This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Studying Radiative Baryon Decays with the SU(3) Flavor Symmetry

Ru-Min Wang1,†,  Xiao-Dong Cheng2,§,  Ying-Ying Fan2,♢,  Jie-Lei Zhang2,♯,  Yuan-Guo Xu1,‡
1College of Physics and Communication Electronics, JiangXi Normal University, NanChang, JiangXi 330022, China
2College of Physics and Electronic Engineering, XinYang Normal University, XinYang, Henan 464000, China
ruminwang@sina.com
   §chengxd@mails.ccnu.edu.cn   fyy163@126.com    zhangjielei@ihep.ac.cn   yuanguoxv@163.com
Abstract

The weak and electromagnetic radiative baryon decays of octet T8T_{8}, decuplet T10T_{10}, single charmed anti-triplet Tc3T_{c3} and sextet Tc6T_{c6}, single heavy bottomed anti-triplet Tb3T_{b3} and sextet Tb6T_{b6} are investigated by using SU(3) flavor symmetry irreducible representation approach. We analyze the contributions from a single quark transition q1q2γq_{1}\to q_{2}\gamma and WW exchange transitions, and find that the amplitudes could be easily related by SU(3) flavor symmetry in the Tb3,b6T_{b3,b6} weak radiative decays, Tc3,c6T_{c3,c6} weak radiative decays, T10T8γT_{10}\to T_{8}\gamma weak decays, T10T10γT_{10}\to T^{\prime}_{10}\gamma weak decays and T10T8γT_{10}\to T_{8}\gamma electromagnetic decays. Nevertheless, the amplitude relations are a little complex in the T8T8γT_{8}\to T^{\prime}_{8}\gamma and T8T10γT_{8}\to T_{10}\gamma weak decays due to quark antisymmetry in T8T_{8} and WW exchange contributions. Predictions for branching ratios of Λb0nγ\Lambda^{0}_{b}\to n\gamma, ΞbΞγ\Xi^{-}_{b}\to\Xi^{-}\gamma, ΞbΣγ\Xi^{-}_{b}\to\Sigma^{-}\gamma, Ξb0Σ0γ\Xi^{0}_{b}\to\Sigma^{0}\gamma, Ξb0Λ0γ\Xi^{0}_{b}\to\Lambda^{0}\gamma, Ξb0Ξ0γ\Xi^{0}_{b}\to\Xi^{0}\gamma, ΞΞγ\Xi^{*}\to\Xi\gamma, Σ0Σ0γ\Sigma^{*0}\to\Sigma^{0}\gamma, Δ0nγ\Delta^{0}\to n\gamma and Δ+pγ\Delta^{+}\to p\gamma are given. The results in this work can be used to test SU(3) flavor symmetry approach in the radiative baryon decays by the future experiments at BESIII, LHCb and Belle-II.

I INTRODUCTION

Radiative weak decays have attracted a lot of attention for a long time in both theory and experiment, since they could give us a chance to study the interplay of the electromagnetic, weak and strong interactions, to test the standard model and to probe new physics. A large number of bottomed baryons, charmed baryon and hyperons are produced at the LHC Cerri:2018ypt ; Aaij:2017ddf ; Junior:2018odx , significant experimental progresses about Λb0\Lambda_{b}^{0} baryon rare decays have been achieved recently at LHCb, and one of them is that radiative decay Λb0Λ0γ\Lambda^{0}_{b}\to\Lambda^{0}\gamma has been observed with a branching ratio of (7.1±1.5±0.6±0.7)×106(7.1\pm 1.5\pm 0.6\pm 0.7)\times 10^{-6} for the first time Aaij:2019hhx . Furthermore, many radiative weak decays of strange baryons have been measured PDG2020 , and there are longstanding theoretical difficulties to explain the experimental data Lach:1995we ; Donoghue:1985rk . Now the sensitivity for measurements of hyperon decays is in the range of 10510810^{-5}-10^{-8} at the BESIII Li:2016tlt ; Bigi:2017eni ; Asner:2008nq ; Ablikim:2018zay . Therefore, more baryon radiative decays will be detected by the experiments in the near future, so it’s feasible to explore these decays now.

Theoretically, due to our poor understanding of QCD at low energy regions, theoretical calculations of decay amplitudes are not well understood. SU(3) flavor symmetry has attracted a lot of attentions. The SU(3) flavor symmetry approach, which is independent of the detailed dynamics, offers an opportunity to relate different decay modes. Nevertheless, it cannot determine the size of the amplitudes by itself. However, if experimental data are enough, one may use the data to extract the amplitudes, which can be viewed as predictions based on symmetry. There are two popular ways of the SU(3) flavor symmetry. One is to construct the SU(3) irreducible representation amplitude by decomposing effective Hamiltonian. Another way is topological diagram approach, where decay amplitudes are represented by connecting quark line flows in different ways and then relate them by the SU(3) symmetry. The SU(3) irreducible representation approach (IRA) shows a convenient connection with the SU(3) symmetry, the topological diagram approach gives a better understanding of dynamics in the different amplitudes. The SU(3) flavor symmetry works well in bottomed hadron decays Dery:2020lbc ; He:1998rq ; He:2000ys ; Fu:2003fy ; Hsiao:2015iiu ; He:2015fwa ; He:2015fsa ; Deshpande:1994ii ; Gronau:1994rj ; Gronau:1995hm ; Shivashankara:2015cta ; Zhou:2016jkv ; Cheng:2014rfa ; Singer:1995is , charmed hadron decays Grossman:2012ry ; Pirtskhalava:2011va ; Cheng:2012xb ; Savage:1989qr ; Savage:1991wu ; Altarelli:1975ye ; Lu:2016ogy ; Geng:2017esc ; Geng:2018plk ; Geng:2017mxn ; Geng:2019bfz ; Wang:2017azm ; Wang:2019dls ; Wang:2017gxe ; Muller:2015lua and hyperon decays Xu:2020jfr ; Wang:2019alu ; Chang:2014iba ; Zenczykowski:2005cs ; Zenczykowski:2006se .

Many weak radiative decays have been studied by chiral perturbation theory Bos:1996ig , perturbative QCD He:2006ud , quark model approach Singer:1996xh , Bethe-Salpeter equation approach Liu:2019rpm , relativistic quark model Faustov:2017ous , light-cone sum-rule Aliev:2004ju , single universal extra dimension scenario Colangelo:2007jy and effective Lagrangian approach Cheng:1994kp , etc. And some electromagnetic radiative baryon decays have been also studied in Refs. Ramalho:2020tnn ; Junker:2019vvy . In this work, we will study the weak radiative baryon decays with a single quark transitions (bdγb\to d\gamma, bsγb\to s\gamma, cuγc\to u\gamma, sdγs\to d\gamma) and corresponding WW exchange transitions as well as the electromagnetic radiative decays of T10T8γT_{10}\to T_{8}\gamma by using the SU(3) IRA. We will firstly construct the SU(3) irreducible representation amplitudes for different kinds of radiative baryon decays, secondly obtain the decay amplitude relations between different decay modes, then use the available data to extract the SU(3) irreducible amplitudes, and finally predict the not-yet-measured modes for further tests in experiments.

This paper is organized as follows. In Sec. II, we will collect the representations for the baryon multiplets and the branching ratio expressions of the radiative baryon decays. In Sec. III, we will analyze the weak radiative decays of Tb3,b6T_{b3,b6}, Tc3,c6T_{c3,c6} and T8,10T_{8,10} as well as the electromagnetic radiative decays T10T8γT_{10}\to T_{8}\gamma. Our conclusions are given in Sec. IV.

II Theoretical Frame for 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma

II.1 Baryon multiplets

The light baryons octet T8T_{8} and decuplet T10T_{10} under the SU(3) flavor symmetry of u,d,su,d,s quarks can be written as

T8\displaystyle T_{8} =\displaystyle= (Λ06+Σ02Σ+pΣΛ06Σ02nΞΞ02Λ06),\displaystyle\left(\begin{array}[]{ccc}\frac{\Lambda^{0}}{\sqrt{6}}+\frac{\Sigma^{0}}{\sqrt{2}}&\Sigma^{+}&p\\ \Sigma^{-}&\frac{\Lambda^{0}}{\sqrt{6}}-\frac{\Sigma^{0}}{\sqrt{2}}&n\\ \Xi^{-}&\Xi^{0}&-\frac{2\Lambda^{0}}{\sqrt{6}}\end{array}\right)\,, (4)
T10\displaystyle T_{10} =\displaystyle= 13((3Δ++Δ+Σ+Δ+Δ0Σ02Σ+Σ02Ξ0),(Δ+Δ0Σ02Δ03ΔΣΣ02ΣΞ),(Σ+Σ02Ξ0Σ02ΣΞΞ0Ξ3Ω)).\displaystyle\frac{1}{\sqrt{3}}\left(\left(\begin{array}[]{ccc}\sqrt{3}\Delta^{++}&\Delta^{+}&\Sigma^{*+}\\ \Delta^{+}&\Delta^{0}&\frac{\Sigma^{*0}}{\sqrt{2}}\\ \Sigma^{*+}&\frac{\Sigma^{*0}}{\sqrt{2}}&\Xi^{*0}\end{array}\right),\leavevmode\nobreak\ \left(\begin{array}[]{ccc}\Delta^{+}&\Delta^{0}&\frac{\Sigma^{*0}}{\sqrt{2}}\\ \Delta^{0}&\sqrt{3}\Delta^{-}&\Sigma^{*-}\\ \frac{\Sigma^{*0}}{\sqrt{2}}&\Sigma^{*-}&\Xi^{*-}\end{array}\right),\leavevmode\nobreak\ \left(\begin{array}[]{ccc}\Sigma^{*+}&\frac{\Sigma^{*0}}{\sqrt{2}}&\Xi^{*0}\\ \frac{\Sigma^{*0}}{\sqrt{2}}&\Sigma^{*}{-}&\Xi^{*-}\\ \Xi^{*0}&\Xi^{*-}&\sqrt{3}\Omega^{-}\end{array}\right)\right). (14)

The single charmed anti-triplet Tc3T_{c3} and sextet Tc6T_{c6} can be written as

Tc3\displaystyle T_{c3} =\displaystyle= (Ξc0,Ξc+,Λc+),Tc6=(Σc++12Σc+12Ξc+12Σc+Σc012Ξc012Ξc+12Ξc0Ωc).\displaystyle(\Xi^{0}_{c},\leavevmode\nobreak\ -\Xi^{+}_{c},\leavevmode\nobreak\ \Lambda^{+}_{c}),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ T_{c6}=\left(\begin{array}[]{ccc}\Sigma^{++}_{c}&\frac{1}{\sqrt{2}}\Sigma^{+}_{c}&\frac{1}{\sqrt{2}}\Xi^{*+}_{c}\\ \frac{1}{\sqrt{2}}\Sigma^{+}_{c}&\Sigma^{0}_{c}&\frac{1}{\sqrt{2}}\Xi^{*0}_{c}\\ \frac{1}{\sqrt{2}}\Xi^{*+}_{c}&\frac{1}{\sqrt{2}}\Xi^{*0}_{c}&\Omega_{c}\end{array}\right)\,. (18)

The anti-triplet Tb3T_{b3} and sextet Tb6T_{b6} with a heavy b quark have a similar form to Tc3T_{c3} and Tc6T_{c6}, respectively,

Tb3\displaystyle T_{b3} =\displaystyle= (Ξb,Ξb0,Λb0),Tb6=(Σb+12Σb012Ξb012Σb0Σb12Ξb12Ξb012ΞbΩb).\displaystyle(\Xi^{-}_{b},\leavevmode\nobreak\ -\Xi^{0}_{b},\leavevmode\nobreak\ \Lambda^{0}_{b}),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ T_{b6}=\left(\begin{array}[]{ccc}\Sigma^{+}_{b}&\frac{1}{\sqrt{2}}\Sigma^{0}_{b}&\frac{1}{\sqrt{2}}\Xi^{*0}_{b}\\ \frac{1}{\sqrt{2}}\Sigma^{0}_{b}&\Sigma^{-}_{b}&\frac{1}{\sqrt{2}}\Xi^{*-}_{b}\\ \frac{1}{\sqrt{2}}\Xi^{*0}_{b}&\frac{1}{\sqrt{2}}\Xi^{*-}_{b}&\Omega_{b}\end{array}\right)\,. (22)

II.2 Decay branching ratio of 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma

In the standard model, the weak radiative baryon decays 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma with q1q2γq_{1}\to q_{2}\gamma transition can proceed via loop Feynman diagrams as shown in Fig. 1. The effective Hamiltonian for q1q2γq_{1}\to q_{2}\gamma transition shown in Fig. 1 can be written as Buchalla:1995vs

eff(q1q2γ)=GF2eλq1q24π2C7effmq1(q¯2iσμqPRq1)ϵμ,\displaystyle\mathcal{H}_{eff}(q_{1}\to q_{2}\gamma)=-\frac{G_{F}}{\sqrt{2}}\frac{e\lambda_{q_{1}q_{2}}}{4\pi^{2}}C^{eff}_{7}m_{q_{1}}\Big{(}\bar{q}_{2}i\sigma^{\mu q}P_{R}q_{1}\Big{)}\epsilon_{\mu}, (23)

where PR=(1+γ5)/2P_{R}=(1+\gamma_{5})/2, σμq=i2(γμγνγνγμ)qν\sigma^{\mu q}=\frac{i}{2}(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu})q_{\nu} with q=p1p2q=p_{1}-p_{2}, ϵμ\epsilon_{\mu} is the polarization vectors of photon, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements λq1q2=VtbVts,VtbVtd,VusVud,VcbVub\lambda_{q_{1}q_{2}}=V_{tb}V^{*}_{ts},\leavevmode\nobreak\ V_{tb}V^{*}_{td},\leavevmode\nobreak\ -V_{us}V^{*}_{ud},V^{*}_{cb}V_{ub} for bsγb\to s\gamma, bdγb\to d\gamma, sdγs\to d\gamma, cuγc\to u\gamma, respectively.

