This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of the Ds+a0(980)ρD_{s}^{+}\to a_{0}(980)\rho and a0(980)ωa_{0}(980)\omega decays

Yao Yu yuyao@cqupt.edu.cn Chongqing University of Posts & Telecommunications, Chongqing 400065, China    Yu-Kuo Hsiao yukuohsiao@gmail.com (Corresponding author) School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China    Bai-Cian Ke baiciank@ihep.ac.cn School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
Abstract

We study Ds+ρ0(+)a0+(0)D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0}, Ds+ωa0+D_{s}^{+}\to\omega a^{+}_{0}, and the resonant Ds+ρa0D_{s}^{+}\to\rho a_{0},a0ηπ(KK)a_{0}\to\eta\pi(KK) decays. In the final state interaction, where Ds+(η()π+,K+K¯0)D_{s}^{+}\to(\eta^{(\prime)}\pi^{+},K^{+}\bar{K}^{0}) are followed by the (η()π+,K+K¯0)(\eta^{(\prime)}\pi^{+},K^{+}\bar{K}^{0}) to ρ0(+)a0+(0)\rho^{0(+)}a^{+(0)}_{0} rescatterings, we predict (Ds+ρ0(+)a0+(0))=(3.0±0.3±1.0)×103{\cal B}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0})=(3.0\pm 0.3\pm 1.0)\times 10^{-3}. Due to the cancellation of the rescattering effects and the suppressed short-distance WW annihilation contribution, we expect that (Ds+ωa0+)(Ds+π+π0)<3.4×104{\cal B}(D_{s}^{+}\to\omega a^{+}_{0})\simeq{\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0})<3.4\times 10^{-4}. In our calculation, (Ds+ρ0(a0+)ηπ+)=(1.60.3+0.2±0.6)×103{\cal B}(D_{s}^{+}\to\rho^{0}(a^{+}_{0}\to)\eta\pi^{+})=(1.6^{+0.2}_{-0.3}\pm 0.6)\times 10^{-3} agrees with the data, whereas (Ds+ρ+(a00)K+K){\cal B}(D_{s}^{+}\to\rho^{+}(a^{0}_{0}\to)K^{+}K^{-}) is 10 times smaller than the observation, which requires a careful examination.

I introduction

The two-body Ds+PP,PVD_{s}^{+}\to PP,PV decays with P(V)P(V) denoting the strangeless pesudoscalar (vector) meson have no configurations from the WW-boson emission processes because s¯\bar{s} in Ds+D_{s}^{+} cannot be eliminated, as drawn in Fig. 1 for the topological diagrams T and C. Interestingly, it leads to a specific exploration for the annihilation mechanism applied to Ds+π+π0,π+ρ0,π+ωD_{s}^{+}\to\pi^{+}\pi^{0},\pi^{+}\rho^{0},\pi^{+}\omega Fajfer:2003ag ; Bhattacharya:2009ps ; Cheng:2010ry ; Fusheng:2011tw ; Cheng:2019ggx ; Li:2013xsa .

In the short-distance WW-boson annihilation (WA) Ds+(cs¯)W+ud¯D_{s}^{+}(c\bar{s})\to W^{+}\to u\bar{d} process, ud¯u\bar{d} can be seen to move in the opposite directions in the Ds+D_{s}^{+} rest frame, such that there exists no orbital angular momentum between them. It indicates that G(ud¯)=G(π+)=+1G(u\bar{d})=G(\pi^{+})=+1 with GG denoting the GG-parity symmetry Cheng:2010ry . Since GG-parity is a multiplicative quantum number, one obtains G(π+ρ0,π+π0)=(+1,1)G(\pi^{+}\rho^{0},\pi^{+}\pi^{0})=(+1,-1). Consequently, the WA Ds+π+ρ0(π+π0)D_{s}^{+}\to\pi^{+}\rho^{0}(\pi^{+}\pi^{0}) decay due to G(ud¯)=G(π+ρ0)[=G(π+π0)]G(u\bar{d})=G(\pi^{+}\rho^{0})[=-G(\pi^{+}\pi^{0})] is a GG-parity conserved (violated) process, which corresponds to the experimental result (Ds+π+ρ0)=(1.9±1.2)×104{\cal B}(D_{s}^{+}\to\pi^{+}\rho^{0})=(1.9\pm 1.2)\times 10^{-4} [(Ds+π+π0)<3.4×104][{\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0})<3.4\times 10^{-4}] pdg . By contrast, although the WA Ds+π+ωD_{s}^{+}\to\pi^{+}\omega decay violates the GG-parity symmetry, (Ds+π+ω)=(1.9±0.3)×103{\cal B}(D_{s}^{+}\to\pi^{+}\omega)=(1.9\pm 0.3)\times 10^{-3} shows no suppression pdg . It is hence considered to receive the long-distance annihilation contribution Fajfer:2003ag ; Cheng:2010ry .

The Ds+SP,SVD_{s}^{+}\to SP,SV decays can help to investigate the short and long-distance annihilation mechanisms Cheng:2010vk ; Hsiao:2019ait ; Ling:2021qzl , where SS stands for a non-strange scalar meson. For example, the WA process for Ds+a00(+)π+(0)D_{s}^{+}\to a_{0}^{0(+)}\pi^{+(0)} violates GG-parity Achasov:2017edm ; Hsiao:2019ait , such that its branching fraction is expected as small as (Ds+π+π0){\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0}). Nonetheless, one measures that (Ds+a00(+)π+(0))100(Ds+π+ρ0){\cal B}(D_{s}^{+}\to a_{0}^{0(+)}\pi^{+(0)})\simeq 100{\cal B}(D_{s}^{+}\to\pi^{+}\rho^{0}) BESIII:2019jjr ; pdg . Clearly, it indicates the main contribution from the long-distance annihilation process Hsiao:2019ait . Explicitly, the long-distance annihilation process for Ds+a00(+)π+(0)D_{s}^{+}\to a_{0}^{0(+)}\pi^{+(0)} starts with the Ds+η()ρ+D_{s}^{+}\to\eta^{(\prime)}\rho^{+} weak decay, followed by the η()\eta^{(\prime)} and ρ+\rho^{+} rescattering. With the π+(0)\pi^{+(0)} exchange, η()\eta^{(\prime)} and π+\pi^{+} are turned into a0+(0)a_{0}^{+(0)} and π0(+)\pi^{0(+)}, respectively. Since BESIII has recently reported the first observation of the branching fractions of Ds+SV,SPPD_{s}^{+}\to SV,S\to PP as BESIII:2021qfo ; BESIII:2021aza

