This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Subresultants of Several Univariate Polynomials in Newton Basis11footnotemark: 1

Abstract

In this paper, we consider the problem of formulating the subresultant polynomials for several univariate polynomials in Newton basis. It is required that the resulting subresultant polynomials be expressed in the same Newton basis as that used in the input polynomials. To solve the problem, we devise a particular matrix with the help of the companion matrix of a polynomial in Newton basis. Meanwhile, the concept of determinant polynomial in power basis for formulating subresultant polynomials is extended to that in Newton basis. It is proved that the generalized determinant polynomial of the specially designed matrix provides a new formula for the subresultant polynomial in Newton basis, which is equivalent to the subresultant polynomial in power basis. Furthermore, we show an application of the new formula in devising a basis-preserving method for computing the gcd of several Newton polynomials.

keywords:
subresultant , Newton polynomial , companion subresultant , companion matrix , determinant polynomial
journal: Journal of Symbolic Computationt1t1footnotetext: This article is part of the volume titled “Computational Algebra and Geometry: A special issue in memory and honor of Agnes Szanto”.

url]https://jyangmath.github.io/

\affiliation

[1]organization=SMS–HCIC–School of Mathematics and Physics,
Center for Applied Mathematics of Guangxi,
Guangxi Minzu University,addressline=
188 Daxue East Road, city=Nanning, postcode=530006, state=Guangxi, country=China

1 Introduction

Resultant theory is a fundamental tool in computer algebra with numerous applications (e.g., Gonzalez-Vega et al. (1998); Szanto (2008); Imbach et al. (2017); Perrucci & Roy (2018); Roy & Szpirglas (2020)), such as polynomial system solving (e.g., Kapur et al. (1994); Wang (1998, 2000)) and quantifier elimination (e.g., Arnon et al. (1984); Collins & Hong (1991)). Due to its importance, extensive research has been carried out both in theoretical and practical aspects on resultants, subresultants, and their variants (see Sylvester (1853); Collins (1967); Barnett (1971); Lascoux & Pragacz (2003); Terui (2008); Bostan et al. (2017); Hong & Yang (2021); Cox & D’Andrea (2021)). One of the essential topics in resultant theory is the representation of resultants and subresultant polynomials. In resultant theory, the input polynomials are typically assumed to be expressed in power basis (i.e., standard basis), and so are the output subresultant polynomials. However, with the rising popularity of basis-preserving algorithms in various applications (see Farouki & Rajan (1987); Goodman & Said (1991); Carnicer & Peña (1993); Delgado & Peña (2003); Bini & Gemignani (2004); Amiraslani et al. (2006); Cheng & Labahn (2006); Marco & Martínez (2007); Aruliah et al. (2007)), people are more and more interested in resultants and subresultants for polynomials in non-standard basis. Among these bases, Newton basis is widely used and has many applications. A typical application is to formulate the interpolating polynomials. One may wonder whether the resulting Newton polynomials have common zeros or what their gcd looks like. These problems can be reduced to the computation of resultant/subresultants. One straightforward way is changing from Newton basis to power basis, then carrying out the required computations, and changing back to the initial basis afterwards. However, due to the numerical instability caused by basis transformation, it is desired to have a basis-preserving algorithm for computing resultant/subresultants that does not involve basis transformation. In other words, given two polynomials in Newton basis, we want to compute their gcd in the given basis, where basis transformation is not used. In this paper, we will focus on the problem of formulating a type of subresultant polynomials for multiple univariate polynomials in Newton basis, and we aim to ensure that the formulated subresultant polynomials are: (1) expressed in the given Newton basis and (2) the same as those formulated in power basis after expansion.

Subresultant polynomials are usually expressed in the form of determinant polynomials. This choice is because determinant polynomials exhibit nice algebraic properties, greatly facilitating theoretical developments and subsequent practical applications. Consequently, people have developed various formulas in the form of determinant polynomials for subresultant polynomials in power basis, including the Sylvester type (Sylvester (1853); Li (2006)), Bézout type (Hou & Wang (2000)), Barnett type (Barnett (1983); Diaz-Toca & Gonzalez-Vega (2002)), and other variants (Diaz-Toca & Gonzalez-Vega (2004)). Following this approach, we develop a determinant polynomial formula for subresultant polynomials of multiple univariate polynomials in Newton basis.

To develop the formula of subresultant polynomial for multiple univariate polynomials in Newton basis, we use the extended version of the well-known companion matrix of a polynomial in power basis to Newton basis. This extension is achieved based on the understanding that the companion matrix of a polynomial in power basis with degree nn can represent an endomorphism of the spaces consisting of polynomials with degree less than nn defined by the multiplication of the involved variable in the power basis. The companion matrix of a polynomial in Newton basis possesses a similar property. Their only difference is that we use Newton basis this time. This underlying idea has been conceived in Diaz-Toca & Gonzalez-Vega (2002, 2004). In Diaz-Toca & Gonzalez-Vega (2002), the authors reformulated Barnett’s theorem with respect to various non-standard basis and demonstrated that the reformulated matrices partially share several nice properties with Barnett’s matrices, e.g., their ranks are equal, and the indices for independent rows are the same. However, it remains unsolved how to express the gcd of the input polynomials in the given basis. In Diaz-Toca & Gonzalez-Vega (2004), the authors considered a specific Newton basis with nodes being the roots of one polynomial and constructed the subresultant polynomials of two polynomials. The constraint on nodes is removed in the formula presented in this paper.

With this essential concept of companion matrix extended to Newton basis, we proceed to construct a matrix that will be used to formulate the subresultant polynomials by utilizing a similar approach as adopted by Barnett (1969, 1970, 1971), Diaz-Toca & Gonzalez-Vega (2004), and Hong & Yang (2021). To express the subresultant polynomials in terms of the given Newton basis, we generalize the concept of determinant polynomial in power basis to that in Newton basis. This generalization allows the formulation of subresultant polynomials in the provided Newton basis. Furthermore, as an application of the new formula, we devise a method for computing the gcd of several numerical Newton polynomials, which does not involve basis transformation.

Compared with previous related works, the newly developed formula of subresultant polynomials for multiple polynomials has the following features. First, it can be viewed as a generalization of the Barnett-type subresultant polynomials by extending the basis from power basis to Newton basis. Second, it also serves as a generalization of the formula of subresultant polynomial based on roots proposed in Hong (2002) and Diaz-Toca & Gonzalez-Vega (2004) in the sense that the previous formulas use a specific Newton basis with nodes to be the roots of one of the given polynomials. In contrast, the Newton basis employed in this paper allows for an arbitrary choice of nodes. As there are infinitely many possibilities for the nodes of the Newton basis, an infinite number of formulas of subresultant polynomials can be obtained. Furthermore, the formula of subresultant polynomials developed in this paper applies to the multi-polynomial case.

The paper is structured as follows. Section 2 briefly reviews the subresultant theory for two polynomials. It is followed by a formal statement of the problem to be addressed by the current paper in Section 3. The main result of the paper provides a solution to the problem raised in the previous section and is elaborated in Section 4. The correctness of the main result is verified in Section 5. In Section 6, we show an application of the main result in computing the gcd of several numerical Newton polynomials. The paper is concluded in Section 7 with further remarks.

2 Preliminaries

This section reviews some well-known results in subresultant theory for two univariate polynomials. It is noted that the involved polynomials are all expressed in power basis. Throughout the paper, we assume 𝔽\mathbb{F} is the fraction field of an integral domain and 𝔽n[x]\mathbb{F}_{n}[x] is the vector space consisting of polynomials in xx with degree no greater than nn.

2.1 Sylvester subresultant polynomial of two polynomials

Subresultant polynomials for two univariate polynomials are usually defined with the minors of their Sylvester matrix. Thus we start by recalling the definition of Sylvester matrix below.

Consider A,B𝔽[x]A,B\in\mathbb{F}[x] with the following form:

A(x)\displaystyle A(x) =anxn++a1x+a0,\displaystyle=a_{n}x^{n}+\cdots+a_{1}x+a_{0}, (1)
B(x)\displaystyle B(x) =bmxm++b1x+b0,\displaystyle=b_{m}x^{m}+\cdots+b_{1}x+b_{0}, (2)

where anbm0a_{n}b_{m}\neq 0, ai,bj𝔽a_{i},b_{j}\in\mathbb{F} (0in,0jm0\leq i\leq n,0\leq j\leq m). Then the Sylvester matrix of AA and BB with respect to xx is defined as

Syl(A,B):=[ana0ana0bmb0bmb0](m+n)columns}mrows}n rows{\rm{Syl}}(A,B):=\underbrace{\left[\begin{array}[]{*{20}{l}}{{a_{n}}}&\cdots&{{a_{0}}}&{}\\ &\ddots&&\ddots&{}\\ &{}&{{a_{n}}}&\cdots&{{a_{0}}}\\ \hline\cr{{b_{m}}}&\cdots&{{b_{0}}}&{}\\ &\ddots&&\ddots&{}\\ &{}&{{b_{m}}}&\cdots&{{b_{0}}}\end{array}\right]}_{(m+n)\ \text{columns}}\begin{array}[]{*{20}{l}}{\left.{\begin{array}[]{*{20}{c}}{}\hfil\\[1.0pt] {}\hfil\\[1.0pt] {}\hfil\end{array}}\right\}}{}~{}m\ \text{rows}\\[15.0pt] {\left.{\begin{array}[]{*{20}{c}}{}\hfil\\[1.0pt] {}\hfil\\[1.0pt] {}\hfil\end{array}}\right\}}{}~{}n\ \text{~{}rows}\end{array}

To define the subresultant polynomial of AA and BB, we introduce the concept of determinant polynomial (e.g., see Mishra (1993, Definition 7.5.1)).

Definition 1 (Determinant polynomial).

Given M𝔽(nk)×nM\in\mathbb{F}^{(n-k)\times n}, the determinant polynomial of MM in terms of xx is defined as

detpM:=i=0kdetMixi,\operatorname*{detp}M:=\sum_{i=0}^{k}\det M_{i}\cdot x^{i},

where MiM_{i} is the submatrix of MM consisting of the first nk1n-k-1 columns and the (ni)(n-i)th column.

With the above settings, the definition of subresultant polynomials of two univariate polynomials is presented below.

Definition 2 (Subresultant polynomial, Diaz-Toca & Gonzalez-Vega (2004)).

For 0kmin(m,n)10\leq k\leq\min(m,n)-1, the kkth subresultant polynomial of AA and BB with respect to xx is defined as

Sk(A,B):=detpSylk(A,B),S_{k}(A,B):=\operatorname*{detp}{\rm Syl}_{k}(A,B),

where Sylk(A,B){\rm Syl}_{k}(A,B) is the submatrix of Syl(A,B){\rm Syl}(A,B) obtained by deleting the last kk rows from the upper block (consisting of the first mm rows) and the lower block (consisting of the last nn rows) respectively and the last kk columns.

Example 3.

Given

A(x)=4x38x2+5x1,B(x)=2x3+3x21,A(x)=4x^{3}-8x^{2}+5x-1,\quad B(x)=2x^{3}+3x^{2}-1,

we have

Syl1(A,B)=[48 51 48 512 3 01 2 3 01]{\rm Syl}_{1}(A,B)=\begin{bmatrix}4&-8&\ \ 5&-1&\\ &\ \ 4&-8&\ \ 5&-1\\ 2&\ \ 3&\ \ 0&-1&\\ &\ \ 2&\ \ 3&\ \ 0&-1\\ \end{bmatrix}

and the first subresultant polynomial of AA and BB with respect to xx is

S1(A,B)\displaystyle S_{1}(A,B) =detpSyl1(A,B)\displaystyle={\rm detp}\ {\rm Syl}_{1}(A,B)
=det[48 51 48 52 3 01 2 3 0]x+det[48 5 4812 3 0 2 31]\displaystyle=\det\begin{bmatrix}4&-8&\ \ 5&-1\\ &\ \ 4&-8&\ \ 5\\ 2&\ \ 3&\ \ 0&-1\\ &\ \ 2&\ \ 3&\ \ 0\\ \end{bmatrix}x+\det\begin{bmatrix}4&-8&\ \ 5&\\ &\ \ 4&-8&-1\\ 2&\ \ 3&\ \ 0&\\ &\ \ 2&\ \ 3&\ -1\\ \end{bmatrix}
=576x288.\displaystyle=576\,x-288.

Apart from Sylvester subresultant polynomials, people also developed various alternative expressions for subresultant polynomials. Depending on the types of matrices used to formulate them, we can categorize the expressions into Sylvester type, Bézout type, Barnett type, etc. (see Diaz-Toca & Gonzalez-Vega (2004) for more details).

2.2 Companion matrix and Barnett matrix

Companion matrix has been proved to be a useful tool for formulating subresultant polynomials of two univariate polynomials (see Diaz-Toca & Gonzalez-Vega (2004)). We give a brief review of the companion matrix below.

Given a polynomial A(x)=anxn+an1xn1++a0𝔽[x]A(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}\in\mathbb{F}[x], the companion matrix of A(x)A(x) is defined as an n×nn\times n matrix ΔA\Delta_{A} of the following form

ΔA=[000a0an00a10an0a200anan1]n×n{\Delta_{A}}=\left[{\begin{array}[]{*{20}{c}}0&0&\cdots&0&{-{a_{0}}}\\ a_{n}&0&\cdots&0&{-{a_{1}}}\\ 0&a_{n}&\cdots&0&{-{a_{2}}}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&a_{n}&{-{a_{n-1}}}\end{array}}\right]_{n\times n}

With the help of the companion matrix above, we may construct the Barnett matrix of two univariate polynomials, whose minors give the coefficients of subresultant polynomials.

More explicitly, let AA and BB be as in (1) and (2), respectively. Then B(ΔA/an)B(\Delta_{A}/a_{n}) is the Barnett matrix of AA and BB with respect to xx. Furthermore, let BkB_{k} be the submatrix of B(ΔA/an)B(\Delta_{A}/a_{n}) obtained by deleting the last kk columns and BikB_{ik} be the submatrix of BkB_{k} consisting of the last nk1n-k-1 rows and the (i+1)(i+1)th row. Then by Diaz-Toca & Gonzalez-Vega (2004, Theorem 2.2-1),

Sk(A,B)=anmki=0kdetBikxiS_{k}(A,B)=a_{n}^{m-k}\sum_{i=0}^{k}\det B_{ik}\cdot x^{i}
Example 4.