Refer to caption
Figure 1: Feynman diagram for 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma weak decays via a single quark emission in the standard model.

Then the decay amplitudes can be written as

(12γ)\displaystyle\mathcal{M}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma) =\displaystyle= 2γ|eff(q1q2γ)|1\displaystyle\langle\mathcal{B}_{2}\gamma|\mathcal{H}_{eff}(q_{1}\to q_{2}\gamma)|\mathcal{B}_{1}\rangle (24)
=\displaystyle= iGF2eλq1q24π2C7effmq1ϵμqν2|q¯2σμνPRq1|1.\displaystyle-i\frac{G_{F}}{\sqrt{2}}\frac{e\lambda_{q_{1}q_{2}}}{4\pi^{2}}C^{eff}_{7}m_{q_{1}}\epsilon_{\mu}q_{\nu}\langle\mathcal{B}_{2}|\bar{q}_{2}\sigma^{\mu\nu}P_{R}q_{1}|\mathcal{B}_{1}\rangle.

The baryon matrix elements 2|q¯2σμνPRq1|1\langle\mathcal{B}_{2}|\bar{q}_{2}\sigma^{\mu\nu}P_{R}q_{1}|\mathcal{B}_{1}\rangle can be parameterized by the form factors, but not all relevant form factors have been calculated and there is no very reliable method to calculate some form factors at present. Nevertheless, the baryon matrix elements also can be obtained by the SU(3) IRA. In terms of the SU(3) flavor symmetry, baryon states and quark operators can be parameterized into SU(3) tensor forms, while the polarization vectors ϵμ\epsilon_{\mu} are invariant under SU(3) flavor symmetry. The decay amplitudes in terms of the SU(3) IRA are given in later Tab. 1, Tab. 3, Tab. 4 and Tab. 5 for Tb3,b6T8,10γT_{b3,b6}\to T_{8,10}\gamma, Tb3,b6Tc3,c6γT_{b3,b6}\to T_{c3,c6}\gamma, Tc3,c6T8,10γT_{c3,c6}\to T_{8,10}\gamma and T8,10T8,10γT_{8,10}\to T^{{}^{\prime}}_{8,10}\gamma weak decays, respectively.

The branching ratios of the 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma weak decays can be obtained by the decay amplitudes

(12γ)=τ1(m12m22)16πm13|(12γ)|2.\displaystyle\mathcal{B}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)=\frac{\tau_{\mathcal{B}_{1}}(m^{2}_{\mathcal{B}_{1}}-m^{2}_{\mathcal{B}_{2}})}{16\pi m^{3}_{\mathcal{B}_{1}}}\left|\mathcal{M}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)\right|^{2}. (25)

After extracting the masses, the Wilson Coefficients, etc, from |(12γ)|2|\mathcal{M}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)|^{2}, the branching ratios of the Tb3,c3,8Tc3,c6,8,10γT_{b3,c3,8}\to T^{\prime}_{c3,c6,8,10}\gamma and Tb6,c6,10Tc3,8γT_{b6,c6,10}\to T_{c3,8}\gamma weak decays are Faustov:2017wbh ; Gutsche:2013pp

(12γ)=τ1αe64π4GF2mq12m13|λq1q2|2|C7γeff(mq1)|2(1m22m12)3|A(12γ)|2,\displaystyle\mathcal{B}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)=\frac{\tau_{\mathcal{B}_{1}}\alpha_{e}}{64\pi^{4}}G^{2}_{F}m_{q_{1}}^{2}m^{3}_{\mathcal{B}_{1}}|\lambda_{q_{1}q_{2}}|^{2}|C^{eff}_{7\gamma}(m_{q_{1}})|^{2}\left(1-\frac{m^{2}_{\mathcal{B}_{2}}}{m^{2}_{\mathcal{B}_{1}}}\right)^{3}\left|A(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)\right|^{2}, (26)

where A(12γ)A(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma) may be given by the form factors as |A(12γ)|2=K(|f2TV(0)|2+|f2TA(0)|2)=K(|h(0)|2+|h~(0)|2)\left|A(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)\right|^{2}=K(|f_{2}^{TV}(0)|^{2}+|f_{2}^{TA}(0)|^{2})=K(|h_{\bot}(0)|^{2}+|\tilde{h}_{\bot}(0)|^{2}) with K=1K=1 for the Tb3,c3,8Tc3,c6,8,10γT_{b3,c3,8}\to T^{\prime}_{c3,c6,8,10}\gamma weak decays and K=1/2K=1/2 for the Tb6,c6,10Tc3,8γT_{b6,c6,10}\to T_{c3,8}\gamma weak decays. As for the Tb6,c6Tc6,10γT_{b6,c6}\to T^{\prime}_{c6,10}\gamma weak decays, the branching ratios are Mannel:2011xg

(12γ)=τ1αe384π4GF2mq12m15m22(1m22m12)3|λq1q2|2|C7γeff(mq1)|2|A(12γ)|2.\displaystyle\mathcal{B}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)=\frac{\tau_{\mathcal{B}_{1}}\alpha_{e}}{384\pi^{4}}G^{2}_{F}\frac{m_{q_{1}}^{2}m^{5}_{\mathcal{B}_{1}}}{m^{2}_{\mathcal{B}_{2}}}\left(1-\frac{m^{2}_{\mathcal{B}_{2}}}{m^{2}_{\mathcal{B}_{1}}}\right)^{3}|\lambda_{q_{1}q_{2}}|^{2}|C^{eff}_{7\gamma}(m_{q_{1}})|^{2}\left|A(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma)\right|^{2}. (27)

For the electromagnetic T10T8γT_{10}\to T_{8}\gamma decays, the expressions of their branching ratios are different from Eq. (26), and the following relations will be used to obtain the results Junker:2019vvy

E(T10T8γ)τT10(mT102mT82)mT103(mT10mT8)2|AE(T10T8γ)|2.\displaystyle\mathcal{B}^{E}(T_{10}\to T_{8}\gamma)\propto\frac{\tau_{T_{10}}(m^{2}_{T_{10}}-m^{2}_{T_{8}})}{m^{3}_{T_{10}}}\left(m_{T_{10}}-m_{T_{8}}\right)^{2}\left|A^{E}(T_{10}\to T_{8}\gamma)\right|^{2}. (28)

In addition, according to Refs. Verma:1988gf ; Lach:1995we ; Azimov:1996uf , other three kinds of Feynman diagrams might contribute to the weak baryon decays. The example for s+uu+d+γs+u\to u+d+\gamma is displayed in Fig. 2. Fig. 2 (a-b) are two-quark and three-quark transitions with the WW exchange, which have been discussed, for examples, in Refs. Verma:1988gf ; Dubovik:2007qg . Since Fig. 2 (c) is suppressed by the two WW propagators, and its contribution can be safely neglected. We will consider the W-exchange contributions in Fig. 2 (a-b) in later analysis of SU(3) flavor symmetry.

Refer to caption
Figure 2: Other quark diagrams for weak radiative 12γ\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma weak decays. (a) two-quark bremsstrahlung, (b) three-quark transition, (c) internal radiation.

III Results and Analysis

The theoretical input parameters and the experimental data within the 2σ2\sigma errors from Particle Data Group PDG2020 will be used in our numerical results.

III.1 Tb3,b6T_{b3,b6} weak radiative decays

The SU(3) flavor structure of the relevant bs,db\to s,d Hamiltonian can been found, for instance, in Refs. Zeppenfeld:1980ex ; Savage:1989ub ; Deshpande:1994ii . The SU(3) IRA decay amplitudes for Tb3,b6T8,10γT_{b3,b6}\to T_{8,10}\gamma decays via bs/dγb\to s/d\gamma can be parameterized as

A(Tb3T8γ)\displaystyle A(T_{b3}\to T_{8}\gamma) =\displaystyle= a1(Tb3)[ij]T(3¯)k(T8)[ij]k+a2(Tb3)[ij]T(3)k(T8)[ik]j,\displaystyle a_{1}(T_{b3})^{[ij]}T(\bar{3})^{k}(T_{8})_{[ij]k}+a_{2}(T_{b3})^{[ij]}T(3)^{k}(T_{8})_{[ik]j}, (29)
A(Tb6T8γ)\displaystyle A(T_{b6}\to T_{8}\gamma) =\displaystyle= a1(Tb6)ijT(3¯)k(T8)[ik]j,\displaystyle a^{\prime}_{1}(T_{b6})^{ij}T(\bar{3})^{k}(T_{8})_{[ik]j}, (30)
A(Tb6T10γ)\displaystyle A(T_{b6}\to T_{10}\gamma) =\displaystyle= a1′′(Tb6)ijT(3¯)k(T10)ijk,\displaystyle a^{\prime\prime}_{1}(T_{b6})^{ij}T(\bar{3})^{k}(T_{10})_{ijk}, (31)

with T(3¯)=(0,1,1)T(\bar{3})=(0,1,1), which denotes the transition operators (q¯2b)(\bar{q}_{2}b) with q2=d,sq_{2}=d,s. The coefficients ai(,′′)a^{(^{\prime},^{\prime\prime})}_{i}, which contain information about QCD dynamics, include the single quark emission contributions in Fig. 1 and Tb3T8ψiT_{b3}\to T_{8}\psi_{i} and Tb6T8,10ψiT_{b6}\to T_{8,10}\psi_{i} (ψi\psi_{i} are the set of all J=1,l=0(cc¯)J=1,l=0\leavevmode\nobreak\ (c\bar{c})) long distance contributions Dery:2020lbc ; Deshpande:1994cn (the similar in following bi(,′′),ci(,′′,′′′),dib^{(^{\prime},^{\prime\prime})}_{i},\leavevmode\nobreak\ c^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i},\leavevmode\nobreak\ d_{i} in Eqs. (36-47)), nevertheless, the long distance contributions in the b-sector are small and under control Golowich:1994zr ; Deshpande:1994cn . Noted that Tb3T10γT_{b3}\to T_{10}\gamma (and later Tc3T10γ)T_{c3}\to T_{10}\gamma) weak decays are not allowed by the quark symmetry. The SU(3) IRA amplitudes of Tb3T8γT_{b3}\to T_{8}\gamma and Tb6T8,10γT_{b6}\to T_{8,10}\gamma weak decays are given in Tab. 1. And the information of relevant CKM matrix elements VtbVtsV_{tb}V^{*}_{ts} (VtbVtdV_{tb}V^{*}_{td} ) for bsγb\to s\gamma (bdγb\to d\gamma) transition is not shown in Tab. 1.

