This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study on muon MDM and lepton EDM in BLMSSM via the mass insertion approximation

Xi Wang1,2,3111wx_\_0806@163.com, Shu-Min Zhao1,2,3222zhaosm@hbu.edu.cn, Xin-Xin Long1,2,3,
Yi-Tong Wang1,2,3, Tong-Tong Wang1,2,3, Hai-Bin Zhang1,2,3, Tai-Fu Feng1,2,3,4, Rong-Xiang Zhang1,2,3333zrx@hbu.edu.cn
1 Department of Physics, Hebei University, Baoding, 071002, China 2 Hebei Key Laboratory of High-precision Computation and Application of Quantum Field Theory, Baoding, 071002, China 3 Research Center for Computational Physics of Hebei Province, Baoding, 071002, China 4 Department of Physics, Chongqing University, Chongqing 401331, China
Abstract

In the framework of the MSSM extension with local gauged baryon and lepton numbers (BLMSSM), we calculate the muon anomalous magnetic dipole moment (MDM) and lepton (e,μ,τ)(e,\mu,\tau) electric dipole moment (EDM), and discuss how the muon MDM and lepton EDM depend on the parameters within the mass insertion approximation. Among many parameters, tanβ\tan{\beta}gLg_{L}mLm_{L} and μH\mu_{H} are more sensitive parameters for aμBLa^{BL}_{\mu}. Considering the experimental limitations, our best numerical result of aμBLa^{BL}_{\mu} is around 2.5×1092.5\times 10^{-9}, which can well compensate the departure between the experiment data and Standard Model (SM) prediction. The CP violating phases in BLMSSM are more than those in the MSSM, including new parameters θμL\theta_{\mu_{L}} and θL\theta_{L}. They can give large contributions, which play an important role in exploring the source of CP violation and probing new physics beyond SM.

Muon MDM, CP violation, Mass insertion approximation

I Introduction

In the development of the Standard Model (SM), the muon anomalous magnetic dipole moment (MDM) is an urgent problem to be solved, which indicates that there must be new physics beyond SM. The muon MDM is denoted by aμ(gμ2)/2a_{\mu}\equiv(g_{\mu}-2)/2. The SM contributions to muon MDM have the following parts : 1. the QED loop contributions g2rep2020 ; GWB ; AKDN1 ; GCMH ; MHBL ; MDAH ; AKDN2 ; TBPA ; TAMH ; GCFH ; GECS ; TBNC ; TATK ; ACWJ ; CGDS ; 2. the electroweak contributions ACWJ ; CGDS ; 3. the hadronic vacuum polarization contributions g2rep2020 ; GCMH ; had2 ; 4. the hadronic light-by-light contributions GCFH ; GECS ; TBNC . The specific expressions are as follows:

aμQED=116584718.931(104)×1011,\displaystyle a_{\mu}^{QED}=116584718.931(104)\times 10^{-11},
aμEW=153.6(1.0)×1011,\displaystyle a^{EW}_{\mu}=153.6(1.0)\times 10^{-11},
aμHVP=6845(40)×1011,\displaystyle a^{HVP}_{\mu}=6845(40)\times 10^{-11},
aμHLBL=92(18)×1011.\displaystyle a^{HLBL}_{\mu}=92(18)\times 10^{-11}. (1)

Based on the above, SM prediction of muon anomaly is aμSM=116591810(43)×1011a^{SM}_{\mu}=116591810(43)\times 10^{-11}(0.37ppm) g2rep2020 ; muon2 ; mdm2 ; TBPA . New result on the muon MDM is reported by the E989 collaboration at Fermilab 046 : aμFNAL=116592040(54)×1011a_{\mu}^{FNAL}=116592040(54)\times 10^{-11}(0.46ppm) and 3.3 standard deviations larger than the SM prediction, which is in great agreement with BNL E821 result GWB . The new averaged experiment value of muon anomaly is aμexp=116592061(41)×1011a^{exp}_{\mu}=116592061(41)\times 10^{-11}(0.35ppm). Combining all available measurements, we now obtain 4.2σ\sigma deviation between the experiment and SM expectation (Δaμ=aμexpaμSM=251(59)×1011\Delta a_{\mu}=a^{exp}_{\mu}-a^{SM}_{\mu}=251(59)\times 10^{-11}).

The study of lepton electric dipole moment (EDM) is used to probe the source of CP violation EDM1 . The latest experiment shows that the upper bound of electron EDM is |deexp||d^{exp}_{e}| << 1.1×10291.1\times 10^{-29} e.cm at the 90%90\% confidence level de ; de1 ; de2 , the muon EDM is |dμexp||d^{exp}_{\mu}| << 1.8×10191.8\times 10^{-19} e.cm at the 95%95\% confidence level and the tau EDM is |dτexp||d^{exp}_{\tau}| << 1.1×10171.1\times 10^{-17} e.cm at the 95%95\% confidence level pdg2022 . The estimated SM value for the electron EDM is about |de|1038|d_{e}|\simeq 10^{-38} e.cm deSM1 ; deSM2 , which is too small to be detected by the current experiments. Therefore, if large electron EDM is probed, one can ensure it is the sign of new physics beyond SM.

The study of muon MDM and lepton EDM has very important practical significance for exploring new physics. Some studies investigate the supersymmetric (SUSY) one-loop contributions to muon MDM. The authors susy1 ; susy2 obtain the approximate SUSY one-loop contributions by simplification

|aμSUSY|=13×1010(100GeVMSUSY)2tanβsign[μH].\displaystyle|a_{\mu}^{SUSY}|=13\times 10^{-10}\Big{(}\frac{100{\rm GeV}}{M_{SUSY}}\Big{)}^{2}\tan\beta\texttt{sign}[\mu_{H}]. (2)

Here, MSUSYM_{SUSY} represents the masses of neutralinos, charginos and scalar leptons of the second generation, which are equal. The SUSY contributions can be easily evaluated from Eq. (2). The authors wx3 study the muon g-2 in several GUT-scale constrained SUSY models, such as CMSSM/mSUGRA, pMSSM, CMSSM/mSUGRA extensions and GMSB/AMSB extensions. The numerical result of muon g-2 is researched with the MultiNest technique for the parameter space caojj ; caojj1 ; caojj2 in the GNMSSM with a singlino-dominated neutralino as a dark matter candidate. The muon g-2 is further studied under 3\mathbb{Z}_{3}-NMSSM with LHC analyses in Ref. caojj3 . They study to what extent the g-2 can be explained in anomaly mediation scenarios YW1 . Even if there is no new particle in this energy range, one can measure the g-2 directly via the channel to a Higgs boson and a monochromatic photon YW2 . Next, let’s briefly review our previous work on muon MDM. We study the corrections from loop diagrams to muon MDM with the mass eigenstate in the BLMSSM and B-LMSSM muon ; o2 ; o3 . With the effective Lagrangian method slh ; 04 ; o1 , we also research the contributions to muon MDM from loop diagrams under the U(1)XU(1)_{X}SSM and μν\mu\nuSSM.

To better explain the CP violation mechanism NPdl1 ; NPdl2 ; NPdl3 ; NPdl4 , scientists are trying to find CP violating terms in new physics beyond SM. In the MSSM mssm ; mssm1 ; mssm2 ; Z2015 , there are several CP violating phases, which can contribute significantly to the lepton EDM. The normal size CP violating phases O(1)O(1) and particle mass in the TeV range can cause the electron EDM to exceed the current experimental upper limit (|deexp|<1.1×1029|d^{exp}_{e}|<1.1\times 10^{-29} e.cm). In order to rectify this situation, there are three ways: the first is to make the phases small O(102103)O(10^{-2}-10^{-3}), the second is to increase the particle mass to the several 10 TeV range, and the third is to make internal cancellations between phases EDM4 ; EDM5 .

In the extension of SM, the MSSM mssm is one of the most widely studied models. The authors propose the extension of the MSSM with local gauged B and L (BLMSSM) BLMSSM00 ; BLMSSM000 , where the baryon and lepton numbers are local gauge symmetries spontaneously broken at the TeV scale. The BLMSSM has two advantages: one is that the broken baryon number (B) can explain asymmetry of matter-antimatter in the universe, and the other is that the broken lepton number (L) can generate tiny neutrino mass by the seesaw mechanism. In BLMSSM, the proton decay can be avoided by discrete symmetry called matter parity and R-parity BLMSSM11 .

In this paper, we investigate the BLMSSM contributions to the muon MDM and lepton (e,μ,τ)(e,\mu,\tau) EDM via the mass insertion approximation (MIA). In the process of analysis, we show the mass eigenstate expressions of muon MDM, the MIA expressions of muon MDM and lepton EDM in detail. We discuss the numerical difference between the mass eigenstate expressions and the MIA expressions to prove the accuracy of the latter. In comparison, the MIA makes it easier and more intuitive to observe sensitive parameters. However, in the BLMSSM, the one-loop corrections are similar to the MSSM results in analytic form. The difference is that the BLMSSM contributions have the new gaugino λL\lambda_{L} and gauge coupling constant gLg_{L}. Under the latest experimental constraints, our results can well enough compensate the deviation of muon MDM and satisfy the experimental limitations of lepton EDM.

The rest of the paper is organized as follows. In Section II, we briefly summarize the main components of the BLMSSM. In Section III, we show analytic forms of the BLMSSM contributions to the muon MDM (aμBLa_{\mu}^{BL}) and the lepton EDM (dlBLd_{l}^{BL}). In Section IV, some numerical results are shown. The last section is devoted to summary.

II The BLMSSM

The local gauge group of BLMSSM is SU(3)CSU(2)LU(1)YU(1)BU(1)LSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{B}\otimes U(1)_{L} BLMSSM1 ; BLMSSM2 . Compared with MSSM, BLMSSM includes exotic quarks (Q^4,U^4c,D^4c,Q^5c,U^5,D^5)(\hat{Q}_{4},\hat{U}_{4}^{c},\hat{D}_{4}^{c},\hat{Q}_{5}^{c},\hat{U}_{5},\hat{D}_{5}) and exotic leptons (L^4,E^4c,N^4c,L^5c,E^5,N^5)(\hat{L}_{4},\hat{E}_{4}^{c},\hat{N}_{4}^{c},\hat{L}_{5}^{c},\hat{E}_{5},\hat{N}_{5}), which are used to eliminate B and L anomaly, respectively. The exotic Higgs (Φ^B,φ^B\hat{\Phi}_{B},\hat{\varphi}_{B}) are used to break BB spontaneously with nonzero vacuum expectation values (VEVs), and the exotic Higgs (Φ^L,φ^L\hat{\Phi}_{L},\hat{\varphi}_{L}) are used to break LL spontaneously with nonzero VEVs. The superfields X^\hat{X} and X^\hat{X}^{\prime} are used to make the exotic quarks unstable. The right-handed neutrinos NRcN_{R}^{c} are introduced to provide tiny masses of neutrinos through the seesaw mechanism. Table 1 displays these additional fields in detail.

Table 1: The new fields in the BLMSSM.
Superfields SU(3)CSU(3)_{C} SU(2)LSU(2)_{L} U(1)YU(1)_{Y} U(1)BU(1)_{B} U(1)LU(1)_{L}
Q^4\hat{Q}_{4} 3 2 1/6 B4B_{4} 0
U^4c\hat{U}^{c}_{4} 3¯\bar{3} 1 -2/3 -B4B_{4} 0
D^4c\hat{D}^{c}_{4} 3¯\bar{3} 1 1/3 -B4B_{4} 0
Q^5c\hat{Q}_{5}^{c} 3¯\bar{3} 2 -1/6 -(1+B4)(1+B_{4}) 0
U^5\hat{U}_{5} 33 1 2/3 1+B41+B_{4} 0
D^5\hat{D}_{5} 33 1 -1/3 1+B41+B_{4} 0
L^4\hat{L}_{4} 1 2 -1/2 0 L4L_{4}
E^4c\hat{E}^{c}_{4} 1 1 1 0 -L4L_{4}
N^4c\hat{N}^{c}_{4} 1 1 0 0 -L4L_{4}
L^5c\hat{L}_{5}^{c} 1 2 1/2 0 -(3+L4)(3+L_{4})
E^5\hat{E}_{5} 1 1 -1 0 3+L43+L_{4}
N^5\hat{N}_{5} 1 1 0 0 3+L43+L_{4}
Φ^B\hat{\Phi}_{B} 1 1 0 1 0
φ^B\hat{\varphi}_{B} 1 1 0 -1 0
Φ^L\hat{\Phi}_{L} 1 1 0 0 -2
φ^L\hat{\varphi}_{L} 1 1 0 0 2
X^\hat{X} 1 1 0 2/3+B42/3+B_{4} 0
X^\hat{X^{\prime}} 1 1 0 -(2/3+B4)(2/3+B_{4}) 0
N^Rc\hat{N}_{R}^{c} 1 1 0 0 -1

