This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information

Cong Xu1, Zhaoqi Wu1, Shao-Ming Fei2,3
1. Department of Mathematics, Nanchang University, Nanchang 330031, P R China
2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, P R China
3. Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
Corresponding author. E-mail: wuzhaoqi_conquer@163.com

Abstract
We introduce (α,β,γ\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson ((α,β,γ\alpha,\beta,\gamma) WWYD) skew information and (α,β,γ\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ\alpha,\beta,\gamma) MWWYD) skew information. We explore the sum uncertainty relations for arbitrary NN mutually noncommutative observables based on (α,β,γ\alpha,\beta,\gamma) WWYD skew information. A series of uncertainty inequalities are derived. We show by detailed example that our results cover and improve the previous ones based on the original Wigner-Yanase (WY) skew information. Finally, we establish new sum uncertainty relations in terms of the (α,β,γ\alpha,\beta,\gamma) MWWYD skew information for arbitrary NN quantum channels.

Keywords: Uncertainty relation; (α,β,γ\alpha,\beta,\gamma) WWYD skew information; (α,β,γ\alpha,\beta,\gamma) MWWYD skew information; Quantum channel

1. Introduction

As one of the most essential features of the quantum world, the uncertainty principle has been widespread concerned since Heisenberg [1] proposed the notions of uncertainties in measuring non-commuting observables. For arbitrary two observables AA and BB, the well-known Heisenberg-Robertson [2] uncertainty relation with respect to a quantum state |ψ|\psi\rangle says that,

ΔAΔB12|ψ|[A,B]|ψ|,\Delta A\Delta B\geq\frac{1}{2}|\langle\psi|[A,B]|\psi\rangle|, (1)

where [A,B]=ABBA[A,B]=AB-BA and ΔΩ=ψ|Ω2|ψψ|Ω|ψ2\Delta\Omega=\sqrt{\langle\psi|{\Omega}^{2}|\psi\rangle-{\langle\psi|\Omega|\psi\rangle}^{2}} is the standard deviation of an observable Ω\Omega. Many different characterizations and quantifications of quantum uncertainty have been proposed in terms of entropy [3, 4, 5, 6, 7, 8, 9, 10, 11], variance [12, 13, 14, 15], under successive measurements [16, 17, 18, 19], and with majorization techniques [20, 9, 21, 22].

The quantum uncertainty can also be characterized by skew information. The Wigner-Yanase (WY) information and Wigner-Yanase-Dyson (WYD) skew information associated to a quantum state ρ\rho and an observable AA have been defined in [23]. The WYD skew information has been further extended to the generalized Wigner-Yanase-Dyson (GWYD) skew information [24]. The relationship between WY skew information and the uncertainty relation has been originally established by Luo and Zhang [25], and various types of uncertainty relations based on the WY skew information, WYD skew information and GWYD skew information have been presentd [26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 28].

By considering state-channel interaction, in [41] Luo and Sun defined a quantity Iρ(Φ)\mathrm{I}_{\rho}(\Phi) and its dual one Jρ(Φ)\mathrm{J}_{\rho}(\Phi), and explored the complementarity relation between them. Wu, Zhang and Fei introduced the non-Hermitian extension of the GWYD skew information and generalized the complementarity relation to a more general case in [42, 43].

On the other hand, another generalization of the WYD skew information, the weighted Wigner-Yanase-Dyson (WWYD) skew information, has been introduced in [44]. As its non-Hermitian extension, the modified weighted Wigner-Yanase-Dyson (MWWYD) skew information has been defined and investigated in [45]. Recently, by using the convex combination, instead of the arithmetic mean of ρα\rho^{\alpha} and ρ1α\rho^{1-\alpha}, the two-parameter extension of the Wigner-Yanase skew information has been formulated [46].

Recently, the sum uncertainty relations based on the variance and WY skew information have attracted considerable attention [47, 48, 49, 50]. In [47, 48] Chen and Fei proposed some uncertainty inequalities in terms of the sum of variances, standard deviations and the WY skew information for arbitrary NN mutually noncommutative observables, respectively. After that, Zhang, Gao and Yan [49] established a tighter uncertainty relation via WY skew information for arbitrary NN mutually noncommutative observables, which extend the results in [48]. Zhang and Fei [50] further improved the results in [49] and proposed new tighter bounds than the existing ones. Cai [51] generalized the sum uncertainty relations for WY skew information introduced in [48] to an arbitrary metric-adjusted skew information version. Ren, Li, Ye and Li [52] proposed tighter sum uncertainty relations than the ones in [51].

In [53] Fu, Sun and Luo established the uncertainty relations for two quantum channels based on the WY skew information for arbitrary operators. Afterwards, Zhang, Gao and Yan [49] generalized the uncertainty relations for two quantum channels to arbitrary NN quantum channels. Zhang, Wu and Fei [54] further generalized the results in [49] and proposed new bounds which are tighter than the existing ones. Cai [51] confirmed that the results in [53] also hold for all metric-adjusted skew information.

The remainder of this paper is structured as follows. In Section 2, we recall some basic concepts and propose the definitions of (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) WWYD) skew information and (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) MWWYD) skew information. In Section 3, we present uncertainty inequalities for arbitrary NN mutually noncommutative observables in terms of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information. Especially, we show that when α=β=12\alpha=\beta=\frac{1}{2}, i.e., the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information reduce to the WY skew information, the lower bounds of our inequalities improve the existing ones by a detailed example. In Section 4, we explore the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information-based sum uncertainty relations for quantum channels. Some concluding remarks are given in Section 5.

2. (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information and (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information

Let \mathcal{H} be a dd-dimensional Hilbert space. Denote by ()\mathcal{B(H)}, 𝒮()\mathcal{S(H)} and 𝒟()\mathcal{D(H)} the set of all bounded linear operators, Hermitian operators and density operators (positive operators with trace 1) on \mathcal{H}, respectively. Mathematically, a quantum state and a quantum channel are represented by a density operator and a completely positive trace-preserving map, respectively.

For a quantum state ρ𝒟()\rho\in\mathcal{D(H)} and an observable A𝒮()A\in\mathcal{S(H)}, the Wigner-Yanase (WY) skew information [23] is defined by

Iρ(A):=12Tr([ρ,A]2)=12[ρ,A]2,\mathrm{I}_{\rho}(A):=-\frac{1}{2}\mathrm{Tr}\left([\sqrt{\rho},A]^{2}\right)=\frac{1}{2}\|[\sqrt{\rho},A]\|^{2}, (2)

where \|\cdot\| denotes the Hilbert Schmidt norm, T=TrTT\|T\|=\sqrt{\mathrm{Tr}T^{{\dagger}}T}. Iρ(A)\mathrm{I}_{\rho}(A) is generalized by Dyson to

Iρα(A):=12Tr([ρα,A][ρ1α,A]),0α1,\mathrm{I}_{\rho}^{\alpha}(A):=-\frac{1}{2}\mathrm{Tr}([\rho^{\alpha},A][\rho^{1-\alpha},A]),\,\,~{}0\leq\alpha\leq 1, (3)

which is now called the Wigner-Yanase-Dyson (WYD) skew information[23]. Iρα(A)\mathrm{I}_{\rho}^{\alpha}(A) is further generalized to [24]

Iρα,β(A)=12Tr([ρα,A][ρβ,A]ρ1αβ),α,β0,α+β1,\mathrm{I}_{\rho}^{\alpha,\beta}(A)=-\frac{1}{2}\mathrm{Tr}([\rho^{\alpha},A][\rho^{\beta},A]\rho^{1-\alpha-\beta}),~{}~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1, (4)

which is termed as generalized Wigner-Yanase-Dyson (GWYD) skew information.