Table 1: The SU(3) IRA amplitudes of the Tb3,b6T8,10γT_{b3,b6}\to T_{8,10}\gamma weak decays by the bs/dγb\to s/d\gamma transitions, and A1a1+a2A_{1}\equiv a_{1}+a_{2}.
     Decay modes      A(Tb3,b6T8,10γ)A(T_{b3,b6}\to T_{8,10}\gamma)
     Tb3T8γT_{b3}\to T_{8}\gamma via the bsγb\to s\gamma transition:
     Λb0Λ0γ\Lambda^{0}_{b}\to\Lambda^{0}\gamma      2A1/6-2A_{1}/\sqrt{6}
     Λb0Σ0γ\Lambda^{0}_{b}\to\Sigma^{0}\gamma      0
     Ξb0Ξ0γ\Xi^{0}_{b}\to\Xi^{0}\gamma      A1-A_{1}
     ΞbΞγ\Xi^{-}_{b}\to\Xi^{-}\gamma      A1A_{1}
     Tb3T8γT_{b3}\to T_{8}\gamma via the bdγb\to d\gamma transition:
     Λb0nγ\Lambda^{0}_{b}\to n\gamma      A1A_{1}
     Ξb0Λ0γ\Xi^{0}_{b}\to\Lambda^{0}\gamma      A1/6-A_{1}/\sqrt{6}
     Ξb0Σ0γ\Xi^{0}_{b}\to\Sigma^{0}\gamma      A1/2-A_{1}/\sqrt{2}
     ΞbΣγ\Xi^{-}_{b}\to\Sigma^{-}\gamma      A1A_{1}
     Tb6T8γT_{b6}\to T_{8}\gamma via the bsγb\to s\gamma transition:
     Σb+Σ+γ\Sigma^{+}_{b}\to\Sigma^{+}\gamma      a1-a^{\prime}_{1}
     Σb0Λ0γ\Sigma^{0}_{b}\to\Lambda^{0}\gamma      0
     Σb0Σ0γ\Sigma^{0}_{b}\to\Sigma^{0}\gamma      a1-a^{\prime}_{1}
     ΣbΣγ\Sigma^{-}_{b}\to\Sigma^{-}\gamma      a1a^{\prime}_{1}
     Ξb0Ξ0γ\Xi^{*0}_{b}\to\Xi^{0}\gamma      a1/2-a^{\prime}_{1}/\sqrt{2}
     ΞbΞγ\Xi^{*-}_{b}\to\Xi^{-}\gamma      a1/2a^{\prime}_{1}/\sqrt{2}
     Tb6T8γT_{b6}\to T_{8}\gamma via the bdγb\to d\gamma transition:
     Σb+pγ\Sigma^{+}_{b}\to p\gamma      a1a^{\prime}_{1}
     Σb0nγ\Sigma^{0}_{b}\to n\gamma      a1a^{\prime}_{1}
     Ξb0Λ0γ\Xi^{*0}_{b}\to\Lambda^{0}\gamma      32a1-\frac{\sqrt{3}}{2}a^{\prime}_{1}
     Ξb0Σ0γ\Xi^{*0}_{b}\to\Sigma^{0}\gamma      a1/2a^{\prime}_{1}/2
     ΞbΣγ\Xi^{*-}_{b}\to\Sigma^{-}\gamma      a1/2-a^{\prime}_{1}/\sqrt{2}
     ΩbΞγ\Omega_{b}\to\Xi^{-}\gamma      a1-a^{\prime}_{1}
     Tb6T10γT_{b6}\to T_{10}\gamma via the bsγb\to s\gamma transition:
     Σb+Σ+γ\Sigma^{+}_{b}\to\Sigma^{*+}\gamma      a1′′a^{\prime\prime}_{1}
     Σb0Σ0γ\Sigma^{0}_{b}\to\Sigma^{*0}\gamma      a1/2a^{\prime}_{1}/2
     ΣbΣγ\Sigma^{-}_{b}\to\Sigma^{*-}\gamma      a1′′a^{\prime\prime}_{1}
     Ξb0Ξ0γ\Xi^{*0}_{b}\to\Xi^{*0}\gamma      a1′′/2a^{\prime\prime}_{1}/\sqrt{2}
     ΞbΞγ\Xi^{*-}_{b}\to\Xi^{*-}\gamma      a1′′/2a^{\prime\prime}_{1}/\sqrt{2}
     ΩbΩγ\Omega_{b}\to\Omega\gamma      a1′′a^{\prime\prime}_{1}
     Tb6T10γT_{b6}\to T_{10}\gamma via the bdγb\to d\gamma transition:
     Σb+Δ+γ\Sigma^{+}_{b}\to\Delta^{+}\gamma      a1′′a^{\prime\prime}_{1}
     Σb0Δ0γ\Sigma^{0}_{b}\to\Delta^{0}\gamma      a1/2a^{\prime}_{1}/\sqrt{2}
     ΣbΔγ\Sigma^{-}_{b}\to\Delta^{-}\gamma      3a1′′\sqrt{3}a^{\prime\prime}_{1}
     Ξb0Σ0γ\Xi^{*0}_{b}\to\Sigma^{*0}\gamma      a1′′/2a^{\prime\prime}_{1}/2
     ΞbΣγ\Xi^{*-}_{b}\to\Sigma^{*-}\gamma      a1′′/2a^{\prime\prime}_{1}/\sqrt{2}
     ΩbΞγ\Omega_{b}\to\Xi^{*-}\gamma      a1′′a^{\prime\prime}_{1}
Table 2: Branching ratios of the Tb3T8γT_{b3}\to T_{8}\gamma decays via the bs/dγb\to s/d\gamma transitions.
Observables Experimental data PDG2020 Our SU(3) IRA predictions Other predictions
bs:b\to s:
(Λb0Λγ)(×106)\mathcal{B}(\Lambda^{0}_{b}\to\Lambda\gamma)(\times 10^{-6}) 7.1±1.77.1\pm 1.7 7.1±3.47.1\pm 3.4 7.3±1.57.3\pm 1.5 Wang:2008sm
(Λb0Σ0γ)\mathcal{B}(\Lambda^{0}_{b}\to\Sigma^{0}\gamma) \cdots 0
(ΞbΞγ)(×105)\mathcal{B}(\Xi^{-}_{b}\to\Xi^{-}\gamma)(\times 10^{-5}) \cdots 1.23±0.641.23\pm 0.64
(Ξb0Ξ0γ)(×105)\mathcal{B}(\Xi^{0}_{b}\to\Xi^{0}\gamma)(\times 10^{-5}) \cdots 1.16±0.601.16\pm 0.60
bd:b\to d:
(Λb0nγ)(×107)\mathcal{B}(\Lambda^{0}_{b}\to n\gamma)(\times 10^{-7}) \cdots 5.03±2.675.03\pm 2.67 3.73.691.95+3.76{}^{3.69^{+3.76}_{-1.95}}_{3.7} Liu:2019rpm ; Faustov:2020thr
(Ξb0Λ0γ)(×108)\mathcal{B}(\Xi^{0}_{b}\to\Lambda^{0}\gamma)(\times 10^{-8}) \cdots 9.17±5.109.17\pm 5.10
(Ξb0Σ0γ)(×107)\mathcal{B}(\Xi^{0}_{b}\to\Sigma^{0}\gamma)(\times 10^{-7}) \cdots 2.71±1.502.71\pm 1.50
(ΞbΣγ)(×107)\mathcal{B}(\Xi^{-}_{b}\to\Sigma^{-}\gamma)(\times 10^{-7}) \cdots 5.74±3.215.74\pm 3.21
Table 3: The SU(3) IRA amplitudes of the Tb3,b6Tc3,c6γT_{b3,b6}\to T_{c3,c6}\gamma weak decays by the WW exchange b+uc+s/d+γb+u\to c+s/d+\gamma.
     Decay modes      A(Tb3,b6Tc3,c6γ)A(T_{b3,b6}\to T_{c3,c6}\gamma)
     Tb3Tc3γT_{b3}\to T_{c3}\gamma:
     Ξb0Ξc0γ\Xi^{0}_{b}\to\Xi^{0}_{c}\gamma      a~1\widetilde{a}_{1}
     Λb0Ξc0γ\Lambda^{0}_{b}\to\Xi^{0}_{c}\gamma      a~1sc-\widetilde{a}_{1}\leavevmode\nobreak\ s_{c}
     Tb3Tc6γT_{b3}\to T_{c6}\gamma:
     Λb0Σc0γ\Lambda^{0}_{b}\to\Sigma^{0}_{c}\gamma      a~1-\widetilde{a}^{\prime}_{1}\leavevmode\nobreak\
     Ξb0Ξc0γ\Xi^{0}_{b}\to\Xi^{*0}_{c}\gamma      a~1/2-\widetilde{a}^{\prime}_{1}/\sqrt{2}
     Λb0Ξc0γ\Lambda^{0}_{b}\to\Xi^{*0}_{c}\gamma      a~1sc/2-\widetilde{a}^{\prime}_{1}\leavevmode\nobreak\ s_{c}/\sqrt{2}
     Ξb0Ωcγ\Xi^{0}_{b}\to\Omega_{c}\gamma      a~1sc-\widetilde{a}^{\prime}_{1}\leavevmode\nobreak\ s_{c}
     Tb6Tc3γT_{b6}\to T_{c3}\gamma:
     Σb+Λc+γ\Sigma^{+}_{b}\to\Lambda^{+}_{c}\gamma      a~1′′\widetilde{a}^{\prime\prime}_{1}
     Ξb0Ξc0γ\Xi^{*0}_{b}\to\Xi^{0}_{c}\gamma      a~1′′/2-\widetilde{a}^{\prime\prime}_{1}/\sqrt{2}
     Σb+Ξc+γ\Sigma^{+}_{b}\to\Xi^{+}_{c}\gamma      a~1′′sc\widetilde{a}^{\prime\prime}_{1}\leavevmode\nobreak\ s_{c}
     Σb0Ξc0γ\Sigma^{0}_{b}\to\Xi^{0}_{c}\gamma      a~1′′sc/2\widetilde{a}^{\prime\prime}_{1}\leavevmode\nobreak\ s_{c}/\sqrt{2}
     Tb6Tc6γT_{b6}\to T_{c6}\gamma:
     Σb+Σc+γ\Sigma^{+}_{b}\to\Sigma^{+}_{c}\gamma      a~1′′′/2\widetilde{a}^{\prime\prime\prime}_{1}/\sqrt{2}
     Σb0Σc0γ\Sigma^{0}_{b}\to\Sigma^{0}_{c}\gamma      a~1′′′/2\widetilde{a}^{\prime\prime\prime}_{1}/\sqrt{2}
     Ξb0Ξc0γ\Xi^{*0}_{b}\to\Xi^{*0}_{c}\gamma      a~1′′′/2\widetilde{a}^{\prime\prime\prime}_{1}/2
     Σb+Ξc+γ\Sigma^{+}_{b}\to\Xi^{*+}_{c}\gamma      a~1′′′sc/2\widetilde{a}^{\prime\prime\prime}_{1}\leavevmode\nobreak\ s_{c}/\sqrt{2}
     Σb0Ξc0γ\Sigma^{0}_{b}\to\Xi^{*0}_{c}\gamma      a~1′′′sc/2\widetilde{a}^{\prime\prime\prime}_{1}\leavevmode\nobreak\ s_{c}/2
     Ξb0Ωcγ\Xi^{*0}_{b}\to\Omega_{c}\gamma      a~1′′′sc/2\widetilde{a}^{\prime\prime\prime}_{1}\leavevmode\nobreak\ s_{c}/\sqrt{2}

Now, we discuss the Tb3T8γT_{b3}\to T_{8}\gamma weak decays. Decays Λb0Λ0γ\Lambda^{0}_{b}\to\Lambda^{0}\gamma, Λb0Σ0γ\Lambda^{0}_{b}\to\Sigma^{0}\gamma, Ξb0Ξ0γ\Xi^{0}_{b}\to\Xi^{0}\gamma and ΞbΞγ\Xi^{-}_{b}\to\Xi^{-}\gamma (Λb0nγ\Lambda^{0}_{b}\to n\gamma, Ξb0Λ0γ\Xi^{0}_{b}\to\Lambda^{0}\gamma, Ξb0Σ0γ\Xi^{0}_{b}\to\Sigma^{0}\gamma and ΞbΣγ\Xi^{-}_{b}\to\Sigma^{-}\gamma) proceed via the bsγb\to s\gamma (bdγb\to d\gamma) flavor changing neutral current transition. From Tab. 1, one can see that the 7 decay amplitudes of Tb3T8γT_{b3}\to T_{8}\gamma can be related by one parameter A1A_{1}. Noted that our |A(Tb3T8γ)||A(T_{b3}\to T_{8}\gamma)| via the bs/dγb\to s/d\gamma transitions are consistent with ones of Tb3T8J/ψT_{b3}\to T_{8}J/\psi in Ref. Fayyazuddin:2017sxq and ones of the CKM-leading part results Tb3T8J/ψT_{b3}\to T_{8}J/\psi in Ref. Dery:2020lbc . Among these 7 decay modes, only (Λb0Λγ)\mathcal{B}(\Lambda^{0}_{b}\to\Lambda\gamma) has been measured at present, which is listed in the second column of Tab. 3. Using data of (Λb0Λγ)\mathcal{B}(\Lambda^{0}_{b}\to\Lambda\gamma) and the expression of (12γ)\mathcal{B}(\mathcal{B}_{1}\to\mathcal{B}_{2}\gamma) in Eq. (26) to get |A1||A_{1}|, and then other 6 branching ratios are obtained, which are given in the third column of Tab. 3. Previous predictions for (Λb0Λγ)\mathcal{B}(\Lambda^{0}_{b}\to\Lambda\gamma) in the light-cone sum rules and for (Λb0nγ)\mathcal{B}(\Lambda^{0}_{b}\to n\gamma) in the relativistic quark model and in the Bethe-Salpeter equation approach are listed in the last column of Tab. 3. Our SU(3) IRA prediction of (Λb0nγ)\mathcal{B}(\Lambda^{0}_{b}\to n\gamma) agrees with ones in the relativistic quark model or in the Bethe-Salpeter equation approach Liu:2019rpm ; Faustov:2020thr . More experimental data about the Tb3T8γT_{b3}\to T_{8}\gamma decays in the further could test the SU(3) flavor symmetry approach.

As given in Tab. 1, the decay amplitudes of the Tb6T8γT_{b6}\to T_{8}\gamma and Tb6T10γT_{b6}\to T_{10}\gamma weak decays can be parameterized by only one parameter a1a^{\prime}_{1} and a1′′a^{\prime\prime}_{1}, respectively. And our |A(Tb6T8γ)||A(T_{b6}\to T_{8}\gamma)| via the bsγb\to s\gamma transition are consistent with ones of Tb6T8J/ψT_{b6}\to T_{8}J/\psi in Ref. Fayyazuddin:2017sxq . Unfortunately, none of the Tb6T8γT_{b6}\to T_{8}\gamma and Tb6T10γT_{b6}\to T_{10}\gamma weak decays has been measured at present. Any measurement of the Tb6T8γT_{b6}\to T_{8}\gamma (Tb6T10γT_{b6}\to T_{10}\gamma) will give us chance to predict other 10 (11) decay modes.