+(Ds+a0+ρ0,a0+π+η)\displaystyle{\cal B}_{+}(D_{s}^{+}\to a_{0}^{+}\rho^{0},a_{0}^{+}\to\pi^{+}\eta) =\displaystyle= (2.1±0.8±0.5)×103,\displaystyle(2.1\pm 0.8\pm 0.5)\times 10^{-3}\,,
0(Ds+a00ρ+,a00K+K)\displaystyle{\cal B}_{0}(D_{s}^{+}\to a_{0}^{0}\rho^{+},a_{0}^{0}\to K^{+}K^{-}) =\displaystyle= (0.7±0.2±0.1)×103,\displaystyle(0.7\pm 0.2\pm 0.1)\times 10^{-3}\,, (1)

we are wondering which of the short and long-distance annihilation processes can be the dominant contribution. Hence, we propose to study Ds+a0+(0)ρ0(+)D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)}, Ds+a0+ωD_{s}^{+}\to a_{0}^{+}\omega, and the resonant three-body Ds+a0+(0)ρ0(+),a0+(0)[ηπ+(0),K+K¯0(K+K)]D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)},a_{0}^{+(0)}\to[\eta\pi^{+(0)},K^{+}\bar{K}^{0}(K^{+}K^{-})] decays, in order to analyze the data in Eq. (I). We will also test if (Ds+a0+ρ0,a0+ρ0){\cal B}(D_{s}^{+}\to a_{0}^{+}\rho^{0},a_{0}^{+}\rho^{0}) have nearly equal sizes as (Ds+a0+π0)(Ds+a00π+){\cal B}(D_{s}^{+}\to a_{0}^{+}\pi^{0})\simeq{\cal B}(D_{s}^{+}\to a_{0}^{0}\pi^{+}) that respects the isospin symmetry.

II Formalism

Refer to caption
Refer to caption
Refer to caption
Figure 1: Topological diagrams for the Cabibbo-allowed Ds+D_{s}^{+} weak decays.
Refer to caption
Refer to caption
Refer to caption
Figure 2: Triangle rescattering diagrams for Ds+ρ0(+)a0+(0)D^{+}_{s}\to\rho^{0(+)}a_{0}^{+(0)} and Ds+ωa0+D^{+}_{s}\to\omega a_{0}^{+}.

Considering the short-distance WA processes, Ds+PP(PV)D_{s}^{+}\to PP(PV) and Ds+SP(SV)D_{s}^{+}\to SP(SV) both get an AA term as the annihilation amplitude in Fig. 1. According to (Ds+π+ρ0)104{\cal B}(D_{s}^{+}\to\pi^{+}\rho^{0})\simeq 10^{-4} that receives the short-distance WA contribution pdg , one regards AA to give (Ds+a0+(0)ρ0(+)){\cal B}(D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)}) not larger than 10410^{-4}. However, +{\cal B}_{+} in Eq. (I) suggests (Ds+a0+ρ0)103{\cal B}(D_{s}^{+}\to a_{0}^{+}\rho^{0})\simeq 10^{-3}. This strongly suggests that the main contribution to Ds+a0+(0)ρ0(+)D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)} is from the long-distance annihilation process. For Ds+a0+ωD_{s}^{+}\to a_{0}^{+}\omega, the WA contribution is suppressed with the GG-parity violation, such that A0A\simeq 0. Therefore, we start with the triangle rescattering processes for Ds+a0+(0)ρ0(+)D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)} and Ds+a0+ωD_{s}^{+}\to a_{0}^{+}\omega as the most possible main contributions.

See Fig. 2, the rescattering processes for Ds+a0+(0)ρ0(+)D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)} include both the weak and strong decays. In our case, the weak decays come from Ds+π+η(),K+K¯0D^{+}_{s}\to\pi^{+}\eta^{(\prime)},K^{+}\bar{K}^{0}, and the amplitudes are given by Cheng:2010ry ; Cheng:2019ggx ; Fusheng:2011tw ; Bhattacharya:2009ps

η(Ds+π+η)\displaystyle{\cal M}_{\eta}(D^{+}_{s}\to\pi^{+}\eta) =\displaystyle= GF2VcsVud(2AcosϕTsinϕ),\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cs}V_{ud}(\sqrt{2}A\cos\phi-T\sin\phi)\,,
η(Ds+π+η)\displaystyle{\cal M}_{\eta^{\prime}}(D^{+}_{s}\to\pi^{+}\eta^{\prime}) =\displaystyle= GF2VcsVud(2Asinϕ+Tcosϕ),\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cs}V_{ud}(\sqrt{2}A\sin\phi+T\cos\phi)\,,
K(Ds+K+K¯0)\displaystyle{\cal M}_{K}(D^{+}_{s}\to K^{+}\bar{K}^{0}) =\displaystyle= GF2VcsVud(C+A),\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cs}V_{ud}(C+A)\,, (2)

where GFG_{F} is the Fermi constant, VcsVudV^{*}_{cs}V_{ud} the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, and VcsVud1V^{*}_{cs}V_{ud}\simeq 1 presents the Cabibbo-allowed decay modes. In addition, (T,C,A)(T,C,A) are the topological amplitudes, along with the mixing angle ϕ=43.5\phi=43.5^{\circ} from the ηη\eta-\eta^{\prime} mixing matrix FKS ; FKS2 :

(ηη)=(cosϕsinϕsinϕcosϕ)(1/2(uu¯+dd¯)ss¯).\displaystyle\left(\begin{array}[]{c}\eta\\ \eta^{\prime}\end{array}\right)=\left(\begin{array}[]{cc}\cos\phi&-\sin\phi\\ \sin\phi&\cos\phi\end{array}\right)\left(\begin{array}[]{c}\sqrt{1/2}(u\bar{u}+d\bar{d})\\ s\bar{s}\end{array}\right)\,. (9)

