Sezione di Pisaa; Dipartimento di Fisica, Università di Pisab; Scuola Normale Superiore di Pisac, I-56127 Pisa, Italy    D. Lopes Pegna    C. Lu    J. Olsen    A. J. S. Smith    A. V. Telnov Princeton University, Princeton, New Jersey 08544, USA    F. Anullia    G. Cavotoa    R. Facciniab    F. Ferrarottoa    F. Ferroniab    M. Gasperoab    L. Li Gioia    M. A. Mazzonia    G. Pireddaa INFN Sezione di Romaa; Dipartimento di Fisica, Università di Roma La Sapienzab, I-00185 Roma, Italy    C. Bünger    T. Hartmann    T. Leddig    H. Schröder    R. Waldi Universität Rostock, D-18051 Rostock, Germany    T. Adye    E. O. Olaiya    F. F. Wilson Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom    S. Emery    G. Hamel de Monchenault    G. Vasseur    Ch. Yèche CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France    D. Aston    D. J. Bard    R. Bartoldus    J. F. Benitez    C. Cartaro    M. R. Convery    J. Dorfan    G. P. Dubois-Felsmann    W. Dunwoodie    R. C. Field    M. Franco Sevilla    B. G. Fulsom    A. M. Gabareen    M. T. Graham    P. Grenier    C. Hast    W. R. Innes    M. H. Kelsey    H. Kim    P. Kim    M. L. Kocian    D. W. G. S. Leith    P. Lewis    S. Li    B. Lindquist    S. Luitz    V. Luth    H. L. Lynch    D. B. MacFarlane    D. R. Muller    H. Neal    S. Nelson    I. Ofte    M. Perl    T. Pulliam    B. N. Ratcliff    A. Roodman    A. A. Salnikov    V. Santoro    R. H. Schindler    A. Snyder    D. Su    M. K. Sullivan    J. Va’vra    A. P. Wagner    M. Weaver    W. J. Wisniewski    M. Wittgen    D. H. Wright    H. W. Wulsin    A. K. Yarritu    C. C. Young    V. Ziegler SLAC National Accelerator Laboratory, Stanford, California 94309 USA    W. Park    M. V. Purohit    R. M. White    J. R. Wilson University of South Carolina, Columbia, South Carolina 29208, USA    A. Randle-Conde    S. J. Sekula Southern Methodist University, Dallas, Texas 75275, USA    M. Bellis    P. R. Burchat    T. S. Miyashita Stanford University, Stanford, California 94305-4060, USA    M. S. Alam    J. A. Ernst State University of New York, Albany, New York 12222, USA    R. Gorodeisky    N. Guttman    D. R. Peimer    A. Soffer Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel    P. Lund    S. M. Spanier University of Tennessee, Knoxville, Tennessee 37996, USA    R. Eckmann    J. L. Ritchie    A. M. Ruland    C. J. Schilling    R. F. Schwitters    B. C. Wray University of Texas at Austin, Austin, Texas 78712, USA    J. M. Izen    X. C. Lou University of Texas at Dallas, Richardson, Texas 75083, USA    F. Bianchiab    D. Gambaab INFN Sezione di Torinoa; Dipartimento di Fisica Sperimentale, Università di Torinob, I-10125 Torino, Italy    L. Lanceriab    L. Vitaleab INFN Sezione di Triestea; Dipartimento di Fisica, Università di Triesteb, I-34127 Trieste, Italy    N. Lopez-March    F. Martinez-Vidal    A. Oyanguren IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain    H. Ahmed    J. Albert    Sw. Banerjee    H. H. F. Choi    G. J. King    R. Kowalewski    M. J. Lewczuk    C. Lindsay    I. M. Nugent    J. M. Roney    R. J. Sobie University of Victoria, Victoria, British Columbia, Canada V8W 3P6    T. J. Gershon    P. F. Harrison    T. E. Latham    E. M. T. Puccio Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom    H. R. Band    S. Dasu    Y. Pan    R. Prepost    C. O. Vuosalo    S. L. Wu University of Wisconsin, Madison, Wisconsin 53706, USA
(August 2, 2025)
Abstract

We use (111±1)(111\pm 1) million Υ(3S)\mathchar 28935\relax(3S) and (89±1)(89\pm 1) million Υ(2S)\mathchar 28935\relax(2S) events recorded by the BABAR detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions between bottomonium states using photons that have been converted to e+ee^{+}e^{-} pairs by the detector material. We observe Υ(3S)γχb0,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0,2}(1P) decay, make precise measurements of the branching fractions for χb1,2(1P,2P)γΥ(1S)\chi_{b1,2}(1P,2P)\rightarrow\gamma\mathchar 28935\relax(1S) and χb1,2(2P)γΥ(2S)\chi_{b1,2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) decays, and search for radiative decay to the ηb(1S)\eta_{b}(1S) and ηb(2S)\eta_{b}(2S) states.

pacs:
13.20.Gd, 14.40.Pq

I INTRODUCTION

Bottomonium spectroscopy and radiative transitions between bb¯b\overline{b} states can be well-described by effective potential models general_theory . To leading order, radiative decays are expected to be dominantly electric (E1) or magnetic (M1) dipole transitions. In the non-relativistic limit, theoretical predictions for these decays are straightforward and well-understood. However, there are a few notable cases where the non-relativistic decay rates are small or zero, e.g. in “hindered” M1 transitions between S-wave bottomonium such as Υ(nS)γηb(nS)\mathchar 28935\relax(nS)\rightarrow\gamma\eta_{b}(n^{\prime}S) (n>nn>n^{\prime}), and as a consequence of small initial- and final-state wavefunction overlap in the case of Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) decays nomenclature ; higher-order relativistic and model-dependent corrections then play a substantial role. Measurements of these and other E1 transition rates can lead to a better understanding of the relativistic contributions to, and model dependencies of, interquark potentials. Furthermore, because radiative transitions have a distinct photon energy signature associated with the mass difference between the relevant bb¯b\overline{b} states, they are useful in spectroscopic studies for mass measurements, and in the search for and identification of undiscovered resonances.

Radiative transitions within the bottomonium system have been studied previously in several experiments, such as Crystal Ball cb1 ; cb2 , ARGUS with converted photons argus_conv , and iterations of CUSB cusb1 ; cusb2 ; cusb3 ; cusb4 ; cusb_chib and CLEO cleo1 ; cleo2 ; cleo3 ; cleo_inclusive ; cleo_new (including an analysis of photon pair conversions in a lead radiator inserted specifically for that purpose cleo_conv ). These analyses have focused mainly on χbJ(nP)\chi_{bJ}(nP)-related measurements, such as the determination of the masses and the E1 transition rates to and from Υ(mS)\mathchar 28935\relax(mS) states. More recently, the BABAR experiment finished its operation by collecting large samples of data at the Υ(3S)\mathchar 28935\relax(3S) and Υ(2S)\mathchar 28935\relax(2S) center-of-mass (CM) energies. These data are useful for studies of bottomonium spectroscopy and decay and have already led to the discovery of the long-sought ηb(1S)\eta_{b}(1S) bottomonium ground state babar_etab1 ; babar_etab2 , an observation later confirmed by CLEO cleo_etab .

In this paper, we present a study of radiative transitions in the bottomonium system using the inclusive converted photon energy spectrum from Υ(3S)\mathchar 28935\relax(3S) and Υ(2S)\mathchar 28935\relax(2S) decays. The rate of photon conversion and the reconstruction of the resulting e+ee^{+}e^{-} pairs has a much lower detection efficiency than that for photons in the BABAR electromagnetic calorimeter, a disadvantage offset by a substantial improvement in the photon energy resolution. This improvement in resolution is well-suited for performing precise transition energy (hence, particle mass, and potentially width) measurements, and to disentangle overlapping photon energy lines in the inclusive photon energy spectrum. This analysis has different techniques, data selection, and systematic uncertainties than the previous studies babar_etab1 ; babar_etab2 ; cleo_etab , and is relatively free from complications due to overlapping transition peaks, and calorimeter energy scale and measurement uncertainties. We report measurements of χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S), χbJ(1P,2P)γΥ(1S)\chi_{bJ}(1P,2P)\rightarrow\gamma\mathchar 28935\relax(1S), observation of Υ(3S)γχb0,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0,2}(1P), and searches for the ηb(1S,2S)\eta_{b}(1S,2S) states.

In Sec. II we describe the BABAR detector and the data samples used in this analysis. Section III describes the photon conversion reconstruction procedure and the event selection criteria. Each of the following sections (Sec. IV - VII) individually describes the analysis of a particular region of interest in the inclusive photon energy spectrum. Section VIII summarizes the results obtained. Appendix provides specific details of some systematic uncertainties related to this analysis.

II THE BABAR  DETECTOR AND DATA SAMPLES

The BABAR detector is described in detail elsewhere babar_detector ; a brief summary is provided here. Moving outwards from the collision axis, the detector consists of a double-sided five-layer silicon vertex tracker (SVT) for measuring decay vertices close to the interaction point, a 40-layer drift chamber (DCH) for charged-particle tracking and momentum measurement, a ring-imaging Cherenkov detector for particle identification, and a CsI(Tl) crystal electromagnetic calorimeter (EMC) for measuring the energy deposited by electrons and photons. These detector subsystems are contained within a large solenoidal magnet which generates a 1.5-T field. The steel magnetic flux return is instrumented with a muon detection system consisting of resistive plate chambers and limited streamer tubes babar_lst .

The inner tracking region also contains non-instrumented support structure elements. Interior to the SVT, the interaction region is surrounded by a water-cooled, gold-coated beryllium beam pipe. The SVT support structure consists primarily of carbon-fiber and Kevlar®. The SVT, beam pipe and vacuum chamber, and the near-interaction-point magnetic elements are mounted inside a cylindrical, carbon-fiber support tube. The inner wall of the DCH is a cylindrical tube of beryllium coated with anti-corrosion paint. A photon at normal incidence traverses approximately 0.01 radiation lengths (X0X_{0}) of material before reaching the SVT, and an additional 0.03X0X_{0} before the DCH. Due to the asymmetric energy of the incoming e+ee^{+}e^{-} beams, the photons in this analysis tend to be boosted in the direction of ee^{-} beam, increasing the typical number of radiation lengths up to 0.02X0X_{0} and 0.08X0X_{0} to reach the previously noted detector subsystems. While this extra material is usually considered detrimental to detector performance, it is essential for γe+e\gamma\rightarrow e^{+}e^{-} conversions in the present analysis.

The BABAR detector collected data samples of (121±1)(121\pm 1) million Υ(3S)\mathchar 28935\relax(3S) and (98±1)(98\pm 1) million Υ(2S)\mathchar 28935\relax(2S) decays semantics produced by the PEP-II asymmetric energy e+ee^{+}e^{-} collider. This corresponds to an integrated luminosity of 27.9±0.227.9\pm 0.2 fb-1 (13.6±0.113.6\pm 0.1 fb-1) taken at the Υ(3S)\mathchar 28935\relax(3S) (Υ(2S)\mathchar 28935\relax(2S)) resonance. Approximately 10%10\% of these data (referred to here as the “test sample”) were used for feasibility studies and event selection optimization; they are excluded in the final analysis. The results presented in this analysis are based on data samples of (111±1)(111\pm 1) million Υ(3S)\mathchar 28935\relax(3S) and (89±1)(89\pm 1) million Υ(2S)\mathchar 28935\relax(2S) decays. An additional 2.60±0.022.60\pm 0.02 (1.42±0.011.42\pm 0.01) fb-1 of data were taken at a CM energy approximately 30 MeV\mathrm{\,Me\kern-1.00006ptV} below the nominal Υ(3S)\mathchar 28935\relax(3S) (Υ(2S)\mathchar 28935\relax(2S)) resonance energy, to be used for efficiency-related studies.