Consider the polynomials AA and BB in Example 3. Then with some calculations, we obtain

ΔA=[001405048],B(ΔA/an)=[12742385237410187232554]\Delta_{A}=\left[\begin{array}[]{rrr}0&0&1\\ 4&0&-5\\ 0&4&8\end{array}\right],\quad B(\Delta_{A}/a_{n})=\left[\begin{array}[]{rrr}-{\dfrac{1}{2}}&{\dfrac{7}{4}}&{\dfrac{23}{8}}\\[8.0pt] -{\dfrac{5}{2}}&-{\dfrac{37}{4}}&-{\dfrac{101}{8}}\\[8.0pt] 7&{\dfrac{23}{2}}&{\dfrac{55}{4}}\end{array}\right]

It follows that

S1(A,B)=431(det[523747232]x+det[12747232])=576x288S_{1}(A,B)=4^{3-1}\left(\det\left[\begin{array}[]{rrr}-{\dfrac{5}{2}}&-{\dfrac{37}{4}}\\[8.0pt] {7}&{\dfrac{23}{2}}\end{array}\right]x+\det\left[\begin{array}[]{rrr}-{\dfrac{1}{2}}&{\dfrac{7}{4}}\\[8.0pt] {7}&{\dfrac{23}{2}}\end{array}\right]\right)=576\,x-288

2.3 Subresultant polynomial in roots

The subresultant polynomials in the previous subsections are all expressed in coefficients. In Hong (1999, 2002) and D’Andrea et al. (2006), Hong et al. developed an equivalent formula in roots for subresultant polynomials, which inspires the authors in Hong & Yang (2021) with a promising way to extend the concept of subresultant polynomial from two polynomials to multiple polynomials.

Given A,B𝔽[x]A,B\in\mathbb{F}[x] with degrees nn and mm, respectively, let ana_{n} be the leading coefficient of AA and α1,,αn\alpha_{1},\ldots,\alpha_{n} be the nn roots of AA over the algebraic closure of 𝔽\mathbb{F}. Then

Sk(A,B)=anmkdet[α1nk1B(α1)αnnk1B(αn)α10B(α1)αn0B(αn)α1k1(xα1)αnk1(xαn)α10(xα1)αn0(xαn)]n×ndet[α1n1αnn1α10αn0]n×nS_{k}(A,B)=\dfrac{a_{n}^{m-k}\cdot\det\left[\begin{array}[]{rcr}\alpha_{1}^{n-k-1}B(\alpha_{1})&\cdots&\alpha_{n}^{n-k-1}B(\alpha_{n})\\ \vdots{}{}{}{}{}{}{}{}&&\vdots{}{}{}{}{}{}{}{}\\ \alpha_{1}^{0}B(\alpha_{1})&\cdots&\alpha_{n}^{0}B(\alpha_{n})\\ \hline\cr\alpha_{1}^{k-1}(x-\alpha_{1})&\cdots&\alpha_{n}^{k-1}(x-\alpha_{n})\\ \vdots{}{}{}{}{}{}{}{}&&\vdots{}{}{}{}{}{}{}{}\\ \alpha_{1}^{0}(x-\alpha_{1})&\cdots&\alpha_{n}^{0}(x-\alpha_{n})\end{array}\right]_{n\times n}}{\det\begin{bmatrix}\alpha_{1}^{n-1}&\cdots&\alpha_{n}^{n-1}\\ \vdots&&\vdots\\ \alpha_{1}^{0}&\cdots&\alpha_{n}^{0}\end{bmatrix}_{n\times n}} (3)

The above rational expression for SkS_{k} in roots should be interpreted as follows; otherwise, the denominator will vanish when AA is not squarefree.

  1. (1)

    Treat α1,,αn\alpha_{1},\ldots,\alpha_{n} as indeterminates and carry out the exact division, which results in a symmetric polynomial in terms of α1,,αn\alpha_{1},\ldots,\alpha_{n}.

  2. (2)

    Evaluate the obtained polynomial with α1,,αn\alpha_{1},\ldots,\alpha_{n} assigned the values of roots of AA.

Example 5.

Consider the polynomials AA and BB in Example 3. It is noted that the roots of AA are (α1,α2,α3)=(1/2,1/2,1)(\alpha_{1},\alpha_{2},\alpha_{3})=(1/2,1/2,1). With further calculation, we have

S1(A,B)=\displaystyle S_{1}(A,B)= 431det[α11B(α1)α21B(α2)α31B(α3)α10B(α1)α20B(α2)α30B(α3)α10(xα1)α20(xα2)α30(xα3)]det[α12α22α32α11α21α31α10α20α30]\displaystyle\dfrac{4^{3-1}\cdot\det\begin{bmatrix}\alpha_{1}^{1}B(\alpha_{1})&\alpha_{2}^{1}B(\alpha_{2})&\alpha_{3}^{1}B(\alpha_{3})\\ \alpha_{1}^{0}B(\alpha_{1})&\alpha_{2}^{0}B(\alpha_{2})&\alpha_{3}^{0}B(\alpha_{3})\\ \alpha_{1}^{0}(x-\alpha_{1})&\alpha_{2}^{0}(x-\alpha_{2})&\alpha_{3}^{0}(x-\alpha_{3})\end{bmatrix}}{\det\begin{bmatrix}\alpha_{1}^{2}&\alpha_{2}^{2}&\alpha_{3}^{2}\\ \alpha_{1}^{1}&\alpha_{2}^{1}&\alpha_{3}^{1}\\ \alpha_{1}^{0}&\alpha_{2}^{0}&\alpha_{3}^{0}\end{bmatrix}}
=\displaystyle=\, 16(( 4α12α22+4α12α32+4α22α32+4α12α2α3+4α1α22α3+4α1α2α32+6α12α2\displaystyle 16\big{(}(\,{4\alpha_{{1}}^{2}}{\alpha_{{2}}^{2}}+4\,{\alpha_{{1}}^{2}}{\alpha_{{3}}^{2}}+4\,{\alpha_{{2}}^{2}}{\alpha_{{3}}^{2}}+4\,{\alpha_{{1}}^{2}}\alpha_{{2}}\alpha_{{3}}+4\,\alpha_{{1}}{\alpha_{{2}}^{2}}\alpha_{{3}}+4\,\alpha_{{1}}\alpha_{{2}}{\alpha_{{3}}^{2}}+6\,{\alpha_{{1}}^{2}}\alpha_{{2}}
+6α12α3+6α1α22+6α1α32+6α22α3+6α2α32+12α1α2α3+9α1α2+9α1α3\displaystyle+6\,{\alpha_{{1}}^{2}}\alpha_{{3}}+6\,\alpha_{{1}}{\alpha_{{2}}^{2}}+6\,\alpha_{{1}}{\alpha_{{3}}^{2}}+6\,{\alpha_{{2}}^{2}}\alpha_{{3}}+6\,\alpha_{{2}}{\alpha_{{3}}^{2}}+12\,\alpha_{{1}}\alpha_{{2}}\alpha_{{3}}+9\,\alpha_{{1}}\alpha_{{2}}+9\,\alpha_{{1}}\alpha_{{3}}
+9α2α3+2α1+2α2+2α3+3)x(4α12α22α3+4α12α2α32+4α1α22α32\displaystyle+9\,\alpha_{{2}}\alpha_{{3}}+2\,\alpha_{{1}}+2\,\alpha_{{2}}+2\,\alpha_{{3}}+3)x-(4\,{\alpha_{{1}}^{2}}{\alpha_{{2}}^{2}}\alpha_{{3}}+4\,{\alpha_{{1}}^{2}}\alpha_{{2}}{\alpha_{{3}}^{2}}+4\,\alpha_{{1}}{\alpha_{{2}}^{2}}{\alpha_{{3}}^{2}}
+6α12α2α3+6α1α22α3+6α1α2α32+9α1α2α3+2α12+2α22+2α32\displaystyle+6\,{\alpha_{{1}}^{2}}\alpha_{{2}}\alpha_{{3}}+6\,\alpha_{{1}}{\alpha_{{2}}^{2}}\alpha_{{3}}+6\,\alpha_{{1}}\alpha_{{2}}{\alpha_{{3}}^{2}}+9\,\alpha_{{1}}\alpha_{{2}}\alpha_{{3}}+2\,{\alpha_{{1}}^{2}}+2\,{\alpha_{{2}}^{2}}+2\,{\alpha_{{3}}^{2}}
+2α1α2+2α1α3+2α2α3+3α1+3α2+3α3))\displaystyle+2\,\alpha_{{1}}\alpha_{{2}}+2\,\alpha_{{1}}\alpha_{{3}}+2\,\alpha_{{2}}\alpha_{{3}}+3\,\alpha_{{1}}+3\,\alpha_{{2}}+3\,\alpha_{{3}})\big{)}

The evaluation of S1(A,B)S_{1}(A,B) with (α1,α2,α3)=(1/2,1/2,1)(\alpha_{1},\alpha_{2},\alpha_{3})=(1/2,1/2,1) yields S1(A,B)=576x288.S_{1}(A,B)=576\,x-288.

3 Problem Statement

In this section, we formalize the problem to be addressed in the current paper. For this purpose, we begin with a review of the generalized subresultant polynomial of multiple univariate polynomials, developed in recent years by Hong & Yang (2021).

3.1 Subresultant polynomial of several univariate polynomials

We need the following notations to present the generalized subresultant polynomial for more than two polynomials.

Notation 6.
  • 1.

    F=(F0,F1,,Ft)𝔽[x]F=({F_{0}},{F_{1}},\ldots,{F_{t}})\subseteq\mathbb{F}[x];

  • 2.

    di=degFi{d_{i}}=\deg{F_{i}};

  • 3.

    α1,,αd0\alpha_{1},\ldots,\alpha_{d_{0}} are the d0d_{0} roots of F0F_{0} in the algebraic closure of 𝔽\mathbb{F};

  • 4.

    δ=(δ1,δ2,,δt)t\delta=({\delta_{1}},{\delta_{2}},\ldots,{\delta_{t}})\in\mathbb{N}^{t};222It is assumed that 00\in\mathbb{N}.

  • 5.

    |δ|=δ1++δtd0\left|\delta\right|={\delta_{1}}+\cdots+{\delta_{t}}\leq{d_{0}}.

With the above notations, we recall the definition of the δ\deltath subresultant polynomial for several univariate polynomials in terms of roots from Hong & Yang (2021, Definition 2 and Lemma 30), which can be viewed as the generalization of Equation (3) to multiple polynomials. We point out that the expression of subresultant polynomial we use in the current paper differs from that in Hong & Yang (2021) by a sign factor. The reason for the sign adjustment is that we want to make the sign match with the equivalent form of subresultant polynomials in coefficients as developed in a more recent work by Hong & Yang (2023), which naturally extends the concept of Sylvester subresultant polynomial from two polynomials to several polynomials.

Definition 7.

The δ\deltath subresultant polynomial SδS_{\delta} of FF is defined by

Sδ(F):=a0d0δ0detMδ/detV{S_{\delta}}(F):=a_{0d_{0}}^{\delta_{0}}\cdot\det M_{\delta}/\det V (4)

where a0d0a_{0d_{0}} is the leading coefficient of F0F_{0} in terms of xx, and

  • 1.

    Mδ=[α1δ11F1(α1)αd0δ11F1(αd0)α10F1(α1)αd00F1(αd0)α1δt1Ft(α1)αd0δt1Ft(αd0)α10Ft(α1)αd00Ft(αd0)α1ε1(xα1)αd0ε1(xαd0)α10(xα1)αd00(xαd0)]d0×d0M_{\delta}=\left[{\begin{array}[]{rcr}{\alpha_{1}^{{\delta_{1}}-1}{F_{1}}({\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{{\delta_{1}}-1}{F_{1}}({\alpha_{{d_{0}}}})}\\ \vdots{}{}{}{}{}{}{}{}&&\vdots{}{}{}{}{}{}{}{}\\ {\alpha_{1}^{0}{F_{1}}({\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{0}{F_{1}}({\alpha_{{d_{0}}}})}\\ \hline\cr\vdots{}{}{}{}{}{}{}{}&{}\hfil&\vdots{}{}{}{}{}{}{}{}\\ \vdots{}{}{}{}{}{}{}{}&{}\hfil&\vdots{}{}{}{}{}{}{}{}\\ \hline\cr{\alpha_{1}^{{\delta_{t}}-1}{F_{t}}({\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{{\delta_{t}}-1}{F_{t}}({\alpha_{{d_{0}}}})}\\ \vdots{}{}{}{}{}{}{}{}&&\vdots{}{}{}{}{}{}{}{}\\ {\alpha_{1}^{0}{F_{t}}({\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{0}{F_{t}}({\alpha_{{d_{0}}}})}\\ \hline\cr{\alpha_{1}^{\varepsilon-1}(x-{\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{\varepsilon-1}(x-{\alpha_{{d_{0}}}})}\\ \vdots{}{}{}{}{}{}{}{}&&\vdots{}{}{}{}{}{}{}{}\\ {\alpha_{1}^{0}(x-{\alpha_{1}})}&\cdots&{\alpha_{{d_{0}}}^{0}(x-{\alpha_{{d_{0}}}})}\end{array}}\right]_{d_{0}\times d_{0}}

  • 2.

    V=[α1d01αd0d01α10αd00]d0×d0V=\left[{\begin{array}[]{*{20}{c}}{\alpha_{1}^{{d_{0}}-1}}&\cdots&{\alpha_{{d_{0}}}^{{d_{0}}-1}}\\ \vdots&{}\hfil&\vdots{}\\ {\alpha_{1}^{0}}&\cdots&{\alpha_{d_{0}}^{0}}\end{array}}\right]_{d_{0}\times d_{0}}

  • 3.

    δ0=max(d1+δ1d0,,dt+δtd0,1|δ|);\delta_{0}=\max(d_{1}+\delta_{1}-d_{0},\ldots,d_{t}+\delta_{t}-d_{0},1-|\delta|);

  • 4.

    ε=d0|δ|\varepsilon={d_{0}}-|\delta|.

The coefficient of Sδ(F)S_{\delta}(F) in the term xεx^{\varepsilon} is called the leading coefficient of Sδ(F)S_{\delta}(F), denoted by sδ(F)s_{\delta}(F). If no ambiguity occurs, we can write Sδ(F)S_{\delta}(F) as SδS_{\delta} for simplicity.

Remark 8.
  1. (1)

    It is emphasized that the rational expression (4) in Definition 7 should be interpreted the same way as that for interpreting Equation (3).

  2. (2)

    When δi=0\delta_{i}=0 for some i>0i>0, the block of MδM_{\delta} involving FiF_{i} will disappear and SδS_{\delta} will not contain the information of FiF_{i}.

