This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Superpotentials of D-branes in Calabi-Yau Manifolds with Several Moduli by Mirror Symmetry and Blown-up

Xuan Li Yuan-Chun Jing and Fu-Zhong Yang corresponding author           E-mail:fzyang@ucas.ac.cn
Abstract

Abstract: We study B-brane superpotentials depending on several closed- and open- moduli on Calabi-Yau hypersurfaces and complete intersections. By blowing up the ambient space along a curve wrapped by B-branes in a Calabi-Yau manifold, we obtain a blow-up new manifold and the period integral satisfying the GKZ-system. Via mirror symmetry to A-model, we calculate the superpotentials and extract Ooguri-Vafa invariants for concrete examples of several open-closed moduli in Calabi-Yau manifolds .

1   Introduction

The type IIB compactification with branes can be described by an effective N=1N=1 supergravity theory with a non-trivial superpotential on the open-closed moduli space, because the D-branes wrapping supersymmetric cycles reduce the N=2 supersymmetry to N=1 supersymmetry. In topological string theory, there are two type D-branes. A-branes wrap special lagrangian cycles and B-branes wrap holomorphic cycles that can be even dimensional in a Calabi-Yau threefold.

On the A-model side, the superpotential is related to the topological string amplitudes, which counts disk instantons\parencitesKatz2001Li2001. On the B-model side, the topological string is related to holomorphic Chern-Simons theory[24]. The B-brane superpotential is given by a integral over 3-chain with boundary consisting of 2-cycles γ\gamma around the B-branes, which is the sections of a line bundle over the open-closed moduli space described by the holomorphic N=1 special geometry \parencitesLerche2002Lerche2002aMayr2001. The B-brane superpotential can be expressed as a linear combination of the integral of the basis of relative period. When considering B-brane wrapping two curves within the same homology class, the superpotential changes on the two sides of the domain wall whose tension is in terms of the Able-Jacobi map.

In physics, the D-brane superpotential is topological sector of the d=4,N=1 superpymmetric spacetime effective Lagrangian, as well as the generating function of open string topological field theory correlators. It encode the instanton correction and its derivatives determine structure constants of 2d chiral ring and Gauss-Manin connection of the vacuum bundle on the moduli space. The flatness of this connection determines the Picard-Fuchs equations satisfied by period vector. The expansion of superpotentials at large volume phase underlies the Ooguri-Vafa invariants counting the holomorphic disks ending on a lagrangian submanifold on the A-model side. These invariants closely relate to space of the states, non-pertubative effects, and geometric properties of the moduli space.

From the perspective of the deformation theory, the deformations of a curve in Calabi-Yau threefold are given by the sections of the normal bundle. The holomorphic sections lead to massless or light fields in the effective theory and the non-holomorphic sections lead to massive fields whose masses are given by the volume change under infinitesimal deformations. The superpotentials are related to the deformations with masses vanishing at some point in the closed moduli space. In order words, determining the B-brane superpotentials is equivalent to solve the deformation theory of a pair (X,S)(X,S) with curve SS and Calabi-Yau manifold XX. When a D5 brane wrapping a rational curve, the non-trivial superpotential is defined on a family of curves SS, whose members are in general non-holomorphic except at some critical points where SS is holomorphic curve. The critical locus corresponds to the supersymmetric vacus, other points in moduli space correspond to the obstructed deformation of the rational curve and excitation about the supersymmetric minimum.

The computation of off-shell superpotential for a toric brane, has been presented by local case in \parencitesAganagic2000Lerche2002Lerche2002a, and extended to compact Calabi-Yaus in \parencitesAlim2009Jockers2008Jockers2009. For this brane, the onshell superpotentials and flat coordinates are the solutions to a system of open-closed Picard-Fuchs equations, which arise as a consequence of the N = 1 special geometry. These equation can be obtained by Griffish-Dwork reduction method or GKZ system. When a B-brane wrapping a curve SS in XX, the blowing up XX along SS lead to a new manifold XX^{\prime} with an exceptional divisor EE \parencitesGrimm2010Grimm2008. Meanwhile, the deformation theory of (X,S)(X,S) is equivalent to that of (X,E)(X^{\prime},E)111 Section 4.4 in [9] and footnote 17 in [8]. The B-brane superpotential on the Calabi-Yau threefold XX can be calculated in terms of period vector of manifold XX^{\prime}. In this note, we first calculate B-brane superpotentials in Calabi-Yau manifolds with several moduli for via blowing up method, then extract Ooguri-Vafa invariants from A-model side at large volume phase by mirror symmetry.

The organization of this paper is as follows. In section 2, we introduce the background and formalism. To begin with, we review D-brane superpotential in the Type II string theory and relative cohomology description, recall the basic toric geometry about constructing Calabi-Yau manifold, generalized GKZ system and its local solutions, and outline the procedure to blow up a curve on a Calabi-Yau manifold. In section 3, for degree -9,-8,-12 Calabi-Yau hypersurface and degree-(3,3)(3,3) complete intersection Calabi-Yau manifold, we apply the blow up method to the mainfold with a curve on it and obtain a new Kahler manifold an exceptional divisor. The Picard-Fuchs equations and their solutions are derived by GKZ hypergeometric system from toric data of the enhanced polyhedron. The superpotential are identified as double-logarithmic solutions of the Picard-Fuchs equations and Ooguri-Vafa invariants are extracted at large volume phase. The last section is a brief summary and further discussions.In Appendix A, we summarize the GKZ-system for two complete intersections Calabi-Yau manifolds X[4,4](112|112)X^{(112|112)}_{[4,4]} and X[6,6](123|123)X^{(123|123)}_{[6,6]}. In Appendix B, we present the compact instanton invariants of above models for first several orders.

2   Toric geometry and Blowing up

2.1   Toric geometry and GKZ system

A Calabi-Yau manifold can be defined as a hypersurface or complete intersection of several hyperserfaces in ambient toric variety. We refer to [7] for the background of toric geometry,construction of Calabi-Yau manifolds \parencitesBatyrev1993Batyrev1994, and GKZ system \parencitesHosono1995Hosono1993Hosono1994Stienstra2005Cox1999.

For a mirror pair of compact hypersurfaces (X,X)(X^{*},X), one may associate a pair of integral polyhedra (Δ,Δ)(\Delta^{*},\Delta) in a four-dimensional integral lattice and its dual. The n integral points of the polyhedron correspond to homogeneous coordinates xix_{i} on the toric ambient space and satisfy linear relations

ilijvi=0,a=1,,h2,1\sum_{i}l^{j}_{i}v_{i}=0,\quad a=1,...,h^{2,1}

where lijl^{j}_{i} is the ith component of the charge vector ljl^{j}. The integral entries of the vectors ljl^{j} define the weights lijl^{j}_{i} of the coordinates xix_{i} under the \mathbb{C}^{*} action

xi(λj)lijxi,λjx_{i}\rightarrow(\lambda_{j})^{l^{j}_{i}}x_{i},\quad\lambda_{j}\in\mathbb{C}^{*}

and lijl^{j}_{i} ’s are the U(1)U(1) charges of the fields in the gauged linear sigma model (GLSM)[25]. In above description, the mirror Calabi-Yau threefold is determined as a hypersurface in the dual toric ambient space with constraints

P=iaiyi,iyilij=zjP=\sum_{i}a_{i}y_{i},\quad\prod_{i}y_{i}^{l^{j}_{i}}=z_{j} (2.1)

Here zjz_{j} denotes the complex structure moduli of XX. In terms of vertices vjΔ,viΔv_{j}^{*}\in\Delta^{*},v_{i}\in\Delta

P(x;a)=vjΔajixivj,vi+1P(x;a)=\sum_{v_{j}^{*}\in\Delta^{*}}a_{j}\prod_{i}x_{i}^{\langle v_{j}^{*},v_{i}\rangle+1} (2.2)

The complete intersection Calabi-Yau threefolds can be constructed similarly and we omit the details. Equivalently, Calabi-Yau hypersurfaces is also given by the zero loci of certain sections of the anticanonical bundle. The toric variety contains a canonical Zariski open torus 4\mathbb{C}^{4} with coordinates X=(X1,X2,X3,X4)X=(X_{1},X_{2},X_{3},X_{4}). The sections are

PΔ(X,a)=viΔ5aiXviP_{\Delta^{*}}(X,a)=\sum_{v^{*}_{i}\in\Delta^{*}\cap\mathbb{Z}^{5}}a_{i}X^{v_{i}^{*}} (2.3)

After homogenization, above equation is the same as 2.2. On these manifolds, a mirror pairs of branes, defined in [1] by another N charge vectors l^j\hat{l}^{j}. The special Lagrangian submanifold wrapped by the A-brane is described in terms of the vectors l^j\hat{l}^{j} satisfying

il^ij|xi|2=cj,il^ij=0\sum_{i}\hat{l}^{j}_{i}|x_{i}|^{2}=c_{j},\quad\sum_{i}\hat{l}^{j}_{i}=0

where cjc_{j} parametrize the brane position. And the holomorphic submanifold wrapped by mirror B-brane is defined by the following equation

iyiz^a=0,z^a=ϵaeca\prod_{i}y_{i}-\hat{z}_{a}=0,\quad\hat{z}_{a}=\epsilon_{a}e^{-c_{a}}

The N=2N=2 case, a toric curve, is more interesting to us and it is the geometry setting we are studying in this notes. To handle the toric curve case, we consider the enhanced polyhedron method proposed in [2]. It is possible in a simple manner to construct the enhanced polyhedron from the original polyhedra and the toric curve specified by two charge vectors. We denote the vertices of Δ\Delta by viv_{i}, i=1,,ni=1,...,n, with v0v_{0} the origin, its charge vectors by lil^{i}, and two brane vectors by l^1\hat{l}^{1} and l^2\hat{l}^{2}. We add 4 points to Δ\Delta^{*} to define a new polyhedron Δe\Delta^{e} with vertices

X:vi=(1,0,vi,0),i=0,,n\displaystyle X:v_{i}=(1,0,v_{i},0),\quad i=0,...,n (2.4)
l^1:vn+1=(0,1,v1,1),vn+2=(0,1,v1+,1)\displaystyle\hat{l}^{1}:v_{n+1}=(0,1,v_{1}^{-},-1),\quad v_{n+2}=(0,1,v_{1}^{+},-1)
l^2:vn+3=(0,1,v2,1),vn+4=(0,1,v2+,1)\displaystyle\hat{l}^{2}:v_{n+3}=(0,1,v_{2}^{-},-1),\quad v_{n+4}=(0,1,v_{2}^{+},-1)

where we use the abbreviation

v1+=l^i1>0l^i1vi,v1=l^i1<0l^i1viv2+=l^i2>0l^i2vi,v2=l^i2<0l^i2vi\begin{gathered}v_{1}^{+}=\sum_{\hat{l}_{i}^{1}>0}\hat{l}_{i}^{1}v_{i},\quad v_{1}^{-}=-\sum_{\hat{l}_{i}^{1}<0}\hat{l}_{i}^{1}v_{i}\\ v_{2}^{+}=\sum_{\hat{l}_{i}^{2}>0}\hat{l}_{i}^{2}\ v_{i},\quad v_{2}^{-}=-\sum_{\hat{l}_{i}^{2}<0}\hat{l}_{i}^{2}v_{i}\end{gathered} (2.5)

The first line of 2.4 simply embeds the original toric data associated to Δ\Delta into Δe\Delta^{e}, whereas the second and third line translate the brane data into geometric data of Δe\Delta^{e}.

Given the toric data , the GKZ-system on the complex structure moduli space of XX is given by the standard formula

i=lji>0(aj)ljilji<0(aj)lji,i=1,,h2,1+2𝒵i=j(v¯j)iϑjβi,j=0,,6\begin{gathered}\mathcal{L}_{i}=\prod_{l^{i}_{j}>0}(\frac{\partial}{\partial a_{j}})^{l^{i}_{j}}-\prod_{l^{i}_{j}<0}(\frac{\partial}{\partial a_{j}})^{-l^{i}_{j}},\quad i=1,...,h^{2,1}+2\\ \mathcal{Z}_{i}=\sum_{j}(\bar{v}_{j})^{i}\vartheta_{j}-\beta_{i},\quad j=0,...,6\end{gathered} (2.6)

Here β=(1,0,0,0,0)\beta=(-1,0,0,0,0) is the so-called exponent of GKZ system, ϑj=ajaj\vartheta_{j}=a_{j}\frac{\partial}{\partial a_{j}} are the logarithmic derivative and v¯j=(1,vj)\bar{v}_{j}=(1,v_{j}). The operators i\mathcal{L}_{i}’s express the trivial algebraic relations among monomials entering hypersurface constraints, 𝒵0\mathcal{Z}_{0} expresses the infinitesimal generators of overall rescaling,𝒵i,i0\mathcal{Z}_{i},i\neq 0’s eare the infinitesimal generators of rescalings of coordinates xjx_{j}. All GKZ operators can annihilate the period matrix, thus determine the mirror maps and superpotentials.

This immediately yields a natural choice of complex coordinates given by

zj=()l0jiailijz^{j}=(-)^{l^{j}_{0}}\prod_{i}a_{i}^{l^{j}_{i}} (2.7)

And from the operators i\mathcal{L}_{i} ,it is easy to obtain a complete set of Picard-Fuchs operators 𝒟i\mathcal{D}_{i}. Using monodromy information and knowledge of the classical terms, their solution can be associated to integrals over an integral basis of cycles in H3(X,)H^{3}(X,\mathbb{Z}) and given the flux quanta explicit superpotentials can be written down.

For appropriate choice of basis vector ljl^{j}, solutions to the GKZ system can be written interm of the generating functions in these variables

ϖ(z;ρ)=Γ(1jl0j(nj+ρj))i>0Γ(1+jlij(nj+ρj))kzknj+ρj\varpi(z;\rho)=\sum\frac{\Gamma(1-\sum_{j}l^{j}_{0}(n_{j}+\rho_{j}))}{\prod_{i>0}\Gamma(1+\sum_{j}l^{j}_{i}(n_{j}+\rho_{j}))}\prod_{k}z_{k}^{n_{j}+\rho_{j}}

then we have a natural basis for the period vector

ω0(z)\displaystyle\omega_{0}(z) =ϖ(z;ρ)|ρ0,\displaystyle=\varpi(z;\rho)|_{\rho\rightarrow 0},
ω1,i(z)\displaystyle\omega_{1,i}(z) =ρiϖ(z;ρ)|ρ0,\displaystyle=\partial_{\rho_{i}}\varpi(z;\rho)|_{\rho\rightarrow 0},
ω2,i(z)\displaystyle\omega_{2,i}(z) =j,kKijkρjρkϖ(z;ρ)|ρ0\displaystyle=\sum_{j,k}K_{ijk}\partial_{\rho_{j}}\partial_{\rho_{k}}\varpi(z;\rho)|_{\rho\rightarrow 0}
\displaystyle...

For a maximal triangulation corresponding to a large complex structure point centered at z=0z=0,a\forall a, ω0(z)=1+𝒪(z)\omega_{0}(z)=1+\mathcal{O}(z) and ω1,i(z)log(zi)\omega_{1,i}(z)\sim\log(z_{i}) that define the open-closed mirror maps

ti(z)=ω1,i(z)ω0(z)=12πilog(zi)+S(z),qi=e2πitit_{i}(z)=\frac{\omega_{1,i}(z)}{\omega_{0}(z)}=\frac{1}{2\pi i}\log(z_{i})+S(z),\quad q_{i}=e^{2\pi it_{i}} (2.8)

where S(z)S(z) is a series in the coordinates zz.In addition, the special solution Π=𝒲open(z)\Pi=\mathcal{W}_{open}(z) has further property that its instanton expansion near a large volume/large complex structure point encodes the Ooguri-Vafa invariants of the brane geometry.

𝒲inst(q)=βGβqβ=βk=1Nβqkβk2\mathcal{W}_{inst}(q)=\sum_{\beta}G_{\beta}q^{\beta}=\sum_{\beta}\sum_{k=1}^{\infty}N_{\beta}\frac{q^{k\cdot\beta}}{k^{2}} (2.9)

2.2   Blowing Up and Hodge Structure

Blowing up in algebraic geometry is an important tool in this work. Now, we review the construction and properties of blowing up a manifold along its submanifold. Given SS be a curve in a Calabi-Yau threefold XZX\in Z with ZZ an ambient toric variety, we can blow up along SS to obtain a new manifold.