Large Monte Carlo (MC) datasets simulating the signal and expected background decay modes are used for the determination of efficiencies and the parameterization of lineshapes for signal extraction. The particle production and decays are simulated using a combination of EVTGEN evtgen and JETSET jetset . The radiative decays involving χbJ(nP)\chi_{bJ}(nP) states are assumed to be dominantly E1 radiative transitions, and the MC events are generated with theoretically predicted helicity amplitudes helicity . The interactions of the decay products traversing the detector are modeled by Geant4 geant4 .

III EVENT RECONSTRUCTION AND SELECTION

Photon conversions are reconstructed with a dedicated fitting algorithm that pairs oppositely charged particle tracks to form secondary vertices away from the interaction point. The algorithm minimizes a χ2\chi^{2} value (χfit2\chi^{2}_{fit}) based on the difference between the measured helical track parameters and those expected for the hypothesis that the secondary vertex had originated from two nearly parallel tracks emitted from a γe+e\gamma\rightarrow e^{+}e^{-} conversion. The χfit2\chi^{2}_{fit} value includes a term to account for an observed finite opening angle between the converted tracks. Requiring χfit2<34\chi^{2}_{fit}<34 is found to be the optimal value to select a high-purity converted photon sample. The reconstructed converted photons are also required to have an e+ee^{+}e^{-} invariant mass of me+e<30MeV/c2m_{e^{+}e^{-}}<30{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} (though in practice, me+em_{e^{+}e^{-}} is typically less than 10MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}). To remove internal conversions and Dalitz decays, and to improve signal purity, the conversion vertex radius (ργ\rho_{\gamma}) is required to satisfy 1.7<ργ<271.7<\rho_{\gamma}<27 cm. This restricts the photon conversions to the beampipe, SVT, support tube, and inner wall of the DCH, as seen in the plot of conversion vertex position for a portion of the “test sample” in Fig. 1. The efficiency for photon conversion and reconstruction versus energy in the CM frame (EγE_{\gamma}^{*}), as determined from a generic Υ(3S)\mathchar 28935\relax(3S) MC sample, is shown in Fig. 2.

Refer to caption
Figure 1: (Color online) End view of the the BABAR inner detector along the beam axis as seen by converted photons. Points indicate the number of converted photon vertices per cross-sectional area, as measured in a subset of the “test sample” data. From the center outwards, features of note include the beam pipe, the SVT (e.g. hexagonal inner layers) and its support structure rods, the support tube, and the inner wall of the DCH.
Refer to caption
Figure 2: Efficiency for the conversion and reconstruction of a photon versus photon energy as derived from a sample of generic Υ(3S)\mathchar 28935\relax(3S) MC events before the optimal selection criteria have been applied.

Figure 3 shows the inclusive distributions of the resulting reconstructed converted photon energy. The data are divided into four energy ranges, as indicated by the shaded regions in Fig. 3. These ranges and the corresponding bottomonium transitions of interest are, in Υ(3S)\mathchar 28935\relax(3S) data:

  • 180Eγ300180\leq E_{\gamma}^{*}\leq 300MeV\mathrm{\,Me\kern-1.00006ptV}: χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)

  • 300Eγ600300\leq E_{\gamma}^{*}\leq 600MeV\mathrm{\,Me\kern-1.00006ptV}: Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) and Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S)

  • 600Eγ1100600\leq E_{\gamma}^{*}\leq 1100MeV\mathrm{\,Me\kern-1.00006ptV}: χbJ(2P)γΥ(1S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) and Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S)

and in Υ(2S)\mathchar 28935\relax(2S) data:

  • 300Eγ800300\leq E_{\gamma}^{*}\leq 800MeV\mathrm{\,Me\kern-1.00006ptV}: χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) and Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S).

Figure 4 summarizes these energy ranges and the radiative transitions of interest in a pictoral form. Peaks related to some of these transitions are already clearly visible in Fig. 3, where the photon energy in the CM frame of the initial particle for the radiative transition from an initial (ii) to final (ff) state is given in terms of their respective masses by

Eγ(if)=mi2mf22mic2.E_{\gamma}(i\rightarrow f)=\frac{m_{i}^{2}-m_{f}^{2}}{2m_{i}}c^{2}. (1)

Because we analyse the photon energy in the CM frame of the initial Υ(mS)\mathchar 28935\relax(mS) system (EγE_{\gamma}^{*}), the photon spectra from subsequent boosted decays (e.g. χbJ(nP)γΥ(1S)\chi_{bJ}(nP)\rightarrow\gamma\mathchar 28935\relax(1S)) are affected by Doppler broadening due to the motion of the parent state in the CM frame.

Refer to caption
Figure 3: Raw inclusive converted photon energy spectrum from (a) Υ(3S)\mathchar 28935\relax(3S) and (b) Υ(2S)\mathchar 28935\relax(2S) decays. The shaded areas indicate different regions of interest considered in detail in this analysis. The Roman numeral labels indicate the corresponding Section in which each energy region is discussed.
Refer to caption
Figure 4: Pictoral representation of energy levels in the bottomonium system and the radiative transitions studied here. The Roman numeral labels indicate the corresponding Section in which the given transition is discussed.

To best enhance the number of signal (SS) to background (BB) events, the event selection criteria are chosen by optimizing the figure of merit =SS+B\mathcal{F}=\frac{S}{\sqrt{S+B}}. This is done separately for each energy region. The 180Eγ300180\leq E_{\gamma}^{*}\leq 300MeV\mathrm{\,Me\kern-1.00006ptV} energy region in Υ(3S)\mathchar 28935\relax(3S) uses the same criteria as determined for the similarly low energy 300Eγ600300\leq E_{\gamma}^{*}\leq 600MeV\mathrm{\,Me\kern-1.00006ptV} range. We determine SS from MC samples of Υ(mS)γηb(1S)\mathchar 28935\relax(mS)\rightarrow\gamma\eta_{b}(1S) weighted to match the measured branching fractions pdg , and Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S) assuming the same branching fraction as for the decay to γηb(1S)\gamma\eta_{b}(1S). Because the generic decay processes of Υ(3S)\mathchar 28935\relax(3S) are not well-known (ie: a large percentage of the exclusive branching fractions have not been measured), the “test sample” data are used to estimate BB. The optimization is performed by varying the selection criteria for the total number of tracks in the event (nTRKnTRK), the absolute value of the cosine of the angle in the CM frame between the photon momentum and the thrust axis (|cosθT||\cos\theta_{T}|) thrust , and a π0\pi^{0} veto excluding converted photons producing an invariant mass (mγγm_{\gamma\gamma}) consistent with mπ0m_{\pi^{0}} when paired with any other photon (converted or calorimeter-detected) above a minimum energy (Eγ2E_{\gamma 2}) in the event. A requirement on the ratio of the second and zeroth Fox-Wolfram moments fox-wolfram of each event, R2R_{2}, is also applied. The reason for using these particular variables (indicated in parentheses) is to preferentially select bottomonium decays to hadronic final states (nTRKnTRK) and to remove photons from continuum background events (|cosθT||\cos\theta_{T}| and R2R_{2}) and π0\pi^{0} decays (mπ0m_{\pi^{0}} veto). Table 1 summarizes the values for the optimized selection criteria.

Table 1: Acceptance criteria for converted photon events.
Variable EγE_{\gamma}^{*} Range (MeV\mathrm{\,Me\kern-1.00006ptV})
Υ(3S)\mathchar 28935\relax(3S) Υ(3S)\mathchar 28935\relax(3S) Υ(2S)\mathchar 28935\relax(2S)
[180,600][180,600] [600,1100][600,1100] [300,800][300,800]
nTRKnTRK 8\geq 8 8\geq 8 8\geq 8
|cosθT||\cos\theta_{T}| <0.85<0.85 <0.75<0.75 <0.85<0.85
|mγγmπ0||m_{\gamma\gamma}-m_{\pi^{0}}| (MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}) >10>10 >20>20 >20>20
Eγ2E_{\gamma 2} (MeV\mathrm{\,Me\kern-1.00006ptV}) >90>90 >75>75 >70>70
R2R_{2} <0.98<0.98 <0.98<0.98 <0.98<0.98

The efficiency for reconstruction and selection of signal events (ϵ\epsilon) is determined from MC simulation. A dedicated e+eμ+μγe^{+}e^{-}\rightarrow\mu^{+}\mu^{-}\gamma sample is used to study our detector model and converted photon efficiency (discussed in Appendix A), and the correspondence between simulation and data is found to be in very good agreement. Once the optimal selection criteria have been applied, ϵ1.5%\epsilon\lesssim 1.5\% for conversions compared to 40%\sim 40\% for photons in the EMC for the energy range of interest in this analysis. Conversely, a large improvement is gained in photon energy resolution, e.g. from 25MeV\sim 25\mathrm{\,Me\kern-1.00006ptV} in the calorimeter to 4MeV4\mathrm{\,Me\kern-1.00006ptV} or better with converted photons. Figure 3 demonstrates both of these features. The sharply-peaking structures correspond to bottomonium transitions, and are narrow and well-resolved in this analysis. Unlike in the photon energy spectrum expected from the EMC babar_etab1 ; babar_etab2 , the distribution for converted photons drops with energy. The efficiency decreases (also seen in Fig. 2) due to the inability to fully reconstruct the conversion pair as at least one of the individual track momenta approaches the limit of detector sensitivity. We are unable to contribute useful new information on transitions expected below EγE_{\gamma}^{*} =180 (300)MeV\mathrm{\,Me\kern-1.00006ptV} for the Υ(3S)\mathchar 28935\relax(3S) (Υ(2S)\mathchar 28935\relax(2S)) analysis, which is why those energy ranges are not considered here.

The number of signal events for a given bottomonium transition is extracted from the data by performing a χ2\chi^{2} fit to the EγE_{\gamma}^{*} distribution in 1MeV\mathrm{\,Me\kern-1.00006ptV} bins. The functional form and parameterization for each photon signal is determined from MC samples, as described below. In general, the lineshape is related to the Crystal Ball function crystal_ball , i.e. a Gaussian function with a power-law tail. This functional form is used to account for bremsstrahlung losses of the e+ee^{+}e^{-} pair. Comparisons between simulation and data made on e+ee+ee^{+}e^{-}\rightarrow e^{+}e^{-} events used for the standard luminosity measurement in BABAR  demonstrate that the bremsstrahlung tails of these distributions are found to be well-described. The underlying smooth inclusive photon background is described by a fourth-order polynominal multiplied by an exponential function. This functional form adequately describes the background in each separate energy range.

IV 𝚼(𝟑𝑺):𝟏𝟖𝟎𝑬𝜸𝟑𝟎𝟎\mathchar 28935\relax(3S):180\leq E_{\gamma}^{*}\leq 300 MeV

The main purpose of the fit to the 180Eγ300180\leq E_{\gamma}^{*}\leq 300MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) photon energy spectrum, shown in detail in Fig. 5, is to measure the χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) transitions. The only previous measurements of these transitions were made by CUSB cusb_chib and CLEO cleo2 nearly two decades ago. Those analyses examined the low-energy photon spectrum from exclusive Υ(3S)γγΥ(2S)(+)\mathchar 28935\relax(3S)\rightarrow\gamma\gamma\mathchar 28935\relax(2S)(\ell^{+}\ell^{-}) decays to derive the branching fractions for (χb1,2(2P)γΥ(2S))\mathcal{B}(\chi_{b1,2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)), and in the case of the CUSB result, to obtain evidence for χb0(2P)γΥ(2S)\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(2S). We present the first fit to EγE_{\gamma}^{*} to measure the photon from χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) directly. Though this analysis is potentially sensitive to all six Υ(1DJ)γχbJ(1P)\mathchar 28935\relax(1D_{J})\rightarrow\gamma\chi_{bJ}(1P) decays, we treat these decays as a small systematic effect to the χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) measurement.

