This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of the hidden-heavy pentaquarks and PcsP_{cs} states

Wen-Xuan Zhang1 zhangwx89@outlook.com    Chang-Le Liu1 liuchanglelcl@qq.com    Duojie Jia1,2 Corresponding author jiadj@nwnu.edu.cn 1Institute of Theoretical Physics, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
2Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, 730000, China
Abstract

In light of the recently observed resonance states PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0} and Pcs(4459)0P_{cs}(4459)^{0} by LHCb Collaboration in J/ψΛJ/\psi\Lambda decay channel, we perform a systematical study of all possible hidden-heavy pentaquarks with strangeness S=0,1,2,3S=0,-1,-2,-3, in unified framework of MIT bag model. The color-spin wavefunctions presented in terms of Young-Yamanouchi bases and transformed into baryon-meson couplings, are utilized to calculate masses, magnetic moments and ratios of partial widths. With numerical analysis, the observed PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0} is likely to be a 1/21/2^{-} compact PcsP_{cs} pentaquark, and Pcs(4459)0P_{cs}(4459)^{0} favors two-peak structure of 3/23/2^{-} and 1/21/2^{-} PcsP_{cs} states. Further predictions on hadron properties and decay channels are given to compact PcssP_{css}, PcsssP_{csss} states and bottom sectors.

PACS number(s):12.39Jh, 12.40.Yx, 12.40.Nn

Key Words: Multiquark, Heavy pentaquark, Mass, Magnetic moment, Strong decay

I Introduction

In addition to the conventional hadronic states, such as mesons qq¯q\bar{q} and baryons qqqqqq in quark configurations, the possible exotic tetraquarks q2q¯2q^{2}\bar{q}^{2} and pentaquarks q4q¯q^{4}\bar{q} are also suggested at the birth of quark model Gell-Mann (1964); Zweig (1964). Later in the 1970s, the MIT bag model has been developed by Jaffe Jaffe (1977a, b); DeGrand et al. (1975) for the study of exotic multiquark states and notation of color confinement. In the past few decades, it has been applied to describe the doubly heavy baryons Fleck and Richard (1989); He et al. (2004); Bernotas and Simonis (2009, 2012) and exotic states, including light pentaquarks Strottman (1979) and hybrid mesons Barnes et al. (1983); Chanowitz and Sharpe (1983). Despite that these states are considered to be exotic beyond the conventional scheme of quark model, the existences of them are allowed by quantum chromodynamics (QCD).

Since the observation of exotic X(3872)X(3872) in 2003 by the Belle Choi et al. (2003), there are many candidates that have been discovered for tetraquarks, such as the Zc(3900)Z_{c}(3900) Ablikim et al. (2013); Liu et al. (2013) and the Tcc(3875)T_{cc}(3875) Aaij et al. (2022a), as well as the fully charm systems X(6600)X(6600) Hayrapetyan et al. (2023) and X(6900)X(6900) Aaij et al. (2020). In 2015, the first evidence for pentaquark-like structures Pc(4450)+P_{c}(4450)^{+} and Pc(4380)+P_{c}(4380)^{+} with a minimal quark constituent of uudcc¯uudc\bar{c} was reported by LHCb in J/ψpJ/\psi p channel Aaij et al. (2015), for which the former exhibits a two-peak structure resolved into Pc(4440)+P_{c}(4440)^{+} and Pc(4457)+P_{c}(4457)^{+} in 2019. Recently, the LHCb Collaboration has reported two new hidden charm pentaquarks with a single strange flavor, PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0} Aaij et al. (2023), and Pcs(4459)0P_{cs}(4459)^{0}Aaij et al. (2021) both in J/ψΛJ/\psi\Lambda channel. These pentaquark candidates encourage the theoretical study on their mass spectrum, hadron properties and decay behaviors. There are various pictures and methods applied to analyze the hidden-charm pentaquarks, including molecular Chen et al. (2021); Chen (2021); Yang et al. (2021); Lu et al. (2021); Xiao et al. (2021); Zhu et al. (2021); Feijoo et al. (2023); Zhu et al. (2023); Chen et al. (2022); Wang and Liu (2022, 2023); Azizi et al. (2023) and compact scenario Weng et al. (2019); Shi et al. (2021); Ruangyoo et al. (2022); Li et al. (2021, 2023); Guo and Li (2023), as well as the hidden-bottom pentaquarks Yang et al. (2019); Zhu et al. (2020).

In our previous work Zhang et al. (2021), we performed a systematical study on the spectrum of mesons and baryons in their ground states, including light-flavor baryons and doubly heavy baryon Ξcc\Xi_{cc} Aaij et al. (2017), and extented the computation to the doubly heavy tetraquark TccT_{cc}. Considering the binding energies between heavy quarks, along side a running coupling constant, our predictions align with the experimental reports for baryons and tetraquarks with two heavy flavors, even for the fully heavy system X(6600)X(6600) Yan et al. (2023). Therefore, the MIT bag model serves as a capable method to study heavy hadrons on masses and magnetic moments.

Refer to caption
Figure 1: The relationship of inner-structures between light-flavor baryon and hidden-heavy pentaquark.

Motivated by this, as demonstrated in Fig.(1), a light-flavor baryon qqqqqq (q=u,d,sq=u,d,s) described as a sphere bag is extended into a hidden-heavy pentaquark qqqQQ¯qqqQ\bar{Q}, with the present of heavy QQ¯Q\bar{Q} (Q=c,bQ=c,b) in configuration. Due to the dynamics of heavy constituents and suppression of relativistic effects, it is possible to consider pentaquarks qqqQQ¯qqqQ\bar{Q} in compact scenario.

The purpose of this work is to study masses, magnetic moments and ratios of partial widths for hidden-heavy pentaquarks, classified into strangeness S=0,1,2,3S=0,-1,-2,-3, namely nnnQQ¯nnnQ\bar{Q}, nnsQQ¯nnsQ\bar{Q}, ssnQQ¯ssnQ\bar{Q} and sssQQ¯sssQ\bar{Q}, respectively. Numerical computations are based on the unified framework of MIT bag model, characterized by model parameters and fundamental relations. In order for describing inner-structures of pentaquarks, the color-spin wavefunctions are employed to the chromomagnetic interactions, which are expressed in terms of Young tableau and Young-Yamanouchi bases. For partial width study, we transform the color-spin wavefunctions into the form of color-singlet (baryon-meson coupling) and color-octet components. Finally, with the help of spin bases, it’s straightforward to derive the magnetic moments for possible pentaquark configurations.

This work is structured as follows. In the next section, we provide a brief introduction to the fundamental relations of the Hamiltonian and magnetic moment. Additionally, we outline the parameters utilized in our numerical calculations. The detailed formulations about the chromomagnetic structure and magnetic moment can be found in the Appendix. In Section III, we present a comprehensive numerical analysis of hidden-heavy pentaquarks, classified into subsections III.1, III.2, III.3, and III.4, corresponding to strangeness S=0,1,2,3S=0,-1,-2,-3, respectively. Finally, this work ends with summaries and conclusions in Section IV.

II Mass and magnetic moment

In the framework of the MIT bag model, all valence quarks are confined within a spherical bag characterized by a radius RR and respective momentum xix_{i}. These quarks are coupled with perturbative chromomagnetic interactions facilitated by the exchange of the lowest-order gluon, as described in prior works DeGrand et al. (1975); Johnson (1975). The mass formula associated with the bag, representing a hadronic state, is given by

M(R)=iωi+43πR3BZ0R+MBD+MCMI,M\left(R\right)=\sum_{i}\omega_{i}+\frac{4}{3}\pi R^{3}B-\frac{Z_{0}}{R}+M_{BD}+M_{CMI}, (1)
ωi=(mi2+xi2R2)1/2.\omega_{i}=\left(m_{i}^{2}+\frac{x_{i}^{2}}{R^{2}}\right)^{1/2}. (2)

Here, in Eq.(1), the first term represents the sum of the kinetic energy for the relativistic quark ii with mass mim_{i}, the second is volume energy with bag constant BB, which characterizes the difference between perturbative and non-perturbative QCD vacuum, the third is zero point energy with coefficient Z0Z_{0}, the forth accounts for the binding energy between heavy quarks or heavy and strange quarks Karliner and Rosner (2014, 2017a, 2017b, 2020), and the fifth represents the chromomagnetic interaction De Rujula et al. (1975). The bag radius RR is the only variable to be determined by minimizing Eq.(1). The momentum xix_{i}, given in units of R1R^{-1} satisfies a boundary condition on the bag surface

tanxi=xi1miR(mi2R2+xi2)1/2,\tan x_{i}=\frac{x_{i}}{1-m_{i}R-\left(m_{i}^{2}R^{2}+x_{i}^{2}\right)^{1/2}}, (3)

which can be derived by quark spinor wave function.

The interactions among quarks involved in this work have two primary components: the lowest-order gluon exchange and short-range effects De Rujula et al. (1975). For the first part, the binding energies MBDM_{BD} primarily arise from short-range chromoelectric interactions between heavy quarks or heavy-strange systems, both of which are massive and moving nonrelativistically. Specifically, we incorporate four binding energies BcsB_{cs}, BccB_{cc}, BbsB_{bs} and BbbB_{bb} in color 𝟑¯c\bm{\bar{3}}_{c} representation for hidden-heavy pentaquarks, and scale them to other color configurations by color factors Karliner and Rosner (2014, 2017b). The second component involves chromomagnetic interaction MCMIM_{CMI}, which contributes to the overall dynamics of the system. The interaction arising from the magnetic moments of quark spin can be described by the following typical form:

MCMI=i<j𝝀𝒊𝝀𝒋𝝈𝒊𝝈𝒋Cij,M_{CMI}=-\sum_{i<j}\left\langle\bm{\lambda_{i}}\cdot\bm{\lambda_{j}}\right\rangle\left\langle\bm{\sigma_{i}}\cdot\bm{\sigma_{j}}\right\rangle C_{ij}, (4)

where ii and jj represent the indices of the quarks (or anti-quarks), λ\lambda denotes the Gell-Mann matrices, σ\sigma signifies the Pauli matrices, and CijC_{ij} corresponds to the chromomagnetic interaction (CMI) parameters as defined in Ref. Zhang et al. (2021). The color and spin factor (average value of Casimir operator) in Eq.(4) can be calculated utilizing the specific method in Refs.Zhang et al. (2021, 2023); Yan et al. (2023), with the color-spin wavefunctions given in Appendix A.

Next, we will provide a brief overview of the foundational equations of magnetic moment. In the context of MIT bag model, the magnetic moment for an individual quark is not determined by constant parameters but rather by variables that satisfy specific boundary conditions. Following variational calculations on mass equation (1), the model fulfills the quark spinor wavefunction DeGrand et al. (1975)

ψi(r)=Ni(j0(xir/R)Uixi(ωi+mi)Rj1(xir/R)𝝈𝒓^U)eiωit,\psi_{i}(r)=N_{i}\binom{j_{0}(x_{i}r/R)U}{i\frac{x_{i}}{(\omega_{i}+m_{i})R}j_{1}(x_{i}r/R)\bm{\sigma}\cdot\bm{\hat{r}}U}e^{-i\omega_{i}t}, (5)

with parameters (R,xi)(R,x_{i}) and mass mim_{i} for quark ii, which would help determine the physical quantities and interactions within the bag model. Subsequently, the operator 𝒓×𝜸\bm{r\times\gamma} is applied to the wavefunction (5) to derive the magnetic moment, as the following expression:

μi\displaystyle\mu_{i} =Qi2bagd3rψi¯(𝒓×𝜸)ψi\displaystyle=\frac{Q_{i}}{2}\int_{bag}\mathrm{d}^{3}r\,\bar{\psi_{i}}\left(\bm{r\times\gamma}\right)\psi_{i} (6)
=Qi20Rdrr2dΩψi¯(𝒓×𝜸)ψi\displaystyle=\frac{Q_{i}}{2}\int_{0}^{R}\mathrm{d}r\,r^{2}\int\mathrm{d}\Omega\ \bar{\psi_{i}}\left(\bm{r\times\gamma}\right)\psi_{i}
=QiR64ωiR+2miR32ωiR(ωiR1)+miR,\displaystyle=Q_{i}\frac{R}{6}\frac{4\omega_{i}R+2m_{i}R-3}{2\omega_{i}R\left(\omega_{i}R-1\right)+m_{i}R},

where QiQ_{i} is electric charge of quark and 𝜸\bm{\gamma} are Dirac matrices for spinor fields. Accordingly, it’s straightforward to apply Eq.(6) to calculate the magnetic moment for any flavor of quark with mass mim_{i} and parameters (R,xi)(R,x_{i}) evaluated through spectrum studies.

