This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Superdeformed \mathbb{CP} σ\sigma-model equivalence

Anton Pribytok111antonspribitoks@bimsa.cn, a.pribytok@gmail.com Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Huairou District, Beijing 101408, P. R. China Steklov Mathematical Institute of Russian Academy of Sciences,
Gubkina str. 8, 119991 Moscow, Russia
Abstract

We find the novel class of the supersymmetric deformation of the 1\mathbb{CP}^{1} σ\sigma-model and its equivalence with the generalised chiral Gross-Neveu. This construction allows the use of field-theoretic techniques and particularly the study of renormalisability and β\beta-function. Provided approach is useful in finding conformal limits and establishes relation between chiral (GN) and sigma model description (geometric), which is explicitly demonstrated for the case of ×S1\mathbb{R}\times S^{1}/Super-Thirring models. We also provide discussion on its emergence in 𝒩=2\mathcal{N}=2 Liouville and 4-dim Chern-Simons theory.


Prepared as a contribution to "Supersymmetries and Quantum Symmetries – SQS’24". Based on recent progress [1], [2].

1 n1\mathbb{CP}^{n-1} sigma model from chiral formalism

In this work we address the construction of new deformations of sigma models from the chiral field-theoretic formalism. More specifically, we exploit Gross-Neveu model framework to build a chiral analogue of the supersymmetric deformation of the 1\mathbb{CP}^{1} sigma model, which by now itself lacked a Lagrangian description. Our approach allows one to implement all field-theoretic techniques for computation of observables, study new model properties and other, which is implicit or inaccessible from the worldsheet perspective.

To demonstrate the core structure of the approach, we recall the relation of the Gross-Neveu (GN) and n1\mathbb{CP}^{n-1} sigma model. The chiral NN-flavor GN model [3, 4] can be defined as

GN=i=1NΨ¯iΨi+ϰi,j=1N[Ψ¯iΓ+Ψi][Ψ¯jΓΨj],\mathscr{L}_{\text{GN}}=\sum_{i=1}^{N}\overline{\Psi}_{i}\not{D}\Psi_{i}+\varkappa\sum_{i,j=1}^{N}\left[\overline{\Psi}_{i}\Gamma_{+}\Psi_{i}\right]\left[\overline{\Psi}_{j}\Gamma_{-}\Psi_{j}\right]\,, (1.1)

where Ψ\Psi is a Dirac spinor, ϰ\varkappa is a coupling constant and projectors Γ±=(1±γ5)/2\Gamma_{\pm}=(1\pm\gamma_{5})/2. By taking into account Dirac spinor decomposition into Weyl components

Ψa=(UaV¯a)a=1,n¯\Psi_{a}=\begin{pmatrix}U_{a}\\ \bar{V}_{a}\end{pmatrix}\qquad a=\overline{1,n} (1.2)

where for now we assume commutativity at the level of U,VU,V components. In order to establish an equivalence with the sigma model formulation, one can recast (1.1) in U,VU,V

=a=1n(VaD¯Ua+U¯aDV¯a)+κ(a=1n|Ua|2)(b=1n|Vb|2)D¯Ua=z¯UaiA¯Ua,\begin{array}[]{c}\mathscr{L}=\sum_{a=1}^{n}\left(V_{a}\cdot\bar{D}U_{a}+\bar{U}_{a}\cdot D\bar{V}_{a}\right)+\kappa\left(\sum_{a=1}^{n}\left|U_{a}\right|^{2}\right)\left(\sum_{b=1}^{n}\left|V_{b}\right|^{2}\right)\\[7.74997pt] \bar{D}U_{a}=\partial_{\bar{z}}U_{a}-i\bar{A}U_{a}\end{array}\,, (1.3)

which invariant under U(1)U(1) type complex transform UaλUa,Vaλ1Va,λU_{a}\rightarrow\lambda U_{a}\,,V_{a}\rightarrow\lambda^{-1}V_{a}\,,\lambda\in\mathbb{C}^{*}. Since (U,V)\mathscr{L}(U,V) is quadratic in field variables and UV¯,zz¯U\leftrightarrow\bar{V},\,z\leftrightarrow\bar{z}, one can eliminate either through equations of motion and obtain

=1κ|D¯U|2|U|2\mathscr{L}=\dfrac{1}{\kappa}\dfrac{|\bar{D}U|^{2}}{|U|^{2}} (1.4)

that is a form of the n1\mathbb{CP}^{n-1} model. At the same time recalling local projective invariance