According to Section 2.2 (d) in [22], for this case that XZX\subset Z is a closed irreducible non-singular subvariety of ZZ and XX is transversal to SS at every point SXS\cap X, π:ZZ\pi:Z^{\prime}\rightarrow Z be the blowup of SS. Then the subvariety π1(X)\pi^{-1}(X) consist of two irreducible components,

π1(X)=π1(SX)X\pi^{-1}(X)=\pi^{-1}(S\cap X)\cup X^{\prime}

and π:XX\pi:X^{\prime}\rightarrow X defines the blow-up of XX with center in SX=SS\cap X=S,i.e.XX^{\prime} is the manifold obtained from blowing up XX along SS. The subvariety XZX^{\prime}\subset Z^{\prime} is called the birational transform of XZX\subset Z under the blowup.

First, by the local construction, we consider an three dimensional multidisk in XX Δ\Delta with holomorphic coordinates xi,i=1,2,3x_{i},i=1,2,3, and VV is specified by x1=x2=0x_{1}=x_{2}=0 on each Δ\Delta. Then we define the smooth variety

Δ~Δ×1\tilde{\Delta}\subset\Delta\times\mathbb{P}^{1}

as follows

Δ~={(x1,x2,x3,(y1:y2))Δ×1:x2y1x1y2=0}\tilde{\Delta}=\{(x_{1},x_{2},x_{3},(y_{1}:y_{2}))\subset\Delta\times\mathbb{P}^{1}:x_{2}y_{1}-x_{1}y_{2}=0\}

Here y1,y2y_{1},y_{2} are the homogeneous coordinates on 1\mathbb{P}^{1}. The projection map π:Δ~Δ\pi:\tilde{\Delta}\rightarrow\Delta on the first factor is clearly an isomorphism away from VV, while the inverse image of a point zVz\in V is a projective space 1\mathbb{P}^{1}. The manifold Δ~\tilde{\Delta}, together with the projection map π\pi is the blow-up of δ\delta along VV; The inverse image E=π1(V)E=\pi^{-1}(V) is an exceptional divisor of the blow-up. For two coordinates patches Ui=(yi0),i=1,2U_{i}=(y_{i}\neq 0),i=1,2, they have holomorphic coordinates respectively

z1(1)=x1,z2(1)=y2y1=x2x1,y3=x3z1(2)=y1y2=x1x2,z2(1)=x2,y3=x3\begin{gathered}z^{(1)}_{1}=x_{1},\quad z_{2}^{(1)}=\frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}},\quad y_{3}=x_{3}\\ z^{(2)}_{1}=\frac{y_{1}}{y_{2}}=\frac{x_{1}}{x_{2}},\quad z_{2}^{(1)}=x_{2},\quad y_{3}=x_{3}\\ \end{gathered}

with transition function on U1U2U_{1}\cap U_{2}given by gij=zi(j)=yiyj=xixjg_{ij}=z^{(j)}_{i}=\frac{y_{i}}{y_{j}}=\frac{x_{i}}{x_{j}}. Next we consider the global construction of the blow-up manifold. Let XX be a complex manifold of dimension three and SXS\subset X be a curve. Let {Uα}\{U_{\alpha}\} be a collection of disks in XX covering SS such that in each disk Δα\Delta_{\alpha} the subvariety SΔαS\cap\Delta_{\alpha} may be given as the locus (x1=x2=0)(x_{1}=x_{2}=0), and let πα:Δ~αΔα\pi_{\alpha}:\tilde{\Delta}_{\alpha}\rightarrow\Delta_{\alpha} be the blow-up of Δα\Delta_{\alpha} along SΔαS\cap\Delta_{\alpha}. We then have

παβ:παβ1(UαUβ)πβ1(UαUβ)\pi_{\alpha\beta}:\pi_{\alpha\beta}^{-1}(U_{\alpha}\cap U_{\beta})\rightarrow\pi_{\beta}^{-1}(U_{\alpha}\cap U_{\beta})

and using them, we can patch together the local blow-ups Δ~α\tilde{\Delta}_{\alpha} to form a manifold

Δ~=παβΔ~α\tilde{\Delta}=\cup_{\pi_{\alpha\beta}}\tilde{\Delta}_{\alpha}

Finally, sinve π\pi is an isomorphism away from X(Δα)X\cap(\cup\Delta_{\alpha}), we can take

X=Δ~πXSX^{\prime}=\tilde{\Delta}\cup_{\pi}X-S

XX^{\prime}, together with the projection map π:XX\pi:X^{\prime}\rightarrow X extending π\pi on Δ~\tilde{\Delta} and the identity on XSX-S, is called the blow-up of XX along SS, and the inverse image π1(S)\pi^{-1}(S) is an exceptional divisor.

From the excision theorem of cohomology in algebraic topology[10],

H3(X,S)H3(XS)H3(XE)H3(X,E)H^{3}(X,S)\cong H^{3}(X-S)\cong H^{3}(X^{\prime}-E)\cong H^{3}(X^{\prime},E) (2.10)

which means that the variation of the mixed Hodge structures of H3(X,S)H^{3}(X,S) and H3(X,E)H^{3}(X^{\prime},E) over the corresponding moduli space are equivalent. The mixed Hodge structure as follow,

ϕ:H3(XE)~p+q=3Hq(X,Ω)\phi:H^{3}(X^{\prime}-E)\tilde{\longrightarrow}\oplus_{p+q=3}H^{q}(X^{\prime},\Omega^{\prime}) (2.11)

where Ω\Omega^{\prime} denotes the holomorphic p-forms on XX^{\prime}. The filtrations have the form

FmH3=pmH3p(X,Ω)F^{m}H^{3}=\oplus_{p\leq m}H^{3-p}(X^{\prime},\Omega^{\prime})

and

W1H3=0,W0H3=H3(X),W1H3=H3(XE)W_{-1}H^{3}=0,\quad W_{0}H^{3}=H^{3}(X^{\prime}),\quad W_{1}H^{3}=H^{3}(X^{\prime}-E)

Additionally, the mixed Hodge structure has graded weights

GrkWH3=Grk+3WH3/Gr(k+1)+3WH3Gr^{W}_{k}H^{3}=Gr^{W}_{-k+3}H^{3}/Gr^{W}_{-(k+1)+3}H^{3}

that take the following form for the divisor E

Gr3WH3=Gr0WH3/Gr1WH3H3(X),Gr2WH3=Gr1WH3/Gr0WH3H2(E)\begin{gathered}Gr^{W}_{3}H^{3}=Gr^{W}_{0}H^{3}/Gr^{W}_{-1}H^{3}\cong H^{3}(X^{\prime}),\\ Gr^{W}_{2}H^{3}=Gr^{W}_{1}H^{3}/Gr^{W}_{0}H^{3}\cong H^{2}(E)\end{gathered}

The reason to consider these (graded) weights is the following: The mixed Hodge structure is defined such that the Hodge filtration FmH3F^{m}H^{3} induces a pure Hodge structure on each graded weight, i.e. on Gr2WH3Gr^{W}_{2}H^{3} and Gr3WH3Gr^{W}_{3}H^{3}. Thus, the following two induced filtrations on Gr3WH3Gr^{W}_{3}H^{3}

H3(X)F3H3H3(X)F2H3H3(X)F1H3H3(X)F0H3=H3(X)H^{3}(X^{\prime})\cap F^{3}H^{3}\subset H^{3}(X^{\prime})\cap F^{2}H^{3}\subset H^{3}(X^{\prime})\cap F^{1}H^{3}\subset H^{3}(X^{\prime})\cap F^{0}H^{3}=H^{3}(X^{\prime}) (2.12)

and on Gr2WH3Gr^{W}_{2}H^{3}

H2(E)F2H3H2(E)F1H3H2(E)F0H3=H2(E)H^{2}(E)\cap F^{2}H^{3}\subset H^{2}(E)\cap F^{1}H^{3}\subset H^{2}(E)\cap F^{0}H^{3}=H^{2}(E) (2.13)

lead to pure Hodge structures on H3(X)H^{3}(X^{\prime}) and H2(E)H^{2}(E). H3(XE)H^{3}(X^{\prime}-E) forms a bundle 3\mathcal{H}^{3} over the open-closed moduli space \mathcal{M} with the Gauss-Manin connection \nabla satisfying the Griffish transversality condition

pp1Ω1\nabla\mathcal{F}^{p}\in\mathcal{F}^{p-1}\otimes\Omega^{1}_{\mathcal{M}} (2.14)

The flatness of the Gauss-Manin connection leads to N=1 special geometry and a Picard-Fuchs system of differential equations that govern the mirror maps and superpotentials.

The geometric setting we are interested in is a hypersurface X:P=0X:P=0 with a curve SS on it, S:P=0,h1=h2=0S:P=0,h_{1}=h_{2}=0. After blowing up along SS, the blow-up manifold XX^{\prime} is given globally as the complete intersection in the total space of the projective bundle 𝒲=(𝒪(D1)𝒪(D2))\mathcal{W}=\mathbb{P}(\mathcal{O}(D_{1})\oplus\mathcal{O}(D_{2})),

P=0,Qy1h2y2h1=0P=0,\quad Q\equiv y_{1}h_{2}-y_{2}h_{1}=0 (2.15)

where (y1,y2)λ(y1,y2)(y_{1},y_{2})\sim\lambda(y_{1},y_{2}) is the projective coordinates on the 1\mathbb{P}^{1} -fiber of the blow-up XbX^{b}. We have to emphasize that XX^{\prime} is not Calabi-Yau since the first Chern class is nonzero. In addition, the blow-up procedure do not introduce new degrees of freedom associated to deformations of EE. Under blowing up map, the the open-closed moduli space of (X,S)(X,S) is mapped into the complex structure deformation of XX^{\prime}. This enable us to calculate the superpotential WbraneW_{\text{brane}} for B- branes wrapping rational curves via the periods on the complex structure moduli space of XX^{\prime} determined by Picard-Fuchs equations.

3   Two Closed and Two Open Moduli Case

3.1   Open-Closed GKZ-system: Branes on X9(1,1,1,3,3)X_{9}^{(1,1,1,3,3)}

3.1.1   Five Branes Wrapping Lines

The Calabi-Yau threefold X9(1,1,1,3,3)X^{(1,1,1,3,3)}_{9} is defined as the mirror of the Calabi-Yau hypersurface XX^{*} in (1,1,1,3,3)4\mathbb{P}_{(1,1,1,3,3)}^{4} with h2,1=2h^{2,1}=2 complex structure moduli and the charge vectors of the GLSM for the A model manifold are given by:

0 1 2 3 4 5 6
l1l^{1} -3 0 0 0 1 1 1
l2l^{2} 0 1 1 1 0 0 -3

The hypersurface constraint for the mirror manifold, written in homogeneous coordinates of (1,1,1,3,3)\mathbb{P}_{(1,1,1,3,3)}, is

P=x19+x29+x39+x43+x53+ψ(x1x2x3x4x5)+ϕ(x1x2x3)3P=x_{1}^{9}+x_{2}^{9}+x_{3}^{9}+x_{4}^{3}+x_{5}^{3}+\psi(x_{1}x_{2}x_{3}x_{4}x_{5})+\phi(x_{1}x_{2}x_{3})^{3}

where ψ=z113z219\psi=z_{1}^{-\frac{1}{3}}z_{2}^{-\frac{1}{9}} and ϕ=z213\phi=z_{2}^{-\frac{1}{3}}. The Greene-Plesser orbifold group G acts as xiλkgk,ixix_{i}\rightarrow\lambda^{g_{k,i}}_{k}x_{i} with λ19=λ29=1\lambda^{9}_{1}=\lambda^{9}_{2}=1,λ33=1\lambda^{3}_{3}=1 and weights

9:g1=(1,1,0,0,0),9:g2=(1,0,1,0,0),3:g3=(0,0,0,1,1)\mathbb{Z}_{9}:g_{1}=(1,-1,0,0,0),\quad\mathbb{Z}_{9}:g_{2}=(1,0,-1,0,0),\quad\mathbb{Z}_{3}:g_{3}=(0,0,0,1,-1)

Next,we add a five-brane wrapping a rational curve on a toric curve SS

S:P=0,h1α3γ3x29β6(x1x2x2)3=0,h2β3γ3x39α6(x1x2x3)3=0l^1=(0,0,1,0,0,0,1)l^2=(0,0,0,1,0,0,1)\begin{gathered}S:P=0,\quad h_{1}\equiv\alpha^{3}\gamma^{3}x_{2}^{9}-\beta^{6}(x_{1}x_{2}x_{2})^{3}=0,\quad h_{2}\equiv\beta^{3}\gamma^{3}x_{3}^{9}-\alpha^{6}(x_{1}x_{2}x_{3})^{3}=0\\ \hat{l}^{1}=(0,0,1,0,0,0,-1)$, $\hat{l}^{2}=(0,0,0,1,0,0,-1)\end{gathered} (3.1)

An equivalent and convenient form is obtained after simple algebraic manipulations

S:P=0,α9x29β9x39=0,α9x19γ9x39=0S:P=0,\quad\alpha^{9}x_{2}^{9}-\beta^{9}x_{3}^{9}=0,\quad\alpha^{9}x_{1}^{9}-\gamma^{9}x_{3}^{9}=0 (3.2)

For generic values of the moduli in 3.2, SS is an irreducible high genus Riemann surface. But we can make a linearization by following steps: To begin with, we inserted h1h_{1} and h2h_{2} into PP,

~1:η1x4+x53+m(x3,x4,x5)3=0,η2αx2βx3=0,η3αx1γx3=0\tilde{\mathbb{P}}^{1}:\quad\eta_{1}x_{4}+\sqrt[3]{x_{5}^{3}+m(x_{3},x_{4},x_{5})}=0,\quad\eta_{2}\alpha x_{2}-\beta x_{3}=0,\quad\eta_{3}\alpha x_{1}-\gamma x_{3}=0 (3.3)

Here η13=η29=η39=1\eta_{1}^{3}=\eta_{2}^{9}=\eta_{3}^{9}=1 and

m(x3,x4,x5)=(α9+β9+γ9α9+α3β3γ3α9ϕ)x39+αβγα3ψx33x4x5m(x_{3},x_{4},x_{5})=(\frac{\alpha^{9}+\beta^{9}+\gamma^{9}}{\alpha^{9}}+\frac{\alpha^{3}\beta^{3}\gamma^{3}}{\alpha^{9}}\phi)x_{3}^{9}+\frac{\alpha\beta\gamma}{\alpha^{3}}\psi x_{3}^{3}x_{4}x_{5}

Due to the non-trivial branching of the roots of unity, 3.3 is non-holomorphic, i.e. it is a non-holomorphic family of rational curves on XX.