Another generalization of the WYD skew information is given in [44],

Kρα(A)=12Tr([ρα+ρ1α2,A]2)=12[ρα+ρ1α2,A]2,  0α1,\displaystyle\mathrm{K}_{\rho}^{\alpha}(A)=-\frac{1}{2}\mathrm{Tr}\left(\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},A\right]^{2}\right)=\frac{1}{2}\left\|\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2},A\right]\right\|^{2}~{},\,\,0\leq\alpha\leq 1, (5)

which is called the weighted Wigner-Yanase-Dyson (WWYD) skew information. The authors in [45] proposed the modified weighted Wigner-Yanase-Dyson (MWWYD) skew information, which is the non-Hermitian extension of the WWYD skew information.

By replacing the arithmetic mean of ρα\rho^{\alpha} and ρ1α\rho^{1-\alpha} with their convex combination, the two-parameter extension of Wigner-Yanase skew information has been introduced,

Kρ,γα(A)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha}(A)= 12Tr([(1γ)ρα+γρ1α,A]2)\displaystyle-\frac{1}{2}\mathrm{Tr}\left([(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},A]^{2}\right)
=\displaystyle= 12[(1γ)ρα+γρ1α,A]2,  0α1,  0γ1.\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{1-\alpha},A\right]\right\|^{2}~{},~{}\,\,0\leq\alpha\leq 1~{},\,\,0\leq\gamma\leq 1. (6)

For convenience, we call it the (α,γ)(\alpha,\gamma) weighted Wigner-Yanase-Dyson ((α,γ)(\alpha,\gamma) WWYD) skew information in this paper. Note that Eq. (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) reduces to Eq. (5) and Eq. (2) when γ=12\gamma=\frac{1}{2} and α=12\alpha=\frac{1}{2}, respectively.

For a quantum state ρ𝒟()\rho\in\mathcal{D(H)} and an observable A𝒮()A\in\mathcal{S(H)}, we define the (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) WWYD) skew information as

Kρ,γα,β(A)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A)= 12Tr([(1γ)ρα+γρβ,A]2ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A]^{2}\rho^{1-\alpha-\beta})
=\displaystyle= 12ρ1αβ2[(1γ)ρα+γρβ,A]2,α,β0,α+β1,0γ1.\displaystyle\frac{1}{2}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A\right]\right\|^{2},~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1. (7)

Note that Eq. (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) reduces to Eq. (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) when β=1α\beta=1-\alpha.

We also define the (α,β,γ)(\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ)(\alpha,\beta,\gamma) MW
WYD) skew information with respect to a quantum state ρ𝒟()\rho\in\mathcal{D(H)} and an arbitrary operator E()E\in\mathcal{B(H)} (not necessarily Hermitian),

Kρ,γα,β(E)=\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E)= 12Tr([(1γ)ρα+γρβ,E][(1γ)ρα+γρβ,E]ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}([(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E^{{\dagger}}][(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E]\rho^{1-\alpha-\beta})
=\displaystyle= 12[(1γ)ρα+γρβ,E]ρ1αβ22,α,β0,α+β1,0γ1,\displaystyle\frac{1}{2}\left\|\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E\right]\rho^{\frac{1-\alpha-\beta}{2}}\right\|^{2},~{}~{}~{}\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1, (8)

which is the non-Hermitian extension of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information. Note that Eq. (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) reduces to Eq. (10) in [43] when γ=12\gamma=\frac{1}{2}.

Following the idea in [41], we further define the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information of ρ\rho with respect to a channel Φ\Phi as

Kρ,γα,β(Φ)=i=1nKρ,γα,β(Ei),\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi)=\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{i}), (9)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1, and Ei(i=1,2,,n)E_{i}(i=1,2,\cdots,n) are Kraus operators of the channel Φ\Phi, i.e., Φ(ρ)=i=1nEiρEi\Phi(\rho)=\sum_{i=1}^{n}E_{i}\rho E_{i}^{{\dagger}}.

3. Sum uncertainty relations for arbitrary NN mutually noncommutative observables in terms of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information

We now provide several sum uncertainty relations in terms of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information for arbitrary NN mutually noncommutative observables.

Theorem 1 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N2N\geq 2), we have

i=1NKρ,γα,β(Ai)max12(N1){1i<jNKρ,γα,β(Ai+Aj),1i<jNKρ,γα,β(AiAj)},\sum_{i=1}^{N}{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\mathrm{max}\frac{1}{2(N-1)}\left\{\sum_{1\leq i<j\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j}),\sum_{1\leq i<j\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}-A_{j})\right\}, (10)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Proof By using the following equality,

2(N1)i=1Nui2=1i<jNui+uj2+1i<jNuiuj2,\displaystyle 2(N-1)\sum_{i=1}^{N}\|u_{i}\|^{2}=\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2}+\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2},

we have

i=1Nui212(N1)1i<jNui+uj2,\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq\frac{1}{2(N-1)}\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2},

and

i=1Nui212(N1)1i<jNuiuj2.\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq\frac{1}{2(N-1)}\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2}.

Therefore,

i=1Nui2max12(N1){1i<jNui+uj2,1i<jNuiuj2}.\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq\mathrm{max}\frac{1}{2(N-1)}\left\{\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2},\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2}\right\}.

Setting ui=ρ1αβ2[(1γ)ρα+γρβ,Ai]u_{i}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and uj=ρ1αβ2[(1γ)ρα+γρβ,Aj]u_{j}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right], we get (10). \Box

In particular, for N=2N=2 from Theorem 1 we have the following Corollary 1.

Corollary 1 For arbitrary two noncommutative observables AA and BB, we have

Kρ,γα,β(A)+Kρ,γα,β(B)max12{Kρ,γα,β(A+B),Kρ,γα,β(AB)},\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A)+\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(B)\geq\mathrm{max}\frac{1}{2}\{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A+B),\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A-B)\}, (11)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Note that (11) of Corollary 1 reduces to the formula (3) of Theorem 1 in [48] when α=β=12\alpha=\beta=\frac{1}{2}.