In the BLMSSM, the superpotential is expressed as weBLMSSM

𝒲BLMSSM=𝒲MSSM+𝒲B+𝒲L+𝒲X,\displaystyle{\cal W}_{{BLMSSM}}={\cal W}_{{MSSM}}+{\cal W}_{B}+{\cal W}_{L}+{\cal W}_{X}\;, (3)

where, 𝒲MSSM{\cal W}_{{MSSM}} is the superpotential of the MSSM. The concrete forms of 𝒲B,𝒲L,𝒲X{\cal W}_{B},{\cal W}_{L},{\cal W}_{X} are

𝒲B=λQQ^4Q^5cΦ^B+λUU^4cU^5φ^B+λDD^4cD^5φ^B+μBΦ^Bφ^B\displaystyle{\cal W}_{B}=\lambda_{Q}\hat{Q}_{4}\hat{Q}_{5}^{c}\hat{\Phi}_{B}+\lambda_{U}\hat{U}_{4}^{c}\hat{U}_{5}\hat{\varphi}_{B}+\lambda_{D}\hat{D}_{4}^{c}\hat{D}_{5}\hat{\varphi}_{B}+\mu_{B}\hat{\Phi}_{B}\hat{\varphi}_{B}
+Yu4Q^4H^uU^4c+Yd4Q^4H^dD^4c+Yu5Q^5cH^dU^5+Yd5Q^5cH^uD^5,\displaystyle\hskip 34.14322pt+Y_{{u_{4}}}\hat{Q}_{4}\hat{H}_{u}\hat{U}_{4}^{c}+Y_{{d_{4}}}\hat{Q}_{4}\hat{H}_{d}\hat{D}_{4}^{c}+Y_{{u_{5}}}\hat{Q}_{5}^{c}\hat{H}_{d}\hat{U}_{5}+Y_{{d_{5}}}\hat{Q}_{5}^{c}\hat{H}_{u}\hat{D}_{5}\;,
𝒲L=Ye4L^4H^dE^4c+Yν4L^4H^uN^4c+Ye5L^5cH^uE^5+Yν5L^5cH^dN^5\displaystyle{\cal W}_{L}=Y_{{e_{4}}}\hat{L}_{4}\hat{H}_{d}\hat{E}_{4}^{c}+Y_{{\nu_{4}}}\hat{L}_{4}\hat{H}_{u}\hat{N}_{4}^{c}+Y_{{e_{5}}}\hat{L}_{5}^{c}\hat{H}_{u}\hat{E}_{5}+Y_{{\nu_{5}}}\hat{L}_{5}^{c}\hat{H}_{d}\hat{N}_{5}
+YνL^H^uN^c+λNcN^cN^cφ^L+μLΦ^Lφ^L,\displaystyle\hskip 34.14322pt+Y_{\nu}\hat{L}\hat{H}_{u}\hat{N}^{c}+\lambda_{{N^{c}}}\hat{N}^{c}\hat{N}^{c}\hat{\varphi}_{L}+\mu_{L}\hat{\Phi}_{L}\hat{\varphi}_{L}\;,
𝒲X=λ1Q^Q^5cX^+λ2U^cU^5X^+λ3D^cD^5X^+μXX^X^.\displaystyle{\cal W}_{X}=\lambda_{1}\hat{Q}\hat{Q}_{5}^{c}\hat{X}+\lambda_{2}\hat{U}^{c}\hat{U}_{5}\hat{X}^{\prime}+\lambda_{3}\hat{D}^{c}\hat{D}_{5}\hat{X}^{\prime}+\mu_{X}\hat{X}\hat{X}^{\prime}\;. (4)

The local gauge symmetry SU(3)CSU(2)LU(1)YU(1)BU(1)LSU(3)_{C}\otimes SU(2)_{L}\otimes U(1)_{Y}\otimes U(1)_{B}\otimes U(1)_{L} can break down to the electromagnetic symmetry U(1)eU(1)_{e}, when the SU(2)LSU(2)_{L} doublets (HuH_{u}, HdH_{d}) and singlets (ΦB\Phi_{B}, φB\varphi_{B}, ΦL\Phi_{L}, φL\varphi_{L}) obtain nonzero VEVs υu,υd\upsilon_{u},\;\upsilon_{d} and υB,υ¯B,υL,υ¯L\upsilon_{{B}},\;\overline{\upsilon}_{{B}},\;\upsilon_{L},\;\overline{\upsilon}_{L} respectively. The SU(2)LSU(2)_{L} doublets and singlets are shown as

Hu=(Hu+12(υu+Hu0+iPu0)),Hd=(12(υd+Hd0+iPd0)Hd),\displaystyle H_{u}=\left(\begin{array}[]{c}H_{u}^{+}\\ {1\over\sqrt{2}}\Big{(}\upsilon_{u}+H_{u}^{0}+iP_{u}^{0}\Big{)}\end{array}\right)\;,~{}~{}~{}~{}H_{d}=\left(\begin{array}[]{c}{1\over\sqrt{2}}\Big{(}\upsilon_{d}+H_{d}^{0}+iP_{d}^{0}\Big{)}\\ H_{d}^{-}\end{array}\right)\;, (9)
ΦB=12(υB+ΦB0+iPB0),φB=12(υ¯B+φB0+iP¯B0),\displaystyle\Phi_{B}={1\over\sqrt{2}}\Big{(}\upsilon_{B}+\Phi_{B}^{0}+iP_{B}^{0}\Big{)}\;,~{}~{}~{}~{}~{}~{}~{}~{}~{}\varphi_{B}={1\over\sqrt{2}}\Big{(}\overline{\upsilon}_{B}+\varphi_{B}^{0}+i\overline{P}_{B}^{0}\Big{)}\;,
ΦL=12(υL+ΦL0+iPL0),φL=12(υ¯L+φL0+iP¯L0).\displaystyle\Phi_{L}={1\over\sqrt{2}}\Big{(}\upsilon_{L}+\Phi_{L}^{0}+iP_{L}^{0}\Big{)}\;,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\varphi_{L}={1\over\sqrt{2}}\Big{(}\overline{\upsilon}_{L}+\varphi_{L}^{0}+i\overline{P}_{L}^{0}\Big{)}\;. (10)

The soft breaking terms of BLMSSM are shown as follows BLMSSM1 ; BLMSSM2 ; BLMSSM000

soft=softMSSM(mν~c2)IJN~IcN~JcmQ~42Q~4Q~4mU~42U~4cU~4cmD~42D~4cD~4c\displaystyle{\cal L}_{{soft}}={\cal L}_{{soft}}^{MSSM}-(m_{{\tilde{\nu}^{c}}}^{2})_{{IJ}}\tilde{N}_{I}^{c*}\tilde{N}_{J}^{c}-m_{{\tilde{Q}_{4}}}^{2}\tilde{Q}_{4}^{\dagger}\tilde{Q}_{4}-m_{{\tilde{U}_{4}}}^{2}\tilde{U}_{4}^{c*}\tilde{U}_{4}^{c}-m_{{\tilde{D}_{4}}}^{2}\tilde{D}_{4}^{c*}\tilde{D}_{4}^{c}
mQ~52Q~5cQ~5cmU~52U~5U~5mD~52D~5D~5mL~42L~4L~4mν~42N~4cN~4c\displaystyle\hskip 36.98866pt-m_{{\tilde{Q}_{5}}}^{2}\tilde{Q}_{5}^{c\dagger}\tilde{Q}_{5}^{c}-m_{{\tilde{U}_{5}}}^{2}\tilde{U}_{5}^{*}\tilde{U}_{5}-m_{{\tilde{D}_{5}}}^{2}\tilde{D}_{5}^{*}\tilde{D}_{5}-m_{{\tilde{L}_{4}}}^{2}\tilde{L}_{4}^{\dagger}\tilde{L}_{4}-m_{{\tilde{\nu}_{4}}}^{2}\tilde{N}_{4}^{c*}\tilde{N}_{4}^{c}
me~42E~4cE~4cmL~52L~5cL~5cmν~52N~5N~5me~52E~5E~5mΦB2ΦBΦB\displaystyle\hskip 36.98866pt-m_{{\tilde{e}_{4}}}^{2}\tilde{E}_{{}_{4}}^{c*}\tilde{E}_{4}^{c}-m_{{\tilde{L}_{5}}}^{2}\tilde{L}_{5}^{c\dagger}\tilde{L}_{5}^{c}-m_{{\tilde{\nu}_{5}}}^{2}\tilde{N}_{5}^{*}\tilde{N}_{5}-m_{{\tilde{e}_{5}}}^{2}\tilde{E}_{5}^{*}\tilde{E}_{5}-m_{{\Phi_{B}}}^{2}\Phi_{B}^{*}\Phi_{B}
mφB2φBφBmΦL2ΦLΦLmφL2φLφL(mBλBλB+mLλLλL+h.c.)\displaystyle\hskip 36.98866pt-m_{{\varphi_{B}}}^{2}\varphi_{B}^{*}\varphi_{B}-m_{{\Phi_{L}}}^{2}\Phi_{L}^{*}\Phi_{L}-m_{{\varphi_{L}}}^{2}\varphi_{L}^{*}\varphi_{L}-\Big{(}m_{B}\lambda_{B}\lambda_{B}+m_{L}\lambda_{L}\lambda_{L}+h.c.\Big{)}
+{Au4Yu4Q~4HuU~4c+Ad4Yd4Q~4HdD~4c+Au5Yu5Q~5cHdU~5+Ad5Yd5Q~5cHuD~5\displaystyle\hskip 36.98866pt+\Big{\{}A_{{u_{4}}}Y_{{u_{4}}}\tilde{Q}_{4}H_{u}\tilde{U}_{4}^{c}+A_{{d_{4}}}Y_{{d_{4}}}\tilde{Q}_{4}H_{d}\tilde{D}_{4}^{c}+A_{{u_{5}}}Y_{{u_{5}}}\tilde{Q}_{5}^{c}H_{d}\tilde{U}_{5}+A_{{d_{5}}}Y_{{d_{5}}}\tilde{Q}_{5}^{c}H_{u}\tilde{D}_{5}
+ABQλQQ~4Q~5cΦB+ABUλUU~4cU~5φB+ABDλDD~4cD~5φB+BBμBΦBφB+h.c.}\displaystyle\hskip 36.98866pt+A_{{BQ}}\lambda_{Q}\tilde{Q}_{4}\tilde{Q}_{5}^{c}\Phi_{B}+A_{{BU}}\lambda_{U}\tilde{U}_{4}^{c}\tilde{U}_{5}\varphi_{B}+A_{{BD}}\lambda_{D}\tilde{D}_{4}^{c}\tilde{D}_{5}\varphi_{B}+B_{B}\mu_{B}\Phi_{B}\varphi_{B}+h.c.\Big{\}}
+{Ae4Ye4L~4HdE~4c+Aν4Yν4L~4HuN~4c+Ae5Ye5L~5cHuE~5+Aν5Yν5L~5cHdN~5\displaystyle\hskip 36.98866pt+\Big{\{}A_{{e_{4}}}Y_{{e_{4}}}\tilde{L}_{4}H_{d}\tilde{E}_{4}^{c}+A_{{\nu_{4}}}Y_{{\nu_{4}}}\tilde{L}_{4}H_{u}\tilde{N}_{4}^{c}+A_{{e_{5}}}Y_{{e_{5}}}\tilde{L}_{5}^{c}H_{u}\tilde{E}_{5}+A_{{\nu_{5}}}Y_{{\nu_{5}}}\tilde{L}_{5}^{c}H_{d}\tilde{N}_{5}
+ANYνL~HuN~c+ANcλNcN~cN~cφL+BLμLΦLφL+h.c.}\displaystyle\hskip 36.98866pt+A_{N}Y_{\nu}\tilde{L}H_{u}\tilde{N}^{c}+A_{{N^{c}}}\lambda_{{N^{c}}}\tilde{N}^{c}\tilde{N}^{c}\varphi_{L}+B_{L}\mu_{L}\Phi_{L}\varphi_{L}+h.c.\Big{\}}
+{A1λ1Q~Q~5cX+A2λ2U~cU~5X+A3λ3D~cD~5X+BXμXXX+h.c.}.\displaystyle\hskip 36.98866pt+\Big{\{}A_{1}\lambda_{1}\tilde{Q}\tilde{Q}_{5}^{c}X+A_{2}\lambda_{2}\tilde{U}^{c}\tilde{U}_{5}X^{\prime}+A_{3}\lambda_{3}\tilde{D}^{c}\tilde{D}_{5}X^{\prime}+B_{X}\mu_{X}XX^{\prime}+h.c.\Big{\}}\;. (11)

The used mass matrices can be found in the works Z2015 ; FM . The relevant Feynman rules same as those in MSSM for the present computation are collected in Ref. FM . The Feynman rules for vertices uniquely used in the BLMSSM are as follows:

Refer to caption
Figure 1: Feynman rules for the unique vertices in the BLMSSM.