UaλUaHopfgaugea=1nU¯aUa=1U_{a}\rightarrow\lambda U_{a}\quad\xrightarrow{\,\,\,\,Hopf\,gauge\,\,\,\,}\quad\sum_{a=1}^{n}\bar{U}_{a}U_{a}=1 (1.5)

corresponding to the Hopf fibration S2n1n1S^{2n-1}\rightarrow\mathbb{CP}^{n-1}, which is apparent due to the residual U(1)U(1). By exploiting (1.4) and (1.5), it can be shown that difference from the n1\mathbb{CP}^{n-1} model results in

n1=12κ(|D¯U|2|DU|2).\mathscr{L}-\mathscr{L}^{\,\text{{$\mathbb{CP}^{n-1}$}}}=\dfrac{1}{2\kappa}\left(|\bar{D}U|^{2}-|DU|^{2}\right). (1.6)

Hence the introduced Lagrangian differs by a topological term, i.e. by the Fubini-Study form

a=1nεμνDμU¯aDνUaΩFB=ia=1ndU¯adUa\sum_{a=1}^{n}\varepsilon_{\mu\nu}D_{\mu}\bar{U}_{a}D_{\nu}U_{a}\mapsto\Omega_{FB}=i\sum_{a=1}^{n}d\bar{U}_{a}\wedge dU_{a} (1.7)

and classically222Addition of topological terms at the quantum level requires separate investigation (incl. θd2zFzz¯\theta\int d^{2}z\,F_{z\bar{z}}) models agree [5, 6].

Supersymmetrisation.

There are several possibilities to couple fermions to the bosonic n1\mathbb{CP}^{n-1} model. One suitable choice would be supersymmetric coupling, where one can start with βγ\beta\gamma-system with Φ=TCn\Phi=T^{*}C^{n} space (in chiral formalism – phase space) and supersymmetrically couple fermions

βγ=V¯U+U¯V¯βγSuper=𝒱¯𝒰+𝒰¯𝒱¯𝒰=(UC),𝒱=(VB),\mathscr{L}_{\beta\gamma}=V\bar{\partial}U+\bar{U}\partial\bar{V}\,\,\Rightarrow\,\,\mathscr{L}_{\beta\gamma}^{\text{\tiny Super}}=\mathscr{V}\bar{\partial}\mathscr{U}+\bar{\mathscr{U}}\partial\bar{\mathscr{V}}\qquad\mathscr{U}=\begin{pmatrix}U\\ C\end{pmatrix}\,,\mathscr{V}=\begin{pmatrix}V&B\end{pmatrix}\,, (1.8)

where 𝒰,𝒱\mathscr{U,V} are super-doublets with U,VU,V to be bosonic and B,CB,C fermionic. The target space symmetry is given by 𝒰g𝒰\mathscr{U}\rightarrow g\cdot\mathscr{U}, 𝒱𝒱g1\mathscr{V}\rightarrow\mathscr{V}\cdot g^{-1}, gGL(n|n)g\in GL(n|n). At the worldsheet level βγSuper\mathscr{L}_{\beta\gamma}^{\text{\tiny Super}} also becomes invariant under supersymmetry transformations [7]

δU=ϵ1C,δB=ϵ1V,δC=ϵ2U,δV=ϵ2B,\delta U=\epsilon_{1}C,\quad\delta B=-\epsilon_{1}V,\quad\delta C=-\epsilon_{2}\partial U,\quad\delta V=\epsilon_{2}\partial B\,, (1.9)

which together with anti-holomorphic part closes to the 𝒩=(2,2)\mathcal{N}=(2,2) superalgebra. As it can be noticed, transition to the n1\mathbb{CP}^{n-1} model requires covariantisation

=(V𝒟¯U+U¯𝒟V¯)+(B𝒟¯C+C¯𝒟B¯)𝒟¯=¯+iA¯,\mathscr{L}=(V\bar{\mathcal{D}}U+\bar{U}\mathcal{D}\bar{V})+(B\bar{\mathcal{D}}C+\bar{C}\mathcal{D}\bar{B})\qquad\bar{\mathcal{D}}=\bar{\partial}+i\bar{A}\,, (1.10)

hence supersymmetric invariance is no longer manifest and subject to constraints
δ(BU)=ϵ1(VU+BC)\delta(B\cdot U)=-\epsilon_{1}\left(V\cdot U+B\cdot C\right) (involves gauging ×GL(1|1)\mathbb{C}^{\times}\subset GL(1|1)).