Theorem 2 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N2N\geq 2), we have

i=1NKρ,γα,β(Ai)Kρ,γα,β(i=1NAi),α,β0,α+β1,0γ1,\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N}A_{i}\right)}~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, (12)

and

i=1NKρ,γα,β(Ai)Kρ,γα,β(i=1N1AiAN),α,β0,α+β1,0γ1.\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N-1}A_{i}-A_{N}\right)}~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1. (13)

Proof By using the norm inequality, we obtain

Kρ,γα,β(i=1NAi)=\displaystyle\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N}A_{i}\right)}= 12ρ1αβ2[(1γ)ρα+γρβ,i=1NAi]\displaystyle\frac{1}{\sqrt{2}}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},\sum_{i=1}^{N}A_{i}\right]\right\|
\displaystyle\leq 12i=1Nρ1αβ2[(1γ)ρα+γρβ,Ai]\displaystyle\frac{1}{\sqrt{2}}\sum_{i=1}^{N}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right]\right\|
=\displaystyle= i=1NKρ,γα,β(Ai),α,β0,α+β1,0γ1,\displaystyle\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1,

and

Kρ,γα,β(i=1N1AiAN)=\displaystyle\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N-1}A_{i}-A_{N}\right)}= 12ρ1αβ2[(1γ)ρα+γρβ,i=1N1AiAN]\displaystyle\frac{1}{\sqrt{2}}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},\sum_{i=1}^{N-1}A_{i}-A_{N}\right]\right\|
\displaystyle\leq 12i=1Nρ1αβ2[(1γ)ρα+γρβ,Ai]\displaystyle\frac{1}{\sqrt{2}}\sum_{i=1}^{N}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right]\right\|
=\displaystyle= i=1NKρ,γα,β(Ai),α,β0,α+β1,0γ1.\displaystyle\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.\Box

Setting N=2N=2 in Theorem 2, we have the following Corollary 2.

Corollary 2 For arbitrary two noncommutative observables AA and BB, we have

Kρ,γα,β(A)+Kρ,γα,β(B)max{Kρ,γα,β(A+B),Kρ,γα,β(AB)},\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A)}+\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(B)}\geq\mathrm{max}\left\{\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A+B)},\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A-B)}\right\}~{}, (14)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Note that (14) of Corollary 2 reduces to (5) of Theorem 2 in [48] when α=β=12\alpha=\beta=\frac{1}{2}.

Theorem 3 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N>2N>2), we have

i=1NKρ,γα,β(Ai)\displaystyle\sum_{i=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}) \displaystyle\geq 1N2[1i<jNKρ,γα,β(Ai+Aj)1(N1)2\displaystyle\frac{1}{N-2}\left[\sum_{1\leq i<j\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j})-\frac{1}{(N-1)^{2}}\right. (15)
(1i<jNKρ,γα,β(Ai+Aj))2],\displaystyle\left.\left(\sum_{1\leq i<j\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j})}\right)^{2}\right],

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Proof Employing the following inequality [47],

i=1Nui2\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq 1N2[1i<jNui+uj21(N1)2(1i<jNui+uj)2]\displaystyle\frac{1}{N-2}\left[\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2}-\frac{1}{(N-1)^{2}}\left(\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|\right)^{2}\right]
\displaystyle\geq 12(N1)1i<jNui+uj2,\displaystyle\frac{1}{2(N-1)}\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2},

and setting ui=ρ1αβ2[(1γ)ρα+γρβ,Ai]u_{i}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and uj=ρ1αβ2[(1γ)ρα+γρβ,Aj]u_{j}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right], we obtain (15). \Box

Note that (15) of Theorem 3 reduces to (12) of Theorem 4 in [48] when α=β=12\alpha=\beta=\frac{1}{2}.

Theorem 4 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N>2N>2), we have

i=1NKρ,γα,β(Ai)1N2[1i<jNKρ,γα,β(Ai+Aj)\displaystyle\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\frac{1}{N-2}\left[\sum_{1\leq i<j\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j})}\right.
Kρ,γα,β(i=1NAi)],α,β0,α+β1,0γ1.\displaystyle\left.-\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N}A_{i}\right)}\right]~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1. (16)

Proof By using the following inequality [47, 55, 56],

i=1Nui\displaystyle\sum_{i=1}^{N}\|u_{i}\|\geq 1N2(1i<jNui+uji=1Nui)\displaystyle\frac{1}{N-2}\left(\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|-\left\|\sum_{i=1}^{N}u_{i}\right\|\right)
\displaystyle\geq i=1Nui,\displaystyle\left\|\sum_{i=1}^{N}u_{i}\right\|,

with ui=ρ1αβ2[(1γ)ρα+γρβ,Ai]u_{i}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and uj=ρ1αβ2[(1γ)ρα+γρβ,Aj]u_{j}=\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right], we obtain (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information). \Box

Note that (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) of Theorem 4 reduces to (14) of Theorem 5 in [48] when α=β=12\alpha=\beta=\frac{1}{2}. Moreover, from the proof of Theorem 4, it can be seen that the right hand side of (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) is tighter than the right hand side of (12).

Theorem 5 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N2N\geq 2), we have

i=1NKρ,γα,β(Ai)1NKρ,γα,β(i=1NAi)+2N2(N1)\displaystyle\sum_{i=1}^{N}{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\frac{1}{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N}A_{i}\right)+\frac{2}{N^{2}(N-1)}
(1i<jNKρ,γα,β(AiAj))2,\displaystyle\left(\sum_{1\leq i<j\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}-A_{j})}\right)^{2}~{}, (17)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Proof According to the lemma in [49], we have

2N2(N1)(1i<jNuiuj)2\displaystyle\frac{2}{N^{2}(N-1)}\left(\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|\right)^{2}\leq 1N1i<jNuiuj2\displaystyle\frac{1}{N}\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2}
=\displaystyle= i=1Nui21Ni=1Nui2,\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}-\frac{1}{N}\left\|\sum_{i=1}^{N}u_{i}\right\|^{2},

that is,

i=1Nui21Ni=1Nui2+\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq\frac{1}{N}\left\|\sum_{i=1}^{N}u_{i}\right\|^{2}+ 2N2(N1)(1i<jNuiuj)2.\displaystyle\frac{2}{N^{2}(N-1)}\left(\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|\right)^{2}.

By substituting uiu_{i} and uju_{j} with ρ1αβ2[(1γ)ρα+γρβ,Ai]\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and ρ1αβ2[(1γ)ρα+\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\right.
γρβ,Aj]\left.\gamma\rho^{\beta},A_{j}\right], respectively, we obtain (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information). \Box

Note that (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) of Theorem 5 reduces to (12) of Theorem 1 in [49] when α=β=12\alpha=\beta=\frac{1}{2}.

Theorem 6 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N2N\geq 2), we have

i=1NKρ,γα,β(Ai)\displaystyle\sum_{i=1}^{N}{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})} \displaystyle\geq 12(N1)[2N(N1)(1i<jNKρ,γα,β(Ai+Aj))2\displaystyle\frac{1}{2(N-1)}\left[\frac{2}{N(N-1)}\left(\sum_{1\leq i<j\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j})}\right)^{2}\right. (18)
+1i<jNKρ,γα,β(AiAj)],α,β0,α+β1,0γ1,\displaystyle\left.+\sum_{1\leq i<j\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}-A_{j})\right]~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1,

and

i=1NKρ,γα,β(Ai)\displaystyle\sum_{i=1}^{N}{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})} \displaystyle\geq 12(N1)[2N(N1)(1i<jNKρ,γα,β(AiAj))2\displaystyle\frac{1}{2(N-1)}\left[\frac{2}{N(N-1)}\left(\sum_{1\leq i<j\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}-A_{j})}\right)^{2}\right. (19)
+1i<jNKρ,γα,β(Ai+Aj)],α,β0,α+β1,0γ1.\displaystyle\left.+\sum_{1\leq i<j\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}+A_{j})\right]~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1.