The χbJ(2P)\chi_{bJ}(2P) transition lineshapes are parameterized by a Gaussian with power law tails on both the high and low side. This is best understood as a “double-sided” Crystal Ball function with different transition points and exponents for the high and low tails, but with a common Gaussian mean and standard deviation in the central region. The effects of Doppler broadening, due to the motion of the χbJ(2P)\chi_{bJ}(2P) in the CM frame, are small (2MeV\sim 2\mathrm{\,Me\kern-1.00006ptV} width) for these transitions. The Υ(1DJ)\mathchar 28935\relax(1D_{J})-related lineshapes are individually parameterized in terms of a single Crystal Ball function. Parameterization of these transitions presents a complication because only the mass of the J=2J=2 state has been measured reliably cleo_y1d ; babar_y1d , the value mΥ(1D)=(10163.7±1.4)m_{\mathchar 28935\relax(1D)}=(10163.7\pm 1.4) MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} being obtained when the experimental results are averaged. Marginal evidence for the J=1J=1 and 3 states was also seen at 10152\sim 10152MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} and 10173\sim 10173MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}, respectively cleo_y1d ; babar_y1d . These values are consistent with several theoretical predictions y1d_godfrey_rosner , given a shift to bring the theoretical value for mΥ(1D2)m_{\mathchar 28935\relax(1D_{2})} into agreement with experiment. We therefore assume the mΥ(1D1,3)m_{\mathchar 28935\relax(1D_{1,3})} mass values stated above to compute the expected energy for transitions from those states. The event yields for these transitions are fixed to the branching fractions expected when (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)) pdg is combined with the predictions for (χbJ(2P)γγχbJ(1P))\mathcal{B}(\chi_{bJ}(2P)\rightarrow\gamma\gamma\chi_{bJ}(1P)) via Υ(1DJ)\mathchar 28935\relax(1D_{J}) y1d_kwong_rosner . The efficiencies for the Υ(1D)\mathchar 28935\relax(1D) transition signals range from approximately 0.170.17 to 0.30%0.30\%, monotonically rising with EγE_{\gamma}^{*}.

Table 2: Summary of the analysis of the 180Eγ300180\leq E_{\gamma}^{*}\leq 300 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data. The EγE_{\gamma}^{*} column lists the transition energy assumed in this analysis. Errors on the yield are statistical only. Regarding the derived (χbJ(2P)γΥ(2S))\mathcal{B}(\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)): the BABAR value is from this paper, while the CUSB and CLEO columns are derivations based on cusb_chib and cleo2 using up-to-date secondary branching fractions from pdg . For the BABAR result, the listed uncertainties are statistical, systematic, and from the uncertainties on secondary branching fractions, respectively. For the other results, the total uncertainty (all sources combined in quadrature) is given. Upper limits are given at the 90%90\% confidence level.
Transition EγE_{\gamma}^{*} Yield ϵ\epsilon Derived Branching Fraction (%)(\%)
(MeV\mathrm{\,Me\kern-1.00006ptV}) (%\%) BABAR CUSB CLEO
χb0(2P)γΥ(2S)\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) 205.0 347±209-347\pm 209 0.105 4.7±2.80.8+0.7±0.5(<2.8)-4.7\pm 2.8^{+0.7}_{-0.8}\pm 0.5\>(<2.8) 3.6±1.63.6\pm 1.6 <5.2<5.2
χb1(2P)γΥ(2S)\chi_{b1}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) 229.7 4294±2514294\pm 251 0.152 18.9±1.1±1.2±1.818.9\pm 1.1\pm 1.2\pm 1.8 13.6±2.413.6\pm 2.4 21.1±4.521.1\pm 4.5
χb2(2P)γΥ(2S)\chi_{b2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) 242.3 2462±2432462\pm 243 0.190 8.3±0.8±0.6±1.08.3\pm 0.8\pm 0.6\pm 1.0 10.9±2.210.9\pm 2.2 9.9±2.79.9\pm 2.7

Figure 5 shows the measured photon spectrum and results of the fit, before and after subtraction of the inclusive background. In this fit, the parameters describing the background and any systematic offset in the EγE_{\gamma}^{*} scale are free parameters, together with the signal yields for χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) decays. Table 2 summarizes the fit results. Considering both statistical and systematic uncertainties, we find significant χb1,2(2P)γΥ(2S)\chi_{b1,2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) signals (>12σ>12\sigma and >8σ>8\sigma, respectively, where σ\sigma represents standard deviation), but do not find evidence for χb0(2P)γΥ(2S)\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) decay. The overall energy offset, determined predominantly by the position of the χb1,2(2P)\chi_{b1,2}(2P) transition peaks compared to the nominal pdg values, is found to be inconsequential (0.3±0.2-0.3\pm 0.2MeV\mathrm{\,Me\kern-1.00006ptV}).

Refer to caption
Refer to caption
Figure 5: Fit to the 180Eγ300180\leq E_{\gamma}^{*}\leq 300 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data (a) for all of the data, and (b) after subtraction of the fitted background contribution. The χ2/ndof\chi^{2}/ndof (where ndof stands for number of degress of freedom) for the fit is 119.1/110. The thin gray lines indicate the individual signal components in the fit, as labelled.

The systematic uncertainties on these measurements (with their approximate sizes given in parentheses below and throughout) include the uncertainty in the fit parameters fixed from MC, uncertainty in the converted photon efficiency, assumptions related to the Υ(1DJ)\mathchar 28935\relax(1D_{J}) contributions, uncertainty on masses used to calculate the expected EγE_{\gamma}^{*} values, the Υ(mS)\mathchar 28935\relax(mS) counting uncertainty, effects of the fit mechanics, and the effect of the choice for the background shape. For each fit component, all of the parameters fixed to MC-determined values are varied individually by ±1σ\pm 1\sigma of the statistical uncertainty from the MC determination, and the fit repeated. The maximal variation of the fit result for each component is taken as the systematic uncertainty, and summed in quadrature (4%\sim 4\%). The systematic uncertainty on the converted photon efficiency (4.7%4.7\%) is estimated using an off-peak control sample and varied selection criteria, as described for all energy regions in Appendix A. The fits are repeated with the Υ(1DJ)\mathchar 28935\relax(1D_{J}) masses individually varied by their approximate experimental uncertainties (±1.8\pm 1.8, ±1.4\pm 1.4, and ±1.5\pm 1.5 MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}} for J=1,2J=1,2 and 3, respectively) babar_y1d , and the fixed yields by ±50%\pm 50\% of the theoretical values y1d_kwong_rosner . To make a theory-independent determination of the impact due to Υ(1DJ)\mathchar 28935\relax(1D_{J}), the fit is also repeated with four of the Υ(1DJ)γχbJ(1P)\mathchar 28935\relax(1D_{J})\rightarrow\gamma\chi_{bJ}(1P) yields free to vary (the Υ(1D1)γχb1(1P)\mathchar 28935\relax(1D_{1})\rightarrow\gamma\chi_{b1}(1P) and Υ(1D3)γχb2(1P)\mathchar 28935\relax(1D_{3})\rightarrow\gamma\chi_{b2}(1P) yields are fit as a single component because their EγE_{\gamma}^{*} values are nearly identical, and the Υ(1D1)γχb2(1P)\mathchar 28935\relax(1D_{1})\rightarrow\gamma\chi_{b2}(1P) transition is overwhelmed by the main χb1,2(2P)γΥ(2S)\chi_{b1,2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) peaks and remains fixed). Under this scenario, none of the Υ(1DJ)\mathchar 28935\relax(1D_{J})-related transitions is found to be significant, and the yields are consistent with the theoretical predictions within statistical uncertainty. The χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) yields are not significantly affected. The changes in the fit yields for all of these alternative cases are added in quadrature and taken as the systematic uncertainty due to Υ(1DJ)\mathchar 28935\relax(1D_{J}) decays (2%\sim 2\%). It is worth reiterating that the excellent resolution obtained by using converted photons separates the Υ(1DJ)\mathchar 28935\relax(1D_{J})- and χbJ(2P)\chi_{bJ}(2P)-related components in EγE_{\gamma}^{*}, which is why the impact of the Υ(1DJ)\mathchar 28935\relax(1D_{J}) states does not dominate the measurement uncertainty. The fit is repeated with the bottomonium masses (hence, EγE_{\gamma}^{*} values) varied according to the PDG uncertainties pdg , and the change in the yield added in quadrature (2%\sim 2\%). The number of Υ(mS)\mathchar 28935\relax(mS) mesons and its uncertainty (1.0%1.0\%) were calculated separately, based on visible cross sections computed from dedicated e+ee+e(γ)e^{+}e^{-}\rightarrow e^{+}e^{-}(\gamma) and e+eμ+μ(γ)e^{+}e^{-}\rightarrow\mu^{+}\mu^{-}(\gamma) control samples. Systematic effects due to the fit mechanics were tested by repeating the fit separately with an expanded EγE_{\gamma}^{*} range and a bin width of 0.5MeV0.5\mathrm{\,Me\kern-1.00006ptV}, the difference in results defining a small systematic uncertainty (1.5%1.5\%). As a cross-check, the fit was repeated with the χb0(2P)\chi_{b0}(2P) component restricted to a physical range. The effect on the other signal yields was found to be small (<2%<2\%). Finally, the background shape was replaced by a fifth-order polynomial and half of the resulting change in the yield (<1%<1\%) taken as the symmetric error due to this assumed parameterization.

We find (Υ(3S)γχbJ(2P))×(χbJγΥ(2S))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P))\times\mathcal{B}(\chi_{bJ}\rightarrow\gamma\mathchar 28935\relax(2S)) = (0.3±0.20.4+0.5)%(-0.3\pm 0.2^{+0.5}_{-0.4})\%, (2.4±0.1±0.2)%(2.4\pm 0.1\pm 0.2)\%, and (1.1±0.1±0.1)%(1.1\pm 0.1\pm 0.1)\% for J=0J=0, 1, and 2, respectively. Using (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)) from pdg , we derive (χbJ(2P)γΥ(2S))\mathcal{B}(\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)) = (4.7±2.80.8+0.7±0.5)%(-4.7\pm 2.8^{+0.7}_{-0.8}\pm 0.5)\%, (18.9±1.1±1.2±1.8)%(18.9\pm 1.1\pm 1.2\pm 1.8)\%, and (8.3±0.8±0.6±1.0)%(8.3\pm 0.8\pm 0.6\pm 1.0)\%, where the errors are statistical, systematic, and from the uncertainty on (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)), respectively. From these values, we calculate a 90%90\% confidence level upper limit of (χb0(2P)γΥ(2S))<2.8%\mathcal{B}(\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(2S))<2.8\% ul . Past experimental results cusb_chib ; cleo2 averaged by the PDG pdg rely on assumptions for the branching fractions of Υ(2S)+\mathchar 28935\relax(2S)\rightarrow\ell^{+}\ell^{-} and Υ(3S)γχbJ(2P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P) and their uncertainties that are no longer valid. In Table 2, we have rescaled these previous results using the current values in order to make a useful comparison. We find our results to be in good agreement with the previous results, and to be the most precise values to date for the J=J=1 and 2 decays.