Further step requires to make the theory interacting, which can be achieved by introducing a current-current type interaction. More specifically, the extended n1\mathbb{CP}^{n-1} Lagrangian can now be extended from (1.10) to

𝒮=2d2z𝔰𝔰=𝒱𝒟¯𝒰+𝒰¯𝒟𝒱¯+ϰ2Tr[𝒥𝒥¯].\mathcal{S}=2\int d^{2}z\,\mathscr{L}_{\mathfrak{s}}\qquad\mathscr{L}_{\mathfrak{s}}=\mathscr{V}\bar{\mathscr{D}}\mathscr{U}+\bar{\mathscr{U}}\mathscr{D}\bar{\mathscr{V}}+\frac{\varkappa}{2}\,\text{Tr}\left[\mathcal{J}\,\bar{\mathcal{J}}\right]\,. (1.11)

Here we have used the notation (1.8) for 𝒰,𝒱\mathscr{U,V}, ϰ\varkappa is the coupling constant, currents are bilinears in fields 𝒥=UVCB\mathcal{J}=U\otimes V-C\otimes B (Kac-Moody currents) and bar implies conjugation. Important to note that covariant superderivative involves gauge superfield 𝔄¯super\bar{\mathfrak{A}}_{\text{super}} with bosonic A¯\bar{A} and fermionic W¯\bar{W} gauge fields, namely

𝒟¯=¯+i𝔄¯super𝔄¯super=(A¯0W¯A¯)\bar{\mathscr{D}}=\bar{\partial}+i\,\bar{\mathfrak{A}}_{\text{super}}\qquad\quad\bar{\mathfrak{A}}_{\text{super}}=\begin{pmatrix}\bar{A}&0\\ \bar{W}&\bar{A}\end{pmatrix}

The model (1.11) proves to be supersymmetric and integrable, moreover it allows for a further generalisation. From the geometric perspective of the n1\mathbb{CP}^{n-1} model, one of the most nontrivial deformations would involve flowing away from the spherical target space such that the theory remains supersymmetric, integrable and renormalisable.

Superdeformed 1\mathbb{CP}^{1}.

It can be demonstrated that such integrable deformation in the framework above can obtained by deforming one of the currents

𝔰=𝒱𝒟¯𝒰+𝒰¯𝒟𝒱¯+ϰ2Tr[r𝔰(𝒥)𝒥¯]\mathscr{L}_{\mathfrak{s}}=\mathscr{V}\bar{\mathscr{D}}\mathscr{U}+\bar{\mathscr{U}}\mathscr{D}\bar{\mathscr{V}}+\frac{\varkappa}{2}\,\text{Tr}\left[r_{\mathfrak{s}}(\mathcal{J})\,\bar{\mathcal{J}}\right] (1.12)

and the r𝔰r_{\mathfrak{s}}-matrix action can be defined as

r𝔰[𝒪]=11𝔰(12(𝔰+1)𝒪11𝔰𝒪12𝔰𝒪2112(𝔰+1)𝒪22),\begin{array}[]{c}r_{\mathfrak{s}}\left[\mathcal{O}\right]=\dfrac{1}{1-\mathfrak{s}}\begin{pmatrix}\frac{1}{2}(\mathfrak{s}+1)\cdot\mathcal{O}_{11}&\sqrt{\mathfrak{s}}\cdot\mathcal{O}_{12}\\ \sqrt{\mathfrak{s}}\cdot\mathcal{O}_{21}&\frac{1}{2}(\mathfrak{s}+1)\cdot\mathcal{O}_{22}\end{pmatrix}\end{array}\,,

𝔰\mathfrak{s} is a deformation parameter. It turns out to be the classical rr-matrix satisfying classical Yang-Baxter equation. Such a theory can be shown to be integrable, i.e. admitting a Lax pair through An=rns(𝒥)dzrns1(𝒥¯)dz¯A_{n}=r_{ns}(\mathcal{J})\,dz-r_{ns^{-1}}(\bar{\mathcal{J}})\,d\bar{z} and zero-curvature condition dAnAnAn=0dA_{n}-A_{n}\wedge A_{n}=0, more detailed in [8, 9, 10]. However this kind of deformations can break supersymmetry.

It is clear that the free part of (1.12) is super-invariant under (1.9) and it is required to prove that the deformed interaction does so. After resolving all field variations and current differentials it becomes possible to derive the eom of (anti-)holomorphic currents

¯𝒥=ϰ2[𝒥,rs[𝒥¯]]𝒥¯=ϰ2[rs[𝒥],𝒥¯],\quad\bar{\partial}\mathcal{J}=\frac{\varkappa}{2}[\mathcal{J},r_{s}[\bar{\mathcal{J}}]]\qquad\partial\bar{\mathcal{J}}=-\frac{\varkappa}{2}\left[r_{s}[\mathcal{J}],\bar{\mathcal{J}}\right]\,, (1.13)