In addition, Tb3,b6T_{b3,b6} baryons also can decay to Tc3,c6T_{c3,c6} by only WW exchange b+uc+s/d+γb+u\to c+s/d+\gamma Cheng:1994kp . The SU(3) IRA decay amplitudes for the Tb3,b6Tc3,c6γT_{b3,b6}\to T_{c3,c6}\gamma decays are

A(Tb3Tc3γ)\displaystyle A(T_{b3}\to T_{c3}\gamma) =\displaystyle= a~1VcbVqjql(Tb3)[ij](Tc3)[il],\displaystyle\widetilde{a}_{1}V_{cb}V_{q_{j}q_{l}}(T_{b3})^{[ij]}(T_{c3})_{[il]}, (32)
A(Tb3Tc6γ)\displaystyle A(T_{b3}\to T_{c6}\gamma) =\displaystyle= a~1VcbVqjql(Tb3)[ij](Tc6)il,\displaystyle\widetilde{a}^{\prime}_{1}V_{cb}V_{q_{j}q_{l}}(T_{b3})^{[ij]}(T_{c6})_{il}, (33)
A(Tb6Tc3γ)\displaystyle A(T_{b6}\to T_{c3}\gamma) =\displaystyle= a~1′′VcbVqjql(Tb6)ij(Tc3)[il],\displaystyle\widetilde{a}^{\prime\prime}_{1}V_{cb}V_{q_{j}q_{l}}(T_{b6})^{ij}(T_{c3})_{[il]}, (34)
A(Tb6Tc6γ)\displaystyle A(T_{b6}\to T_{c6}\gamma) =\displaystyle= a~1′′′VcbVqjql(Tb6)ij(Tc6)il.\displaystyle\widetilde{a}^{\prime\prime\prime}_{1}V_{cb}V_{q_{j}q_{l}}(T_{b6})^{ij}(T_{c6})_{il}. (35)

Since the CKM matrix element VcbV_{cb} occur for all processes, we will absorb it in the coefficients a~1,a~1,a~1′′\widetilde{a}_{1},\widetilde{a}^{\prime}_{1},\widetilde{a}^{\prime\prime}_{1} as well as a~1′′′\widetilde{a}^{\prime\prime\prime}_{1}, and only keep Vud1V_{ud}\approx 1 and Vusλ=scsinθC0.22453V_{us}\approx\lambda=s_{c}\equiv\mbox{sin}\theta_{C}\approx 0.22453 representing the Cabbibo angle θC\theta_{C} PDG2020 . The SU(3) IRA amplitudes of Tb3,b6Tc3,c6γT_{b3,b6}\to T_{c3,c6}\gamma weak decays are summarized in Tab. 3, in which we keep VudV_{ud} and VusV_{us} information for comparing conveniently, and we may easily see the amplitude relations in this table. Just none of these decays has been measured yet.

III.2 Tc3,c6T_{c3,c6} weak radiative decays

Tc3,c6T8,10γT_{c3,c6}\to T_{8,10}\gamma via cuγc\to u\gamma transition are similar to the Tb3,b6T8,10γT_{b3,b6}\to T_{8,10}\gamma via bs/dγb\to s/d\gamma transition. Nevertheless, the short distance contributions from cuγc\to u\gamma could be negligible, and the dominant contributions in charmed baryon decays mainly from the W-exchange contributions similar as Fig. 2 (a-b) Singer:1995is . The SU(3) flavor structure of the relevant bs,db\to s,d Hamiltonian can been found, for instance, in Refs. Zeppenfeld:1980ex ; Savage:1989ub ; Deshpande:1994ii . The SU(3) IRA amplitudes of the Tc3,c6T_{c3,c6} baryon weak decays are

A(Tc3T8γ)\displaystyle A(T_{c3}\to T_{8}\gamma) =\displaystyle= b1(Tc3)[ij]T(3¯)k(T8)[ij]k+b2(Tc3)[ij]T(3)k(T8)[ik]j\displaystyle b_{1}(T_{c3})^{[ij]}T^{\prime}(\bar{3})^{k}(T_{8})_{[ij]k}+b_{2}(T_{c3})^{[ij]}T^{\prime}(3)^{k}(T_{8})_{[ik]j} (36)
+(b~1H(6¯)jlk+b~4H(15)jlk)(Tc3)[ij](T8)[il]k+(b~2H(6¯)jlk+b~5H(15)jlk)(Tc3)[ij](T8)[ik]l\displaystyle+\Big{(}\widetilde{b}_{1}H(\bar{6})^{lk}_{j}+\widetilde{b}_{4}H(15)^{lk}_{j}\Big{)}(T_{c3})^{[ij]}(T_{8})_{[il]k}+\Big{(}\widetilde{b}_{2}H(\bar{6})^{lk}_{j}+\widetilde{b}_{5}H(15)^{lk}_{j}\Big{)}(T_{c3})^{[ij]}(T_{8})_{[ik]l}
+(b~3H(6¯)jlk+b~6H(15)jlk)(Tc3)[ij](T8)[lk]i,\displaystyle+\Big{(}\widetilde{b}_{3}H(\bar{6})^{lk}_{j}+\widetilde{b}_{6}H(15)^{lk}_{j}\Big{)}(T_{c3})^{[ij]}(T_{8})_{[lk]i},
A(Tc6T8γ)\displaystyle A(T_{c6}\to T_{8}\gamma) =\displaystyle= b1(Tc6)ijT(3¯)k(T8)[ik]j\displaystyle b^{\prime}_{1}(T_{c6})^{ij}T^{\prime}(\bar{3})^{k}(T_{8})_{[ik]j} (37)
+(b~1H(6¯)jlk+b~4H(15)jlk)(Tc6)ij(T8)[il]k+(b~2H(6¯)jlk+b~5H(15)jlk)(Tc6)ij(T8)[ik]l\displaystyle+\Big{(}\widetilde{b}^{\prime}_{1}H(\bar{6})^{lk}_{j}+\widetilde{b}^{\prime}_{4}H(15)^{lk}_{j}\Big{)}(T_{c6})^{ij}(T_{8})_{[il]k}+\Big{(}\widetilde{b}^{\prime}_{2}H(\bar{6})^{lk}_{j}+\widetilde{b}^{\prime}_{5}H(15)^{lk}_{j}\Big{)}(T_{c6})^{ij}(T_{8})_{[ik]l}
+(b~3H(6¯)jlk+b~6H(15)jlk)(Tc6)ij(T8)[lk]i,\displaystyle+\Big{(}\widetilde{b}^{\prime}_{3}H(\bar{6})^{lk}_{j}+\widetilde{b}^{\prime}_{6}H(15)^{lk}_{j}\Big{)}(T_{c6})^{ij}(T_{8})_{[lk]i},
A(Tc6T10γ)\displaystyle A(T_{c6}\to T_{10}\gamma) =\displaystyle= b1′′(Tc6)ijT(3¯)k(T10)ijk+b~1′′H(15)jlk(Tc6)ij(T10)ilk,\displaystyle b^{\prime\prime}_{1}(T_{c6})^{ij}T^{\prime}(\bar{3})^{k}(T_{10})_{ijk}+\widetilde{b}^{\prime\prime}_{1}H(15)^{lk}_{j}(T_{c6})^{ij}(T_{10})_{ilk}, (38)

with T(3¯)=(1,0,0)T^{\prime}(\bar{3})=(1,0,0) which denotes the transition operators (q¯2c)(\bar{q}_{2}c) with q2=uq_{2}=u. The bi(,′′)b^{(^{\prime},^{\prime\prime})}_{i} terms denote the contributions from cuγc\to u\gamma shown in Fig.1 and the long distance contribution from the real qq¯q\bar{q} intermediate state ρ\rho, ω\omega and ϕ\phi. The b~i(,′′)\widetilde{b}^{(^{\prime},^{\prime\prime})}_{i} terms denote the WW exchange contributions similar as Fig. 2. Noted that H(6¯)jlkH(\bar{6})^{lk}_{j} (H(15)jlkH(15)^{lk}_{j}) related to (q¯lqj)(q¯kc)(\bar{q}_{l}q^{j})(\bar{q}_{k}c) operator is antisymmetric (symmetric) in upper indices. The non-vanish H(6¯)jlkH(\bar{6})^{lk}_{j} and H(15)jlkH(15)^{lk}_{j} for csud¯,dus¯,ud¯d,us¯sc\to su\bar{d},du\bar{s},u\bar{d}d,u\bar{s}s transitions can be found in Ref. Wang:2017azm . Using l,kl,k antisymmetric in H(6¯)jlkH(\bar{6})^{lk}_{j} and l,kl,k symmetric in H(15)jlkH(15)^{lk}_{j}, we have

b~2()=b~1(),b~5()=b~4(),b~6()=0.\displaystyle\widetilde{b}^{(^{\prime})}_{2}=-\widetilde{b}^{(^{\prime})}_{1},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \widetilde{b}^{(^{\prime})}_{5}=\widetilde{b}^{(^{\prime})}_{4},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \widetilde{b}^{(^{\prime})}_{6}=0. (39)

Since none of the down-type quarks are heavy, the Glashow-Iliuopoulos-Maiani (GIM) mechanism suppression is obvious in the charm sector. The bi(,′′)b^{(^{\prime},^{\prime\prime})}_{i} terms related to the short and long distance contributions of cuγc\to u\gamma transition are strongly suppressed by the GIM mechanism. As for the WW exchange transition, there are three kinds of charm quark decays into light quarks

d+cu+s+γ,d+cu+d+γ(s+cu+s+γ),s+cu+d+γ,\displaystyle d+c\to u+s+\gamma,\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ d+c\to u+d+\gamma\leavevmode\nobreak\ \leavevmode\nobreak\ (s+c\to u+s+\gamma),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ s+c\to u+d+\gamma, (40)

which are related to H(6¯,15)213H(\bar{6},15)^{13}_{2}, H(6¯,15)212(H(6¯,15)313)H(\bar{6},15)^{12}_{2}\leavevmode\nobreak\ (H(\bar{6},15)^{13}_{3}), and H(6¯,15)312H(\bar{6},15)^{12}_{3} are proportional to VcsVudV^{*}_{cs}V_{ud}, VcdVudV^{*}_{cd}V_{ud} (VcsVusV^{*}_{cs}V_{us}), and VcdVusV^{*}_{cd}V_{us}, respectively. The relevant CKM matrix elements can be written by the Wolfenstein parameterization PDG2020

VcsVud=(1λ2/2)21,\displaystyle V^{*}_{cs}V_{ud}=(1-\lambda^{2}/2)^{2}\approx 1,
VcdVud=λ(1λ2/2)sc,VcsVus=λ(1λ2/2)sc,\displaystyle V^{*}_{cd}V_{ud}=-\lambda(1-\lambda^{2}/2)\approx-s_{c},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ V^{*}_{cs}V_{us}=\lambda(1-\lambda^{2}/2)\approx s_{c},
VcdVus=λ2(1λ2/2)sc2.\displaystyle V^{*}_{cd}V_{us}=-\lambda^{2}(1-\lambda^{2}/2)\approx-s_{c}^{2}. (41)

So three kinds of charm quark decays in Eq. (40) are called Cabibbo allowed, singly Cabibbo suppressed, and doubly Cabibbo suppressed decays, respectively.

The SU(3) IRA amplitudes of Tc3T8γT_{c3}\to T_{8}\gamma and Tc6T8,10γT_{c6}\to T_{8,10}\gamma weak decays are given in the second column of Tab. 4. For well understanding, we also show the relevant CKM matrix information in Tab. 4, too. In addition, the contribution of H(6¯)H(\bar{6}) to the decay branching ratio can be about 5.5 times larger than one of H(15)H(15) due to Wilson Coefficient suppressed, for examples, see Geng:2017esc ; Geng:2018plk . If ignoring the GIM strongly suppressed cuγc\to u\gamma transition contributions and the Wilson Coefficient suppressed H(15)H(15) term contributions, the decay amplitudes of Tc3T8γT_{c3}\to T_{8}\gamma, Tc6T8γT_{c6}\to T_{8}\gamma and Tc6T10γT_{c6}\to T_{10}\gamma are related by only one parameter B~b~1b~3\widetilde{B}\equiv\widetilde{b}_{1}-\widetilde{b}_{3}, B~b~1b~3\widetilde{B}^{\prime}\equiv\widetilde{b}^{\prime}_{1}-\widetilde{b}^{\prime}_{3} and b~1′′\widetilde{b}^{\prime\prime}_{1}, respectively. The simplifications resulting are listed in the last column of Tab. 4. Just all baryon weak radiative decays of Tc3,c6T_{c3,c6} baryons have not been measured yet.