V 𝚼(𝟑𝑺):𝟑𝟎𝟎𝑬𝜸𝟔𝟎𝟎\mathchar 28935\relax(3S):300\leq E_{\gamma}^{*}\leq 600 MeV

The 300Eγ600300\leq E_{\gamma}^{*}\leq 600MeV\mathrm{\,Me\kern-1.00006ptV} range in the inclusive Υ(3S)\mathchar 28935\relax(3S) photon energy spectrum, shown in Fig. 6, is complicated by many radiative bottomonium transitions. A principal feature is the photon lines from the three direct Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) decays. Photons from the secondary decays, χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S), have energies that overlap with these initial transitions. There are several ways to produce χbJ(1P)\chi_{bJ}(1P) from Υ(3S)\mathchar 28935\relax(3S), each with unique Doppler broadening and relative rate. These decays “feed-down” to produce many extraneous χbJ(1P)\chi_{bJ}(1P) mesons that contribute substantially to the background level through subsequent χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) decay. At the lower edge of this energy range, there are potential contributions from Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S) and Υ(2S)\mathchar 28935\relax(2S) production from initial state radiation (ISR).

The best known of the Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) branching fractions comes from the CLEO experiment, which was able to isolate the Υ(3S)γχb0(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0}(1P) signal cleo_inclusive . A separate analysis of χbJ(1P)\chi_{bJ}(1P) decays to multihadronic final states further set upper limits on (Υ(3S)γχbJ(1P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P)) cleo_hadrons . A recent analysis of Υ(3S)γχb1,2(1P)γγΥ(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1,2}(1P)\rightarrow\gamma\gamma\mathchar 28935\relax(1S) transitions with exclusive Υ(1S)+\mathchar 28935\relax(1S)\rightarrow\ell^{+}\ell^{-} decays has resulted in a measurement of Υ(3S)γχb1,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1,2}(1P) branching fractions cleo_new . Our improved EγE_{\gamma}^{*} resolution with the converted photon sample allows us to disentangle the overlapping photon lines to make a direct measurement of these radiative transitions as well. We also search for a signal for Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S).

The direct Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) lineshapes are parameterized using the double-sided Crystal Ball function described in Sec. IV plus an independent Gaussian to account for broadening from non-linearities in the EγE_{\gamma}^{*} resolution due to low momentum tracks encountered in this energy range. The Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S) lineshape is modeled with the convolution of a relativistic Breit-Wigner function (natural lineshape for the ηb(2S)\eta_{b}(2S)) and a Crystal Ball function (experimental resolution function), where the Breit-Wigner function has been modified by a transformation of variables to EγE_{\gamma}^{*} using Eq. (1). The ISR-produced Υ(2S)\mathchar 28935\relax(2S) signal is parameterized with a Crystal Ball function, for which the width is dominated by the spread in the e+ee^{+}e^{-} beam energy.

The lineshapes for the decays χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) depend on the initial decays that produced the χbJ(1P)\chi_{bJ}(1P) states. We consider six main production pathways:

  • Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P)

  • Υ(3S)γγΥ(2S)γγγχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\gamma\mathchar 28935\relax(2S)\rightarrow\gamma\gamma\gamma\chi_{bJ}(1P)

  • Υ(3S)γγΥ(1DJ)γγγχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\gamma\mathchar 28935\relax(1D_{J})\rightarrow\gamma\gamma\gamma\chi_{bJ}(1P)

  • Υ(3S)ππΥ(2S)ππγχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\pi\pi\mathchar 28935\relax(2S)\rightarrow\pi\pi\gamma\chi_{bJ}(1P)

  • Υ(3S)γχbJ(2P)γππχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)\rightarrow\gamma\pi\pi\chi_{bJ}(1P)

  • e+eγISRΥ(2S)γISRγχbJ(1P)e^{+}e^{-}\rightarrow\gamma_{ISR}\mathchar 28935\relax(2S)\rightarrow\gamma_{ISR}\gamma\chi_{bJ}(1P).

Table 3: Summary of the analysis of the 300Eγ600300\leq E_{\gamma}^{*}\leq 600MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data. The EγE_{\gamma}^{*} column lists the transition energy assumed in this analysis. Errors on the yield are statistical only. For the Derived Branching Fraction, the BABAR values are from this work, and the CLEO results are from cleo_inclusive ; cleo_new . The upper limit is given at the 90%90\% confidence level.
Transition EγE_{\gamma}^{*} Yield ϵ\epsilon Derived Branching Fraction (×103)(\times 10^{-3})
(MeV\mathrm{\,Me\kern-1.00006ptV}) (%\%) BABAR CLEO
Υ(3S)γχb2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b2}(1P) 433.1433.1 9699±3189699\pm 318 0.794 10.5±0.30.6+0.710.5\pm 0.3^{+0.7}_{-0.6} 7.7±1.37.7\pm 1.3
Υ(3S)γχb1(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1}(1P) 452.2452.2 483±315483\pm 315 0.818 0.5±0.30.1+0.2(<1.0)0.5\pm 0.3^{+0.2}_{-0.1}\>(<1.0) 1.6±0.51.6\pm 0.5
Υ(3S)γχb0(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0}(1P) 483.5483.5 2273±3072273\pm 307 0.730 2.7±0.4±0.22.7\pm 0.4\pm 0.2 3.0±1.13.0\pm 1.1

The feed-down contribution from Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) is determined directly from the fit to the data. The lineshapes for the subsequent χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) decays are distorted by Doppler-broadening effects. We parameterize the χbJ(1P)\chi_{bJ}(1P) transition lineshape with the convolution of a rectangular function and a Crystal Ball function. Because of the large Doppler width (20MeV\sim 20\mathrm{\,Me\kern-1.00006ptV}), the resulting shape is relatively broad and non-peaking. In the fit, the relative yields of the direct to the secondary transitions are fixed according to the ratios of the expected efficiencies for each mode, and the branching fractions for the χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) decays (to be discussed below).

There are two 3γ3\gamma pathways from Υ(3S)\mathchar 28935\relax(3S) to χbJ(1P)\chi_{bJ}(1P). Decays via Υ(2S)\mathchar 28935\relax(2S) are fairly well understood, and the precision branching fraction results from Sec. IV are used to determine the expected yields and uncertainties. In contrast, the decays via Υ(1DJ)\mathchar 28935\relax(1D_{J}) have not been measured in detail. We rely on theoretical predictions y1d_kwong_rosner , found to be consistent with an experimental measurement of the 4γ4\gamma cascade to Υ(1S)\mathchar 28935\relax(1S) cleo_y1d , to estimate the total feed-down component. We take the uncertainties on (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)) pdg and introduce a 30%30\% uncertainty on each theoretically calculated branching fraction in the decay chain. Doppler effects introduce a smooth 5MeV\sim 5\mathrm{\,Me\kern-1.00006ptV} broadening in these (and other) multi-step decay processes, thus the lineshapes for the individual 3γ3\gamma pathways are adequately parameterized using a standard Crystal Ball function.

There are two di-pion decay chains leading to χbJ(1P)\chi_{bJ}(1P): either via Υ(3S)ππΥ(2S)\mathchar 28935\relax(3S)\rightarrow\pi\pi\mathchar 28935\relax(2S) or χbJ(2P)ππχbJ(1P)\chi_{bJ}(2P)\rightarrow\pi\pi\chi_{bJ}(1P). The former has been precisely measured by BABAR in a recent analysis of the recoil against π+π\pi^{+}\pi^{-} to search for the hb(1P)h_{b}(1P) state babar_pipihb . We combine the branching fraction from that analysis with the PDG average pdg to obtain (Υ(3S)π+πΥ(2S)\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\pi^{+}\pi^{-}\mathchar 28935\relax(2S) = (2.7±0.2)%(2.7\pm 0.2)\%. For the π0π0\pi^{0}\pi^{0} transition, we use the current world average branching fraction value pdg . The relevant MC samples are generated with the experimentally-determined mπ+πm_{\pi^{+}\pi^{-}} distribution cleo_dipion_shape . Di-pion transitions between χbJ(2P)\chi_{bJ}(2P) and χbJ(1P)\chi_{bJ}(1P) for J=J=1 and 2 have been measured experimentally by CLEO cleo_dipion . The above-mentioned BABAR di-pion analysis babar_pipihb also measured these quantities, which are averaged with the CLEO results to derive (χbJ(2P)π+πχbJ(1P))\mathcal{B}(\chi_{bJ}(2P)\rightarrow\pi^{+}\pi^{-}\chi_{bJ}(1P)) equal to (9.1±1.0)×103(9.1\pm 1.0)\times 10^{-3} and (5.0±0.6)×103(5.0\pm 0.6)\times 10^{-3} for J=1J=1 and 2, respectively. Decays to the J=0J=0 state, with different initial and final JJ values, and via π0π0\pi^{0}\pi^{0} have thus far been below the level of experimental sensitivity. To calculate the expected feed-down, we assume isospin conservation such that Γπ0π0=12Γπ+π\Gamma_{\pi^{0}\pi^{0}}=\frac{1}{2}\Gamma_{\pi^{+}\pi^{-}}, and estimate (χb0(2P)ππχb0(1P))\mathcal{B}(\chi_{b0}(2P)\rightarrow\pi\pi\chi_{b0}(1P)) to be about one-fifth of that of the other JJ states theory_dipion . We assume a 30%30\% uncertainty on all theoretically-estimated branching fractions.

Radiative decay of ISR-produced Υ(2S)\mathchar 28935\relax(2S) mesons can yield χbJ(1P)\chi_{bJ}(1P) signals. The estimated production cross section for Υ(2S)\mathchar 28935\relax(2S) is (28.6±1.4)(28.6\pm 1.4) pb benayoun , where we have assigned a 5%5\% uncertainty to this theoretical calculation. We combine this with the Υ(2S)γχbJ(1P)\mathchar 28935\relax(2S)\rightarrow\gamma\chi_{bJ}(1P) branching fraction pdg to determine the size of this contribution to the background. From MC simulation, we conclude that the lineshape may be parameterized with a Crystal Ball function.

Except for feed-down from Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P), which is determined from the data, the yields of these components are fixed in the fit. The branching fractions for the final step of the decay chain, (χbJ(1P)γΥ(1S))\mathcal{B}(\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)), are measured precisely for J=1J=1 and 2 in Sec. VI. Our values for these decays are averaged with results from CLEO cleo_new . For decays with J=0J=0, the CLEO cleo_new Collaboration has recently presented observations. Since we do not observe this decay in Sec. VI, we use the measured branching fraction value from CLEO cleo_new .

In the fit, we include two components related to hb(1P)γηb(1S)h_{b}(1P)\rightarrow\gamma\eta_{b}(1S) decays. The hb(1P)h_{b}(1P) decay is assumed to decay with a large branching fraction via hb(1P)γηb(1S)h_{b}(1P)\rightarrow\gamma\eta_{b}(1S) hb_godfrey_rosner . The two relevant hb(1P)h_{b}(1P) production mechanisms are Υ(3S)π+πhb(1P)\mathchar 28935\relax(3S)\rightarrow\pi^{+}\pi^{-}h_{b}(1P) and Υ(3S)π0hb(1P)\mathchar 28935\relax(3S)\rightarrow\pi^{0}h_{b}(1P). BABAR has studied both of these modes, finding (Υ(3S)π+πhb(1P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\pi^{+}\pi^{-}h_{b}(1P)) <2.5×104<2.5\times 10^{-4} babar_pipihb and (Υ(3S)π0hb(1P))×(hb(1P)γηb(1S))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\pi^{0}h_{b}(1P))\times\mathcal{B}(h_{b}(1P)\rightarrow\gamma\eta_{b}(1S)) = (4.7±1.5±0.6)×104(4.7\pm 1.5\pm 0.6)\times 10^{-4} babar_pi0hb . Due to the effects of Doppler broadening, we parameterize the decay via π0\pi^{0} using the Doppler-broadened Crystal Ball function as described for χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) transitions from Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P), and via π+π\pi^{+}\pi^{-} using a standard Crystal Ball function. The yields for these components are fixed in the fit, and are nearly negligible.