so that it can be shown varying interaction leads to

δ(ϰ2Tr(𝒥rs[𝒥¯]))ϰ24ϵ2Tr(rs[𝒥~][rs[𝒥],𝒥¯])=ϵ2ϰ24Tr([rs[𝒥~],rs[𝒥]]𝒥¯)\delta\left(\frac{\varkappa}{2}\text{Tr}(\mathcal{J}\,r_{s}[\bar{\mathcal{J}}])\right)\approx\frac{\varkappa^{2}}{4}\epsilon_{2}\text{Tr}(r_{s}[\tilde{\mathcal{J}}]\,[r_{s}[\mathcal{J}],\bar{\mathcal{J}}])=\epsilon_{2}\frac{\varkappa^{2}}{4}\text{Tr}([r_{s}[\tilde{\mathcal{J}}],r_{s}[\mathcal{J}]]\,\bar{\mathcal{J}}) (1.14)

where δ𝒥=ϵ2𝒥~\delta\mathcal{J}=\epsilon_{2}\partial\tilde{\mathcal{J}} and 𝒥~=UB\tilde{\mathcal{J}}=U\otimes B. By recalling supersymmetry constraints it results in

[rs[𝒥~],rs[𝒥]]=[rs[UB],rs[UVCB]]=0,[r_{s}[\tilde{\mathcal{J}}],r_{s}[\mathcal{J}]]=[r_{s}[U\otimes B],r_{s}[U\otimes V-C\otimes B]]=0\,, (1.15)

which implies supersymmetry of the novel construction (1.12).

2 𝒩=(2,2)\mathcal{N}=(2,2) Kähler sigma model and geometric interpretation

It was mentioned in the previous section that this class of models possesses a specific geometric interpretation, which provides deeper understanding of properties, observables and dual maps to other model classes. In order to address this question one can pass to the so called inhomogeneous basis by using field gauge fixing and supersymmetry constraints. For instance, UU and CC can be fixed as U1=1,C1=0U_{1}=1,\,C_{1}=0, which together with VU+BC=0V\cdot U+B\cdot C=0, BU=0B\cdot U=0 would provide

U=(1u)V=(bcuvv)B=b(u1)C=(0c).\begin{aligned} U=\begin{pmatrix}1\\ u\end{pmatrix}\quad V=\begin{pmatrix}-bc-uv\\ v\end{pmatrix}\quad B=b\begin{pmatrix}-u\\ 1\end{pmatrix}\quad C=\begin{pmatrix}0\\ c\end{pmatrix}\end{aligned}\,. (2.1)

Hence the Lagrangian (1.12) in this field basis takes the form

𝔰=v¯u+u¯v¯+b¯cc¯b¯+ϰ𝔰121𝔰[α|v|2+β(vub¯c¯+v¯u¯bc)+γbcb¯c¯]\mathscr{L}_{\mathfrak{s}}=v\bar{\partial}u+\bar{u}\partial\bar{v}+b\bar{\partial}c-\bar{c}\partial\bar{b}+\frac{\varkappa\,\mathfrak{s}^{1\over 2}}{1-\mathfrak{s}}\,\left[\alpha|v|^{2}+\beta\left(vu\bar{b}\bar{c}+\bar{v}\bar{u}bc\right)+\gamma bc\bar{b}\bar{c}\right] (2.2)

where α,β,γ\alpha,\,\beta,\,\gamma are polynomials in uu and 𝔰\mathfrak{s}. By extremising the the action w.r.t. vv and resubstituting, one acquires

𝔰\displaystyle\mathscr{L}_{\mathfrak{s}} =𝔰12𝔰12αϰ|¯u|2+bD¯cc¯Db¯+ϰ𝔰12𝔰12(γβ2α|u|2)bcb¯c¯,\displaystyle=\frac{\mathfrak{s}^{-{1\over 2}}-\mathfrak{s}^{1\over 2}}{\alpha\varkappa}\,|\bar{\partial}u|^{2}+b\bar{D}c-\bar{c}D\bar{b}+\frac{\varkappa}{\mathfrak{s}^{-{1\over 2}}-\mathfrak{s}^{1\over 2}}\,\left(\gamma-{\beta^{2}\over\alpha}|u|^{2}\right)bc\bar{b}\bar{c}\,, (2.3)
whereD¯c=¯cβαu¯Γuuuulogguu¯¯uc,Db¯=b¯+βαuu¯b¯.\displaystyle\quad\text{where}\qquad\bar{D}c=\bar{\partial}c\hskip-9.68745pt\underbracket{-\,\,{\beta\over\alpha}\bar{u}}_{\Gamma_{uu}^{u}\,\equiv\,\partial_{u}\log g_{u\bar{u}}}\hskip-9.68745pt\bar{\partial}u\,c\,,\qquad D\bar{b}=\partial\bar{b}\,+\,\underbracket{{\beta\over\alpha}u}\,\partial\bar{u}\,\bar{b}\,.