For special loci of (S)\mathcal{M}(S) where m(x1,x2,x5)m(x_{1},x_{2},x_{5}) vanishes identically,

1(S):α9+β9+γ9+ϕα3β3γ3=0,ψαβγ=0\mathcal{M}_{\mathbb{P}^{1}}(S):\quad\alpha^{9}+\beta^{9}+\gamma^{9}+\phi\alpha^{3}\beta^{3}\gamma^{3}=0,\quad\psi\alpha\beta\gamma=0 (3.4)

the Riemann surface SS in 3.3 degenerates to

S:h0x43+x53,h1=α9x29β9x39,h2=α9x19γ9x39S:\quad h_{0}\equiv x_{4}^{3}+x_{5}^{3},\quad h_{1}=\alpha^{9}x_{2}^{9}-\beta^{9}x_{3}^{9},\quad h_{2}=\alpha^{9}x_{1}^{9}-\gamma^{9}x_{3}^{9} (3.5)

Under the action of G=92×3G=\mathbb{Z}_{9}^{2}\times\mathbb{Z}_{3}, 3.5 describes a single line,

1:η1x4+x5=0,αx2βx3=0,αx1γx3=0\mathbb{P}^{1}:\quad\eta_{1}x_{4}+x_{5}=0,\quad\alpha x_{2}-\beta x_{3}=0,\quad\alpha x_{1}-\gamma x_{3}=0 (3.6)

In other words, these lines in 4\mathbb{P}^{4} have a parametrization by homogeneous coordinates U,VU,V on 1\mathbb{P}^{1} as the Veronese mapping

1(S)\displaystyle\mathcal{M}_{\mathbb{P}^{1}}(S) (S)\displaystyle\hookrightarrow\mathcal{M}(S)
(U,V)\displaystyle(U,V) (γU,βU,αU,η1V,V),η13=1\displaystyle\mapsto(\gamma U,\beta U,\alpha U,-\eta_{1}V,V),\quad\eta_{1}^{3}=1

Thus all obstructed deformations locate at (S)1(S)\mathcal{M}(S)-\mathcal{M}_{\mathbb{P}^{1}}(S), inducing a non-trivial superpotential, which plays an important role in research on obstruction deformation, especially for a manifold with a submanifold on it. As we know, blowing up is very effective method to handle such case. According to 2.15, we construct the blow-up manifold XbX^{b} given by the complete intersection in projective bundle

X:P=0,Q=y1h2y2h1X^{\prime}:P=0,\quad Q=y_{1}h_{2}-y_{2}h_{1}

It is obvious from above defining equations that the moduli of SS described by the coefficients of the monomials in hi,i=1,2h_{i},i=1,2 turn into complex structure moduli of XX^{\prime}. We obtain the embedding of the obstructed deformation space of (X,~1)(X,\tilde{\mathbb{P}}^{1}) into the complex structure moduli space of XX^{\prime}, which is crucial for the following superpotential calculations.

3.1.2   Toric Branes and Blowing up Geometry

Now, we study the A-model manifold, whose toric polyhedron is denoted by Δ\Delta^{*} and charge vectors are denoted by l1l^{1} and l2l^{2}. The integral vertices of polyhedron Δ\Delta^{*} and the charge vectors l1l^{1}, l2l^{2} for A-model manifold, l^1\hat{l}^{1}, l^2\hat{l}^{2} for A-branes is as the following table.

Δ\Delta^{*} l1l^{1} l2l^{2} l^1\hat{l}^{1} l^2\hat{l}^{2}
v0v^{*}_{0} 0 0 0 0 3-3 0 x1x2x3x4x5x_{1}x_{2}x_{3}x_{4}x_{5} 0 0
v1v^{*}_{1} 1-1 1-1 3-3 3-3 0 11 x19x_{1}^{9} 0 0
v2v^{*}_{2} 11 0 0 0 0 11 x29x_{2}^{9} 11 0
v3v^{*}_{3} 0 11 0 0 0 11 x39x_{3}^{9} 0 11
v4v^{*}_{4} 0 0 11 0 11 0 x43x_{4}^{3} 0 0
v5v^{*}_{5} 0 0 0 11 11 0 x53x_{5}^{3} 0 0
v6v^{*}_{6} 0 0 1-1 1-1 11 3-3 (x1x2x3)3(x_{1}x_{2}x_{3})^{3} 1-1 1-1
Table 1: Toric Data of A-model side

From above toric data of Δ\Delta^{*} and its dual polyhedron Δ\Delta,

v1=(1,1,1,1),v2=(8,1,1,1),v3=(1,8,1,1),v4=(1,1,2,1),v5=(1,1,1,2)\begin{gathered}v_{1}=(-1,-1,-1,-1),\quad v_{2}=(8,-1,-1,-1),\quad v_{3}=(-1,8,-1,-1),\\ v_{4}=(-1,-1,2,-1),\quad v_{5}=(-1,-1,-1,2)\end{gathered}

In B-model, the defining equations of the mirror manifold XX and the curve SS as follow in torus coordinates

X:\displaystyle X: P=a0+a1(X2X3X43X53)1+a2X2+a3X3+a4X4+a5X5+a6(X4X5)1\displaystyle\quad P=a_{0}+a_{1}(X_{2}X_{3}X_{4}^{3}X_{5}^{3})^{-1}+a_{2}X_{2}+a_{3}X_{3}+a_{4}X_{4}+a_{5}X_{5}+a_{6}(X_{4}X_{5})^{-1} (3.7)
S:\displaystyle S: h1=a7X2+a8(X4X5)1,h2=a9X3+a10(X4X5)1\displaystyle\quad h_{1}=a_{7}X_{2}+a_{8}(X_{4}X_{5})^{-1},\quad h_{2}=a_{9}X_{3}+a_{10}(X_{4}X_{5})^{-1}

where aia_{i}’s are free complex-valued coefficients. With the abbreviation of logarithmic derivatives ϑi=aiai\vartheta_{i}=a_{i}\frac{\partial}{\partial a_{i}}, the GKZ-system of XX by 2.7 is,

𝒵0=i=06ϑi+1,𝒵i=ϑ1+ϑi+1,i=1,2,𝒵i=3ϑ1+ϑi+1ϑ6,i=3,4,1=i=46ai(a0)3,2=i=13ai(a6)3\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{i}=-\vartheta_{1}+\vartheta_{i+1},\quad i=1,2,\\ \mathcal{Z}_{i}=-3\vartheta_{1}+\vartheta_{i+1}-\vartheta_{6},\quad i=3,4,\\ \mathcal{L}_{1}=\prod^{6}_{i=4}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{3},\quad\mathcal{L}_{2}=\prod^{3}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{6}})^{3}\end{gathered} (3.8)

Here 𝒵0\mathcal{Z}_{0} represent the invariance of PP under overall rescaling and other 𝒵i\mathcal{Z}_{i}’s relate to the invariance of PP under the rescaling of torus coordinates XiX_{i}’s combined with the rescaling of coefficients aia_{i}’s.

𝒵i:\displaystyle\mathcal{Z}_{i}: Xi+1λXi+1,(a1,ai+1)(λa1,λ1ai+1),i=1,2\displaystyle\quad X_{i+1}\mapsto\lambda X_{i+1},\quad(a_{1},a_{i+1})\mapsto(\lambda a_{1},\lambda^{-1}a_{i+1}),\quad i=1,2
𝒵i:\displaystyle\mathcal{Z}_{i}: Xi+1λXi+1,(a1,ai+1,a6)(λ3a1,λ1ai+1,λa6),i=3,4\displaystyle\quad X_{i+1}\mapsto\lambda X_{i+1},\quad(a_{1},a_{i+1},a_{6})\mapsto(\lambda^{3}a_{1},\lambda^{-1}a_{i+1},\lambda a_{6}),\quad i=3,4

Operators i\mathcal{L}_{i}’s relate to the symmetries among the Laurent monomials in PP 3.7,

1:\displaystyle\mathcal{L}_{1}: X4X5(X4X5)1=1\displaystyle\quad X_{4}X_{5}(X_{4}X_{5})^{-1}=1
2:\displaystyle\mathcal{L}_{2}: (X21X31X43X53)X2X3=((X4X5)1)3\displaystyle\quad(X_{2}^{-1}X_{3}^{-1}X_{4}^{-3}X_{5}^{-3})X_{2}X_{3}=((X_{4}X_{5})^{-1})^{3}

By blowing up XX along SS, the blow-up manifold XX^{\prime} is obtained.

X:P=0,Q=y1(a9X3+a10(X4X5)1)y2(a7X2+a8(X4X5)1)X^{\prime}:P=0,\quad Q=y_{1}(a_{9}X_{3}+a_{10}(X_{4}X_{5})^{-1})-y_{2}(a_{7}X_{2}+a_{8}(X_{4}X_{5})^{-1}) (3.9)

After careful observation on the torus symmetry of XX^{\prime}, we can obtain the infinitesimal generators which are belong to GKZ system associated to XX^{\prime},

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=ϑ1+ϑ2+ϑ7,𝒵3=ϑ1+ϑ3+ϑ9,𝒵i=3ϑ1+ϑiϑ6ϑ8ϑ10i=4,5,𝒵6=ϑ7ϑ8+ϑ9+ϑ101=i=46ai(a0)3,2=i=13ai(a6)33=a6a7a2a8,4=a3a10a6a9\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}+\vartheta_{7},\quad\mathcal{Z}_{3}^{\prime}=-\vartheta_{1}+\vartheta_{3}+\vartheta_{9},\\ \mathcal{Z}_{i}^{\prime}=-3\vartheta_{1}+\vartheta_{i}-\vartheta_{6}-\vartheta_{8}-\vartheta_{10}\quad i=4,5,\quad\mathcal{Z}_{6}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{6}_{i=4}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{3},\quad\mathcal{L}_{2}^{\prime}=\prod^{3}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{6}})^{3}\\ \mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{4}^{\prime}=\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{10}}-\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{9}}\end{gathered} (3.10)

Here 𝒵0,𝒵1\mathcal{Z}_{0},\mathcal{Z}_{1} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0 respectively. 𝒵i,i=2,5\mathcal{Z}_{i},i=2,...5 are related to the torus symmetry as before.

𝒵2:\displaystyle\mathcal{Z}_{2}^{\prime}: X2λX2,(a1,a2,a7)(λa1,λ1a2,λ1a7)\displaystyle\quad X_{2}\mapsto\lambda X_{2},\quad(a_{1},a_{2},a_{7})\mapsto(\lambda a_{1},\lambda^{-1}a_{2},\lambda^{-1}a_{7})
𝒵3:\displaystyle\mathcal{Z}_{3}^{\prime}: X3λX3,(a1,a3,a9)(λa1,λ1a3,λ1a9)\displaystyle\quad X_{3}\mapsto\lambda X_{3},\quad(a_{1},a_{3},a_{9})\mapsto(\lambda a_{1},\lambda^{-1}a_{3},\lambda^{-1}a_{9})
𝒵4:\displaystyle\mathcal{Z}_{4}^{\prime}: X4λX4,(a1,a4,a6,a8,a10)(λ3a1,λ1a4,λa6,λa8,λa10)\displaystyle\quad X_{4}\mapsto\lambda X_{4},\quad(a_{1},a_{4},a_{6},a_{8},a_{10})\mapsto(\lambda^{3}a_{1},\lambda^{-1}a_{4},\lambda a_{6},\lambda a_{8},\lambda a_{10})
𝒵5:\displaystyle\mathcal{Z}_{5}^{\prime}: X5λX5,(a1,a5,a6,a8,a10)(λ3a1,λ1a5,λa6,λa8,λa10)\displaystyle\quad X_{5}\mapsto\lambda X_{5},\quad(a_{1},a_{5},a_{6},a_{8},a_{10})\mapsto(\lambda^{3}a_{1},\lambda^{-1}a_{5},\lambda a_{6},\lambda a_{8},\lambda a_{10})

In addition,𝒵6\mathcal{Z}_{6}^{\prime} is related to the torus symmetry (y1,y2)(λy1,λ1y2)(y_{1},y_{2})\mapsto(\lambda y_{1},\lambda^{-1}y_{2}). The new 3,4\mathcal{L}_{3},\mathcal{L}_{4} incorporate the parameter a7,,a10a_{7},...,a_{10} that are associated with the open-closed moduli of the curve SS. All these GKZ operators annihilate the holomorphic three form Ω\Omega^{\prime} on XX^{\prime} that is the pull back of the homomorphic three form Ω\Omega on XX, i.e. Ω=πΩ\Omega^{\prime}=\pi^{*}\Omega.

Now, we formulate the GKZ-system3.10 on an enhanced polyhedron Δ\Delta^{\prime}, by adding additional vertices on the original polyhedron Δ\Delta^{*}.

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3} l4l^{\prime}_{4}
v0v^{\prime}_{0} 11 0 0 0 0 0 0 3-3 0 0 0 w0=x1x2x3x4x5w^{\prime}_{0}=x_{1}x_{2}x_{3}x_{4}x_{5}
v1v^{\prime}_{1} 11 0 1-1 1-1 3-3 3-3 0 0 11 0 0 w1=x19w^{\prime}_{1}=x_{1}^{9}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 11 11 1-1 0 w2=x29w^{\prime}_{2}=x_{2}^{9}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 0 0 11 w3=x39w^{\prime}_{3}=x_{3}^{9}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 11 0 0 0 w4=x43w^{\prime}_{4}=x_{4}^{3}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 11 0 0 0 w5=x53w^{\prime}_{5}=x_{5}^{3}
v6v^{\prime}_{6} 11 0 0 0 1-1 1-1 0 0 2-2 11 1-1 w6=(x1x2x3)3w^{\prime}_{6}=(x_{1}x_{2}x_{3})^{3}
v7v^{\prime}_{7} 0 11 11 0 0 0 1-1 1-1 0 11 0 w7=y1w2w^{\prime}_{7}=y_{1}w^{\prime}_{2}
vev^{e}_{\prime} 0 11 0 0 1-1 1-1 1-1 11 0 1-1 0 w8=y1w6w^{\prime}_{8}=y_{1}w^{\prime}_{6}
vv^{\prime}_{\prime} 0 11 0 11 0 0 11 0 11 0 1-1 w9=y2w3w^{\prime}_{9}=y_{2}w^{\prime}_{3}
v10v^{\prime}_{10} 0 11 0 0 1-1 1-1 11 0 1-1 0 11 w10=y2w6w^{\prime}_{10}=y_{2}w^{\prime}_{6}

where viv^{\prime}_{i}’s are the integral vertices of Δ\Delta^{\prime} and their corresponding monomials in homogeneous coordinates of 4\mathbb{P}^{4} are wiw^{\prime}_{i}. The A-model closed string charge vectors and A-branes charge vectors relate to the maximal triangulation of Δ\Delta^{\prime} and satisfy the relations,

l1=l1+l3,l2=l2+l4,l^1=l3,l^2=l4l^{1}=l^{\prime}_{1}+l^{\prime}_{3},l^{2}=l^{\prime}_{2}+l^{\prime}_{4},\hat{l}^{1}=l^{\prime}_{3},\hat{l}^{2}=l^{\prime}_{4}

The coordinates zjz_{j} by 2.7 on the complex structure moduli space of XX^{\prime}.

z1=a2a4a5a8a03a7,z2=a1a2a9a62a10,z3=a6a7a2a8,z4=a3a10a6a9z_{1}=\frac{a_{2}a_{4}a_{5}a_{8}}{a_{0}^{3}a_{7}},\quad z_{2}=\frac{a_{1}a_{2}a_{9}}{a_{6}^{2}a_{10}},\quad z_{3}=\frac{a_{6}a_{7}}{a_{2}a_{8}},\quad z_{4}=\frac{a_{3}a_{10}}{a_{6}a_{9}} (3.11)

Next, we convert the i\mathcal{L}_{i} operators to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aj(j=0,,10)a_{j}(j=0,\dots,10) to those about zj(j=1,,4)z_{j}(j=1,\dots,4) of XbX^{b}. From Table 3.1.2, we obtain the identity

ϑ0=3θ1,ϑ1=θ2,ϑ2=θ1+θ2θ3,ϑ3=θ4,ϑ4=θ1,ϑ5=θ1,ϑ6=2θ2+θ3θ4,ϑ7=θ1+θ3,ϑ8=θ1θ3,ϑ9=θ2θ4,ϑ10=θ2+θ10\begin{gathered}\vartheta_{0}=-3\theta_{1},\vartheta_{1}=\theta_{2},\quad\vartheta_{2}=\theta_{1}+\theta_{2}-\theta_{3},\quad\vartheta_{3}=\theta_{4},\\ \vartheta_{4}=\theta_{1},\quad\vartheta_{5}=\theta_{1},\quad\vartheta_{6}=-2\theta_{2}+\theta_{3}-\theta_{4},\\ \vartheta_{7}=-\theta_{1}+\theta_{3},\quad\vartheta_{8}=\theta_{1}-\theta_{3},\quad\vartheta_{9}=\theta_{2}-\theta_{4},\quad\vartheta_{10}=\theta_{2}+\theta_{10}\end{gathered}

Inserting above r elations between the logarithmic derivatives ϑj\vartheta_{j} w.r.t aja_{j} and the logarithmic derivatives θj\theta_{j} w.r.t zjz_{j} into \mathcal{L} operators in 3.10, the full set of Picard-Fuchs operators are obtained

𝒟1\displaystyle\mathcal{D}_{1} =(θ1+θ2θ3)θ12(θ1θ3)z1(θ1+θ3)i=13(3θ1i),\displaystyle=(\theta_{1}+\theta_{2}-\theta_{3})\theta_{1}^{2}(\theta_{1}-\theta_{3})-z_{1}(-\theta_{1}+\theta_{3})\prod^{3}_{i=1}(-3\theta_{1}-i), (3.12)
𝒟2\displaystyle\mathcal{D}_{2} =θ2(θ1+θ2θ3)(θ2θ4)z2(2θ1+θ3θ4)(θ2+θ4)\displaystyle=\theta_{2}(\theta_{1}+\theta_{2}-\theta_{3})(\theta_{2}-\theta_{4})-z_{2}(-2\theta_{1}+\theta_{3}-\theta_{4})(-\theta_{2}+\theta_{4})
𝒟3\displaystyle\mathcal{D}_{3} =(2θ1+θ3θ4)(θ1+θ3)z3(θ1+θ2θ3)(θ1θ3),\displaystyle=(-2\theta_{1}+\theta_{3}-\theta_{4})(-\theta_{1}+\theta_{3})-z_{3}(\theta_{1}+\theta_{2}-\theta_{3})(\theta_{1}-\theta_{3}),
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ2+θ4)z4(2θ1+θ3θ4)(θ2θ4)\displaystyle=\theta_{4}(-\theta_{2}+\theta_{4})-z_{4}(-2\theta_{1}+\theta_{3}-\theta_{4})(\theta_{2}-\theta_{4})
\displaystyle\cdots

where θi=zizi\theta_{i}=z_{i}\frac{\partial}{\partial z_{i}}’s are the logarithmic derivatives and each operator 𝒟a\mathcal{D}_{a} corresponds to a linear combination of the charge vectors among l1,l2,l3,l4l^{\prime}_{1},l^{\prime}_{2},l^{\prime}_{3},l^{\prime}_{4}.