In the fit, all of the lineshape parameters are fixed to the MC-determined values except for the yield of the Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) (and its related χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) components), an overall EγE_{\gamma}^{*} scale offset, and the background lineshape parameters. The feed-down yields are fixed using the branching fractions as described above. Repeated trials of the signal extraction on simulated datasets determine that, given the low efficiency and expected number of events, and high level of background, obtaining a reliable yield for ηb(2S)\eta_{b}(2S) and ISR-produced Υ(2S)\mathchar 28935\relax(2S) is not possible. These components are therefore not included in the fit. The measured photon energy spectrum and the fitted yields are presented in Fig. 6, before and after the subtraction of the inclusive background. There is a clear separation of the Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) transitions, enabling us to observe the transitions to J=0,2J=0,2, and find only a very small indication for J=1J=1. Table 3 summarizes the fit results.

Refer to caption
Refer to caption
Figure 6: Fit to the 300Eγ600300\leq E_{\gamma}^{*}\leq 600 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data (a) for all of the data, and (b) after subtraction of the fitted background contribution. The χ2/ndof\chi^{2}/ndof for the fit is 316/290. The thick solid lines indicate the total fit, the thin solid lines indicate the Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) components, and the dashed lines indicate those from χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) and hb(1P)γηb(1S)h_{b}(1P)\rightarrow\gamma\eta_{b}(1S), as labeled.

We consider systematic uncertainties due to the choice of background shape (12%1-2\%), fit range, and binning (1.5%1.5\%), the effect of fixing parameters to the MC-determined values (36%3-6\%), uncertainty in the photon conversion efficiency (3.6%3.6\%), uncertainty in the Υ(mS)\mathchar 28935\relax(mS) counting (1.0%1.0\%), uncertainty in the bottomonium masses (13%1-3\%), and the impact of fixed feed-down yields (2%2\%). The values in parentheses are representative of the Υ(3S)γχb0,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0,2}(1P) decays; for the χb1\chi_{b1}-related results, the effects of the feed-down lineshapes and the yields and the background shape dominate (about 20%20\% each) due the marginal signal size. The evaluation of these uncertainties is done as described in Sec. IV, with the exception of the feed-down-related uncertainty that is unique to this energy region. To assess the uncertainty related to the assumed branching fractions, we repeat the analysis many times with the value of each input branching fraction varied randomly within its total uncertainty. We adopt the standard deviation of the change in the results as a systematic error. As a cross-check, we repeat the fit with the yields of the Υ(1D)\mathchar 28935\relax(1D)-related feed-down components allowed to vary as a free parameter. We find only a small change (<2%<2\%) in the overall branching fraction results, and consider this to be sufficiently accounted for by the systematic uncertainty determined from our procedure of varying the branching fractions. Including ISR and ηb(2S)\eta_{b}(2S) components in the fit produces an effect of less than 1%\sim 1\%, due to their slight impact on determining the overall background shape.

We measure (Υ(3S)γχbJ(1P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P)) = (2.7±0.4±0.2)×103(2.7\pm 0.4\pm 0.2)\times 10^{-3}, (0.5±0.30.1+0.2)×103(0.5\pm 0.3^{+0.2}_{-0.1})\times 10^{-3}, and (10.5±0.30.6+0.7)×103(10.5\pm 0.3^{+0.7}_{-0.6})\times 10^{-3} for J=0,1J=0,1 and 2, respectively. We observe evidence for the Υ(3S)γχb0,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0,2}(1P) transitions, with total significances greater than 6.8σ6.8\sigma and 16σ16\sigma, respectively. We do not find evidence for the suppressed Υ(3S)γχb1(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1}(1P) decay, and set the 90%90\% confidence level upper limit of (Υ(3S)γχb1(1P))<1.0×103\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1}(1P))<1.0\times 10^{-3}. These results are consistent with previous limits cleo_hadrons , and improve upon the only measured value for the J=0J=0 transition cleo_inclusive . Our measurements of the Υ(3S)γχb1,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b1,2}(1P) branching fractions both differ from the recent CLEO observations cleo_new by nearly 2σ2\sigma. Forcing the χb1,2(1P)\chi_{b1,2}(1P) yields in our fit to match the CLEO results gives a poor χ2/ndof\chi^{2}/ndof of 399/293. However, using the (χb1,2(1P)γΥ(1S))\mathcal{B}(\chi_{b1,2}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) results from Sec. VI to derive a total Υ(3S)γγΥ(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\gamma\mathchar 28935\relax(1S) branching fraction via χb1,2(1P)\chi_{b1,2}(1P) (comparable to “J=J=1 and 2” cleo_new ), we find the results of the two experiments to be in close agreement.

Adopting these results, we search for the Υ(3S)γηb(2S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S) transition in the range 335Eγ375335\leq E_{\gamma}^{*}\leq 375MeV\mathrm{\,Me\kern-1.00006ptV} and find no evidence. Taking into account the dominant statistical uncertainty, we derive an upper limit of (Υ(3S)γηb(2S))<1.9×103\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S))<1.9\times 10^{-3} at the 90%90\% confidence level. This limit is a factor of two larger than the limit set by CLEO cleo_inclusive .

VI 𝚼(𝟐𝑺):𝟑𝟎𝟎𝑬𝜸𝟖𝟎𝟎\mathchar 28935\relax(2S):300\leq E_{\gamma}^{*}\leq 800 MeV

We study five possible signals in the 300Eγ800300\leq E_{\gamma}^{*}\leq 800 MeV\mathrm{\,Me\kern-1.00006ptV} range in Υ(2S)\mathchar 28935\relax(2S) data: three χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) transitions, ISR Υ(1S)\mathchar 28935\relax(1S) production, and Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S). This energy region, shown in Fig. 7, has been analysed using calorimeter-detected photons by both BABAR babar_etab2 and CLEO cleo_etab , the former finding evidence to confirm the ηb(1S)\eta_{b}(1S). The improvement in resolution from the converted photon sample could allow a precise measurement of the ηb(1S)\eta_{b}(1S) mass. However, because EγE_{\gamma}^{*} for the Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) transition is 613\approx 613MeV\mathrm{\,Me\kern-1.00006ptV} (compared to 920\approx 920MeV\mathrm{\,Me\kern-1.00006ptV} in the Υ(3S)\mathchar 28935\relax(3S) data), its measurement is more difficult due to a lower detection efficiency and larger inclusive photon background. Studying this energy range is nonetheless useful, since the branching fractions for χbJ(1P)γΥ(1S)\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) have had large uncertainties cb2 ; cusb1 ; cusb2 until very recently cleo_new , and the values are necessary inputs to the analysis described in Sec. V. The J=0J=0 decay has also only been recently observed cleo_new ; belle_chib0. These external measurements were unavailable when this analysis was initiated.

We parameterize the χbJ(1P)\chi_{bJ}(1P) transition lineshape with a Doppler-broadened Crystal Ball function, as described in Sec. V. The ISR and Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) lineshapes are modeled with a Crystal Ball function, and relativistic Breit-Wigner function convolved with a Crystal Ball function, respectively. The lineshape parameters are determined from MC samples. Several different natural widths are tested for the ηb(1S)\eta_{b}(1S), and because the Crystal Ball parameter values (related to EγE_{\gamma}^{*} resolution) are found to be independent of the width, the values averaged over all samples are used. In the fit to the data, all of the parameters are fixed to these MC-determined values, except for the yields for the χbJ(1P)\chi_{bJ}(1P), ISR, and ηb(1S)\eta_{b}(1S) signals, the mass of the ηb(1S)\eta_{b}(1S), the inclusive background shape parameters, and an overall EγE_{\gamma}^{*} scale offset. The width of ηb(1S)\eta_{b}(1S) is fixed to 10 MeV\mathrm{\,Me\kern-1.00006ptV}.

Refer to caption
Refer to caption
Figure 7: Fit to the 300Eγ800300\leq E_{\gamma}^{*}\leq 800 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(2S)\mathchar 28935\relax(2S) data (a) for all of the data, and (b) after subtraction of the fitted background contribution, where the inset focuses on the Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) region of the fit. The thin lines indicate the individual fit components. For this fit, χ2/ndof=511.0/487\chi^{2}/ndof=511.0/487.

Figure 7 shows the converted photon energy spectrum before and after the subtraction of the inclusive background, with an inset focusing on the region of the expected Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) transition. The EγE_{\gamma}^{*} resolution provides clear separation of the χb1,2(1P)\chi_{b1,2}(1P)-related peaks, allowing for the first direct measurement of these transitions in an inclusive sample. The results of the fit are summarized in Table 4. We find no evidence for χb0(1P)γΥ(1S)\chi_{b0}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) decay. The Υ(1S)\mathchar 28935\relax(1S) yield from ISR production is consistent, within large uncertainties, with the result scaled from the previous BABAR measurement babar_etab2 . As expected from signal extraction studies on simulated datasets, the search for a signal in the Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) energy region does not find a reliable result. Estimating the statistical significance from the change in χ2\chi^{2} of the fit with and without this component results in the equivalent of a less than 2.5σ2.5\sigma effect. The EγE_{\gamma}^{*} scale offset in this energy range is 0.90.4+0.5-0.9^{+0.5}_{-0.4}MeV\mathrm{\,Me\kern-1.00006ptV}.