For the strong decays V,SPPV,S\to PP, the amplitudes are given by Hsiao:2019ait

ρ0(+)π+(0)π(+)=gρϵ(q1q2),\displaystyle{\cal M}_{\rho^{0(+)}\to\pi^{+(0)}\pi^{-(+)}}=g_{\rho}\epsilon\cdot(q_{1}-q_{2}),\,
a0+η()π+,K+K¯0=gη(),gK,\displaystyle{\cal M}_{a_{0}^{+}\to\eta^{(\prime)}\pi^{+},K^{+}\bar{K}^{0}}=g_{\eta^{(\prime)}},g_{K}\,, (10)

where ϵμ\epsilon_{\mu} is the polarization four vector of the ρ\rho meson, and q1,2μq_{1,2}^{\mu} are the four momenta of π+π(π0π+)\pi^{+}\pi^{-}(\pi^{0}\pi^{+}), respectively. The SU(3)SU(3) flavor symmetry is able to relate different V(S)PPV(S)\to PP decay channels Tornqvist:1979hx ; Fayyazuddin:2012qfa , such that we obtain gρ/2g_{\rho}/2 for ρ0K+K,K¯0K0{\cal M}_{\rho^{0}\to K^{+}K^{-},\bar{K}^{0}K^{0}}, gρ/2g_{\rho}/\sqrt{2} for ρ+K+K¯0{\cal M}_{\rho^{+}\to K^{+}\bar{K}^{0}}, and ()gK/2(-)g_{K}/\sqrt{2} for a00K+K(K¯0K0){\cal M}_{a^{0}_{0}\to K^{+}K^{-}(\bar{K}^{0}K^{0})}, together with ()gρ/2(-)g_{\rho}/2 for ωK+K(K¯0K0){\cal M}_{\omega\to K^{+}K^{-}(\bar{K}^{0}K^{0})}.

By assembling the weak and strong couplings in the rescattering processes, we derive that

(Ds+ρ0(+)a0+(0))\displaystyle{\cal M}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0}) =\displaystyle= a+a+b+c,\displaystyle{\cal M}_{a}+{\cal M}_{a}^{\prime}+{\cal M}_{b}+{\cal M}_{c}\,,
(Ds+ωa0+)\displaystyle{\cal M}(D_{s}^{+}\to\omega a^{+}_{0}) =\displaystyle= ^b+^c,\displaystyle\hat{\cal M}_{b}+\hat{\cal M}_{c}\,, (11)

with Ma()M_{a}^{(\prime)} and Mb(c)[M^b(c)]M_{b(c)}[\hat{M}_{b(c)}] for Fig. 2a and Fig. 2b(c), respectively. More explicitly, a,b,c{\cal M}_{a,b,c} are given by Hsiao:2019ait ; Yu:2020vlt ; Hsiao:2021tyq

a\displaystyle{\cal M}_{a} =\displaystyle= d4q1(2π)4ηρ0(+)π+π(0)a0+(0)ηπ+(0)Fπ(q22)(q12mπ2+iϵ)[(q1p2)2mπ2+iϵ][(q1p1)2mη2+iϵ],\displaystyle\int\frac{d^{4}{q}_{1}}{(2\pi)^{4}}\frac{{\cal M}_{\eta}{\cal M}_{\rho^{0(+)}\to\pi^{+}\pi^{-(0)}}{\cal M}_{a^{+(0)}_{0}\to\eta\pi^{+(0)}}F_{\pi}(q_{2}^{2})}{(q_{1}^{2}-m_{\pi}^{2}+i\epsilon)[(q_{1}-p_{2})^{2}-m_{\pi}^{2}+i\epsilon][(q_{1}-p_{1})^{2}-m_{\eta}^{2}+i\epsilon]}\,,
b\displaystyle{\cal M}_{b} =\displaystyle= d4q1(2π)4Kρ0(+)K+K(K+K¯0)a0+(0)K¯0K+(0)FK(q22)(q12mK2+iϵ)[(q1p2)2mK2+iϵ][(q1p1)2mK2+iϵ],\displaystyle\int\frac{d^{4}{q}_{1}}{(2\pi)^{4}}\frac{{\cal M}_{K}{\cal M}_{\rho^{0(+)}\to K^{+}K^{-}(K^{+}\bar{K}^{0})}{\cal M}_{a_{0}^{+(0)}\to\bar{K}^{0}K^{+(0)}}F_{K}(q_{2}^{2})}{(q_{1}^{2}-m_{K}^{2}+i\epsilon)[(q_{1}-p_{2})^{2}-m_{K}^{2}+i\epsilon][(q_{1}-p_{1})^{2}-m_{K}^{2}+i\epsilon]}\,,
c\displaystyle{\cal M}_{c} =\displaystyle= d4q1(2π)4Kρ0(+)K¯0K0(+)a0+(0)K¯0K+(0)FK(q22)(q12mK2+iϵ)[(q1p2)2mK2+iϵ][(q1p1)2mK2+iϵ],\displaystyle\int\frac{d^{4}{q}_{1}}{(2\pi)^{4}}\frac{{\cal M}_{K}{\cal M}_{\rho^{0(+)}\to\bar{K}^{0}K^{0(+)}}{\cal M}_{a_{0}^{+(0)}\to\bar{K}^{0}K^{+(0)}}F_{K}(q_{2}^{2})}{(q_{1}^{2}-m_{K}^{2}+i\epsilon)[(q_{1}-p_{2})^{2}-m_{K}^{2}+i\epsilon][(q_{1}-p_{1})^{2}-m_{K}^{2}+i\epsilon]}\,, (12)

with q2=q1p2q_{2}=q_{1}-p_{2} and q3=q1p1q_{3}=q_{1}-p_{1} following the momentum flows in Fig. 2. The form factor FM(q22)(ΛM2mM2)/(ΛM2q22)F_{M}(q_{2}^{2})\equiv(\Lambda_{M}^{2}-m^{2}_{M})/(\Lambda_{M}^{2}-q^{2}_{2}) with the cutoff parameter ΛM\Lambda_{M} [M=(π,K)M=(\pi,K)] is to avoid the overestimation with q2q_{2} to ±\pm\infty Du:2021zdg . Substituting η\eta^{\prime} and ω\omega for η\eta in a{\cal M}_{a} and ρ0\rho^{0} in b(c){\cal M}_{b(c)} leads to a{\cal M}_{a}^{\prime} and ^b(c)\hat{\cal M}_{b(c)}, respectively.