Proof By using the following equality,

2(N1)i=1Nui2=1i<jNuiuj2+1i<jNui+uj2\displaystyle 2(N-1)\sum_{i=1}^{N}\|u_{i}\|^{2}=\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2}+\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2}

and the Cauchy-Schwarz inequality, we obtain

1i<jNui+uj22N(N1)(1i<jNui+uj)2,\displaystyle\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|^{2}\geq\frac{2}{N(N-1)}\left(\sum_{1\leq i<j\leq N}\|u_{i}+u_{j}\|\right)^{2},

and

1i<jNuiuj22N(N1)(1i<jNuiuj)2,\displaystyle\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|^{2}\geq\frac{2}{N(N-1)}\left(\sum_{1\leq i<j\leq N}\|u_{i}-u_{j}\|\right)^{2},

respectively. Therefore, we have

i=1Nui212(N1)[2N(N1)(1i<jNui±uj)2+1i<jNuiuj2].\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2}\geq\frac{1}{2(N-1)}\left[\frac{2}{N(N-1)}\left(\sum_{1\leq i<j\leq N}\|u_{i}\pm u_{j}\|\right)^{2}+\sum_{1\leq i<j\leq N}\|u_{i}\mp u_{j}\|^{2}\right].

The inequalities (18) and (19) follow by replacing uiu_{i} and uju_{j} with ρ1αβ2[(1γ)ρα+\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\right.
γρβ,Ai]\left.\gamma\rho^{\beta},A_{i}\right] and ρ1αβ2[(1γ)ρα+γρβ,Aj]\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right], respectively. \Box

As a special case, when α=β=12\alpha=\beta=\frac{1}{2}, (18) and (19) of Theorem 6 reduce to (12) and (13) of Theorem 2 in [50], respectively. Note also that Theorem 5 and Theorem 6 are identical when N=2N=2.

Theorem 7 For arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N} (N2N\geq 2) and a quantum state ρ\rho, let GG be an N×NN\times N matrix with entries Gjk=Tr(XjXk)G_{jk}=\mathrm{Tr}(X_{j}X_{k}^{\dagger}), where Xj=iρ1αβ2[(1γ)ρα+γρβ,Aj]/ρ1αβ2[(1γ)ρα+γρβ,Aj]X_{j}=i\rho^{\frac{1-\alpha-\beta}{2}}[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}]/\|\rho^{\frac{1-\alpha-\beta}{2}}[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}]\|, i=1i=\sqrt{-1}. We have

j=1NKρ,γα,β(Aj)1λmax(G)Kρ,γα,β(j=1NAj),α,β0,α+β1,0γ1,\sum_{j=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{j})\geq\frac{1}{\lambda_{max}(G)}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{j=1}^{N}A_{j}\right)~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, (20)

where λmax(G)\lambda_{max}(G) denotes the maximal eigenvalue of GG.

Proof It is obvious that GG is a positive semi-definite matrix. Noting that

Kρ,γα,β(j=1NAj)\displaystyle\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{j=1}^{N}A_{j}\right)
=\displaystyle= 12Tr([(1γ)ρα+γρβ,j=1NAj]2ρ1αβ)\displaystyle-\frac{1}{2}\mathrm{Tr}\left(\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},\sum_{j=1}^{N}A_{j}\right]^{2}\rho^{1-\alpha-\beta}\right)
=\displaystyle= 12j,kTr[(iρ1αβ2[(1γ)ρα+γρβ,Aj])(i[(1γ)ρα+γρβ,Ak]ρ1αβ2)]\displaystyle\frac{1}{2}\sum_{j,k}\mathrm{Tr}\left[\left(i\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right]\right)\left(i\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{k}\right]\rho^{\frac{1-\alpha-\beta}{2}}\right)\right]
=\displaystyle= 12j,kρ1αβ2[(1γ)ρα+γρβ,Aj]Gjkρ1αβ2[(1γ)ρα+γρβ,Ak]\displaystyle\frac{1}{2}\sum_{j,k}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{j}\right]\right\|G_{jk}\left\|\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{k}\right]\right\|
=\displaystyle= j,kKρ,γα,β(Aj)GjkKρ,γα,β(Ak)\displaystyle\sum_{j,k}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{j})}G_{jk}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{k})}
\displaystyle\leq λmax(G)j=1NKρ,γα,β(Aj),\displaystyle\lambda_{\mathrm{max}}(G)\sum_{j=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{j}),

we prove that (20) holds. \Box

In particular, the Theorem 6 in [48] is a special case of our Theorem 7 when α=β=12\alpha=\beta=\frac{1}{2}.

When α=β=12\alpha=\beta=\frac{1}{2}, the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information reduces to the WY skew information. We next compare our uncertainty relations with the existing ones. For α=β=12\alpha=\beta=\frac{1}{2}, we denote by LB0,LB1,LB2LB_{0},LB_{1},LB_{2} and LB3LB_{3} the right hand sides of (15), (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information), (18) and (19), respectively.

Example 1 Given a qubit state ρ=12(𝟏+𝐫𝝈)\rho=\frac{1}{2}(\mathbf{1}+\mathbf{r}\cdot\bm{\sigma}), where 𝐫=(x,y,z)\mathbf{r}=(x,y,z) is the Bloch vector satisfying |𝐫|1|\mathbf{r}|\leq 1, 𝝈=(σ1,σ2,σ3)\bm{\sigma}=(\sigma_{1},\sigma_{2},\sigma_{3}) with σj\sigma_{j} (j=1,2,3)(j=1,2,3) the Pauli matrices, and 𝐫𝝈=j=13rjσj\mathbf{r}\cdot\bm{\sigma}=\sum^{3}_{j=1}r_{j}\sigma_{j}. The eigenvalues of ρ\rho are λ1,2=(1t)/2\lambda_{1,2}=(1\mp\sqrt{t})/2, where t=|𝐫|2t=|\mathbf{r}|^{2}.
The sum of the skew information of three Pauli operators is given by

Kρ,γ12,12(σ1)+Kρ,γ12,12(σ2)+Kρ,γ12,12(σ3)=2(11t).\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{1})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{2})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{3})=2(1-\sqrt{1-t}). (21)

From (18) and (15) we have, respectively,

Kρ,γ12,12(σ1)+Kρ,γ12,12(σ2)+Kρ,γ12,12(σ3)(11t)(1+xy+xz+yz2t)+112β2\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{1})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{2})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{3})\geq(1-\sqrt{1-t})\left(1+\frac{xy+xz+yz}{2t}\right)+\frac{1}{12}\beta^{2} (22)

and

Kρ,γ12,12(σ1)+Kρ,γ12,12(σ2)+Kρ,γ12,12(σ3)(11t)(42(xy+xz+yz)t)14β2,\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{1})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{2})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{3})\geq(1-\sqrt{1-t})\left(4-\frac{2(xy+xz+yz)}{t}\right)-\frac{1}{4}\beta^{2}, (23)

where

α=11t(1+z2+2xyt+1+y2+2xzt+1+x2+2yzt).\alpha=\sqrt{1-\sqrt{1-t}}\left(\sqrt{1+\frac{z^{2}+2xy}{t}}+\sqrt{1+\frac{y^{2}+2xz}{t}}+\sqrt{1+\frac{x^{2}+2yz}{t}}\right). (24)