III Formulation

III.1 The muon MDM

The lepton MDM can be obtained from the following effective Lagrangian by using the on-shell condition for the external leptons,

MDM=e4mlall¯σμνlFμν,\displaystyle{\cal L}_{{MDM}}={e\over 4m_{l}}\;a_{l}\;\bar{l}\sigma^{\mu\nu}l\;F_{{\mu\nu}}, (12)

with σμν=i[γμ,γν]/2\sigma^{\mu\nu}=i[{\gamma}_{\mu},{\gamma}_{\nu}]/2. ee and ll denote the electric charge and the lepton fermion, respectively. FμνF_{{\mu\nu}} is the electromagnetic field strength, and mlm_{l} is the lepton mass.

The Feynman amplitude can be expressed by these dimension 6 operators lepton with the effective Lagrangian method for the process lIlI+γl^{I}\rightarrow l^{I}+\gamma. The dimension 8 operators are suppressed by additional factor ml2MSUSY2\frac{m_{l}^{2}}{M_{SUSY}^{2}} \sim (10710^{-7}, 10810^{-8}) , which are neglected safely. Therefore, these dimension 6 operators are enough to use in future calculations. The operators related to lepton MDM are 𝒪2,3,6L,R\mathcal{O}_{2,3,6}^{L,R}. The lepton MDM is the combination of the Wilson coefficients C2,3,6L,RC^{L,R}_{2,3,6}. Here, 𝒟μ=μ+ieAμ\mathcal{D}_{\mu}=\partial_{\mu}+ieA_{\mu} and PL,R=1γ52P_{L,R}=\frac{1\mp\gamma_{5}}{2}. The specific forms of those dimension 6 operators are

𝒪1L,R=1(4π)2l¯(i𝒟/)3PL,Rl,𝒪2L,R=eQf(4π)2(i𝒟μl)¯γμFσPL,Rl,\displaystyle\mathcal{O}_{1}^{L,R}=\frac{1}{(4\pi)^{2}}\bar{l}(i\mathcal{D}\!\!\!/)^{3}P_{L,R}l,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathcal{O}_{2}^{L,R}=\frac{eQ_{f}}{(4\pi)^{2}}\overline{(i\mathcal{D}_{\mu}l)}\gamma^{\mu}F\cdot\sigma P_{L,R}l,
𝒪3L,R=eQf(4π)2l¯FσγμPL,R(i𝒟μl),𝒪4L,R=eQf(4π)2l¯(μFμν)γνPL,Rl,\displaystyle\mathcal{O}_{3}^{L,R}=\frac{eQ_{f}}{(4\pi)^{2}}\bar{l}F\cdot\sigma\gamma^{\mu}P_{L,R}(i\mathcal{D}_{\mu}l),~{}~{}~{}~{}\mathcal{O}_{4}^{L,R}=\frac{eQ_{f}}{(4\pi)^{2}}\bar{l}(\partial^{\mu}F_{\mu\nu})\gamma^{\nu}P_{L,R}l,
𝒪5L,R=ml(4π)2l¯(i𝒟/)2PL,Rl,𝒪6L,R=eQfml(4π)2l¯FσPL,Rl.\displaystyle\mathcal{O}_{5}^{L,R}=\frac{m_{l}}{(4\pi)^{2}}\bar{l}(i\mathcal{D}\!\!\!/)^{2}P_{L,R}l,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathcal{O}_{6}^{L,R}=\frac{eQ_{f}m_{l}}{(4\pi)^{2}}\bar{l}F\cdot\sigma P_{L,R}l. (13)

III.1.1 The mass eigenstate

Refer to caption
Figure 2: The two one-loop diagrams drawn in the mass eigenstate for lIlI+γl^{I}\rightarrow l^{I}+\gamma. The external photon line has to be attached to the charged internal lines.

The analytical forms of one-loop corrections in BLMSSM are similar to that of MSSM. The differences are: 1. the squared mass matrixes of scalar leptons because of new parameters gL,v¯L,vLg_{L},\bar{v}_{L},v_{L} and so on; 2. three-generation right-handed neutrinos are introduced, which lead to the neutrinos and scalar neutrinos are doubled. In the BLMSSM, there are four parts contributing to muon MDM: 1. scalar muon (μ~\tilde{\mu}) and neutralino (χ0{\chi}^{0}) [Fig. 2(a)]; 2. scalar neutrino (ν~\tilde{\nu}) and chargino (χ±{\chi}^{\pm}) [Fig. 2(b)]; 3. neutral Higgs (H0H^{0}) and muon (μ\mu); 4. charged Higgs (H±H^{\pm}) and neutrino (ν\nu).

The one-loop Higgs contribution to muon MDM is very small, because it is inhibited by the factor mμ2mW2\frac{m_{\mu}^{2}}{m^{2}_{W}}. The mass matrix of neutrinos and the squared mass matrix of scalar neutrinos are extended to 6×66\times 6. From these analysis, the contributions of type 3 and 4 are entirely negligible. Due to the mass of the new vector boson ZLZ_{L} being greater than 5.1 TeV, the one-loop contributions from ZLZ_{L}-muon are suppressed by the factor mZ2mZL24×104\frac{m_{Z}^{2}}{m^{2}_{Z_{L}}}\sim 4\times 10^{-4}. So, we neglect ZLZ_{L}-muon one-loop contributions.

Therefore, the one-loop new physics contributions to muon MDM are given entirely by the Fig. 2. On the basis of the one-loop self-energy diagrams, we can get the one-loop triangle diagrams by attaching a photon on the internal line in all possible ways. These diagrams have been comprehensively discussed in the BLMSSM with the mass eigenstate muon , and the exact results have been derived. We show the general results in the form:

aμBL=aμμ~χ0+aμν~χ±,\displaystyle a_{\mu}^{BL}=a_{\mu}^{\tilde{\mu}\chi^{0}}+a_{\mu}^{\tilde{\nu}\chi^{\pm}}, (14)

with

aμμ~χ0=e22sW2i=16j=14[Re[(𝒮1)ijI(𝒮2)ijI]xχj0xlIxL~i2(xχj0,xL~i)xL~i2\displaystyle a_{\mu}^{\tilde{\mu}\chi^{0}}=-\frac{e^{2}}{2s_{W}^{2}}\sum_{i=1}^{6}\sum_{j=1}^{4}\Big{[}\texttt{Re}[(\mathcal{S}_{1})^{I}_{ij}(\mathcal{S}_{2})^{I*}_{ij}]\sqrt{x_{\chi_{j}^{0}}x_{l^{I}}}x_{\tilde{L}_{i}}\frac{\partial^{2}\mathcal{B}(x_{\chi_{j}^{0}},x_{\tilde{L}_{i}})}{\partial x_{\tilde{L}_{i}}^{2}}
+13(|(𝒮1)ijI|2+|(𝒮2)ijI|2)xL~ixlI1(xχj0,xL~i)xL~i],\displaystyle\hskip 39.83368pt+\frac{1}{3}(|(\mathcal{S}_{1})^{I}_{ij}|^{2}+|(\mathcal{S}_{2})^{I}_{ij}|^{2})x_{\tilde{L}_{i}}x_{l^{I}}\frac{\partial\mathcal{B}_{1}(x_{\chi_{j}^{0}},x_{\tilde{L}_{i}})}{\partial x_{\tilde{L}_{i}}}\Big{]}, (15)
aμν~χ±=e2sW2J=13i,j=12[2mlImWRe[Z+1jZ2j]|Zν~IJ1i|2xχj±xlI1(xν~Ji,xχj±)\displaystyle a_{\mu}^{\tilde{\nu}\chi^{\pm}}=\frac{e^{2}}{s_{W}^{2}}\sum_{J=1}^{3}\sum_{i,j=1}^{2}\Big{[}\sqrt{2}\frac{m_{l^{I}}}{m_{W}}\texttt{Re}[Z_{+}^{1j}Z_{-}^{2j}]|Z_{\tilde{\nu}^{IJ}}^{1i}|^{2}\sqrt{x_{\chi_{j}^{\pm}}x_{l^{I}}}\mathcal{B}_{1}(x_{\tilde{\nu}^{Ji}},x_{\chi_{j}^{\pm}})
+13(|Z+1jZν~IJ1i|2+mlI22mW2|Z2jZν~IJ1i|2)xχj±xlI1(xν~Ji,xχj±)xχj±].\displaystyle\hskip 39.83368pt+\frac{1}{3}(|Z_{+}^{1j}Z_{\tilde{\nu}^{IJ}}^{1i*}|^{2}+\frac{m_{l^{I}}^{2}}{2m^{2}_{W}}|Z_{-}^{2j*}Z_{\tilde{\nu}^{IJ}}^{1i*}|^{2})x_{\chi_{j}^{\pm}}x_{l^{I}}\frac{\partial\mathcal{B}_{1}(x_{\tilde{\nu}^{Ji}},x_{\chi_{j}^{\pm}})}{\partial x_{\chi_{j}^{\pm}}}\Big{]}. (16)

Here, xi=mi2MSUSY2x_{i}=\frac{m_{i}^{2}}{M_{SUSY}^{2}}, mim_{i} is the particle mass. The abbreviation notations sW=sinθW,cW=cosθWs_{W}=\sin\theta_{W},~{}c_{W}=\cos\theta_{W}, where θW\theta_{W} is the Weinberg angle. We define the functions (x,y),1(x,y)\mathcal{B}(x,y),\;\mathcal{B}_{1}(x,y)

(x,y)=116π2(xlnxyx+ylnyxy),1(x,y)=(y+y22y2)(x,y).\displaystyle\mathcal{B}(x,y)=\frac{1}{16\pi^{2}}\Big{(}\frac{x\ln x}{y-x}+\frac{y\ln y}{x-y}\Big{)},~{}~{}~{}\mathcal{B}_{1}(x,y)=(\frac{\partial}{\partial y}+\frac{y}{2}\frac{\partial^{2}}{\partial y^{2}})\mathcal{B}(x,y). (17)

The couplings (𝒮1)ijI,(𝒮2)ijI(\mathcal{S}_{1})^{I}_{ij},\;(\mathcal{S}_{2})^{I}_{ij} are shown as

(𝒮1)ijI=1cWZL~Ii(ZN1jsW+ZN2jcW)mlIcosβmWZL~(I+3)iZN3j,\displaystyle(\mathcal{S}_{1})^{I}_{ij}=\frac{1}{c_{W}}Z_{\tilde{L}}^{Ii*}(Z_{N}^{1j}s_{W}+Z_{N}^{2j}c_{W})-\frac{m_{l^{I}}}{\cos\beta m_{W}}Z_{\tilde{L}}^{(I+3)i*}Z_{N}^{3j},
(𝒮2)ijI=2sWcWZL~(I+3)iZN1jmlIcosβmWZL~IiZN3j.\displaystyle(\mathcal{S}_{2})^{I}_{ij}=-2\frac{s_{W}}{c_{W}}Z_{\tilde{L}}^{(I+3)i*}Z_{N}^{1j*}-\frac{m_{l^{I}}}{\cos\beta m_{W}}Z_{\tilde{L}}^{Ii*}Z_{N}^{3j*}. (18)

The matrices ZL~,ZNZ_{\tilde{L}},~{}Z_{N} diagonalize the mass matrices of scalar lepton and neutralino, respectively. Z,Z+Z_{-},~{}Z_{+} are used to diagonalize the chargino mass matrix. The mass squared matrix of scalar neutrino are diagonalized by Zν~IJZ_{\tilde{\nu}^{IJ}}.

III.1.2 The mass insertion approximation

Through the above discussion of BLMSSM contributions to muon MDM, we can know that the contributions do not represent an enhancement proportional to mχmlI\frac{m_{\chi}}{m_{l^{I}}}, because it is suppressed by the combined rotation matrixes. In fact, they produce an overall enhancement factor tanβ\tan\beta dabeta1 ; dabeta2 . In other words, |aμBL||a_{\mu}^{BL}| becomes large as tanβ\tan\beta increases. Thus, it’s more convenient to use the mass insertion approximation (MIA) FM ; wx1 ; wx7 ; dabeta1 to calculate, and the role of parameters can be more clearly displayed. However, the mass eigenstate in the previous section is more appropriate for an exact evaluation. Now, we obtain the specific forms of the one-loop contributions by using MIA in the BLMSSM.