As a consequence, we find that

(Ds+ρ0a0+)\displaystyle{\cal M}(D_{s}^{+}\to\rho^{0}a^{+}_{0}) =\displaystyle= (Ds+ρ+a00),\displaystyle{\cal M}(D_{s}^{+}\to\rho^{+}a^{0}_{0})\,,
(Ds+ωa0+)\displaystyle{\cal M}(D_{s}^{+}\to\omega a^{+}_{0}) =\displaystyle= 0,\displaystyle 0\,, (13)

where the first relation respects the isospin symmetry, whereas ^b=^c\hat{\cal M}_{b}=-\hat{\cal M}_{c} due to ωK+K=ωK¯0K0{\cal M}_{\omega\to K^{+}K^{-}}=-{\cal M}_{\omega\to\bar{K}^{0}K^{0}} cancels the rescattering contributions to Ds+ωa0+D_{s}^{+}\to\omega a^{+}_{0}, which causes (Ds+ωa0+)=0{\cal M}(D_{s}^{+}\to\omega a^{+}_{0})=0.

To deal with the triangle loops in Eq. (II), the equation in Refs. tHooft:1978jhc ; Hahn:1998yk ; Denner:2005nn ; Passarino:1978jh can be useful, given by

d4q1iπ2q1μ(q12m12+iϵ)[(q1p2)2m22+iϵ][(q1p1)2m32+iϵ]\displaystyle\int\frac{d^{4}q_{1}}{i\pi^{2}}\frac{q_{1}^{\mu}}{(q_{1}^{2}-m_{1}^{2}+i\epsilon)[(q_{1}-p_{2})^{2}-m_{2}^{2}+i\epsilon][(q_{1}-p_{1})^{2}-m_{3}^{2}+i\epsilon]}
=pρμC1(pa02,mρ2,mDs2,m12,m22,m32)pDsμC2(pa02,mρ2,mDs2,m12,m22,m32).\displaystyle=-p_{\rho}^{\mu}C_{1}(p_{a_{0}}^{2},m_{\rho}^{2},m_{D_{s}}^{2},m_{1}^{2},m_{2}^{2},m_{3}^{2})-p_{D_{s}}^{\mu}C_{2}(p_{a_{0}}^{2},m_{\rho}^{2},m_{D_{s}}^{2},m_{1}^{2},m_{2}^{2},m_{3}^{2})\,. (14)

By calculating the triangle rescattering processes, we obtain

Γ(Ds+ρ0+a0+(0))=|p2|38πmρ2|H|2,\displaystyle\Gamma(D_{s}^{+}\to\rho^{0{+}}a^{+(0)}_{0})=\frac{|\vec{p}_{2}|^{3}}{8\pi m_{\rho}^{2}}|H|^{2}\,,
H=18π2(gρgηηCη+gρgηηCη+gρgKKCK),\displaystyle H=\frac{1}{8\pi^{2}}\bigg{(}g_{\rho}g_{\eta}{\cal M}_{\eta}C_{\eta}+g_{\rho}g_{\eta^{\prime}}{\cal M}_{\eta^{\prime}}C_{\eta^{\prime}}+g_{\rho}g_{K}{\cal M}_{K}C_{K}\bigg{)}\,, (15)

with Cη()=C2,η()C2,η()C_{\eta^{(\prime)}}=C_{2,\eta^{(\prime)}}-C_{2,\eta^{(\prime)}}^{*} and CK=C2,KC2,KC_{K}=C_{2,K}-C_{2,K}^{*} as the integrated results of the C2C_{2} terms in Eq. (II), where C2,M()C_{2,M}^{(*)} are defined by

C2,η()\displaystyle C_{2,\eta}^{(*)} =\displaystyle= C2(mπ,mπ(Λπ),mη),\displaystyle C_{2}(m_{\pi},m_{\pi}(\Lambda_{\pi}),m_{\eta})\,,
C2,η()\displaystyle C_{2,\eta^{\prime}}^{(*)} =\displaystyle= C2(mπ,mπ(Λπ),mη),\displaystyle C_{2}(m_{\pi},m_{\pi}(\Lambda_{\pi}),m_{\eta^{\prime}})\,,
C2,K()\displaystyle C_{2,K}^{(*)} =\displaystyle= C2(mK,mK(ΛK),mK).\displaystyle C_{2}(m_{K},m_{K}(\Lambda_{K}),m_{K})\,. (16)

However, the C1C_{1} terms have been disappearing due to pρϵ=0p_{\rho}\cdot\epsilon=0 in the amplitudes.

For the three-body decays Ds+ρ0(+)(a0+(0))ηπ+(0),K+K¯0(K+K)D_{s}^{+}\to\rho^{0(+)}(a^{+(0)}_{0}\to)\eta\pi^{+(0)},K^{+}\bar{K}^{0}(K^{+}K^{-}), we present pdg

Γ(Ds+ρa0,a0ηπ(KK))\displaystyle\Gamma(D_{s}^{+}\to\rho a_{0},a_{0}\to\eta\pi(KK))
=1(2π)3|p2|232mDsmρ2|H|2gη(K)2Da0(s)2𝑑s𝑑t,\displaystyle=\int\int\frac{1}{(2\pi)^{3}}\frac{|\vec{p}_{2}|^{2}}{32m_{D_{s}}m_{\rho}^{2}}|H|^{2}\frac{g_{\eta(K)}^{2}}{\mid D_{a_{0}}(s)\mid^{2}}dsdt\,, (17)

with s=(pη(K)+pπ(K))2s=(p_{\eta(K)}+p_{\pi(K)})^{2} and t=(pρ+pπ(K))2t=(p_{\rho}+p_{\pi(K)})^{2}, such that the theoretical results can be compared to the data in Eq. (I). In the above equation, 1/Da0(s)1/D_{a_{0}}(s) presents the propagator for a0a_{0}, and we define Achasov:2004uq