Table 4: The SU(3) IRA amplitudes of the Tc3,c6T8,10γT_{c3,c6}\to T_{8,10}\gamma weak decays, B1b1+b2B_{1}\equiv b_{1}+b_{2}, B~1b~1b~3+b~4\widetilde{B}_{1}\equiv\widetilde{b}_{1}-\widetilde{b}_{3}+\widetilde{b}_{4}, B~2b~1b~3b~4\widetilde{B}_{2}\equiv\widetilde{b}_{1}-\widetilde{b}_{3}-\widetilde{b}_{4}, B~1b~1b~3+b~4\widetilde{B}^{\prime}_{1}\equiv\widetilde{b}^{\prime}_{1}-\widetilde{b}^{\prime}_{3}+\widetilde{b}^{\prime}_{4}, B~2b~1b~3b~4\widetilde{B}^{\prime}_{2}\equiv\widetilde{b}^{\prime}_{1}-\widetilde{b}^{\prime}_{3}-\widetilde{b}^{\prime}_{4} and B~()b~1()b~3()\widetilde{B}^{(^{\prime})}\equiv\widetilde{b}^{(^{\prime})}_{1}-\widetilde{b}^{(^{\prime})}_{3}.
Decay modes λq1q2A(Tc3,c6T8,10γ)\lambda_{q_{1}q_{2}}A(T_{c3,c6}\to T_{8,10}\gamma) approximative λq1q2A(Tc3,c6T8,10γ)\lambda_{q_{1}q_{2}}A(T_{c3,c6}\to T_{8,10}\gamma)
Cabibbo allowed Tc3T8γT_{c3}\to T_{8}\gamma:
Λc+Σ+γ\Lambda^{+}_{c}\to\Sigma^{+}\gamma B~1-\widetilde{B}_{1} B~-\widetilde{B}
Ξc0Ξ0γ\Xi^{0}_{c}\to\Xi^{0}\gamma B~2-\widetilde{B}_{2} B~-\widetilde{B}
singly Cabibbo suppressed Tc3T8γT_{c3}\to T_{8}\gamma:
Λc+pγ\Lambda^{+}_{c}\to p\gamma [B1(58B~118B~2)]sc\big{[}B_{1}-\big{(}\frac{5}{8}\widetilde{B}_{1}-\frac{1}{8}\widetilde{B}_{2}\big{)}\big{]}s_{c} 12B~sc-\frac{1}{2}\widetilde{B}s_{c}
Ξc+Σ+γ\Xi^{+}_{c}\to\Sigma^{+}\gamma [B1(58B~118B~2)]sc\big{[}-B_{1}-\big{(}\frac{5}{8}\widetilde{B}_{1}-\frac{1}{8}\widetilde{B}_{2}\big{)}\big{]}s_{c} 12B~sc-\frac{1}{2}\widetilde{B}s_{c}
Ξc0Λ0γ\Xi^{0}_{c}\to\Lambda^{0}\gamma [B1+3(18B~158B~2)]sc/6\big{[}B_{1}+3\big{(}\frac{1}{8}\widetilde{B}_{1}-\frac{5}{8}\widetilde{B}_{2}\big{)}\big{]}s_{c}/\sqrt{6} 32B~sc/6-\frac{3}{2}\widetilde{B}s_{c}/\sqrt{6}
Ξc0Σ0γ\Xi^{0}_{c}\to\Sigma^{0}\gamma [B1+(18B~158B~2)]sc/2\big{[}-B_{1}+\big{(}\frac{1}{8}\widetilde{B}_{1}-\frac{5}{8}\widetilde{B}_{2}\big{)}\big{]}s_{c}/\sqrt{2} 12B~sc/2-\frac{1}{2}\widetilde{B}s_{c}/\sqrt{2}
doubly Cabibbo suppressed Tc3T8γT_{c3}\to T_{8}\gamma:
Ξc+pγ\Xi^{+}_{c}\to p\gamma B~1sc2\widetilde{B}_{1}s^{2}_{c} B~sc2\widetilde{B}s^{2}_{c}
Ξc0nγ\Xi^{0}_{c}\to n\gamma B~2sc2\widetilde{B}_{2}s^{2}_{c} B~sc2\widetilde{B}s^{2}_{c}
Cabibbo allowed Tc6T8γT_{c6}\to T_{8}\gamma:
Σc+Σ+γ\Sigma^{+}_{c}\to\Sigma^{+}\gamma B~1/2-\widetilde{B}^{\prime}_{1}/\sqrt{2} B~/2-\widetilde{B}^{\prime}/\sqrt{2}
Σc0Λ0γ\Sigma^{0}_{c}\to\Lambda^{0}\gamma B~2/6-\widetilde{B}^{\prime}_{2}/\sqrt{6} B~/6-\widetilde{B}^{\prime}/\sqrt{6}
Σc0Σ0γ\Sigma^{0}_{c}\to\Sigma^{0}\gamma B~1/2-\widetilde{B}^{\prime}_{1}/\sqrt{2} B~/2-\widetilde{B}^{\prime}/\sqrt{2}
Ξc0Ξ0γ\Xi^{*0}_{c}\to\Xi^{0}\gamma B~2/2-\widetilde{B}^{\prime}_{2}/\sqrt{2} B~/2-\widetilde{B}^{\prime}/\sqrt{2}
singly Cabibbo suppressed Tc6T8γT_{c6}\to T_{8}\gamma:
Σc+pγ\Sigma^{+}_{c}\to p\gamma [b1(58B~118B~2)]sc/2\big{[}-b^{\prime}_{1}-\big{(}\frac{5}{8}\widetilde{B}^{\prime}_{1}-\frac{1}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c}/\sqrt{2} 12B~sc/2-\frac{1}{2}\widetilde{B}^{\prime}s_{c}/\sqrt{2}
Σc0nγ\Sigma^{0}_{c}\to n\gamma [2b1+(18B~158B~2)]sc/2\big{[}-2b^{\prime}_{1}+\big{(}\frac{1}{8}\widetilde{B}^{\prime}_{1}-\frac{5}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c}/\sqrt{2} 12B~sc/2-\frac{1}{2}\widetilde{B}^{\prime}s_{c}/\sqrt{2}
Ξc+Σ+γ\Xi^{*+}_{c}\to\Sigma^{+}\gamma [b1(58B~118B~2)]sc/2\big{[}b^{\prime}_{1}-\big{(}\frac{5}{8}\widetilde{B}^{\prime}_{1}-\frac{1}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c}/\sqrt{2} 12B~sc/2-\frac{1}{2}\widetilde{B}^{\prime}s_{c}/\sqrt{2}
Ξc0Λ0γ\Xi^{*0}_{c}\to\Lambda^{0}\gamma [3b1(138B~158B~2)]sc/(23)\big{[}3b^{\prime}_{1}-\big{(}\frac{13}{8}\widetilde{B}^{\prime}_{1}-\frac{5}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c}/(2\sqrt{3}) B~sc/(23)-\widetilde{B}^{\prime}s_{c}/(2\sqrt{3})
Ξc0Σ0γ\Xi^{*0}_{c}\to\Sigma^{0}\gamma [b1(138B~158B~2)]sc/2\big{[}b^{\prime}_{1}-\big{(}\frac{13}{8}\widetilde{B}^{\prime}_{1}-\frac{5}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c}/2 12B~sc-\frac{1}{2}\widetilde{B}^{\prime}s_{c}
Ωc0Ξ0γ\Omega^{0}_{c}\to\Xi^{0}\gamma [2b1+(18B~158B~2)]sc\big{[}2b^{\prime}_{1}+\big{(}\frac{1}{8}\widetilde{B}^{\prime}_{1}-\frac{5}{8}\widetilde{B}^{\prime}_{2}\big{)}\big{]}s_{c} 12B~sc-\frac{1}{2}\widetilde{B}^{\prime}s_{c}
doubly Cabibbo suppressed Tc6T8γT_{c6}\to T_{8}\gamma:
Ξc+pγ\Xi^{*+}_{c}\to p\gamma B~1sc2/2\widetilde{B}^{\prime}_{1}s^{2}_{c}/\sqrt{2} B~sc2/2\widetilde{B}^{\prime}s^{2}_{c}/\sqrt{2}
Ξc0nγ\Xi^{*0}_{c}\to n\gamma B~1sc2/2\widetilde{B}^{\prime}_{1}s^{2}_{c}/\sqrt{2} B~sc2/2\widetilde{B}^{\prime}s^{2}_{c}/\sqrt{2}
Ωc0Λ0γ\Omega^{0}_{c}\to\Lambda^{0}\gamma (B~1+B~2)sc2/6-(\widetilde{B}^{\prime}_{1}+\widetilde{B}^{\prime}_{2})s^{2}_{c}/\sqrt{6} 2B~sc2/6-2\widetilde{B}^{\prime}s^{2}_{c}/\sqrt{6}
Ωc0Σ0γ\Omega^{0}_{c}\to\Sigma^{0}\gamma (B~1B~2)sc2/2(\widetilde{B}^{\prime}_{1}-\widetilde{B}^{\prime}_{2})s^{2}_{c}/\sqrt{2} 0
Cabibbo allowed Tc6T10γT_{c6}\to T_{10}\gamma:
Σc+Σ+γ\Sigma^{+}_{c}\to\Sigma^{*+}\gamma b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2} b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2}
Σc0Σ0γ\Sigma^{0}_{c}\to\Sigma^{*0}\gamma b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2} b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2}
Ξc0Ξ0γ\Xi^{*0}_{c}\to\Xi^{*0}\gamma b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2} b~1′′/2\widetilde{b}^{\prime\prime}_{1}/\sqrt{2}
singly Cabibbo suppressed Tc6T10γT_{c6}\to T_{10}\gamma:
Σc++Δ++γ\Sigma^{++}_{c}\to\Delta^{++}\gamma 3b1′′sc\sqrt{3}b^{\prime\prime}_{1}s_{c} 0
Σc+Δ+γ\Sigma^{+}_{c}\to\Delta^{+}\gamma (b1′′34b~1′′)sc/2\big{(}b^{\prime\prime}_{1}-\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}\big{)}s_{c}/\sqrt{2} 34b~1′′sc/2-\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}s_{c}/\sqrt{2}
Σc0Δ0γ\Sigma^{0}_{c}\to\Delta^{0}\gamma (b1′′34b~1′′)sc\big{(}b^{\prime\prime}_{1}-\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}\big{)}s_{c} 34b~1′′sc-\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}s_{c}
Ξc+Σ+γ\Xi^{*+}_{c}\to\Sigma^{*+}\gamma (b1′′+34b~1′′)sc/2\big{(}b^{\prime\prime}_{1}+\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}\big{)}s_{c}/\sqrt{2} 34b~1′′sc/2\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}s_{c}/\sqrt{2}
Ξc0Σ0γ\Xi^{*0}_{c}\to\Sigma^{*0}\gamma b1′′sc/2b^{\prime\prime}_{1}s_{c}/2 0
ΩcΞ0γ\Omega_{c}\to\Xi^{*0}\gamma (b1′′+34b~1′′)sc\big{(}b^{\prime\prime}_{1}+\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}\big{)}s_{c} 34b~1′′sc\frac{3}{4}\widetilde{b}^{\prime\prime}_{1}s_{c}
doubly Cabibbo suppressed Tc6T10γT_{c6}\to T_{10}\gamma:
Σc+Σ+γ\Sigma^{+}_{c}\to\Sigma^{*+}\gamma b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2} b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2}
Σc0Σ0γ\Sigma^{0}_{c}\to\Sigma^{*0}\gamma b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2} b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2}
Ξc0Ξ0γ\Xi^{*0}_{c}\to\Xi^{*0}\gamma b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2} b~1′′sc2/2\widetilde{b}^{\prime\prime}_{1}s^{2}_{c}/\sqrt{2}

III.3 T8,10T_{8,10} weak radiative decays

The SU(3) flavor structure of the relevant sds\to d Hamiltonian can be found in Ref. Wang:2019alu . The decay amplitudes of the T8T_{8} and T10T_{10} weak radiative decays can be parameterized as