(19) and (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) give rise to

Kρ,γ12,12(σ1)+Kρ,γ12,12(σ2)+Kρ,γ12,12(σ3)(11t)(1xy+xz+yz2t)+112α2\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{1})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{2})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{3})\geq(1-\sqrt{1-t})\left(1-\frac{xy+xz+yz}{2t}\right)+\frac{1}{12}\alpha^{2} (25)

and

Kρ,γ12,12(σ1)+Kρ,γ12,12(σ2)+Kρ,γ12,12(σ3)23(11t)(1xy+xz+yzt)+19α2,\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{1})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{2})+\mathrm{K}_{\rho,\gamma}^{\frac{1}{2},\frac{1}{2}}(\sigma_{3})\geq\frac{2}{3}(1-\sqrt{1-t})\left(1-\frac{xy+xz+yz}{t}\right)+\frac{1}{9}\alpha^{2}, (26)

respectively, where

β=11t(1+z22xyt+1+y22xzt+1+x22yzt).\beta=\sqrt{1-\sqrt{1-t}}\left(\sqrt{1+\frac{z^{2}-2xy}{t}}+\sqrt{1+\frac{y^{2}-2xz}{t}}+\sqrt{1+\frac{x^{2}-2yz}{t}}\right). (27)

Comparing the lower bound LB2LB_{2} (LB3LB_{3}) on the right hand of the inequality (18) ((19)) with the bound LB0LB_{0} (LB1LB_{1}) on the right hand of inequality (15) ((Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information)), we obtain LB2LB0=(11t)γLB_{2}-LB_{0}=(1-\sqrt{1-t})\gamma and LB3LB1=(11t)γ1LB_{3}-LB_{1}=(1-\sqrt{1-t})\gamma_{1}, respectively, where

γ=3+5(xy+xz+yz)2t+13(1+z22xyt+1+y22xzt+1+x22yzt)2\gamma=-3+\frac{5(xy+xz+yz)}{2t}+\frac{1}{3}\left(\sqrt{1+\frac{z^{2}-2xy}{t}}+\sqrt{1+\frac{y^{2}-2xz}{t}}+\sqrt{1+\frac{x^{2}-2yz}{t}}\right)^{2} (28)

and

γ1=13+xy+xz+yz6t136(1+z2+2xyt+1+y2+2xzt+1+x2+2yzt)2.\gamma_{1}=\frac{1}{3}+\frac{xy+xz+yz}{6t}-\frac{1}{36}\left(\sqrt{1+\frac{z^{2}+2xy}{t}}+\sqrt{1+\frac{y^{2}+2xz}{t}}+\sqrt{1+\frac{x^{2}+2yz}{t}}\right)^{2}. (29)

Note that 11t>01-\sqrt{1-t}>0. Denote x=tsinθcosφx=\sqrt{t}\sin\theta\cos\varphi, y=tsinθsinφy=\sqrt{t}\sin\theta\sin\varphi and z=tcosθz=\sqrt{t}\cos\theta with θ[0,π]\theta\in[0,\pi] and φ[0,2π]\varphi\in[0,2\pi]. We have

γ\displaystyle\gamma =\displaystyle= 3+52(sin2θsinφcosφ+sinθcosθcosφ+sinθcosθsinφ)\displaystyle-3+\frac{5}{2}(\sin^{2}\theta\sin\varphi\cos\varphi+\sin\theta\cos\theta\cos\varphi+\sin\theta\cos\theta\sin\varphi) (30)
+13(1+cos2θ2sin2θsinφcosφ+1+sin2θsin2φ2sinθcosθcosφ\displaystyle+\frac{1}{3}\left(\sqrt{1+\cos^{2}\theta-2\sin^{2}\theta\sin\varphi\cos\varphi}+\sqrt{1+\sin^{2}\theta\sin^{2}\varphi-2\sin\theta\cos\theta\cos\varphi}\right.
+1+sin2θcos2φ2sinθcosθsinφ)2>0,\displaystyle\left.+\sqrt{1+\sin^{2}\theta\cos^{2}\varphi-2\sin\theta\cos\theta\sin\varphi}\right)^{2}>0,

and

γ1\displaystyle\gamma_{1} =\displaystyle= 13+16(sin2θsinφcosφ+sinθcosθcosφ+sinθcosθsinφ)\displaystyle\frac{1}{3}+\frac{1}{6}(\sin^{2}\theta\sin\varphi\cos\varphi+\sin\theta\cos\theta\cos\varphi+\sin\theta\cos\theta\sin\varphi) (31)
136(1+cos2θ+2sin2θsinφcosφ+1+sin2θsin2φ+2sinθcosθcosφ\displaystyle-\frac{1}{36}\left(\sqrt{1+\cos^{2}\theta+2\sin^{2}\theta\sin\varphi\cos\varphi}+\sqrt{1+\sin^{2}\theta\sin^{2}\varphi+2\sin\theta\cos\theta\cos\varphi}\right.
+1+sin2θcos2φ+2sinθcosθsinφ)2>0,\displaystyle\left.+\sqrt{1+\sin^{2}\theta\cos^{2}\varphi+2\sin\theta\cos\theta\sin\varphi}\right)^{2}>0,

see Fig. 1.

Refer to caption
Refer to caption
Figure 1: γ\gamma and γ1\gamma_{1} as a function of θ\theta and ϕ\phi

Figure 1 shows that our lower bound LB2LB_{2} (LB3LB_{3}) is larger than the lower bound given in [48] ([49]) except t=0t=0 for the case of spin-12\frac{1}{2}. In [50] the authors illustrated by an example that their lower bounds are better than the ones given in [49] for the case of a special qubit state with Bloch vector 𝐫=(32cosθ,32sinθ,0)\mathbf{r}=(\frac{\sqrt{3}}{2}\cos\theta,\frac{\sqrt{3}}{2}\sin\theta,0). Here, in our example we have considered the general case of arbitrary qubit states.

Now, we give two theorems in which the lower bounds consist of the sum uncertainty relations of different size kk.

Theorem 8 For NN mutually noncommutative observables A1,,ANA_{1},\cdots,A_{N}, 2k<N2\leq k<N, we have

i=1NKρ,γα,β(Ai)\displaystyle\sum_{i=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i}) \displaystyle\geq (N2k1)1[1i1<<ikNKρ,γα,β(j=1kAij)(N2k2)(N1k1)2\displaystyle\left(\begin{array}[]{c}N-2\\ k-1\\ \end{array}\right)^{-1}\left[\sum_{1\leq i_{1}<\cdots<i_{k}\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{j=1}^{k}A_{i_{j}}\right)-\left(\begin{array}[]{c}N-2\\ k-2\\ \end{array}\right)\left(\begin{array}[]{c}N-1\\ k-1\\ \end{array}\right)^{-2}\right. (39)
(1i1<<ikNKρ,γα,β(j=1kAij))2],α,β0,α+β1,0γ1.\displaystyle\left.\left(\sum_{1\leq i_{1}<\cdots<i_{k}\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{j=1}^{k}A_{i_{j}}\right)}\right)^{2}\right]~{},\alpha,\beta\geq 0,\alpha+\beta\leq 1,0\leq\gamma\leq 1.