Da0(s)=sma02αβ[ReΠa0αβ(ma02)Πa0αβ(s)],\displaystyle D_{a_{0}}(s)=s-m_{a_{0}}^{2}-\sum\limits_{\alpha\beta}{\bigg{[}\text{Re}\Pi^{\alpha\beta}_{a_{0}}(m^{2}_{a_{0}})-\Pi^{\alpha\beta}_{a_{0}}(s)\bigg{]}}\,, (18)

where

Πa0αβ(x)\displaystyle\Pi^{\alpha\beta}_{a_{0}}(x) =\displaystyle= Gαβ216π{mαβ+mαβπxlog[mβmα]θ[x(mαβ+)2]\displaystyle\frac{G^{2}_{\alpha\beta}}{16\pi}\bigg{\{}\frac{m_{\alpha\beta}^{+}m_{\alpha\beta}^{-}}{\pi x}\log\bigg{[}\frac{m_{\beta}}{m_{\alpha}}\bigg{]}-\theta[x-(m_{\alpha\beta}^{+})^{2}]
×\displaystyle\times ραβ(i+1πlog[x(mαβ+)2+x(mαβ)2x(mαβ)2x(mαβ+)2])\displaystyle\rho_{\alpha\beta}\bigg{(}i+\frac{1}{\pi}\log\bigg{[}\frac{\sqrt{x-(m_{\alpha\beta}^{+})^{2}}+\sqrt{x-(m_{\alpha\beta}^{-})^{2}}}{\sqrt{x-(m_{\alpha\beta}^{-})^{2}}-\sqrt{x-(m_{\alpha\beta}^{+})^{2}}}\bigg{]}\bigg{)}
\displaystyle- ραβ(12πarctan[x+(mαβ+)2x(mαβ)2])(θ[x(mαβ)2]θ[x(mαβ+)2])\displaystyle\rho_{\alpha\beta}\bigg{(}1-\frac{2}{\pi}\arctan\bigg{[}\frac{\sqrt{-x+(m_{\alpha\beta}^{+})^{2}}}{\sqrt{x-(m_{\alpha\beta}^{-})^{2}}}\bigg{]}\bigg{)}(\theta[x-(m_{\alpha\beta}^{-})^{2}]-\theta[x-(m_{\alpha\beta}^{+})^{2}])
+\displaystyle+ ραβ1πlog[(mαβ+)2x+(mαβ)2x(mαβ)2x(mαβ+)2x]θ[(mαβ)2x]},\displaystyle\rho_{\alpha\beta}\frac{1}{\pi}\log\bigg{[}\frac{\sqrt{(m_{\alpha\beta}^{+})^{2}-x}+\sqrt{(m_{\alpha\beta}^{-})^{2}-x}}{\sqrt{(m_{\alpha\beta}^{-})^{2}-x}-\sqrt{(m_{\alpha\beta}^{+})^{2}-x}}\bigg{]}\theta[(m_{\alpha\beta}^{-})^{2}-x]\bigg{\}}\,,
ραβ\displaystyle\rho_{\alpha\beta} \displaystyle\equiv |x(mαβ+)2x(mαβ)2|/x,\displaystyle\left|\sqrt{x-(m_{\alpha\beta}^{+})^{2}}\sqrt{x-(m_{\alpha\beta}^{-})^{2}}\right|/x\,, (19)

with Gαβ=(gη(),gK)G_{\alpha\beta}=(g_{\eta^{(\prime)}},g_{K}) for αβ=(η()π,KK¯)\alpha\beta={(\eta^{(\prime)}\pi,K\bar{K})} and mαβ±=mα±mβm_{\alpha\beta}^{\pm}=m_{\alpha}\pm m_{\beta}.

III Numerical Results

In the numerical analysis, we adopt Vcs=Vud=1λ2/2V_{cs}=V_{ud}=1-\lambda^{2}/2 with λ=0.22453±0.00044\lambda=0.22453\pm 0.00044 in the Wolfenstein parameterization pdg , along with ma00=0.987m_{a_{0}^{0}}=0.987 GeV Kornicer:2016axs ; Bugg:2008ig . The topological parameters (T,C,A)(T,C,A) have been extracted as Cheng:2019ggx

(|T|,|C|,|A|)=(0.363±0.001,0.323±0.030,0.064±0.004)GeV3,\displaystyle(|T|,|C|,|A|)=(0.363\pm 0.001,0.323\pm 0.030,0.064\pm 0.004)~{}\mbox{GeV}^{3}~{}\,,
(δC,δA)=(151.3±0.3,23.010.0+  7.0),\displaystyle(\delta_{C},\delta_{A})=(-151.3\pm 0.3,23.0^{+\;\;7.0}_{-10.0})^{\circ}\,, (20)

where δC,A\delta_{C,A} are the relative strong phases. According to the extraction, we obtain (Ds+π+η,π+η,K+K¯0)=(1.8±0.2,4.2±0.5,3.1±0.5)×102{\cal B}(D_{s}^{+}\to\pi^{+}\eta,\pi^{+}\eta^{\prime},K^{+}\bar{K}^{0})=(1.8\pm 0.2,4.2\pm 0.5,3.1\pm 0.5)\times 10^{-2}, consistent with the experimental values of (1.68±0.10,3.94±0.25,2.95±0.14)×102(1.68\pm 0.10,3.94\pm 0.25,2.95\pm 0.14)\times 10^{-2}, respectively pdg . For V,SPPV,S\to PP, the strong coupling constants read Bugg:2008ig ; Kornicer:2016axs ; pdg

gρ=6.0,(gη,gη,gK)=(2.87±0.09,2.52±0.08,2.94±0.13)GeV.\displaystyle g_{\rho}=6.0\,,(g_{\eta},g_{\eta^{\prime}},g_{K})=(2.87\pm 0.09,-2.52\pm 0.08,2.94\pm 0.13)~{}\text{GeV}\,. (21)

Empirically, ΛM\Lambda_{M} of 𝒪(1.0GeV){\cal O}(1.0~{}\text{GeV}) is commonly used to explain the data Tornqvist:1993ng ; Li:1996yn ; Wu:2019vbk ; besides, it is obtained that ΛKΛπ=mKmπ\Lambda_{K}-\Lambda_{\pi}=m_{K}-m_{\pi} Cheng:2004ru . Therefore, we are allowed to use (Λπ,ΛK)=(1.25±0.25,1.60±0.25)(\Lambda_{\pi},\Lambda_{K})=(1.25\pm 0.25,1.60\pm 0.25) GeV, which result in