  3. (3)

    It is noted that ε\varepsilon captures the formal degree of SδS_{\delta} in terms of xx.

The choice for δ0\delta_{0} in Definition 7 seems artificial. Now we justify why δ0\delta_{0} is chosen in this particular way. The reason is to make SδS_{\delta} be a polynomial in terms of the coefficients of FiF_{i}’s with the smallest degree. A more detailed explanation is given below. Again, treating α1,,αd0\alpha_{1},\ldots,\alpha_{d_{0}} as indeterminates and carrying out the exact division for detMδ/detV\det M_{\delta}/\det V, we obtain a symmetric polynomial in α1,,αd0\alpha_{1},\ldots,\alpha_{d_{0}} which can always be converted into a polynomial in elementary symmetric polynomials (denoted by e1,,ed0e_{1},\ldots,e_{d_{0}}) in terms of α1,,αd0\alpha_{1},\ldots,\alpha_{d_{0}}. By Vieta formulas, ei(1id0)e_{i}~{}(1\leq i\leq d_{0}) is a rational function in the coefficients of F0F_{0} with the denominator to be a0d0a_{0d_{0}}. To make SδS_{\delta} a polynomial in terms the coefficients of FiF_{i}’s, we need to cancel the denominators by multiplying detMδ/detV\det M_{\delta}/\det V with a0d0pa_{0d_{0}}^{p} where pp is the total degree of detMδ/detV\det M_{\delta}/\det V (viewed as polynomial in e1,,ed0e_{1},\ldots,e_{d_{0}}) in terms of eie_{i}’s. Next, we will figure out what pp is. Note that eie_{i} is linear in α1\alpha_{1}. Thus the total degree of detMδ/detV\det M_{\delta}/\det V in terms of eie_{i}’s is equal to its degree in terms of α1\alpha_{1}. Combining the observations that the degree of detMδ\det M_{\delta} in α1\alpha_{1} is max(d1+δ1,,dt+δt,ε+1)\max(d_{1}+\delta_{1},\ldots,d_{t}+\delta_{t},\varepsilon+1) and that of detV\det V is d0d_{0}, we have

p\displaystyle p =max(d1+δ1,,dt+δt,ε+1)d0\displaystyle=\max(d_{1}+\delta_{1},\ldots,d_{t}+\delta_{t},\varepsilon+1)-d_{0}
=max(d1+δ1d0,,dt+δtd0,1|δ|),\displaystyle=\max(d_{1}+\delta_{1}-d_{0},\ldots,d_{t}+\delta_{t}-d_{0},1-|\delta|),

which is exactly the value of δ0\delta_{0} in Definition 7.

Example 9.

Given

F=(F0,F1,F2)=(4x38x2+5x1,2x33x2+x,2x3+x2x)F=({F_{0}},{F_{1}},{F_{2}})=(4x^{3}-8x^{2}+5x-1,2x^{3}-3x^{2}+x,2x^{3}+x^{2}-x)

and δ=(1,1)\delta=(1,1), obviously, we have (d0,d1,d2)=(3,3,3)(d_{0},d_{1},d_{2})=(3,3,3). Moreover, it is easy to obtain by calculation that (α1,α2,α3)=(1/2,1/2,1)(\alpha_{1},\alpha_{2},\alpha_{3})=(1/2,1/2,1) and

δ0=max(3+13,3+13,1(1+1))=1.\delta_{0}=\max(3+1-3,3+1-3,1-(1+1))=1.

Now we construct

V=\displaystyle V= [α12α22α32α11α21α31α10α20α30],\displaystyle\begin{bmatrix}\alpha_{1}^{2}&\alpha_{2}^{2}&\alpha_{3}^{2}\\ \alpha_{1}^{1}&\alpha_{2}^{1}&\alpha_{3}^{1}\\ \alpha_{1}^{0}&\alpha_{2}^{0}&\alpha_{3}^{0}\end{bmatrix},
Mδ=\displaystyle M_{\delta}= [α10(2α133α12+α1)α20(2α233α22+α2)α30(2α333α32+α3)α10(2α13+α12α1)α20(2α23+α22α2)α30(2α33+α32α3)α10(xα1)α20(xα2)α30(xα3)].\displaystyle\left[\begin{array}[]{lll}\alpha_{1}^{0}(2{\alpha_{1}^{3}}-3{\alpha_{1}^{2}}+\alpha_{1})&\alpha_{2}^{0}(2{\alpha_{2}^{3}}-3{\alpha_{2}^{2}}+\alpha_{2})&\alpha_{3}^{0}(2{\alpha_{3}^{3}}-3{\alpha_{3}^{2}}+\alpha_{3})\\ \alpha_{1}^{0}(2{\alpha_{1}^{3}}+{\alpha_{1}^{2}}-\alpha_{1})&\alpha_{2}^{0}(2{\alpha_{2}^{3}}+{\alpha_{2}^{2}}-\alpha_{2})&\alpha_{3}^{0}(2{\alpha_{3}^{3}}+{\alpha_{3}^{2}}-\alpha_{3})\\ \alpha_{1}^{0}(x-\alpha_{1})&\alpha_{2}^{0}(x-\alpha_{2})&\alpha_{3}^{0}(x-\alpha_{3})\end{array}\right].

Further calculation yields

detV=\displaystyle\det V=\, (α2α3)(α1α3)(α1α2),\displaystyle\left(\alpha_{{2}}-\alpha_{{3}}\right)\left(\alpha_{{1}}-\alpha_{{3}}\right)\left(\alpha_{{1}}-\alpha_{{2}}\right),
detMδ=\displaystyle\det M_{\delta}=\, 2detV((4e22e1+1)x4e3),\displaystyle 2\det V\cdot\left(\left(4e_{2}-2\,e_{1}+1\right)x-4\,e_{3}\right),

where e1=α1+α2+α3e_{1}=\alpha_{{1}}+\alpha_{{2}}+\alpha_{{3}}, e2=α1α2+α1α3+α2α3e_{2}=\alpha_{{1}}\alpha_{{2}}+\alpha_{{1}}\alpha_{{3}}+\alpha_{{2}}\alpha_{{3}}, e3=α1α2α3e_{3}=\alpha_{{1}}\alpha_{{2}}\alpha_{{3}}. Therefore,

Sδ(F)=412((4e22e1+1)x4e3).S_{\delta}(F)=4^{1}\cdot 2(\left(4e_{2}-2\,e_{1}+1\right)x-4\,e_{3}).

The evaluation of Sδ(F)S_{\delta}(F) with (α1,α2,α3)=(1/2,1/2,1)(\alpha_{1},\alpha_{2},\alpha_{3})=(1/2,1/2,1) yields Sδ(F)=16x8.S_{\delta}(F)=16x-8.

The δ\deltath subresultant polynomial provides a practical tool for tackling the problems of parametric gcds and parametric multiplicities because of the inherent connection it has with the incremental gcds of several univariate polynomials.

Definition 10 (Hong & Yang (2021)).

Given F𝔽[x]F\subseteq\mathbb{F}[x], let

θi=deggcd(F0,,Fi1)deggcd(F0,,Fi)fori=1,,t\theta_{i}=\deg\gcd(F_{0},\ldots,F_{i-1})-\deg\gcd(F_{0},\ldots,F_{i})\quad\text{for}\quad i=1,\ldots,t

where gcd(F0):=F0\gcd(F_{0}):=F_{0}. Then icdeg(F):=(θ1,,θt)\operatorname*{icdeg}(F):=(\theta_{1},\ldots,\theta_{t}) is called the incremental cofactor degree of FF.

Theorem 11 (Hong & Yang (2021)).

Let θ=maxsδ(F)0δ\theta=\max\limits_{s_{\delta}(F)\neq 0}\delta where δ\delta’s are as specified in Notation 6 and max\max is with respect to the ordering glex\succ_{\operatorname*{glex}}. Then we have

icdeg(F)=θandgcd(F)=Sθ(F).\operatorname*{icdeg}(F)=\theta\ \ \ \text{and}\ \ \ \gcd(F)=S_{\theta}(F).
Remark 12.

The ordering glex\succ_{\rm{glex}} is defined for two sequences, e.g., γ\gamma and δ\delta, in t\mathbb{N}^{t}. We say δglexγ\delta\succ_{\rm{glex}}\gamma if |δ|>|γ||\delta|>|\gamma|, or |δ|=|γ||\delta|=|\gamma| and there exists iti\leq t such that δi>γi\delta_{i}>\gamma_{i} and δj=γj\delta_{j}=\gamma_{j} for j<ij<i.

Example 13.

Consider F=(F0,F1,F2)F=(F_{0},F_{1},F_{2}) where FiF_{i}’s are as in Example 9. All the possible δ\delta’s for the specific FF form the following set:

{(3,0),(2,1),(1,2),(0,3),(2,0),(1,1),(0,2),(1,0),(0,1),(0,0)}\{\ (3,0),\ (2,1),\ (1,2),\ (0,3),\ (2,0),\ (1,1),\ (0,2),\ (1,0),\ (0,1),\ (0,0)\ \}

where the entries are ordered with respect to glex\succ_{\rm glex}. With some calculations, we obtain

s(3,0)(F)=s(2,1)(F)=s(1,2)(F)=s(0,3)(F)=s(2,0)(F)=0s_{(3,0)}(F)=s_{(2,1)}(F)=s_{(1,2)}(F)=s_{(0,3)}(F)=s_{(2,0)}(F)=0

and s(1,1)(F)0s_{(1,1)}(F)\neq 0. Hence, gcdF=S(1,1)(F)\gcd F=S_{(1,1)}(F).

3.2 Determinant polynomial in Newton basis

In order to state the problem, we need to generalize the concept of determinant polynomial from power basis to Newton basis.

Definition 14 (Newton basis).

Let λ=(λ1,,λn)𝔽n\lambda=(\lambda_{1},\ldots,\lambda_{n})\in\mathbb{F}^{n} and Bλ(x)=(B0,B1,,Bn)B^{\lambda}(x)=({B_{0}},{B_{1}},\ldots,{B_{n}}) where

Bi=(xλ1)(xλi)B_{i}=(x-\lambda_{1})\cdots(x-\lambda_{i}) (5)

with the convention B0:=1B_{0}:=1. We call Bλ(x)B^{\lambda}(x)111Bλ(x)B^{\lambda}(x) can be abbreviated as BλB^{\lambda} if no ambiguity occurs. the Newton basis of 𝔽n[x]\mathbb{F}_{n}[x] with respect to λ\lambda.

It should be pointed out that the classical definition of Newton basis requires that λi\lambda_{i}’s are distinct. In contrast, we discard this restriction in this paper because the logical correctness of the result does not rely on the restriction.

The following concept extends the determinant polynomial in power basis to an arbitrary polynomial set, which also covers Newton basis. The more general concept is introduced because it will play a certain role in the proofs later.

Definition 15 (Determinant polynomial with respect to a polynomial set).

Let M𝔽(nk)×nM\in\mathbb{F}^{{(n-k)\times n}} where knk\leq n and P=(P0,,Pk)𝔽[x]P=(P_{0},\ldots,{P_{k}})\subseteq\mathbb{F}[x]. Then the determinant polynomial of MM with respect to PP is defined as

detpPM=i=0kdetMiPi{\rm detp}_{P}M=\sum_{i=0}^{k}\det M_{i}\cdot P_{i}

where MiM_{i} is the submatrix of MM consisting of the last nk1n-k-1 columns and the iith column.

Remark 16.
  • 1.

    When P=(B0,,Bk)P=(B_{0},\ldots,B_{k}), Definition 15 gives the formal definition of determinant polynomial with respect to Newton basis.

  • 2.

    The selection of columns for generating MiM_{i} is slightly different from the usual way in Definition 1. We use the current version because it is more friendly for the statement of the main result.

3.3 Problem statement

Now we are ready to give a formal statement of the problem to be solved in the paper.

Problem 17.
Given:

F=(F0,,Ft)𝔽[x]F=(F_{0},\ldots,F_{t})\subseteq\mathbb{F}[x] where FiF_{i}’s are expressed in the Newton basis Bλ=(B0,B1,)B^{\lambda}=(B_{0},B_{1},\ldots) with respect to λ\lambda, and δt\delta\in\mathbb{N}^{t} such that |δ|d0|\delta|\leq d_{0} where d0=degF0d_{0}=\deg F_{0}

Find:

a matrix Nλ,δ(F)N_{\lambda,\delta}(F) such that Sδ(F)=cdetp(B0,,Bε)Nλ,δ(F)S_{\delta}(F)=c\cdot{\rm detp}_{(B_{0},\ldots,B_{\varepsilon})}N_{\lambda,\delta}(F) for some constant cc where ε=d0|δ|\varepsilon=d_{0}-|\delta|.

4 Main Result

This section is devoted to presenting the main result of the paper, i.e., a particular solution to Problem 17. In order to construct the desired subresultant matrix, we introduce the companion matrix of a polynomial in Newton basis.

Definition 18 (Companion matrix in Newton basis, Corless & Litt (2001)).

Let Bλ=(B0,,Bn)B^{{\lambda}}=(B_{0},\ldots,B_{n}) be the Newton basis of 𝔽n[x]\mathbb{F}_{n}[x] with respect to λ=(λ1,,λn)𝔽n\lambda=(\lambda_{1},\ldots,\lambda_{n})\in\mathbb{F}^{n}. Let P=pnBn++p1B1+p0B0𝔽[x]P={p_{n}}{B_{n}}+\cdots+{p_{1}}B_{1}+{p_{0}B_{0}}\in\mathbb{F}[x] where pn0p_{n}\neq 0. Then the companion matrix of PP in BλB^{{\lambda}}, denoted by Λλ,P\Lambda_{\lambda,P}, is defined as

Λλ,P=pn[λ1p0/pn1λ2p1/pn1λn1pn2/pn1λnpn1/pn]n×n{\Lambda_{\lambda,P}}=p_{n}\left[{\begin{array}[]{*{20}{c}}{{\lambda_{1}}}&{}\hfil&{}\hfil&{}\hfil&{-{p_{0}}/{p_{n}}}\\ 1&{{\lambda_{2}}}&{}\hfil&{}\hfil&{-{p_{1}}/{p_{n}}}\\ {}\hfil&1&\ddots&{}\hfil&\vdots\\ {}\hfil&{}\hfil&\ddots&{{\lambda_{n-1}}}&{-{p_{n-2}}/{p_{n}}}\\ {}\hfil&{}\hfil&{}\hfil&1&{\lambda_{n}-{p_{n-1}}/{p_{n}}}\end{array}}\right]_{n\times n}

Similar to the companion matrix of a polynomial in power basis, the companion matrix Λλ,P{\Lambda_{\lambda,P}} defines an endomorphism of 𝔽n1[x]\mathbb{F}_{n-1}[x] given by the multiplication by pnxp_{n}x with respect to the Newton basis (as detailed by Proposition 25-(1) in Section 5).