Table 4: Summary of the analysis of the 300Eγ800300\leq E_{\gamma}^{*}\leq 800 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(2S)\mathchar 28935\relax(2S) data. The EγE_{\gamma}^{*} column lists the transition energy assumed in this analysis, or in the case of Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S), the most significant (1.7σ)(\sim 1.7\sigma) feature in the relevant EγE_{\gamma}^{*} region. Errors on the yield are statistical only. Regarding the derived branching fractions, the BABAR value is from this paper, while the Crystal Ball (CB) and CUSB columns are derivations based on Ref. cb2 and cusb1 using up-to-date secondary branching fractions from the PDG pdg ; the CLEO results are from cleo_new . For the BABAR result, the listed uncertainties are statistical, systematic, and from the uncertainties on secondary branching fractions, respectively. Upper limits are given at the 90%90\% confidence level. Dashes indicate that no value has been reported in the relevant reference.
Transition EγE_{\gamma}^{*} Yield ϵ\epsilon Derived Branching Fraction (%)(\%)
(MeV\mathrm{\,Me\kern-1.00006ptV}) (%\%) BABAR CB CUSB CLEO
χb0(1P)γΥ(1S)\chi_{b0}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) 391.5391.5 391±267391\pm 267 0.496 2.2±1.50.7+1.0±0.2(<4.6)2.2\pm 1.5^{+1.0}_{-0.7}\pm 0.2\>(<4.6) <5<5 <12<12 1.7±0.41.7\pm 0.4
χb1(1P)γΥ(1S)\chi_{b1}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) 423.0423.0 12604±28512604\pm 285 0.548 34.9±0.8±2.2±2.034.9\pm 0.8\pm 2.2\pm 2.0 34±734\pm 7 40±1040\pm 10 33.0±2.633.0\pm 2.6
χb2(1P)γΥ(1S)\chi_{b2}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) 442.0442.0 7665272+2707665^{+270}_{-272} 0.576 19.5±0.71.5+1.3±1.019.5\pm 0.7^{+1.3}_{-1.5}\pm 1.0 25±625\pm 6 19±819\pm 8 18.5±1.418.5\pm 1.4
Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) 613.72.61.1+3.0+0.7613.7^{+3.0+0.7}_{-2.6-1.1} 1109±3481109\pm 348 1.0501.050 0.11±0.040.05+0.07(<0.21)0.11\pm 0.04^{+0.07}_{-0.05}\>(<0.21) - - -

The systematic uncertainties on these measurements are related to the choice of background shape, the fit mechanics, the effect of fixing parameters to the MC-determined values, uncertainty in the photon conversion efficiency, uncertainty in the Υ(mS)\mathchar 28935\relax(mS) counting, uncertainties in the bottomonium masses, and assumptions on the ηb(1S)\eta_{b}(1S) width. The methodology for the evaluation of these uncertainties has been described for the most part in Sec. IV. The systematic uncertainty related to the ηb(1S)\eta_{b}(1S) width is estimated by finding the maximal change in yield when the fit is repeated using a range of widths between 2.5152.5-15MeV\mathrm{\,Me\kern-1.00006ptV}, values consistent with a wide range of theoretical predictions. While varying the assumed ηb(1S)\eta_{b}(1S) width affects the event yield, it is found to have a negligible impact on the significance of the signal. For the χb1,2(1P)γΥ(1S)\chi_{b1,2}(1P)\rightarrow\gamma\mathchar 28935\relax(1S) transitions, the largest sources of uncertainty are related to the fixed lineshape parameters (34%3-4\%), uncertainty in the bottomonium masses (4%\sim 4\% for χb2(2P)\chi_{b2}(2P), and dominant for the EγE_{\gamma}^{*} scale uncertainty) and the conversion efficiency (5.2%5.2\%). Each of the remaining sources contributes less than 2%2\%. For the ηb(1S)\eta_{b}(1S) signal, systematic uncertainties dominate the result. The largest effects are due to varying the background shape (31%\sim 31\%), the bottomonium masses (25%\sim 25\%), the MC-determined parameters (22%\sim 22\%), and the ηb(1S)\eta_{b}(1S) width (16%\sim 16\%).

We measure (Υ(2S)γχbJ(1P))×(χbJ(1P)γΥ(1S))\mathcal{B}(\mathchar 28935\relax(2S)\rightarrow\gamma\chi_{bJ}(1P))\times\mathcal{B}(\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) = (8.3±5.62.6+3.7)×104(8.3\pm 5.6^{+3.7}_{-2.6})\times 10^{-4}, (24.1±0.6±1.5)×103(24.1\pm 0.6\pm 1.5)\times 10^{-3}, and (13.9±0.51.1+0.9)×103(13.9\pm 0.5^{+0.9}_{-1.1})\times 10^{-3}, for J=J= 0, 1 and 2, respectively. Using (Υ(2S)γχbJ(1P))\mathcal{B}(\mathchar 28935\relax(2S)\rightarrow\gamma\chi_{bJ}(1P)) from the PDG pdg , we derive (χbJ(1P)γΥ(1S))\mathcal{B}(\chi_{bJ}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) = (2.2±1.50.7+1.0±0.2)%(2.2\pm 1.5^{+1.0}_{-0.7}\pm 0.2)\%, (34.9±0.8±2.2±2.0)%(34.9\pm 0.8\pm 2.2\pm 2.0)\%, and (19.5±0.71.5+1.3±1.0)%(19.5\pm 0.7^{+1.3}_{-1.5}\pm 1.0)\%, where the uncertainties are statistical, systematic, and from the uncertainty on (Υ(2S)γχbJ(1P))\mathcal{B}(\mathchar 28935\relax(2S)\rightarrow\gamma\chi_{bJ}(1P)), respectively. We calculate a 90%90\% confidence level upper limit of (χb0(1P)γΥ(1S))<4.6%\mathcal{B}(\chi_{b0}(1P)\rightarrow\gamma\mathchar 28935\relax(1S))<4.6\%. As previously, we rescale the existing results cb2 ; cusb1 using the most up-to-date secondary branching fraction values pdg to obtain the results quoted in Table 4. Our χbJ(1P)\chi_{bJ}(1P) transition results agree with the previous measurements, but represent a two- to three-fold reduction in the total uncertainty. We find reasonable agreement with, and a comparable precision to, the recent measurements from CLEO cleo_new . When the yield-related systematic uncertainties on the measurement of the ηb(1S)\eta_{b}(1S) candidate are taken into account (excluding those due to the ηb(1S)\eta_{b}(1S) width), the result is further reduced in significance to an equivalent of 1.7σ\sim 1.7\sigma. We find no evidence for an ηb(1S)\eta_{b}(1S) signal in this analysis of the Υ(2S)\mathchar 28935\relax(2S) dataset, and set a corresponding limit of (Υ(2S)γηb(1S))<0.21%\mathcal{B}(\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S))<0.21\%.

VII 𝚼(𝟑𝑺):𝟔𝟎𝟎𝑬𝜸𝟏𝟏𝟎𝟎\mathchar 28935\relax(3S):600\leq E_{\gamma}^{*}\leq 1100 MeV

The analysis of the 600Eγ1100600\leq E_{\gamma}^{*}\leq 1100 MeV\mathrm{\,Me\kern-1.00006ptV} region for the Υ(3S)\mathchar 28935\relax(3S), shown in Fig. 8, is very similar to that in Sec. VI of the 300Eγ800300\leq E_{\gamma}^{*}\leq 800 MeV\mathrm{\,Me\kern-1.00006ptV} region for the Υ(2S)\mathchar 28935\relax(2S). Again, we study potential signals from three χbJ(2P)γΥ(1S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) transitions, Υ(1S)\mathchar 28935\relax(1S) production from ISR, and Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S). In this case, the calorimeter-based analysis of the same region produced the discovery of the ηb(1S)\eta_{b}(1S) babar_etab1 . The higher EγE_{\gamma}^{*} value for Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) offers the advantages of both an increased efficiency and lower background level compared to the analagous analysis in Υ(2S)\mathchar 28935\relax(2S) data, and therefore a better sensitivity for the observation of ηb(1S)\eta_{b}(1S). There is also the possibility of updating the measurements of χbJ(2P)γΥ(1S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) transitions, including confirmation of the decay of the J=0J=0 state cusb_chib ; cleo2 .

We parameterize the signal lineshape in the same manner as described in Sec. VI, with Doppler-broadened Crystal Ball functions for the χbJ(2P)\chi_{bJ}(2P) transitions, a Crystal Ball function for ISR production of the Υ(1S)\mathchar 28935\relax(1S), and the relativistic Breit-Wigner Crystal Ball convolution for the ηb(1S)\eta_{b}(1S) signal. As before, all of the lineshape parameters are fixed to their MC-determined values, with the yields for the χbJ(2P)\chi_{bJ}(2P), ISR, and ηb(1S)\eta_{b}(1S) signals, the mass of the ηb(1S)\eta_{b}(1S), the inclusive background shape parameters, and an overall EγE_{\gamma}^{*} scale offset free to vary in the fit. An ηb(1S)\eta_{b}(1S) width of 10MeV\mathrm{\,Me\kern-1.00006ptV} is assumed.

Refer to caption
Refer to caption
Figure 8: Fit to the 600Eγ1100600\leq E_{\gamma}^{*}\leq 1100 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data (a) for all of the data, and (b) after subtraction of the fitted background contribution, where the inset focuses on the Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) region of the fit. The thin lines indicate the individual fit components. For this fit, χ2/ndof=442.9/487\chi^{2}/ndof=442.9/487.

Figure 8 shows the converted photon energy spectrum and fitted yields before and after the subtraction of the inclusive background, with an inset focusing on the EγE_{\gamma}^{*} region of the expected Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) transition. The results are summarized in Table 5. Although the χb1,2(1P)\chi_{b1,2}(1P)-related peaks overlap, the EγE_{\gamma}^{*} resolution is still sufficient to measure the separate contributions. We find no evidence for χb0(2P)γΥ(1S)\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) decay. The Υ(1S)\mathchar 28935\relax(1S) yield from ISR production is in greement with the expectation from the previous BABAR measurement babar_etab1 . The best fit for a signal in the EγE_{\gamma}^{*} range corresponding to Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) has Eγ908E_{\gamma}^{*}\approx 908MeV\mathrm{\,Me\kern-1.00006ptV}, which is a departure from, but not significantly inconsistent with, the nominal PDG value of 920.63.2+2.8920.6^{+2.8}_{-3.2}MeV\mathrm{\,Me\kern-1.00006ptV} pdg . Estimating the statistical significance from the change in χ2\chi^{2} of the fit with and without this component results in the equivalent of a less than 2.9σ2.9\sigma effect. Based predominantly on the positions of the χb1,2(2P)\chi_{b1,2}(2P) transition peaks, the EγE_{\gamma}^{*} scale offset in this energy range is 0.90.9+0.4-0.9^{+0.4}_{-0.9}MeV\mathrm{\,Me\kern-1.00006ptV}. We further verify that the EγE_{\gamma}^{*} scale is correct by repeating the fit with the peak positions of the χbJ(2P)\chi_{bJ}(2P) and ISR components allowed to vary, and they are found at the expected locations. We also repeat the analysis with the EγE_{\gamma}^{*} scale offset forced to reproduce an ηb(1S)\eta_{b}(1S) result corresponding to the EγE_{\gamma}^{*} value for the nominal mηb(1S)m_{\eta_{b}(1S)}. The assumption that the observed mass difference is due to an offset in the energy scale by 12MeV\sim 12\mathrm{\,Me\kern-1.00006ptV} is completely inconsistent with the photon energies observed for the well-established χb1,2(2P)\chi_{b1,2}(2P) states. Even with only a 5MeV5\mathrm{\,Me\kern-1.00006ptV} shift, the fit returns χbJ(2P)γΥ(1S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) yields that disagree with the world average pdg by more than a factor of two, and a χ2/ndof840/492\chi^{2}/ndof\approx 840/492.