Cη\displaystyle C_{\eta} =\displaystyle= [(0.57±0.08)+i(0.17±0.09)]GeV2,\displaystyle[(0.57\pm 0.08)+i(0.17\pm 0.09)]~{}\text{GeV}^{-2}\,,
Cη\displaystyle C_{\eta^{\prime}} =\displaystyle= [(0.34±0.03)i(0.27±0.07)]GeV2,\displaystyle[(0.34\pm 0.03)-i(0.27\pm 0.07)]~{}\text{GeV}^{-2}\,,
CK\displaystyle C_{K} =\displaystyle= [(0.85±0.03)i(0.45±0.08)]GeV2,\displaystyle[(0.85\pm 0.03)-i(0.45\pm 0.08)]~{}\text{GeV}^{-2}\,, (22)

with pa02=ma02p_{a_{0}}^{2}=m_{a_{0}}^{2}. Subsequently, we predict

(Ds+ρ0(+)a0+(0))=(3.0±0.3±1.0)×103,\displaystyle{\cal B}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0})=(3.0\pm 0.3\pm 1.0)\times 10^{-3}\,,
(Ds+ωa0+)=0,\displaystyle{\cal B}(D_{s}^{+}\to\omega a^{+}_{0})=0\,, (23)

where the first error in (Ds+ρ0(+)a0+(0)){\cal B}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0}) takes into account the uncertainties from Λπ\Lambda_{\pi} and ΛK\Lambda_{K}, and the second one combines those from VcsV_{cs}^{*}, VudV_{ud}, (T,C,A)(T,C,A), and the strong coupling constants. For the resonant three-body decays, we obtain

(Ds+ρ0(+)(a0+(0))ηπ+(0))\displaystyle{\cal B}(D_{s}^{+}\to\rho^{0(+)}(a^{+(0)}_{0}\to)\eta\pi^{+(0)}) =\displaystyle= (1.60.3+0.2±0.6)×103,\displaystyle(1.6^{+0.2}_{-0.3}\pm 0.6)\times 10^{-3}\,,
(Ds+ρ+(a00)K+K,K0K¯0)\displaystyle{\cal B}(D_{s}^{+}\to\rho^{+}(a^{0}_{0}\to)K^{+}K^{-},K^{0}\bar{K}^{0}) =\displaystyle= (0.90.1+0.1±0.4,0.70.1+0.1±0.3)×104,\displaystyle(0.9^{+0.1}_{-0.1}\pm 0.4,0.7^{+0.1}_{-0.1}\pm 0.3)\times 10^{-4}\,,
(Ds+ρ0(a0+)K+K¯0)\displaystyle{\cal B}(D_{s}^{+}\to\rho^{0}(a^{+}_{0}\to)K^{+}\bar{K}^{0}) =\displaystyle= (1.50.3+0.2±0.6)×104,\displaystyle(1.5^{+0.2}_{-0.3}\pm 0.6)\times 10^{-4}\,, (24)

where the sources of the two errors are the same as those in Eq. (III).

IV Discussions and Conclusions

In the triangle loop, when the momentum flow approaches the mass shell for one of the three propagators, the integration with iϵimΓi\epsilon\simeq im\Gamma gives rise to the imaginary parts in Eq. (III), where Γ\Gamma is a very tiny decay width for π\pi, η()\eta^{(\prime)} or KK. The off-shell integrations are responsible for the real parts in Eq. (III), for which we take a{\cal M}_{a} as our description. In principle, the integration allows a momentum flow from -\infty to ++\infty. However, when the exchange particle proceeds with q22q_{2}^{2} around several GeV2, instead of the infinity, the integration with q22±q_{2}^{2}\sim\pm\infty causes an overestimation Du:2021zdg . We have accordingly introduced the form factor FπF_{\pi} in Eq. (II) to cut off the contribution from q22±q_{2}^{2}\sim\pm\infty. While q12q_{1}^{2}, q22q_{2}^{2} and q32q_{3}^{2} have been associated in the loop, FπF_{\pi} also works to cut off the contributions from the propagators of the rescattering particles π+\pi^{+} and η()\eta^{(\prime)}. Note that the single cutoff form factor has also been commonly used elsewhere Wu:2021udi ; Wu:2019rog ; Li:2014pfa  111Please also consult Refs. Cheng:2021nal , where one considers three cutoff form factors..

The smallness of the WA Ds+MMD_{s}^{+}\to MM decay can be traced back to its amplitude, given by Hsiao:2019wyd ; Hsiao:2014zza ; Huang:2021qld

WA(Ds+MM)fDsqμMM|u¯γμ(1γ5)d|0\displaystyle{\cal M}_{WA}(D_{s}^{+}\to MM)\propto f_{D_{s}}q^{\mu}\langle MM|\bar{u}\gamma_{\mu}(1-\gamma_{5})d|0\rangle
(mu+md)MM|u¯γ5d|0,\displaystyle\simeq(m_{u}+m_{d})\langle MM|\bar{u}\gamma_{5}d|0\rangle\,, (25)

where qμMM|uγμd|0=0q^{\mu}\langle MM|u\gamma_{\mu}d|0\rangle=0 corresponds to the conservation of the vector current (CVC); most importantly, mu(d)0m_{u(d)}\simeq 0 causes the chiral suppression of the WA Ds+MMD_{s}^{+}\to MM decay. According to the data, (Ds+π+ρ0)=(1.9±1.2)×104{\cal B}(D_{s}^{+}\to\pi^{+}\rho^{0})=(1.9\pm 1.2)\times 10^{-4} indicates that WA(Ds+MM){\cal B}_{WA}(D_{s}^{+}\to MM) should be around 10410^{-4}. In addition, (Ds+π+π0)<3.4×104{\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0})<3.4\times 10^{-4} suggests that the G-parity violation suppresses the WA process even more. Therefore, since Ds+ρa0,ρπD_{s}^{+}\to\rho a_{0},\rho\pi are both the G-parity conserved processes, it is reasonable to present that WA(Ds+ρa0)WA(Ds+ρπ)104{\cal B}_{WA}(D_{s}^{+}\to\rho a_{0})\simeq{\cal B}_{WA}(D_{s}^{+}\to\rho\pi)\sim 10^{-4}. As a theoretical support, we present

WA(Ds+(cs¯)ρa0)\displaystyle{\cal B}_{WA}(D_{s}^{+}(c\bar{s})\to\rho a_{0}) (26)
=\displaystyle= Rf(VcsVudfDs)2τDs(VcbVudfBc)2τBcWA(Bc+(cb¯)ρa0)104,\displaystyle R_{f}\frac{(V_{cs}^{*}V_{ud}f_{D_{s}})^{2}\tau_{D_{s}}}{(V_{cb}V_{ud}^{*}f_{B_{c}})^{2}\tau_{B_{c}}}{\cal B}_{WA}(B_{c}^{+}(c\bar{b})\to\rho a_{0})\sim 10^{-4}\,,

in agreement with our estimation, where Rf=3.1×102R_{f}=3.1\times 10^{-2} is mostly from the phase space factors, and WA(Bc+ρa0)1.0×105{\cal B}_{WA}(B_{c}^{+}\to\rho a_{0})\simeq 1.0\times 10^{-5} is adopted from Ref. Liu:2010kq .