Refer to caption
Figure 3: Feynman diagrams for generating muon MDM and lepton EDM based on MIA. The external photons are connected to the charged internal lines in all possible ways.

a. The one-loop contributions from B~\tilde{B}-μ~L\tilde{\mu}_{L}-μ~R\tilde{\mu}_{R}.

aμBL,(a)=2g12xμx1xμHtanβ[I1(x1,xμ~L,xμ~R)+I2(x1,xμ~L,xμ~R)\displaystyle a^{BL,(a)}_{\mu}=2g_{1}^{2}x_{\mu}\sqrt{x_{1}x_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})+I_{2}(x_{1},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})
J1(x1,xμ~L,xμ~R)J2(x1,xμ~L,xμ~R)J3(x1,xμ~L,xμ~R)].\displaystyle\hskip 48.36958pt-J_{1}(x_{1},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})-J_{2}(x_{1},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})-J_{3}(x_{1},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})]. (19)

with m1=mB~m_{1}=m_{\tilde{B}}. The functions I1(x,y,z)I_{1}(x,y,z), I2(x,y,z)I_{2}(x,y,z), J1(x,y,z)J_{1}(x,y,z), J2(x,y,z)J_{2}(x,y,z) and J3(x,y,z)J_{3}(x,y,z) are defined as

I1(x,y,z)=116π2{(z2xy)logz(xz)2(yz)21(xz)(yz)\displaystyle I_{1}(x,y,z)=\frac{1}{16\pi^{2}}\Big{\{}\frac{\left(z^{2}-xy\right)\log z}{(x-z)^{2}(y-z)^{2}}-\frac{1}{(x-z)(y-z)}
xlogx(xy)(xz)2+ylogy(xy)(yz)2},\displaystyle\hskip 65.44142pt-\frac{x\log x}{(x-y)(x-z)^{2}}+\frac{y\log y}{(x-y)(y-z)^{2}}\Big{\}}, (20)
I2(x,y,z)=116π2{1(xy)(yz)xlogx(xy)2(xz)\displaystyle I_{2}(x,y,z)=\frac{1}{16\pi^{2}}\Big{\{}\frac{1}{(x-y)(y-z)}-\frac{x\log x}{(x-y)^{2}(x-z)}
+(y2xz)logy(xy)2(yz)2+zlogz(xz)(yz)2},\displaystyle\hskip 65.44142pt+\frac{\left(y^{2}-xz\right)\log y}{(x-y)^{2}(y-z)^{2}}+\frac{z\log z}{(x-z)(y-z)^{2}}\Big{\}}, (21)
J1(x,y,z)=132π2{x(z3y)+z(y+z)(xz)2(yz)22x2logx(xy)(xz)3\displaystyle J_{1}(x,y,z)=\frac{1}{32\pi^{2}}\Big{\{}\frac{x(z-3y)+z(y+z)}{(x-z)^{2}(y-z)^{2}}-\frac{2x^{2}\log x}{(x-y)(x-z)^{3}}
+2y2logy(xy)(yz)32[x2y2+z3(x+y)3xyz2]logz(xz)3(yz)3},\displaystyle\hskip 68.28644pt+\frac{2y^{2}\log y}{(x-y)(y-z)^{3}}-\frac{2[x^{2}y^{2}+z^{3}(x+y)-3xyz^{2}]\log z}{(x-z)^{3}(y-z)^{3}}\Big{\}}, (22)
J2(x,y,z)=132π2{x(y3z)+y(y+z)(xy)2(yz)22x2logx(xy)3(xz)\displaystyle J_{2}(x,y,z)=\frac{1}{32\pi^{2}}\Big{\{}\frac{x(y-3z)+y(y+z)}{(x-y)^{2}(y-z)^{2}}-\frac{2x^{2}\log x}{(x-y)^{3}(x-z)}
+2[x2z2+xy2(y3z)+y3z]logy(xy)3(yz)3+2z2logz(xz)(zy)3},\displaystyle\hskip 68.28644pt+\frac{2[x^{2}z^{2}+xy^{2}(y-3z)+y^{3}z]\log y}{(x-y)^{3}(y-z)^{3}}+\frac{2z^{2}\log z}{(x-z)(z-y)^{3}}\Big{\}}, (23)
J3(x,y,z)=116π2{x(y+z)2yz(xy)(xz)(yz)2x2logx(xy)2(xz)2\displaystyle J_{3}(x,y,z)=\frac{1}{16\pi^{2}}\Big{\{}\frac{x(y+z)-2yz}{(x-y)(x-z)(y-z)^{2}}-\frac{x^{2}\log x}{(x-y)^{2}(x-z)^{2}}
+y[y(y+z)2xz]logy(xy)2(yz)3+z[z(y+z)2xy]logz(xz)2(zy)3}.\displaystyle\hskip 68.28644pt+\frac{y[y(y+z)-2xz]\log y}{(x-y)^{2}(y-z)^{3}}+\frac{z[z(y+z)-2xy]\log z}{(x-z)^{2}(z-y)^{3}}\Big{\}}. (24)

b. The one-loop contributions from B~\tilde{B}-H~0\tilde{H}^{0}-μ~R\tilde{\mu}_{R}.

aμBL,(b)=2g12xμx1xμHtanβ[I1(x1,xμH,xμ~R)J1(x1,xμH,xμ~R)].\displaystyle a^{BL,(b)}_{\mu}=-2g_{1}^{2}x_{\mu}\sqrt{x_{1}x_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{\mu}_{R}})-J_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{\mu}_{R}})]. (25)

c. The one-loop contributions from B~\tilde{B}-H~0\tilde{H}^{0}-μ~L\tilde{\mu}_{L}.

aμBL,(c)=g12xμx1xμHtanβ[I1(x1,xμH,xμ~L)J1(x1,xμH,xμ~L)].\displaystyle a^{BL,(c)}_{\mu}=g_{1}^{2}x_{\mu}\sqrt{x_{1}x_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{\mu}_{L}})-J_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{\mu}_{L}})]. (26)

d. The one-loop contributions from W~0\tilde{W}^{0}-H~0\tilde{H}^{0}-μ~L\tilde{\mu}_{L}.

aμBL,(d)=g22xμx2xμHtanβ[I1(x2,xμH,xμ~L)J1(x2,xμH,xμ~L)].\displaystyle a^{BL,(d)}_{\mu}=-g_{2}^{2}x_{\mu}\sqrt{x_{2}x_{\mu_{H}}}\tan{\beta}[I_{1}(x_{2},x_{{\mu}_{H}},x_{\tilde{\mu}_{L}})-J_{1}(x_{2},x_{{\mu}_{H}},x_{\tilde{\mu}_{L}})]. (27)

here, m2=mW~0=mW~±m_{2}=m_{\tilde{W}^{0}}=m_{\tilde{W}^{\pm}}.

e. The one-loop contributions from λL{\lambda}_{L}-μ~L\tilde{\mu}_{L}-μ~R\tilde{\mu}_{R}.

aμBL,(e)=4gL2xμxLxμHtanβ[I1(xL,xμ~L,xμ~R)+I2(xL,xμ~L,xμ~R)\displaystyle a^{BL,(e)}_{\mu}=-4g_{L}^{2}x_{\mu}\sqrt{x_{L}x_{\mu_{H}}}\tan{\beta}[I_{1}(x_{L},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})+I_{2}(x_{L},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})
J1(xL,xμ~L,xμ~R)J2(xL,xμ~L,xμ~R)J3(xL,xμ~L,xμ~R)].\displaystyle\hskip 48.36958pt-J_{1}(x_{L},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})-J_{2}(x_{L},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})-J_{3}(x_{L},x_{\tilde{\mu}_{L}},x_{\tilde{\mu}_{R}})]. (28)

f. The one-loop contributions from W~±\tilde{W}^{\pm}-H~±\tilde{H}^{\pm}-ν~L\tilde{\nu}_{L}.

aμBL,(f)=2g22xμx2xμHtanβ[J2(x2,xμH,xν~L)+J4(x2,xμH,xν~L)+J5(x2,xμH,xν~L)].\displaystyle a^{BL,(f)}_{\mu}\!=2g_{2}^{2}x_{\mu}\sqrt{x_{2}x_{\mu_{H}}}\tan{\beta}[J_{2}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})\!+J_{4}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})\!+J_{5}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})]. (29)

We define the functions J4(x,y,z)J_{4}(x,y,z) and J5(x,y,z)J_{5}(x,y,z) as

J4(x,y,z)=116π2{z(x+y)2xy(xy)2(xz)(yz)+x[x(x+y)2yz]logx(xy)3(xz)2\displaystyle J_{4}(x,y,z)=\frac{1}{16\pi^{2}}\Big{\{}\frac{z(x+y)-2xy}{(x-y)^{2}(x-z)(y-z)}+\frac{x[x(x+y)-2yz]\log x}{(x-y)^{3}(x-z)^{2}}
+y[y(x+y)2xz]logy(yx)3(yz)2z2logz(xz)2(yz)2},\displaystyle\hskip 65.44142pt+\frac{y[y(x+y)-2xz]\log y}{(y-x)^{3}(y-z)^{2}}-\frac{z^{2}\log z}{(x-z)^{2}(y-z)^{2}}\Big{\}}, (30)
J5(x,y,z)=132π2{x2+x(y+z)3yz(xy)2(xz)22[x3(y+z)3x2yz+y2z2]logx(xy)3(xz)3\displaystyle J_{5}(x,y,z)=\frac{1}{32\pi^{2}}\Big{\{}\frac{x^{2}+x(y+z)-3yz}{(x-y)^{2}(x-z)^{2}}-\frac{2[x^{3}(y+z)-3x^{2}yz+y^{2}z^{2}]\log x}{(x-y)^{3}(x-z)^{3}}
+2y2logy(xy)3(yz)+2z2logz(xz)3(zy)}.\displaystyle\hskip 65.44142pt+\frac{2y^{2}\log y}{(x-y)^{3}(y-z)}+\frac{2z^{2}\log z}{(x-z)^{3}(z-y)}\Big{\}}. (31)

The one-loop contributions to muon MDM can be expressed as

aμμ~χ0aμBL,(a)+aμBL,(b)+aμBL,(c)+aμBL,(d)+aμBL,(e),\displaystyle a_{\mu}^{\tilde{\mu}\chi^{0}}\simeq a^{BL,(a)}_{\mu}+a^{BL,(b)}_{\mu}+a^{BL,(c)}_{\mu}+a^{BL,(d)}_{\mu}+a^{BL,(e)}_{\mu},
aμν~χ±aμBL,(f).\displaystyle a_{\mu}^{\tilde{\nu}\chi^{\pm}}\simeq a^{BL,(f)}_{\mu}. (32)

We ought to notice that the contributions to muon MDM are related to tanβ\tan\beta and xix_{i} in the Eqs. (19), (25)-(29). This situation is consistent with MSSM. The contribution related to the new gaugino λL\lambda_{L} is shown in Eq. (28), which includes the new gauge coupling constant gLg_{L}. Furthermore, we obtain the conclusion that aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(e)a^{BL,(e)}_{\mu} and aμBL,(f)a^{BL,(f)}_{\mu} occupy the dominant position after numerical comparison. When mλLm_{{\lambda}_{L}} is negative, the signs of aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(e)a^{BL,(e)}_{\mu} and aμBL,(f)a^{BL,(f)}_{\mu} are the same. We can get the reasonable corrections of new physics.

III.1.3 Degenerate result

Next, we assume that all the masses of the superparticles are almost degenerate to more clearly know the influential factor on aμBLa_{\mu}^{BL}. The masses of superparticles (m1,m2,μH,mν~L,mμ~R,mμ~L,mLm_{1},~{}m_{2},~{}\mu_{H},~{}m_{\tilde{\nu}_{L}},~{}m_{\tilde{\mu}_{R}},~{}m_{\tilde{\mu}_{L}},~{}m_{L}) are equal to MSUSYM_{SUSY} 04 :

|m1|=|m2|=|μH|=mν~L=mμ~R=mμ~L=|mL|=MSUSY.\displaystyle|m_{1}|=|m_{2}|=|\mu_{H}|=m_{\tilde{\nu}_{L}}=m_{\tilde{\mu}_{R}}=m_{\tilde{\mu}_{L}}=|m_{L}|=M_{SUSY}. (33)

The functions can be simplified as

I1(1,1,1)=I2(1,1,1)=196π2,\displaystyle I_{1}(1,1,1)=I_{2}(1,1,1)=\frac{1}{96\pi^{2}},
J1(1,1,1)=J2(1,1,1)=J3(1,1,1)=J4(1,1,1)=J5(1,1,1)=1192π2.\displaystyle J_{1}(1,1,1)=J_{2}(1,1,1)=J_{3}(1,1,1)=J_{4}(1,1,1)=J_{5}(1,1,1)=\frac{1}{192\pi^{2}}. (34)

The one-loop MSSM results (chargino-sneutrino, neutralino-smuon) in this case are consistent with the results of Ref. dabeta1 . Here, sign[m1]=sign[m2]=sign[μH]=1\texttt{sign}[m_{1}]=\texttt{sign}[m_{2}]=\texttt{sign}[\mu_{H}]=1.

aμMSSM1192π2mμ2MSUSY2(g12+5g22)tanβ.\displaystyle a^{MSSM}_{\mu}\simeq\frac{1}{192\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}(g_{1}^{2}+5g_{2}^{2})\tan\beta. (35)

In the BLMSSM, the one-loop results of muon MDM are given by

aμBL1192π2mμ2MSUSY2(g12+5g22)tanβ\displaystyle a^{BL}_{\mu}\simeq\frac{1}{192\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}(g_{1}^{2}+5g_{2}^{2})\tan\beta
148π2mμ2MSUSY2gL2tanβsign[μHmL].\displaystyle\hskip 36.98866pt-\frac{1}{48\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}g_{L}^{2}\tan\beta\texttt{sign}[\mu_{H}m_{L}]. (36)

The corrections can reach large value, when sign[m1]=sign[m2]=sign[μH]=1\texttt{sign}[m_{1}]=\texttt{sign}[m_{2}]=\texttt{sign}[\mu_{H}]=1 and sign[mL]=1\texttt{sign}[m_{L}]=-1.

aμBL1192π2mμ2MSUSY2(g12+5g22+4gL2)tanβ.\displaystyle a^{BL}_{\mu}\rightarrow\frac{1}{192\pi^{2}}\frac{m_{\mu}^{2}}{M_{SUSY}^{2}}(g_{1}^{2}+5g_{2}^{2}+4g_{L}^{2})\tan\beta. (37)

According to the above expressions, we study the effect of MSUSYM_{SUSY}, tanβ\tan\beta and gLg_{L} on the BLMSSM contributions to muon MDM. The results are shown in Fig. 4. First, we plot the results for tanβ=50\tan\beta=50 in the gLg_{L}-MSUSYM_{SUSY} plane. As we can see, if we take a smaller value of MSUSYM_{SUSY}, the aμBLa^{BL}_{\mu} is enhanced in the large gLg_{L} region. Next, the upper right figure denotes tanβ\tan\beta-MSUSYM_{SUSY} plane when gL=0.45g_{L}=0.45. The results imply that large tanβ\tan\beta and small MSUSYM_{SUSY} can produce suitable BLMSSM corrections to compensate the departure. At last, the bottom figure shows the results in the plane of tanβ\tan\beta versus gLg_{L}. When the values of tanβ\tan\beta and gLg_{L} enlarge, the value of aμBLa^{BL}_{\mu} also increases, but tanβ\tan\beta is more sensitive than gLg_{L}. It shows that MSUSYM_{SUSY}, tanβ\tan\beta and gLg_{L} are sensitive, and have a direct effect on aμBLa^{BL}_{\mu}.