A(T8T8γ)\displaystyle A(T_{8}\to T^{\prime}_{8}\gamma) =\displaystyle= c1(T8)[ij]nT′′(3¯)k(T8)[ij]k+c2(T8)[ij]nT(3)k(T8)[ik]j\displaystyle c_{1}(T_{8})^{[ij]n}T^{\prime\prime}(\bar{3})^{k}(T^{\prime}_{8})_{[ij]k}+c_{2}(T_{8})^{[ij]n}T^{\prime}(3)^{k}(T_{8})_{[ik]j} (42)
+\displaystyle+ c3(T8)[in]jT′′(3¯)k(T8)[ij]k+c4(T8)[in]jT′′(3¯)k(T8)[ik]j+c5(T8)[in]jT′′(3¯)k(T8)[jk]i\displaystyle c_{3}(T_{8})^{[in]j}T^{\prime\prime}(\bar{3})^{k}(T^{\prime}_{8})_{[ij]k}+c_{4}(T_{8})^{[in]j}T^{\prime\prime}(\bar{3})^{k}(T^{\prime}_{8})_{[ik]j}+c_{5}(T_{8})^{[in]j}T^{\prime\prime}(\bar{3})^{k}(T^{\prime}_{8})_{[jk]i}
+\displaystyle+ c~1(T8)[ij]n(T8)[il]kH(4)jlk+c~2(T8)[in]j(T8)[il]kH(4)jlk+c~3(T8)[jn]i(T8)[il]kH(4)jlk,\displaystyle\widetilde{c}_{1}(T_{8})^{[ij]n}(T^{\prime}_{8})_{[il]k}H(4)^{lk}_{j}+\widetilde{c}_{2}(T_{8})^{[in]j}(T^{\prime}_{8})_{[il]k}H(4)^{lk}_{j}+\widetilde{c}_{3}(T_{8})^{[jn]i}(T^{\prime}_{8})_{[il]k}H(4)^{lk}_{j},
A(T8T10γ)\displaystyle A(T_{8}\to T^{\prime}_{10}\gamma) =\displaystyle= c1(T8)[in]jT′′(3¯)k(T10)ijk\displaystyle c^{\prime}_{1}(T_{8})^{[in]j}T^{\prime\prime}(\bar{3})^{k}(T_{10})_{ijk} (43)
+\displaystyle+ c~1(T8)[in]j(T10)ilkH(4)jlk+c~2(T8)[jn]i(T10)ilkH(4)jlk+c~3(T8)[ij]n(T10)ilkH(4)jlk,\displaystyle\widetilde{c}^{\prime}_{1}(T_{8})^{[in]j}(T_{10})_{ilk}H(4)^{lk}_{j}+\widetilde{c}^{\prime}_{2}(T_{8})^{[jn]i}(T_{10})_{ilk}H(4)^{lk}_{j}+\widetilde{c}^{\prime}_{3}(T_{8})^{[ij]n}(T_{10})_{ilk}H(4)^{lk}_{j},
A(T10T8γ)\displaystyle A(T_{10}\to T_{8}\gamma) =\displaystyle= c1′′(T10)ijnT′′(3¯)k(T8)[ik]j+c~1′′(T10)ijn(T8)[il]kH(4)jlk,\displaystyle c^{\prime\prime}_{1}(T_{10})^{ijn}T^{\prime\prime}(\bar{3})^{k}(T_{8})_{[ik]j}+\widetilde{c}^{\prime\prime}_{1}(T_{10})^{ijn}(T^{\prime}_{8})_{[il]k}H(4)^{lk}_{j}, (44)
A(T10T10)\displaystyle A(T_{10}\to T^{\prime}_{10}) =\displaystyle= c1′′′(T10)ijnT′′(3¯)k(T10)ijk+c~1′′′(T10)ijn(T10)ilkH(4)jlk,\displaystyle c^{\prime\prime\prime}_{1}(T_{10})^{ijn}T^{\prime\prime}(\bar{3})^{k}(T^{\prime}_{10})_{ijk}+\widetilde{c}^{\prime\prime\prime}_{1}(T_{10})^{ijn}(T_{10})_{ilk}H(4)^{lk}_{j}, (45)

where n3n\equiv 3 for ss quark, T′′(3¯)=(0,1,0)T^{\prime\prime}(\bar{3})=(0,1,0) related to the transition operator (d¯s)(\bar{d}s), and H(4)jlkH(4)^{lk}_{j} related to (q¯lqj)(q¯ks)(\bar{q}_{l}q^{j})(\bar{q}_{k}s) operator is symmetric in upper indices Wang:2019alu . In Eqs. (42-45), the ci(,′′,′′′)c^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i} terms denote the contributions from sdγs\to d\gamma shown in Fig.1 and the long distance contribution from ψi,ρ\psi_{i},\leavevmode\nobreak\ \rho and ω\omega Singer:1995is (for T8,10T_{8,10} weak radiative decays, the long distance contributions may be significantly larger than the short distance ones), the c~i(,′′,′′′)\widetilde{c}^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i} terms denote the WW exchange contributions shown in Fig. 2 (a-b), and the internal radiation contributions in Fig. 2 (c) are neglected in this work.

The SU(3) IRA amplitudes of the T8,10T8,10γT_{8,10}\to T^{{}^{\prime}}_{8,10}\gamma weak decays are summarized in Tab. 5, in which the information of the same CKM matrix elements VusVudV_{us}V^{*}_{ud} is not shown.

Table 5: The SU(3) IRA amplitudes of the T8,10T8,10γT_{8,10}\to T^{{}^{\prime}}_{8,10}\gamma weak decays, C1c1+c2+c3c5C_{1}\equiv c_{1}+c_{2}+c_{3}-c_{5} and C2c4+c5C_{2}\equiv c_{4}+c_{5}, C~Ac~1c~3\widetilde{C}_{A}\equiv\widetilde{c}_{1}-\widetilde{c}_{3}, C~Bc~2+c~3\widetilde{C}_{B}\equiv\widetilde{c}_{2}+\widetilde{c}_{3}, C~Ac~1+c~2\widetilde{C}^{\prime}_{A}\equiv\widetilde{c}^{\prime}_{1}+\widetilde{c}^{\prime}_{2} and C~Bc~2+c~3\widetilde{C}^{\prime}_{B}\equiv\widetilde{c}^{\prime}_{2}+\widetilde{c}^{\prime}_{3}.
     Decay modes      A(T8,10T8,10γ)A(T_{8,10}\to T^{{}^{\prime}}_{8,10}\gamma)
     T8T8γT_{8}\to T^{\prime}_{8}\gamma weak decays:
     ΞΣγ\Xi^{-}\to\Sigma^{-}\gamma      C1C_{1}
     Ξ0Λ0γ\Xi^{0}\to\Lambda^{0}\gamma      (C1+2C2)/6(C_{1}+2C_{2})/\sqrt{6}
     Ξ0Σ0γ\Xi^{0}\to\Sigma^{0}\gamma      (C1+2C~A)/2(C_{1}+2\widetilde{C}_{A})/\sqrt{2}
     Λ0nγ\Lambda^{0}\to n\gamma      (2C1+C2+2C~A+C~B)/6-(2C_{1}+C_{2}+2\widetilde{C}_{A}+\widetilde{C}_{B})/\sqrt{6}
     Σ+pγ\Sigma^{+}\to p\gamma      (C2+C~B)-(C_{2}+\widetilde{C}_{B})
     Σ0nγ\Sigma^{0}\to n\gamma      (C2C~B)/2-(C_{2}-\widetilde{C}_{B})/\sqrt{2}
     T8T10γT_{8}\to T_{10}\gamma weak decays:
     Ξ0Σ0γ\Xi^{0}\to\Sigma^{*0}\gamma      (c1+C~B)/2(-c^{\prime}_{1}+\widetilde{C}^{\prime}_{B})/\sqrt{2}
     ΞΣγ\Xi^{-}\to\Sigma^{*-}\gamma      c1c^{\prime}_{1}
     ΣΔγ\Sigma^{-}\to\Delta^{-}\gamma      23c12\sqrt{3}c^{\prime}_{1}
     Σ+Δ+γ\Sigma^{+}\to\Delta^{+}\gamma      (2c1+C~A)-(2c^{\prime}_{1}+\widetilde{C}^{\prime}_{A})
     Λ0Δ0γ\Lambda^{0}\to\Delta^{0}\gamma      (C~A+C~B)/6(\widetilde{C}^{\prime}_{A}+\widetilde{C}^{\prime}_{B})/\sqrt{6}
     Σ0Δ0γ\Sigma^{0}\to\Delta^{0}\gamma      (2c1+C~A)/2-(2c^{\prime}_{1}+\widetilde{C}^{\prime}_{A})/\sqrt{2}
     T10T8γT_{10}\to T_{8}\gamma weak decays:
     ΩΞγ\Omega^{-}\to\Xi^{-}\gamma      c1′′-c^{\prime\prime}_{1}
     ΞΣγ\Xi^{*-}\to\Sigma^{-}\gamma      c1′′/3-c^{\prime\prime}_{1}/\sqrt{3}
     Ξ0Λ0γ\Xi^{*0}\to\Lambda^{0}\gamma      c1′′/2-c^{\prime\prime}_{1}/\sqrt{2}
     Ξ0Σ0γ\Xi^{*0}\to\Sigma^{0}\gamma      (c1′′+2c~1′′)/6(c^{\prime\prime}_{1}+2\widetilde{c}^{\prime\prime}_{1})/\sqrt{6}
     Σ0nγ\Sigma^{*0}\to n\gamma      (c1′′c~1′′)/6(c^{\prime\prime}_{1}-\widetilde{c}^{\prime\prime}_{1})/\sqrt{6}
     Σ+pγ\Sigma^{*+}\to p\gamma      (c1′′+c~1′′)/3(c^{\prime\prime}_{1}+\widetilde{c}^{\prime\prime}_{1})/\sqrt{3}
     T10T10γT_{10}\to T^{\prime}_{10}\gamma weak decays:
     ΩΞγ\Omega^{-}\to\Xi^{*-}\gamma      3c1′′′\sqrt{3}c^{\prime\prime\prime}_{1}
     ΞΣγ\Xi^{*-}\to\Sigma^{*-}\gamma      c1′′′c^{\prime\prime\prime}_{1}
     Ξ0Σ0γ\Xi^{*0}\to\Sigma^{*0}\gamma      (c1′′′+c~1′′′)/2(c^{\prime\prime\prime}_{1}+\widetilde{c}^{\prime\prime\prime}_{1})/\sqrt{2}
     Σ+Δ+γ\Sigma^{*+}\to\Delta^{+}\gamma      c1′′′+c~1′′′c^{\prime\prime\prime}_{1}+\widetilde{c}^{\prime\prime\prime}_{1}
     Σ0Δ0γ\Sigma^{*0}\to\Delta^{0}\gamma      (c1′′′+c~1′′′)/2(c^{\prime\prime\prime}_{1}+\widetilde{c}^{\prime\prime\prime}_{1})/\sqrt{2}
     ΣΔγ\Sigma^{*-}\to\Delta^{-}\gamma      3c1′′′\sqrt{3}c^{\prime\prime\prime}_{1}

From Tab. 5, one can see that the amplitudes of ΞΣγ\Xi^{-}\to\Sigma^{-}\gamma, ΞΣγ\Xi^{-}\to\Sigma^{*-}\gamma, ΣΔγ\Sigma^{-}\to\Delta^{-}\gamma, ΩΞγ\Omega^{-}\to\Xi^{-}\gamma, ΞΣγ\Xi^{*-}\to\Sigma^{-}\gamma, ΩΞγ\Omega^{-}\to\Xi^{*-}\gamma, ΞΣγ\Xi^{*-}\to\Sigma^{*-}\gamma, ΣΔγ\Sigma^{*-}\to\Delta^{-}\gamma only contain coefficients ci(,′′,′′′)c^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i}, which means that the WW exchange transitions don’t contribute to these decays since the initial baryons don’t contain uu quark. Otherwise, the WW exchange contributions are canceled in Ξ0Λ0γ\Xi^{0}\to\Lambda^{0}\gamma and Ξ0Λ0γ\Xi^{*0}\to\Lambda^{0}\gamma decays. So above decays could be used to explore the short distance and long distance contributions. Other decay amplitudes contained both ci(,′′,′′′)c^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i} and c~i(,′′,′′′)\widetilde{c}^{(^{\prime},^{\prime\prime},^{\prime\prime\prime})}_{i} could proceed from the short distance contributions, long distance contributions and W-exchange contributions.

Table 6: Branching ratios of the T8,10T8γT_{8,10}\to T_{8}\gamma weak decays via sdγs\to d\gamma transition.
   Observables    Experimental data PDG2020    Our predictions in SAS_{A}    Our predictions in SBS_{B}
   T8T8γT_{8}\to T^{\prime}_{8}\gamma:
   (ΞΣγ)(×104)\mathcal{B}(\Xi^{-}\to\Sigma^{-}\gamma)(\times 10^{-4})    1.27±0.231.27\pm 0.23    1.67±0.061.67\pm 0.06    1.27±0.461.27\pm 0.46
   (Ξ0Λγ)(×103)\mathcal{B}(\Xi^{0}\to\Lambda\gamma)(\times 10^{-3})    1.17±0.071.17\pm 0.07    3.05±0.293.05\pm 0.29    1.17±0.141.17\pm 0.14
   (Ξ0Σ0γ)(×103)\mathcal{B}(\Xi^{0}\to\Sigma^{0}\gamma)(\times 10^{-3})    3.33±0.103.33\pm 0.10    0.14±0.010.14\pm 0.01    3.33±0.203.33\pm 0.20
   (Λ0nγ)(×103)\mathcal{B}(\Lambda^{0}\to n\gamma)(\times 10^{-3})    1.75±0.151.75\pm 0.15    1.48±0.031.48\pm 0.03    1.75±0.301.75\pm 0.30
   (Σ+pγ)(×103)\mathcal{B}(\Sigma^{+}\to p\gamma)(\times 10^{-3})    1.23±0.051.23\pm 0.05    1.27±0.061.27\pm 0.06    1.23±0.101.23\pm 0.10
   (Σ0nγ)(×1013)\mathcal{B}(\Sigma^{0}\to n\gamma)(\times 10^{-13})    \cdots    6.12±1.356.12\pm 1.35    3.146±3.1433.146\pm 3.143

For the weak T8T8γT_{8}\to T^{\prime}_{8}\gamma decays, all decay modes expect for Σ0nγ\Sigma^{0}\to n\gamma have been measured and paid a lot of attentions, experimental data are listed in the second column of Tab. 6, and there are longstanding theoretical difficulties to explain the experimental data of the weak T8T8γT_{8}\to T^{\prime}_{8}\gamma decays. In the T8T8γT_{8}\to T^{\prime}_{8}\gamma weak decays, they may decay via the sdγs\to d\gamma single quark emission, corresponding long distance effects and the WW-exchange transition. Since the quarks are antisymmetric in both the initial states T8T_{8} and the final states T8T^{\prime}_{8}, there are more independent parameters than ones in Tb3,c3T8γT_{b3,c3}\to T_{8}\gamma weak decays. The relevant SU(3) flavor parameters could be complex, and we set C1C_{1} is real and add relative phases δ11\delta_{11}, δ1A\delta_{1A}, δ1B\delta_{1B} for C2C_{2}, C~A\widetilde{C}_{A} and C~B\widetilde{C}_{B}, respectively. And then 7 independent parameters given by

C1,C2eiδ12,C~Aeiδ1A,C~Beiδ1B.\displaystyle C_{1},\leavevmode\nobreak\ C_{2}e^{i\delta_{12}},\leavevmode\nobreak\ \widetilde{C}_{A}e^{i\delta_{1A}},\leavevmode\nobreak\ \widetilde{C}_{B}e^{i\delta_{1B}}. (46)

Two cases for the T8T8γT_{8}\to T^{\prime}_{8}\gamma weak decays will be considered in our analysis. In case SAS_{A}, we will only consider the sdγs\to d\gamma single quark emission and long distance effects, i.e.i.e., set C~A=C~B=0\widetilde{C}_{A}=\widetilde{C}_{B}=0. In case SBS_{B}, we will consider all effects.