Table 5: Summary of the analysis of the 600Eγ1100600\leq E_{\gamma}^{*}\leq 1100 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) data. The EγE_{\gamma}^{*} column lists the transition energy assumed in this analysis, or in the case of Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S), the most significant (2.7σ)(\sim 2.7\sigma) feature in the relevant EγE_{\gamma}^{*} region. Errors on the yield are statistical only. Regarding the derived branching fractions: the BABAR value is from this paper, while the CUSB and CLEO columns are derivations based on cusb_chib and cleo2 using up-to-date secondary branching fractions from pdg . For the BABAR result, the listed uncertainties are statistical, systematic, and from the uncertainties on secondary branching fractions, respectively. Upper limits are given at the 90%90\% confidence level. Dashes indicate no value has been measured in the quoted reference.
Transition EγE_{\gamma}^{*} Yield ϵ\epsilon Derived Branching Fraction (%)(\%)
(MeV\mathrm{\,Me\kern-1.00006ptV}) (%\%) BABAR CUSB CLEO
χb0(2P)γΥ(1S)\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) 742.7742.7 469259+260469^{+260}_{-259} 1.025 0.7±0.40.1+0.2±0.1(<1.2)0.7\pm 0.4^{+0.2}_{-0.1}\pm 0.1\>(<1.2) <1.9<1.9 <2.2<2.2
χb1(2P)γΥ(1S)\chi_{b1}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) 764.1764.1 14965383+38114965^{+381}_{-383} 1.039 9.9±0.30.4+0.5±0.99.9\pm 0.3^{+0.5}_{-0.4}\pm 0.9 7.5±1.37.5\pm 1.3 10.4±2.410.4\pm 2.4
χb2(2P)γΥ(1S)\chi_{b2}(2P)\rightarrow\gamma\mathchar 28935\relax(1S) 776.4776.4 11283385+38411283^{+384}_{-385} 1.056 7.0±0.2±0.3±0.97.0\pm 0.2\pm 0.3\pm 0.9 6.1±1.26.1\pm 1.2 7.7±2.07.7\pm 2.0
Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) 907.9±2.8±0.9907.9\pm 2.8\pm 0.9 933262+263933^{+263}_{-262} 1.3881.388 0.058±0.0160.016+0.014(<0.085)0.058\pm 0.016^{+0.014}_{-0.016}\>(<0.085) - -

The sources of systematic uncertainty and their evaluation are identical to those listed in Sec. VI. The main difference between the two energy regions is that, as previously remarked, the improved efficiency and background conditions in the 600Eγ1100600\leq E_{\gamma}^{*}\leq 1100 MeV\mathrm{\,Me\kern-1.00006ptV} region of the Υ(3S)\mathchar 28935\relax(3S) dataset lead to fit results that are more stable. For the χb1,2(2P)\chi_{b1,2}(2P)-related measurements, the dominant systematic uncertainty is due to the conversion efficiency (3.6%3.6\%), and all other sources are less than 2%2\%. For the ηb(1S)\eta_{b}(1S) signal, the largest uncertainty in the yield is related to the assumed ηb(1S)\eta_{b}(1S) width (%27+17{}^{+17}_{-27}\%). Of the remaining systematic uncertainties, the largest two are due to the MC parameterization (15%\sim 15\%) and bottomonium masses (4%\sim 4\%), both enhancing the yield in a positive direction. Uncertainty due to the background shape, the largest factor in the equivalent Υ(2S)\mathchar 28935\relax(2S) analysis, is well controlled in the Υ(3S)\mathchar 28935\relax(3S) dataset and contributes less than 3%3\% to the total uncertainty. The uncertainty in EγE_{\gamma}^{*} is dominated by statistical uncertainty, and the largest systematic contribution is related to uncertainty in the EγE_{\gamma}^{*} scale via the uncertainty in the other bottomonium masses pdg .

We measure (Υ(3S)γχbJ(2P))×(χbJ(2P)γΥ(1S))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P))\times\mathcal{B}(\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) = (3.9±2.20.6+1.2)×104(3.9\pm 2.2^{+1.2}_{-0.6})\times 10^{-4}, (12.4±0.3±0.6)×103(12.4\pm 0.3\pm 0.6)\times 10^{-3}, and (9.2±0.3±0.4)×103(9.2\pm 0.3\pm 0.4)\times 10^{-3}, for J=J= 0, 1 and 2, respectively. Using (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)) from the PDG pdg , we derive (χbJ(2P)γΥ(1S))\mathcal{B}(\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) = (0.7±0.40.1+0.2±0.1)%(0.7\pm 0.4^{+0.2}_{-0.1}\pm 0.1)\%, (9.9±0.30.4+0.5±0.9)%(9.9\pm 0.3^{+0.5}_{-0.4}\pm 0.9)\%, and (7.0±0.2±0.3±0.9)%(7.0\pm 0.2\pm 0.3\pm 0.9)\%, where the uncertainties are statistical, systematic, and from the uncertainty on (Υ(3S)γχbJ(2P))\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(2P)), respectively. From these values, we calculate a 90%90\% confidence level upper limit of (χb0(2P)γΥ(1S))<1.2%\mathcal{B}(\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(1S))<1.2\%. As before, we rescale the previous results cusb_chib ; cleo2 using the relevant branching fractions pdg to produce the values for comparison in Table 5. For the (χb0(2P)γΥ(1S))\mathcal{B}(\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) value from CUSB II cusb_chib , we convert the result to an upper limit of <1.9%<1.9\% at the 90%90\% confidence level. Our χbJ(2P)\chi_{bJ}(2P) transition results agree with the previous measurements, and are the most precise measurements to date. Assuming the peak near Eγ=900E_{\gamma}^{*}=900MeV\mathrm{\,Me\kern-1.00006ptV} to be due to decays to ηb(1S)\eta_{b}(1S), our best fit result is (Υ(3S)γηb(1S))=(5.8±1.61.6+1.4)×104\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S))=(5.8\pm 1.6^{+1.4}_{-1.6})\times 10^{-4}. The total significance of this result once systematic uncertainties are included is 2.7σ\sim 2.7\sigma, and we set a limit of (Υ(3S)γηb(1S)<8.5×104\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S)<8.5\times 10^{-4}. We repeat the fit with the ηb(1S)\eta_{b}(1S) mass constrained to the PDG value and its uncertainty pdg . The significance of this constrained result is <1.9σ<1.9\sigma. We measure (Υ(3S)γηb(1S)=3.8±1.61.0+0.9)\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S)=3.8\pm 1.6^{+0.9}_{-1.0}), which translates into an upper limit of (Υ(3S)γηb(1S)<6.1×104\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S)<6.1\times 10^{-4}.

VIII DISCUSSION

To conclude, we review the results of this study and their broader implications. The results for (χbJ(nP)γΥ(mS))\mathcal{B}(\chi_{bJ}(nP)\rightarrow\gamma\mathchar 28935\relax(mS)) presented here are the first derived directly from a measurement of the photon spectrum. For J=J= 1 and 2, we have made some of the most precise measurements of these branching fractions to date, thus helping to resolve some discrepancies between previous experimental results (i.e. in χbJ(2P)γΥ(2S)\chi_{bJ}(2P)\rightarrow\gamma\mathchar 28935\relax(2S) decays). Table 6 shows a comparison of our results with some theoretical predictions y1d_kwong_rosner . These predictions are in reasonable agreement with our experimental results.

Table 6: Comparison of the experimental branching fraction results from this work (BABAR) and some theoretical predictions y1d_kwong_rosner .
Decay BABAR (%)(\%) Theory (%)(\%)
(χb0(2P)γΥ(2S))\mathcal{B}(\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)) (<2.8)(<2.8) 1.27
(χb1(2P)γΥ(2S))\mathcal{B}(\chi_{b1}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)) 18.9±2.418.9\pm 2.4 20.2
(χb2(2P)γΥ(2S))\mathcal{B}(\chi_{b2}(2P)\rightarrow\gamma\mathchar 28935\relax(2S)) 8.3±1.48.3\pm 1.4 10.1
(χb0(2P)γΥ(1S))\mathcal{B}(\chi_{b0}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) (<1.2)(<1.2) 0.96
(χb1(2P)γΥ(1S))\mathcal{B}(\chi_{b1}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) 9.9±1.19.9\pm 1.1 11.8
(χb2(2P)γΥ(1S))\mathcal{B}(\chi_{b2}(2P)\rightarrow\gamma\mathchar 28935\relax(1S)) 7.0±1.07.0\pm 1.0 5.3
(χb0(1P)γΥ(1S))\mathcal{B}(\chi_{b0}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) (<4.6)(<4.6) 3.2
(χb1(1P)γΥ(1S))\mathcal{B}(\chi_{b1}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) 34.9±3.134.9\pm 3.1 46.1
(χb2(1P)γΥ(1S))\mathcal{B}(\chi_{b2}(1P)\rightarrow\gamma\mathchar 28935\relax(1S)) 19.51.9+1.819.5^{+1.8}_{-1.9} 22.2

Our observations of Υ(3S)γχb0,2(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{b0,2}(1P) decays confirm the general features seen in previous measurements cleo_inclusive ; cleo_hadrons ; cleo_new : decays to J=1J=1 are suppressed compared to J=J= 2 and 0. This is unusual compared to all other SPS\rightarrow P radiative transitions in the heavy quarkonium system measured thus far. As noted previously theory_overlap , the wavefunction overlap in the 33S1r13PJ\langle 3^{3}S_{1}\mid r\mid 1^{3}P_{J}\rangle matrix elements is unusually small. Therefore, predictions for these decay rates are largely dependent on higher-order relativistic corrections and are thus sensitive to specific details of the chosen theoretical model. That said, the comparison of our results with a selection of theoretical predictions theory_overlap ; theory_list shown in Table 7 (where we have converted our branching fraction measurements into partial widths) finds no good agreement with any particular model. Indeed, even the hierarchy of the decay rates (J=2>0>1J=2>0>1) is generally not well predicted. Further work, both theoretical and experimental, will be required to understand these decays.

Table 7: Comparison of our results with predictions theory_overlap ; theory_list for Υ(3S)γχbJ(1P)\mathchar 28935\relax(3S)\rightarrow\gamma\chi_{bJ}(1P) decays. We convert our result into partial widths (in units of eV) using a total width of ΓΥ(3S)=20.32±1.85\Gamma_{\mathchar 28935\relax(3S)}=20.32\pm 1.85 keV pdg , absorbing this additional uncertainty into the total.
Source J=0J=0 J=1J=1 J=2J=2
BABAR 55±1055\pm 10 <22<22 216±25216\pm 25
Moxhay-Rosner 2525 2525 150150
Grotch et al. 114114 3.43.4 194194
Daghighian-Silverman 1616 100100 650650
Fulcher 1010 2020 3030
Lähde 150150 110110 4040
Ebert et al. 2727 6767 9797

The searches for ηb(1S)\eta_{b}(1S) and ηb(2S)\eta_{b}(2S) states using the converted photon energy spectrum are largely inconclusive. Over a range of approximately 9974<mηb(2S)<100159974<m_{\eta_{b}(2S)}<10015MeV/c2{\mathrm{\,Me\kern-1.00006ptV\!/}c^{2}}, we find (Υ(3S)γηb(2S))<1.9×103\mathcal{B}(\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(2S))<1.9\times 10^{-3}. This value is consistent with, but does not improve upon, previous measurements cleo_inclusive . Due to low efficiency and high background, no evidence for Υ(2S)γηb(1S)\mathchar 28935\relax(2S)\rightarrow\gamma\eta_{b}(1S) is found. In the Υ(3S)\mathchar 28935\relax(3S) system, the most significant peaking structure in the EγE_{\gamma}^{*} energy region expected for the Υ(3S)γηb(1S)\mathchar 28935\relax(3S)\rightarrow\gamma\eta_{b}(1S) transition has Eγ908E_{\gamma}^{*}\approx 908MeV\mathrm{\,Me\kern-1.00006ptV}. If interpreted as an ηb(1S)\eta_{b}(1S) signal, this value trends toward the most recent potential model theory_etab_models and lattice theory_etab_lattice predictions, but we caution that the significance of this result is insufficient to draw such a conclusion regarding the ηb(1S)\eta_{b}(1S) mass. Taking advantage of the improved resolution from a converted photon technique to make a definitive measurement of the ηb(1S)\eta_{b}(1S) mass and width will require more data from future experiments.