Now we are ready to state the main result of this paper.

Theorem 19 (Main result).

When δ(0,,0)\delta\neq(0,\ldots,0), a solution to Problem 17 is

Nλ,δ(F)=[R11R1δ1Rt1Rtδt]T{N}_{\lambda,\delta}(F)=\begin{bmatrix}{R_{11}}&\cdots&R_{1\delta_{1}}&\cdots&\cdots&{R_{t1}}&\cdots&R_{t\delta_{t}}\end{bmatrix}^{T} (6)

with c=(1)σa0d0δ0c=(-1)^{\sigma}\cdot a_{0d_{0}}^{\delta_{0}}, where

  • 1.

    RijR_{ij} is the jjth column of Fi(Λλ,F0/a0d0)F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}}),

  • 2.

    Λλ,F0{\Lambda_{{\lambda,F_{0}}}} is the companion matrix of F0F_{0} in the basis (B0,,Bd0)(B_{0},\ldots,B_{d_{0}}),

  • 3.

    σ=(i=1t(δi2))+(ε2)(d02)+(d01)ε\sigma=\left(\sum_{i=1}^{t}\binom{\delta_{i}}{2}\right)+\binom{\varepsilon}{2}-\binom{d_{0}}{2}+(d_{0}-1)\varepsilon,111When m<pm<p, (mp):=0\binom{m}{p}:=0. and

  • 4.

    d0d_{0}, a0d0a_{0d_{0}}, ε\varepsilon and δ0\delta_{0} are as in Definition 7.

Equivalently,

Sδ(F)=(1)σa0d0δ0detp(B0,,Bε)Nλ,δ(F){S_{\delta}}(F)=(-1)^{\sigma}\cdot a_{0d_{0}}^{\delta_{0}}\cdot\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}{N}_{\lambda,\delta}(F)

We make a few observations on Theorem 19.

Remark 20.
  1. (1)

    Note that Nλ,δN_{\lambda,\delta} is of order |δ|×d0|\delta|\times d_{0}. If δi=0\delta_{i}=0, the block from Fi(Λλ,F0/a0d0)TF_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})^{T} does not appear in Nλ,δ(F){{N}_{\lambda,\delta}}(F).

  2. (2)

    When δ=(0,,0)\delta=(0,\ldots,0), the matrix Nλ,δ(F){{N}_{\lambda,\delta}}(F) is null, and thus it cannot provide any information about the δ\deltath subresultant polynomial. On the other hand, by Definition 7, we have

    S(0,,0)(F)=a0d0δ01F0.S_{(0,\ldots,0)}(F)=a_{0d_{0}}^{\delta_{0}-1}F_{0}.

    Therefore, we assume that δ(0,,0)\delta\neq(0,\ldots,0) in the rest of the paper.

  3. (3)

    From the construction of Nλ,δ(F)N_{\lambda,\delta}(F), it is seen that F1,,FtF_{1},\ldots,F_{t} are not necessarily to be expressed in Newton basis.

  4. (4)

    When FF is specialized with (A,B)(A,B) where degA=n\deg A=n and λ\lambda is specialized with (β1,,βn)(\beta_{1},\ldots,\beta_{n}) which are the roots of AA, S(nk){S_{(n-k)}} derived from Theorem 19 is equivalent to SkS_{k} derived from the formula in Diaz-Toca & Gonzalez-Vega (2004, Proposition 5.1) and Hong (1999). Both can be viewed as subresultant polynomials in terms of the roots of the given polynomials.

Example 21.

Consider

F=(F0,F1,F2)=(4B38B2+9B1,2B33B2+3B1,2B3B2B1+2B0)F=({F_{0}},{F_{1}},{F_{2}})=(4B_{3}-8B_{2}+9B_{1},2B_{3}-3B_{2}+3B_{1},2B_{3}-B_{2}-B_{1}+2B_{0})

and δ=(1,1)\delta=(1,1), where

Bλ=(B0,B1,B2,B3)=(1,x1,(x1)(x+1),x(x1)(x+1))B^{\lambda}=(B_{0},B_{1},B_{2},B_{3})=(1,\ x-1,\ (x-1)(x+1),\ x(x-1)(x+1))

and λ=(1,1,0)\lambda=(1,-1,0). It is easy to verify that when converted into expressions in power basis, FiF_{i}’s are the same as those in Example 9. We construct the companion matrix of F0F_{0} in BλB^{\lambda} and obtain

Λλ,F0=4[1 0 011940 1 2]\Lambda_{\lambda,F_{0}}=4\begin{bmatrix}1&\ \ 0&\ \ 0\\ 1&-1&-\dfrac{9}{4}\\[5.0pt] 0&\ \ 1&\ \ 2\end{bmatrix}

It follows that

F1(Λλ,F0/4)=[ 0 0 0323498 11234]andF2(Λλ,F0/4)=[ 2 0 07294278 53294]F_{1}(\Lambda_{\lambda,F_{0}}/4)=\left[\begin{array}[]{ccc}\ \ 0&\ \ 0&\ \ 0\\[2.0pt] -{\dfrac{3}{2}}&{\ \ \dfrac{3}{4}}&\ \ {\dfrac{9}{8}}\\[7.0pt] \ \ 1&-{\dfrac{1}{2}}&-{\dfrac{3}{4}}\end{array}\right]\quad\text{and}\quad F_{2}(\Lambda_{\lambda,F_{0}}/4)=\left[\begin{array}[]{ccc}\ \ 2&\ \ 0&\ \ 0\\[2.0pt] -{\dfrac{7}{2}}&-{\dfrac{9}{4}}&-{\dfrac{27}{8}}\\[7.0pt] \ \ 5&\ \ {\dfrac{3}{2}}&{\ \ \dfrac{9}{4}}\end{array}\right]

Given δ=(1,1)\delta=(1,1), by Theorem 19,

Nλ,δ(F)=\displaystyle{N}_{\lambda,\delta}(F)= [ 0 23272 1 5]T=[03212725]\displaystyle\begin{bmatrix}\ \ 0&\ \ 2\\[2.0pt] -{\dfrac{3}{2}}&{-\dfrac{7}{2}}\\[7.0pt] \ \ 1&\ \ 5\end{bmatrix}^{T}=\begin{bmatrix}0&-\dfrac{3}{2}&1\\[7.0pt] 2&-\dfrac{7}{2}&5\end{bmatrix}

Hence

ε=\displaystyle\varepsilon=\, 3(1+1)=1\displaystyle 3-(1+1)=1
σ=\displaystyle\sigma=\, (12)+(12)+(12)(32)+(31)1=1\displaystyle\binom{1}{2}+\binom{1}{2}+\binom{1}{2}-\binom{3}{2}+(3-1)\cdot 1=-1
δ0=\displaystyle\delta_{0}= max(3+13,3+13,1(1+1))=1\displaystyle\max(3+1-3,3+1-3,1-(1+1))=1
Sδ(F)=\displaystyle S_{\delta}(F)=\, cdetp(B0,B1)Nλ,δ(F)=(1)141(4B12B0)=16x8\displaystyle c\cdot{\rm detp}_{(B_{0},B_{1})}{N}_{\lambda,\delta}(F)=(-1)^{-1}\cdot 4^{1}\cdot(-4B_{1}-2B_{0})=16x-8

5 Proof of the Main Result (Theorem 19)

For readers to better understand the proof details, we give a brief sketch of ideas for proving Theorem 19 above. The three key steps for verifying the theorem are listed as follows.

  1. (1)

    Convert the δ\deltath subresultant polynomial in roots from power to Newton basis (see Lemma 23). The key in this step is the transition matrix between the power and Newton bases.

  2. (2)

    Convert the δ\deltath subresultant polynomial in Newton basis from a rational expression in roots to a determinant expression in coefficients (see Lemma 26). To achieve the goal, we use the companion matrix of a polynomial in Newton basis as the bridge to connect the expression in roots and that in coefficients together.

  3. (3)

    Convert the resulting determinant expression in coefficients to its equivalent form of determinant polynomial as in Theorem 19 (see Lemma 28).

It is seen that Lemmas 23, 26 and 28 are the key ingredients for proving the main theorem of the paper. Meanwhile, they are interesting on their own. We hope that they can be useful for tackling other problems in the future.

For the sake of simplicity, we introduce the following short-hands which will be frequently used in the proofs of the key lemmas.

Notation 22.
  • 1.

    x¯i=(xi1,,x0)\bar{x}_{i}=(x^{i-1},\ldots,x^{0});

  • 2.

    x¯i(αj)=(αji1,,αj0)\bar{x}_{i}(\alpha_{j})=(\alpha_{j}^{i-1},\ldots,\alpha_{j}^{0});

  • 3.

    B~iλ=(B0,,Bi1)\tilde{B}^{\lambda}_{i}=(B_{0},\ldots,B_{i-1});

  • 4.

    diagFi(α)=[Fi(α1)Fi(αd0)]\operatorname*{diag}F_{i}(\alpha)=\begin{bmatrix}F_{i}(\alpha_{1})&&\\ &\ddots&\\ &&F_{i}(\alpha_{d_{0}})\end{bmatrix}.

Lemma 23 presented below is targeted at fulfilling the goal in Step (1).

Lemma 23.

We have

Sδ(F)=(1)σa0d0δ0detMδλ/detB~λ(α)S_{\delta}(F)=(-1)^{\sigma^{\prime}}a_{0d_{0}}^{\delta_{0}}\cdot\det M_{\delta}^{\lambda}\big{/}\det\tilde{B}^{\lambda}(\alpha) (7)

where

  • 1.

    Mδλ=[(B~δ1λ(α1))TF1(α1)(B~δ1λ(αd0))TF1(αd0)(B~δtλ(α1))TFt(α1)(B~δtλ(αd0))TFt(αd0)(B~ελ(α1))T(xα1)(B~ελ(αd0))T(xαd0)]M_{\delta}^{\lambda}=\left[\begin{array}[]{lcl}(\tilde{B}^{\lambda}_{\delta_{1}}(\alpha_{1}))^{T}F_{1}(\alpha_{1})&\cdots&(\tilde{B}^{\lambda}_{\delta_{1}}(\alpha_{d_{0}}))^{T}F_{1}(\alpha_{d_{0}})\\ ~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\vdots&&~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\vdots\\ (\tilde{B}^{\lambda}_{\delta_{t}}(\alpha_{1}))^{T}F_{t}(\alpha_{1})&\cdots&(\tilde{B}^{\lambda}_{\delta_{t}}(\alpha_{d_{0}}))^{T}F_{t}(\alpha_{d_{0}})\\ (\tilde{B}^{\lambda}_{\varepsilon}(\alpha_{1}))^{T}(x-\alpha_{1})&\cdots&(\tilde{B}^{\lambda}_{\varepsilon}(\alpha_{d_{0}}))^{T}(x-\alpha_{d_{0}})\end{array}\right],

  • 2.

    B~λ(α)=[B~d0λ(α1)B~d0λ(αd0)]T\tilde{B}^{\lambda}(\alpha)=\left[{\begin{array}[]{*{20}{c}}{\tilde{B}^{\lambda}_{d_{0}}({\alpha_{1}})}\\ \vdots\\ {\tilde{B}^{\lambda}_{d_{0}}({\alpha_{d_{0}}})}\end{array}}\right]^{T}

  • 3.

    σ=(i=1t(δi2))+(ε2)(d02)\sigma^{\prime}=\left(\sum_{i=1}^{t}\binom{\delta_{i}}{2}\right)+\binom{\varepsilon}{2}-\binom{d_{0}}{2}, and

  • 4.

    δ0\delta_{0} and ε\varepsilon are as in Definition 7.

Remark 24.

It is noted that the rational expression (7) in Lemma 23 should be interpreted the same way as that for interpreting Equation (3) and the rational expression (4) for SδS_{\delta} in Definition 7. Otherwise, it would make no sense when αi=λj\alpha_{i}=\lambda_{j} for some i,ji,j.

Proof.

Recall Sδ(F)=a0d0δ0detMδ/detVS_{\delta}(F)=a_{0d_{0}}^{\delta_{0}}\cdot\det M_{\delta}\big{/}\det V. We will show

detB~λ(α)=(1)(d02)detVanddetMδλ=(1)i=1t(δi2)+(ε2)detMδ\det\tilde{B}^{\lambda}(\alpha)=(-1)^{\binom{d_{0}}{2}}\det V\quad\text{and}\quad\det M_{\delta}^{\lambda}=(-1)^{\sum_{i=1}^{t}\binom{\delta_{i}}{2}+\binom{\varepsilon}{2}}\det M_{\delta}

respectively, from which the lemma is followed. For this purpose, we assume UU is the transition matrix from x¯d0\bar{x}_{d_{0}} to B~d0λ\tilde{B}^{\lambda}_{d_{0}}, i.e., B~d0λ=x¯d0U\tilde{B}^{\lambda}_{d_{0}}=\bar{x}_{d_{0}}\cdot U. It is easy to see that UU is a skew lower-triangular matrix with its anti-diagonal entries to be all ones.