We calculate the magnetic moment of hadron by summing up Eq.(6) via color-spin wavefunction |ψ\left|\psi\right\rangle, resulting in the expression Wang et al. (2016)

μ=ψ|μ^|ψ,μ^=igiμiS^iz,\mu=\left\langle\psi\left|\hat{\mu}\right|\psi\right\rangle,\quad\hat{\mu}=\sum\nolimits_{i}g_{i}\mu_{i}\hat{S}_{iz}, (7)

with gi=2g_{i}=2 and S^iz\hat{S}_{iz} denotes the third component of spin for an individual quark. The numerical results will be related to the magnetic moment of proton, and transformed into that in unit of μN\mu_{N}, with the help of measured data μp=2.79285μN\mu_{p}=2.79285\mu_{N} Workman et al. (2022); Tiesinga et al. (2021). Eq.(7) holds true for chromomagnetic mixing, as the spin wavefunctions expanding to basis vectors create matrix elements of magnetic moment. For further details, refer to Appendix B.

In numerical calculations, we proceed with model parameters from a previous work Zhang et al. (2021), that successfully reconcile ground-state mesons and baryons and provide descriptions of fully heavy tetraquarks and pentaquarks Zhang et al. (2023); Yan et al. (2023). The chosen constants and masses for quarks with flavor nn (light nonstrange flavor n=u,dn=u,d), strange ss, charm cc and bottom bb are as follows:

{Z0=1.83,B1/4=0.145GeV,mn=0GeV,ms=0.279GeV,mc=1.641GeV,mb=5.093GeV.}\begin{Bmatrix}Z_{0}=1.83,&B^{1/4}=0.145\,\text{GeV},\\ m_{n}=0\,\text{GeV},&m_{s}=0.279\,\text{GeV},\\ m_{c}=1.641\,\text{GeV},&m_{b}=5.093\,\text{GeV}.\end{Bmatrix} (8)

Meanwhile, the binding energies for color 𝟑¯c\bm{\bar{3}}_{c} representation are considered:

{Bcs=0.025GeV,Bcc=0.077GeV,Bbs=0.032GeV,Bbb=0.128GeV.}\begin{Bmatrix}B_{cs}=-0.025\,\text{GeV},&B_{cc}=-0.077\,\text{GeV},\\ B_{bs}=-0.032\,\text{GeV},&B_{bb}=-0.128\,\text{GeV}.\end{Bmatrix} (9)

These bindings will be scaled by color factors. With the parameters in Eqs.(8) and (9), the variational method can be performed to determine the bag radius RR and respective momentum xix_{i} using Eq.(3) for pentaquarks with quantum numbers IJPIJ^{P}. Subsequently, the parameters (R,xi)(R,x_{i}) enable the calculations of masses and magnetic moments for the hidden-heavy pentaquarks.

III Analysis of spectrum and decay

III.1 The nnnQQ¯nnnQ\bar{Q} systems

Table 1: Calculated spectra (in GeV) of pentaquarks nnnbb¯nnnb\bar{b}. Bag radius R0R_{0} is in GeV-1. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=3/2,1/2,1/2,3/2I_{3}=3/2,1/2,-1/2,-3/2 for I=3/2I=3/2, or I3=1/2,1/2I_{3}=1/2,-1/2 for I=1/2I=1/2. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
II JPJ^{P} nnnbb¯nnnb\bar{b} nnnbb¯nnn\otimes b\bar{b} nnbnb¯nnb\otimes n\bar{b}
R0R_{0} MM μ\mu ΔΥ\Delta\Upsilon Δηb\Delta\eta_{b} NΥN\Upsilon NηbN\eta_{b} ΣbB\Sigma_{b}^{\ast}B^{\ast} ΣbB\Sigma_{b}^{\ast}B ΣbB\Sigma_{b}B^{\ast} ΣbB\Sigma_{b}B ΛbB\Lambda_{b}B^{\ast} ΛbB\Lambda_{b}B
3/2 5/2{5/2}^{-} 5.52 11.235 \ast
3/2{3/2}^{-} 5.53 11.561 1.99, 0.99, 0.00, -0.99 0 1 1 0.58 0.18
5.52 11.235 \ast
5.50 11.230 \ast
1/2{1/2}^{-} 5.57 11.583 0.64, 0.27, -0.10, -0.47 1 1 0.15 0.03
5.50 11.539 0.68, 0.39, 0.10, -0.19 1 1 13.43 5.92
5.52 11.233 \ast
1/2 5/2{5/2}^{-} 5.52 11.431 2.96, 0.00 1
3/2{3/2}^{-} 5.50 11.412 2.78, -0.04 1 2.48 1 0.66 1
5.46 11.394 2.18, 0.05 1 0.07 1 3.25 1
5.45 11.333 1.09, -0.01 1 0.27 1 0.09 1
5.43 10.929 \ast
1/2{1/2}^{-} 5.46 11.380 1.49, 0.01 1 3.64 1 1.23 1.31 1 0.08
5.43 11.323 0.80, -0.06 1 0.0005 1 0.22 1.23 1 1.81
5.42 11.314 -0.03, 0.06 1 14.66 1 4.78 5.36 1 0.77
5.42 10.929 \ast
5.41 10.923 \ast
Table 2: Calculated spectra (in GeV) of pentaquarks nnncc¯nnnc\bar{c}. Bag radius R0R_{0} is in GeV-1. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=3/2,1/2,1/2,3/2I_{3}=3/2,1/2,-1/2,-3/2 for I=3/2I=3/2, or I3=1/2,1/2I_{3}=1/2,-1/2 for I=1/2I=1/2. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
II JPJ^{P} nnncc¯nnnc\bar{c} nnncc¯nnn\otimes c\bar{c} nncnc¯nnc\otimes n\bar{c}
R0R_{0} MM μ\mu ΔJ/ψ\Delta J/\psi Δηc\Delta\eta_{c} NJ/ψNJ/\psi NηcN\eta_{c} ΣcD\Sigma_{c}^{\ast}D^{\ast} ΣcD\Sigma_{c}^{\ast}D ΣcD\Sigma_{c}D^{\ast} ΣcD\Sigma_{c}D ΛcD\Lambda_{c}D^{\ast} ΛcD\Lambda_{c}D
3/2 5/2{5/2}^{-} 5.81 4.547 \ast
3/2{3/2}^{-} 5.82 4.758 2.23, 1.12, 0.00, -1.12 0 1 1 0.53 0.13
5.81 4.547 \ast
5.71 4.503 \ast
1/2{1/2}^{-} 5.91 4.820 1.59, 1.07, 0.56, 0.04 1 1 0.09 0.02
5.76 4.703 -0.01, -0.27, -0.52, -0.78 1 1 36.85 10.1
5.75 4.524 \ast
1/2 5/2{5/2}^{-} 5.85 4.661 3.13, 0.00 1
3/2{3/2}^{-} 5.83 4.630 2.85, 0.29 1 4.13 1 0.26 1
5.74 4.569 1.69, -0.55 1 0.02 1 19.36 1
5.68 4.503 1.83, 0.27 1 - 1 0.56 1
5.73 4.241 \ast
1/2{1/2}^{-} 5.80 4.580 1.18, -0.08 1 0.39 1.32 1 0.25 1 0.14
5.70 4.490 0.06, 0.25 1 10.99 - 1 0.01 1 9.3
5.61 4.452 1.12, -0.18 1 2.73 - - 1 1 0.004
5.71 4.235 \ast
5.59 4.191 \ast

In the initial phase of this study, we focus on the nnnQQ¯nnnQ\bar{Q} (Q=cQ=c,bb) pentaquark states, with mass spectrum, magnetic moments and partial width analysis. Spectrum calculations are conducted employing the variational method of MIT bag model, accounting for chromomagnetic interactions. To explore partial width and stability, we apply the bases in Ref.Weng et al. (2019) to probe the baryon-meson coupling components within the wavefunctions. The numerical results are tabulated in Tables 1 and 2.

Before delving into discussions on hadron properties, it’s important to exclude scattering states. The chromomagnetic interaction allows pentaquarks nnnQQ¯nnnQ\bar{Q} to exhibit three to five eigenstates. However, some of them are loosely bound and inherently unstable, with a very broad decay width. In order to filter such states, we examine the color-spin wavefunction |ψ\left|\psi\right\rangle using the corresponding bases and eigenvectors obtained in this work. We express |ψ\left|\psi\right\rangle in terms of color-singlet 𝟏𝐜\mathbf{1_{c}} and color-octet 𝟖𝐜\mathbf{8_{c}} as follows:

|ψ=c1|q1q2q3S1𝟏|q4q5¯S2𝟏+c2|q1q2q3S3𝟖|q4q5¯S4𝟖+.\left|\psi\right\rangle=c_{1}\left|q_{1}q_{2}q_{3}\right\rangle^{\mathbf{1}}_{S_{1}}\left|q_{4}\bar{q_{5}}\right\rangle^{\mathbf{1}}_{S_{2}}+c_{2}\left|q_{1}q_{2}q_{3}\right\rangle^{\mathbf{8}}_{S_{3}}\left|q_{4}\bar{q_{5}}\right\rangle^{\mathbf{8}}_{S_{4}}+\dots. (10)

In this expression, the first component represents the dissociation into SS-wave baryon and meson directly (with spin S1S_{1} and S2S_{2}), and the coefficient c1c_{1} is the overlap of the wavefunction calculated by diagonalization of chromomagnetic interaction matrix. If a pentaquark couples strongly to a scattering state, signifying that the probability |c1|2{|c_{1}|}^{2} approaches 1, we will disregard and denote it with an asterisk in Tables 1 and 2, for the corresponding decay channel.

Apart from stability research, the eigenvectors play a crucial role in investigating the ratio of partial width for the respective decay channel. Drawing from previous studies Weng et al. (2019, 2021, 2022); An et al. (2022a), we employ the formula for two body LL-wave decay C. (1992):

Γi=γiαk2L+1m2L|ci|2.\Gamma_{i}=\gamma_{i}\alpha\frac{k^{2L+1}}{m^{2L}}\cdot{|c_{i}|}^{2}. (11)

Here, Γi\Gamma_{i} represents the partial width of channel ii, γi\gamma_{i} is associated to decay dynamics, α\alpha signifies the coupling constant, mm stands for the mass of initial state, kk represents the momentum of final states in the rest frame, and cic_{i} denotes the coefficient of corresponding component. For SS-wave OZI-superallowed decay mode Jaffe (1977a); Strottman (1979) in this work, the factors reduce to γiαk|ci|2\gamma_{i}\alpha k\cdot{|c_{i}|}^{2}, where kk satisfies the equation

mA=mB2+k2+mC2+k2,m_{A}=\sqrt{m_{B}^{2}+k^{2}}+\sqrt{m_{C}^{2}+k^{2}}, (12)

for the process AB+CA\to B+C, and cic_{i} can be extracted from Eq.(10) as c1c_{1}. The coefficient γi\gamma_{i} depending on spatial wavefunctions of initial and final states, remains consistent between vector and scalar mesons. Additionally, in the heavy quark limit, γi\gamma_{i} also remains the same between Σc\Sigma_{c}^{\ast} and Σc\Sigma_{c} Weng et al. (2022). Therefore, the following relations hold:

γΔΥ=γΔηb,γNΥ=γNηb,\displaystyle\gamma_{\Delta\Upsilon}=\gamma_{\Delta\eta_{b}},\quad\gamma_{N\Upsilon}=\gamma_{N\eta_{b}}, (13)
γΔJ/ψ=γΔηc,γNJ/ψ=γNηc,\displaystyle\gamma_{\Delta J/\psi}=\gamma_{\Delta\eta_{c}},\quad\gamma_{NJ/\psi}=\gamma_{N\eta_{c}},
γΣbB=γΣbB=γΣbB=γΣbB,\displaystyle\gamma_{\Sigma_{b}^{\ast}B^{\ast}}=\gamma_{\Sigma_{b}^{\ast}B}=\gamma_{\Sigma_{b}B^{\ast}}=\gamma_{\Sigma_{b}B},
γΣcD=γΣcD=γΣcD=γΣcD,\displaystyle\gamma_{\Sigma_{c}^{\ast}D^{\ast}}=\gamma_{\Sigma_{c}^{\ast}D}=\gamma_{\Sigma_{c}D^{\ast}}=\gamma_{\Sigma_{c}D},
γΛbB=γΛbB,γΛcD=γΛcD,\displaystyle\gamma_{\Lambda_{b}B^{\ast}}=\gamma_{\Lambda_{b}B},\quad\gamma_{\Lambda_{c}D^{\ast}}=\gamma_{\Lambda_{c}D},

These relations enable the study of ratios of partial widths from factors k|ci|2k\cdot{|c_{i}|}^{2}. The corresponding results are shown in Tables 1 and 2 below the respective decay channels. Forbidden processes due to mass conservation are denoted by a short-dash.