In fact, it takes the form of the 𝒩=(2,2)\mathcal{N}=(2,2) Kähler σ\sigma-model [11]

𝔰=guu¯|¯u|2+bD¯cc¯Db¯+Ruu¯uu¯guu¯guu¯bcb¯c¯,\displaystyle\mathscr{L}_{\mathfrak{s}}=g_{u\bar{u}}\,|\bar{\partial}u|^{2}+b\bar{D}c-\bar{c}D\bar{b}+R_{u\bar{u}u\bar{u}}\,g^{u\bar{u}}g^{u\bar{u}}\,bc\bar{b}\bar{c}\,, (2.4)

where gg is the Fateev-Onofri-Zamolodchikov bosonic metric and Ruu¯uu¯guu¯guu¯R_{u\bar{u}u\bar{u}}\,g^{u\bar{u}}g^{u\bar{u}} is the Ricci scalar in front of the quartic interaction. That completes the mapping between superdeformed chiral formulation (1.12) and 𝒩=(2,2)\mathcal{N}=(2,2) σ\sigma-model (2.3).

It turns out that the novel construction also has important conformal limits:

  • In the s0s\rightarrow 0 limit it provides a model with ×S1\mathbb{R}\times S^{1} target space and SCyl=2ϰ|¯u|2|u|2+bD¯cc¯Db¯\mathscr{L}_{\mathrm{SCyl}}={2\over\varkappa}\,\frac{|\bar{\partial}u|^{2}}{|u|^{2}}+b\bar{D}c-\bar{c}D\bar{b}, the so called super-cylinder, which after rescaling fermionic dof results in the free theory.

  • In the limit us14uu\rightarrow s^{\frac{1}{4}}u, s0s\rightarrow 0 limit, one acquires supersymmetric cigar model [12, 13], SCig=2ϰ|¯u|21+|u|2+bD¯cc¯Db¯+ϰ2(1+|u|2)bcb¯c¯\mathscr{L}_{\mathrm{SCig}}=\frac{2}{\varkappa}\,\frac{|\bar{\partial}u|^{2}}{1+|u|^{2}}+b\bar{D}c-\bar{c}D\bar{b}+{\varkappa\over 2(1+|u|^{2})}\,bc\bar{b}\bar{c}.

Altogether with limits from the superdeformed chiral side it establishes the following equivalence scheme

Sigma model         Chiral model

Superdeformed 1{u𝔰14u,𝔰0:Supercigarscaled super-GN𝔰0:Supercylinder ×S1Super-Thirring\text{Superdeformed }\mathbb{CP}^{1}\quad\mapsto\quad\begin{cases}u\rightarrow\mathfrak{s}^{\frac{1}{4}}u,\,\mathfrak{s}\rightarrow 0:\,\text{Supercigar}\,\,\,\leftrightarrow\,\text{scaled super-GN}\\ \mathfrak{s}\rightarrow 0:\,\text{Supercylinder }\mathbb{R}\times S^{1}\,\leftrightarrow\,\text{Super-Thirring}\end{cases} (2.5)

3 2-loop β\beta-function

It can be proven that a new \mathbb{CP} model is (at least) two-loop renormalisable. Since our superchiral construction can be stated as a 2-dim ϕ4\phi^{4} field theory analogue, one can investigate the β\beta-function in terms of perturbation theory. Specifically, one can get it from the corresponding 4-pt function at each order in perturbation, thus taking into account (1.12), for the tree level it is

G4tree=ϰar𝔰(τa)τa,G_{4}^{\mathrm{tree}}=-\varkappa\,\sum\limits_{a}\,r_{\mathfrak{s}}(\tau_{a})\otimes\tau_{a}\,, (3.1)

with τa\tau_{a} to be the underlying algebra generators (to demonstrate, one can restrict to 𝔰𝔩2\mathfrak{sl}_{2}). For the one-loop one it is required to consider two diagrams, for which it derives

G41-loop=ϰ2d2z(2π)2ei(p,z)|z|2×12a,b[r𝔰(τa),r𝔰(τb)][τb,τa]G_{4}^{\mathrm{1\text{-}loop}}=-{\varkappa^{2}}\int\,\frac{d^{2}z}{(2\pi)^{2}}\frac{e^{i(p,z)}}{|z|^{2}}\times{1\over 2}\sum\limits_{a,b}\,[r_{\mathfrak{s}}(\tau_{a}),r_{\mathfrak{s}}(\tau_{b})]\otimes[\tau_{b},\tau_{a}] (3.2)
𝖠(p):=12πd2zei(p,z)|z|2=12log(p2ε2)+finite\mathsf{A}(p):={1\over 2\pi}\int\,d^{2}z\frac{e^{i(p,z)}}{|z|^{2}}=-{1\over 2}\log{\left({p^{2}\varepsilon^{2}}\right)}+\text{finite} (3.3)