3.1.3   Brane Superpotential and Disk Instantons

Now, we solve the Picard-Fuchs equations 3.12 at zi0z_{i}\rightarrow 0 and identified the mirror maps and superpotentials. By the method introduced in Section 2.1 , the fundamental period of XX as power series solution as follow

ω0=1+6z1z3+90z12z32+1680z13z33+34650z14z34+10080z13z2z33z4+𝒪(z8)\omega_{0}=1+6z_{1}z_{3}+90z_{1}^{2}z_{3}^{2}+1680z_{1}^{3}z_{3}^{3}+34650z_{1}^{4}z_{3}^{4}+10080z_{1}^{3}z_{2}z_{3}^{3}z_{4}+\mathcal{O}(z^{8})

. There are four logarithmic solutions with leading term ω0log(Zi)\omega_{0}\log(Z_{i})

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)6z1+45z12560z13+173252z147567565z15+21z1z3180z12z3+2520z13z3\displaystyle\omega_{0}\log(z_{1})-6z_{1}+45z_{1}^{2}-560z_{1}^{3}+\frac{17325}{2}z_{1}^{4}-\frac{756756}{5}z_{1}^{5}+21z_{1}z_{3}-180z_{1}^{2}z_{3}+2520z_{1}^{3}z_{3}
46200z14z3+7832z12z325040z13z32+𝒪(z5)\displaystyle-46200z_{1}^{4}z_{3}+\frac{783}{2}z_{1}^{2}z_{3}^{2}-5040z_{1}^{3}z_{3}^{2}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+12z1z3+270z12z32180z12z2z324z2z4+6z1z3z4+12z1z2z3z4+180z12z32z4\displaystyle\omega_{0}\log(z_{2})+12z_{1}z_{3}+270z_{1}^{2}z_{3}^{2}-180z_{1}^{2}z_{2}z_{3}^{2}-4z_{2}z_{4}+6z_{1}z_{3}z_{4}+12z_{1}z_{2}z_{3}z_{4}+180z_{1}^{2}z_{3}^{2}z_{4}
+30z22z42+𝒪(z5)\displaystyle+30z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+6z145z12+560z13173252z14+7567565z156z1z3+180z12z32520z13z3\displaystyle\omega_{0}\log(z_{3})+6z_{1}-45z_{1}^{2}+560z_{1}^{3}-\frac{17325}{2}z_{1}^{4}+\frac{756756}{5}z_{1}^{5}-6z_{1}z_{3}+180z_{1}^{2}z_{3}-2520z_{1}^{3}z_{3}
+46200z14z3135z12z32+5040z13z32+2z2z46z1z2z3z415z22z42+𝒪(z5)\displaystyle+46200z_{1}^{4}z_{3}-135z_{1}^{2}z_{3}^{2}+5040z_{1}^{3}z_{3}^{2}+2z_{2}z_{4}-6z_{1}z_{2}z_{3}z_{4}-15z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)6z1z3+135z12z32+180z12z2z322z2z46z1z3z4+6z1z2z3z4180z12z32z4\displaystyle\omega_{0}\log(z_{4})6z_{1}z_{3}+135z_{1}^{2}z_{3}^{2}+180z_{1}^{2}z_{2}z_{3}^{2}-2z_{2}z_{4}-6z_{1}z_{3}z_{4}+6z_{1}z_{2}z_{3}z_{4}-180z_{1}^{2}z_{3}^{2}z_{4}
+15z22z42+𝒪(z5)\displaystyle+15z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})

.

By the definition of the flat coordinates and mirror maps from Kahler moduli space to complex structure moduli space

tj=ω1,jω0t_{j}=\frac{\omega_{1,j}}{\omega_{0}} (3.13)
qj=e2πitjq_{j}=e^{2\pi it_{j}} (3.14)

we obtain the zjz_{j} as a series of qjq_{j} upon inversion of the mirror maps

z1=\displaystyle z_{1}= q1+6q12+9q13+56q14300q1521q12q3108q13q3225q14q3+270q13q32\displaystyle q_{1}+6q_{1}^{2}+9q_{1}^{3}+56q_{1}^{4}-300q_{1}^{5}-21q_{1}^{2}q_{3}-108q_{1}^{3}q_{3}-225q_{1}^{4}q_{3}+270q_{1}^{3}q_{3}^{2}
+42q12q2q3q4+𝒪(q5)\displaystyle+42q_{1}^{2}q_{2}q_{3}q_{4}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q212q1q2q3+54q12q2q32+4q22q46q1q2q3q4132q1q22q3q4+2q23q42+𝒪(q5)\displaystyle q_{2}-12q_{1}q_{2}q_{3}+54q_{1}^{2}q_{2}q_{3}^{2}+4q_{2}^{2}q_{4}-6q_{1}q_{2}q_{3}q_{4}-132q_{1}q_{2}^{2}q_{3}q_{4}+2q_{2}^{3}q_{4}^{2}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q36q1q3+27q12q3164q13q3+1377q14q3+6q1q3254q12q32+414q13q32+27q12q33\displaystyle q_{3}-6q_{1}q_{3}+27q_{1}^{2}q_{3}-164q_{1}^{3}q_{3}+1377q_{1}^{4}q_{3}+6q_{1}q_{3}^{2}-54q_{1}^{2}q_{3}^{2}+414q_{1}^{3}q_{3}^{2}+27q_{1}^{2}q_{3}^{3}
2q2q3q4+12q1q2q3q454q12q2q3q4+30q1q2q32q4+𝒪(q5)\displaystyle-2q_{2}q_{3}q_{4}+12q_{1}q_{2}q_{3}q_{4}-54q_{1}^{2}q_{2}q_{3}q_{4}+30q_{1}q_{2}q_{3}^{2}q_{4}+\mathcal{O}(q^{5})
z4=\displaystyle z_{4}= q46q1q3q4+9q12q32q4+2q2q42+6q1q3q4254q1q2q3q42q22q43+𝒪(q5)\displaystyle q_{4}-6q_{1}q_{3}q_{4}+9q_{1}^{2}q_{3}^{2}q_{4}+2q_{2}q_{4}^{2}+6q_{1}q_{3}q_{4}^{2}-54q_{1}q_{2}q_{3}q_{4}^{2}-q_{2}^{2}q_{4}^{3}+\mathcal{O}(q^{5})

In addition, we abbreviate the double logarithmic solutions by their leading terms

1212+234,1222,1232+34,1242,12+24,13334,14+34,23\begin{gathered}\frac{1}{2}\ell_{1}^{2}+2\ell_{3}\ell_{4},\quad\frac{1}{2}\ell_{2}^{2},\quad\frac{1}{2}\ell_{3}^{2}+\ell_{3}\ell_{4},\quad\frac{1}{2}\ell_{4}^{2},\\ \ell_{1}\ell_{2}+\ell_{2}\ell_{4},\quad\ell_{1}\ell_{3}-3\ell_{3}\ell_{4},\quad\ell_{1}\ell_{4}+\ell_{3}\ell_{4},\quad\ell_{2}\ell_{3}\end{gathered}

where log(zi)\log(z_{i})’s are abbreviated as i\ell_{i}’s. According to above, a specific linear combination of double logarithmic solutions is constructed,

𝒲brane=3t1t23t3t4+NNd1,d2,d3,d4Li2(q1d1q2d2q3d3q4d4)\mathcal{W}_{\mathrm{brane}}=3t_{1}t_{2}-3t_{3}t_{4}+\sum_{N}N_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}}) (3.15)

where Li2(q1d1q2d2q3d3q4d4)=n=1q1nd1q2nd2q3nd3q4nd4n2\text{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}})=\sum_{n=1}^{\infty}\frac{q_{1}^{nd_{1}}q_{2}^{nd_{2}}q_{3}^{nd_{3}}q_{4}^{nd_{4}}}{n^{2}} is the dilogarithm function. We extract the disk instantons Nd1,d2,d3,d4N_{d_{1},d_{2},d_{3},d_{4}} from 𝒲brane\mathcal{W}_{\text{brane}} and present first a few invariants of the form Nk,m,k,m+nN_{k,m,k,m+n} in Table 8. When focusing only on the invariants of the form Nk,m,k,m+nN_{k,m,k,m+n},

𝒲brane=+NNk,m+n,k,nLi2((q1~)k(q2~)mq3~n)\mathcal{W}_{\mathrm{brane}}=\dots+\sum_{N}N_{k,m+n,k,n}\mathrm{Li}_{2}((\tilde{q_{1}})^{k}(\tilde{q_{2}})^{m}\tilde{q_{3}}^{n}) (3.16)

where \dots are terms independent of invariants, and q1~=q1q3,q2~=q2q4,q3~=q4\tilde{q_{1}}=q_{1}q_{3},\tilde{q_{2}}=q_{2}q_{4},\tilde{q_{3}}=q_{4}. The superpotential 3.16 can be written as

𝒲brane=+NNa,b,cLi2((q1~)a(q2~)bqc~c)\mathcal{W}_{\mathrm{brane}}=\dots+\sum_{N}N_{a,b,c}\mathrm{Li}_{2}((\tilde{q_{1}})^{a}(\tilde{q_{2}})^{b}\tilde{q_{c}}^{c}) (3.17)

which are essentially the superpotential of the model in [2]. Therefore, our invariants at first several order exactly match with the data of Table 5 in [2] and these invariants are marked by blue color in Table 8 . In addition, we also calculate the invariants at higher order and put them into Table 8.

3.1.4   Another Curve on X

Following the similar logic, we consider another toric curve SS on X with charge vectors

P\displaystyle P =0,\displaystyle=0,
h1\displaystyle h_{1} a7(x1x2x3x4x5)+a8x43=0,l^1=(1,0,0,0,1,0,0)\displaystyle\equiv a_{7}(x_{1}x_{2}x_{3}x_{4}x_{5})+a_{8}x_{4}^{3}=0,\quad\hat{l}_{1}=(-1,0,0,0,1,0,0)
h2\displaystyle h_{2} a9x39+a10x43=0,l^2=(0,0,0,1,1,0,0)\displaystyle\equiv a_{9}x_{3}^{9}+a_{10}x_{4}^{3}=0,\quad\hat{l}_{2}=(0,0,0,1,-1,0,0)

After blowing up, the toric data of mirror manifold of XX^{\prime} is determined by charge vectors

l1e\displaystyle l^{e}_{1} =(2,0,0,0,0,1,1,1,1,0,0),l2e=(0,1,1,0,1,0,3,0,0,1,1),\displaystyle=(-2,0,0,0,0,1,1,-1,1,0,0),\quad l^{e}_{2}=(0,1,1,0,1,0,-3,0,0,1,-1), (3.18)
l3e\displaystyle l^{e}_{3} =(1,0,0,0,1,0,0,1,1,0,0),l4e=(0,0,0,1,1,0,0,0,0,1,1)\displaystyle=(-1,0,0,0,1,0,0,1,-1,0,0),\quad l^{e}_{4}=(0,0,0,1,-1,0,0,0,0,-1,1)

satisfying l1=l1e+l3el^{1}=l^{e}_{1}+l^{e}_{3}, l2=l2e+l4el^{2}=l^{e}_{2}+l^{e}_{4}, from which we obtain the local coordinates on complex structure moduli of XX^{\prime}

z1=a5a6a8a02a7,z2=a1a2a4a9a63a10,z3=a4a7a0a8,z4=a6a10a4a9z_{1}=\frac{a_{5}a_{6}a_{8}}{a_{0}^{2}a_{7}},\quad z_{2}=\frac{a_{1}a_{2}a_{4}a_{9}}{a_{6}^{3}a_{10}},\quad z_{3}=\frac{a_{4}a_{7}}{a_{0}a_{8}},\quad z_{4}=\frac{a_{6}a_{10}}{a_{4}a_{9}} (3.19)

and Picard-Fuchs operators

𝒟1\displaystyle\mathcal{D}_{1} =θ1(θ13θ2)(θ1θ3)z1(θ1+θ3)i=12(2θ1θ3i)\displaystyle=\theta_{1}(\theta_{1}-3\theta_{2})(\theta_{1}-\theta_{3})-z_{1}(-\theta_{1}+\theta_{3})\prod_{i=1}^{2}(-2\theta_{1}-\theta_{3}-i) (3.20)
𝒟2\displaystyle\mathcal{D}_{2} =(θ2+θ3θ4)(θ2)2(θ2θ4)z2(θ13θ2)3(θ2θ4)\displaystyle=(\theta_{2}+\theta_{3}-\theta_{4})(\theta_{2})^{2}(\theta_{2}-\theta_{4})-z_{2}(\theta_{1}-3\theta_{2})^{3}(-\theta_{2}-\theta_{4})
𝒟3\displaystyle\mathcal{D}_{3} =(θ2+θ3θ4)(θ1+θ3)z3(2θ1θ31)(θ1θ3)\displaystyle=(\theta_{2}+\theta_{3}-\theta_{4})(-\theta_{1}+\theta_{3})-z_{3}(-2\theta_{1}-\theta_{3}-1)(\theta_{1}-\theta_{3})
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ2+θ4)z4(θ2+θ3θ4)(θ2θ4)\displaystyle=\theta_{4}(-\theta_{2}+\theta_{4})-z_{4}(\theta_{2}+\theta_{3}-\theta_{4})(\theta_{2}-\theta_{4})
\displaystyle\cdots