Upon the completion of numerical computations, we proceed to discuss the mass spectra and label a nnnQQ¯nnnQ\bar{Q} pentaquark state into symbol PQ(I,JP,M)P_{Q}(I,J^{P},M). The scattering states exhibiting the lowest mass splittings, such as Pb(1/2,1/2,10.923)P_{b}(1/2,1/2^{-},10.923) and Pc(1/2,1/2,4.191)P_{c}(1/2,1/2^{-},4.191), restrict the mass range for nnnbb¯nnnb\bar{b} to 11.31-11.58 GeV and for nnncc¯nnnc\bar{c} to 4.45-4.82 GeV. Obviously, the mass gap of 270 MeV in bb-sector is narrower than the 370 MeV in cc-sector due to the suppression of heavy quark. However, experimental reports do not fall within our computed mass range. For states that may carry negative parity, there are

Pc(4312)+M=4312MeVΓ=9.8MeVAaij et al. (2019),\displaystyle P_{c}(4312)^{+}\ M=4312\,\textrm{MeV}\ \Gamma=9.8\,\textrm{MeV}\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{LHCb:2019kea}{\@@citephrase{(}}{\@@citephrase{)}}}}, (14)
Pc(4337)+M=4337MeVΓ=29MeVAaij et al. (2022b),\displaystyle P_{c}(4337)^{+}\ M=4337\,\textrm{MeV}\ \Gamma=29\,\textrm{MeV}\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{LHCb:2021chn}{\@@citephrase{(}}{\@@citephrase{)}}}},
Pc(4380)+M=4380MeVΓ=215MeVAaij et al. (2015),\displaystyle P_{c}(4380)^{+}\ M=4380\,\textrm{MeV}\ \Gamma=215\,\textrm{MeV}\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{LHCb:2015yax}{\@@citephrase{(}}{\@@citephrase{)}}}},

all below the state Pc(1/2,1/2,4.452)P_{c}(1/2,1/2^{-},4.452) in mass. This suggests that they are unlikely to be compact pentaquarks, a conclusion supported by molecular models Burns and Swanson (2022); Ling et al. (2021); Du et al. (2021); Wang et al. (2021); Chen and Liu (2022).

Nevertheless, several states appear to be potentially compact, including the lightest Pb(1/2,1/2,11.380)P_{b}(1/2,1/2^{-},11.380), Pb(1/2,1/2,11.323)P_{b}(1/2,1/2^{-},11.323) and Pb(1/2,1/2,11.314)P_{b}(1/2,1/2^{-},11.314) for bb system and Pc(1/2,1/2,4.580)P_{c}(1/2,1/2^{-},4.580), Pc(1/2,1/2,4.490)P_{c}(1/2,1/2^{-},4.490) and Pc(1/2,1/2,4.452)P_{c}(1/2,1/2^{-},4.452) for cc system. In the nnnQQ¯nnn\otimes Q\bar{Q} coupling, we determine the ratios of partial widths:

Γ(Pc(1/2,1/2,4.580)Nηc)Γ(Pc(1/2,1/2,4.580)NJ/ψ)\displaystyle\frac{\Gamma(P_{c}(1/2,1/2^{-},4.580)\to N\eta_{c})}{\Gamma(P_{c}(1/2,1/2^{-},4.580)\to NJ/\psi)} =0.39,\displaystyle=0.39, (15)
Γ(Pc(1/2,1/2,4.490)Nηc)Γ(Pc(1/2,1/2,4.490)NJ/ψ)\displaystyle\frac{\Gamma(P_{c}(1/2,1/2^{-},4.490)\to N\eta_{c})}{\Gamma(P_{c}(1/2,1/2^{-},4.490)\to NJ/\psi)} =10.99,\displaystyle=10.99,
Γ(Pc(1/2,1/2,4.452)Nηc)Γ(Pc(1/2,1/2,4.452)NJ/ψ)\displaystyle\frac{\Gamma(P_{c}(1/2,1/2^{-},4.452)\to N\eta_{c})}{\Gamma(P_{c}(1/2,1/2^{-},4.452)\to NJ/\psi)} =2.73,\displaystyle=2.73,

which could potentially predict the decay into NηcN\eta_{c} channel. Notably, some states exhibit dominant channels, such as Pb(1/2,1/2,11.323)P_{b}(1/2,1/2^{-},11.323) decaying into NΥN\Upsilon or the one with (I)JP=(3/2)3/2(I)J^{P}=(3/2)3/2^{-} decaying into Δηc\Delta\eta_{c} or Δηb\Delta\eta_{b}. If experiments report resonances with masses close to our predictions but in the opposite decay channel, this might either exclude them from our predicted spectrum or explain them as compact pentaquarks. In the nnQnQ¯nnQ\otimes n\bar{Q} coupling, the decay behaviors are studied, awaiting confirmation through experimental findings. Particularly, the state Pc(1/2,1/2,4.452)P_{c}(1/2,1/2^{-},4.452) with limited decay channels ΣcD\Sigma_{c}D and ΛcD\Lambda_{c}D^{\ast} can be discoverable in corresponding processes.

In the fifth column of Tables 1 and 2, we present the magnetic moments of pentaquarks while excluding scattering states. Similar evaluations have been conducted in Refs.Wang et al. (2016); Li et al. (2021); Guo and Li (2023) covering various configurations. However, this work does not delve into transition moments as M1M1 transition processes are typically suppressed against strong decay. The magnetic moments are organized based on the isospin component I3I_{3}, ranging from 0.09μN0.09\mu_{N} to 3.35μN3.35\mu_{N}. This implies that the electric charge of the final states could potentially aid in predicting the specific magnetic moment, if the mass and decay channel align with experimental reports.

III.2 The nnsQQ¯nnsQ\bar{Q} systems

Table 3: Calculated spectra (in GeV) of pentaquarks nnsbb¯nnsb\bar{b}. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=1,0,1I_{3}=1,0,-1 for I=1I=1, or I3=0I_{3}=0 for I=0I=0. The bag radius R0R_{0} is determined to be 5.50 GeV-1. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
II JPJ^{P} nnsbb¯nnsb\bar{b} nnsbb¯nns\otimes b\bar{b} nnbsb¯nnb\otimes s\bar{b}
MM μ\mu ΣΥ\Sigma^{\ast}\Upsilon Σηb\Sigma^{\ast}\eta_{b} ΣΥ\Sigma\Upsilon Σηb\Sigma\eta_{b} ΛΥ\Lambda\Upsilon Ληb\Lambda\eta_{b} ΣbBs\Sigma_{b}^{\ast}B_{s}^{\ast} ΣbBs\Sigma_{b}^{\ast}B_{s} ΣbBs\Sigma_{b}B_{s}^{\ast} ΣbBs\Sigma_{b}B_{s} ΛbBs\Lambda_{b}B_{s}^{\ast} ΛbBs\Lambda_{b}B_{s}
1 5/2{5/2}^{-} 11.524 3.19, 0.24, -2.70 1 1
11.378 \ast
3/2{3/2}^{-} 11.654 0.59, -0.14, -0.86 0 1 0.0001 1.43 1 0.25
11.510 2.60, 0.10, -2.41 1.38 1 7.28 4.42 1 0.29
11.490 1.96, 0.04, -1.88 0.09 1 0.36 0.04 1 8.18
11.464 2.51, 0.59, -1.33 2.48 1 7.27 0.1 1 0.04
11.378 \ast
11.373 \ast
11.137 \ast
1/2{1/2}^{-} 11.675 0.12, -0.15, -0.42 1 0.004 0.004 1 0.15 0.03
11.635 0.27, 0.06, -0.15 1 0.006 0.004 1 16.45 8.56
11.488 1.45, 0.14, -1.18 1 4.57 3.06 1 0.81 0.2
11.452 -0.69, -0.39, -0.09 1 47.08 83.87 1 1.45 0.19
11.445 2.03, 0.59, -0.85 1 5.93 21.13 0.05 1 28.8
11.376 \ast
11.137 \ast
11.131 \ast
0 5/2{5/2}^{-} 11.590 0.24
3/2{3/2}^{-} 11.538 0.24 1 1
11.521 0.40 1 1
11.447 0.19 1 1
11.262 -0.25 1 1
11.094 \ast
1/2{1/2}^{-} 11.505 0.26 1 8.85 1 0.05
11.439 0.39 1 0.003 1 1.21
11.429 -0.24 1 27.57 1 1.29
11.259 -0.09 1 0.71 1 0.002
11.210 -0.08 1 3.24 0.002 1
11.094 \ast
11.088 \ast
Table 4: Calculated spectra (in GeV) of pentaquarks nnscc¯nnsc\bar{c}. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=1,0,1I_{3}=1,0,-1 for I=1I=1, or I3=0I_{3}=0 for I=0I=0. The bag radius R0R_{0} is determined to be 5.78 GeV-1. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
II JPJ^{P} nnscc¯nnsc\bar{c} nnscc¯nns\otimes c\bar{c} nncsc¯nnc\otimes s\bar{c}
MM μ\mu ΣJ/ψ\Sigma^{\ast}J/\psi Σηc\Sigma^{\ast}\eta_{c} ΣJ/ψ\Sigma J/\psi Σηc\Sigma\eta_{c} ΛJ/ψ\Lambda J/\psi Ληc\Lambda\eta_{c} ΣcDs\Sigma_{c}^{\ast}D_{s}^{\ast} ΣcDs\Sigma_{c}^{\ast}D_{s} ΣcDs\Sigma_{c}D_{s}^{\ast} ΣcDs\Sigma_{c}D_{s} ΛcDs\Lambda_{c}D_{s}^{\ast} ΛcDs\Lambda_{c}D_{s}
1 5/2{5/2}^{-} 4.767 3.36, 0.27, -2.82 1 1
4.690 \ast
3/2{3/2}^{-} 4.863 0.84, -0.08, -0.99 0.0001 1 0.0004 1.18 1 0.15
4.751 2.62, 0.42, -1.77 1.16 1 2.03 10.27 1 0.07
4.691 \ast
4.683 1.66, -0.46, -2.58 7.26 1 0.3 0 1 28.38
4.651 3.70, 0.88, -1.94 0.003 1 0.006 0.0002 1 0.03
4.643 2.99, 0.40, -2.19 0.0005 1 0.001 0.02 1 0.73
4.451 \ast
1/2{1/2}^{-} 4.920 0.94, 0.51, 0.08 1 0.002 0.002 1 0.08 0.02
4.814 -0.29, -0.52, -0.74 1 0.007 0.002 0.002 1 0.36
4.716 1.41, 0.12, -1.16 1 1.43 0.26 1 0.68 0.03
4.666 \ast
4.637 -0.39, -0.01, 0.37 1 0.17 10.45 1 6.32 0.69
4.594 1.76, 0.16, -1.43 0.0007 1 2.14 - 1 15.12
4.445 \ast
4.402 \ast
0 5/2{5/2}^{-} 4.792 0.27
3/2{3/2}^{-} 4.757 0.59 1 1
4.708 0.19 1 1
4.630 0.12 1 1
4.494 -0.27 1 1
4.406 \ast
1/2{1/2}^{-} 4.703 0.25 1 0.62 1 0.15
4.619 0.59 1 3.13 1 21.73
4.592 -0.42 1 3.57 1 0.02
4.487 -0.64 1 1.47 1 0.002
4.402 \ast
4.358 \ast
4.353 0.32 1 2.17 - 1

In the subsequent analysis, we explore the considerable hidden-heavy pentaquarks nnsQQ¯nnsQ\bar{Q} with a single strange flavor. For these systems, the color-spin bases expand to eight for I=1I=1 and seven for I=0I=0, detailed in Appendix A. Consequently, numerical calculations must rely on the perturbative method of MIT bag model, where we variate Eq.(1) by treating MCMIM_{CMI} matrix as perturbation. To investigate the decay channels, we employ the relations