(1) Note that

[B~d0λ(α1)B~d0λ(αd0)]=[x¯d0(α1)x¯d0(αd0)]U=VTU\left[{\begin{array}[]{*{20}{c}}{\tilde{B}^{\lambda}_{d_{0}}({\alpha_{1}})}\\ \vdots\\ {\tilde{B}^{\lambda}_{d_{0}}(\alpha_{d_{0}})}\end{array}}\right]=\left[{\begin{array}[]{*{20}{c}}{\bar{x}_{d_{0}}(\alpha_{1})}\\ \vdots\\ {\bar{x}_{d_{0}}(\alpha_{d_{0}})}\end{array}}\right]\cdot U=V^{T}\cdot U

Taking determinants on the left-hand and right-hand sides of the above equation and observing that UU is a skew-lower-triangle matrix with anti-diagonal entries to be all ones, we immediately get

detB~λ(α)=detVTdetU=(1)(d02)detV\det\tilde{B}^{\lambda}(\alpha)=\det V^{T}\cdot\det U=(-1)^{\binom{d_{0}}{2}}\det V

(2) To show detMδ=(1)i=1t(δi2)+(ε2)detMδλ\det M_{\delta}=(-1)^{\sum_{i=1}^{t}\binom{\delta_{i}}{2}+\binom{\varepsilon}{2}}\det M_{\delta}^{\lambda}, we partition MδM_{\delta} and MδλM_{\delta}^{\lambda} into t+1t+1 parts, that is,

Mδ=[M1MtXε]andMδλ=[M1λMtλXε,λ]M_{\delta}=\begin{bmatrix}M_{1}\\ \vdots\\ M_{t}\\ X_{\varepsilon}\end{bmatrix}\quad\text{and}\quad M_{\delta}^{\lambda}=\begin{bmatrix}M_{1}^{\lambda}\\ \vdots\\ M_{t}^{\lambda}\\ X_{\varepsilon,\lambda}\end{bmatrix}

where

Mi\displaystyle M_{i} =[x¯δi(α1)Fi(α1)x¯δi(αd0)F(αd0)]\displaystyle=\begin{bmatrix}\bar{x}_{\delta_{i}}(\alpha_{1}){F_{i}}(\alpha_{1})&\ \cdots&{\bar{x}_{\delta_{i}}(\alpha_{d_{0}})F({\alpha_{{d_{0}}}})}\end{bmatrix}
Xε\displaystyle X_{\varepsilon} =[x¯ε(α1)(xα1)x¯ε(αd0)(xαd0)]\displaystyle=\begin{bmatrix}{\bar{x}_{\varepsilon}(\alpha_{1})(x-{\alpha_{1}})}&\cdots&{\bar{x}_{\varepsilon}(\alpha_{d_{0}})(x-{\alpha_{{d_{0}}}})}\end{bmatrix}
Miλ\displaystyle M_{i}^{\lambda} =[(B~δiλ(α1))TFi(α1)(B~δiλ(αd0))TFi(αd0)]\displaystyle=\begin{bmatrix}{(\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{1}}))^{T}{F_{i}}({\alpha_{1}})}&\ \,\cdots\ &{(\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{{d_{0}}}}))^{T}{F_{i}}({\alpha_{{d_{0}}}})}\end{bmatrix}
Xελ\displaystyle X_{\varepsilon}^{\lambda} =[(B~ελ(α1))T(xα1)(B~ελ(αd0))T(xαd0)]\displaystyle=\begin{bmatrix}{(\tilde{B}^{\lambda}_{\varepsilon}({\alpha_{1}}))^{T}(x-{\alpha_{1}})}&\cdots&{(\tilde{B}^{\lambda}_{\varepsilon}({\alpha_{{d_{0}}}}))^{T}(x-{\alpha_{{d_{0}}}})}\\ \end{bmatrix}

Note that

Miλ\displaystyle M_{i}^{\lambda} =[(B~δiλ(α1))T(B~δiλ(αd0))T]diagFi(α)\displaystyle=\begin{bmatrix}{(\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{1}}))^{T}}&\cdots&{(\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{{d_{0}}}}))^{T}}\end{bmatrix}\cdot\operatorname*{diag}F_{i}(\alpha)
=[Iδi0d0δi][(B~d0λ(α1))T(B~d0λ(αd0))T]diagFi(α)\displaystyle=\begin{bmatrix}I_{\delta_{i}}&0_{d_{0}-\delta_{i}}\end{bmatrix}\cdot\begin{bmatrix}{(\tilde{B}^{\lambda}_{d_{0}}({\alpha_{1}}))^{T}}&\cdots&{(\tilde{B}^{\lambda}_{d_{0}}({\alpha_{{d_{0}}}}))^{T}}\end{bmatrix}\cdot\operatorname*{diag}F_{i}(\alpha)
=[Iδi0d0δi]UT[x¯d0(α1)x¯d0(αd0)]diagFi(α)\displaystyle=\begin{bmatrix}I_{\delta_{i}}&0_{d_{0}-\delta_{i}}\end{bmatrix}\cdot U^{T}\cdot\begin{bmatrix}\bar{x}_{d_{0}}(\alpha_{1})&\cdots&\bar{x}_{d_{0}}(\alpha_{d_{0}})\end{bmatrix}\cdot\operatorname*{diag}F_{i}(\alpha)

where IδiI_{\delta_{i}} is the identity matrix of order δi\delta_{i} and 0d0δi0_{d_{0}-\delta_{i}} is the zero matrix of order δi×(d0δi)\delta_{i}\times{(d_{0}-\delta_{i}}). Since UU is skew lower-triangular, so is UTU^{T}, which inspires us to partition UTU^{T} in the following manner

UT=[UδiUδi]U^{T}=\begin{bmatrix}&U_{\delta_{i}}\\ U_{\delta_{i}}^{\prime}&\cdot\end{bmatrix}

where UδiU_{\delta_{i}} and UδiU_{\delta_{i}}^{\prime} are skew lower-triangular matrices of orders δi\delta_{i} and d0δid_{0}-\delta_{i}, respectively. Then

Miλ\displaystyle M_{i}^{\lambda} =[Iδi0d0δi][UδiUδi][x¯d0(α1)x¯d0(αd0)]diagFi(α)\displaystyle=\begin{bmatrix}I_{\delta_{i}}&0_{d_{0}-\delta_{i}}\end{bmatrix}\cdot\begin{bmatrix}&U_{\delta_{i}}\\ U_{\delta_{i}}^{\prime}&\cdot\end{bmatrix}\cdot\begin{bmatrix}\bar{x}_{d_{0}}(\alpha_{1})&\cdots&\bar{x}_{d_{0}}(\alpha_{d_{0}})\end{bmatrix}\cdot\operatorname*{diag}F_{i}(\alpha)
=Uδi[x¯δi(α1)x¯δi(αd0)]diagFi(α)\displaystyle=U_{\delta_{i}}\cdot\begin{bmatrix}\bar{x}_{\delta_{i}}(\alpha_{1})&\cdots&\bar{x}_{\delta_{i}}(\alpha_{d_{0}})\end{bmatrix}\cdot\operatorname*{diag}F_{i}(\alpha)
=UδiMi\displaystyle=U_{\delta_{i}}M_{i}

With the similar technique, one can derive that Xελ=UεXεX_{\varepsilon}^{\lambda}=U_{\varepsilon}X_{\varepsilon}. Assembling M1λM_{1}^{\lambda},,Mtλ\ldots,M_{t}^{\lambda} and XελX_{\varepsilon}^{\lambda} together, we have

[M1λMtλXελ]=[Uδ1M1UδtMtUεXε]=diag[Uδ1UδtUε][M1MtXε]\begin{bmatrix}M_{1}^{\lambda}\\ \vdots\\ M_{t}^{\lambda}\\ X_{\varepsilon}^{\lambda}\end{bmatrix}=\begin{bmatrix}U_{\delta_{1}}M_{1}\\ \vdots\\ U_{\delta_{t}}M_{t}\\ U_{\varepsilon}X_{\varepsilon}\end{bmatrix}=\operatorname*{diag}\begin{bmatrix}U_{\delta_{1}}&\cdots&U_{\delta_{t}}&U_{\varepsilon}\end{bmatrix}\cdot\begin{bmatrix}M_{1}\\ \vdots\\ M_{t}\\ X_{\varepsilon}\end{bmatrix}

Taking the determinants on the left-hand and right-hand sides of the above equation and noting that detUk=(1)(k2)\det U_{k}=(-1)^{\binom{k}{2}}, we immediately get

detMδλ=(i=1tdetUδi)detUεdetMδ=(1)i=1t(δi2)+(ε2)detMδ\det M_{\delta}^{\lambda}=\left(\prod_{i=1}^{t}\det U_{\delta_{i}}\right)\cdot\det U_{\varepsilon}\cdot\det M_{\delta}=(-1)^{\sum_{i=1}^{t}\binom{\delta_{i}}{2}+\binom{\varepsilon}{2}}\det M_{\delta}

The proof is completed. ∎

Next, we convert the subresultant polynomial in Newton basis from an expression in roots to that in coefficients. To achieve the goal, we introduce the following proposition, which shows that the companion matrix of a polynomial in Newton basis represents an endomorphism of 𝔽n1[x]\mathbb{F}_{n-1}[x] defined by the multiplication by cxcx for some cc with respect to the Newton basis (Fuhrmann (1996, Proposition 5.1.8)), which captures the very essential property of companion matrices. Proposition 25 provides us with a bridge to connect the subresultant polynomial expression in roots and that in coefficients together.

Proposition 25.

Given λ𝔽n\lambda\in\mathbb{F}^{n}, assume P=i=0npiBiP=\sum_{i=0}^{n}p_{i}B_{i} where BiB_{i}’s are as in (14). Let Λλ,P{\Lambda_{{\lambda},P}} be the companion matrix of PP in B~λ=(B0,B1,,Bn1)\tilde{B}^{\lambda}=(B_{0},B_{1},\ldots,B_{n-1}). Then we have

  1. (1)

    pnxB~λPB~λΛλ,Pp_{n}x\cdot\tilde{B}^{\lambda}{\equiv_{P}}\tilde{B}^{\lambda}\cdot{\Lambda_{{\lambda},P}}, and

  2. (2)

    QB~λPB~λQ(Λλ,P/pn)Q\cdot\tilde{B}^{\lambda}{\equiv_{P}}\tilde{B}^{\lambda}\cdot Q({\Lambda_{\lambda,P}}/p_{n}) for any Q𝔽[x]Q\in\mathbb{F}[x],

where P{\equiv_{P}} denotes the modulo operation of PP.

With the help of Proposition 25, we now prove the following lemma, which allows us to convert the subresultant polynomial in Newton basis from an expression in roots to that in coefficients.

Lemma 26.

Let Nλ,δ(F){{N}_{\lambda,\delta}}(F) be as in (6) and

XBλ,ε=[xλ11xλ21xλε1]ε×d0X_{B^{\lambda},\varepsilon}=\begin{bmatrix}x-\lambda_{1}&-1&&&&&&\\ &x-\lambda_{2}&-1&&&&&\\ &&\ddots&\ddots&&&&\\ &&&x-\lambda_{\varepsilon}&-1&&&\end{bmatrix}_{\varepsilon\times d_{0}}

where ε=d0|δ|\varepsilon=d_{0}-|\delta|. Then

Sδ(F)=(1)σa0d0δ0det[Nλ,δ(F)XBλ,ε]d0×d0S_{\delta}(F)=(-1)^{\sigma^{\prime}}\cdot a_{0d_{0}}^{\delta_{0}}\cdot\det\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\\ X_{B^{\lambda},\varepsilon}\end{bmatrix}_{d_{0}\times d_{0}}

where σ=(i=1t(δi2))+(ε2)(d02)\sigma^{\prime}=\left(\sum_{i=1}^{t}\binom{\delta_{i}}{2}\right)+\binom{\varepsilon}{2}-\binom{d_{0}}{2}.

Proof.

Recall MδλM_{\delta}^{\lambda} in Lemma 23. We only need to show that

detMδλ=det[Nλ,δ(F)XBλ,ε]detB~λ(α)=det[Nλ,δ(F)B~λ(α)XBλ,εB~λ(α)]\det M_{\delta}^{\lambda}=\det\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\\ X_{B^{\lambda},\varepsilon}\end{bmatrix}\cdot\det\tilde{B}^{\lambda}(\alpha)=\det\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\cdot\tilde{B}^{\lambda}(\alpha)\\ X_{B^{\lambda},\varepsilon}\cdot\tilde{B}^{\lambda}(\alpha)\end{bmatrix} (8)

This inspires us to partition MδλM_{\delta}^{\lambda} in the following way: Mδλ=[D1D2]M_{\delta}^{\lambda}=\begin{bmatrix}D_{1}\\ D_{2}\end{bmatrix} where D1D_{1} consists of the first tt blocks of MδλM_{\delta}^{\lambda} and D2D_{2} is the block involving xx. The remaining part will be dedicated to showing that

D1=Nλ,δ(F)B~λ(α)andD2=XBλ,εB~λ(α),D_{1}={{N}_{\lambda,\delta}}(F)\cdot\tilde{B}^{\lambda}(\alpha)\ \ \text{and}\ \ D_{2}=X_{B^{\lambda},\varepsilon}\cdot\tilde{B}^{\lambda}(\alpha),

respectively.

Recall that

Nλ,δ(F)=[R11R1δ1Rt1Rtδt]T{{{N}_{\lambda,\delta}}(F)}=\begin{bmatrix}{R_{11}}&\cdots&R_{1\delta_{1}}&\cdots&\cdots&{R_{t1}}&\cdots&R_{t\delta_{t}}\end{bmatrix}^{T}

where RijR_{ij} is the jjth column of Fi(Λλ,F0/a0d0)F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}}) and a0d0a_{0d_{0}} is the leading coefficient of F0F_{0}. The expansion of Nλ,δ(F)B~λ(α){{N}_{\lambda,\delta}}(F)\cdot\tilde{B}^{\lambda}({\alpha}) yields

Nλ,δ(F)B~λ(α)=[M~1λM~tλ]{{N}_{\lambda,\delta}}(F)\cdot\tilde{B}^{\lambda}({\alpha})=\left[{\begin{array}[]{*{20}{c}}\tilde{M}_{1}^{\lambda}\\ \vdots\\ \tilde{M}_{t}^{\lambda}\end{array}}\right]

where

M~iλ=[B~λ(α1)Ri1B~λ(αd0)Ri1B~λ(α1)RiδiB~λ(αd0)Riδi]δi×d0\tilde{M}_{i}^{\lambda}=\begin{bmatrix}{\tilde{B}^{\lambda}({\alpha_{1}})R_{i1}}&\cdots&{\tilde{B}^{\lambda}({\alpha_{{d_{0}}}})R_{i1}}\\ \vdots&{}&\vdots\\ {\tilde{B}^{\lambda}({\alpha_{1}})R_{i{\delta_{i}}}}&\cdots&{\tilde{B}^{\lambda}({\alpha_{{d_{0}}}})R_{i{\delta_{i}}}}\end{bmatrix}_{\delta_{i}\times d_{0}} (9)

Denote Fi(Λλ,F0/a0d0)F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}}) with RiR_{i}, i.e., Ri=[Ri1Rid0]R_{i}=\begin{bmatrix}R_{i1}&\cdots&R_{id_{0}}\end{bmatrix}. By Proposition 25-(2),

B~λ(x)Fi(x)F0B~λ(x)Ri\tilde{B}^{\lambda}(x)\cdot F_{i}(x){\equiv_{F_{0}}}\tilde{B}^{\lambda}(x)\cdot R_{i} (10)

Substituting x=αjx=\alpha_{j} into (10) and noting that F0(αj)=0F_{0}(\alpha_{j})=0, we get