IX ACKNOWLEDGEMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

Appendix A SYSTEMATIC UNCERTAINTIES ON MC-DETERMINED EFFICIENCIES

Branching fraction measurements in this analysis rely on MC-generated signal decays to determine the photon conversion and reconstruction efficiency. This efficiency is dependent on the detector material model. To evaluate a systematic effect due to the understanding of the detector in the simulation, a comparison of e+eγe^{+}e^{-}\gamma and μ+μγ\mu^{+}\mu^{-}\gamma samples between data and MC is made. Inclusive decays to an e+ee^{+}e^{-} or μ+μ\mu^{+}\mu^{-} pair plus a photon are selected by requiring exactly four charged tracks in the event. The CM momentum of the two highest-momentum non-conversion tracks as a fraction of half of the CM beam energy (x1x_{1}^{*}, x2x_{2}^{*}), the higher and lower values of their CM polar angles (|cosθ1,2||\cos\theta^{*}_{1,2}|), and the CM acolinearity (α\alpha^{*}), are used as discriminating variables. We require e+eγe^{+}e^{-}\gamma events to pass a predefined filter optimized to select Bhabha scattering events, and for the μ+μγ\mu^{+}\mu^{-}\gamma events to fail this requirement. In cases of multiple candidates per event, the candidate with m+γm_{\ell^{+}\ell^{-}\gamma} closest to the CM beam energy is retained. The values for the selection criteria variables are summarized in Table 8.

Table 8: Selection criteria for the e+eγe^{+}e^{-}\gamma and μ+μγ\mu^{+}\mu^{-}\gamma efficiency studies.
Quantity e+e(γ)e^{+}e^{-}(\gamma) μ+μ(γ)\mu^{+}\mu^{-}(\gamma)
nTRK =4=4 =4=4
x1x_{1}^{*} >0.75>0.75 >0.85>0.85
x2x_{2}^{*} >0.50>0.50 >0.75>0.75
Greater |cosθ||\cos\theta^{*}| <0.70<0.70 <0.70<0.70
Lesser |cosθ||\cos\theta^{*}| <0.65<0.65 <0.65<0.65
α\alpha^{*} () <30<30 <20<20

To avoid contamination from resonant decays (e.g. χbJ(nP)γΥ(mS)(+)\chi_{bJ}(nP)\rightarrow\gamma\mathchar 28935\relax(mS)(\ell^{+}\ell^{-}), or Υ(nS)+\mathchar 28935\relax(nS)\rightarrow\ell^{+}\ell^{-} plus an extraneous photon), only the off-peak datasets are used for this study. The e+e(γ)e^{+}e^{-}(\gamma) MC sample uses the BHWIDE generator bhwide , while the μ+μγ\mu^{+}\mu^{-}\gamma MC sample is generated using the KK2f generator kk2f . The acceptance-based cross sections for these processes used in the MC generation are calculated separately from this analysis as part of standard luminosity measurements in BABAR.

A systematic correction to the MC-determined efficiency is determined by comparing the number of events expected from the luminosity-weighted MC samples with the total number reconstructed in the data. The uncertainty on this correction (dominantly statistical) is used as the systematic uncertainty in the efficiency due to the detector material model. The four samples (e+eγe^{+}e^{-}\gamma and μ+μγ\mu^{+}\mu^{-}\gamma in off-peak Υ(2S)\mathchar 28935\relax(2S) and Υ(3S)\mathchar 28935\relax(3S) data) are averaged to calculate this number, as is justified by verifying excellent data-to-MC agreement across all relevant cosθ\cos\theta, EγE_{\gamma}^{*}, and ργ\rho_{\gamma} ranges. Integrated over all events, the ratio of the data and MC is 96.3±3.1%96.3\pm 3.1\% when modeling the photons converted in the detector material. This value is applied as a correction factor, with 3.3%3.3\% (when considering cross section uncertainties of about 0.8%0.8\%) taken as an estimate for the systematic uncertainty in the efficiency.

The MC-based signal efficiencies are also dependent on assumptions regarding inclusive bottomonium decays. The nTRKnTRK requirements attempt to select multihadronic final states. A difference in nTRKnTRK distributions between simulation and data could lead to an error on the reconstruction efficiency. To determine the size of this effect, the analysis is repeated with the requirements nTRKnTRK greater than 5 or nTRKnTRK greater than 6. The largest change in the efficiency-corrected yields for the most significant transitions (χb1,2(1,2P)γΥ(1,2S)\chi_{b1,2}(1,2P)\rightarrow\gamma\mathchar 28935\relax(1,2S)) is found to be 1.0%1.0\%.

Uncertainty in the modelling of the π0\pi^{0} veto efficiency is tested in a similar manner, by repeating the analysis with the veto excluded and examining the change in the fit results for the most statistically significant transitions. We rescale the MC-derived efficiency to equal half of the difference between the weighted average of the nominal and non-π0\pi^{0} vetoed results, and introduce a systematic uncertainty large enough to cover this difference. Because lower energy photons are more susceptible to the application of a π0\pi^{0} veto, we find the differences to be energy-dependent and assign a different correction and uncertainty for each energy region. The scale factors (uncertainties) range from 0.9910.991 (0.9%)(0.9\%) for the 600<Eγ<1100600<E_{\gamma}^{*}<1100MeV\mathrm{\,Me\kern-1.00006ptV} range in Υ(3S)\mathchar 28935\relax(3S) data to 0.9630.963 (3.9%)(3.9\%) in the Υ(2S)\mathchar 28935\relax(2S) data.

We combine these values to estimate a total systematic uncertainty on the efficiency of 3.6%3.6\% to 5.2%5.2\%, depending on the transition.

References

  • (1) Recent comprehensive reviews include: E. Eichten et al., Rev. Mod. Phys. 80, 1161 (2008); N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011); and the many references therein.
  • (2) Throughout this paper, we employ the following convention: angular momentum variable JJ encompasses 0, 1, and 2 (1, 2 and 3) when referring to χbJ(nP)\chi_{bJ}(nP) (Υ(1DJ)\mathchar 28935\relax(1D_{J})) states, and mm (nn) includes 2 and 3 (1 and 2) when referring to Υ(mS)\mathchar 28935\relax(mS) (χbJ(nP)\chi_{bJ}(nP)) principal quantum number. Only allowed transitions are considered.
  • (3) R. Nernst et al. (Crystal Ball Collaboration), Phys. Rev. Lett. 54, 2195 (1985).
  • (4) W.S. Walk et al. (Crystal Ball Collaboration), Phys. Rev. D 34, 2611 (1986).
  • (5) H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 160, 331 (1985).
  • (6) F. Pauss et al. (CUSB Collaboration), Phys. Lett. B 130, 439 (1983).
  • (7) C. Klopfenstein et al. (CUSB Collaboration), Phys. Rev. Lett. 51, 160 (1983).
  • (8) M. Narain et al. (CUSB-II Collaboration), Phys. Rev. Lett. 66, 3113 (1991).
  • (9) U. Heintz et al. (CUSB-II Collaboration), Phys. Rev. Lett. 66, 1563 (1991).
  • (10) U. Heintz et al. (CUSB-II Collaboration), Phys. Rev. D 46, 1928 (1992).
  • (11) R. Morrison et al. (CLEO Collaboration), Phys. Rev. Lett. 67, 1696 (1991).
  • (12) G. Crawford et al. (CLEO Collaboration), Phys. Lett. B 294, 139 (1992).
  • (13) K.W. Edwards et al. (CLEO Collaboration), Phys. Rev. D 59, 032003 (1999).
  • (14) M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett. 94, 032001 (2005).
  • (15) M. Kornicer et al. (CLEO Collaboration), Phys. Rev. D 83, 054003 (2011).
  • (16) P. Haas et al. (CLEO Collaboration), Phys. Rev. Lett. 52, 799 (1984).
  • (17) B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 101, 071801 (2008).
  • (18) B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 161801 (2009).
  • (19) G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 81, 031104(R) (2010).
  • (20) B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
  • (21) W. Menges, IEEE Nucl. Sci. Symp. Conf. Rec. 5, 1470 (2006); M.R. Convery et al., Nucl. Instrum. Methods Phys. Res., Sect. A 556, 134 (2006).
  • (22) Throughout, we adopt the convention that unless otherwise indicated, a single quoted uncertainty is the total uncertainty, and for a pair of uncertainties, the first is statistical and the second systematic.
  • (23) D.J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
  • (24) T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
  • (25) See for example, L.S. Brown and R.N. Cahn, Phys. Rev. D 13, 1195 (1976); G. Karl, S. Meshkov, and J.L. Rosner, Phys. Rev. D 13, 1203 (1976).
  • (26) S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
  • (27) K. Nakamura et al. (Particle Data Group (PDG)), J. Phys. G 37, 075021 (2010).
  • (28) S. Brandt et al., Phys. Lett. 12, 57 (1964).
  • (29) G.C. Fox and S. Wolfram, Nucl. Phys. B 149, 413 (1979).
  • (30) M.J. Oreglia, SLAC-R-236 (1980); J.E. Gaiser, SLAC-R-255 (1982); T. Skwarnicki, DESY-F31-86-02 (1986).
  • (31) G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 70, 032001 (2004).
  • (32) P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 111102(R) (2010).
  • (33) S. Godfrey and J.L. Rosner, Phys. Rev. D 64, 097501 (2001); ibid. 66, 059902(E) (2002).
  • (34) W. Kwong and J.L. Rosner, Phys. Rev. D 38, 279 (1988).
  • (35) The upper limit (UL) is calculated from 0ULG(x)𝑑x/0+G(x)𝑑x=0.9\int^{UL}_{0}G(x)dx/\int^{+\infty}_{0}G(x)dx=0.9, where G(x)G(x) is a Gaussian with mean equal to the central value of the branching fraction measurement and standard deviation equal to the total uncertainty. This procedure is used throughout.
  • (36) D.M. Asner et al. (CLEO Collaboration), Phys. Rev. D 78, 091103 (2008).
  • (37) J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 84, 011104(R) (2011).
  • (38) D. Cronin-Hennessy et al. (CLEO Collaboration), Phys. Rev. D 76, 072001 (2007).
  • (39) C. Cawlfield et al. (CLEO Collaboration), Phys. Rev. D 73, 012003 (2006).
  • (40) T.-M. Yan, Phys. Rev. D 22, 1652 (1980); Y.-P. Kuang and T.-M. Yan, Phys. Rev. D 24, 2874 (1981).
  • (41) M. Benayoun et al., Mod. Phys. Lett. A 14, 2605 (1999).
  • (42) S. Godfrey and J.L. Rosner, Phys. Rev. D 66, 014012 (2002).
  • (43) J.P. Lees et al. (BABAR Collaboration), arXiv:1102.4565, submitted to Phys. Rev. D(R) (2011).
  • (44) See for example, P. Moxhay and J.L. Rosner, Phys. Rev. D 28, 1132 (1983); H. Grotch, D.A. Owen, and K.J. Sebastian, Phys. Rev. D 30, 1924 (1984).
  • (45) F. Daghighian and D. Silverman, Phys. Rev. D 36, 3401 (1987); L.P. Fulcher, Phys. Rev. D 42, 2337 (1990); T.A. Lähde, Nucl. Phys. A 714, 183 (2003); D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Rev. D 67, 014027 (2003).
  • (46) S. Recksiegel and Y. Sumino, Phys. Lett. B 578, 369 (2004); B.A. Kniehl et al., Phys. Rev. Lett. 92, 242001 (2004); ibid. 104, 199901(E) (2010).
  • (47) A. Gray et al. (HPQCD and UKQCD Collaborations), Phys. Rev. D 72, 094507 (2005); T. Burch et al. (Fermilab and MILC Collaborations), Phys. Rev. D 81, 034508 (2010); S. Meinel, Phys. Rev. D 82, 114502 (2010).
  • (48) S. Jadach, W. Placzek, and B.F.L. Ward, Phys. Lett. B 390, 298 (1997).
  • (49) S. Jadach, B.F.L. Ward, and Z. Was, Comput. Phys. Commun. 130, 260 (2000).