γΣΥ=γΣηb=γΣΥ=γΣηb,γΛΥ=γΛηb,\displaystyle\gamma_{\Sigma^{\ast}\Upsilon}=\gamma_{\Sigma^{\ast}\eta_{b}}=\gamma_{\Sigma\Upsilon}=\gamma_{\Sigma\eta_{b}},\quad\gamma_{\Lambda\Upsilon}=\gamma_{\Lambda\eta_{b}}, (16)
γΣJ/ψ=γΣηc=γΣJ/ψ=γΣηc,γΛJ/ψ=γΛηc,\displaystyle\gamma_{\Sigma^{\ast}J/\psi}=\gamma_{\Sigma^{\ast}\eta_{c}}=\gamma_{\Sigma J/\psi}=\gamma_{\Sigma\eta_{c}},\quad\gamma_{\Lambda J/\psi}=\gamma_{\Lambda\eta_{c}},
γΣbBs=γΣbBs=γΣbBs=γΣbBs,γΛbBs=γΛbBs,\displaystyle\gamma_{\Sigma_{b}^{\ast}B_{s}^{\ast}}=\gamma_{\Sigma_{b}^{\ast}B_{s}}=\gamma_{\Sigma_{b}B_{s}^{\ast}}=\gamma_{\Sigma_{b}B_{s}},\quad\gamma_{\Lambda_{b}B_{s}^{\ast}}=\gamma_{\Lambda_{b}B_{s}},
γΣcDs=γΣcDs=γΣcDs=γΣcDs,γΛcDs=γΛcDs,\displaystyle\gamma_{\Sigma_{c}^{\ast}D_{s}^{\ast}}=\gamma_{\Sigma_{c}^{\ast}D_{s}}=\gamma_{\Sigma_{c}D_{s}^{\ast}}=\gamma_{\Sigma_{c}D_{s}},\quad\gamma_{\Lambda_{c}D_{s}^{\ast}}=\gamma_{\Lambda_{c}D_{s}},

applied to Eq.(11). The results of mass spectrum, magnetic moment and ratios of partial widths are presented in Tables 3 and 4.

The scattering states entering for each spin-parity should be excluded first. Here, we denote a pentaquark state as PQs(I,JP,M)P_{Qs}(I,J^{P},M) in this section. For subsystems with I=0I=0, we identify several scattering states like Pbs(0,3/2,11.094)P_{bs}(0,3/2^{-},11.094), Pbs(0,1/2,11.094)P_{bs}(0,1/2^{-},11.094) and Pbs(0,1/2,11.088)P_{bs}(0,1/2^{-},11.088) for bottom sector, and Pcs(0,3/2,4.406)P_{cs}(0,3/2^{-},4.406), Pcs(0,1/2,4.402)P_{cs}(0,1/2^{-},4.402) and Pcs(0,1/2,4.358)P_{cs}(0,1/2^{-},4.358) for charm sector. In the case of I=1I=1, thirteen more scattering states are explicitly marked with asterisks. It’s noteworthy that the lightest PcsP_{cs} pentaquark Pcs(0,1/2,4.353)P_{cs}(0,1/2^{-},4.353) remains as a tightly bound state. Accordingly, we have PbsP_{bs} pentaquarks ranging from 11.210 GeV to 11.675 GeV and PcsP_{cs} from 4.353 GeV to 4.920 GeV, each with significant mass splittings of 465 MeV and 567 MeV, respectively, due to the presence of a single strange flavor.

Regarding the PcsP_{cs} pentaquark candidates, LHCb Collaboration has reported two resonances in J/ψΛJ/\psi\Lambda final states:

PψsΛ(4338)0M=4338.2MeVΓ=7.0MeVAaij et al. (2023),\displaystyle P_{\psi s}^{\Lambda}(4338)^{0}\ M=4338.2\,\textrm{MeV}\ \Gamma=7.0\,\textrm{MeV}\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{LHCb:2022ogu}{\@@citephrase{(}}{\@@citephrase{)}}}}, (17)
Pcs(4459)0M=4458.8MeVΓ=17.3MeVAaij et al. (2021),\displaystyle P_{cs}(4459)^{0}\ M=4458.8\,\textrm{MeV}\ \Gamma=17.3\,\textrm{MeV}\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{LHCb:2020jpq}{\@@citephrase{(}}{\@@citephrase{)}}}},

with preferred spin-parity 1/21/2^{-} of the former. By examining the corresponding threshold of PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0}, we find that its mass of 4338.2 MeV is slightly higher than ΞcD\Xi_{c}D, below ΞcD\Xi_{c}^{\prime}D by 108 MeV and below ΞcD\Xi_{c}D^{\ast} by 140 MeV. Despite the deep binding of over 100 MeV, suggesting it may not be a molecular state, PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0} can be described as a compact pentaquark Pcs(0,1/2,4.353)P_{cs}(0,1/2^{-},4.353) with a magnetic moment of 0.32μN0.32\mu_{N} and ratio of partial widths

Γ(Pcs(0,1/2,4.353)Ληc)Γ(Pcs(0,1/2,4.353)ΛJ/ψ)=2.17.\frac{\Gamma(P_{cs}(0,1/2^{-},4.353)\to\Lambda\eta_{c})}{\Gamma(P_{cs}(0,1/2^{-},4.353)\to\Lambda J/\psi)}=2.17. (18)

The spin-parity of Pcs(4459)0P_{cs}(4459)^{0} has not been determined and could be either 3/23/2^{-} or 1/21/2^{-}, corresponding to predicted Pcs(0,3/2,4.494)P_{cs}(0,3/2^{-},4.494) and Pcs(0,1/2,4.487)P_{cs}(0,1/2^{-},4.487), respectively. We are looking forward to further experiments on quantum numbers and decay channel Ληc\Lambda\eta_{c}, for confirming the two-peak hypothesis of Pcs(4459)0P_{cs}(4459)^{0} dissociating into 4454.9 MeV and 4467.8 MeV Aaij et al. (2021). Additionally, the Fig 3(b) of Ref.Aaij et al. (2021) suggests the existence of several PcsP_{cs} states in the 4.6-4.9 GeV region, as predicted in Table 4.

In this work, our focus extends to the examination of PbsP_{bs} pentaquarks, considering their magnetic moments and decay channels. Due to the lack of evidence and production mechanism, there is no comparison of them to experimental reports. Nonetheless, similar to the present of a single massive strange flavor in PcsP_{cs} counterparts, the bottom flavor can exhibit deep binding and suppression of relativistic effects compared to strange and charm flavors. Theoretical predictions, especially those related to magnetic moments and decay channels, can serve as guidance for expected findings of compact PbsP_{bs} pentaquarks.

III.3 The ssnQQ¯ssnQ\bar{Q} systems

Table 5: Calculated spectra (in GeV) of pentaquarks ssnbb¯ssnb\bar{b}. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=1/2,1/2I_{3}=1/2,-1/2 for I=1/2I=1/2. The bag radius R0R_{0} is determined to be 5.53 GeV-1. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
JPJ^{P} ssnbb¯ssnb\bar{b} ssnbb¯ssn\otimes b\bar{b} nsbsb¯nsb\otimes s\bar{b} ssbnb¯ssb\otimes n\bar{b}
MM μ\mu ΞΥ\Xi^{\ast}\Upsilon Ξηb\Xi^{\ast}\eta_{b} ΞΥ\Xi\Upsilon Ξηb\Xi\eta_{b} ΞbBs\Xi_{b}^{\ast}B_{s}^{\ast} ΞbBs\Xi_{b}^{\ast}B_{s} ΞbBs\Xi_{b}B_{s}^{\ast} ΞbBs\Xi_{b}B_{s} ΩbB\Omega_{b}^{\ast}B^{\ast} ΩbB\Omega_{b}^{\ast}B ΩbB\Omega_{b}B^{\ast} ΩbB\Omega_{b}B
5/2{5/2}^{-} 11.669 0.49, -2.46 1 1 1
11.524 \ast
3/2{3/2}^{-} 11.747 -0.26, -0.79 0 1 0.0001 1.54 1 0.3 5.4 2.43 1
11.651 0.51, -2.43 7.54 1 43.94 3.6 1 1.79 1.46 0.67 1
11.636 0.61, -1.80 0.0007 1 0.003 0.28 1 2.79 0.05 0.52 1
11.561 0.32, -0.90 0.21 1 0.19 0.54 1 0.16 2.73 8.89 1
11.524 \ast
11.518 \ast
11.283 \ast
1/2{1/2}^{-} 11.766 -0.22, -0.40 1 0.003 0.003 1 0.01 0.12 40.84 5.93 1
11.729 0.06, -0.13 1 0.005 0.002 1 0.04 0.003 0.21 2.91 1
11.620 0.41, -1.32 1 1.12 13.65 1 0.34 0.02 0.33 0.51 1
11.555 0.61, -0.81 1 2.53 0.03 0.04 1 1.71 0.98 0.16 1
11.545 -0.37, 0.19 1 0.39 4.37 0.39 1 0.67 0.14 0.96 1
11.521 \ast
11.283 \ast
11.277 \ast
Table 6: Calculated spectra (in GeV) of pentaquarks ssncc¯ssnc\bar{c}. Magnetic moments are in unit of μN\mu_{N}, and organized in the order of I3=1/2,1/2I_{3}=1/2,-1/2 for I=1/2I=1/2. The bag radius R0R_{0} is determined to be 5.79 GeV-1. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
JPJ^{P} ssncc¯ssnc\bar{c} ssncc¯ssn\otimes c\bar{c} nscsc¯nsc\otimes s\bar{c} sscnc¯ssc\otimes n\bar{c}
MM μ\mu ΞJ/ψ\Xi^{\ast}J/\psi Ξηc\Xi^{\ast}\eta_{c} ΞJ/ψ\Xi J/\psi Ξηc\Xi\eta_{c} ΞcDs\Xi_{c}^{\ast}D_{s}^{\ast} ΞcDs\Xi_{c}^{\ast}D_{s} ΞcDs\Xi_{c}D_{s}^{\ast} ΞcDs\Xi_{c}D_{s} ΩcD\Omega_{c}^{\ast}D^{\ast} ΩcD\Omega_{c}^{\ast}D ΩcD\Omega_{c}D^{\ast} ΩcD\Omega_{c}D
5/2{5/2}^{-} 4.914 0.54, -2.56 1 1 1
4.836 \ast
3/2{3/2}^{-} 4.968 -0.11, -0.93 0.0001 1 0.0007 1.49 1 0.19 9.01 2.65 1
4.881 0.90, -2.04 2.74 1 3.52 6.67 1 0.47 3.8 1.34 1
4.837 0.48, -2.13 30.3 1 0.05 1.18 1 4.53 0.02 0.22 1
4.834 0.64, -2.07 35.37 1 0.14 0.07 1 4.12 0.01 0.0005 1
4.792 \ast
4.760 -0.28, -0.95 0.05 1 0.62 0.01 1 0.0001 - 1 0
4.597 \ast
1/2{1/2}^{-} 5.021 0.44, 0.08 1 0.002 0.001 1 0.02 0.12 67.1 4.23 1
4.925 -0.37, -0.71 1 0.004 0.0004 1 0.06 0.005 0.23 8.31 1
4.831 0.39, -1.14 1 0.28 0.20 1 2.91 0.48 5.28 2.65 1
4.808 0.31, -1.33 1 0.002 0.003 1 2.27 3.07 0.01 0.004 1
4.754 0.68, 0.30 1 7.09 20.99 - 1 18.33 - 3.27 1
4.727 -0.68, -1.16 0.0006 1 2.95 - 1 0.004 - 0.008 1
4.592 \ast
4.548 \ast

In analogy to the isovector nnsQQ¯nnsQ\bar{Q} system, a corresponding system can be constructed by reversing the flavors of nn and ss, resulting in the ssnQQ¯ssnQ\bar{Q} system with seven and eight color-spin bases for JP=3/2J^{P}=3/2^{-} and 1/21/2^{-}, respectively. The calculations are performed using the perturbative method of MIT bag model, along with the application of certain relations for partial width study, as expressed below:

γΞΥ=γΞηb=γΞΥ=γΞηb,γΞJ/ψ=γΞηc=γΞJ/ψ=γΞηc,\displaystyle\gamma_{\Xi^{\ast}\Upsilon}=\gamma_{\Xi^{\ast}\eta_{b}}=\gamma_{\Xi\Upsilon}=\gamma_{\Xi\eta_{b}},\gamma_{\Xi^{\ast}J/\psi}=\gamma_{\Xi^{\ast}\eta_{c}}=\gamma_{\Xi J/\psi}=\gamma_{\Xi\eta_{c}}, (19)
γΞbBs=γΞbBs=γΞbBs=γΞbBs,γΞcDs=γΞcDs=γΞcDs=γΞcDs,\displaystyle\gamma_{\Xi_{b}^{\ast}B_{s}^{\ast}}=\gamma_{\Xi_{b}^{\ast}B_{s}}=\gamma_{\Xi_{b}B_{s}^{\ast}}=\gamma_{\Xi_{b}B_{s}},\gamma_{\Xi_{c}^{\ast}D_{s}^{\ast}}=\gamma_{\Xi_{c}^{\ast}D_{s}}=\gamma_{\Xi_{c}D_{s}^{\ast}}=\gamma_{\Xi_{c}D_{s}},
γΩbB=γΩbB=γΩbB=γΩbB,γΩcD=γΩcD=γΩcD=γΩcD.\displaystyle\gamma_{\Omega_{b}^{\ast}B^{\ast}}=\gamma_{\Omega_{b}^{\ast}B}=\gamma_{\Omega_{b}B^{\ast}}=\gamma_{\Omega_{b}B},\gamma_{\Omega_{c}^{\ast}D^{\ast}}=\gamma_{\Omega_{c}^{\ast}D}=\gamma_{\Omega_{c}D^{\ast}}=\gamma_{\Omega_{c}D}.