Next we consider the two-loop correction, which accounts for 3!3! diagrams

42-loop=ϰ3ei(p,z13)×r𝔰[τa]r𝔰[τb]r𝔰[τc]z12z23(τaτbτcz¯12z¯23+τaτcτbz¯13z¯32+τbτaτcz¯21z¯13+τcτaτbz¯31z¯12+τbτcτaz¯23z¯31+τcτbτaz¯32z¯21),\begin{aligned} \mathcal{I}_{4}^{\mathrm{2\text{-}loop}}&=-\varkappa^{3}\,e^{i\left(p,z_{13}\right)}\times\frac{r_{\mathfrak{s}}[\tau_{a}]r_{\mathfrak{s}}[\tau_{b}]r_{\mathfrak{s}}[\tau_{c}]}{z_{12}z_{23}}\\ &\otimes\left(\frac{\tau_{a}\tau_{b}\tau_{c}}{\bar{z}_{12}\bar{z}_{23}}+\frac{\tau_{a}\tau_{c}\tau_{b}}{\bar{z}_{13}\bar{z}_{32}}+\frac{\tau_{b}\tau_{a}\tau_{c}}{\bar{z}_{21}\bar{z}_{13}}+\frac{\tau_{c}\tau_{a}\tau_{b}}{\bar{z}_{31}\bar{z}_{12}}+\frac{\tau_{b}\tau_{c}\tau_{a}}{\bar{z}_{23}\bar{z}_{31}}+\frac{\tau_{c}\tau_{b}\tau_{a}}{\bar{z}_{32}\bar{z}_{21}}\right)\end{aligned}\,, (3.4)
[Uncaptioned image]

where zij=zizjz_{ij}=z_{i}-z_{j} comes from the field lines. So that the two-loop contribution can be given as

G42-loop=ϰ3d2z12(2π)2d2z23(2π)2ei(p,z13)z12z23a,b,cr𝔰(τa)r𝔰(τb)r𝔰(τc)(1z¯12z¯23[τa,[τb,τc]]1z¯12z¯13[τb,[τa,τc]]).\begin{aligned} &G_{4}^{\mathrm{2\text{-}loop}}=-\varkappa^{3}\,\int\,\frac{d^{2}z_{12}}{(2\pi)^{2}}\,\frac{d^{2}z_{23}}{(2\pi)^{2}}\frac{e^{i(p,z_{13})}}{z_{12}z_{23}}\,\sum\limits_{a,b,c}\,r_{\mathfrak{s}}(\tau_{a})r_{\mathfrak{s}}(\tau_{b})r_{\mathfrak{s}}(\tau_{c})\\ &\hskip 56.9055pt\otimes\left({1\over\bar{z}_{12}\bar{z}_{23}}\,[\tau_{a},[\tau_{b},\tau_{c}]]-{1\over\bar{z}_{12}\bar{z}_{13}}\,[\tau_{b},[\tau_{a},\tau_{c}]]\right)\end{aligned}\,. (3.5)

From here it can be further proven that both terms above are proportional to A2A^{2}

G42-loop=ϰ3(2π)2A(p)2a,b,cr𝔰(τa)r𝔰(τb)r𝔰(τc)([τa,[τb,τc]]12[τb,[τa,τc]])+finiteG42-loop=ϰ32π2A(p)2ar¨𝔰(τa)τa,\begin{aligned} &G_{4}^{2\text{-}loop}=-\dfrac{\varkappa^{3}}{(2\pi)^{2}}\,A(p)^{2}\,\sum\limits_{a,b,c}\,r_{\mathfrak{s}}(\tau_{a})r_{\mathfrak{s}}(\tau_{b})r_{\mathfrak{s}}(\tau_{c})\\ &\otimes\left(\,[\tau_{a},[\tau_{b},\tau_{c}]]-{1\over 2}\,[\tau_{b},[\tau_{a},\tau_{c}]]\right)+\text{finite}\end{aligned}\,\rightarrow\,\begin{aligned} G_{4}^{\mathrm{2\text{-}loop}}=-{\varkappa^{3}\over 2\pi^{2}}\,A(p)^{2}\,\,\sum\limits_{a}\,\ddot{r}_{\mathfrak{s}}(\tau_{a})\otimes\tau_{a}\,,\end{aligned} (3.6)

where on the right hand side we assumed the 𝔰𝔩2\mathfrak{sl}_{2} case. Important to note that in the one-loop derivation the renormalisability was consistent with the obtained Nahm-type [14] constraint

r˙𝔰([𝔸,𝔹])=[r𝔰(𝔸),r𝔰(𝔹)],\dot{r}_{\mathfrak{s}}([\mathbb{A},\mathbb{B}])=[r_{\mathfrak{s}}(\mathbb{A}),r_{\mathfrak{s}}(\mathbb{B})]\,, (3.7)

where 𝔸,𝔹\mathbb{A,B} are algebra generators and r˙𝔰=𝔰d𝔰r𝔰\dot{r}_{\mathfrak{s}}=\mathfrak{s}\,d_{\mathfrak{s}}r_{\mathfrak{s}}. This condition also independently implied supersymmetric invariance of the model.