In case SAS_{A}, there are 3 independent parameters C1C_{1} and C2eiδ12C_{2}e^{i\delta_{12}}. Firstly, we use three data of (ΞΣγ)\mathcal{B}(\Xi^{-}\to\Sigma^{-}\gamma), (Λ0nγ)\mathcal{B}(\Lambda^{0}\to n\gamma) and (Σ+pγ)\mathcal{B}(\Sigma^{+}\to p\gamma) to constrain the parameters as well as obtain that C1=32.27±6.23C_{1}=32.27\pm 6.23, C2=48.96±9.74C_{2}=48.96\pm 9.74 and δ12=(0.08±21.58)\delta_{12}=(0.08\pm 21.58)^{\circ}, and noted that C2C_{2} is slightly larger than C1C_{1}. Then, we use the obtained C1C_{1}, C2C_{2} and δ12\delta_{12} to predict other three branching ratios, and the results are given in the third column of Tab. 6. One can see that the predictions of (Ξ0Λγ)\mathcal{B}(\Xi^{0}\to\Lambda\gamma) and (Ξ0Σ0γ)\mathcal{B}(\Xi^{0}\to\Sigma^{0}\gamma) in SAS_{A} are not inconsistent with their data. In case SAS_{A}, since A(Ξ0Σ0γ)A(ΞΣγ)=12\frac{A(\Xi^{0}\to\Sigma^{0}\gamma)}{A(\Xi^{-}\to\Sigma^{-}\gamma)}=\frac{1}{\sqrt{2}}, mΞ0mΞm_{\Xi^{0}}\approx m_{\Xi^{-}}, mΣ0mΣm_{\Sigma^{0}}\approx m_{\Sigma^{-}} and τΞ0τΞ1.8\frac{\tau_{\Xi^{0}}}{\tau_{\Xi^{-}}}\approx 1.8, one have that (Ξ0Σ0γ)(ΞΣγ)0.9\frac{\mathcal{B}(\Xi^{0}\to\Sigma^{0}\gamma)}{\mathcal{B}(\Xi^{-}\to\Sigma^{-}\gamma)}\approx 0.9, which are far away from the experimental one Exp.(Ξ0Σ0γ)Exp(ΞΣγ)26.2\frac{\mathcal{B}^{Exp.}(\Xi^{0}\to\Sigma^{0}\gamma)}{\mathcal{B}^{Exp}(\Xi^{-}\to\Sigma^{-}\gamma)}\approx 26.2. In addition, the SU(3) IRA prediction of (Ξ0Λγ)\mathcal{B}(\Xi^{0}\to\Lambda\gamma) is about 2.6 times larger than its data. So it’s necessary to considering the WW exchange contributions.

In case SBS_{B}, we use all five data of the branching ratios to constrain seven parameters. We obtain that C1=28.04±8.77C_{1}=28.04\pm 8.77, C2=41.32±21.95C_{2}=41.32\pm 21.95, C~A=77.82±24.29\widetilde{C}_{A}=77.82\pm 24.29, C~B=45.82±45.48\widetilde{C}_{B}=45.82\pm 45.48, δ12=(3.05±176.86)\delta_{12}=(-3.05\pm 176.86)^{\circ}, δ1A=(4.30±171.46)\delta_{1A}=(4.30\pm 171.46)^{\circ} and δ1B=(0.03±179.36)\delta_{1B}=(-0.03\pm 179.36)^{\circ}. One can see that, after satisfying all present data within 2σ2\sigma, three phases δ12,δ1A,δ1B\delta_{12},\delta_{1A},\delta_{1B} are almost unlimited, and the C1C_{1}, C2C_{2} and C~A\widetilde{C}_{A} terms give the same magnitude contributions. C~B\widetilde{C}_{B} lies in [0.33,91.30][0.33,91.30], and its contribution might be similar to (or smaller than) ones of C1C_{1}, C2C_{2} and C~A\widetilde{C}_{A}.

In both SAS_{A} and SBS_{B} cases, the branching ratio of Σ0nγ\Sigma^{0}\to n\gamma is too small to see in the experiments, and this weak decay completely overwhelmed by the simpler electromagnetic decay Σ0Λ0γ\Sigma^{0}\to\Lambda^{0}\gamma.

For the baryon decuplet radiative weak decays, only Ω\Omega baryon has a sufficiently long lifetime, is’s accessible to experimental study. Using the experimental upper limit (ΩΞγ)<4.60×104\mathcal{B}(\Omega^{-}\to\Xi\gamma)<4.60\times 10^{-4}, we obtain that (ΞΣγ)<1.82×1016\mathcal{B}(\Xi^{*-}\to\Sigma^{-}\gamma)<1.82\times 10^{-16} and (Ξ0Λ0γ)<3.53×1016\mathcal{B}(\Xi^{*0}\to\Lambda^{0}\gamma)<3.53\times 10^{-16}. The upper limits of the two branching ratios are very tiny since Ξ0,\Xi^{*0,-} have very short lifetime, so the ΞΣγ\Xi^{*-}\to\Sigma^{-}\gamma and Ξ0Λ0γ\Xi^{*0}\to\Lambda^{0}\gamma decays are difficult to be measured in the experiments.

III.4 T10T8γT_{10}\to T_{8}\gamma electromagnetic radiative decays

In addition, the baryon decuplet T10T_{10} also can decay only through electromagnetic interactions by the qnqnγ(n=n)q_{n}\to q_{n^{\prime}}\gamma(n=n^{\prime}) transition at the quark level. The SU(3) IRA amplitudes of the T10T8γT_{10}\to T_{8}\gamma electromagnetic decays can be parameterized as

AE(T10T8γ)\displaystyle A^{E}(T_{10}\to T_{8}\gamma) =\displaystyle= d1(T10)ijn(T8)[in]j.\displaystyle d_{1}(T_{10})^{ijn}(T_{8})_{[in^{\prime}]j}. (47)

Three cases are considered in calculating the electromagnetic decay amplitudes. S1S_{1}: assuming all three quarks in T10T_{10} baryon can emit photon, S2S_{2}: assuming dd and ss quarks in T10T_{10} baryon can emit photon, and S3S_{3}: assuming the heaviest quark in T10T_{10} baryon can emit photon. The SU(3) IRA amplitudes of T10T8γT_{10}\to T_{8}\gamma electromagnetic decays in three cases are listed in Tab. 7.

Table 7: The SU(3) IRA amplitudes of T10T8γT_{10}\to T_{8}\gamma electromagnetic decays.
Decay modes AE(T10T8γ)A^{E}(T_{10}\to T_{8}\gamma) in S1S_{1} AE(T10T8γ)A^{E}(T_{10}\to T_{8}\gamma) in S2S_{2} AE(T10T8γ)A^{E}(T_{10}\to T_{8}\gamma) in S3S_{3}
ΞΞγ\Xi^{*-}\to\Xi^{-}\gamma 0 0 2d1/3-2d_{1}/\sqrt{3}
   Ξ0Ξ0γ\Xi^{*0}\to\Xi^{0}\gamma 0 2d1/3-2d_{1}/\sqrt{3} 2d1/3-2d_{1}/\sqrt{3}
Δ+pγ\Delta^{+}\to p\gamma 0 2d1/32d_{1}/\sqrt{3} 2d1/32d_{1}/\sqrt{3}
Δ0nγ\Delta^{0}\to n\gamma 0 2d1/32d_{1}/\sqrt{3} 2d1/32d_{1}/\sqrt{3}
ΣΣγ\Sigma^{*-}\to\Sigma^{-}\gamma 0 0 2d1/32d_{1}/\sqrt{3}
Σ0Λ0γ\Sigma^{*0}\to\Lambda^{0}\gamma 0 d1-d_{1} 0
Σ0Σ0γ\Sigma^{*0}\to\Sigma^{0}\gamma 0 d1/3-d_{1}/\sqrt{3} 2d1/3-2d_{1}/\sqrt{3}
Σ+Σ+γ\Sigma^{*+}\to\Sigma^{+}\gamma 0 2d1/3-2d_{1}/\sqrt{3} 2d1/3-2d_{1}/\sqrt{3}

For T10T8γT_{10}\to T_{8}\gamma electromagnetic decays, (Σ+Σ+γ)\mathcal{B}(\Sigma^{*+}\to\Sigma^{+}\gamma) and (Σ0Λ0γ)\mathcal{B}(\Sigma^{*0}\to\Lambda^{0}\gamma) have been measured, (ΞΞγ)\mathcal{B}(\Xi^{*}\to\Xi\gamma) and (ΣΣγ)\mathcal{B}(\Sigma^{*-}\to\Sigma^{-}\gamma) have been upper limited, and the relevant experimental data are listed in the second column of Tab. 8. Comparing the amplitudes in three cases with the data, the S1S_{1} and S3S_{3} cases are eliminated, and we will use the IRA amplitudes in S2S_{2} case in the following analysis.

Using Eq. (28), the branching ratios will be obtained by (T10T8γ)=AE(T10T8γ)\mathcal{M}(T_{10}\to T_{8}\gamma)=A^{E}(T_{10}\to T_{8}\gamma), and the results are listed in the last column of Tab. 8. The SU(3) IRA predictions for (Σ+Σ+γ)\mathcal{B}(\Sigma^{*+}\to\Sigma^{+}\gamma) and (Σ0Λ0γ)\mathcal{B}(\Sigma^{*0}\to\Lambda^{0}\gamma) are quite consistent with present data. Noted that the estimated result B(ΔNγ)=(5.56.5)×103B(\Delta\to N\gamma)=(5.5-6.5)\times 10^{-3} from PDG PDG2020 , which is covered by our prediction. The branching ratio predictions are at the order of 10310^{-3}, and they might be measured at the BESIII or LHC experiments in near future. So these T10T8γT_{10}\to T_{8}\gamma electromagnetic decays could be used to test the SU(3) flavor symmetry.

Table 8: Branching ratios of T10T8γT_{10}\to T_{8}\gamma electromagnetic decays.
   Observables    Experimental data PDG2020    Our predictions
   (ΞΞγ)(×103)\mathcal{B}(\Xi^{*}\to\Xi\gamma)(\times 10^{-3})    <37<37    2.64±1.062.64\pm 1.06
   (Σ+Σ+γ)(×103)\mathcal{B}(\Sigma^{*+}\to\Sigma^{+}\gamma)(\times 10^{-3})    7.0±1.77.0\pm 1.7    6.48±2.806.48\pm 2.80
   (Σ0Λ0γ)(×102)\mathcal{B}(\Sigma^{*0}\to\Lambda^{0}\gamma)(\times 10^{-2})    1.250.12+0.131.25^{+0.13}_{-0.12}    1.26±0.251.26\pm 0.25
   (Σ0Σ0γ)(×103)\mathcal{B}(\Sigma^{*0}\to\Sigma^{0}\gamma)(\times 10^{-3})    \cdots    1.57±0.311.57\pm 0.31
   (ΣΣγ)(×104)\mathcal{B}(\Sigma^{*-}\to\Sigma^{-}\gamma)(\times 10^{-4})    <2.4<2.4    0
   (Δ0nγ)(×103)\mathcal{B}(\Delta^{0}\to n\gamma)(\times 10^{-3})    \cdots    8.25±3.648.25\pm 3.64
   (Δ+pγ)(×103)\mathcal{B}(\Delta^{+}\to p\gamma)(\times 10^{-3})    \cdots    8.36±3.688.36\pm 3.68

IV Conclusions

Baryon radiative decays give us a chance to study the interplay of the electromagnetic, weak and strong interactions. Some baryon radiative decay modes have been measured and some others could be studied at BESIII, LHCb and Belle-II experiments. In this work, we have analyzed baryon radiative decays of the octet T8T_{8}, decuplet T10T_{10}, single charmed anti-triplet Tc3T_{c3}, single charmed sextet Tc6T_{c6}, single bottomed anti-triplet Tb3T_{b3} and single bottomed sextet Tb6T_{b6} by using the irreducible representation approach to test the SU(3) flavor symmetry. Our main results are given in order:

  • Tb3,b6T_{b3,b6} weak radiative decays:
    Each kind of the decay amplitudes can be related by only one parameter in the Tb3T8γT_{b3}\to T_{8}\gamma, Tb6T8γT_{b6}\to T_{8}\gamma and Tb6T10γT_{b6}\to T_{10}\gamma weak decays via bs/dγb\to s/d\gamma as well as the Tb3Tc3γT_{b3}\to T_{c3}\gamma, Tb3Tc6γT_{b3}\to T_{c6}\gamma, Tb6Tc3γT_{b6}\to T_{c3}\gamma and Tb6Tc6γT_{b6}\to T_{c6}\gamma via the WW exchange transitions. Using the only measured (Λb0Λγ)\mathcal{B}(\Lambda^{0}_{b}\to\Lambda\gamma), we have predicted other six decay branching ratios of Tb3T8γT_{b3}\to T_{8}\gamma weak decays, and they might be measured by the experiments in near future. Unfortunately, none of Tb6T8,10γT_{b6}\to T_{8,10}\gamma and Tb3,b6Tc3,c6γT_{b3,b6}\to T_{c3,c6}\gamma weak decays has been measured at present. Any measurement of Tb6T8γ,T10γT_{b6}\to T_{8}\gamma,T_{10}\gamma will give us chance to predict many other decay branching ratios.