Refer to caption
Refer to caption
Refer to caption
Figure 4: The effects of MSUSYM_{SUSY}, tanβ\tan\beta and gLg_{L} on aμBLa^{BL}_{\mu}. The upper left figure denotes gLg_{L}-MSUSYM_{SUSY} plane with tanβ=50\tan\beta=50. The upper right figure denotes tanβ\tan\beta-MSUSYM_{SUSY} plane with gL=0.45g_{L}=0.45. The bottom figure denotes tanβ\tan\beta-gLg_{L} plane with MSUSY=1000GeVM_{SUSY}=1000~{}{\rm GeV}.

III.2 The lepton EDM

The lepton EDM can be obtained by using effective Lagrange method, and the Feynman amplitudes can be expressed by these dimension 6 operators in Eq. (13). Adopting on-shell condition for external leptons, only 𝒪2,3,6\mathcal{O}_{2,3,6}^{\mp} contribute to lepton EDM. This is consistent with muon MDM. The lepton EDM is expressed as

EDM=i2dll¯σμνγ5lFμν.\displaystyle{\cal L}_{{EDM}}=-{i\over 2}d_{l}\overline{l}\sigma^{\mu\nu}\gamma_{5}lF_{{\mu\nu}}. (38)

In the BLMSSM, there are essentially two types of one-loop triangle diagrams which contribute to dlBLd^{BL}_{l} : 1. the neutralino-slepton diagram; 2. the chargino-sneutrino diagram. Using the MIA, we can obtain six diagrams that have major contributions to dlBLd^{BL}_{l}, which are shown in Fig. 3. These contributions can be given by

dlBL,(a)=eg12MSUSYxlx1xμHeiθ1eiθμHtanβ[I1(x1,xL~L,xL~R)+I2(x1,xL~L,xL~R)\displaystyle d^{BL,(a)}_{l}=\frac{eg_{1}^{2}}{M_{SUSY}}\sqrt{x_{l}x_{1}x_{\mu_{H}}}e^{i*\theta_{1}}e^{i*\theta_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})+I_{2}(x_{1},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})
J1(x1,xL~L,xL~R)J2(x1,xL~L,xL~R)J3(x1,xL~L,xL~R)],\displaystyle\hskip 48.36958pt-J_{1}(x_{1},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})-J_{2}(x_{1},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})-J_{3}(x_{1},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})],
dlBL,(b)=eg12MSUSYxlx1xμHeiθ1eiθμHtanβ[I1(x1,xμH,xL~R)J1(x1,xμH,xL~R)],\displaystyle d^{BL,(b)}_{l}=\frac{eg_{1}^{2}}{M_{SUSY}}\sqrt{x_{l}x_{1}x_{\mu_{H}}}e^{i*\theta_{1}}e^{i*\theta_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{L}_{R}})-J_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{L}_{R}})],
dlBL,(c)=eg122MSUSYxlx1xμHeiθ1eiθμHtanβ[I1(x1,xμH,xL~L)J1(x1,xμH,xL~L)],\displaystyle d^{BL,(c)}_{l}=-\frac{eg_{1}^{2}}{2M_{SUSY}}\sqrt{x_{l}x_{1}x_{\mu_{H}}}e^{i*\theta_{1}}e^{i*\theta_{\mu_{H}}}\tan{\beta}[I_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{L}_{L}})-J_{1}(x_{1},x_{{\mu}_{H}},x_{\tilde{L}_{L}})],
dlBL,(d)=eg222MSUSYxlx2xμHeiθ2eiθμHtanβ[I1(x2,xμH,xL~L)J1(x2,xμH,xL~L)],\displaystyle d^{BL,(d)}_{l}=\frac{eg_{2}^{2}}{2M_{SUSY}}\sqrt{x_{l}x_{2}x_{\mu_{H}}}e^{i*\theta_{2}}e^{i*\theta_{\mu_{H}}}\tan{\beta}[I_{1}(x_{2},x_{{\mu}_{H}},x_{\tilde{L}_{L}})-J_{1}(x_{2},x_{{\mu}_{H}},x_{\tilde{L}_{L}})],
dlBL,(e)=2egL2MSUSYxlxLxμLeiθLeiθμLtanβ[I1(xL,xL~L,xL~R)+I2(xL,xL~L,xL~R)\displaystyle d^{BL,(e)}_{l}=-\frac{2eg_{L}^{2}}{M_{SUSY}}\sqrt{x_{l}x_{L}x_{\mu_{L}}}e^{i*\theta_{L}}e^{i*\theta_{\mu_{L}}}\tan{\beta}[I_{1}(x_{L},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})+I_{2}(x_{L},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})
J1(xL,xL~L,xL~R)J2(xL,xL~L,xL~R)J3(xL,xL~L,xL~R)],\displaystyle\hskip 48.36958pt-J_{1}(x_{L},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})-J_{2}(x_{L},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})-J_{3}(x_{L},x_{\tilde{L}_{L}},x_{\tilde{L}_{R}})],
dlBL,(f)=eg22MSUSYxlx2xμHeiθ2eiθμHtanβ[J2(x2,xμH,xν~L)+J4(x2,xμH,xν~L)\displaystyle d^{BL,(f)}_{l}=-\frac{eg_{2}^{2}}{M_{SUSY}}\sqrt{x_{l}x_{2}x_{\mu_{H}}}e^{i*\theta_{2}}e^{i*\theta_{\mu_{H}}}\tan{\beta}[J_{2}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})+J_{4}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})
+J5(x2,xμH,xν~L)].\displaystyle\hskip 48.36958pt+J_{5}(x_{2},x_{{\mu}_{H}},x_{\tilde{\nu}_{L}})]. (39)

The one-loop contributions to lepton EDM can be expressed as

dlBL=dll~χ0+dlν~χ±,\displaystyle d_{l}^{BL}=d_{l}^{\tilde{l}\chi^{0}}+d_{l}^{\tilde{\nu}\chi^{\pm}},
dll~χ0dlBL,(a)+dlBL,(b)+dlBL,(c)+dlBL,(d)+dlBL,(e),\displaystyle d_{l}^{\tilde{l}\chi^{0}}\simeq d^{BL,(a)}_{l}+d^{BL,(b)}_{l}+d^{BL,(c)}_{l}+d^{BL,(d)}_{l}+d^{BL,(e)}_{l},
dlν~χ±dlBL,(f).\displaystyle d_{l}^{\tilde{\nu}\chi^{\pm}}\simeq d^{BL,(f)}_{l}. (40)

In Eq. (39), some parameters are defined as follows

mB~=M1eiθ1,mW~0=mW~±=M2eiθ2,μH=MμHeiθμH,\displaystyle m_{\tilde{B}}=M_{1}*e^{i*\theta_{1}},~{}m_{\tilde{W}^{0}}=m_{\tilde{W}^{\pm}}=M_{2}*e^{i*\theta_{2}},~{}\mu_{H}=M_{\mu_{H}}*e^{i*\theta_{\mu_{H}}},
μL=MμLeiθμL,mL=MLeiθL,xl=ml2MSUSY2,xν~L=mν~L2MSUSY2,\displaystyle\mu_{L}=M_{\mu_{L}}*e^{i*\theta_{\mu_{L}}},~{}m_{L}=M_{L}*e^{i*\theta_{L}},~{}x_{l}=\frac{m_{l}^{2}}{M_{SUSY}^{2}},~{}x_{\tilde{\nu}_{L}}=\frac{m_{\tilde{\nu}_{L}}^{2}}{M_{SUSY}^{2}},
xL~L=mL~L2MSUSY2,xL~R=mL~R2MSUSY2,xi=|Mi|2MSUSY2.\displaystyle x_{\tilde{L}_{L}}=\frac{m_{\tilde{L}_{L}}^{2}}{M_{SUSY}^{2}},~{}~{}x_{\tilde{L}_{R}}=\frac{m_{\tilde{L}_{R}}^{2}}{M_{SUSY}^{2}},~{}~{}x_{i}=\frac{|M_{i}|^{2}}{M_{SUSY}^{2}}. (41)

MiM_{i} means the above five particle masses in the form of complex function (M1M_{1}, M2M_{2}, MμHM_{\mu_{H}}, MμLM_{\mu_{L}}, MLM_{L}). θ1,θ2\theta_{1},\theta_{2} and θμH\theta_{\mu_{H}} are the CP violating phases of the parameters mB~,mW~0(mW~±m_{\tilde{B}},~{}m_{\tilde{W}^{0}}~{}(m_{\tilde{W}^{\pm}}), and μH\mu_{H}. θμL\theta_{\mu_{L}} and θL\theta_{L} are the CP violating phases of new parameters μL\mu_{L} and mLm_{L}. In these formulas, the CP violating phases are conspicuous, and we can more easily observe the cancellation between the CP violating phases.

IV Numerical results

In this section, we first discuss the numerical difference between the mass eigenstate and the mass insertion approximation. Then, the one-loop contributions of the muon MDM and lepton (e,μ,τ)(e,\mu,\tau) EDM are discussed numerically via the MIA. In the numerical discussion, we consider the latest experimental limitations of particles wx1 ; wx2 ; wx4 ; wx5 ; wx6 . The lightest CP-even Higgs mass mh0=125.1GeVm_{h^{0}}=125.1~{}{\rm GeV} su1 ; su2 . The slepton mass is greater than 700GeV700~{}{\rm GeV}, and the chargino mass is greater than 1100GeV1100~{}{\rm GeV} wx7 . Taking ZLZ_{L} boson mass is greater than 5.1TeV5.1~{}{\rm TeV} to satisfy the mass constraint from LHC experiments Zp5d1 .

IV.1 The relative error between the two methods

In order to determine the accuracy of the MIA expressions, we discuss the numerical difference between the mass eigenstate expressions and the MIA expressions from the point value and one-dimensional graph. Firstly, we discuss the point value. We set the same parameters of the two expressions to the same values, i.e., tanβ=50\tan{\beta}=50m1=300GeVm_{1}=300~{}{\rm GeV}m2=1100GeVm_{2}=1100~{}{\rm GeV} and gL=1/3g_{L}=1/3, and adjust the other parameters to make the masses of particles in the two methods meet the mass limits while maintaining roughly equal. The aμBLa^{BL}_{\mu} obtained by the mass eigenstate expressions and the MIA expressions are 2.279×1092.279\times 10^{-9} and 2.257×1092.257\times 10^{-9}, respectively. The relative error (2.279×1092.257×1092.279×1092.279\times 10^{-9}-2.257\times 10^{-9}\over 2.279\times 10^{-9}) is about 0.96%0.96\%, which is relatively small.

The comparisons of the results of the two expressions are shown in Fig. 5. The experimental limitations are denoted by the colored areas, where light green area represents 1σ\sigma, light orange area represents 2σ\sigma. The lines of these three figures are within the colored areas, which can well satisfy the experimental constraint. In Fig. 5(a), the two lines have similar behavior, that is, slowly increase and then slowly decrease. The two lines are relatively close, and there are two intersections. In Fig. 5(b), the two lines almost coincide in the area m2m_{2} (1000, 1500) GeV and are very close in the remaining area. In Fig. 5(c), the two lines have an upward trend and almost coincide in the area gLg_{L} (0.3, 0.35). Therefore, according to these diagrams, we can obtain that the results of the two expressions are very similar, and the accuracy of the MIA results is verified.

Refer to caption
Refer to caption
Refer to caption
Figure 5: The BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}) versus m1m_{1}(a), m2m_{2}(b) and gLg_{L}(c) are plotted by solid line (the mass eigenstate expressions) and dashed line (the mass insertion approximation expressions).