As before, we find single logarithmic solutions

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)2z1+3z12203z13+352z142525z15+z3+10z1z330z12z3+70z13z3\displaystyle\omega_{0}\log(z_{1})-2z_{1}+3z_{1}^{2}-\frac{20}{3}z_{1}^{3}+\frac{35}{2}z_{1}^{4}-\frac{252}{5}z_{1}^{5}+z_{3}+10z_{1}z_{3}-30z_{1}^{2}z_{3}+70z_{1}^{3}z_{3}
210z14z312z32+12z1z32+171z12z32560z13z32+13z3310z1z33+210z12z3314z34\displaystyle-210z_{1}^{4}z_{3}-\frac{1}{2}z3^{2}+12z_{1}z_{3}^{2}+171z_{1}^{2}z_{3}^{2}-560z_{1}^{3}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-10z_{1}z_{3}^{3}+210z_{1}^{2}z_{3}^{3}-\frac{1}{4}z_{3}^{4}
+10z1z34+15z35+2z2z440z13z2z46z1z2z3z4+𝒪(z5)\displaystyle+10z_{1}z_{3}^{4}+\frac{1}{5}z_{3}^{5}+2z_{2}z_{4}-40z_{1}^{3}z_{2}z_{4}-6z_{1}z_{2}z_{3}z_{4}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+12z1z3+270z12z326z2z4+6z1z3z4+18z1z2z3z4+180z12z32z4\displaystyle\omega_{0}\log(z_{2})+12z_{1}z_{3}+270z_{1}^{2}z_{3}^{2}-6z_{2}z_{4}+6z_{1}z_{3}z_{4}+18z_{1}z_{2}z_{3}z_{4}+180z_{1}^{2}z_{3}^{2}z_{4}
+45z22z42+𝒪(z5)\displaystyle+45z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+2z13z12+203z13352z14+2525z15z3+5z1z3+30z12z370z13z3\displaystyle\omega_{0}\log(z_{3})+2z_{1}-3z_{1}^{2}+\frac{20}{3}z_{1}^{3}-\frac{35}{2}z_{1}^{4}+\frac{252}{5}z_{1}^{5}-z_{3}+5z_{1}z_{3}+30z_{1}^{2}z_{3}-70z_{1}^{3}z_{3}
+210z14z3+12z3212z1z32+1712z12z32+560z13z3213z33+10z1z33210z12z33+14z34\displaystyle+210z_{1}^{4}z_{3}+\frac{1}{2}z_{3}^{2}-12z_{1}z_{3}^{2}+\frac{171}{2}z_{1}^{2}z_{3}^{2}+560z_{1}^{3}z_{3}^{2}-\frac{1}{3}z_{3}^{3}+10z_{1}z_{3}^{3}-210z_{1}^{2}z_{3}^{3}+\frac{1}{4}z_{3}^{4}
10z1z3415z35+40z13z2z4+𝒪(z5)\displaystyle-10z_{1}z_{3}^{4}-\frac{1}{5}z_{3}^{5}+40z_{1}^{3}z_{2}z_{4}+\mathcal{O}(z^{5})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)+6z1z3+135z12z326z1z3z4180z12z32z4+𝒪(z5)\displaystyle\omega_{0}\log(z_{4})+6z_{1}z_{3}+135z_{1}^{2}z_{3}^{2}-6z_{1}z_{3}z_{4}-180z_{1}^{2}z_{3}^{2}z_{4}+\mathcal{O}(z^{5})

and mirror maps

z1=\displaystyle z_{1}= q1+2q12+3q13+4q14+5q15q1q312q12q324q13q336q14q3+9q12q32+108q13q32+q12q33\displaystyle q_{1}+2q_{1}^{2}+3q_{1}^{3}+4q_{1}^{4}+5q_{1}^{5}-q_{1}q_{3}-12q_{1}^{2}q_{3}-24q_{1}^{3}q_{3}-36q_{1}^{4}q_{3}+9q_{1}^{2}q_{3}^{2}+108q_{1}^{3}q_{3}^{2}+q_{1}^{2}q_{3}^{3}
2q1q2q48q12q2q418q13q2q4+2q1q2q3q4+102q12q2q3q4+𝒪(q5)\displaystyle-2q_{1}q_{2}q_{4}-8q_{1}^{2}q_{2}q_{4}-18q_{1}^{3}q_{2}q_{4}+2q_{1}q_{2}q_{3}q_{4}+102q_{1}^{2}q_{2}q_{3}q_{4}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q212q1q2q3+54q12q2q32+6q22q46q1q2q3q4210q1q22q3q4+9q23q42+𝒪(q5)\displaystyle q_{2}-12q_{1}q_{2}q_{3}+54q_{1}^{2}q_{2}q_{3}^{2}+6q_{2}^{2}q_{4}-6q_{1}q_{2}q_{3}q_{4}-210q_{1}q_{2}^{2}q_{3}q_{4}+9q_{2}^{3}q_{4}^{2}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q32q1q3+q12q3+q327q1q32+12q12q327q13q32+q14q32+q336q1q33+42q12q33+q34\displaystyle q_{3}-2q_{1}q_{3}+q_{1}^{2}q_{3}+q_{3}^{2}-7q_{1}q_{3}^{2}+12q_{1}^{2}q_{3}^{2}-7q_{1}^{3}q_{3}^{2}+q_{1}^{4}q_{3}^{2}+q_{3}^{3}-6q_{1}q_{3}^{3}+42q_{1}^{2}q_{3}^{3}+q_{3}^{4}
6q1q34+q35+4q1q2q3q44q12q2q3q4+14q1q2z32q4+𝒪(q5)\displaystyle-6q_{1}q_{3}^{4}+q_{3}^{5}+4q_{1}q_{2}q_{3}q_{4}-4q_{1}^{2}q_{2}q_{3}q_{4}+14q_{1}q_{2}z_{3}^{2}q_{4}+\mathcal{O}(q^{5})
z4=\displaystyle z_{4}= q46q1q3q4+9q12q32q4+6q1q3q42+12q1q2q3q42+𝒪(q5)\displaystyle q_{4}-6q_{1}q_{3}q_{4}+9q_{1}^{2}q_{3}^{2}q_{4}+6q_{1}q_{3}q_{4}^{2}+12q_{1}q_{2}q_{3}q_{4}^{2}+\mathcal{O}(q^{5})

as single logarithmic solutions.

The superpotentials is constructed as follow

𝒲brane=9t12+6t1t2+6t1t3+NNd1,d2,d3,d4Li2(q1d1q2d2q3d3q4d4)\mathcal{W}_{\mathrm{brane}}=9t_{1}^{2}+6t_{1}t_{2}+6t_{1}t_{3}+\sum_{N}N_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}}) (3.21)

as linear combination of double logarithmic solutions. We extract and summarize the Ooguri-Vafa invariants of the form Nk,m,k,m+nN_{k,m,k,m+n} and Nk,m+n,k,nN_{k,m+n,k,n} in Table 9 and Table10. At first several order, our result marked by blue color exactly agree with Table 6 in[2] and we also present higher order result in the table.

3.2   Open-Closed GKZ-system: Branes on X8(1,1,2,2,2)X_{8}^{(1,1,2,2,2)}

3.2.1   Branes Wrapping Rational Curves and Blowing up Geometry

Now, we study the A-model manifold, whose toric polyhedron is denoted by Δ\Delta^{*} and charge vectors are denoted by l1l^{1} and l2l^{2}. A-model manifold and A-brane are specified by the following toric data.

Δ\Delta^{*} l1l^{1} l2l^{2} l^1\hat{l}^{1} l^2\hat{l}^{2}
v0v^{*}_{0} 0 0 0 0 4-4 0 x1x2x3x4x5x_{1}x_{2}x_{3}x_{4}x_{5} 1-1 0
v1v^{*}_{1} 1-1 2-2 2-2 2-2 0 11 x18x_{1}^{8} 0 1-1
v2v^{*}_{2} 11 0 0 0 0 11 x28x_{2}^{8} 0 11
v3v^{*}_{3} 0 11 0 0 11 0 x34x_{3}^{4} 11 0
v4v^{*}_{4} 0 0 11 0 11 0 x44x_{4}^{4} 0 0
v5v^{*}_{5} 0 0 0 11 11 0 x54x_{5}^{4} 0 0
v6v^{*}_{6} 0 1-1 1-1 1-1 11 2-2 (x1x2)4(x_{1}x_{2})^{4} 0 0
Table 2: Toric Data of A-model side

The hypersurface equation for XX, written in homogeneous coordinates of (1,1,2,2,2)\mathbb{P}_{(1,1,2,2,2)}, is

P=x18+x28+x34+x44+x54+ψ(x1x2x3x4x5)+ϕ(x1x2)4P=x_{1}^{8}+x_{2}^{8}+x_{3}^{4}+x_{4}^{4}+x_{5}^{4}+\psi(x_{1}x_{2}x_{3}x_{4}x_{5})+\phi(x_{1}x_{2})^{4}

where ψ=z114z218\psi=z_{1}^{-\frac{1}{4}}z_{2}^{-\frac{1}{8}} and ϕ=z214\phi=z_{2}^{-\frac{1}{4}}. The toric curve SS on XX is defined as the complete intersection

S:P=0,h1γ8(x1x2x3x4x5)α8x34=0,h2α8x18β8x28=0S:\quad P=0,\quad h_{1}\equiv\gamma^{8}(x_{1}x_{2}x_{3}x_{4}x_{5})-\alpha^{8}x_{3}^{4}=0,\quad h_{2}\equiv\alpha^{8}x_{1}^{8}-\beta^{8}x_{2}^{8}=0

The Greene-Plesser orbifold group G acts as xiλkgk,ixix_{i}\rightarrow\lambda^{g_{k,i}}_{k}x_{i} with λ18=λ24=1\lambda^{8}_{1}=\lambda^{4}_{2}=1,λ34=1\lambda^{4}_{3}=1 and weights

8:g1=(1,1,0,0,0),4:g2=(1,0,1,0,0),4:g3=(1,0,0,1,0)\mathbb{Z}_{8}:g_{1}=(1,-1,0,0,0),\quad\mathbb{Z}_{4}:g_{2}=(1,0,-1,0,0),\quad\mathbb{Z}_{4}:g_{3}=(1,0,0,-1,0)

Insert h1h_{1} and h2h_{2} into P=0P=0

~1:η1x4+x54+m(x1,x3)4=0,η14=1m(x1,x3)=(α8+β8α8+ϕβ8α8)x18+(1+γ8α8ψ)x34\begin{gathered}\tilde{\mathbb{P}}_{1}:\eta_{1}x_{4}+\sqrt[4]{x_{5}^{4}+m(x_{1},x_{3})}=0,\quad\eta_{1}^{4}=1\\ m(x_{1},x_{3})=(\frac{\alpha^{8}+\beta^{8}}{\alpha^{8}}+\phi\frac{\beta^{8}}{\alpha^{8}})x_{1}^{8}+(1+\frac{\gamma^{8}}{\alpha^{8}}\psi)x_{3}^{4}\end{gathered} (3.22)

~1\tilde{\mathbb{P}}^{1} is a non-holomorphic family due to fourth roots of unity. At critical loci of the parameter space α,β,γ\alpha,\beta,\gamma

1(S):α8+β8+ϕβ8=0,α8+γ8ψ=0\mathcal{M}_{\mathbb{P}^{1}}(S):\quad\alpha^{8}+\beta^{8}+\phi\beta^{8}=0,\quad\alpha^{8}+\gamma^{8}\psi=0 (3.23)

m(x1,x4)m(x_{1},x_{4}) vanishes identically and SS degenerates to

S:h0x44+x54,h1=γ8(x1x2x3x4x5)α8x34=0,h2=α8x18β8x28=0S:\quad h_{0}\equiv x_{4}^{4}+x_{5}^{4},\quad h_{1}=\gamma^{8}(x_{1}x_{2}x_{3}x_{4}x_{5})-\alpha^{8}x_{3}^{4}=0,\quad h_{2}=\alpha^{8}x_{1}^{8}-\beta^{8}x_{2}^{8}=0 (3.24)

Modulo the action of GG, 3.22 can be solved holomorphically. Thus the anholomorphic deformation of 1\mathbb{P}^{1} 3.24 can be used to described holomorphic deformation of SS.

From the toric data in Table 2, we obtain the GKZ-system of XX by 2.6,

𝒵0=i=06ϑi+1,𝒵1=ϑ1+ϑ2,𝒵i=2ϑi+ϑi+1ϑ6(i=2,3,4),1=i=36ai(a0)4,2=a1a2(a6)2\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}=-\vartheta_{1}+\vartheta_{2},\quad\mathcal{Z}_{i}=-2\vartheta_{i}+\vartheta_{i+1}-\vartheta_{6}(i=2,3,4),\\ \mathcal{L}_{1}=\prod^{6}_{i=3}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{4},\quad\mathcal{L}_{2}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}-(\frac{\partial}{\partial a_{6}})^{2}\end{gathered} (3.25)

where 𝒵0\mathcal{Z}_{0} represents the invariant of PP under overall rescaling, 𝒵i\mathcal{Z}_{i}’s relate to the torus symmetry, and i\mathcal{L}_{i}’s relate to the symmetries among monomials consisting of PP. As before, all GKZ operators annihilate the period integrals and determine the mirror maps and superpotentials.

After blowing up XX along SS, we obtain the blow-up manifold defined by,

X:P\displaystyle X^{\prime}:P =a0x1x2x3x4x5+a1x18+a2x8+a3x4+a4x44+a5x54+a6(x1x2)4,\displaystyle=a_{0}x_{1}x_{2}x_{3}x_{4}x_{5}+a_{1}x_{1}^{8}+a_{2}x_{8}+a_{3}x_{4}+a_{4}x_{4}^{4}+a_{5}x_{5}^{4}+a_{6}(x_{1}x_{2})^{4}, (3.26)
Q\displaystyle Q =y1(a9x19+a10x29)y2(a7x1x2x3x4x5+a8x34)\displaystyle=y_{1}(a_{9}x_{1}^{9}+a_{10}x_{2}^{9})-y_{2}(a_{7}x_{1}x_{2}x_{3}x_{4}x_{5}+a_{8}x_{3}^{4})

As before, the corresponding infinitesimal generators are obtained , which are belong to the GKZ system of XX^{\prime} the GKZ system of XX^{\prime} by observation on the torus symmetry,

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=ϑ1+ϑ2ϑ9+ϑ10,𝒵3=2ϑ1+ϑ3ϑ6+ϑ82ϑ9,𝒵4=2ϑ1+ϑ4ϑ62ϑ9,𝒵5=2ϑ1+ϑ5ϑ62ϑ9,𝒵6=ϑ7ϑ8+ϑ9+ϑ101=i=36ai(a0)4,2=i=12ai(a6)23=a3a7a0a8,4=a2a9a1a10\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}-\vartheta_{9}+\vartheta_{10},\quad\mathcal{Z}_{3}^{\prime}=-2\vartheta_{1}+\vartheta_{3}-\vartheta_{6}+\vartheta_{8}-2\vartheta_{9},\\ \mathcal{Z}_{4}^{\prime}=-2\vartheta_{1}+\vartheta_{4}-\vartheta_{6}-2\vartheta_{9},\quad\mathcal{Z}_{5}^{\prime}=-2\vartheta_{1}+\vartheta_{5}-\vartheta_{6}-2\vartheta_{9},\quad\mathcal{Z}_{6}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{6}_{i=3}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{4},\quad\mathcal{L}_{2}^{\prime}=\prod^{2}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{6}})^{2}\\ \mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{0}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{4}^{\prime}=\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{9}}-\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{10}}\end{gathered} (3.27)

where 𝒵0,𝒵1\mathcal{Z}_{0}^{\prime},\mathcal{Z}_{1}^{\prime} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0 respectively. 𝒵i,i=2,,6\mathcal{Z}^{\prime}_{i},i=2,...,6 are related to the torus symmetry and The 3,4\mathcal{L}_{3}^{\prime},\mathcal{L}_{4}^{\prime} incorporate the parameter a7,,a10a_{7},...,a_{10} that are associated with the moduli of the curve SS.