B~λ(αj)Fi(αj)=B~λ(αj)Ri\tilde{B}^{\lambda}({\alpha_{j}})\cdot{F_{i}}({\alpha_{j}})=\tilde{B}^{\lambda}({\alpha_{j}})\cdot R_{i}

Taking the kkth columns of both sides of the above equation, we have

Bk1(αj)Fi(αj)=B~λ(αj)Rik{B_{k-1}}({\alpha_{j}})\cdot{F_{i}}({\alpha_{j}})=\tilde{B}^{\lambda}({\alpha_{j}})\cdot R_{ik}

The application of the above relation on (9) immediately yields

M~iλ=[B~δiλ(α1)Fi(α1)B~δiλ(αd0)Fi(αd0)]\tilde{M}_{i}^{\lambda}=\begin{bmatrix}{\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{1}}){F_{i}}({\alpha_{1}})}&\cdots&{\tilde{B}^{\lambda}_{\delta_{i}}({\alpha_{{d_{0}}}}){F_{i}}({\alpha_{{d_{0}}}})}\end{bmatrix}

which is exactly the iith block of MδλM_{\delta}^{\lambda} for i=1,,ti=1,\ldots,t. Hence

Nλ,δ(F)B~λ(α)=D1{{N}_{\lambda,\delta}}(F)\cdot\tilde{B}^{\lambda}({\alpha})=D_{1} (11)

Let XsX_{s} be the ssth row of XBλ,εX_{B^{\lambda},\varepsilon}, i.e.,

Xs\displaystyle{X_{s}} =[00xλs100]\displaystyle=\left[{\begin{array}[]{*{20}{c}}0&\cdots&0&{x-{\lambda_{s}}}&{-1}&0&\cdots&0\end{array}}\right]
sth column\displaystyle\hskip 65.00009pt{\begin{subarray}{c}\uparrow\\ s\text{th column}\end{subarray}}

where s{1,2,,ε}s\in\{1,2,\ldots,\varepsilon\}. Simple calculation yields

XsB~λ(αi)T=(xλs)Bs1(αi)Bs(αi)=Bs1(αi)(xαi){X_{s}}\cdot\tilde{B}^{\lambda}({\alpha_{i}})^{T}=(x-{\lambda_{s}})\cdot{B_{s-1}}({\alpha_{i}})-{B_{s}}({\alpha_{i}})={B_{s-1}}({\alpha_{i}})(x-{\alpha_{i}})

It follows that XBλ,εB~λ(αi)T=B~ελ(αi)(xαi).X_{B^{\lambda},\varepsilon}\tilde{B}^{\lambda}({\alpha_{i}})^{T}={\tilde{B}^{\lambda}_{\varepsilon}}({\alpha_{i}})(x-{\alpha_{i}}). Thus

XBλ,εB~λ(α)\displaystyle X_{B^{\lambda},\varepsilon}\cdot\tilde{B}^{\lambda}({\alpha}) =XBλ,ε[B~λ(α1)TB~λ(αd0)T]\displaystyle=X_{B^{\lambda},\varepsilon}\cdot\left[{\begin{array}[]{*{20}{c}}{\tilde{B}^{\lambda}({\alpha_{1}})}^{T}&\cdots&{\tilde{B}^{\lambda}({\alpha_{{d_{0}}}})}^{T}\end{array}}\right] (13)
=[B~ελ(α1)(xα1)B~ελ(αd0)(xαd0)]\displaystyle=\left[{\begin{array}[]{*{20}{c}}{\tilde{B}^{\lambda}_{\varepsilon}}({\alpha_{1}})(x-{\alpha_{1}})&\cdots&{\tilde{B}^{\lambda}_{\varepsilon}}({\alpha_{d_{0}}})(x-{\alpha_{d_{0}}})\end{array}}\right] (15)

Combining (11) and (15), we have [Nλ,δ(F)XBλ,ε]B~λ(α)=Mδλ\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\\ X_{B^{\lambda},\varepsilon}\end{bmatrix}\cdot\tilde{B}^{\lambda}(\alpha)=M_{\delta}^{\lambda}. Applying Lemma 23, we finally attain

Sδ(F)=(1)σa0d0δ0detMδλ/detB~λ(α)=(1)σa0d0δ0det[Nλ,δ(F)XBλ,ε]S_{\delta}(F)=(-1)^{\sigma^{\prime}}\cdot a_{0d_{0}}^{\delta_{0}}\det M_{\delta}^{\lambda}/\det\tilde{B}^{\lambda}(\alpha)=(-1)^{\sigma^{\prime}}\cdot a_{0d_{0}}^{\delta_{0}}\cdot\det\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\\ X_{B^{\lambda},\varepsilon}\end{bmatrix}

where σ=(i=1t(δi2))+(ε2)(d02)\sigma^{\prime}=\left(\sum_{i=1}^{t}\binom{\delta_{i}}{2}\right)+\binom{\varepsilon}{2}-\binom{d_{0}}{2}. ∎

Remark 27.

Lemma 26 is a generalized version of Hong & Yang (2021, Theorem 27-2). The latter can be obtained by specializing λ1==λε=0\lambda_{1}=\cdots=\lambda_{\varepsilon}=0 in Lemma 26.

The final step is to convert the generalized subresultant polynomial from a determinant expression to an equivalent determinant polynomial expression. For this purpose, we present a more general result than what we need. The more general result is presented in the hope that it would be useful for other related problems.

Lemma 28.

Given

M=[a1,1a1,nank,1ank,n](nk)×nM=\left[{\begin{array}[]{*{20}{c}}{{a_{1,1}}}&\cdots&{{a_{1,n}}}\\ \vdots&{}\hfil&\vdots\\ {{a_{n-k,1}}}&\cdots&{{a_{n-k,n}}}\end{array}}\right]_{(n-k)\times n}

and P=(P0,P1,,Pk)𝔽[x]P=(P_{0},P_{1},\ldots,P_{k})\subseteq\mathbb{F}[x], we have

detpPM=(1)(n1)kP0det[MXP],\operatorname*{detp}\nolimits_{P}M=(-1)^{(n-1)k}\cdot P_{0}\cdot\det\begin{bmatrix}M\\ X_{P}\end{bmatrix},

where

XP=[P1/P01P2/P11Pk/Pk11]k×nX_{P}=\left[\begin{array}[]{cccccccc}P_{1}/P_{0}&-1&&&&&&\\ &P_{2}/P_{1}&-1&&&&&\\ &&\ddots&\ddots&&&&\\ &&&P_{k}/P_{k-1}&-1&&&\end{array}\right]_{k\times n}
Proof.

By Definition 15,

detpPM=i=0kdet[a1,i+1a1,k+2a1,na2,i+1a2,k+2a2,nank,i+1ank,k+2ank,n](nk)×(nk)Pi\operatorname*{detp}\nolimits_{P}M=\sum_{i=0}^{k}\det\left[{\begin{array}[]{*{20}{c}}a_{1,i+1}&{{{a_{1,k+2}}}}&\cdots&{{{a_{1,n}}}}\\ a_{2,i+1}&{{{a_{2,k+2}}}}&\cdots&{{a_{2,n}}}\\ \vdots&{}\hfil&&\vdots\\ a_{n-k,i+1}&{{{a_{n-k,k+2}}}}&\cdots&{{a_{n-k,n}}}\end{array}}\right]_{(n-k)\times(n-k)}\cdot{P_{i}}

Making use of the multi-linearity of determinants, we have

detpPM\displaystyle\operatorname*{detp}\nolimits_{P}M =i=0kdet[a1,i+1Pia1,k+2a1,na2,i+1Pia2,k+2a2,nank,i+1Piank,k+2ank,n](nk)×(nk)\displaystyle=\sum_{i=0}^{k}\det\left[{\begin{array}[]{*{20}{c}}a_{1,i+1}P_{i}&{{{a_{1,k+2}}}}&\cdots&{{{a_{1,n}}}}\\ a_{2,i+1}P_{i}&{{{a_{2,k+2}}}}&\cdots&{{a_{2,n}}}\\ \vdots&{}\hfil&&\vdots\\ a_{n-k,i+1}P_{i}&{{{a_{n-k,k+2}}}}&\cdots&{{a_{n-k,n}}}\end{array}}\right]_{(n-k)\times(n-k)}
=det[i=0ka1,i+1Pia1,k+2a1,ni=0ka2,i+1Pia2,k+2a2,ni=0kank,i+1Piank,k+2ank,n](nk)×(nk)\displaystyle=\det\left[{\begin{array}[]{*{20}{c}}\sum_{i=0}^{k}a_{1,i+1}P_{i}&{{{a_{1,k+2}}}}&\cdots&{{{a_{1,n}}}}\\ \sum_{i=0}^{k}a_{2,i+1}P_{i}&{{{a_{2,k+2}}}}&\cdots&{{a_{2,n}}}\\ \vdots&{}\hfil&&\vdots\\ \sum_{i=0}^{k}a_{n-k,i+1}P_{i}&{{{a_{n-k,k+2}}}}&\cdots&{{a_{n-k,n}}}\end{array}}\right]_{(n-k)\times(n-k)}

The next step is tricky, but it is the key to relating the determinant polynomial with the desired determinant. We first insert kk columns, that is, the first k+1k+1 columns of MM with the first column excluded, between the first two columns of the matrix on the right-hand side of the above equation and then add kk rows of the special shape as given in the following matrix. Then we have

detpPM=(1)τdet[i=0ka1,i+1Pia1,2a1,3a1,k+1a1,k+2a1,ni=0ka2,i+1Pia2,2a2,3a2,k+1a2,k+2a2,ni=0kank,i+1Piank,2ank,3ank,k+1ank,k+2ank,n1P2/P11Pk/Pk11]n×n\operatorname*{detp}\nolimits_{P}M=(-1)^{\tau}\det\left[\begin{array}[]{c|cccc|ccc}\sum_{i=0}^{k}a_{1,i+1}P_{i}&a_{1,2}&a_{1,3}&\cdots&a_{1,k+1}&{{{a_{1,k+2}}}}&\cdots&{{{a_{1,n}}}}\\ \sum_{i=0}^{k}a_{2,i+1}P_{i}&a_{2,2}&a_{2,3}&\cdots&a_{2,k+1}&{{{a_{2,k+2}}}}&\cdots&{{a_{2,n}}}\\ \vdots&\vdots&&\vdots&\vdots&&\vdots\\ \sum_{i=0}^{k}a_{n-k,i+1}P_{i}&a_{n-k,2}&a_{n-k,3}&\cdots&a_{n-k,k+1}&{{{a_{n-k,k+2}}}}&\cdots&{{a_{n-k,n}}}\\ \hline\cr&-1&&&&&&\\ &P_{2}/P_{1}&-1&&&&&\\ &&\ddots&\ddots&&&&\\ &&&P_{k}/P_{k-1}&-1&&&\\ \end{array}\right]_{n\times n}

where

τ=k+i=1k(1+i)+i=1k(nk+i)(n1)kmod2.\tau=k+\sum_{i=1}^{k}(1+i)+\sum_{i=1}^{k}(n-k+i)\equiv(n-1)k\mod 2.

The equation holds because there is only one non-zero minor in the last kk rows, which is bounded by the delimitations.

By subtracting the iith column multiplied by Pi1P_{i-1} for i=2,,k+1i=2,\ldots,k+1 from the first column and then taking the factor P0P_{0} from the first column, we obtain

detpPM=(1)(n1)kP0det[MXP].\operatorname*{detp}\nolimits_{P}M=(-1)^{(n-1)k}\cdot P_{0}\cdot\det\begin{bmatrix}M\\ X_{P}\end{bmatrix}.

The proof is completed. ∎

Remark 29.

By Lemma 28, the generalized subresultant polynomial developed in D’Andrea & Krick (2023) and D’Andrea et al. (2006, Equation (7)) for two univariate polynomials corresponding to an arbitrary set of monomials can be rewritten into a single determinant formula, which may bring some convenience for analyzing the properties of the generalized subresultant polynomials. In the Appendix section, we provide a detailed derivation for the formula.

Now we are ready to prove the main result of the paper.

Proof of Theorem 19.

By Lemma 26,

Sδ(F)=(1)σa0d0δ0det[Nλ,δ(F)XBλ,ε]d0×d0S_{\delta}(F)=(-1)^{\sigma^{\prime}}\cdot a_{0d_{0}}^{\delta_{0}}\cdot\det\begin{bmatrix}{{N}_{\lambda,\delta}}(F)\\ X_{B^{\lambda},\varepsilon}\end{bmatrix}_{d_{0}\times d_{0}}

where σ=(i=1t(δi2))+(ε2)(d02)\sigma^{\prime}=\left(\sum_{i=1}^{t}\binom{\delta_{i}}{2}\right)+\binom{\varepsilon}{2}-\binom{d_{0}}{2}. Next we specialize MM and PP in Lemma 28 with Nλ,δ(F){{N}_{\lambda,\delta}}(F) and (B0,,Bε)(B_{0},\ldots,B_{\varepsilon}), respectively. Then nn and kk in Lemma 28 are specialized with d0d_{0} and ε\varepsilon accordingly. Meanwhile, it is observed that Bi/Bi1=xλiB_{i}/B_{i-1}=x-\lambda_{i} and B0=1B_{0}=1. Therefore, we can achieve the following

Sδ(F)=(1)σa0d0δ0detp(B0,,Bε)Nλ,δ(F)S_{\delta}(F)=(-1)^{\sigma}\cdot a_{0d_{0}}^{\delta_{0}}\cdot\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}{{N}_{\lambda,\delta}}(F)

where σ=σ+(d01)ε\sigma=\sigma^{\prime}+(d_{0}-1)\varepsilon. The proof is completed. ∎

6 Application

The δ\deltath subresultant polynomial was originally proposed to solve the problem of parametric gcd for multiple polynomials. When combining Theorems 11 and 19, it can also be used to compute the gcd of numerical polynomials. In this section, we devise a method for computing the gcd of several univariate polynomials in Newton basis as an application of Theorem 19.

The method relies on the following proposition.

Proposition 30.

Let θ=icdegF\theta={\rm icdeg}F. Then the columns of the matrix Nλ,θTN_{\lambda,\theta}^{T}, i.e.,

R11,,R1θ1,,Rt1,,Rtθt{R_{11}},\ldots,R_{1\theta_{1}},\ldots,{R_{t1}},\ldots,R_{t\theta_{t}}

form a maximal set of independent columns of the matrix

[F1(Λλ,F0/a0d0)Ft(Λλ,F0/a0d0)]\begin{bmatrix}{F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}&\cdots&F_{t}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})\end{bmatrix}
Proof.