IV.2 The muon MDM by MIA

In this subsection, we numerically calculate the BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}). Based on the above analysis of the mass insertion approximation, aμBLa^{BL}_{\mu} mainly depends on 9 parameters, i.e., tanβ\tan{\beta}gLg_{L}m1m_{1}m2m_{2}mLm_{L}μH\mu_{H}mν~Lm_{\tilde{\nu}_{L}}mμ~Rm_{{\tilde{\mu}}_{R}}, mμ~Lm_{{\tilde{\mu}}_{L}}. We take these parameters as free parameters and compute the BLMSSM contributions to the muon MDM for a given set of parameters, with the parameter MSUSY=1000GeVM_{SUSY}=1000~{}{\rm GeV}.

IV.2.1 One-dimensional graphs

In this part, we take m1=300GeV,mL=300GeV,mν~L=150GeV,mμ~L=700GeV,mμ~R=700GeVm_{1}=300~{}{\rm GeV},~{}m_{L}=-300~{}{\rm GeV},~{}m_{\tilde{\nu}_{L}}=150~{}{\rm GeV},m_{{\tilde{\mu}}_{L}}=700~{}{\rm GeV},~{}m_{{\tilde{\mu}}_{R}}=700~{}{\rm GeV}, and plot the following aμBLa^{BL}_{\mu} schematic diagram affected by different parameters. The colored areas show the experimental limitations, with light green area for 1σ\sigma and light orange area for 2σ\sigma.

In Fig. 6, we plot the results versus gLg_{L} with m2=1100GeVm_{2}=1100~{}{\rm GeV} and μH=1100GeV\mu_{H}=1100~{}{\rm GeV}. Beyond MSSM, there is a parameter gLg_{L} that corresponds to the coupling constant of the U(1)LU(1)_{L} gauge. From the analysis by MIA, gLg_{L} is an important parameter that appears in Eq. (28). It can be seen that from bottom to top are solid line (tanβ=30\tan{\beta}=30), dashed line (tanβ=40\tan{\beta}=40) and dotted line (tanβ=50\tan{\beta}=50), and the overall trend of the three lines is upward. This conclusion can be seen more intuitively from Eq. (37). The dotted line is entirely in the colored areas, the dashed line part of 0.220.60.22-0.6 is in the colored areas, the solid line part of 0.40.60.4-0.6 is in the colored areas. That is to say, tanβ\tan{\beta} is a sensitive parameter and larger tanβ\tan{\beta} leads to larger aμBLa^{BL}_{\mu}. The value of aμBLa^{BL}_{\mu} is around 2.5×1092.5\times 10^{-9}, and it can better meet the experimental limitations.

Refer to caption
Figure 6: The BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}) versus gLg_{L}.

Similarly, we take m2=1100GeVm_{2}=1100~{}{\rm GeV} and μH=1100GeV\mu_{H}=1100~{}{\rm GeV}, and plot the BLMSSM contributions to muon MDM varying with tanβ\tan\beta in Fig. 7. The parameter tanβ\tan\beta is ratio of the VEVs of the two Higgs doublets (tanβ=υu/υd\tan\beta=\upsilon_{u}/\upsilon_{d}). tanβ\tan\beta is contained in each one-loop contribution and is proportional relationship. The solid (dashed, dotted) line corresponds to the results with gL=0.25(0.45,0.65)g_{L}=0.25~{}(0.45,~{}0.65). We find that tanβ\tan\beta and aμBLa^{BL}_{\mu} are positively correlated, which is the same effect reflected by Eqs. (19), (25)-(29). The colored areas contain more parts of the dotted line. The characteristic obtained here is consistent with those obtained in Fig. 6. Large gLg_{L} and tanβ\tan{\beta} can lead to large BLMSSM contributions. Thus, the contributions can be influenced obviously by the parameters gLg_{L} and tanβ\tan{\beta}. The value of aμBLa^{BL}_{\mu} is around 2.5×1092.5\times 10^{-9}, which can well compensate for the deviation.

Refer to caption
Figure 7: The BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}) versus tanβ\tan\beta.

For better numerical results, we set tanβ=50\tan{\beta}=50 and μH=1100GeV\mu_{H}=1100~{}{\rm GeV}. The solid line (gL=0.25g_{L}=0.25), dashed line (gL=0.45g_{L}=0.45) and dotted line (gL=0.55g_{L}=0.55) varying with m2m_{2} are shown in Fig. 8. m2m_{2} expresses the particle mass of W~0\tilde{W}^{0} (W~±\tilde{W}^{\pm}), which directly affects the one-loop contributions from Figs. 3(d), 3(f). The three lines are all decreasing functions, when m2m_{2} turns large from 1100 GeV to 3000 GeV. The downward trend slowly becomes weak. The reason is that the contributions are proportional to x2=m2MSUSY\sqrt{x_{2}}=\frac{m_{2}}{M_{SUSY}}, but the effect of m2m_{2} on the function is considerable and inversely proportional in Eqs. (27), (29) obtained by MIA. On the whole, the increase of m2m_{2} leads to the slow decrease of aμBLa^{BL}_{\mu}. The dotted and dashed lines are all located in the colored areas. The dotted line can reach 2.9×1092.9\times 10^{-9}, the dashed line can reach 2.4×1092.4\times 10^{-9} and the solid line can reach 1.7×1091.7\times 10^{-9}.

Refer to caption
Figure 8: The BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}) versus m2m_{2}.

In addition, supposing the parameters with gL=0.45g_{L}=0.45 and m2=1100GeVm_{2}=1100~{}{\rm GeV}, we study the parameter μH\mu_{H} influences on muon MDM in Fig. 9. μH\mu_{H} is SUSY invariant Higgs mass, which exists in each contribution of Fig. 3. The solid line, dashed line and dotted line respectively correspond to the results with tanβ=30\tan{\beta}=30, tanβ=40\tan{\beta}=40 and tanβ=50\tan{\beta}=50. All three lines have a slight positive slope. Among the dominant terms, aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(e)a^{BL,(e)}_{\mu}, and aμBL,(f)a^{BL,(f)}_{\mu} are proportional to xμH=mμHMSUSY\sqrt{x_{\mu_{H}}}=\frac{m_{\mu_{H}}}{M_{SUSY}}, but the function parts are inversely proportional to μH\mu_{H} and have a relatively small effect. After combination, the effect of μH\mu_{H} on muon MDM shows a slowly increasing relationship, when μH\mu_{H} increases from 1000 GeV to 2500 GeV. The three curves all are in the colored areas, which mean that aμBLa^{BL}_{\mu} satisfies the experimental limitations under our assumption. The dotted line is at the top, that is, large tanβ\tan{\beta} value results in larger aμBLa^{BL}_{\mu}. All three lines can exceed 2.0×1092.0\times 10^{-9}.

Refer to caption
Figure 9: The BLMSSM contributions to muon MDM (aμBLa^{BL}_{\mu}) versus μH\mu_{H}.

IV.2.2 Multidimensional scatter plots graphs

In this part, we carry out numerical analysis by scanning free parameters and explore the region to explain the BLMSSM contributions to muon MDM. The random ranges of input parameters are as follows:

tanβ[1,50],gL[0.2,0.8],m1[100,3000]GeV,\displaystyle\tan{\beta}\supset[1,50],~{}~{}~{}g_{L}\supset[0.2,0.8],~{}~{}~{}m_{1}\supset[100,3000]~{}{\rm GeV},
m2[1000,3000]GeV,μH[1000,3000]GeV,mν~L[100,3000]GeV,\displaystyle m_{2}\supset[1000,3000]~{}{\rm GeV},~{}~{}\mu_{H}\supset[1000,3000]~{}{\rm GeV},~{}~{}m_{\tilde{\nu}_{L}}\supset[100,3000]~{}{\rm GeV},
mμ~L[700,3000]GeV,mμ~R[700,3000]GeV,|mL|[200,5000]GeV.\displaystyle m_{{\tilde{\mu}}_{L}}\supset[700,3000]~{}{\rm GeV},~{}~{}m_{{\tilde{\mu}}_{R}}\supset[700,3000]~{}{\rm GeV},~{}~{}|m_{L}|\supset[200,5000]~{}{\rm GeV}. (42)

In Table 2, we show the markers for Figs. 10-12.

Table 2: The meaning of shape style
Shape style Figs. 10,11 Fig. 12
\blacklozenge 0<aμBL<1090<a^{BL}_{\mu}<10^{-9} 0<aμBL<1.5×1090<a^{BL}_{\mu}<1.5\times 10^{-9}
\blacktriangle 109aμBL<1.5×10910^{-9}\leqslant a^{BL}_{\mu}<1.5\times 10^{-9} 1.5×109aμBL<2.0×1091.5\times 10^{-9}\leqslant a^{BL}_{\mu}<2.0\times 10^{-9}
\blacksquare 1.5×109aμBL<2.0×1091.5\times 10^{-9}\leqslant a^{BL}_{\mu}<2.0\times 10^{-9} 2.0×109aμBL<3.0×1092.0\times 10^{-9}\leqslant a^{BL}_{\mu}<3.0\times 10^{-9}
\bullet 2.0×109aμBL<3.0×1092.0\times 10^{-9}\leqslant a^{BL}_{\mu}<3.0\times 10^{-9} \\backslash
Refer to caption
Refer to caption
Figure 10: aμBLa^{BL}_{\mu} in tanβgL\tan{\beta}-g_{L} plane (a) and tanβmμ~L\tan{\beta}-m_{\tilde{\mu}_{L}} plane (b).

To better display sensitive parameters, we show the aμBLa^{BL}_{\mu} in the tanβgL\tan{\beta}-g_{L} plane (a) and tanβmμ~L\tan{\beta}-m_{\tilde{\mu}_{L}} plane (b) in Fig. 10. The bounds between \blacklozenge, \blacktriangle, \blacksquare and \bullet are very obvious in Fig. 10(a). The blue part is displayed in a trapezoid and takes up a lot of space. The results represented by the remaining three colors show a slight radian. The red part is on the upper right corner, that is, large tanβ\tan{\beta} and large gLg_{L} can bring greater contributions. Similarly, \blacklozenge also occupy a large number of positions in Fig. 10(b) and mainly in the wide area 1<tanβ<401<\tan{\beta}<40 and 700GeV<mμ~L<5000GeV700~{}{\rm GeV}<m_{\tilde{\mu}_{L}}<5000~{}{\rm GeV}. \bullet concentrate in the narrow area tanβ(22,50)\tan{\beta}~{}(22,50) and mμ~L(700,1600)GeVm_{\tilde{\mu}_{L}}~{}(700,1600)~{}{\rm GeV}. mμ~Lm_{\tilde{\mu}_{L}} is left-handed smuon mass. The function parts of aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(c)a^{BL,(c)}_{\mu}, aμBL,(d)a^{BL,(d)}_{\mu}, and aμBL,(e)a^{BL,(e)}_{\mu} are inversely proportional to mμ~Lm_{\tilde{\mu}_{L}}. Therefore, this means that light scalar muon improves the BLMSSM contributions to muon MDM.

Refer to caption
Refer to caption
Figure 11: aμBLa^{BL}_{\mu} in mν~L|mL|m_{\tilde{\nu}_{L}}-|m_{L}| plane (a) and mν~LgLm_{\tilde{\nu}_{L}}-g_{L} plane (b).

We plot aμBLa^{BL}_{\mu} in the plane of mν~Lm_{\tilde{\nu}_{L}} versus |mL||m_{L}| by the left diagram in the Fig. 11, and the right diagram shows the relation between aμBLa^{BL}_{\mu}, mν~Lm_{\tilde{\nu}_{L}} and gLg_{L}. One can find that the styles of Fig. 11(a) and Fig. 10(b) are similar. In Fig. 11(a), the blue area is the most. In the range 800GeV<|mL|<1200GeV800~{}{\rm GeV}<|m_{L}|<1200~{}{\rm GeV}, \blacktriangle occupy much space. \blacksquare concentrate in the narrow area |mL|<800GeV|m_{L}|<800~{}{\rm GeV} and 1500GeV<mν~L<3000GeV1500~{}{\rm GeV}<m_{\tilde{\nu}_{L}}<3000~{}{\rm GeV}. \bullet denote large contributions to aμBLa^{BL}_{\mu} that are concentrate in the area |mL|<1000GeV|m_{L}|<1000~{}{\rm GeV} and 100GeV<mν~L<1500GeV100~{}{\rm GeV}<m_{\tilde{\nu}_{L}}<1500~{}{\rm GeV}. mLm_{L} expresses the mass of new gaugino λL\lambda_{L} beyond MSSM. We take mLm_{L} as a negative value in the Eq. (28) and can easily find that this contribution is proportional to xL=mLMSUSY\sqrt{x_{L}}=\frac{m_{L}}{M_{SUSY}}. For more convenience, we take |mL||m_{L}| as the ordinate. These indicate that small |mL||m_{L}| and small mν~Lm_{\tilde{\nu}_{L}} can lead to large corrections. In Fig. 11(b), the layers are distinct, with \blacktriangle, \blacksquare and \bullet arched. In the case of mν~L=3000GeVm_{\tilde{\nu}_{L}}=3000~{}{\rm GeV}, we can find these laws. When gL<0.38g_{L}<0.38, the space is filled with \blacklozenge. The red, green and blue parts correspond to 0.38<gL<0.50.38<g_{L}<0.5, 0.5<gL<0.60.5<g_{L}<0.6 and 0.6<gL<0.740.6<g_{L}<0.74, respectively. mν~Lm_{\tilde{\nu}_{L}} denotes the mass of the left-handed neutrino, which causes a change in aμBL,(f)a^{BL,(f)}_{\mu} by directly affecting the function part of Eq. (29). The final effect is that aμBLa^{BL}_{\mu} is inversely proportional to mν~Lm_{\tilde{\nu}_{L}}. In the whole, small mν~Lm_{\tilde{\nu}_{L}} and large gLg_{L} can obviously improve the corrections to aμBLa^{BL}_{\mu}.