4 Duality: Supercylinder/Super-Thirring

Super-Thirring.

To provide explicit confirmation of the mapping equivalence (2.5), we shall provide the computation of the 4-pt function on both sides of the Supercylinder/Super-Thirring (SC/ST) [15, 16] correspondence. From the ST it implies perturbation theory in ϰ\varkappa and from SC computation is done through the associated vertex operators. Hence from the ST side for the bosonic333Including fermions leads to additional Koba-Nielsen factors 4-pt correlator Γ4=u(z~1)v(z~2)u¯(z1)v¯(z2)\Gamma_{4}=\langle u(\tilde{z}_{1})v(\tilde{z}_{2})\bar{u}(z_{1})\bar{v}(z_{2})\rangle at tree level one obtains

I0(z~1,z~2|z1,z2)=ϰ(2π)2d2z(2π)21(z~1z)(zz~2)(z¯1z¯)(z¯z¯2)\displaystyle I_{0}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})=-{\varkappa\over(2\pi)^{2}}\,\int\,{d^{2}z\over(2\pi)^{2}}\,\frac{1}{(\tilde{z}_{1}-z)(z-\tilde{z}_{2})(\bar{z}_{1}-\bar{z})(\bar{z}-\bar{z}_{2})} (4.1)
=1(2π)3ϰ2z~12z¯21log[𝖢𝖱(z~1,z~2|z1,z2)],\displaystyle\quad=-\dfrac{1}{(2\pi)^{3}}\frac{\varkappa}{2\,\tilde{z}_{12}\bar{z}_{21}}\,\,\log{[\mathsf{CR}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})]}\,,

where 𝖢𝖱\mathsf{CR} denotes SL(2,)\text{SL}(2,\mathbb{C}) invariant cross-ratio. By virtue of induction for the (+1)(\ell+1)-loop it becomes

I+1=ϰ+2(2π)2i=0+1pS+1d2w(2π)2i=1+1d2wi(2π)21(z~1w)(ww1)(w+1z~2)×\displaystyle I_{\ell+1}=-{\varkappa^{\ell+2}\over(2\pi)^{2}}\,\sum\limits_{i=0}^{\ell+1}\,\sum\limits_{p\in S_{\ell+1}}\!\!\int\,{d^{2}w\over(2\pi)^{2}}\,\prod\limits_{i=1}^{\ell+1}\,{d^{2}w_{i}\over(2\pi)^{2}}\,\frac{1}{(\tilde{z}_{1}-w)(w-w_{1})\cdots(w_{\ell+1}-\tilde{z}_{2})}\times (4.2)
×1(z¯1w¯1)(w¯iw¯)(w¯w¯i+1)(w¯+1z¯2)\displaystyle\hskip 71.13188pt\,\times\frac{1}{(\bar{z}_{1}-\bar{w}_{1^{\prime}})\cdots(\bar{w}_{i^{\prime}}-\bar{w})(\bar{w}-\bar{w}_{i+1^{\prime}})\cdots(\bar{w}_{\ell+1^{\prime}}-\bar{z}_{2})}
Refer to caption
Fig.: Due to internal loop cancellations only ladder diagrams appear (internal box implies all possible permutations at a given loop level).

It is then possible to deduce a recursion in terms lower loop integrals and resolve it, which leads to

I(z~1,z~2|z1,z2)=1(2π)21z¯21z~121(+1)!(ϰ4π)+1[log𝖢𝖱(z~1,z~2|z1,z2)]+1.I_{\ell}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})={1\over(2\pi)^{2}}\frac{1}{\bar{z}_{21}\tilde{z}_{12}}\,\frac{1}{(\ell+1)!}\,\left(-{\varkappa\over 4\pi}\right)^{\ell+1}\left[\log\,\mathsf{CR}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})\right]^{\ell+1}\,. (4.3)

Resumming all loop contributions results in a 4-pt correlator

Γ4==1I=1(2π)21z¯21z~12[𝖢𝖱(z~1,z~2|z1,z2)]ϰ4π.\Gamma_{4}=\sum\limits_{\ell=-1}^{\infty}I_{\ell}={1\over(2\pi)^{2}}\frac{1}{\bar{z}_{21}\tilde{z}_{12}}\,\left[\mathsf{CR}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})\right]^{-{\varkappa\over 4\pi}}\,. (4.4)

Supercylinder.