We first show that R11,,R1θ1,,Rt1,,Rtθt{R_{11}},\ldots,R_{1\theta_{1}},\ldots,{R_{t1}},\ldots,R_{t\theta_{t}} are linearly independent. Otherwise, Nλ,θ(F){N}_{\lambda,\theta}(F) is rank-deficient and thus detp(B0,,Bε)Nλ,θ(F)=0\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}{N}_{\lambda,\theta}(F)=0 where ε=d0|θ|\varepsilon=d_{0}-|\theta|. By Theorem 19,

Sθ=cdetp(B0,,Bε)Nλ,θ(F)=0S_{\theta}=c\cdot\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}{N}_{\lambda,\theta}(F)=0

which contradicts with Theorem 11.

Next we show that RijR_{ij} for j>θij>\theta_{i} can be written as a linear combination of R11,,R1θ1,,{R_{11}},\ldots,R_{1\theta_{1}},\ldots, Rt1,,Rtθt{R_{t1}},\ldots,R_{t\theta_{t}}, which is equivalent to

detp(B0,,Bε1)[Nλ,θRijT]=0\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\,\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix}=0

Assume Rij=(Rij,1,,Rij,d0)TR_{ij}=(R_{ij,1},\ldots,R_{ij,d_{0}})^{T}. By the multi-linearity of determinant,

detp(B0,,Bε1)[Nλ,θRijT]=\displaystyle\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix}= det[k=0ε1R11,k+1BkR11,ε+1R11,d0k=0ε1R1θ1,k+1BkR1θ1,ε+1R1θ1,d0k=0ε1Rt1,k+1BkRt1,ε+1Rt1,d0k=0ε1Rtθt,k+1BkRtθt,ε+1Rtθt,d0k=0ε1Rij,k+1BkRij,ε+1Rij,d0]\displaystyle\det\begin{bmatrix}\sum^{\varepsilon-1}_{k=0}R_{11,k+1}\cdot B_{k}&R_{11,\varepsilon+1}&\cdots&R_{11,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\ \sum^{\varepsilon-1}_{k=0}R_{1\theta_{1},k+1}\cdot B_{k}&R_{1\theta_{1},\varepsilon+1}&\cdots&R_{1\theta_{1},d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\ \sum^{\varepsilon-1}_{k=0}R_{t1,k+1}\cdot B_{k}&R_{t1,\varepsilon+1}&\cdots&R_{t1,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\ \sum^{\varepsilon-1}_{k=0}R_{t\theta_{t},k+1}\cdot B_{k}&R_{t\theta_{t},\varepsilon+1}&\cdots&R_{t\theta_{t},d_{0}}\\ \sum^{\varepsilon-1}_{k=0}R_{ij,k+1}\cdot B_{k}&R_{ij,\varepsilon+1}&\cdots&R_{ij,d_{0}}\end{bmatrix}
=\displaystyle= det[k=0d01R11,k+1BkR11,ε+1R11,d0k=0d01R1θ1,k+1BkR1θ1,ε+1R1θ1,d0k=0d01Rt1,k+1BkRt1,ε+1Rt1,d0k=0d01Rtθt,k+1BkRtθt,ε+1Rtθt,d0k=0d01Rij,k+1BkRij,ε+1Rij,d0]\displaystyle\det\begin{bmatrix}\sum^{d_{0}-1}_{k=0}R_{11,k+1}\cdot B_{k}&R_{11,\varepsilon+1}&\cdots&R_{11,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] \sum^{d_{0}-1}_{k=0}R_{1\theta_{1},k+1}\cdot B_{k}&R_{1\theta_{1},\varepsilon+1}&\cdots&R_{1\theta_{1},d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] \sum^{d_{0}-1}_{k=0}R_{t1,k+1}\cdot B_{k}&R_{t1,\varepsilon+1}&\cdots&R_{t1,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] \sum^{d_{0}-1}_{k=0}R_{t\theta_{t},k+1}\cdot B_{k}&R_{t\theta_{t},\varepsilon+1}&\cdots&R_{t\theta_{t},d_{0}}\\ \sum^{d_{0}-1}_{k=0}R_{ij,k+1}\cdot B_{k}&R_{ij,\varepsilon+1}&\cdots&R_{ij,d_{0}}\end{bmatrix} (16)

Note that k=0d01Rpq,k+1Bk=B~λRpq\sum^{d_{0}-1}_{k=0}R_{pq,k+1}\cdot B_{k}=\tilde{B}^{\lambda}\cdot R_{pq}. By Proposition 25-(2), FiB~λF0B~λFi(Λλ,F0/a0d0)F_{i}\cdot\tilde{B}^{\lambda}{\equiv_{F_{0}}}\tilde{B}^{\lambda}\cdot F_{i}({\Lambda_{\lambda,F_{0}}}/a_{0d_{0}}). Comparing the jjth elements of both sides, we obtain B~λRpqF0FpBq1\tilde{B}^{\lambda}\cdot R_{pq}\equiv_{F_{0}}F_{p}B_{q-1}, which implies that

B~λRpq=FpBq1+CpqF0\tilde{B}^{\lambda}\cdot R_{pq}=F_{p}B_{q-1}+C_{pq}F_{0}

The substitution of the above relation into (16) yields

detp(B0,,Bε1)[Nλ,θRijT]=det[F1B0+C11F0R11,ε+1R11,d0F1Bθ11+C1θ1F0R1θ1,ε+1R1θ1,d0FtB0+Ct1F0Rt1,ε+1Rt1,d0FtBθt1+CtθtF0Rtθt,ε+1Rtθt,d0FiBθi1+CijF0Rij,ε+1Rij,d0]\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\,\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix}=\det\begin{bmatrix}F_{1}B_{0}+C_{11}F_{0}&R_{11,\varepsilon+1}&\cdots&R_{11,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] F_{1}B_{\theta_{1}-1}+C_{1\theta_{1}}F_{0}&R_{1\theta_{1},\varepsilon+1}&\cdots&R_{1\theta_{1},d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] F_{t}B_{0}+C_{t1}F_{0}&R_{t1,\varepsilon+1}&\cdots&R_{t1,d_{0}}\\[-2.0pt] \vdots&\vdots&&\vdots\\[-2.0pt] F_{t}B_{\theta_{t}-1}+C_{t\theta_{t}}F_{0}&R_{t\theta_{t},\varepsilon+1}&\cdots&R_{t\theta_{t},d_{0}}\\ F_{i}B_{\theta_{i}-1}+C_{ij}F_{0}&R_{ij,\varepsilon+1}&\cdots&R_{ij,d_{0}}\end{bmatrix}

which indicates that detp(B0,,Bε1)[Nλ,θRijT]\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix} belongs to the ideal generated by FF. However,

deg(detp(B0,,Bε1)[Nλ,θRijT])ε1=deggcdF1<deggcdF\deg\left(\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix}\right)\leq\varepsilon-1=\deg\gcd F-1<\deg\gcd F

Therefore,

detp(B0,,Bε1)[Nλ,θRijT]=0\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon-1})}\begin{bmatrix}N_{\lambda,\theta}\\ R_{ij}^{T}\end{bmatrix}=0

Hence RijTR_{ij}^{T} is a linear combination of the rows in Nλ,θN_{\lambda,\theta}. It immediately follows that R11,,R1θ1,{R_{11}},\ldots,R_{1\theta_{1}}, ,Rt1,,Rtθt\ldots,{R_{t1}},\ldots,R_{t\theta_{t}} form a maximal set of independent columns of the matrix [F1(Λλ,F0/a0d0)\left[{F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}\ \ \cdots\ \ \right. Ft(Λλ,F0/a0d0)]\left.F_{t}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})\right]. ∎

Now we describe the method for computing the gcd of several polynomials in Newton basis, where FF is assumed to be as in Notation 6 and expressed in the Newton basis Bλ(x)B^{\lambda}(x).

  1. (S1)

    Determine the independent columns of F1(Λλ,F0/a0d0){F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})} incrementally. More explicitly, add one column each time to test its linear dependency with the previous columns until we identify the first column which is linearly dependent with the previous columns. If the column is the jjth column of F1(Λλ,F0/a0d0){F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}, let θ1=j1\theta_{1}=j-1 and go to (S2).

  2. (S2)

    For i=2,,ti=2,\ldots,t, determine the columns of Fi(Λλ,F0/a0d0){F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})} linearly independent with R11,,{R_{11}},\ldots, R1θ1,,Ri1,,RiθiR_{1\theta_{1}},\ldots,{R_{i1}},\ldots,R_{i\theta_{i}} in an incremental way. More explicitly, add one column of Fi(Λλ,F0/a0d0){F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})} each time to test its linear dependency with the previous columns until we identify the first column which is linearly dependent with the previous columns. If the column is the jjth column of Fi(Λλ,F0/a0d0){F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}, then let θi=j1\theta_{i}=j-1 and go to the next loop.

  3. (S3)

    Construct

    Nλ,θ=[R11R1θ1Rt1Rtθt]TN_{\lambda,\theta}=\begin{bmatrix}R_{11}&\cdots&R_{1\theta_{1}}&\cdots&\cdots&{R_{t1}}&\cdots&R_{t\theta_{t}}\end{bmatrix}^{T}

    Let ε=d0|θ|\varepsilon=d_{0}-|\theta|. Then the gcd of FF in Newton basis is detp(B0,,Bε)Nλ,θ\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}N_{\lambda,\theta}.

We discuss the correctness of the above method below.

  1. (1)

    Apply Proposition 30 to (F0,F1)(F_{0},F_{1}). Then we have that a maximal set of linearly independent columns of F1(Λλ,F0/a0d0){F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})} is R11,,R1θ1{R_{11}},\ldots,R_{1\theta_{1}} where θ1=degF0deggcd(F0,F1)\theta_{1}=\deg F_{0}-\deg\gcd(F_{0},F_{1}). So the first jj such that the jjth column is linearly dependent with the previous j1j-1 columns must satisfy that j=θ1+1j=\theta_{1}+1. In other words, θ1=j1\theta_{1}=j-1.

  2. (2)

    Assume we have a maximal set of linearly independent columns of F1(Λλ,F0/a0d0),{F_{1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}, \ldots, Fi1(Λλ,F0/a0d0){F_{i-1}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}, say R11,,R1θ1,Ri1,,R(i1)θi1{R_{11}},\ldots,R_{1\theta_{1}},\cdots{R_{i1}},\ldots,R_{(i-1)\theta_{i-1}} where

    θj=deggcd(F0,,Fj1)deggcd(F0,,Fj)\theta_{j}=\deg\gcd(F_{0},\ldots,F_{j-1})-\deg\gcd(F_{0},\ldots,F_{j})

    It is noted that adding any other RjkR_{jk} with j<ij<i and k>θjk>\theta_{j} will destroy the linearly independence. Now we add the columns of Fi(Λλ,F0/a0d0){F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})} into the linearly independent set one by one until we identify the first column which is linearly dependent with the previous columns. If the column is the jjth column of Fi(Λλ,F0/a0d0){F_{i}({\Lambda_{{\lambda,F_{0}}}}/a_{0d_{0}})}, by Proposition 30, j=θi+1j=\theta_{i}+1 and thus θi=j1\theta_{i}=j-1.

  3. (3)

    By Theorem 11, gcdF=Sθ(F)\gcd F=S_{\theta}(F); by Theorem 19, Sθ(F)=cdetp(B0,,Bε)Nλ,θS_{\theta}(F)=c\cdot\operatorname*{detp}_{(B_{0},\ldots,B_{\varepsilon})}N_{\lambda,\theta}. Hence detp(B0,,Bε)Nλ,θ\operatorname*{detp}\nolimits_{(B_{0},\ldots,B_{\varepsilon})}N_{\lambda,\theta} is the gcd of FF.

Example 31 (Continued from Example 21).

We show S(1,1)S_{(1,1)} obtained in Example 21 is exactly the gcd of FF. Recall that

F1(Λλ,F0/4)=[ 0 0 0323498 11234]andF2(Λλ,F0/4)=[ 2 0 07294278 53294]F_{1}(\Lambda_{\lambda,F_{0}}/4)=\left[\begin{array}[]{ccc}\ \ 0&\ \ 0&\ \ 0\\[2.0pt] -{\dfrac{3}{2}}&{\ \ \dfrac{3}{4}}&\ \ {\dfrac{9}{8}}\\[7.0pt] \ \ 1&-{\dfrac{1}{2}}&-{\dfrac{3}{4}}\end{array}\right]\quad\text{and}\quad F_{2}(\Lambda_{\lambda,F_{0}}/4)=\left[\begin{array}[]{ccc}\ \ 2&\ \ 0&\ \ 0\\[2.0pt] -{\dfrac{7}{2}}&-{\dfrac{9}{4}}&-{\dfrac{27}{8}}\\[7.0pt] \ \ 5&\ \ {\dfrac{3}{2}}&{\ \ \dfrac{9}{4}}\end{array}\right]

It is noted that there is only one linearly independent column in F1(Λλ,F0/4)F_{1}(\Lambda_{\lambda,F_{0}}/4) which is the first column R11R_{11}. Thus θ1=1\theta_{1}=1. With further calculation, we find that the first column R21R_{21} of F2(Λλ,F0/4)F_{2}(\Lambda_{\lambda,F_{0}}/4) is linearly independent with R11R_{11}; however, the second column R22R_{22} is linearly dependent with (R11,R21)(R_{11},R_{21}). Thus θ2=1\theta_{2}=1 and θ=(1,1)\theta=(1,1). We construct Nλ,θ(F)N_{\lambda,\theta}(F) as follows

Nλ,θ(F)=[ 0 23272 1 5]T=[03212725]{N}_{\lambda,\theta}(F)=\begin{bmatrix}\ \ 0&\ \ 2\\[2.0pt] -{\dfrac{3}{2}}&{-\dfrac{7}{2}}\\[7.0pt] \ \ 1&\ \ 5\end{bmatrix}^{T}=\begin{bmatrix}0&-\dfrac{3}{2}&1\\[7.0pt] 2&-\dfrac{7}{2}&5\end{bmatrix}

Then its determinant polynomial detp(B0,B1)Nλ,θ(F)=4B12B0{\rm detp}_{(B_{0},B_{1})}{N}_{\lambda,\theta}(F)=-4B_{1}-2B_{0} provides an expression for the gcd of FF and SθS_{\theta} only differs from it by a constant factor.