Refer to caption
Refer to caption
Figure 12: aμBLa^{BL}_{\mu} in gL|mL|g_{L}-|m_{L}| plane (a) and mμ~R|mL|m_{\tilde{\mu}_{R}}-|m_{L}| plane (b).

Furthermore, we show the relationship between gLg_{L} and |mL||m_{L}|, mμ~Rm_{\tilde{\mu}_{R}} and |mL||m_{L}| in Fig. 12. It is worth noting that the meanings of \blacklozenge, \blacktriangle and \blacksquare in Fig. 12 are inconsistent with those in Figs. 10,11. The specific meanings are shown in right part of Table 2. The left figure and the right figure have obvious stratification and strong regularity. In Fig. 12(a), the results are divided into two parts by the diagonal. \blacklozenge concentrate in the upper left of the diagonal and \blacktriangle and \blacksquare mainly distribute at the bottom right of the diagonal. In Fig. 12(b), the whole space is covered. \blacksquare concentrate in the narrow area mμ~R(700,1000)GeVm_{\tilde{\mu}_{R}}~{}(700,1000)~{}{\rm GeV} and |mL|(200,1000)GeV|m_{L}|~{}(200,1000)~{}{\rm GeV}. \blacktriangle occupy much space in the range 700GeV<|mL|<2000GeV700~{}{\rm GeV}<|m_{L}|<2000~{}{\rm GeV} and 1000GeV<mμ~R<1800GeV1000~{}{\rm GeV}<m_{\tilde{\mu}_{R}}<1800~{}{\rm GeV}. The blue part occupies all the remaining positions. mμ~Rm_{\tilde{\mu}_{R}} is right-handed smuon mass. Only the function parts of aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(b)a^{BL,(b)}_{\mu} and aμBL,(e)a^{BL,(e)}_{\mu} contain mμ~Rm_{\tilde{\mu}_{R}} and are inversely proportional to mμ~Rm_{\tilde{\mu}_{R}}. The results imply that large mμ~Rm_{\tilde{\mu}_{R}} and large |mL||m_{L}| can diminish the BLMSSM contributions to muon MDM. Based on the above description, we can be more clear about the contribution of the above parameters.

IV.3 The lepton EDM by MIA

In this subsection, we research and analyze the one-loop contributions of the lepton (e,μ,τ)(e,\mu,\tau) EDM in the frame work of CP violating BLMSSM via the mass insertion approximation. According to Part B of Section III, dlBLd^{BL}_{l} mainly depends on 15 parameters, i.e., tanβ\tan{\beta}gLg_{L}M1M_{1}M2M_{2}MLM_{L}MμHM_{\mu_{H}}MμLM_{\mu_{L}}mν~Lm_{\tilde{\nu}_{L}}mL~Rm_{{\tilde{L}}_{R}}, mL~Lm_{{\tilde{L}}_{L}}θ1\theta_{1}θ2\theta_{2}θμH\theta_{\mu_{H}}θμL\theta_{\mu_{L}} and θL\theta_{L}. We take these parameters as free parameters and calculate the BLMSSM contributions to the lepton (e,μ,τ)(e,\mu,\tau) EDM for a given set of parameters, and fix the parameter MSUSY=1000GeVM_{SUSY}=1000~{}{\rm GeV}.

IV.3.1 The electron EDM

First of all, we discuss the electron EDM because its experimental upper limit is very strict. The analysis consists of three parts: 1. make the CP violating phases small O(102103)O(10^{-2}-10^{-3}); 2. increase the particle mass to the several 10 TeV range; 3. make internal cancellations between phases. The light green areas of Figs. 13,14,15 represent the experimental limitations of electron EDM.

a. Small phases

Supposing M1=800GeVM_{1}=800~{}{\rm GeV}M2=1100GeVM_{2}=1100~{}{\rm GeV}ML=3000GeVM_{L}=-3000~{}{\rm GeV}MμH=1100GeVM_{\mu_{H}}=1100~{}{\rm GeV}MμL=1100GeVM_{\mu_{L}}=1100~{}{\rm GeV}mν~L=300GeVm_{\tilde{\nu}_{L}}=300~{}{\rm GeV}mL~R=1800GeVm_{{\tilde{L}}_{R}}=1800~{}{\rm GeV},  mL~L=1800GeVm_{{\tilde{L}}_{L}}=1800~{}{\rm GeV}θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0 and θμL=π/1000\theta_{\mu_{L}}=\pi/1000, we study the contributions from gLg_{L} to electron EDM. We plot the solid line, dashed line and dotted line versus gL(00.8)g_{L}(0-0.8) corresponding to tanβ=(8,10,12)\tan{\beta}=(8,10,12) in Fig. 13. Obviously, these three lines are all increasing functions of gLg_{L}. With tanβ=12\tan{\beta}=12tanβ=10\tan{\beta}=10 and tanβ=8\tan{\beta}=8, deBLd^{BL}_{e} can satisfy the experimental bound in the gLg_{L} region (00.45)(0-0.45)(00.5)(0-0.5) and (00.6)(0-0.6), respectively. Therefore, a small phase and particle mass in the TeV range can satisfy the experimental constraints of electron EDM. However, a small phase represents fine tuning unless it occurs naturally, for example as a loop correction.

Refer to caption
Figure 13: With θμL=π/1000\theta_{\mu_{L}}=\pi/1000, and θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0, the BLMSSM contributions to electron EDM (deBLd^{BL}_{e}) versus gLg_{L}.

b. Mass suppression

The parameters gL=0.1g_{L}=0.1M1=800GeVM_{1}=800~{}{\rm GeV}M2=1100GeVM_{2}=1100~{}{\rm GeV}ML=4500GeVM_{L}=4500~{}{\rm GeV}MμH=1100GeVM_{\mu_{H}}=1100~{}{\rm GeV}mν~L=300GeVm_{\tilde{\nu}_{L}}=300~{}{\rm GeV}, and θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0 are adopted. The remaining parameters are large masses of particles, i.e., MμL=30000GeVM_{\mu_{L}}=30000~{}{\rm GeV}mL~R=40000GeVm_{{\tilde{L}}_{R}}=40000~{}{\rm GeV} and mL~L=40000GeVm_{{\tilde{L}}_{L}}=40000~{}{\rm GeV}. With tanβ=(10,15,20)\tan{\beta}=(10,15,20), the results are shown by the solid line, dashed line and dotted line respectively in Fig. 14. θμL\theta_{\mu_{L}} is the CP violating phase of new parameter μL\mu_{L}. μL\mu_{L} relates with sneutrino mass squared matrix and lepton neutralino mass matrix. The shapes of the three lines are consistent, and they are very similar as sinθμL-\sin\theta_{\mu_{L}}. For θμL\theta_{\mu_{L}} from π\pi to 2π2\pi, the dotted line is up the dashed line and the dashed line is up the solid line. Total solid line and most parts of dashed and dotted lines are in the light green area. That is to say, particle mass in the several 10 TeV range and a normal phase can easily satisfy the experimental limitations of electron EDM. However, this violates the naturalness. Obviously, the several 10 TeV range even may be out of reach of LHC.

Refer to caption
Figure 14: With θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0, the BLMSSM contributions to electron EDM (deBLd^{BL}_{e}) versus θμL\theta_{\mu_{L}}.

c. Internal cancellations

To sum up, we discuss the third possible method, which is internal cancellations among the different phases of the electron EDM. We study the numerical results versus Θ\Theta (Θ=θμL=θμH\Theta=\theta_{\mu_{L}}=\theta_{\mu_{H}}) with gL=0.5g_{L}=0.5M1=800GeVM_{1}=800~{}{\rm GeV}M2=2200GeVM_{2}=2200~{}{\rm GeV}ML=1000GeVM_{L}=1000~{}{\rm GeV}MμH=1800GeVM_{\mu_{H}}=1800~{}{\rm GeV}MμL=1200GeVM_{\mu_{L}}=1200~{}{\rm GeV}mν~L=1200GeVm_{\tilde{\nu}_{L}}=1200~{}{\rm GeV}mL~R=700GeVm_{{\tilde{L}}_{R}}=700~{}{\rm GeV},  mL~L=700GeVm_{{\tilde{L}}_{L}}=700~{}{\rm GeV} and θ1=θ2=θL=0\theta_{1}=\theta_{2}=\theta_{L}=0. The corresponding results are plotted by the solid line, dashed line and dotted line in Fig. 15. The three lines all look like sinΘ\sin\Theta. At these points Θ=0\Theta=0Θ=π\Theta=\pi, and Θ=2π\Theta=2\pi, there is none CP violating effect and deBL=0d^{BL}_{e}=0 is reasonable. The largest values of the three lines are respectively 1.01×10291.01\times 10^{-29} e.cm, 1.21×10291.21\times 10^{-29} e.cm and 1.51×10291.51\times 10^{-29} e.cm. With tanβ=10\tan{\beta}=10, the solid line all in the experiment constraint. This possible method has normal size CP violating phases O(1)O(1) and particle mass in the TeV range. The obtained results can also more easily satisfy the experimental limitations of electron EDM.

Refer to caption
Figure 15: With θ1=θ2=θL=0\theta_{1}=\theta_{2}=\theta_{L}=0, the BLMSSM contributions to electron EDM (deBLd^{BL}_{e}) versus Θ\Theta (Θ=θμL=θμH\Theta=\theta_{\mu_{L}}=\theta_{\mu_{H}}).

IV.3.2 The muon EDM

At present, the experimental upper bound of muon EDM is |dμexp|<1.8×1019|d^{exp}_{\mu}|<1.8\times 10^{-19} e.cm. In the part, we adopt the parameters as tanβ=15\tan{\beta}=15M1=800GeVM_{1}=800~{}{\rm GeV}M2=1100GeVM_{2}=1100~{}{\rm GeV}MμH=1100GeVM_{\mu_{H}}=1100~{}{\rm GeV}MμL=2500GeVM_{\mu_{L}}=2500~{}{\rm GeV}mν~L=150GeVm_{\tilde{\nu}_{L}}=150~{}{\rm GeV}mL~R=700GeVm_{{\tilde{L}}_{R}}=700~{}{\rm GeV}, mL~L=700GeVm_{{\tilde{L}}_{L}}=700~{}{\rm GeV}, θ1=θ2=θμH=θμL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{\mu_{L}}=0 and θL=π/3\theta_{L}=\pi/3. We study dμBLd^{BL}_{\mu} versus MLM_{L} with gL=(0.3,0.4,0.5)g_{L}=(0.3,0.4,0.5), and the results are plotted by the solid line, dashed line and dotted line in Fig. 16. MLM_{L} is the gaugino mass for the new gaugino λL\lambda_{L}. In Eq. (39), dlBL,(e)d^{BL,(e)}_{l} is proportional to xL=|ML|MSUSY\sqrt{x_{L}}=\frac{|M_{L}|}{M_{SUSY}}. The dashed line reaches 2.38×10232.38\times 10^{-23} e.cm as ML=360GeVM_{L}=-360~{}{\rm GeV}. When |ML|>360GeV|M_{L}|>360~{}{\rm GeV}, the absolute values of the numerical results shrink with the enlarging |ML||M_{L}|. Larger gLg_{L} results in larger dμBLd^{BL}_{\mu}, when the other parameters are same. All numerical results are around the order of 102210^{-22} e.cm, which is almost three-order smaller than muon EDM upper bound.

Refer to caption
Figure 16: With θL=π/3\theta_{L}=\pi/3, and θ1=θ2=θμH=θμL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{\mu_{L}}=0, the BLMSSM contributions to muon EDM (dμBLd^{BL}_{\mu}) versus MLM_{L}.