Then we formulate above GKZ-system in an enhanced polyhedron Δ\Delta^{\prime},

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3} l4l^{\prime}_{4}
v0v^{\prime}_{0} 11 0 0 0 0 0 0 3-3 0 1-1 0 w0=x1x2x3x4x5w^{\prime}_{0}=x_{1}x_{2}x_{3}x_{4}x_{5}
v1v^{\prime}_{1} 11 0 1-1 2-2 2-2 2-2 0 0 22 0 1-1 w1=x18w^{\prime}_{1}=x_{1}^{8}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 0 0 0 11 w2=x28w^{\prime}_{2}=x_{2}^{8}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 0 11 0 w3=x34w^{\prime}_{3}=x_{3}^{4}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 11 0 0 0 w4=x44w^{\prime}_{4}=x_{4}^{4}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 11 0 0 0 w5=x54w^{\prime}_{5}=x_{5}^{4}
v6v^{\prime}_{6} 11 0 0 1-1 1-1 1-1 0 11 2-2 0 0 w6=(x1x2)4w^{\prime}_{6}=(x_{1}x_{2})^{4}
v7v^{\prime}_{7} 0 11 0 0 0 0 1-1 1-1 0 11 0 w7=y1w1w^{\prime}_{7}=y_{1}w^{\prime}_{1}
v8v^{\prime}_{8} 0 11 0 11 0 0 1-1 11 0 1-1 0 w8=y1w2w^{\prime}_{8}=y_{1}w^{\prime}_{2}
v9v^{\prime}_{9} 0 11 1-1 2-2 2-2 2-2 11 0 1-1 0 11 w9=y2w0ew^{\prime}_{9}=y_{2}w^{e}_{0}
v10v^{\prime}_{10} 0 11 11 0 0 0 11 0 11 0 1-1 w10=y2w3w^{\prime}_{10}=y_{2}w^{\prime}_{3}
Table 3: Toric Data of XX^{\prime}’s Mirror Manifold

Here we present the integral points viv^{\prime}_{i} of the enhanced polyhedron Δ\Delta^{\prime} and their the corresponding monomials wiw^{\prime}_{i}’s. lil^{\prime}_{i}’s are the generators of Mori cone lil^{\prime}_{i} satisfying l1=l1+l3l^{1}=l^{\prime}_{1}+l^{\prime}_{3}, l2=l2+l4l^{2}=l^{\prime}_{2}+l^{\prime}_{4} and they are the maximal triangulation of Δ\Delta^{\prime}.

By definition 2.7, the local coordinates of complex structure moduli space of XX^{\prime} are

z1=a4a5a6a8a03a7,z2=a12a10a62a9,z3=a3a7a0a8,z4=a2a9a1a10z_{1}=\frac{a_{4}a_{5}a_{6}a_{8}}{a_{0}^{3}a_{7}},\quad z_{2}=\frac{a_{1}^{2}a_{10}}{a_{6}^{2}a_{9}},\quad z_{3}=\frac{a_{3}a_{7}}{a_{0}a_{8}},\quad z_{4}=\frac{a_{2}a_{9}}{a_{1}a_{10}} (3.28)

Next, we convert the i\mathcal{L}_{i} operators in 3.27 to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aj(j=0,,10)a_{j}(j=0,\dots,10) to those about zj(j=1,,4)z_{j}(j=1,\dots,4) ,

𝒟1\displaystyle\mathcal{D}_{1} =θ12(θ12θ2)(θ1θ3)z1(θ1+θ3)i=13(3θ1θ3i),\displaystyle=\theta_{1}^{2}(\theta_{1}-2\theta_{2})(\theta_{1}-\theta_{3})-z_{1}(-\theta_{1}+\theta_{3})\prod^{3}_{i=1}(-3\theta_{1}-\theta_{3}-i), (3.29)
𝒟2\displaystyle\mathcal{D}_{2} =(2θ2θ4)2(θ2θ4)z2(θ12θ2)2(θ2+θ4)\displaystyle=(2\theta_{2}-\theta_{4})^{2}(\theta_{2}-\theta_{4})-z_{2}(\theta_{1}-2\theta_{2})^{2}(-\theta_{2}+\theta_{4})
𝒟3\displaystyle\mathcal{D}_{3} =θ3(θ1+θ3)z3(3θ1θ31)(θ1θ3),\displaystyle=\theta_{3}(-\theta_{1}+\theta_{3})-z_{3}(-3\theta_{1}-\theta_{3}-1)(\theta_{1}-\theta_{3}),
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ2+θ4)z4(2θ2θ4)(θ2θ4)\displaystyle=\theta_{4}(-\theta_{2}+\theta_{4})-z_{4}(2\theta_{2}-\theta_{4})(\theta_{2}-\theta_{4})
\displaystyle\cdots

where θi\theta_{i}’s are the logarithmic derivatives with respect to ziz_{i}’s and each DiD_{i} corresponds to a specific linear combination among l1,l2,l3,l4l^{\prime}_{1},l^{\prime}_{2},l^{\prime}_{3},l^{\prime}_{4}.

3.2.2   Brane Superpotential and Disk Instantons

Now, we solve the Picard-Fuchs equations 3.29 at zi0z_{i}\rightarrow 0 and identified the mirror maps and superpotentials. By the techniques we introduced in Section 2.1

The unique power series solution, as well as the fundamental period of XX,is

ω0=\displaystyle\omega_{0}= 1+24z1z3+2520z12z32+369600z13z33+63063000z14z34+5040z12z2z32z4\displaystyle 1+24z_{1}z_{3}+2520z_{1}^{2}z_{3}^{2}+369600z_{1}^{3}z_{3}^{3}+63063000z_{1}^{4}z_{3}^{4}+5040z_{1}^{2}z_{2}z_{3}^{2}z_{4}
+2217600z13z2z33z4+𝒪(z5)\displaystyle+2217600z_{1}^{3}z_{2}z_{3}^{3}z_{4}+\mathcal{O}(z^{5})

The single logarithmic solutions are

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)6z1+45z12560z13+173252z147567565z15+z3+78z1z3630z12z3\displaystyle\omega_{0}\log(z_{1})-6z_{1}+45z_{1}^{2}-560z_{1}^{3}+\frac{17325}{2}z_{1}^{4}-\frac{756756}{5}z_{1}^{5}+z_{3}+78z_{1}z_{3}-630z_{1}^{2}z_{3}
+8400z13z3150150z14z312z32+60z1z32+9207z12z3292400z13z32+13z3360z1z33\displaystyle+8400z_{1}^{3}z_{3}-150150z_{1}^{4}z_{3}-\frac{1}{2}z_{3}^{2}+60z_{1}z_{3}^{2}+9207z_{1}^{2}z_{3}^{2}-92400z_{1}^{3}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-60z_{1}z_{3}^{3}
+7560z12z3314z34+70z1z34+15z35z2z4+90z12z2z43360z13z2z4+24z1z2z3z4\displaystyle+7560z_{1}^{2}z_{3}^{3}-\frac{1}{4}z_{3}^{4}+70z_{1}z_{3}^{4}+\frac{1}{5}z_{3}^{5}-z_{2}z_{4}+90z_{1}^{2}z_{2}z_{4}-3360z_{1}^{3}z_{2}z_{4}+24z_{1}z_{2}z_{3}z_{4}
1260z12z2z3z432z22z42+𝒪(z5)\displaystyle-1260z_{1}^{2}z_{2}z_{3}z_{4}-\frac{3}{2}z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+48z1z3+7560z12z322520z12z2z32+2z2z448z1z2z3z4+3z22z42+𝒪(z5)\displaystyle\omega_{0}\log(z_{2})+48z_{1}z_{3}+7560z_{1}^{2}z_{3}^{2}-2520z_{1}^{2}z_{2}z_{3}^{2}+2z_{2}z_{4}-48z_{1}z_{2}z_{3}z_{4}+3z_{2}^{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+6z145z12+560z13173252z14+7567565z15z3+26z1z3+630z12z3\displaystyle\omega_{0}\log(z_{3})+6z_{1}-45z_{1}^{2}+560z_{1}^{3}-\frac{17325}{2}z_{1}^{4}+\frac{756756}{5}z_{1}^{5}-z_{3}+26z_{1}z_{3}+630z_{1}^{2}z_{3}
8400z13z3+150150z14z3+12z3260z1z32+3069z12z32+92400z13z3213z33+60z1z33\displaystyle-8400z_{1}^{3}z_{3}+150150z_{1}^{4}z_{3}+\frac{1}{2}z_{3}^{2}-60z_{1}z_{3}^{2}+3069z_{1}^{2}z_{3}^{2}+92400z_{1}^{3}z_{3}^{2}-\frac{1}{3}z_{3}^{3}+60z_{1}z_{3}^{3}
7560z12z33+14z3470z1z34+15z3590z12z2z4+3360z13z2z4+1260z12z2z3z4+𝒪(z5)\displaystyle-7560z_{1}^{2}z_{3}^{3}+\frac{1}{4}z_{3}^{4}-70z_{1}z_{3}^{4}+\frac{1}{5}z_{3}^{5}-90z_{1}^{2}z_{2}z_{4}+3360z_{1}^{3}z_{2}z_{4}+1260z_{1}^{2}z_{2}z_{3}z_{4}+\mathcal{O}(z^{5})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)+2520z12z2z32+1108800z13z2z33+378378000z14z2z34+252252000z14z22z34z4\displaystyle\omega_{0}\log(z_{4})+2520z_{1}^{2}z_{2}z_{3}^{2}+1108800z_{1}^{3}z_{2}z_{3}^{3}+378378000z_{1}^{4}z_{2}z_{3}^{4}+252252000z_{1}^{4}z_{2}^{2}z_{3}^{4}z_{4}
2520z12z2z32z421108800z13z2z33z42+𝒪(z10)\displaystyle-2520z_{1}^{2}z_{2}z_{3}^{2}z_{4}^{2}-1108800z_{1}^{3}z_{2}z_{3}^{3}z_{4}^{2}+\mathcal{O}(z^{10})

such that single logarithmic period of XX can be reproduced by Π11=ω1,1+ω1,3\Pi^{1}_{1}=\omega_{1,1}+\omega_{1,3}, Π21ω1,2+ω1,4\Pi^{1}_{2}\omega_{1,2}+\omega_{1,4},and open-closed mirror maps are inverse series of flat coordinates,

z1=\displaystyle z_{1}= q1+6q12+9q13+56q14300q15q1q384q12q3432q13q3900q14q3+68q12q32\displaystyle q_{1}+6q_{1}^{2}+9q_{1}^{3}+56q_{1}^{4}-300q_{1}^{5}-q_{1}q_{3}-84q_{1}^{2}q_{3}-432q_{1}^{3}q_{3}-900q_{1}^{4}q_{3}+68q_{1}^{2}q_{3}^{2}
+4182q13q32+12q12q33+q1q2q4+12q12q2q463q13q2q4q1q2q3q4264q12q2q3q4+𝒪(q5)\displaystyle+4182q_{1}^{3}q_{3}^{2}+12q_{1}^{2}q_{3}^{3}+q_{1}q_{2}q_{4}+12q_{1}^{2}q_{2}q_{4}-63q_{1}^{3}q_{2}q_{4}-q_{1}q_{2}q_{3}q_{4}-264q_{1}^{2}q_{2}q_{3}q_{4}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q248q1q2q3264q12q2q322q22q4+240q1q22q3q4+3q23q42+𝒪(q5)\displaystyle q_{2}-48q_{1}q_{2}q_{3}-264q_{1}^{2}q_{2}q_{3}^{2}-2q_{2}^{2}q_{4}+240q_{1}q_{2}^{2}q_{3}q_{4}+3q_{2}^{3}q_{4}^{2}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q36q1q3+27q12q3164q13q3+1377q14q3+q3232q1q32+138q12q32184q13q32+q33\displaystyle q_{3}-6q_{1}q_{3}+27q_{1}^{2}q_{3}-164q_{1}^{3}q_{3}+1377q_{1}^{4}q_{3}+q_{3}^{2}-32q_{1}q_{3}^{2}+138q_{1}^{2}q_{3}^{2}-184q_{1}^{3}q_{3}^{2}+q_{3}^{3}
22q1q33+675q12q33+q3424q1q34+q356q1q2q3q4+144q12q2q3q432q1q2q32q4+𝒪(q5)\displaystyle-22q_{1}q_{3}^{3}+675q_{1}^{2}q_{3}^{3}+q_{3}^{4}-24q_{1}q_{3}^{4}+q_{3}^{5}-6q_{1}q_{2}q_{3}q_{4}+144q_{1}^{2}q_{2}q_{3}q_{4}-32q_{1}q_{2}q_{3}^{2}q_{4}+\mathcal{O}(q^{5})
z4=\displaystyle z_{4}= q42520q12q2q32q4403200q13q2q33q453701200q14q2q34q4403200q13q22q33q42\displaystyle q_{4}-2520q_{1}^{2}q_{2}q_{3}^{2}q_{4}-403200q_{1}^{3}q_{2}q_{3}^{3}q_{4}-53701200q_{1}^{4}q_{2}q_{3}^{4}q_{4}-403200q_{1}^{3}q_{2}^{2}q_{3}^{3}q_{4}^{2}
+2520q12q2q32q43+403200q13q2q33q43+𝒪(q10)\displaystyle+2520q_{1}^{2}q_{2}q_{3}^{2}q_{4}^{3}+403200q_{1}^{3}q_{2}q_{3}^{3}q_{4}^{3}+\mathcal{O}(q^{10})

The double logarithmic solutions are denoted by their leading term

1212,1222,1232+13,1242+24,12,14,23,34\begin{gathered}\frac{1}{2}\ell_{1}^{2},\quad\frac{1}{2}\ell_{2}^{2},\quad\frac{1}{2}\ell_{3}^{2}+\ell_{1}\ell_{3},\quad\frac{1}{2}\ell_{4}^{2}+\ell_{2}\ell_{4},\\ \ell_{1}\ell_{2},\quad\ell_{1}\ell_{4},\quad\ell_{2}\ell_{3},\quad\ell_{3}\ell_{4}\end{gathered}

with abbreviations i=log(zi)\ell_{i}=\log(z_{i}). The brane superpotential is constructed as linear combination of double logarithmic solutions,

𝒲brane=t12+niNd1,d2,d3,d4Li2(q1d1q2d2q3d3q3d4)\mathcal{W}_{\mathrm{brane}}=t_{1}^{2}+\sum_{n_{i}}N_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{3}^{d_{4}}) (3.30)

This has the expected integrality properties of the Ooguri-Vafa Li2\text{Li}_{2} multicover formula. The Ooguri-Vafa invariants of the form N(m,k,m+n,k)N_{\mathrm{(m,k,m+n,k)}} are exactly match the data in Table 5 in [14]. In addition, we also extract the invariants of the form N(m+n,k,n,k)N_{\mathrm{(m+n,k,n,k)}} and summarize them into Table 11, where the rows and columns are labelled by m and n, respectively.

3.3   Open-Closed GKZ-system: Branes on X12(1,1,2,2,6)X_{12}^{(1,1,2,2,6)}

3.3.1   Five Branes Wrapping Rational Curves and Blowing Up Geometry

In this section, we study the A-model manifold, whose toric polyhedron is denoted by Δ\Delta^{*} and charge vectors are denoted by l1l^{1} and l2l^{2}. A-model manifold and A-brane are specified by the following toric data.