7 Conclusion

In this paper, we propose a method for formulating subresultant polynomials of multiple univariate polynomials in Newton basis where the resulting subresultants polynomials are also expressed in the given Newton basis. The formulation does not require basis transformation and thus can avoid the numerical instability problem caused by basis change. To achieve this goal, we extend the determinant polynomial in power basis to that in Newton basis. By making use of the companion matrix in Newton basis, we construct a Barnett-type matrix whose determinant polynomial in Newton basis yields the subresultant polynomial of multiple polynomials in Newton basis.

It is noted that one may have infinite many choices for Newton interpolating nodes λ\lambda. For each choice of λ\lambda, we can write the input polynomials in the corresponding Newton basis and formulate the subresultant polynomial in the same basis. Therefore, one can express a subresultant polynomial as infinitely many determinant forms, depending on which Newton basis is used. Then a natural question arises: does there exist λ\lambda’s such that the constructed subresultant matrix is interesting? For example, is there a particular way to choose the value of λ\lambda for a specific polynomial set such that the matrix Nλ,δN_{\lambda,\delta} exhibits nice structures? Another related question worthy of further investigation is how to compute the matrix Nλ,δN_{\lambda,\delta} and its determinant polynomial in an efficient way.

Acknowledgements. The authors would like to thank the anonymous reviewers for their helpful comments and insightful suggestions. The authors’ work was supported by the National Natural Science Foundation of China (Grant No. 12261010), the Natural Science Foundation of Guangxi (Grant No. 2023GXNSFBA026019), and the Natural Science Cultivation Project of GXMZU (Grant No. 2022MDKJ001).

Appendix

The Appendix is devoted to deriving a determinant formula for the generalized subresultant polynomial defined in D’Andrea et al. (2006) and D’Andrea & Krick (2023).

Consider A,B𝔽[x]A,B\in\mathbb{F}[x] of the following form

A=anxn++a0,B=bmxm++b0,A=a_{n}x^{n}+\cdots+a_{0},\quad B=b_{m}x^{m}+\cdots+b_{0},

where anbm0.a_{n}b_{m}\neq 0. For P=(xγ0,xγ1,,xγk)𝔽[x]P=(x^{\gamma_{0}},x^{\gamma_{1}},\ldots,x^{\gamma_{k}})\subseteq\mathbb{F}_{\ell}[x] where mm+n1m\leq\ell\leq m+n-1 and k=mmax(0,n+1)k=m-\max(0,\ell-n+1), without loss of generality, we assume 0γ0<γ1<<γk0\leq\gamma_{0}<\gamma_{1}<\ldots<\gamma_{k}. Then the subresultant matrix for AA and BB of order +1\ell+1 is constructed as follows

M=[a0ana0anb0bmb0bm]}max(0,n+1) rows}m+1 rows.M=\begin{bmatrix}a_{0}&\cdots&a_{n}\\ &\ddots&&\ddots\\ &&a_{0}&\cdots&a_{n}\\ b_{0}&\cdots&b_{m}\\ &\ddots&&\ddots\\ &&b_{0}&\cdots&b_{m}\\ \end{bmatrix}\begin{array}[]{l}\left.\begin{array}[]{c}\\ \\ \\ \end{array}\right\}~{}\max(0,\ell-n+1)\text{~{}rows}\\[20.0pt] \left.\begin{array}[]{c}\\ \\ \\ \end{array}\right\}~{}\ell-m+1\text{~{}rows}\end{array}.

which has the size (max(0,n+1)+(m+1))×(+1)\left(\max(0,\ell-n+1)+(\ell-m+1)\right)\times(\ell+1).

For the sake of simplicity, we partition MM by columns, that is,

M=[M0M1M].M=\begin{bmatrix}M_{0}&M_{1}&\cdots&M_{\ell}\end{bmatrix}.

By D’Andrea & Krick (2023) and D’Andrea et al. (2006, Equation (7)), the generalized subresultant polynomial of AA and BB with respect to PP is

s(x)=j=0k(1)σjdetMj^xγjs(x)=\sum_{j=0}^{k}(-1)^{\sigma_{j}}\det\widehat{M_{j}}\cdot x^{\gamma_{j}}

where σj=0ikij(i+γi)\sigma_{j}=\sum_{\begin{subarray}{c}0\leq i\leq k\\ i\neq j\end{subarray}}{(i+\gamma_{i})} and Mj^\widehat{M_{j}} is the submatrix of MM obtained by deleting the columns Mγ0M_{\gamma_{0}}, Mγ1M_{\gamma_{1}}, \ldots, MγkM_{\gamma_{k}} but keeping MγjM_{\gamma_{j}}. In order to write s(x)s(x) in the form of a polynomial determinant, we need to permute the columns of Mj^\widehat{M_{j}} so that MγjM_{\gamma_{j}} becomes the first column. Denote the resulting matrix with Mj~\widetilde{M_{j}}. Then detMj^=(1)j+γjdetMj~\det\widehat{M_{j}}=(-1)^{j+\gamma_{j}}\det\widetilde{M_{j}} and hence

s(x)=\displaystyle s(x)= j=0k(1)σj+j+γjdetMj~xγj\displaystyle\sum_{j=0}^{k}(-1)^{\sigma_{j}+j+\gamma_{j}}\det\widetilde{M_{j}}\cdot x^{\gamma_{j}}
=\displaystyle= j=0k(1)0ik(i+γi)detMj~xγj\displaystyle\sum_{j=0}^{k}(-1)^{\sum\limits_{0\leq i\leq k}(i+\gamma_{i})}\det\widetilde{M_{j}}\cdot x^{\gamma_{j}}
=\displaystyle= (1)0ik(i+γi)j=0kdetMj~xγj\displaystyle(-1)^{\sum\limits_{0\leq i\leq k}(i+\gamma_{i})}\sum_{j=0}^{k}\det\widetilde{M_{j}}\cdot x^{\gamma_{j}}
=\displaystyle= (1)0ik(i+γi)detpP[Mγ0MγkM0M1Mγ01Mγ0+1]\displaystyle(-1)^{\sum\limits_{0\leq i\leq k}(i+\gamma_{i})}\operatorname{detp}_{P}\begin{bmatrix}M_{\gamma_{0}}&\cdots&M_{\gamma_{k}}&M_{0}&M_{1}&\cdots&M_{\gamma_{0}-1}&M_{\gamma_{0}+1}&\cdots\end{bmatrix}

By Lemma 28, s(x)s(x) can be written as

s(x)=\displaystyle s(x)= (1)0ik(i+γi)+kxγ0\displaystyle(-1)^{\sum\limits_{0\leq i\leq k}(i+\gamma_{i})+\ell k}\cdot x^{\gamma_{0}}
det[Mγ0MγkM0M1Mγ01Mγ0+1xγ1γ01xγkγk11]\displaystyle\cdot\det\begin{bmatrix}M_{\gamma_{0}}&\cdots&M_{\gamma_{k}}&M_{0}&M_{1}&\cdots&M_{\gamma_{0}-1}&M_{\gamma_{0}+1}&\cdots\\ x^{\gamma_{1}-\gamma_{0}}&-1\\ &\ddots&\ddots\\ &&x^{\gamma_{k}-\gamma_{k-1}}&-1\end{bmatrix}

which gives us a determinant representation for the generalized subresultant polynomial s(x)s(x).

References

  • Amiraslani et al. (2006) A. Amiraslani, D. A. Aruliah, and R. M. Corless. The Rayleigh quotient iteration for generalized companion matrix pencils. Preprint, 2006.
  • Arnon et al. (1984) D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic decomposition I: The basic algorithm. SIAM Journal on Computing, 13(4):865–877, 1984.
  • Aruliah et al. (2007) D. A. Aruliah, R. M. Corless, L. Gonzalez-Vega, and A. Shakoori. Geometric applications of the Bezout matrix in the Lagrange basis. In Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, SNC ’07, pages 55–64, 2007.
  • Barnett (1969) S. Barnett. Degrees of greatest common divisors of invariant factors of two regular polynomial matrices. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 66, pages 241–245. Cambridge University Press, 1969.
  • Barnett (1970) S. Barnett. Degrees of greatest common divisors of invariant factors of two regular polynomial matrices. Linear Algebra and its Applications, 3(1):7–9, 1970.
  • Barnett (1971) S. Barnett. Greatest common divisor of several polynomials. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 70, pages 263–268. Cambridge University Press, 1971.
  • Barnett (1983) S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker, Inc., USA, 1983.
  • Bini & Gemignani (2004) D. A. Bini and L. Gemignani. Bernstein-Bezoutian matrices. Theoretical Computer Science, 315(2-3):319–333, 2004.
  • Bostan et al. (2017) A. Bostan, C. D’Andrea, T. Krick, A. Szanto, and M. Valdettaro. Subresultants in multiple roots: an extremal case. Linear Algebra and its Applications, 529:185–198, 2017.
  • Carnicer & Peña (1993) J. M. Carnicer and J. M. Peña. Shape preserving representations and optimality of the Bernstein basis. Advances in Computational Mathematics, 1(2):173–196, 1993.
  • Cheng & Labahn (2006) H. Cheng and G. Labahn. On computing polynomial GCD in alternate bases. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’06, pages 47–54, 2006.
  • Collins (1967) G. E. Collins Subresultants and reduced polynomial remainder sequences. Journal of the ACM (JACM), 14(1):128–142, 1967.
  • Collins & Hong (1991) G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.
  • Corless & Litt (2001) R. M. Corless and G. Litt. Generalized companion matrices for polynomials not expressed in monomial bases. Preprint, 2001.
  • Cox & D’Andrea (2021) D. A. Cox and C. D’Andrea. Subresultants and the Shape Lemma. Mathematics of Computation, 92:2355–2379, 2021.
  • D’Andrea & Krick (2023) C. D’Andrea and T. Krick. Corrigendum to “Multivariate subresultants in roots” [J. Algebra Appl. 302(1) (2006) 16–36]. Journal of Algebra, 635:838–839, 2023.
  • D’Andrea et al. (2006) C. D’Andrea, T. Krick, and A. Szanto. Multivariate subresultants in roots. Journal of Algebra, 302(1):16–36, 2006.
  • Delgado & Peña (2003) J. Delgado and J. M. Peña. A shape preserving representation with an evaluation algorithm of linear complexity. Computer Aided Geometric Design, 20(1):1–10, 2003.
  • Diaz-Toca & Gonzalez-Vega (2002) G. M. Diaz-Toca and L. Gonzalez-Vega. Barnett’s theorems about the greatest common divisor of several univariate polynomials through Bezout-like matrices. Journal of Symbolic Computation, 34(1):59–81, 2002.
  • Diaz-Toca & Gonzalez-Vega (2004) G. M. Diaz-Toca and L. Gonzalez-Vega. Various new expressions for subresultants and their applications. Applicable Algebra in Engineering, Communication and Computing, 15(3):233–266, 2004.
  • Farouki & Rajan (1987) R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in Bernstein form. Computer Aided Geometric Design, 4(3):191–216, 1987.
  • Fuhrmann (1996) P. A. Fuhrmann. A Polynomial Approach to Linear Algebra. Springer-Verlag, Berlin, Heidelberg, 1996.
  • Gonzalez-Vega et al. (1998) L. Gonzalez-Vega, T. Recio, H. Lombardi, and M.-F. Roy. Sturm-Habicht Sequences, Determinants and Real Roots of Univariate Polynomials. In Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes-Kepler-University, Linz, Austria), pages 300–316. Springer, 1998.
  • Goodman & Said (1991) T. N. T. Goodman and H. B. Said. Shape preserving properties of the generalised Ball basis. Computer Aided Geometric Design, 8(2):115–121, 1991.
  • Ho (1989) C.-J. Ho. Topics in Algebraic Computing: Subresultants, GCD, Factoring and Primary Ideal Decomposition. PhD thesis, USA, 1989.
  • Hong (1999) H. Hong. Subresultants in Roots. Technical report, Department of Mathematics. North Carolina State University, 1999.
  • Hong (2002) H. Hong. Subresultants in roots. In Proceedings of 8th International Conference on Applications of Computer Algebra (ACA’2002). Volos, Greece, 2002.
  • Hong & Yang (2021) H. Hong and J. Yang. Subresultant of several univariate polynomials. arXiv:2112.15370, 2021.
  • Hong & Yang (2023) H. Hong and J. Yang. Computing greatest common divisor of several parametric univariate polynomials via generalized subresultant polynomials. arXiv:2401.00408, 2023.
  • Hou & Wang (2000) X. R. Hou & D. M. Wang. Subresultants with the Bézout matrix. In Computer Mathematics, pages 19–28. World Scientific, 2000.
  • Imbach et al. (2017) R. Imbach, G. Moroz, and M. Pouget. A certified numerical algorithm for the topology of resultant and discriminant curves. Journal of Symbolic Computation, 80:285–306, 2017.
  • Kapur et al. (1994) D. Kapur, T. Saxena, and L. Yang. Algebraic and geometric reasoning using Dixon resultants. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’94, pages 99–107, 1994.
  • Lascoux & Pragacz (2003) A. Lascoux and P. Pragacz. Double Sylvester sums for subresultants and multi-Schur functions. Journal of Symbolic Computation, 35(6):689–710, 2003.
  • Li (2006) Y. B. Li. A new approach for constructing subresultants. Applied Mathematics and Computation, 183(1):471–476, 2006.
  • Marco & Martínez (2007) A. Marco and J.-J. Martínez. Bernstein–Bezoutian matrices and curve implicitization. Theoretical computer science, 377(1-3):65–72, 2007.
  • Mishra (1993) B. Mishra. Algorithmic Algebra. Springer-Verlag, Berlin, Heidelberg, 1993.
  • Perrucci & Roy (2018) D. Perrucci and M.-F. Roy. A new general formula for the Cauchy index on an interval with subresultants. Journal of Symbolic Computation, 109:465–481, 2018.
  • Roy & Szpirglas (2020) M.-F. Roy and A. Szpirglas. Sylvester double sums, subresultants and symmetric multivariate Hermite interpolation. Journal of Symbolic Computation, 96:85–107, 2020.
  • Sylvester (1853) J. Sylvester. On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraic common measure. Phil. Trans, 143:407–548, 1853.
  • Szanto (2008) A. Szanto. Solving over-determined systems by subresultant methods (with an appendix by Marc Chardin). Journal of Symbolic Computation, 43(1):46–74, 2008.
  • Terui (2008) A. Terui. Recursive polynomial remainder sequence and its subresultants. Journal of Algebra, 320(2):633–659, 2008.
  • Wang (1998) D. M. Wang. Decomposing polynomial systems into simple systems. Journal of Symbolic Computation, 25(3):295–314, 1998.
  • Wang (2000) D. M. Wang. Computing triangular systems and regular systems. Journal of Symbolic Computation, 30(2):221–236, 2000.