IV.3.3 The tau EDM

Among the lepton EDM bounds, the tau EDM has the loosest experimental upper limit, which is about 101710^{-17} e.cm. Now, supposing gL=0.6g_{L}=0.6M1=800GeVM_{1}=800~{}{\rm GeV}M2=1100GeVM_{2}=1100~{}{\rm GeV}ML=500GeVM_{L}=-500~{}{\rm GeV}MμH=1100GeVM_{\mu_{H}}=1100~{}{\rm GeV}MμL=1100GeVM_{\mu_{L}}=1100~{}{\rm GeV}mν~L=150GeVm_{\tilde{\nu}_{L}}=150~{}{\rm GeV}mL~R=1500GeVm_{{\tilde{L}}_{R}}=1500~{}{\rm GeV}, mL~L=1500GeVm_{{\tilde{L}}_{L}}=1500~{}{\rm GeV}, and θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0, we study the influence of θμL\theta_{\mu_{L}} on tau EDM (dτBLd^{BL}_{\tau}). In Fig. 17, the solid line, dashed line and dotted line respectively correspond to tanβ=(10,20,30)\tan{\beta}=(10,20,30) and their numerical results are all within the experimental limits of tau EDM. There is none CP violating effect and dτBL=0d^{BL}_{\tau}=0 is reasonable, as θμL=0\theta_{\mu_{L}}=0θμL=π\theta_{\mu_{L}}=\pi and θμL=2π\theta_{\mu_{L}}=2\pi. When θμL=0.5π\theta_{\mu_{L}}=0.5\pi and θμL=1.5π\theta_{\mu_{L}}=1.5\pi, the absolute value of dτBLd^{BL}_{\tau} reaches the maximum. The dotted line can arrive at 1.47×10221.47\times 10^{-22} e.cm. Generally speaking, the results are about five-order smaller than the experimental bound of the tau EDM.

Refer to caption
Figure 17: With θ1=θ2=θμH=θL=0\theta_{1}=\theta_{2}=\theta_{\mu_{H}}=\theta_{L}=0, the BLMSSM contributions to tau EDM (dτBLd^{BL}_{\tau}) versus θμL\theta_{\mu_{L}}.

V Discussion and conclusion

In the framework of the BLMSSM, we study the one-loop contributions to the muon MDM and the lepton (e,μ,τ)(e,\mu,\tau) EDM. During the analysis, the mass insertion approximation is used to more clearly display sensitive parameters. All parameters used can satisfy the latest experimental data. The relative error (MEMIAMEME-MIA\over ME) between the mass eigenstate (ME) and the mass insertion approximation (MIA) is about 1%1\%, which is shown as a narrow area in the figure. Therefore, the accuracy of the MIA expressions is verified.

As we mentioned before, there are dominant three parts on which aμBLa^{BL}_{\mu} depends, i.e., aμBL,(a)a^{BL,(a)}_{\mu}, aμBL,(e)a^{BL,(e)}_{\mu} and aμBL,(f)a^{BL,(f)}_{\mu}. We take tanβ\tan{\beta}gLg_{L}m1m_{1}m2m_{2}mLm_{L}μH\mu_{H}mν~Lm_{\tilde{\nu}_{L}}mμ~Rm_{{\tilde{\mu}}_{R}} and mμ~Lm_{{\tilde{\mu}}_{L}} as free parameters. Among them, tanβ\tan{\beta}gLg_{L}mLm_{L} and μH\mu_{H} are more sensitive parameters. aμBLa^{BL}_{\mu} is an increasing function of tanβ,gL,μH\tan\beta,~{}g_{L},~{}\mu_{H} and decreasing function of m2m_{2}. Small |mL||m_{L}| and small mν~m_{\tilde{\nu}} can improve the BLMSSM contributions to muon MDM. In our used parameter space, the contributions to muon MDM can easily reach its upper bound and even exceed it. Our best numerical result of aμBLa^{BL}_{\mu} is around 2.5×1092.5\times 10^{-9}, which can well compensate the departure between the experiment data and the SM prediction.

The effects of the CP violating phases θ1,θ2,θμH,θμL,θL\theta_{1},\theta_{2},\theta_{\mu_{H}},\theta_{\mu_{L}},\theta_{L} on the lepton (e,μ,τ)(e,\mu,\tau) EDM are researched. Using MIA, the impact of the CP violating phases on dlBLd^{BL}_{l} can be observed more intuitively. The addition of two new CP violating sources (θμL\theta_{\mu_{L}},θL\theta_{L}) and the coupling constant gLg_{L} can enhance the one-loop contributions from the neutralino-slepton diagram by several orders. The upper bound of electron EDM is 1.1×10291.1\times 10^{-29} e.cm, which is the most stringent. This poses a challenge to the BLMSSM parameter space. By using the method of two phases cancellation, the contributions to electron EDM can be controlled below the experimental limit in our parameter space. The numerical results of muon EDM and tau EDM are several orders smaller than their upper limits, and at the order of 102210^{-22} e.cm in our used parameter space. With the improvement of technical accuracy, the lepton EDM may be detected by the experiments in the near future.

Acknowledgements.
This work is supported by National Natural Science Foundation of China (NNSFC) (No.12075074), Natural Science Foundation of Hebei Province (A2020201002, A202201022, A2022201017), Natural Science Foundation of Hebei Education Department (QN2022173), Post-graduate’s Innovation Fund Project of Hebei University (HBU2022ss028, HBU2023SS043), the youth top-notch talent support program of the Hebei Province.

References

  • (1) T. Aoyama, N. Asmussen, M. Benayoun, et al., Phys. Rept. 887 (2020) 1.
  • (2) G.W. Bennett, et al., Phys. Rev. D 73 (2006) 072003.
  • (3) A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97 (2018) 114025.
  • (4) G. Colangelo, M. Hoferichter, P. Stoffer, J. High Energy Phys. 02 (2019) 006.
  • (5) M. Hoferichter, B.L. Hoid, B. Kubis, J. High Energy Phys. 08 (2019) 137.
  • (6) M. Davier, A. Hoecker, B. Malaescu, et al., Eur. Phys. J. C. 80 (2020) 241.
  • (7) A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101 (2020) 014029.
  • (8) T. Blum, P.A. Boyle, V. Gulpers, et al., Phys. Rev. Lett. 121 (2018) 022003.
  • (9) T. Aoyama, M. Hayakawa, T. Kinoshita, et al., Phys. Rev. Lett. 109 (2012) 111808.
  • (10) G. Colangelo, F. Hagelstein, M. Hoferichter, et al., J. High Energy Phys. 03 (2020) 101.
  • (11) G. Eichmann, C.S. Fischer, R. Williams, Phys. Rev. D 101 (2020) 054015.
  • (12) T. Blum, N. Christ, M. Hayakawa, et al., Phys. Rev. Lett. 124 (2020) 132002.
  • (13) T. Aoyama, T. Kinoshita, M. Nio, Atoms 7 (2019) 28.
  • (14) A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D 67 (2003) 073006.
  • (15) C. Gnendiger, D. Stockinger, H.S. Kim, Phys. Rev. D 88 (2013) 053005.
  • (16) M.T. Hansen, A. Patella, J. High Energy Phys. 10 (2020) 029.
  • (17) H. Davoudiasl, W.J. Marciano, Phys. Rev. D 98 (2018) 075011.
  • (18) K. Hagiwara, A. Keshavarzi, A.D. Martin, et al., Nucl. Part. Phys. Proc. 287-288 (2017) 33-38.
  • (19) Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801.
  • (20) A. Shindler, Eur. Phys. J. A. 57 (2021) 128 .
  • (21) J. Baron, et al., (ACME Collaboration) Science 343 (2014) 269.
  • (22) V. Andreev, et al., (ACME Collaboration) Nature 562 (2018) 355-60.
  • (23) A. Crivellin, M. Hoferichter, P.S. Wellenburg, Phys. Rev. D 98 (2018) 113002.
  • (24) R.L. Workman, et al., (Particle Data Group), Prog. Theor. Exp. Phys. 2022 (2022) 083C01.
  • (25) M.E. Pospelov and I.B. Khriplovich, Sov. J. Nucl. Phys. 53 (1991) 638.
  • (26) M. Pospelov and A. Ritz, Phys. Rev. D. 89 (2014) 056006.
  • (27) S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 690 (2004) 62.
  • (28) S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 699 (2004) 103.
  • (29) F. Wang, L. Wu, Y. Xiao, et al., Nucl. Phys. B. 970 (2021) 115486 [arXiv:2104.03262].
  • (30) J.J. Cao, J.W. Lian, Y.S. Pan, et al., J. High Energy Phys. 09 (2021) 175 [arXiv:2104.03284].
  • (31) J.J. Cao, X.L. Jia, L. Meng, et al., [arXiv:2210.08769].
  • (32) J.J. Cao, J.W. Lian, Y.S. Pan, et al., J. High Energy Phys. 03 (2022) 203 [arXiv:2201.11490].
  • (33) J.J. Cao, F. Li, J.W. Lian, et al., Sci.China Phys.Mech.Astron. 65 (2022) 9, 291012 [arXiv:2204.04710].
  • (34) W. Yin, J. High Energy Phys. 06 (2021) 029 [arXiv:2104.03259].
  • (35) W. Yin, M. Yamaguchi, Phys.Rev.D 106 (2022) 3, 033007 [arXiv:2012.03928].
  • (36) S.M. Zhao, T.F. Feng, H.B. Zhang, et al., J. High Energy Phys. 11 (2014) 119 [arXiv: 1405.7561].
  • (37) J.L. Yang, H.B. Zhang, C.X. Liu, et al., J. High Energy Phys. 08 (2021) 086.
  • (38) J.L. Yang, T.F. Feng, Y.L. Yan, et al., Phys. Rev. D. 99 (2019) 015002.
  • (39) L.H. Su, S.M. Zhao, X.X. Dong, et al., Eur. Phys. J. C 81 (2021) 433.
  • (40) S.M. Zhao, L.H. Su, and X.X. Dong, et al., J. High Energy Phys. 03 (2022) 101.
  • (41) C.X. Liu, H.B. Zhang, J.L. Yang, et al., J. High Energy Phys. 04 (2020) 002.
  • (42) F. del Aguila, M. B. Gavela, J. A. Grifols, et al., Phys. Lett. B 129 (1983) 473.
  • (43) T. Ibrahim, P. Nath, Phys. Rev. D 60 (1999) 099902.
  • (44) S. Atag, E. Gurkanli, J. High Energy Phys. 1606 (2016) 118.
  • (45) T. Abe, N. Omoto, O. Seto, et al., Phys. Rev. D 98 (2018) 075029.
  • (46) J. Rosiek, Phys. Rev. D 41 (1990) 3464.
  • (47) H.P. Nilles, Phys. Rept. 110 (1984) 1.
  • (48) H.E. Haber, G.L. Kane, Phys. Rept. 117 (1985) 75.
  • (49) S.M. Zhao, T.F. Feng, X.J. Zhan, et al., J. High Energy Phys. 07 (2015) 124.
  • (50) T. Ibrahim and P. Nath, Phys. Rev. D 57 (1998) 478.
  • (51) T. Ibrahim and P. Nath, Phys. Rev. D 58(1998) 019901.
  • (52) P.F. Perez and M.B. Wise, J. High Energy Phys. 08 (2011) 068.
  • (53) P.F. Perez and M.B. Wise, Phys. Rev. D 82 (2010) 011901.
  • (54) P.F. Perez, Phys. Rept. 597 (2015) 1-30.
  • (55) P.F. Perez, Phys. Lett. B 711 (2012) 353 [arXiv:1201.1501].
  • (56) J.M. Arnold, P.F. Perez, B. Fornal, et al., Phys. Rev. D 85 (2012) 115024 [arXiv:1204.4458].
  • (57) T.F. Feng, S.M. Zhao, H.B. Zhang, et al., Nucl. Phys. B 871 (2013) 223.
  • (58) E. Arganda, M.J. Herrero, R. Morales, et al., J. High Energy Phys. 03 (2016) 055.
  • (59) T.F. Feng, L. Sun, X.Y. Yang, Nucl. Phys. B 800 (2008) 221-252.
  • (60) T. Moroi, Phys. Rev. D 53 (1996) 6565-6575.
  • (61) D. Stockinger, J. Phys. G 34 (2007) R45-R92.
  • (62) P. Athron, C. Balazs, D.H.J. Jacob, et al., J. High Energy Phys. 09 (2021) 080 [arXiv:2104.03691].
  • (63) M. Endo, K. Hamaguchi, S. Iwamoto, et al., J. High Energy Phys. 07 (2021) 075.
  • (64) M. Chakraborti, L. Roszkowski and S. Trojanowski, J. High Energy Phys. 05 (2021) 252 [arXiv:2104.04458].
  • (65) P. Cox, C.C. Han, and T.T. Yanagida, Phys. Rev. D. 104 (2021) 075035 [arXiv:2104.03290].
  • (66) M.V. Beekveld, W. Beenakker, M. Schutten, et al., SciPost Phys. 11 (2021) 3, 049 [arXiv:2104.03245].
  • (67) M. Chakraborti, S. Heinemeyer and I. Saha, Eur. Phys. J. C. 81 (2021) 12, 1114 [arXiv:2104.03287].
  • (68) CMS Collaboration, Phys. Lett. B 716 (2012) 30.
  • (69) ATLAS Collaboration, Phys. Lett. B 716 (2012) 1.
  • (70) ATLAS Collaboration, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248].