From the worldsheet perspective one can rewrite the SC Lagrangian in the form

=2ϰ|¯u|2|u|2+B¯CC¯B¯=2ϰ|¯W|2+iΨ¯∂̸ΨΨ=(BC¯),\mathcal{L}={2\over\varkappa}\frac{|\bar{\partial}u|^{2}}{|u|^{2}}+B\bar{\partial}C-\bar{C}\partial\bar{B}\rightarrow\mathcal{L}={2\over\varkappa}\,|\bar{\partial}W|^{2}+i\,\bar{\Psi}\not{\partial}\Psi\quad\Psi=\begin{pmatrix}B\\ \bar{C}\end{pmatrix}\,, (4.5)

which in terms of vertex operators maps to elementary fields

u=eW,v=(2ϰW¯BC)eW,b=BeW,c=CeWu=e^{W}\,,\quad\quad v=\left({2\over\varkappa}\,\partial\bar{W}-BC\right)\,e^{-W}\,,\quad\quad b=B\,e^{-W}\,,\quad\quad c=C\,e^{W} (4.6)

The corresponding 4-pt function can be given by the following path integral

u(z~1)v(z~2)u¯(z1)v¯(z2)=\displaystyle\langle u(\tilde{z}_{1})\,v(\tilde{z}_{2})\,\bar{u}(z_{1})\,\bar{v}(z_{2})\rangle= (4.7)
=(2ϰW¯(z~2)B(z~2)C(z~2))(2ϰ¯W(z2)B¯(z2)C¯(z2))\displaystyle=\int\,\left({2\over\varkappa}\,\partial\bar{W}(\tilde{z}_{2})-B(\tilde{z}_{2})C(\tilde{z}_{2})\right)\left(-{2\over\varkappa}\,\bar{\partial}W(z_{2})-\bar{B}(z_{2})\bar{C}(z_{2})\right)\,
×exp[i𝑑zdz¯+W(z~1)W(z~2)+W¯(z1)W¯(z2)]\displaystyle\times\exp{\left[-\,\int\!i\,dz\!\!\wedge\!\!d\bar{z}\;\mathcal{L}+W(\tilde{z}_{1})-W(\tilde{z}_{2})+\bar{W}(z_{1})-\bar{W}(z_{2})\right]}

After substituting W=ϰ4πlog(|zz2|2|zz1|2)W={\varkappa\over 4\pi}\,\log{\left({|z-z_{2}|^{2}\over|z-z_{1}|^{2}}\right)} and W¯=ϰ4πlog(|zz~2|2|zz~1|2)\bar{W}={\varkappa\over 4\pi}\,\log{\left({|z-\tilde{z}_{2}|^{2}\over|z-\tilde{z}_{1}|^{2}}\right)} eom, it derives for the 4-pts

u(z~1)v(z~2)u¯(z1)v¯(z2)=1(2π)21z¯21z~12[𝖢𝖱(z~1,z~2|z1,z2)]ϰ4π.\langle u(\tilde{z}_{1})\,v(\tilde{z}_{2})\,\bar{u}(z_{1})\,\bar{v}(z_{2})\rangle={1\over(2\pi)^{2}}\frac{1}{\bar{z}_{21}\tilde{z}_{12}}\,\,\left[\mathsf{CR}(\tilde{z}_{1},\tilde{z}_{2}|z_{1},z_{2})\right]^{-{\varkappa\over 4\pi}}\,. (4.8)

It proves complete agreement of Supercylinder (4.8) and Super-Thirring (4.4).

Remarks.

The new superdeformed class of models establishes important relations between chiral and sigma models and their conformal limits. It would be important to investigate its further mapping with AA- and BB-model (Landau-Ginzburg class) sectors and 𝒩=2\mathcal{N=2} sine-Liouville theory in particular. The last would allow to solve the novel \mathbb{CP} class by virtue of Thermodynamic Bethe Ansatz [17, 18] or the generalised fermionisation procedure [19]. It is of current investigation the emergence of new class from the 4-dim Chern-Simons theory with \mathbb{CP} order defects and its IR discretisation [2]. Further questions can include finding complete GLSM formulation and computations of instanton corrections.

Acknowledgment.

I would like to thank C. Ahn, Z. Bajnok, D. Gaiotto, B. Vicedo, C. Klimčík, A. Losev, A. Tseytlin and A. Smilga for discussions, and especially P. Fendley and M. Roček for comments on the manuscript. A. P. also expresses gratitude for the support from Russian Science Foundation grant RSCF-22-72-10122 and European Union – NextGenerationEU, from the program STARS@UNIPD, under project "Exact-Holography – A new exact approach to holography: harnessing the power of string theory, conformal field theory, and integrable models".

References