The corresponding results are presented in Tables 5 and 6.

In this section, we will designate the pentaquark ssnQQ¯ssnQ\bar{Q} by the symbol PQss(JP,M)P_{Qss}(J^{P},M). Beyond the scattering states, our predictions encompass ten PbssP_{bss} states ranging from 11.545 GeV to 11.747 GeV and twelve PcssP_{css} states spanning 4.727 GeV to 4.968 GeV. These states exhibit mass differences of 202 MeV and 241 MeV, respectively. Through the ssnQQ¯ssn\otimes Q\bar{Q} coupling, there are several states can be found dominantly in channel ΞJ/ψ\Xi^{\ast}J/\psi (ΞΥ\Xi^{\ast}\Upsilon), including Pcss(1/2,4.808)P_{css}(1/2^{-},4.808), Pcss(1/2,4.925)P_{css}(1/2^{-},4.925) and Pcss(1/2,5.021)P_{css}(1/2^{-},5.021) for cc-sector, and Pbss(1/2,11.729)P_{bss}(1/2^{-},11.729), Pbss(1/2,11.766)P_{bss}(1/2^{-},11.766) for bb-sector. The lightest PcssP_{css} pentaquark around 4.7 GeV is expected to be firstly reported in experiments either in system ΞJ/ψ\Xi J/\psi, Ξηc\Xi\eta_{c}, ΞcDs\Xi_{c}D_{s}^{\ast} or ΩcD\Omega_{c}D^{\ast}.

The formation of a molecular state for a PQssP_{Qss} pentaquark proves challenging due to the exchange of mesons ss¯s\bar{s}, cc¯c\bar{c} and bb¯b\bar{b}, which only offer short-range interactions among constituent hadrons. Additionally, the superthreshold phenomenon further violates this scenario by positive potentials, implying repulsive force between hadrons. Consequently, we infer that the hidden-heavy pentaquarks with strangeness might be discovered as compact states, arisen from the unsatisfied requirements of the molecular scenario.

III.4 The sssQQ¯sssQ\bar{Q} systems

Table 7: Calculated spectra (in GeV) of pentaquarks sssbb¯sssb\bar{b}. Bag radius R0R_{0} is in GeV-1. Magnetic moments are in unit of μN\mu_{N}. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
JPJ^{P} sssbb¯sssb\bar{b} sssbb¯sss\otimes b\bar{b} ssbsb¯ssb\otimes s\bar{b}
R0R_{0} MM μ\mu ΩΥ\Omega\Upsilon Ωηb\Omega\eta_{b} ΩbBs\Omega_{b}^{\ast}B_{s}^{\ast} ΩbBs\Omega_{b}^{\ast}B_{s} ΩbBs\Omega_{b}B_{s}^{\ast} ΩbBs\Omega_{b}B_{s}
5/2{5/2}^{-} 5.63 11.673 \ast
3/2{3/2}^{-} 5.65 11.841 -0.76 0 1 1 0.56 0.18
5.63 11.673 \ast
5.62 11.668 \ast
1/2{1/2}^{-} 5.69 11.860 -0.39 1 1 0.14 0.03
5.62 11.823 -0.11 1 1 16.21 6.56
5.62 11.671 \ast
Table 8: Calculated spectra (in GeV) of pentaquarks ssscc¯sssc\bar{c}. Bag radius R0R_{0} is in GeV-1. Magnetic moments are in unit of μN\mu_{N}. The numbers below respective decay channels are ratios of partial width. The states denoted by asterisks couple strongly to scattering states.
JPJ^{P} ssscc¯sssc\bar{c} ssscc¯sss\otimes c\bar{c} sscsc¯ssc\otimes s\bar{c}
R0R_{0} MM μ\mu ΩJ/ψ\Omega J/\psi Ωηc\Omega\eta_{c} ΩcDs\Omega_{c}^{\ast}D_{s}^{\ast} ΩcDs\Omega_{c}^{\ast}D_{s} ΩcDs\Omega_{c}D_{s}^{\ast} ΩcDs\Omega_{c}D_{s}
5/2{5/2}^{-} 5.90 4.987 \ast
3/2{3/2}^{-} 5.93 5.076 -0.91 0 1 1 0.45 0.09
5.90 4.987 \ast
5.80 4.940 \ast
1/2{1/2}^{-} 6.00 5.126 0.05 1 1 0.05 0.01
5.88 5.037 -0.64 1 1 326.17 33.47
5.82 4.953 -1.20 1 1 0.87 31.37

Finally, when three strange quarks are present, the light degrees of freedom in sssQQ¯sssQ\bar{Q} system are all identical in flavor. The strong symmetry of the wavefunction constrains the system to three eigenstates with spin-parity 3/23/2^{-} or 1/21/2^{-}, and due to the exclusion of scattering states, our predictions for compact pentaquarks are more limited. Similar to the previous cases, the color-spin bases outlined in Appendix A, along with the relations

γΩΥ=γΩηb,γΩJ/ψ=γΩηc,\displaystyle\gamma_{\Omega\Upsilon}=\gamma_{\Omega\eta_{b}},\quad\gamma_{\Omega J/\psi}=\gamma_{\Omega\eta_{c}}, (20)
γΩbBs=γΩbBs=γΩbBs=γΩbBs,\displaystyle\gamma_{\Omega_{b}^{\ast}B_{s}^{\ast}}=\gamma_{\Omega_{b}^{\ast}B_{s}}=\gamma_{\Omega_{b}B_{s}^{\ast}}=\gamma_{\Omega_{b}B_{s}},
γΩcDs=γΩcDs=γΩcDs=γΩcDs,\displaystyle\gamma_{\Omega_{c}^{\ast}D_{s}^{\ast}}=\gamma_{\Omega_{c}^{\ast}D_{s}}=\gamma_{\Omega_{c}D_{s}^{\ast}}=\gamma_{\Omega_{c}D_{s}},

are employed to evaluate hadron properties of sssQQ¯sssQ\bar{Q}. The numerical results are detailed in Tables 7 and 8.

In this context, we characterize a sssQQ¯sssQ\bar{Q} pentaquark state using the notation PQsss(JP,M)P_{Qsss}(J^{P},M). Notably, the bottom system features Pbsss(1/2,11.823)P_{bsss}(1/2^{-},11.823), Pbsss(1/2,11.860)P_{bsss}(1/2^{-},11.860) and Pbsss(3/2,11.841)P_{bsss}(3/2^{-},11.841). The lightest and heaviest states of PcsssP_{csss} are Pcsss(1/2,4.953)P_{csss}(1/2^{-},4.953) and Pcsss(1/2,5.126)P_{csss}(1/2^{-},5.126), respectively. We predict that, the PQsssP_{Qsss} states with JP=1/2J^{P}=1/2^{-} can be discovered in channel ΩΥ\Omega\Upsilon (ΩJ/ψ\Omega J/\psi), and that of 3/23/2^{-} are anticipated in Ωηb\Omega\eta_{b} (Ωηc\Omega\eta_{c}). Additionally, we explore the ratios of partial widths in the coupling ssQsQ¯ssQ\otimes s\bar{Q}, where the state Pcsss(1/2,5.037)P_{csss}(1/2^{-},5.037) exhibits a dominant channel in ΩcDs\Omega_{c}D_{s}^{\ast}. These features provide insights for predicting the spin-parity of pentaquarks based on reported decay channels.

IV Summary

In this study, we conducted a systematic investigation of hidden-heavy pentaquarks with strangeness S=0,1,2,3S=0,-1,-2,-3, employing the unified framework of MIT bag model. Inspired by similar analysis applied to light-flavor baryons, a heavy QQ¯Q\bar{Q} in pentaquark configurations introduces a compact scenario characterized by deep binding. With the help of color-spin bases expressed in terms of Young tableau and Young-Yamanouchi bases for SUc(3)SUs(2)SU_{c}(3)\otimes SU_{s}(2) group, we computed the masses and magnetic moments of possible pentaquark states. In the baryon-meson coupling, the color-spin wavefunctions are dissociated into color-singlet and color-octet components, providing a foundation for exploring the stability and ratios of partial widths.

For the non-strange PcP_{c} and PbP_{b} states with mass ranges of 4.45-4.82 GeV and 11.31-11.58 GeV respectively, the reported resonances fall below these ranges, suggesting a likelihood of molecular states. However, we anticipate that compact PcP_{c} states with a spin-parity 1/21/2^{-} can be found above 4.45 GeV in both NJ/ψNJ/\psi and NηcN\eta_{c} systems. The finding of strange PcsP_{cs} candidate PψsΛ(4338)0P_{\psi s}^{\Lambda}(4338)^{0} aligns with our predictions regarding the mass spectrum and spin-parity. Meanwhile, the Pcs(4459)0P_{cs}(4459)^{0} is expected to contain two substructures around 4459 MeV with JP=3/2J^{P}=3/2^{-} and 1/21/2^{-}, as indicated by both experimental fits and our computations. We eagerly await further reports on decay channels NηcN\eta_{c} and Ληc\Lambda\eta_{c}, for which we have studied the ratios of partial widths in this work.

Simultaneously, pentaquarks with strangeness S=2S=-2 and 3-3 as well as those in the bottom sector are regarded to be compact. There are two reasons: (1). Molecular scenario requires long-range mesons exchange, for this one must establish interactions between constituent hadrons involving light non-strange mesons like π\pi, ω\omega, ρ\rho. However, in the ssnQQ¯ssnQ\bar{Q} and sssQQ¯sssQ\bar{Q} systems, such quark constituents are absent. Additionally, the superthreshold states conflict with the attractive potential inferred from negative binding. (2). The inclusion of massive flavors, such as strange, charm, and bottom, can exhibit deep binding between the corresponding quarks, leading to substantial suppressions of relativistic effects. Therefore, the searching for compact PQssP_{Qss} and PQsssP_{Qsss} states, especially PcssP_{css} around 4.7 GeV, will be reasonable.

In addition to the mass spectrum and partial widths, the magnetic moments serve as crucial factor in the prediction of hadronic states. Our researches involved the calculation of the magnetic moment for each pentaquark, arranged by the third component of isospin, which corresponds to the charge of the final states. We anticipate that our predictions of hadron properties and decay behaviors will provide valuable guidance in searching for hidden-heavy pentaquarks.

ACKNOWLEDGMENTS

W. Z. thanks Hong-Tao An for useful discussions on wavefunctions and partial width, and Wen-Nian Liu for valuable comments about pentaquark candidates. D. J. is supported by the National Natural Science Foundation of China under Grant No. 12165017.

Appendix A: Color and Spin Wavefunctions

For numerical calculations of masses and magnetic moments, it’s essential to employ color-spin wavefunctions to describe the chromomagnetic structure of a given pentaquark state. In the context of hidden-heavy pentaquarks with three light degrees of freedom, indicating flavor symmetry up to three identical quarks, the Young tableau is employed to represent color and spin wavefunctions in terms of the Young-Yamanouchi bases. The use of Young tableau and the SU(3) permutation group for color representations and its application to various pentaquark systems has been discussed and implemented in prior works. For detailed discussions, see Refs.Zhang et al. (2023); An et al. (2022a, 2021a, 2021b, b).