  • Tc3,c6T_{c3,c6} weak radiative decays:
    Tc3,c6T_{c3,c6} weak radiative decays are quite different from Tb3,b6T_{b3,b6} weak radiative decays, they may receive the contributions of both the cuγc\to u\gamma and the WW exchange transitions. After ignoring the GIM strongly suppressed cuγc\to u\gamma transition contributions and the Wilson Coefficient suppressed H(15)H(15) term contributions, the decay amplitudes of Tc3T8γT_{c3}\to T_{8}\gamma, Tc6T8γT_{c6}\to T_{8}\gamma and Tc6T10γT_{c6}\to T_{10}\gamma are also related by only one parameter B~\widetilde{B}, B~\widetilde{B}^{\prime} and b~1′′\widetilde{b}^{\prime\prime}_{1}, respectively. Just none of Tc3,c6T_{c3,c6} weak radiative decays has been measured at present.

  • T8,10T_{8,10} weak radiative decays:
    As for T8,10T_{8,10} weak radiative decays, some decays only receive the short distance and long distance sdγs\to d\gamma transition contributions, other decays could receive both the sdγs\to d\gamma transition and the W-exchange transition contributions. For the T8T8γT_{8}\to T^{\prime}_{8}\gamma weak decays, all decay modes expect for Σ0nγ\Sigma^{0}\to n\gamma have been measured, and we have found that only considering the short and long distance sdγs\to d\gamma transition contributions can not explain all current data by SU(3) IRA. Present all data could be explained by considering both the sdγs\to d\gamma transition contributions and the WW exchange contributions. (Σ0nγ)\mathcal{B}(\Sigma^{0}\to n\gamma) has been predicted, just this branching ratio is very tiny. For the T10T8γT_{10}\to T_{8}\gamma weak decays, we have used the upper limit of (ΩΞγ)\mathcal{B}(\Omega^{-}\to\Xi\gamma) to obtain the upper limit predictions of (ΞΣγ)\mathcal{B}(\Xi^{*-}\to\Sigma^{-}\gamma) and (Ξ0Λ0γ)\mathcal{B}(\Xi^{*0}\to\Lambda^{0}\gamma), just both upper limit predictions are tiny.

  • T10T8γT_{10}\to T_{8}\gamma electromagnetic radiative decays:
    All decay amplitudes of T10T8γT_{10}\to T_{8}\gamma electromagnetic radiative decays could be related by only one parameter d1d_{1}, the SU(3) IRA predictions for (Σ+Σ+γ)\mathcal{B}(\Sigma^{*+}\to\Sigma^{+}\gamma) and (Σ0Λ0γ)\mathcal{B}(\Sigma^{*0}\to\Lambda^{0}\gamma) are quite consistent with present data. Other branching ratio predictions are at the order of 10310^{-3}, and they might be measured by the experiments in near future.

Flavor SU(3) symmetry could provide us very useful information about the decays. According to our predictions, some branching ratios are accessible to the experiments at BESIII, LHCb and Belle-II. Our results in this work can be used to test SU(3) flavor symmetry approach in the radiative baryon decays by the future experiments.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China (Contract No. 11675137) and the Key Scientific Research Projects of Colleges and Universities in Henan Province (Contract No. 18A140029).

References

References

  • (1) A. Cerri et al., CERN Yellow Rep. Monogr.  7, 867 (2019) [arXiv:1812.07638 [hep-ph]].
  • (2) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett.  120, no. 22, 221803 (2018) [arXiv:1712.08606 [hep-ex]].
  • (3) A. A. Alves Junior et al., JHEP 1905, 048 (2019), [arXiv:1808.03477 [hep-ex]].
  • (4) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett.  123, no. 3, 031801 (2019) [arXiv:1904.06697 [hep-ex]].
  • (5) P.A. Zyla et al. (Particle Data Group), to be published in Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (6) J. Lach and P. Zenczykowski, Int. J. Mod. Phys. A 10, 3817 (1995).
  • (7) J. F. Donoghue, E. Golowich and B. R. Holstein, Phys. Rept.  131, 319 (1986).
  • (8) M. Ablikim et al. (BESIII Collaboration), Nature Phys.  15, 631 (2019) [arXiv:1808.08917 [hep-ex]].
  • (9) H. B. Li, Front. Phys. (Beijing) 12, no. 5, 121301 (2017) [arXiv:1612.01775 [hep-ex]].
  • (10) I. I. Bigi, X. W. Kang and H. B. Li, Chin. Phys. C 42, no. 1, 013101 (2018) [arXiv:1704.04708 [hep-ph]].
  • (11) D. M. Asner et al., Int. J. Mod. Phys. A 24, S1 (2009) [arXiv:0809.1869 [hep-ex]].
  • (12) A. Dery, M. Ghosh, Y. Grossman and S. Schacht, JHEP 2003, 165 (2020) [arXiv:2001.05397 [hep-ph]].
  • (13) X. G. He, Eur. Phys. J. C 9, 443 (1999) [hep-ph/9810397].
  • (14) X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) [hep-ph/0011337].
  • (15) H. K. Fu, X. G. He and Y. K. Hsiao, Phys. Rev. D 69, 074002 (2004) [hep-ph/0304242].
  • (16) Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) [arXiv:1512.09223 [hep-ph]].
  • (17) X. G. He and G. N. Li, Phys. Lett. B 750, 82 (2015) [arXiv:1501.00646 [hep-ph]].
  • (18) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].
  • (19) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) [hep-ph/9504326].
  • (20) S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. L , Eur. Phys. J. C 77, no. 2, 125 (2017) [arXiv:1608.02819 [hep-ph]].
  • (21) H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) [arXiv:1409.5026 [hep-ph]].
  • (22) M. He, X. G. He and G. N. Li, Phys. Rev. D 92, no. 3, 036010 (2015) [arXiv:1507.07990 [hep-ph]].
  • (23) N. G. Deshpande and X. G. He, Phys. Rev. Lett.  75, 1703 (1995) [hep-ph/9412393].
  • (24) S. Shivashankara, W. Wu and A. Datta, Phys. Rev. D 91, 115003 (2015) [arXiv:1502.07230 [hep-ph]].
  • (25) P. Singer, Nucl. Phys. Proc. Suppl.  50 (1996) 202 [hep-ph/9512308].
  • (26) Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013) [arXiv:1211.3361 [hep-ph]].
  • (27) D. Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012) [arXiv:1112.5451 [hep-ph]].
  • (28) H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
  • (29) M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
  • (30) M. J. Savage, Phys. Lett. B 257, 414 (1991).
  • (31) G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett.  57B, 277 (1975).
  • (32) C. D. Lü, W. Wang and F. S. Yu, Phys. Rev. D 93, no. 5, 056008 (2016) [arXiv:1601.04241 [hep-ph]].
  • (33) C. Q. Geng, Y. K. Hsiao, Y. H. Lin and L. L. Liu, Phys. Lett. B 776, 265 (2018) [arXiv:1708.02460 [hep-ph]].
  • (34) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) [arXiv:1801.03276 [hep-ph]].
  • (35) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017) [arXiv:1709.00808 [hep-ph]].
  • (36) C. Q. Geng, C. W. Liu, T. H. Tsai and S. W. Yeh, Phys. Lett. B 792, 214 (2019) [arXiv:1901.05610 [hep-ph]].
  • (37) W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C 77, no. 11, 800 (2017) [arXiv:1707.06570 [hep-ph]].
  • (38) D. Wang, Eur. Phys. J. C 79, no. 5, 429 (2019) [arXiv:1901.01776 [hep-ph]].
  • (39) D. Wang, P. F. Guo, W. H. Long and F. S. Yu, JHEP 1803, 066 (2018) [arXiv:1709.09873 [hep-ph]].
  • (40) S. Müller, U. Nierste and S. Schacht, Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759 [hep-ph]].
  • (41) Y. G. Xu, X. D. Cheng, J. L. Zhang and R. M. Wang, J. Phys. G 47, no. 8, 085005 (2020) [arXiv:2001.06907 [hep-ph]].
  • (42) R. M. Wang, M. Z. Yang, H. B. Li and X. D. Cheng, Phys. Rev. D 100, no. 7, 076008 (2019) [arXiv:1906.08413 [hep-ph]].
  • (43) H. M. Chang, M. G. Alonso and J. M. Camalich, Phys. Rev. Lett.  114, no. 16, 161802 (2015) [arXiv:1412.8484 [hep-ph]].
  • (44) P. Zenczykowski, Phys. Rev. D 73, 076005 (2006) [hep-ph/0512122].
  • (45) P. Zenczykowski, Nucl. Phys. Proc. Suppl.  167, 54 (2007) [hep-ph/0610191].
  • (46) J. W. Bos, D. Chang, S. C. Lee, Y. C. Lin and H. H. Shih, Phys. Rev. D 54, 3321 (1996) [hep-ph/9601299].
  • (47) X. G. He, T. Li, X. Q. Li and Y. M. Wang, Phys. Rev. D 74, 034026 (2006) [hep-ph/0606025].
  • (48) P. Singer and D. X. Zhang, Phys. Lett. B 383, 351 (1996) [hep-ph/9606343].
  • (49) L. L. Liu, C. Wang, X. W. Kang and X. H. Guo, Eur. Phys. J. C 80, no. 3, 193 (2020) [arXiv:1912.12622 [hep-ph]].
  • (50) R. N. Faustov and V. O. Galkin, Mod. Phys. Lett. A 32, 1750125 (2017) [arXiv:1706.01379 [hep-ph]].
  • (51) T. M. Aliev and A. Ozpineci, Nucl. Phys. B 732, 291 (2006) [hep-ph/0406331].
  • (52) P. Colangelo, F. De Fazio, R. Ferrandes and T. N. Pham, Phys. Rev. D 77, 055019 (2008) [arXiv:0709.2817 [hep-ph]].
  • (53) H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, T. M. Yan and H. L. Yu, Phys. Rev. D 51, 1199 (1995) [hep-ph/9407303].
  • (54) G. Ramalho, arXiv:2002.07280 [hep-ph].
  • (55) O. Junker, S. Leupold, E. Perotti and T. Vitos, Phys. Rev. C 101, no. 1, 015206 (2020) [arXiv:1910.07396 [hep-ph]].
  • (56) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys.  68, 1125 (1996) [hep-ph/9512380].
  • (57) R. N. Faustov and V. O. Galkin, Phys. Rev. D 96, no. 5, 053006 (2017) [arXiv:1705.07741 [hep-ph]].
  • (58) T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and P. Santorelli, Phys. Rev. D 87, 074031 (2013) [arXiv:1301.3737 [hep-ph]].
  • (59) T. Mannel and Y. M. Wang, JHEP 1112, 067 (2011) [arXiv:1111.1849 [hep-ph]].
  • (60) R. C. Verma and A. Sharma, Phys. Rev. D 38, 1443 (1988).
  • (61) Y. I. Azimov, Z. Phys. A 359, 75 (1997) [hep-ph/9611315].
  • (62) E. N. Dubovik, V. S. Zamiralov and S. N. Lepshokov, AIP Conf. Proc.  964, no. 1, 71 (2007) [hep-ph/0701141].
  • (63) D. Zeppenfeld, Z. Phys. C 8, 77 (1981).
  • (64) M. J. Savage and M. B. Wise, Phys. Rev. D 39, 3346 (1989) Erratum: [Phys. Rev. D 40, 3127 (1989)].
  • (65) N. G. Deshpande, X. G. He and J. Trampetic, Phys. Lett. B 367, 362 (1996) [hep-ph/9412222].
  • (66) E. Golowich and S. Pakvasa, Phys. Rev. D 51, 1215 (1995) [hep-ph/9408370].
  • (67) Fayyazuddin and M. J. Aslam, Phys. Rev. D 95, no. 11, 113002 (2017) [arXiv:1705.05106 [hep-ph]].
  • (68) R. N. Faustov and V. O. Galkin, Particles 3, no. 1, 208 (2020).
  • (69) Y. m. Wang, Y. Li and C. D. Lu, Eur. Phys. J. C 59, 861 (2009) [arXiv:0804.0648 [hep-ph]].