Δ\Delta^{*} l1l^{1} l2l^{2} l^1\hat{l}^{1} l^2\hat{l}^{2}
v0v^{*}_{0} 0 0 0 0 6-6 0 x1x2x3x4x5x_{1}x_{2}x_{3}x_{4}x_{5} 1-1 0
v1v^{*}_{1} 1-1 2-2 2-2 6-6 0 11 x112x_{1}^{12} 0 1-1
v2v^{*}_{2} 11 0 0 0 0 11 x212x_{2}^{12} 0 11
v3v^{*}_{3} 0 11 0 0 11 0 x36x_{3}^{6} 0 0
v4v^{*}_{4} 0 0 11 0 11 0 x46x_{4}^{6} 0 0
v5v^{*}_{5} 0 0 0 11 33 0 x52x_{5}^{2} 11 0
v6v^{*}_{6} 0 1-1 1-1 3-3 11 2-2 (x1x2)6(x_{1}x_{2})^{6} 0 0
Table 4: Toric Data of A-model side

The mirror hypersurface XX is determined by the constraint,

P=x112+x212+x36+x46+x52+ψ(x1x2x3x4x5)+ϕ(x1x2)6P=x_{1}^{12}+x_{2}^{12}+x_{3}^{6}+x_{4}^{6}+x_{5}^{2}+\psi(x_{1}x_{2}x_{3}x_{4}x_{5})+\phi(x_{1}x_{2})^{6}

where xix_{i}’s are homogeneous coordinates in (1,1,2,2,6)\mathbb{P}_{(1,1,2,2,6)} and ψ=z116z2112\psi=z_{1}^{-\frac{1}{6}}z_{2}^{-\frac{1}{12}}, ϕ=z212\phi=z_{2}^{-\frac{1}{2}}. The Greene-Plesser orbifold group G acts as xiλkgk,ixix_{i}\rightarrow\lambda^{g_{k,i}}_{k}x_{i} with λ16=λ26=λ32=1\lambda^{6}_{1}=\lambda^{6}_{2}=\lambda^{2}_{3}=1 and weights

6:g1=(1,0,1,0,0),6:g2=(1,0,0,1,0),2:g3=(1,0,0,0,1)\mathbb{Z}_{6}:g_{1}=(1,0,-1,0,0),\quad\mathbb{Z}_{6}:g_{2}=(1,0,0,-1,0),\quad\mathbb{Z}_{2}:g_{3}=(1,0,0,0,-1)

The toric curve SS is described by the complete intersection

S:P=0,h1γ12(x1x2x3x4x5)α12x52=0,h2α12x112β12x212=0S:\quad P=0,\quad h_{1}\equiv\gamma^{12}(x_{1}x_{2}x_{3}x_{4}x_{5})-\alpha^{12}x_{5}^{2}=0,\quad h_{2}\equiv\alpha^{12}x_{1}^{12}-\beta^{12}x_{2}^{12}=0

Insert h1h_{1} and h2h_{2} into P=0P=0

~1:η1x3+x46+m(x1,x5)6=0,η16=1m(x1,x5)=(α12+β12α12+β12α12ϕ)x112+(1+γ12α12ϕ)x52\begin{gathered}\tilde{\mathbb{P}}^{1}:\quad\eta_{1}x_{3}+\sqrt[6]{x_{4}^{6}+m(x_{1},x_{5})}=0,\eta_{1}^{6}=1\\ m(x_{1},x_{5})=(\frac{\alpha^{12}+\beta^{12}}{\alpha^{12}}+\frac{\beta^{12}}{\alpha^{12}}\phi)x_{1}^{12}+(1+\frac{\gamma^{12}}{\alpha^{12}}\phi)x_{5}^{2}\end{gathered} (3.31)

Here 1~\tilde{\mathbb{P}^{1}}is evidently non-holomorphic because of the sixth roots of unity and hence, a non-holomorphic family of rational curves on. However, at special loci

α12+β12+ϕβ12=0,α12+γ12ψ=0\alpha^{12}+\beta^{12}+\phi\beta^{12}=0,\quad\alpha^{12}+\gamma^{12}\psi=0 (3.32)

we see that SS degenerates as follows,

Σ:h0x36+x46,h1γ12(x1x2x3x4x5)α12x52=0,h2α12x112β12x212=0\Sigma:\quad h_{0}\equiv x_{3}^{6}+x_{4}^{6},\quad h_{1}\equiv\gamma^{12}(x_{1}x_{2}x_{3}x_{4}x_{5})-\alpha^{12}x_{5}^{2}=0,\quad h_{2}\equiv\alpha^{12}x_{1}^{12}-\beta^{12}x_{2}^{12}=0 (3.33)

Modulo the action of G, 3.31 can be solve holomorphically. Thus the anholomorphic deformation of 1\mathbb{P}^{1} 3.33 can be used to describe holomorphic deformation of SS.

From the toric data in Table 4, the full set of GKZ operators are derived by 2.6

𝒵0=i=06ϑi+1,𝒵1=ϑ1ϑ2,𝒵2=2ϑ1ϑ3+ϑ6,𝒵3=2ϑ1ϑ4+ϑ6,𝒵4=6ϑ1ϑ5+3ϑ6,1=a1a2(a6)6,2=a3a4(a5)3a6(a0)6\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}=\vartheta_{1}-\vartheta_{2},\quad\mathcal{Z}_{2}=2\vartheta_{1}-\vartheta_{3}+\vartheta_{6},\\ \mathcal{Z}_{3}=2\vartheta_{1}-\vartheta_{4}+\vartheta_{6},\quad\mathcal{Z}_{4}=6\vartheta_{1}-\vartheta_{5}+3\vartheta_{6},\\ \mathcal{L}_{1}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}-(\frac{\partial}{\partial a_{6}})^{6},\quad\mathcal{L}_{2}=\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{4}}(\frac{\partial}{\partial a_{5}})^{3}\frac{\partial}{\partial a_{6}}-(\frac{\partial}{\partial a_{0}})^{6}\end{gathered} (3.34)

where 𝒵0\mathcal{Z}_{0} represents the invariance of PP under overall rescaling, 𝒵i\mathcal{Z}_{i}’s relate to the torus symmetry, and i\mathcal{L}_{i}’s relate to the symmetries among monomials consisting of PP. And all GKZ operators above annihilate the period matrix and determine the mirror maps and superpotential.

After blowing up XX along SS, the blow-up manifold XX^{\prime} is obtained as the complete intersection in 𝒲=(𝒪(12)𝒪(12))\mathcal{W}=\mathbb{P}(\mathcal{O}(12)\oplus\mathbb{P}\mathcal{O}(12))

X:P\displaystyle X^{\prime}:P =a1x112+12x212+a3x36+a4x46+a5x52+a0(x1x2x3x4x5)+a6(x1x2)6=0\displaystyle=a_{1}x_{1}^{12}+1_{2}x_{2}^{12}+a_{3}x_{3}^{6}+a_{4}x_{4}^{6}+a_{5}x_{5}^{2}+a_{0}(x_{1}x_{2}x_{3}x_{4}x_{5})+a_{6}(x_{1}x_{2})^{6}=0 (3.35)
Q\displaystyle Q =y1(a9x112+a10x212)y2(a7(x1x2x3x4x5)+a8x36)\displaystyle=y_{1}(a_{9}x_{1}^{12}+a_{10}x_{2}^{12})-y_{2}(a_{7}(x_{1}x_{2}x_{3}x_{4}x_{5})+a_{8}x_{3}^{6})

where aia_{i}’s are free complex-valued coefficients. By simple observation, we can obtain the GKZ system of XX^{\prime} as complement to GKZ system of XX.

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=ϑ1+ϑ2ϑ9+ϑ10,𝒵3=2ϑ1+ϑ3ϑ62ϑ9,𝒵4=2ϑ1+ϑ4ϑ62ϑ9,𝒵5=6ϑ1+ϑ53ϑ6+ϑ86ϑ9,𝒵6=ϑ7ϑ8+ϑ9+ϑ101=i=13ai(a0)3,2=i=46ai(a3)33=a3a8a5a7,4=a6a9a3a10\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}-\vartheta_{9}+\vartheta_{10},\quad\mathcal{Z}_{3}^{\prime}=-2\vartheta_{1}+\vartheta_{3}-\vartheta_{6}-2\vartheta_{9},\\ \mathcal{Z}_{4}^{\prime}=-2\vartheta_{1}+\vartheta_{4}-\vartheta_{6}-2\vartheta_{9},\quad\mathcal{Z}_{5}^{\prime}=-6\vartheta_{1}+\vartheta_{5}-3\vartheta_{6}+\vartheta_{8}-6\vartheta_{9},\quad\mathcal{Z}_{6}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{3}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{3},\quad\mathcal{L}_{2}^{\prime}=\prod^{6}_{i=4}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{3}})^{3}\\ \mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{8}}-\frac{\partial}{\partial a_{5}}\frac{\partial}{\partial a_{7}},\quad\mathcal{L}_{4}^{\prime}=\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{9}}-\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{10}}\end{gathered} (3.36)

where 𝒵0,𝒵1\mathcal{Z}_{0}^{\prime},\mathcal{Z}_{1}^{\prime} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0, 𝒵i,i=2,,6\mathcal{Z}_{i}^{\prime},i=2,...,6 are related to the torus symmetry, and 3,4\mathcal{L}_{3}^{\prime},\mathcal{L}_{4}^{\prime} incorporate the parameter a7,,a10a_{7},...,a_{10} that are associated with the moduli of the curve SS.

Then we formulate above GKZ-system on an enhanced polyhedron Δ\Delta^{\prime}

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3} l4l^{\prime}_{4}
v0v^{\prime}_{0} 11 0 0 0 0 0 0 1-1 3-3 0 0 w0=x1x2x3x4x5w^{\prime}_{0}=x_{1}x_{2}x_{3}x_{4}x_{5}
v1v^{\prime}_{1} 11 0 1-1 2-2 2-2 6-6 0 0 0 22 1-1 w1=x112w^{\prime}_{1}=x_{1}^{12}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 0 0 0 11 w2=x212w^{\prime}_{2}=x_{2}^{12}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 11 0 0 w3=x36w^{\prime}_{3}=x_{3}^{6}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 0 11 0 0 w4=x46w^{\prime}_{4}=x_{4}^{6}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 11 0 0 0 w5=x52w^{\prime}_{5}=x_{5}^{2}
v6v^{\prime}_{6} 11 0 0 1-1 1-1 3-3 0 0 11 2-2 0 w6=(x1x2)6w^{\prime}_{6}=(x_{1}x_{2})^{6}
v7v^{\prime}_{7} 0 11 0 0 0 0 1-1 11 3-3 0 0 w7=y1w1w^{\prime}_{7}=y_{1}w^{\prime}_{1}
v8v^{\prime}_{8} 0 11 0 0 0 11 1-1 1-1 33 0 0 w8=y1w2w^{\prime}_{8}=y_{1}w^{\prime}_{2}
v9v^{\prime}_{9} 0 11 1-1 2-2 2-2 6-6 11 0 0 1-1 11 w9=y2w0w^{\prime}_{9}=y_{2}w^{\prime}_{0}
v10v^{\prime}_{10} 0 11 11 0 0 0 11 0 0 11 1-1 w10=y2w5ew^{\prime}_{10}=y_{2}w^{e}_{5}

Here we present the integral points viv^{\prime}_{i}’s and their corresponding monomials wiw^{\prime}_{i}, as well as lil^{\prime}_{i}’s as basis of Mori cone satisfying relations l1=3l1+l2l^{1}=3l^{\prime}_{1}+l^{\prime}_{2} and l2=l3+l4l^{2}=l^{\prime}_{3}+l^{\prime}_{4}.

The local coordinates ziz^{i}’s on the complex structure moduli space of XX^{\prime} by 2.7,

z1=a5a7a03a8,z2=a3a4a6a83a03a73,z3=a12a10a62a9,z4=a2a9a1a10z_{1}=-\frac{a_{5}a_{7}}{a_{0}^{3}a_{8}},\quad z_{2}=\frac{a_{3}a_{4}a_{6}a_{8}^{3}}{a_{0}^{3}a_{7}^{3}},\quad z_{3}=\frac{a_{1}^{2}a_{10}}{a_{6}^{2}a_{9}},\quad z_{4}=\frac{a_{2}a_{9}}{a_{1}a_{10}} (3.37)

Next, we convert the i\mathcal{L}_{i} in 3.36operators to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aj(j=0,,10)a_{j}(j=0,\dots,10) to those about zj(j=1,,4)z_{j}(j=1,\dots,4) ,

𝒟1\displaystyle\mathcal{D}_{1} =θ1(θ13θ21)z1(θ13θ2)(θ1+3θ2),\displaystyle=\theta_{1}(\theta_{1}-3\theta_{2}-1)-z_{1}(-\theta_{1}-3\theta_{2})(-\theta_{1}+3\theta_{2}), (3.38)
𝒟2\displaystyle\mathcal{D}_{2} =θ22(θ22θ3)(θ1+3θ2)3z2(θ13θ2)3i=13(θ13θ2i)\displaystyle=\theta_{2}^{2}(\theta_{2}-2\theta_{3})(-\theta_{1}+3\theta_{2})^{3}-z_{2}(\theta_{1}-3\theta_{2})^{3}\prod_{i=1}^{3}(-\theta_{1}-3\theta_{2}-i)
𝒟3\displaystyle\mathcal{D}_{3} =(2θ3θ4)2(θ3θ4)z3(θ22θ3)2(θ3+θ4),\displaystyle=(2\theta_{3}-\theta_{4})^{2}(\theta_{3}-\theta_{4})-z_{3}(\theta_{2}-2\theta_{3})^{2}(-\theta_{3}+\theta_{4}),
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ3+θ4)z4(2θ3θ4)(θ3θ4)\displaystyle=\theta_{4}(-\theta_{3}+\theta_{4})-z_{4}(2\theta_{3}-\theta_{4})(\theta_{3}-\theta_{4})
\displaystyle\cdots

where θi=zizi\theta_{i}=z_{i}\frac{\partial}{\partial z_{i}}’s are the logarithmic derivatives and each 𝒟i\mathcal{D}_{i} corresponds to a specific linear combination among lil^{\prime}_{i}’s.

3.3.2   Brane Superpotential and Disk Instantons

Along the line of 2.1, we solve the differential equations 3.37 at zi0z_{i}\rightarrow 0 and identify the mirror maps and superpotential. The fundamental period of XX as power series solution is

ω0=1120z13z2+83160z16z22+166320z16z22z3z4+𝒪(z10)\omega_{0}=1-120z_{1}^{3}z_{2}+83160z_{1}^{6}z_{2}^{2}+166320z_{1}^{6}z_{2}^{2}z_{3}z_{4}+\mathcal{O}(z^{10})

. The single logarithmic solutions are

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)+z1+12z12+13z13+14z14+15z15+2z2+12z1z2+60z12z274z13z2210z14z2\displaystyle\omega_{0}\log(z_{1})+z_{1}+\frac{1}{2}z_{1}^{2}+\frac{1}{3}z_{1}^{3}+\frac{1}{4}z_{1}^{4}+\frac{1}{5}z_{1}^{5}+2z_{2}+12z_{1}z_{2}+60z_{1}^{2}z_{2}-74z_{1}^{3}z_{2}-210z_{1}^{4}z_{2}
15z22126z1z22630z12z222520z13z22+5603z23+2100z1z23+13200z12z2357752z24\displaystyle-15z_{2}^{2}-126z_{1}z_{2}^{2}-630z_{1}^{2}z_{2}^{2}-2520z_{1}^{3}z_{2}^{2}+\frac{560}{3}z_{2}^{3}+2100z_{1}z_{2}^{3}+13200z_{1}^{2}z_{2}^{3}-\frac{5775}{2}z_{2}^{4}
40950z1z24+2522525z2530z22z3z4252z1z22z3z4+1120z23z3z4+𝒪(z6)\displaystyle-40950z_{1}z_{2}^{4}+\frac{252252}{5}z_{2}^{5}-30z_{2}^{2}z_{3}z_{4}-252z_{1}z_{2}^{2}z_{3}z_{4}+1120z_{2}^{3}z_{3}z_{4}+\mathcal{O}(z^{6})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)3z132z12z1334z1435z156z236z1z2180z12z2522z13z2+630z14z2\displaystyle\omega_{0}\log(z_{2})-3z_{1}-\frac{3}{2}z_{1}^{2}-z_{1}^{3}-\frac{3}{4}z_{1}^{4}-\frac{3}{5}z_{1}^{5}-6z_{2}-36z_{1}z_{2}-180z_{1}^{2}z_{2}-522z_{1}^{3}z_{2}+630z_{1}^{4}z_{2}
+45z22+378z1z22+1890z12z22+7560z13z22560z236300z1z2339600z12z23+173252z24\displaystyle+45z_{2}^{2}+378z_{1}z_{2}^{2}+1890z_{1}^{2}z_{2}^{2}+7560z_{1}^{3}z_{2}^{2}-560z_{2}^{3}-6300z_{1}z_{2}^{3}-39600z_{1}^{2}z_{2}^{3}+\frac{17325}{2}z_{2}^{4}
+122850z1z247567565z25z3z4+90z22z3z4+756z1z22z3z43360z23z3z432z32z42+𝒪(z6)\displaystyle+122850z_{1}z_{2}^{4}-\frac{756756}{5}z_{2}^{5}-z_{3}z_{4}+90z_{2}^{2}z_{3}z_{4}+756z_{1}z_{2}^{2}z_{3}z_{4}-3360z_{2}^{3}z_{3}z_{4}-\frac{3}{2}z_{3}^{2}z_{4}^{2}+\mathcal{O}(z^{6})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)240z13z2+2z3z4+240z13z2z3z4+3z32z42+120z13z2z32z42+203z33z43\displaystyle\omega_{0}\log(z_{3})-240z1^{3}z2+2z3z4+240z1^{3}z2z3z4+3z3^{2}z4^{2}+120z1^{3}z2z3^{2}z4^{2}+\frac{20}{3}z3^{3}z4^{3}
+160z13z2z33z43+352z34z44+2525z35z45++𝒪(z10)\displaystyle+160z1^{3}z2z3^{3}z4^{3}+\frac{35}{2}z3^{4}z4^{4}+\frac{252}{5}z3^{5}z4^{5}++\mathcal{O}(z^{10})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)\displaystyle\omega_{0}\log(z_{4})