The color wavefunctions in the configuration q1q2q3q4q¯5q_{1}q_{2}q_{3}q_{4}\bar{q}_{5} constrained by overall color confinement, are selected in color-singlet through the application of the Young tableau. These wavefunctions are expressed as follows

345¯ϕ1, 245¯ϕ2, 235¯ϕ3.{\begin{tabular}[]{|c|c|}\hline\cr 1&2\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}\otimes\bar{5}}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\phi_{1}$\hfil\lx@intercol\end{tabular}},{\begin{tabular}[]{|c|c|}\hline\cr 1&3\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}\otimes\bar{5}}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\phi_{2}$\hfil\lx@intercol\end{tabular}},{\begin{tabular}[]{|c|c|}\hline\cr 1&4\\ \cline{1-2}\cr\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}\otimes\bar{5}}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\phi_{3}$\hfil\lx@intercol\end{tabular}}.
121314 (A1)

It’s notable that, in this study, particular attention is given to the third color basis denoted as ϕ3\phi_{3}, which serves to couple the color-singlet wavefunctions of the baryon and meson, resulting in (q1q2q3)(q4q¯5)(q_{1}q_{2}q_{3})\otimes(q_{4}\bar{q}_{5}). This specific coupling corresponds to the unstable scattering state and final states of the OZI-superallowed decay mode.

Similarly, spin wavefunctions can be expressed in terms of Young tableau [5],[4,1], and [3,2] and classified into spin multiplets. For the pentaquark with spin J=5/2J=5/2, there is one basis

12345χ1.\begin{tabular}[]{|c|c|c|c|c|}\hline\cr 1&2&3&4&5\\ \hline\cr\end{tabular}_{\begin{tabular}[]{c}$\chi_{1}$\end{tabular}}. (A2)

In the case of the J=3/2J=3/2, the spin wavefunctions are

5χ2, 4χ3,\displaystyle\begin{tabular}[]{|c|c|c|c|}\hline\cr 1&2&3&4\\ \cline{1-4}\cr\vrule\lx@intercol\hfil 5\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{2}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|c|}\hline\cr 1&2&3&5\\ \cline{1-4}\cr\vrule\lx@intercol\hfil 4\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{3}$\hfil\lx@intercol\end{tabular}}, 3χ4, 2χ5,\displaystyle\begin{tabular}[]{|c|c|c|c|}\hline\cr 1&2&4&5\\ \cline{1-4}\cr\vrule\lx@intercol\hfil 3\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{4}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|c|}\hline\cr 1&3&4&5\\ \cline{1-4}\cr\vrule\lx@intercol\hfil 2\hfil\lx@intercol\vrule\lx@intercol \\ \cline{1-1}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{5}$\hfil\lx@intercol\end{tabular}},
12341235 (A3)
12451345

and for J=1/2J=1/2, they become

12345χ6,12435χ7,13425χ8,\displaystyle\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&3\\ \cline{1-3}\cr 4&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{6}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&4\\ \cline{1-3}\cr 3&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{7}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&4\\ \cline{1-3}\cr 2&5\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{8}$\hfil\lx@intercol\end{tabular}}, (A4)
12534χ9,13524χ10.\displaystyle\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&5\\ \cline{1-3}\cr 3&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{9}$\hfil\lx@intercol\end{tabular}},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&5\\ \cline{1-3}\cr 2&4\\ \cline{1-2}\cr\end{tabular}_{\begin{tabular}[]{|c|}\lx@intercol\hfil$\chi_{10}$\hfil\lx@intercol\end{tabular}}.

In addition to their role in calculating chromomagnetic interactions, these spin wavefunctions are sufficient to derive matrix elements of magnetic moments as shown in Appendix B, with the help of the following expanding bases,

χ1\displaystyle\chi_{1} =,\displaystyle=\uparrow\uparrow\uparrow\uparrow\uparrow,
χ2\displaystyle\chi_{2} =25510(+++),\displaystyle=\frac{2}{\sqrt{5}}\uparrow\uparrow\uparrow\uparrow\downarrow-\frac{\sqrt{5}}{10}\left(\uparrow\uparrow\uparrow\downarrow\uparrow+\uparrow\uparrow\downarrow\uparrow\uparrow+\uparrow\downarrow\uparrow\uparrow\uparrow+\downarrow\uparrow\uparrow\uparrow\uparrow\right),
χ3\displaystyle\chi_{3} =32123(++),\displaystyle=\frac{\sqrt{3}}{2}\uparrow\uparrow\uparrow\downarrow\uparrow-\frac{1}{2\sqrt{3}}\left(\uparrow\uparrow\downarrow\uparrow\uparrow+\uparrow\downarrow\uparrow\uparrow\uparrow+\downarrow\uparrow\uparrow\uparrow\uparrow\right),
χ4\displaystyle\chi_{4} =16(2),\displaystyle=\frac{1}{\sqrt{6}}\left(2\uparrow\uparrow\downarrow\uparrow\uparrow-\uparrow\downarrow\uparrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\uparrow\right),
χ5\displaystyle\chi_{5} =12(),\displaystyle=\frac{1}{\sqrt{2}}\left(\uparrow\downarrow\uparrow\uparrow\uparrow-\downarrow\uparrow\uparrow\uparrow\uparrow\right),
χ6\displaystyle\chi_{6} =132(++\displaystyle=\frac{1}{3\sqrt{2}}\left(\uparrow\downarrow\downarrow\uparrow\uparrow+\downarrow\uparrow\downarrow\uparrow\uparrow+\downarrow\downarrow\uparrow\uparrow\uparrow-\uparrow\uparrow\downarrow\downarrow\uparrow-\uparrow\downarrow\uparrow\downarrow\uparrow\right.
)+12,\displaystyle\left.-\downarrow\uparrow\uparrow\downarrow\uparrow-\uparrow\uparrow\downarrow\uparrow\downarrow-\uparrow\downarrow\uparrow\uparrow\downarrow-\downarrow\uparrow\uparrow\uparrow\downarrow\right)+\frac{1}{\sqrt{2}}\uparrow\uparrow\uparrow\downarrow\downarrow,
χ7\displaystyle\chi_{7} =13(2+)\displaystyle=\frac{1}{3}\left(2\uparrow\uparrow\downarrow\uparrow\downarrow-\uparrow\downarrow\uparrow\uparrow\downarrow-\downarrow\uparrow\uparrow\uparrow\downarrow-\uparrow\uparrow\downarrow\downarrow\uparrow+\downarrow\downarrow\uparrow\uparrow\uparrow\right)
+16(+),\displaystyle+\frac{1}{6}\left(\uparrow\downarrow\uparrow\downarrow\uparrow-\uparrow\downarrow\downarrow\uparrow\uparrow-\downarrow\uparrow\downarrow\uparrow\uparrow+\downarrow\uparrow\uparrow\downarrow\uparrow\right),
χ8\displaystyle\chi_{8} =13()123(+\displaystyle=\frac{1}{\sqrt{3}}\left(\uparrow\downarrow\uparrow\uparrow\downarrow-\downarrow\uparrow\uparrow\uparrow\downarrow\right)-\frac{1}{2\sqrt{3}}\left(\uparrow\downarrow\uparrow\downarrow\uparrow+\uparrow\downarrow\downarrow\uparrow\uparrow\right.
),\displaystyle\left.-\downarrow\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\downarrow\uparrow\right),
χ9\displaystyle\chi_{9} =13(+)123(+\displaystyle=\frac{1}{\sqrt{3}}\left(\uparrow\uparrow\downarrow\downarrow\uparrow+\downarrow\downarrow\uparrow\uparrow\uparrow\right)-\frac{1}{2\sqrt{3}}\left(\uparrow\downarrow\uparrow\downarrow\uparrow+\uparrow\downarrow\downarrow\uparrow\uparrow\right.
++),\displaystyle\left.+\downarrow\uparrow\downarrow\uparrow\uparrow+\downarrow\uparrow\uparrow\downarrow\uparrow\right),
χ10\displaystyle\chi_{10} =12(+).\displaystyle=\frac{1}{2}\left(\uparrow\downarrow\uparrow\downarrow\uparrow-\uparrow\downarrow\downarrow\uparrow\uparrow+\downarrow\uparrow\downarrow\uparrow\uparrow-\downarrow\uparrow\uparrow\downarrow\uparrow\right). (A5)

Given the color and spin wavefunctions (A1), (A2), (A3) and (A4), it becomes possible to construct thirty color-spin bases by performing the product of Young tableaux:

234ψ1,ψ1, 2ψ7,ψ7,ψ13, 23ψ3,ψ3,ψ11,ψ3,ψ11,\displaystyle\begin{tabular}[]{|c|}\hline\cr 1\\ \cline{1-1}\cr 2\\ \cline{1-1}\cr 3\\ \cline{1-1}\cr 4\\ \cline{1-1}\cr\end{tabular}\,\psi_{1}^{\prime},\psi_{1},\begin{tabular}[]{|c|c|c|}\hline\cr 1&3&4\\ \cline{1-3}\cr 2\\ \cline{1-1}\cr\end{tabular}\,\psi_{7}^{\prime},\psi_{7},\psi_{13},\begin{tabular}[]{|c|c|}\hline\cr 1&4\\ \cline{1-2}\cr 2\\ \cline{1-1}\cr 3\\ \cline{1-1}\cr\end{tabular}\,\psi_{3}^{\ast},\psi_{3}^{\prime},\psi_{11}^{\prime},\psi_{3},\psi_{11}, 3ψ8,ψ8,ψ14, 24ψ2,ψ4,ψ12,ψ4,ψ12,\displaystyle\begin{tabular}[]{|c|c|}\hline\cr 1&3\\ \cline{1-2}\cr 2&4\\ \cline{1-2}\cr\end{tabular}\,\psi_{6}^{\prime},\psi_{6},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&4\\ \cline{1-3}\cr 3\\ \cline{1-1}\cr\end{tabular}\,\psi_{8}^{\prime},\psi_{8},\psi_{14},\begin{tabular}[]{|c|c|}\hline\cr 1&3\\ \cline{1-2}\cr 2\\ \cline{1-1}\cr 4\\ \cline{1-1}\cr\end{tabular}\,\psi_{2}^{\ast},\psi_{4}^{\prime},\psi_{12}^{\prime},\psi_{4},\psi_{12}, 4ψ9,ψ9,ψ15, 34ψ1,ψ2,ψ10,ψ2,ψ10.\displaystyle\begin{tabular}[]{|c|c|}\hline\cr 1&2\\ \cline{1-2}\cr 3&4\\ \cline{1-2}\cr\end{tabular}\,\psi_{5}^{\prime},\psi_{5},\begin{tabular}[]{|c|c|c|}\hline\cr 1&2&3\\ \cline{1-3}\cr 4\\ \cline{1-1}\cr\end{tabular}\,\psi_{9}^{\prime},\psi_{9},\psi_{15},\begin{tabular}[]{|c|c|}\hline\cr 1&2\\ \cline{1-2}\cr 3\\ \cline{1-1}\cr 4\\ \cline{1-1}\cr\end{tabular}\,\psi_{1}^{\ast},\psi_{2}^{\prime},\psi_{10}^{\prime},\psi_{2},\psi_{10}.
113414 (A6)
1324ψ6,ψ6, 12413
1234ψ5,ψ5, 12312

Due to the Pauli Principle, the wavefunction is inherently fully antisymmetric under the exchange of any pair among the four quarks q1q_{1}, q2q_{2}, q3q_{3} and q4q_{4}. This foundational property allows for the selection of physically possible bases from Eq. (A6) for any pentaquark state with a specific flavor configuration and quantum numbers IJPIJ^{P}. These bases are organized and detailed in Table 9. The explicit expressions of them, as given in Eq. (A7)-(A34), are employed for the computation of masses and magnetic moments. It’s noteworthy that these bases are equivalent to that outlined in Ref. Weng et al. (2019) in numerical calculations, which allows the evaluation of eigenvectors for partial width studies.