Proof It is a direct result of the following inner product inequality proved in the Theorem 1 in [51],

i=1Nui2\displaystyle\sum_{i=1}^{N}\|u_{i}\|^{2} \displaystyle\geq (N2k1)1[1i1<<ikNui1++uik2(N2k2)(N1k1)2\displaystyle{\left(\begin{array}[]{c}N-2\\ k-1\\ \end{array}\right)}^{-1}\left[\sum_{1\leq i_{1}<\cdots<i_{k}\leq N}\|u_{i_{1}}+\cdots+u_{i_{k}}\|^{2}-\left(\begin{array}[]{c}N-2\\ k-2\\ \end{array}\right)\left(\begin{array}[]{c}N-1\\ k-1\\ \end{array}\right)^{-2}\right.
(1i1<<ikNui1++uik)2].\displaystyle\left.\left(\sum_{1\leq i_{1}<\cdots<i_{k}\leq N}{\|u_{i_{1}}+\cdots+u_{i_{k}}\|}\right)^{2}\right].

By substituting uiu_{i} and uiju_{i_{j}} (1jk1\leq j\leq k) with ρ1αβ2[(1γ)ρα+γρβ,Ai]\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and ρ1αβ2[(1\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\right.
γ)ρα+γρβ,Aij]\left.\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i_{j}}\right], respectively, we obtain (39). \Box

We observe that Theorem 3 is a special case of Theorem 8 when k=2k=2. Similarly, we can give a variation of the Theorem 4 for the sum uncertainty relation of Kρ,γα,β(Ai)\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}.

Theorem 9 For NN mutually noncommutative observables A1,,ANA_{1},\cdots,A_{N}, we have

i=1NKρ,γα,β(Ai)1i1<<iN1NKρ,γα,β(Ai1++AiN1)\displaystyle\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\sum_{1\leq i_{1}<\cdots<i_{N-1}\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i_{1}}+\cdots+A_{i_{N-1}})}
(N2)Kρ,γα,β(i=1NAi),α,β0,α+β1,0γ1.\displaystyle-(N-2)\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{N}A_{i}\right)}~{},\,\,\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,0\leq\gamma\leq 1. (41)

Proof It is a direct result of the following inner product inequality,

i=1Nui1i1<<iN1Nui1++uiN1(N2)i=1Nui,\sum_{i=1}^{N}\|u_{i}\|\geq\sum_{1\leq i_{1}<\cdots<i_{N-1}\leq N}\|u_{i_{1}}+\cdots+u_{i_{N-1}}\|-(N-2)\left\|\sum_{i=1}^{N}u_{i}\right\|,

which has been proved in the Theorem 2 in [51]. Replacing uiu_{i} and uiju_{i_{j}} (1jN11\leq j\leq N-1) by ρ1αβ2[(1γ)ρα+γρβ,Ai]\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i}\right] and ρ1αβ2[(1γ)ρα+γρβ,Aij]\rho^{\frac{1-\alpha-\beta}{2}}\left[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},A_{i_{j}}\right], respectively, we get (Sum uncertainty relations based on (α,β,γ)(\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson skew information) immediately. \Box

From the above results we have, for arbitrary NN mutually noncommutative observables A1,A2,,ANA_{1},A_{2},\cdots,A_{N},

i=1NKρ,γα,β(Ai)max{thm1,thm3,thm5,thm6,thm7,thm8};\sum_{i=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})\geq\mathrm{max}\{thm1,thm3,thm5,thm6,thm7,thm8\};
i=1NKρ,γα,β(Ai)max{thm2,thm4,thm9},\sum_{i=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(A_{i})}\geq\mathrm{max}\{thm2,thm4,thm9\},

where thm 1, thm 3, thm 5, thm 6, thm 7, thm 8, thm 2, thm 4 and thm 9 stand for the lower bounds in Theorem 1, Theorem 3, Theorem 5, Theorem 6, Theorem 7, Theorem 8, Theorem 2, Theorem 4 and Theorem 9, respectively.

4. Sum uncertainty relations for quantum channels in terms of (α,β,γ\alpha,\beta,\gamma) MWWYD skew information

In this section, we explore the uncertainty relations for arbitrary NN quantum channels in terms of (α,β,γ\alpha,\beta,\gamma) MWWYD skew information. By using the same techniques, it can be seen that the results in Section 2 also hold if the observables Ai𝒮()A_{i}\in\mathcal{S(H)} (i=1,2,,N)(i=1,2,\cdots,N) are replaced by Ei()E_{i}\in\mathcal{B(H)} (i=1,2,,N)(i=1,2,\cdots,N) (which are not necessarily Hermitian). Therefore, the results in this section are easy consequences by imitating the proofs of Theorem 1, Theorem 3, Theorem 4, Theorem 5 and Theorem 6 in Section 3, Theorem 2 in [53] and the definition of (α,β,γ\alpha,\beta,\gamma) MWWYD skew information with respect to quantum channels in Eq. (9). Hence we only sketch the proof of Theorem 11 and omit the proofs of the rest theorems.

Theorem 10 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit)\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger}, t=1,2,,Nt=1,2,\cdots,N (N>2N>2), we have

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}) \displaystyle\geq maxπt,πsSn12(N1){1t<sNi=1nKρ,γα,β(Eπt(i)t±Eπs(i)s)},\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{2(N-1)}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\pm E_{\pi_{s}(i)}^{s})\right\}, (42)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary n-element permutations.

Proof By using the inequality in the proof of Theorem 1, we obtain

t=1NKρ,γα,β(Eπt(i)t)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}) \displaystyle\geq 12(N1){1t<sNKρ,γα,β(Eπt(i)t±Eπs(i)s)},\displaystyle\frac{1}{2(N-1)}\left\{\sum_{1\leq t<s\leq N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}\pm E_{\pi_{s}(i)}^{s})\right\},

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1. By the definition of Eq. (9), the conclusion follows immediately. \Box

Theorem 11 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N>2N>2), we have

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}) \displaystyle\geq maxπt,πsSn1N2{1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{N-2}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})\right. (43)
1(N1)2[i=1n(1t<sNKρ,γα,β(Eπt(i)t+Eπs(i)s))2]},\displaystyle\left.-\frac{1}{(N-1)^{2}}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right\},

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary n-element permutations.

In particular, Theorem 2 in [49] is a special case of our Theorem 11 with α=β=12\alpha=\beta=\frac{1}{2}.

Theorem 12 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N>2N>2), we have

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})} \displaystyle\geq maxπt,πsSn1N2{1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{N-2}\left\{\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})}\right. (44)
i=1nKρ,γα,β(t=1NEπt(i)t)},\displaystyle\left.-\sum_{i=1}^{n}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{t=1}^{N}E_{\pi_{t}(i)}^{t}\right)}\right\},

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary n-element permutations.