Disregarding the WA contributions, we predict (Ds+ρ0(+)a0+(0))=3.0×103{\cal B}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0})=3.0\times 10^{-3} in Eq. (III). It is found that the ηπ,ηπ,K+K¯0\eta\pi,\eta^{\prime}\pi,K^{+}\bar{K}^{0} rescatterings and their interferences give 6%, 7%, 30% and 59% of (Ds+a0+(0)ρ0(+)){\cal B}(D_{s}^{+}\to a_{0}^{+(0)}\rho^{0(+)}), respectively. By contrast, the ρη()\rho\eta^{(\prime)} rescatterings from Ds+ρη()D_{s}^{+}\to\rho\eta^{(\prime)} dominantly contribute to Ds+a0+(0)π0(+)D_{s}^{+}\to a_{0}^{+(0)}\pi^{0(+)}, instead of Ds+KKD_{s}^{+}\to K^{*}K Hsiao:2019ait . Since Ds+ωa0+D_{s}^{+}\to\omega a^{+}_{0} has no rescattering effects; besides, the WA contribution is suppressed by the GG-parity violation, we anticipate that (Ds+ωa0+)(Ds+π+π0)<3.4×104{\cal B}(D_{s}^{+}\to\omega a^{+}_{0})\simeq{\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0})<3.4\times 10^{-4} pdg .

In Eq. (III), (Ds+ρ0(a0+)ηπ+)=(1.60.3+0.2±0.6)×103{\cal B}(D_{s}^{+}\to\rho^{0}(a^{+}_{0}\to)\eta\pi^{+})=(1.6^{+0.2}_{-0.3}\pm 0.6)\times 10^{-3} is able to explain the data [see Eq. (I)], demonstrating the sufficient long-distance annihilation contribution. It is confusing that (Ds+a00ρ+,a00K+K){\cal B}(D_{s}^{+}\to a_{0}^{0}\rho^{+},a_{0}^{0}\to K^{+}K^{-}) is 10 times smaller than 0{\cal B}_{0} in Eq. (I). For clarification, we take the approximate form of the resonant branching fraction: (Ds+SV,SPP)(Ds+SV)(SPP){\cal B}(D_{s}^{+}\to SV,S\to PP)\simeq{\cal B}(D_{s}^{+}\to SV){\cal B}(S\to PP), together with the isospin relation: (Ds+ρ0a0+)(Ds+ρ+a00){\cal B}(D_{s}^{+}\to\rho^{0}a^{+}_{0})\simeq{\cal B}(D_{s}^{+}\to\rho^{+}a^{0}_{0}), such that 0/+{\cal B}_{0}/{\cal B}_{+} is reduced as (a00K+K)/(a0+ηπ+)1/3{\cal B}(a_{0}^{0}\to K^{+}K^{-})/{\cal B}(a_{0}^{+}\to\eta\pi^{+})\simeq 1/3, disagreeing with (a00K+K)/(a0+ηπ+)=1/10{\cal B}(a_{0}^{0}\to K^{+}K^{-})/{\cal B}(a_{0}^{+}\to\eta\pi^{+})=1/10 from the experimental extraction Cheng:2010vk . Therefore, we conclude that there exists a possible contradiction between the observations in Eq. (I).

In our reasoning, the contradiction might be caused by Ds+ρ+f0,f0K+KD_{s}^{+}\to\rho^{+}f_{0},f_{0}\to K^{+}K^{-} with f0f0(980)f_{0}\equiv f_{0}(980), which can be mistaken as Ds+ρ+a00,a00K+KD_{s}^{+}\to\rho^{+}a_{0}^{0},a_{0}^{0}\to K^{+}K^{-} PC . First, since Ds+ρ+f0D_{s}^{+}\to\rho^{+}f_{0} is an external WW-boson emission process, its branching fraction can be of order 10310^{-3}. Second, a0a_{0} and f0f_{0} are both scalar mesons, and have nearly the same masses and overlapped decay widths. As a result, it is possible that one cannot distinguish between the resonant signals of Ds+ρ+(f0,a0),(f0,a0)K+KD_{s}^{+}\to\rho^{+}(f_{0},a_{0}),(f_{0},a_{0})\to K^{+}K^{-} in the K+KK^{+}K^{-} invariant mass spectrum. For a careful examination, we suggest a measurement of (Ds+ρ0(a0+)K+K¯0)/(Ds+ρ+(a00)K+K){\cal B}(D_{s}^{+}\to\rho^{0}(a^{+}_{0}\to)K^{+}\bar{K}^{0})/{\cal B}(D_{s}^{+}\to\rho^{+}(a^{0}_{0}\to)K^{+}K^{-}), which will be observed around 2 if there exists no resonant f0K+Kf_{0}\to K^{+}K^{-} decay to be involved in (Ds+ρ+K+K){\cal B}(D_{s}^{+}\to\rho^{+}K^{+}K^{-}).