(1) JP=5/2J^{P}=5/2^{-}

ψ1=ϕ1χ1,ψ2=ϕ2χ1,ψ3=ϕ3χ1.\psi_{1}^{*}=\phi_{1}\chi_{1},\quad\psi_{2}^{*}=\phi_{2}\chi_{1},\quad\psi_{3}^{*}=\phi_{3}\chi_{1}. (A7)

(2) JP=3/2J^{P}=3/2^{-}

ψ1=13ϕ1χ513ϕ2χ4+13ϕ3χ3,\displaystyle\psi_{1}^{\prime}=\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{3}, (A8)
ψ2=16ϕ1χ313ϕ1χ4+13ϕ2χ516ϕ3χ5,\displaystyle\psi_{2}^{\prime}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{3}-\frac{1}{\sqrt{3}}\phi_{1}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{2}\chi_{5}-\frac{1}{\sqrt{6}}\phi_{3}\chi_{5}, (A9)
ψ3=16ϕ1χ5+16ϕ2χ4+23ϕ3χ3,\displaystyle\psi_{3}^{\prime}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{3}, (A10)
ψ4=13ϕ1χ516ϕ2χ3+13ϕ2χ4+16ϕ3χ4,\displaystyle\psi_{4}^{\prime}=\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{3}+\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{6}}\phi_{3}\chi_{4}, (A11)
ψ5=13ϕ1χ3+16ϕ1χ416ϕ2χ513ϕ3χ5,\displaystyle\psi_{5}^{\prime}=-\frac{1}{\sqrt{3}}\phi_{1}\chi_{3}+\frac{1}{\sqrt{6}}\phi_{1}\chi_{4}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{3}\chi_{5}, (A12)
ψ6=16ϕ1χ513ϕ2χ316ϕ2χ4+13ϕ3χ4,\displaystyle\psi_{6}^{\prime}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{3}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{4}, (A13)
ψ7=12ϕ2χ312ϕ3χ4,\displaystyle\psi_{7}^{\prime}=-\frac{1}{\sqrt{2}}\phi_{2}\chi_{3}-\frac{1}{\sqrt{2}}\phi_{3}\chi_{4}, (A14)
ψ8=12ϕ1χ3+12ϕ3χ5,\displaystyle\psi_{8}^{\prime}=-\frac{1}{\sqrt{2}}\phi_{1}\chi_{3}+\frac{1}{\sqrt{2}}\phi_{3}\chi_{5}, (A15)
ψ9=12ϕ1χ4+12ϕ2χ5,\displaystyle\psi_{9}^{\prime}=\frac{1}{\sqrt{2}}\phi_{1}\chi_{4}+\frac{1}{\sqrt{2}}\phi_{2}\chi_{5}, (A16)
ψ10=ϕ1χ2,\displaystyle\psi_{10}^{\prime}=\phi_{1}\chi_{2}, (A17)
ψ11=ϕ3χ2,\displaystyle\psi_{11}^{\prime}=\phi_{3}\chi_{2}, (A18)
ψ12=ϕ2χ2.\displaystyle\psi_{12}^{\prime}=\phi_{2}\chi_{2}. (A19)

(3) JP=1/2J^{P}=1/2^{-}

ψ1=13ϕ1χ813ϕ2χ7+13ϕ3χ6,\displaystyle\psi_{1}=\frac{1}{\sqrt{3}}\phi_{1}\chi_{8}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{7}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{6}, (A20)
ψ2=16ϕ1χ613ϕ1χ7+13ϕ2χ816ϕ3χ8,\displaystyle\psi_{2}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{6}-\frac{1}{\sqrt{3}}\phi_{1}\chi_{7}+\frac{1}{\sqrt{3}}\phi_{2}\chi_{8}-\frac{1}{\sqrt{6}}\phi_{3}\chi_{8}, (A21)
ψ3=16ϕ1χ8+16ϕ2χ7+23ϕ3χ6,\displaystyle\psi_{3}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{8}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{7}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{6}, (A22)
ψ4=13ϕ1χ816ϕ2χ6+13ϕ2χ7+16ϕ3χ7,\displaystyle\psi_{4}=\frac{1}{\sqrt{3}}\phi_{1}\chi_{8}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{6}+\frac{1}{\sqrt{3}}\phi_{2}\chi_{7}+\frac{1}{\sqrt{6}}\phi_{3}\chi_{7}, (A23)
ψ5=13ϕ1χ6+16ϕ1χ716ϕ2χ813ϕ3χ8,\displaystyle\psi_{5}=-\frac{1}{\sqrt{3}}\phi_{1}\chi_{6}+\frac{1}{\sqrt{6}}\phi_{1}\chi_{7}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{8}-\frac{1}{\sqrt{3}}\phi_{3}\chi_{8}, (A24)
ψ6=16ϕ1χ813ϕ2χ616ϕ2χ7+13ϕ3χ7,\displaystyle\psi_{6}=-\frac{1}{\sqrt{6}}\phi_{1}\chi_{8}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{6}-\frac{1}{\sqrt{6}}\phi_{2}\chi_{7}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{7}, (A25)
ψ7=12ϕ2χ612ϕ3χ7,\displaystyle\psi_{7}=-\frac{1}{\sqrt{2}}\phi_{2}\chi_{6}-\frac{1}{\sqrt{2}}\phi_{3}\chi_{7}, (A26)
ψ8=12ϕ1χ6+12ϕ3χ8,\displaystyle\psi_{8}=-\frac{1}{\sqrt{2}}\phi_{1}\chi_{6}+\frac{1}{\sqrt{2}}\phi_{3}\chi_{8}, (A27)
ψ9=12ϕ1χ7+12ϕ2χ8,\displaystyle\psi_{9}=\frac{1}{\sqrt{2}}\phi_{1}\chi_{7}+\frac{1}{\sqrt{2}}\phi_{2}\chi_{8}, (A28)
ψ10=12ϕ1χ9+12ϕ2χ10+12ϕ3χ10,\displaystyle\psi_{10}=-\frac{1}{2}\phi_{1}\chi_{9}+\frac{1}{2}\phi_{2}\chi_{10}+\frac{1}{\sqrt{2}}\phi_{3}\chi_{10}, (A29)
ψ11=12ϕ1χ1012ϕ2χ9,\displaystyle\psi_{11}=\frac{1}{\sqrt{2}}\phi_{1}\chi_{10}-\frac{1}{\sqrt{2}}\phi_{2}\chi_{9}, (A30)
ψ12=12ϕ1χ10+12ϕ2χ912ϕ3χ9,\displaystyle\psi_{12}=\frac{1}{2}\phi_{1}\chi_{10}+\frac{1}{2}\phi_{2}\chi_{9}-\frac{1}{\sqrt{2}}\phi_{3}\chi_{9}, (A31)
ψ13=12ϕ1χ1012ϕ2χ912ϕ3χ9,\displaystyle\psi_{13}=-\frac{1}{2}\phi_{1}\chi_{10}-\frac{1}{2}\phi_{2}\chi_{9}-\frac{1}{\sqrt{2}}\phi_{3}\chi_{9}, (A32)
ψ14=12ϕ1χ912ϕ2χ10+12ϕ3χ10,\displaystyle\psi_{14}=\frac{1}{2}\phi_{1}\chi_{9}-\frac{1}{2}\phi_{2}\chi_{10}+\frac{1}{\sqrt{2}}\phi_{3}\chi_{10}, (A33)
ψ15=12ϕ1χ912ϕ2χ10.\displaystyle\psi_{15}=-\frac{1}{\sqrt{2}}\phi_{1}\chi_{9}-\frac{1}{\sqrt{2}}\phi_{2}\chi_{10}. (A34)
Table 9: Color-spin wave bases of hidden-heavy pentaquarks with isospin II and quantum number JPJ^{P}.
System II JPJ^{P} Color-spin wave functions
nnnQQ¯nnnQ\bar{Q}, sssQQ¯sssQ\bar{Q} 3/2 5/2{5/2}^{-} ψ3\psi_{3}^{\ast}
3/2{3/2}^{-} ψ1\psi_{1}^{\prime}, ψ3\psi_{3}^{\prime}, ψ11\psi_{11}^{\prime}
1/2{1/2}^{-} ψ1\psi_{1}, ψ3\psi_{3}, ψ11\psi_{11}
nnnQQ¯nnnQ\bar{Q} 1/2 5/2{5/2}^{-} 12ψ212ψ1\frac{1}{\sqrt{2}}\psi_{2}^{\ast}-\frac{1}{\sqrt{2}}\psi_{1}^{\ast}
3/2{3/2}^{-} 12ψ412ψ2\frac{1}{\sqrt{2}}\psi_{4}^{\prime}-\frac{1}{\sqrt{2}}\psi_{2}^{\prime}, 12ψ612ψ5\frac{1}{\sqrt{2}}\psi_{6}^{\prime}-\frac{1}{\sqrt{2}}\psi_{5}^{\prime}, 12ψ712ψ8\frac{1}{\sqrt{2}}\psi_{7}^{\prime}-\frac{1}{\sqrt{2}}\psi_{8}^{\prime}, 12ψ1212ψ10\frac{1}{\sqrt{2}}\psi_{12}^{\prime}-\frac{1}{\sqrt{2}}\psi_{10}^{\prime}
1/2{1/2}^{-} 12ψ412ψ2\frac{1}{\sqrt{2}}\psi_{4}-\frac{1}{\sqrt{2}}\psi_{2}, 12ψ612ψ5\frac{1}{\sqrt{2}}\psi_{6}-\frac{1}{\sqrt{2}}\psi_{5}, 12ψ712ψ8\frac{1}{\sqrt{2}}\psi_{7}-\frac{1}{\sqrt{2}}\psi_{8}, 12ψ1212ψ10\frac{1}{\sqrt{2}}\psi_{12}-\frac{1}{\sqrt{2}}\psi_{10}, 12ψ1312ψ14\frac{1}{\sqrt{2}}\psi_{13}-\frac{1}{\sqrt{2}}\psi_{14}
nnsQQ¯nnsQ\bar{Q}, ssnQQ¯ssnQ\bar{Q} 1 5/2{5/2}^{-} ψ2\psi_{2}^{\ast}, ψ3\psi_{3}^{\ast}
3/2{3/2}^{-} ψ1\psi_{1}^{\prime}, ψ3\psi_{3}^{\prime}, ψ4\psi_{4}^{\prime}, ψ6\psi_{6}^{\prime}, ψ7\psi_{7}^{\prime}, ψ11\psi_{11}^{\prime}, ψ12\psi_{12}^{\prime}
1/2{1/2}^{-} ψ1\psi_{1}, ψ3\psi_{3}, ψ4\psi_{4}, ψ6\psi_{6}, ψ7\psi_{7}, ψ11\psi_{11}, ψ12\psi_{12}, ψ13\psi_{13}
nnsQQ¯nnsQ\bar{Q} 0 5/2{5/2}^{-} ψ1\psi_{1}^{\ast}
3/2{3/2}^{-} ψ2\psi_{2}^{\prime}, ψ5\psi_{5}^{\prime}, ψ8\psi_{8}^{\prime}, ψ9\psi_{9}^{\prime}, ψ10\psi_{10}^{\prime}
1/2{1/2}^{-} ψ2\psi_{2}, ψ5\psi_{5}, ψ8\psi_{8}, ψ9\psi_{9}, ψ10\psi_{10}, ψ14\psi_{14}, ψ15\psi_{15}

Appendix B: Magnetic moments

In this section, we will exhibit the process by which the magnetic moments of pentaquarks are derived. The inspiration for our method is drawn from Eq.(7), motivating a computation approach grounded in basic quantum mechanics, where the physical quantity is considered as the average value of an operator. For hadronic states, the operator μ^\hat{\mu} is applicable solely to the spin components of the wavefunction, resulting in the neglect of orbital and flavor parts, which are treated as orthogonal. Consequently, in the presence of chromomagnetic mixing, it becomes reasonable to utilize the color-spin bases from Table 9 for the computation of the average value of the operator μ^\hat{\mu}.