Theorem 13 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},t=1,2,\cdots,N (N2N\geq 2), we have

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}) \displaystyle\geq maxπt,πsSn{1Ni=1nKρ,γα,β(t=1NEπt(i)t)\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\left\{\frac{1}{N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{t=1}^{N}E_{\pi_{t}(i)}^{t}\right)\right. (45)
+2N2(N1)[i=1n(1t<sNKρ,γα,β(Eπt(i)tEπs(i)s))2]},\displaystyle\left.+\frac{2}{N^{2}(N-1)}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right\},

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary n-element permutations.

In particular, when α=β=12\alpha=\beta=\frac{1}{2}, (45) of Theorem 14 reduces to (39) of Theorem 3 in [49].

Theorem 14 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N2N\geq 2), we have

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}) \displaystyle\geq maxπt,πsSn12(N1){2N(N1)[i=1n(1t<sNKρ,γα,β(Eπt(i)t+Eπs(i)s))2]\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{2(N-1)}\left\{\frac{2}{N(N-1)}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right. (46)
+1t<sNi=1nKρ,γα,β(Eπt(i)tEπs(i)s)},\displaystyle\left.+\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s})\right\},

and

t=1NKρ,γα,β(Φt)\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t}) \displaystyle\geq maxπt,πsSn12(N1){2N(N1)[i=1n(1t<sNKρ,γα,β(Eπt(i)tEπs(i)s))2]\displaystyle\mathop{\mathrm{max}}\limits_{\pi_{t},\pi_{s}\in S_{n}}\frac{1}{2(N-1)}\left\{\frac{2}{N(N-1)}\left[\sum_{i=1}^{n}\left(\sum_{1\leq t<s\leq N}\sqrt{\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}-E_{\pi_{s}(i)}^{s})}\right)^{2}\right]\right. (47)
+1t<sNi=1nKρ,γα,β(Eπt(i)t+Eπs(i)s)},\displaystyle\left.+\sum_{1\leq t<s\leq N}\sum_{i=1}^{n}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(E_{\pi_{t}(i)}^{t}+E_{\pi_{s}(i)}^{s})\right\},

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, SnS_{n} is the n-element permutation group and πt,πsSn\pi_{t},\pi_{s}\in S_{n} are arbitrary n-element permutations.

For arbitrary NN matrices (not necessarily Hermitian) E1,,ENE_{1},\cdots,E_{N}, we call an N×NN\times N matrix GG a covariance matrix of E1,,ENE_{1},\cdots,E_{N} if the entries of GG are given by

Gjk=Tr(i[(1γ)ρα+γρβ,Ej]ρ1αβ2)(i[(1γ)ρα+γρβ,Ek]ρ1αβ2)ρ1αβ2[(1γ)ρα+γρβ,Ej]ρ1αβ2[(1γ)ρα+γρβ,Ek],\displaystyle G_{jk}=\mathrm{Tr}\frac{(i[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{j}]\rho^{\frac{1-\alpha-\beta}{2}})\cdot(i[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{k}]\rho^{\frac{1-\alpha-\beta}{2}})^{\dagger}}{\|\rho^{\frac{1-\alpha-\beta}{2}}[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{j}]\|\cdot\|\rho^{\frac{1-\alpha-\beta}{2}}[(1-\gamma)\rho^{\alpha}+\gamma\rho^{\beta},E_{k}]\|},

where \|\cdot\| is a norm on the dd-dimensional complex linear space of matrices Md()M_{d}(\mathbb{C}). It can be verified that GG is a positive semi-definite complex matrix. Analogizing the idea in [53], we obtain the following theorem.

Theorem 15 Let Φ1,,ΦN\Phi_{1},\cdots,\Phi_{N} be NN quantum channels with Kraus representations Φt(ρ)=i=1nEitρ(Eit),t=1,2,,N\Phi_{t}(\rho)=\sum_{i=1}^{n}E_{i}^{t}\rho(E_{i}^{t})^{\dagger},~{}t=1,2,\cdots,N (N2N\geq 2), we have

t=1NKρ,γα,β(Φt)1λmax(G)Kρ,γα,β(i=1nt=1NEit),\displaystyle\sum_{t=1}^{N}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}(\Phi_{t})\geq\frac{1}{\lambda_{\mathrm{max}}(G)}\mathrm{K}_{\rho,\gamma}^{\alpha,\beta}\left(\sum_{i=1}^{n}\sum_{t=1}^{N}E_{i}^{t}\right), (48)

where α,β0,α+β1,0γ1\alpha,\beta\geq 0,~{}\alpha+\beta\leq 1,~{}0\leq\gamma\leq 1, and GG is the Nn×NnNn\times Nn covariance matrix of {Eit}1in,1tN\{E_{i}^{t}\}_{1\leq i\leq n,1\leq t\leq N}.

Note that (48) of Theorem 15 reduces to (2) of Theorem 2 in [53] when α=β=12\alpha=\beta=\frac{1}{2} and N=2N=2.

5. Conclusions

We have introduced the (α,β,γ\alpha,\beta,\gamma) weighted Wigner-Yanase-Dyson ((α,β,γ\alpha,\beta,\gamma) WWYD) skew information and the (α,β,γ\alpha,\beta,\gamma) modified weighted Wigner-Yanase-Dyson ((α,β,γ\alpha,\beta,\gamma) MWWYD) skew information, which are more general than the previous concepts. We have derived sum uncertainty relations for NN mutually noncommutative observables based on the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information, which includes the results in [48] as special cases. Following the idea in Ref. [48, 51], we have derived other forms of lower bounds using the sum of the (α,β,γ)(\alpha,\beta,\gamma) WWYD skew information for any other number of observables less than NN. It is found that when α=β=12\alpha=\beta=\frac{1}{2}, for the spin-12\frac{1}{2} case and the observables of Pauli operators σ1,σ2,σ3\sigma_{1},\sigma_{2},\sigma_{3}, our lower bounds LB2LB_{2} and LB3LB_{3} are tighter than the existing ones. Finally, we have also explored sum uncertainty relations for quantum channels in terms of the (α,β,γ)(\alpha,\beta,\gamma) MWWYD skew information. The results in this paper cover the ones in [48] and [49] for WY skew information, and may shed some new light on the study of skew information-based sum uncertainty relations for observables and quantum channels.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 12161056, 11701259, 12075159, 12171044); Jiangxi Provincial Natural Science Foundation (Grant No. 20202 BAB201001); Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001); the Academician Innovation Platform of Hainan Province.