In summary, we have studied Ds+ρ0(+)a0+(0)D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0}, Ds+ωa00D_{s}^{+}\to\omega a_{0}^{0}, and the resonant Ds+ρa0D_{s}^{+}\to\rho a_{0}, a0ηπ(KK)a_{0}\to\eta\pi(KK) decays. In the final state interaction, where Ds+η()π+(K+K¯0)D_{s}^{+}\to\eta^{(\prime)}\pi^{+}(K^{+}\bar{K}^{0}) is followed by the η()π+\eta^{(\prime)}\pi^{+} (K+K¯0K^{+}\bar{K}^{0}) to ρa0\rho a_{0} rescattering, we have predicted (Ds+ρ0(+)a0+(0))=(3.0±0.3±1.0)×103{\cal B}(D_{s}^{+}\to\rho^{0(+)}a^{+(0)}_{0})=(3.0\pm 0.3\pm 1.0)\times 10^{-3}. Because of the non-contribution of the rescattering effects and the suppressed short-distance WW annihilation, it has been expected that (Ds+ωa0+)(Ds+π+π0)<3.4×104{\cal B}(D_{s}^{+}\to\omega a^{+}_{0})\simeq{\cal B}(D_{s}^{+}\to\pi^{+}\pi^{0})<3.4\times 10^{-4}. For the resonant three-body decay, (Ds+ρ0(a0+)ηπ+)=(1.60.3+0.2±0.6)×103{\cal B}(D_{s}^{+}\to\rho^{0}(a^{+}_{0}\to)\eta\pi^{+})=(1.6^{+0.2}_{-0.3}\pm 0.6)\times 10^{-3} has been shown to agree with the data. We have presented (Ds+ρ+(a00)K+K){\cal B}(D_{s}^{+}\to\rho^{+}(a^{0}_{0}\to)K^{+}K^{-}) 10 times smaller than the observation, indicating that a more careful examination is needed.

ACKNOWLEDGMENTS

We would like to thank Prof. Liang Sun for useful discussions. YKH was supported in part by NSFC (Grant Nos. 11675030 and 12175128). YY was supported in part by NSFC (Grant Nos. 11905023 and 12047564), the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-Z003) and CQCSTC (Grant Nos. cstc2020jcyj-msxmX0555 and cstc2020jcyj-msxmX0810). BCK was supported in part by NSFC (Grant No. 11875054) and the Chinese Academy of Sciences (CAS) Large-scale Scientific Facility Program; Joint Large-Scale Scientific Facility Fund of the NSFC and CAS (Contract No. U2032104).

References

  • (1) S. Fajfer, A. Prapotnik, P. Singer and J. Zupan, Phys. Rev. D 68, 094012 (2003).
  • (2) B. Bhattacharya and J.L. Rosner, Phys. Rev. D 81, 014026 (2010).
  • (3) H.Y. Cheng and C.W. Chiang, Phys. Rev. D 81, 074021 (2010).
  • (4) F.S. Yu, X.X. Wang and C.D. Lu, Phys. Rev. D 84, 074019 (2011).
  • (5) H.n. Li, C.D. Lu, Q. Qin and F.S. Yu, Phys. Rev. D 89, 054006 (2014).
  • (6) H.Y. Cheng and C.W. Chiang, Phys. Rev. D 100, 093002 (2019).
  • (7) P.A. Zyla et al. [Particle Data Group], PTEP 2020, 083C01 (2020).
  • (8) H.Y. Cheng and C.W. Chiang, Phys. Rev. D 81, 074031 (2010).
  • (9) Y.K. Hsiao, Y. Yu and B.C. Ke, Eur. Phys. J. C 80, 895 (2020).
  • (10) X.Z. Ling, M.Z. Liu, J.X. Lu, L.S. Geng and J.J. Xie, Phys. Rev. D 103, 116016 (2021).
  • (11) N.N. Achasov and G.N. Shestakov, Phys. Rev. D 96, 036013 (2017).
  • (12) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 123, 112001 (2019).
  • (13) M. Ablikim et al. [BESIII], Phys. Rev. D 104, 071101 (2021).
  • (14) M. Ablikim et al. [BESIII], Phys. Rev. D 104, 032011 (2021).
  • (15) T. Feldmann, P. Kroll and B. Stech, Phys. Rev. D 58, 114006 (1998).
  • (16) T. Feldmann, P. Kroll and B. Stech, Phys. Lett. B 449, 339 (1999).
  • (17) N.A. Tornqvist, Annals Phys. 123, 1 (1979).
  • (18) Fayyazuddin and Riazuddin, A Modern Introduction To Particle Physics, 3rd edn, (World Scientific, Singapore, 2011).
  • (19) Y. Yu and Y.K. Hsiao, Phys. Lett. B 820, 136586 (2021).
  • (20) Y.K. Hsiao and Y. Yu, Phys. Rev. D 104, 034008 (2021).
  • (21) M.C. Du and Q. Zhao, Phys. Rev. D 104, 036008 (2021).
  • (22) G.t́ Hooft and M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979).
  • (23) G. Passarino and M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979).
  • (24) T. Hahn and M. Perez-Victoria, Comput. Phys. Commun.  118, 153 (1999).
  • (25) A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006).
  • (26) N.N. Achasov and A.V. Kiselev, Phys. Rev. D 70, 111901 (2004).
  • (27) M. Ablikim et al. [BESIII], Phys. Rev. D 95, 032002 (2017).
  • (28) D.V. Bugg, Phys. Rev. D 78, 074023 (2008).
  • (29) N.A. Tornqvist, Z. Phys. C 61, 525 (1994).
  • (30) X.Q. Li, D.V. Bugg and B.S. Zou, Phys. Rev. D 55, 1421 (1997).
  • (31) Q. Wu, D.Y. Chen, X.J. Fan and G. Li, Eur. Phys. J. C 79, 265 (2019).
  • (32) H.Y. Cheng, C.K. Chua and A. Soni, Phys. Rev. D 71,014030 (2005).
  • (33) Q. Wu, D.Y. Chen and T. Matsuki, Eur. Phys. J. C 81, 193 (2021).
  • (34) Q. Wu and D.Y. Chen, Phys. Rev. D 100, 114002 (2019).
  • (35) G. Li, X.H. Liu and Z. Zhou, Phys. Rev. D 90, 054006 (2014).
  • (36) Y. Cheng and Q. Zhao, arXiv:2106.12483 [hep-ph].
  • (37) Y.K. Hsiao and C.Q. Geng, Phys. Rev. D 91, 077501 (2015).
  • (38) Y.K. Hsiao, S.Y. Tsai, C.C. Lih and E. Rodrigues, JHEP 04, 035 (2020).
  • (39) X. Huang, Y.K. Hsiao, J. Wang and L. Sun, arXiv:2109.02897 [hep-ph].
  • (40) X. Liu and Z.J. Xiao, Phys. Rev. D 82, 054029 (2010).
  • (41) Private communications with the group members at BESIII.