After finishing the study of masses for given pentaquark states with color-spin bases, the results yield two types of quantities: the magnetic moments for individual quarks μi\mu_{i} and eigenvectors (C1,C2,)(C_{1},C_{2},\dots). Considering the example of the system sssQQ¯sssQ\bar{Q} with J=3/2J=3/2, the associated color-spin wavefunction is expressed as ψ=C1ψ1+C2ψ3+C3ψ11\psi=C_{1}\psi_{1}^{\prime}+C_{2}\psi_{3}^{\prime}+C_{3}\psi_{11}^{\prime} where the eigenvector is calculated to be (C1,C2,C3)(C_{1},C_{2},C_{3}). This information allows us to derive the expression for the magnetic moment through the following steps:

μ\displaystyle\mu =ψ|μ^|ψ\displaystyle=\left\langle\psi\left|\hat{\mu}\right|\psi\right\rangle (B1)
=C12ψ1|μ^|ψ1+C22ψ3|μ^|ψ3+C32ψ11|μ^|ψ11+2C1C2ψ1|μ^|ψ3+2C1C3ψ1|μ^|ψ11+2C2C3ψ3|μ^|ψ11\displaystyle=C_{1}^{2}\left\langle\psi_{1}^{\prime}\left|\hat{\mu}\right|\psi_{1}^{\prime}\right\rangle+C_{2}^{2}\left\langle\psi_{3}^{\prime}\left|\hat{\mu}\right|\psi_{3}^{\prime}\right\rangle+C_{3}^{2}\left\langle\psi_{11}^{\prime}\left|\hat{\mu}\right|\psi_{11}^{\prime}\right\rangle+2C_{1}C_{2}\left\langle\psi_{1}^{\prime}\left|\hat{\mu}\right|\psi_{3}^{\prime}\right\rangle+2C_{1}C_{3}\left\langle\psi_{1}^{\prime}\left|\hat{\mu}\right|\psi_{11}^{\prime}\right\rangle+2C_{2}C_{3}\left\langle\psi_{3}^{\prime}\left|\hat{\mu}\right|\psi_{11}^{\prime}\right\rangle
=C1213ϕ1χ513ϕ2χ4+13ϕ3χ3|μ^|13ϕ1χ513ϕ2χ4+13ϕ3χ3\displaystyle=C_{1}^{2}\left\langle\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{3}\left|\hat{\mu}\right|\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{3}\right\rangle
+C2216ϕ1χ5+16ϕ2χ4+23ϕ3χ3|μ^|16ϕ1χ5+16ϕ2χ4+23ϕ3χ3+C32ϕ3χ2|μ^|ϕ3χ2\displaystyle\quad+C_{2}^{2}\left\langle-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{3}\left|\hat{\mu}\right|-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{3}\right\rangle+C_{3}^{2}\left\langle\phi_{3}\chi_{2}\left|\hat{\mu}\right|\phi_{3}\chi_{2}\right\rangle
+2C1C213ϕ1χ513ϕ2χ4+13ϕ3χ3|μ^|16ϕ1χ5+16ϕ2χ4+23ϕ3χ3\displaystyle\quad+2C_{1}C_{2}\left\langle\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{3}\left|\hat{\mu}\right|-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{3}\right\rangle
+2C1C313ϕ1χ513ϕ2χ4+13ϕ3χ3|μ^|ϕ3χ2+2C2C316ϕ1χ5+16ϕ2χ4+23ϕ3χ3|μ^|ϕ3χ2\displaystyle\quad+2C_{1}C_{3}\left\langle\frac{1}{\sqrt{3}}\phi_{1}\chi_{5}-\frac{1}{\sqrt{3}}\phi_{2}\chi_{4}+\frac{1}{\sqrt{3}}\phi_{3}\chi_{3}\left|\hat{\mu}\right|\phi_{3}\chi_{2}\right\rangle+2C_{2}C_{3}\left\langle-\frac{1}{\sqrt{6}}\phi_{1}\chi_{5}+\frac{1}{\sqrt{6}}\phi_{2}\chi_{4}+\sqrt{\frac{2}{3}}\phi_{3}\chi_{3}\left|\hat{\mu}\right|\phi_{3}\chi_{2}\right\rangle
=(13C12+16C2223C1C2)χ5|μ^|χ5+(13C12+16C2223C1C2)χ4|μ^|χ4+(13C12+23C22+223C1C2)χ3|μ^|χ3\displaystyle=\left(\frac{1}{3}C_{1}^{2}+\frac{1}{6}C_{2}^{2}-\frac{\sqrt{2}}{3}C_{1}C_{2}\right)\left\langle\chi_{5}\left|\hat{\mu}\right|\chi_{5}\right\rangle+\left(\frac{1}{3}C_{1}^{2}+\frac{1}{6}C_{2}^{2}-\frac{\sqrt{2}}{3}C_{1}C_{2}\right)\left\langle\chi_{4}\left|\hat{\mu}\right|\chi_{4}\right\rangle+\left(\frac{1}{3}C_{1}^{2}+\frac{2}{3}C_{2}^{2}+\frac{2\sqrt{2}}{3}C_{1}C_{2}\right)\left\langle\chi_{3}\left|\hat{\mu}\right|\chi_{3}\right\rangle
+(23C1C3+223C2C3)χ3|μ^|χ2+C32χ2|μ^|χ2.\displaystyle\quad+\left(\frac{2}{\sqrt{3}}C_{1}C_{3}+2\sqrt{\frac{2}{3}}C_{2}C_{3}\right)\left\langle\chi_{3}\left|\hat{\mu}\right|\chi_{2}\right\rangle+C_{3}^{2}\left\langle\chi_{2}\left|\hat{\mu}\right|\chi_{2}\right\rangle.

In the last step of Eq.(B1), the color bases are orthogonal and neglected, leaving matrix elements χi|μ^|χj\langle\chi_{i}\left|\hat{\mu}\right|\chi_{j}\rangle in spin space to be determined.

Table 10: Matrix elements of magnetic moments χi|μ^|χj\langle\chi_{i}\left|\hat{\mu}\right|\chi_{j}\rangle in spin subspace (χ1\chi_{1}, χ2\chi_{2}, χ3\chi_{3}, χ4\chi_{4}, χ5\chi_{5}).
Spin χ1\chi_{1} χ2\chi_{2} χ3\chi_{3} χ4\chi_{4} χ5\chi_{5}
χ1\chi_{1} μ1+μ2+μ3+μ4+μ5\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5} 0 0 0 0
χ2\chi_{2} 0 910(μ1+μ2+μ3+μ4)35μ5\frac{9}{10}(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4})-\frac{3}{5}\mu_{5} 1530(μ1+μ2+μ33μ4)-\frac{\sqrt{15}}{30}(\mu_{1}+\mu_{2}+\mu_{3}-3\mu_{4}) 3030(μ1+μ22μ3)-\frac{\sqrt{30}}{30}(\mu_{1}+\mu_{2}-2\mu_{3}) 1010(μ1μ2)-\frac{\sqrt{10}}{10}(\mu_{1}-\mu_{2})
χ3\chi_{3} 0 1530(μ1+μ2+μ33μ4)-\frac{\sqrt{15}}{30}(\mu_{1}+\mu_{2}+\mu_{3}-3\mu_{4}) 56(μ1+μ2+μ3)12μ4+μ5\frac{5}{6}(\mu_{1}+\mu_{2}+\mu_{3})-\frac{1}{2}\mu_{4}+\mu_{5} 26(μ1+μ22μ3)-\frac{\sqrt{2}}{6}(\mu_{1}+\mu_{2}-2\mu_{3}) 66(μ1μ2)-\frac{\sqrt{6}}{6}(\mu_{1}-\mu_{2})
χ4\chi_{4} 0 3030(μ1+μ22μ3)-\frac{\sqrt{30}}{30}(\mu_{1}+\mu_{2}-2\mu_{3}) 26(μ1+μ22μ3)-\frac{\sqrt{2}}{6}(\mu_{1}+\mu_{2}-2\mu_{3}) 13(2μ1+2μ2μ3)+μ4+μ5\frac{1}{3}(2\mu_{1}+2\mu_{2}-\mu_{3})+\mu_{4}+\mu_{5} 33(μ1μ2)-\frac{\sqrt{3}}{3}(\mu_{1}-\mu_{2})
χ5\chi_{5} 0 1010(μ1μ2)-\frac{\sqrt{10}}{10}(\mu_{1}-\mu_{2}) 66(μ1μ2)-\frac{\sqrt{6}}{6}(\mu_{1}-\mu_{2}) 33(μ1μ2)-\frac{\sqrt{3}}{3}(\mu_{1}-\mu_{2}) μ3+μ4+μ5\mu_{3}+\mu_{4}+\mu_{5}
Table 11: Matrix elements of magnetic moments χi|μ^|χj\langle\chi_{i}\left|\hat{\mu}\right|\chi_{j}\rangle in spin subspace (χ6\chi_{6}, χ7\chi_{7}, χ8\chi_{8}, χ9\chi_{9}, χ10\chi_{10}).
Spin χ6\chi_{6} χ7\chi_{7} χ8\chi_{8} χ9\chi_{9} χ10\chi_{10}
χ6\chi_{6} 19(5μ1+5μ2+5μ33μ43μ5)\frac{1}{9}(5\mu_{1}+5\mu_{2}+5\mu_{3}-3\mu_{4}-3\mu_{5}) 29(μ1+μ22μ3)-\frac{\sqrt{2}}{9}(\mu_{1}+\mu_{2}-2\mu_{3}) 69(μ1μ2)-\frac{\sqrt{6}}{9}(\mu_{1}-\mu_{2}) 69(μ1+μ22μ3)-\frac{\sqrt{6}}{9}(\mu_{1}+\mu_{2}-2\mu_{3}) 23(μ1μ2)-\frac{\sqrt{2}}{3}(\mu_{1}-\mu_{2})
χ7\chi_{7} 29(μ1+μ22μ3)-\frac{\sqrt{2}}{9}(\mu_{1}+\mu_{2}-2\mu_{3}) 19(4μ1+4μ22μ3+6μ43μ5)\frac{1}{9}(4\mu_{1}+4\mu_{2}-2\mu_{3}+6\mu_{4}-3\mu_{5}) 239(μ1μ2)-\frac{2\sqrt{3}}{9}(\mu_{1}-\mu_{2}) 39(2μ1+2μ2μ33μ4)-\frac{\sqrt{3}}{9}(2\mu_{1}+2\mu_{2}-\mu_{3}-3\mu_{4}) 13(μ1μ2)\frac{1}{3}(\mu_{1}-\mu_{2})
χ8\chi_{8} 69(μ1μ2)-\frac{\sqrt{6}}{9}(\mu_{1}-\mu_{2}) 239(μ1μ2)-\frac{2\sqrt{3}}{9}(\mu_{1}-\mu_{2}) 13(2μ3+2μ4μ5)\frac{1}{3}(2\mu_{3}+2\mu_{4}-\mu_{5}) 13(μ1μ2)\frac{1}{3}(\mu_{1}-\mu_{2}) 33(μ3μ4)-\frac{\sqrt{3}}{3}(\mu_{3}-\mu_{4})
χ9\chi_{9} 69(μ1+μ22μ3)-\frac{\sqrt{6}}{9}(\mu_{1}+\mu_{2}-2\mu_{3}) 39(2μ1+2μ2μ33μ4)-\frac{\sqrt{3}}{9}(2\mu_{1}+2\mu_{2}-\mu_{3}-3\mu_{4}) 13(μ1μ2)\frac{1}{3}(\mu_{1}-\mu_{2}) μ5\mu_{5} 0
χ10\chi_{10} 23(μ1μ2)-\frac{\sqrt{2}}{3}(\mu_{1}-\mu_{2}) 13(μ1μ2)\frac{1}{3}(\mu_{1}-\mu_{2}) 33(μ3μ4)-\frac{\sqrt{3}}{3}(\mu_{3}-\mu_{4}) 0 μ5\mu_{5}

In Tables 10 and 11, the matrix elements of magnetic moment in spin subspaces (χ1\chi_{1}, χ2\chi_{2}, χ3\chi_{3}, χ4\chi_{4}, χ5\chi_{5}) and (χ6\chi_{6}, χ7\chi_{7}, χ8\chi_{8}, χ9\chi_{9}, χ10\chi_{10}), respectively, are provided directly. These matrix elements are determined with the assistance of the spin bases given in Eq. (A5). The expressions involve the values μi\mu_{i}, where the indexes ii represent flavors in the configuration q1q2q3q4q¯5q_{1}q_{2}q_{3}q_{4}\bar{q}_{5}, and the μi\mu_{i} have been calculated previously for individual quarks.

It is important to note that the element is reasonable only if χi\chi_{i} and χj\chi_{j} belong to the same spin multiplets, as this is the realm where chromomagnetic mixing occurs. Going forward, these methods can be consistently applied to evaluate magnetic moments for pentaquarks. The availability of color-spin bases, alongside the calculated eigenvectors and μi\mu_{i}, facilitates this systematic approach.

References