References

  • [1] Heisenberg, W.: über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)
  • [2] Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
  • [3] Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)
  • [4] Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
  • [5] Wehner, S., Winter, A.: Entropic uncertainty relations-a survey. New J. Phys. 12, 025009 (2010)
  • [6] Wu, S., Yu, S., Mø{\o}lmer, K.: Entropic uncertainty relation for mutually unbiased bases. Phys. Rev. A 79, 022104 (2009)
  • [7] Rastegin, A.E.: Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 67, 269 (2013)
  • [8] Chen, B., Fei, S.-M.: Uncertainty relations based on mutually unbiased measurements. Quantum Inf. Process. 14, 2227 (2015)
  • [9] Rudnicki, Ł., Puchała, Z., Zyczkowski, K.: Strong majorization entropic uncertainty relations. Phys. Rev. A 89, 052115 (2014)
  • [10] Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)
  • [11] Hall, M.J.W.: Information exclusion principle for complementary observables. Phys. Rev. Lett. 74, 3307 (1995)
  • [12] Gudder, S.: Operator probability theory. Int. J. Pure Appl. Math. 39, 511 (2007)
  • [13] Dou, Y., Du, H.: Generalizations of the Heisenberg and Schrödinger uncertainty relations. J. Math. Phys. 54, 103508 (2013)
  • [14] Dou, Y., Du, H.: Note on the Wigner-Yanase-Dyson skew information. Int. J. Theor. Phys. 53, 952 (2014)
  • [15] Sun, Y., Li, N.: The uncertainty of quantum channels in terms of variance. Quantum Inf. Process. 20, 25 (2021)
  • [16] Srinivas, M.D.: Optimal entropic uncertainty relation for successive measurements in quantum information theory. Pramana J. Phys. 60, 1137 (2003)
  • [17] Distler, J., Paban, S.: Uncertainties in successive measurements. Phys. Rev. A 87 062112 (2013)
  • [18] Baek, K., Farrow, T., Son, W.: Optimized entropic uncertainty for successive projective measurements. Phys. Rev. A 89 032108 (2014)
  • [19] Zhang, J., Zhang, Y., Yu, C.S.: Rényi entropy uncertainty relation for successive projective measurements. Quantum Inf. Process. 14 2239 (2015)
  • [20] Puchała, Z., Rudnicki, Ł., Zyczkowski, K.: Majorization entropic uncertainty relations. J. Phys. A: Math. Theor. 46, 272002 (2013)
  • [21] Rudnicki, Ł.: Majorization approach to entropic uncertainty relations for coarse-grained observables. Phys. Rev. A 91, 032123 (2015)
  • [22] Friedland, S., Gheorghiu, V., Gour, G.: Universal uncertainty relations. Phys. Rev. Lett. 111, 230401 (2013)
  • [23] Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)
  • [24] Chen, P., Luo, S.: Direct approach to quantum extensions of Fisher information. Front. Math. China 2, 359 (2007)
  • [25] Luo, S., Zhang, Q.: On skew information. IEEE Trans. Inf. Theory 50, 1778 (2004)
  • [26] Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)
  • [27] Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)
  • [28] Ko, C.K., Yoo, H.J.: Uncertainty relation associated with a monotone pair skew information. J. Math. Anal. Appl. 383, 208 (2011)
  • [29] Ma, Z.H., Chen, Z.H., Fei, S.-M.: Uncertainty relations based on skew information with quantum memory. Sci. China Phys. Mech. Astron. 60, 010321 (2017)
  • [30] Luo, S., Zhang, Z.: An information characterization of Schrödinger uncertainty relations. J. Stat. Phys. 114, 1557 (2004)
  • [31] Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)
  • [32] Luo, S., Zhang, Q.: Skew information decreases under quantum measurements. Theor. Math. Phys. 151, 529 (2007)
  • [33] Luo, S.: Notes on superadditivity of Wigner-Yanase-Dyson information. J. Stat. Phys. 128, 1177 (2007)
  • [34] Luo, S., Zhang, Q.: Superadditivity of Wigner-Yanase-Dyson information revisited. J. Stat. Phys. 131, 1169 (2008)
  • [35] Cai, L., Luo, S.: On convexity of generalized Wigner-Yanase-Dyson information. Lett. Math. Phys. 83, 253 (2008)
  • [36] Cai, L., Li, N., Luo, S.: Weak superadditivity of skew information. J. Phys. A 41, 135301 (2008)
  • [37] Furuichi, S.: Schrödinger uncertainty relation with Wigner-Yanase skew information. Phys. Rev. A 82, 034101 (2010)
  • [38] Furuichi, S.: Inequalities for Tsallis relative entropy and generalized skew information. Linear Multilinear Algebra 59, 1143 (2011)
  • [39] Yanagi, K.: Uncertainty relation on Wigner-Yanase-Dyson skew information. J. Math. Anal. Appl. 365, 12 (2010)
  • [40] Yanagi, K.: Wigner-Yanase-Dyson skew information and uncertainty relation. J. Phys. Conf. Ser. 201, 012015 (2010)
  • [41] Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A. 98, 012113 (2018)
  • [42] Wu, Z., Zhang, L., Fei, S.-M., Li-Jost, X.: Coherence and complementarity based on modified generalized skew information. Quantum Inf. Process. 19, 154 (2020)
  • [43] Wu, Z., Zhang, L., Wang, J., Li-Jost, X., Fei, S.-M.: Uncertainty relations based on modified Wigner-Yanase-Dyson skew information. Int. J. Theor. Phys. 59, 704 (2020)
  • [44] Furuichi, S., Yanagi, K., Kuriyama, K.: Trace inequalities on a generalized Wigner-Yanase skew information. J. Math. Anal. Appl. 356, 179 (2009)
  • [45] Chen, Z.L., Liang, L.L., Li, H.J., Wang, W.H.: Two generalized Wigner-Yanase skew information and their uncertainty relations. Quantum Inf. Process. 15, 5107 (2016)
  • [46] Zhang, Z.: Trace inequalities based on two-parameter extended Wigner-Yanase skew information. J. Math. Anal. Appl. 497, 124851 (2021)
  • [47] Chen, B., Fei, S.-M.: Sum uncertainty relations for arbitrary NN incompatible observables. Sci. Rep. 5, 14238 (2015)
  • [48] Chen, B., Fei, S.-M., Long, G.-L.: Sum uncertainty relations based on Wigner-Yanase skew information. Quantum Inf. Process. 15, 2639 (2016)
  • [49] Zhang, L.M., Gao, T., Yan, F.l.: Tighter uncertainty relations based on Wigner-Yanase skew information for observables and channels. Phys. Lett. A 387, 127029 (2021)
  • [50] Zhang, Q., Fei, S.-M.: Tighter sum uncertainty relations via variance and Wigner-Yanase skew information for NN incompatible observables. Quantum Inf. Process. 20, 384 (2021)
  • [51] Cai, l.: Sum uncertainty relations based on metric-adjusted skew information. Quantum Inf. Process. 20, 72 (2021)
  • [52] Ren, R., Li, P., Ye, M., Li, Y.: Tighter sum uncertainty relations based on metric-adjusted skew information. Phys. Rev. A. 104, 052414 (2021)
  • [53] Fu, S., Sun, Y., Luo, S.: Skew information-based uncertainty relations for quantum channels. Quantum Inf. Process. 18, 258 (2019)
  • [54] Zhang, Q., Wu, J., Fei, S.-M.: A note on uncertainty relations of arbitrary NN quantum channels. Laser Phys. Lett. 18, 095204 (2021)
  • [55] Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge, England (2013)
  • [56] Honda, A., Okazaki, Y., Takahashi, Y.: Generalizations of the Hlawka’s inequality. Pure Appl. Math. 45, 9 (1998)