such that the single logarithmic periods of XX are reproduced by Π11=ω1,1+ω1,2\Pi^{1}_{1}=\omega_{1,1}+\omega_{1,2}, Π21=ω1,3+ω1,4\Pi^{1}_{2}=\omega_{1,3}+\omega_{1,4}. With single logarithmic solutions, open-closed mirror maps are inverse series of flat coordinates

z1=\displaystyle z_{1}= q1q12+q13q14+q152q1q214q12q260q13q2+134q14q2+5q1q22+58q12q22\displaystyle q_{1}-q_{1}^{2}+q_{1}^{3}-q_{1}^{4}+q_{1}^{5}-2q_{1}q_{2}-14q_{1}^{2}q_{2}-60q_{1}^{3}q_{2}+134q_{1}^{4}q_{2}+5q_{1}q_{2}^{2}+58q_{1}^{2}q_{2}^{2}
+270q13q2232q1q23546q12q23+286q1q242q1q2q3q414q12q2q3q4+40q1q22q3q4+𝒪(q5)\displaystyle+270q_{1}^{3}q_{2}^{2}-32q_{1}q_{2}^{3}-546q_{1}^{2}q_{2}^{3}+286q_{1}q_{2}^{4}-2q_{1}q_{2}q_{3}q_{4}-14q_{1}^{2}q_{2}q_{3}q_{4}+40q_{1}q_{2}^{2}q_{3}q_{4}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q2+3q1q2+3q12q2+q13q2+6q22+66q1q22+384q12q22+1338q13q22+9q23+222q1q23\displaystyle q_{2}+3q_{1}q_{2}+3q_{1}^{2}q_{2}+q_{1}^{3}q_{2}+6q_{2}^{2}+66q_{1}q_{2}^{2}+384q_{1}^{2}q_{2}^{2}+1338q_{1}^{3}q_{2}^{2}+9q_{2}^{3}+222q_{1}q_{2}^{3}
+2940q12q23+56q24+1350q1q24300q25+q2q3q4+3q1q2q3q4+3q12q2q3q4\displaystyle+2940q_{1}^{2}q_{2}^{3}+56q_{2}^{4}+1350q_{1}q_{2}^{4}-300q_{2}^{5}+q_{2}q_{3}q_{4}+3q_{1}q_{2}q_{3}q_{4}+3q_{1}^{2}q_{2}q_{3}q_{4}
+12q22q3q4+132q1q22q3q463q23q3q4+𝒪(q5)\displaystyle+12q_{2}^{2}q_{3}q_{4}+132q_{1}q_{2}^{2}q_{3}q_{4}-63q_{2}^{3}q_{3}q_{4}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q3+240q13q2q32q32q41200q13q2q32q4+3q33q42+3120q13q2q33q424q34q43+5q35q44+𝒪(q10)\displaystyle q_{3}+240q_{1}^{3}q_{2}q_{3}-2q_{3}^{2}q_{4}-1200q_{1}^{3}q_{2}q_{3}^{2}q_{4}+3q_{3}^{3}q_{4}^{2}+3120q_{1}^{3}q2q_{3}^{3}q_{4}^{2}-4q_{3}^{4}q_{4}^{3}+5q_{3}^{5}q_{4}^{4}+\mathcal{O}(q^{10})
z4=\displaystyle z_{4}= q4\displaystyle q_{4}

The double logarithmic solutions are denoted by their leading term

3212+12,1222,1232,1242+34,13,14,23,24\begin{gathered}\frac{3}{2}\ell_{1}^{2}+\ell_{1}\ell_{2},\quad\frac{1}{2}\ell_{2}^{2},\quad\frac{1}{2}\ell_{3}^{2},\quad\frac{1}{2}\ell_{4}^{2}+\ell_{3}\ell_{4},\\ \ell_{1}\ell_{3},\quad\ell_{1}\ell_{4},\quad\ell_{2}\ell_{3},\quad\ell_{2}\ell_{4}\end{gathered} (3.39)

with abbreviations i=log(zi)\ell_{i}=\log(z_{i}). Then we construct two linear combination of double logarithmic solutions and insert the inverse mirror maps to match the disk instantons in [16].

𝒲braneI\displaystyle\mathcal{W}_{\mathrm{brane}}^{I} =32t12+t1t2+NINd1,d2,d3,d4ILi2(q1d1q2d2q3d3q4d4)\displaystyle=\frac{3}{2}t_{1}^{2}+t_{1}t_{2}+\sum_{N^{I}}N^{I}_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}})
𝒲braneII\displaystyle\mathcal{W}_{\mathrm{brane}}^{II} =12t1t3+NIINd1,d2,d3,d4IILi2(q1d1q2d2q3d3q4d4)\displaystyle=\frac{1}{2}t_{1}t_{3}+\sum_{N^{II}}N^{II}_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}})

.Invariants of the form Nm,n,k,kN_{\mathrm{m,n,k,k}} are summarized in Table12 13 14 15, where the rows and columns are labelled by m and n, respectively.

4   One Closed and Two Open Moduli Case

4.1   Open-Closed GKZ-system: Branes on Complete Intersections [3,3](111|111)\mathbb{P}^{(111|111)}_{[3,3]}

4.1.1   Five Branes Wrapping Lines and Blowing Up Geometry

The underlying manifold XX^{*} we are considering in the A-model is the intersection of two cubics in 5\mathbb{P}^{5} , whose mirror manifold XX can be represented a one-parameter family of bicubics, with group G=32×9G=\mathbb{Z}_{3}^{2}\times\mathbb{Z}_{9} acting on them,

{P1=x13+x23+x33+ψx4x5x6P2=x43+x53+x63+ψx1x2x3\begin{cases}P_{1}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\psi x_{4}x_{5}x_{6}\\ P_{2}=x_{4}^{3}+x_{5}^{3}+x_{6}^{3}+\psi x_{1}x_{2}x_{3}\end{cases} (4.1)

where ψ\psi is the complex structure modulus.

Turning to the specification of D-brane configurations, we consider the curve SS on XX

P1\displaystyle P_{1} =P2=0,\displaystyle=P_{2}=0,
h1\displaystyle h_{1} β3(x1x2x3)αβγx23=0,\displaystyle\equiv\beta^{3}(x_{1}x_{2}x_{3})-\alpha\beta\gamma x_{2}^{3}=0,
h2\displaystyle h_{2} γ3(x1x2x3)αβγx33=0\displaystyle\equiv\gamma^{3}(x_{1}x_{2}x_{3})-\alpha\beta\gamma x_{3}^{3}=0

An equivalent and convenient form is easy to obtained,

P1=P2=0,α3x23β3x13=0,α3x33γ3x13=0P_{1}=P_{2}=0,\quad\alpha^{3}x_{2}^{3}-\beta^{3}x_{1}^{3}=0,\quad\alpha^{3}x_{3}^{3}-\gamma^{3}x_{1}^{3}=0 (4.2)

For generic values of the moduli , the SS is an irreducible higher genus Riemann surface. But we can always make a linearization by inserting h1h_{1} and h2h_{2} into P1,P2P_{1},P_{2},

x43+x53+x63Ψx4x5x6=0,Ψ=αβγα3+β3+γ3ψ2x_{4}^{3}+x_{5}^{3}+x_{6}^{3}-\Psi x_{4}x_{5}x_{6}=0,\quad\Psi=\frac{\alpha\beta\gamma}{\alpha^{3}+\beta^{3}+\gamma^{3}}\psi^{2} (4.3)

This is an one dimensional family of cubic plane elliptic curves in 2\mathbb{P}^{2}, called the Hesse pencil. For special value of Ψ\Psi, it degenerate into 12 lines [3],

x4+η1x5+η2x6=0,η13=η23=1x_{4}+\eta_{1}x_{5}+\eta_{2}x_{6}=0,\quad\eta_{1}^{3}=\eta_{2}^{3}=1 (4.4)

Upon the action of group G, they are identified as a single line.

Thus the deformation space of 4.4 is embedded in the deformation space of SS. And away from that special locus, the obstructed deformation is identified with the unobstructed deformation of SS, which means that we can use the obstructed deformation of that line to describe the unobstructed deformation of SS.

The polyhedron corresponding to the A-model manifold XX^{*} is denoted as Δ\Delta^{*} , the A-brane charge vectors ll, and A-brane charge vectors l^1\hat{l}^{1}, l^2\hat{l}^{2}. The toric data in A-model side is as following table.

Δ\Delta^{*} ll l^1\hat{l}^{1} l^2\hat{l}^{2}
v0v^{*}_{0} 0 0 0 0 0 3-3 x1x2x3x_{1}x_{2}x_{3} 1-1 1-1
v0v^{*}_{0} 0 0 0 0 0 3-3 x4x5x6x_{4}x_{5}x_{6} 0 0
v1v^{*}_{1} 1-1 1-1 1-1 1-1 1-1 11 x13x_{1}^{3} 0 0
v2v^{*}_{2} 11 0 0 0 0 11 x23x_{2}^{3} 11 0
v3v^{*}_{3} 0 11 0 0 0 11 x33x_{3}^{3} 0 11
v4v^{*}_{4} 0 0 11 0 0 11 x43x_{4}^{3} 0 0
v5v^{*}_{5} 0 0 0 11 0 11 x53x_{5}^{3} 0 0
v6v^{*}_{6} 0 0 0 0 11 11 x63x_{6}^{3} 0 0
Table 5: Toric Data of A-model side

In toric coordinates, the Calabi-Yau threefold XX and the curve SS are described as

X:P1\displaystyle X:\quad P_{1} =a0,1+a1(X2X3X4X5X6)1+a2X2+a3X3=0,\displaystyle=a_{0,1}+a_{1}(X_{2}X_{3}X_{4}X_{5}X_{6})^{-1}+a_{2}X_{2}+a_{3}X_{3}=0,
P2\displaystyle P_{2} =a0,2+a4X4+a5X5+a6X6=0\displaystyle=a_{0,2}+a_{4}X_{4}+a_{5}X_{5}+a_{6}X_{6}=0
S:h1\displaystyle S:\quad h_{1} =a7+a8X2=0,h2=a9+a10X3=0\displaystyle=a_{7}+a_{8}X_{2}=0,\quad h_{2}=a_{9}+a_{10}X_{3}=0

with aia_{i}’s are free complex-valued coefficients. The GKZ-system as follow by 2.6,

𝒵0=i=06ϑi+1,𝒵i=ϑ1+ϑi+1,i=1,,51=i=16ai(a0,1)3(a0,2)3\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{i}=-\vartheta_{1}+\vartheta_{i+1},i=1,...,5\\ \mathcal{L}_{1}=\prod^{6}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0,1}})^{3}(\frac{\partial}{\partial a_{0,2}})^{3}\end{gathered} (4.5)

where ϑi=aiai\vartheta_{i}=a_{i}\frac{\partial}{\partial a_{i}}’s are the logarithmic derivative. 𝒵0\mathcal{Z}_{0} represents the invariance of PP under overall rescaling and 𝒵i\mathcal{Z}_{i}’s relate to the torus symmetry,

𝒵i:Xi+1λXi+1,(a1,ai+1)(λa1,λ1ai+1),i=1,2,3,4\mathcal{Z}_{i}:\quad X_{i+1}\mapsto\lambda X_{i+1},\quad(a_{1},a_{i+1})\mapsto(\lambda a_{1},\lambda^{-1}a_{i+1}),\quad i=1,2,3,4

For i\mathcal{L}_{i}’s, the represents the relations among Laurent monomials in P1P_{1} and P2P_{2} in 4.1 .

1:(X21)(X31)(X41)(X51)(X61)X2X3X4X5X6=1\mathcal{L}_{1}:\quad(X_{2}^{-1})(X_{3}^{-1})(X_{4}^{-1})(X_{5}^{-1})(X_{6}^{-1})X_{2}X_{3}X_{4}X_{5}X_{6}=1

And all GKZ operators annihilate the period matrix and determine the mirror maps and superpotentials.

After blowing up XX along SS, the blow-up manifold is

X:P1=P2=0,Q=y1(a9+a10X3)y2(a7+a8X2)X^{\prime}:P_{1}=P_{2}=0,\quad Q=y_{1}(a_{9}+a_{10}X_{3})-y_{2}(a_{7}+a_{8}X_{2}) (4.6)

By careful observations on the defining equations 4.6, the GKZ system of XX^{\prime} is obtained as follow

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=ϑ1+ϑ2+ϑ8,𝒵3=ϑ1+ϑ3+ϑ10,𝒵i=ϑ1+ϑi,i=4,5,6,𝒵7=ϑ7ϑ8+ϑ9+ϑ101=i=13ai(a0)3,2=a2a7a0,1a8,3=a3a9a0,1a10\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}+\vartheta_{8},\quad\mathcal{Z}_{3}^{\prime}=-\vartheta_{1}+\vartheta_{3}+\vartheta_{10},\\ \mathcal{Z}_{i}^{\prime}=-\vartheta_{1}+\vartheta_{i},\quad i=4,5,6,\quad\mathcal{Z}_{7}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{3}_{i=1}\frac{\partial}{\partial a_{i}}-(\frac{\partial}{\partial a_{0}})^{3},\\ \mathcal{L}_{2}^{\prime}=\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{0,1}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{9}}-\frac{\partial}{\partial a_{0,1}}\frac{\partial}{\partial a_{10}}\end{gathered} (4.7)

where 𝒵0,𝒵1\mathcal{Z}_{0}^{\prime},\mathcal{Z}_{1}^{\prime} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0 respectively. 𝒵i,i=2,,5\mathcal{Z}_{i}^{\prime},i=2,...,5 are related to the torus symmetry.

𝒵2:\displaystyle\mathcal{Z}_{2}^{\prime}: X2λX2,(a1,a2,a8)(λa1,λ1a2,λ1a8)\displaystyle\quad X_{2}\mapsto\lambda X_{2},\quad(a_{1},a_{2},a_{8})\mapsto(\lambda a_{1},\lambda^{-1}a_{2},\lambda^{-1}a_{8})
𝒵3:\displaystyle\mathcal{Z}_{3}^{\prime}: X3λX3,(a1,a3,a10)(λa1,λ1a3,λ1a10)\displaystyle\quad X_{3}\mapsto\lambda X_{3},\quad(a_{1},a_{3},a_{10})\mapsto(\lambda a_{1},\lambda^{-1}a_{3},\lambda^{-1}a_{10})
𝒵i:\displaystyle\mathcal{Z}_{i}^{\prime}: XiλXi,(a1,ai)(λa1,λ1ai),i=4,5,6\displaystyle\quad X_{i}\mapsto\lambda X_{i},\quad(a_{1},a_{i})\mapsto(\lambda a_{1},\lambda^{-1}a_{i}),\quad i=4,5,6

In addition,𝒵6\mathcal{Z}_{6}^{\prime} is related to the torus symmetry (y1,y2)(λy1,λ1y2)(y_{1},y_{2})\mapsto(\lambda y_{1},\lambda^{-1}y_{2}). The 2,3\mathcal{L}_{2}^{\prime},\mathcal{L}_{3}^{\prime} incorporate the parameter a7,,a10a_{7},...,a_{10} that are associated with the moduli of the curve SS.

Now, we formulate GKZ system 4.7 on an enhanced polyhedron Δ\Delta^{\prime},

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3}
v0v^{\prime}_{0} 11 0 0 0 0 0 0 0 0 1-1 1-1 w0,1=x1x2x3w^{\prime}_{0,1}=x_{1}x_{2}x_{3}
v0v^{\prime}_{0} 11 0 0 0 0 0 0 0 3-3 0 0 w0,2=x4x5x6w^{\prime}_{0,2}=x_{4}x_{5}x_{6}
v1v^{\prime}_{1} 11 0 1-1 1-1 1-1 1-1 1-1 0 11 0 0 w1=x13w^{\prime}_{1}=x_{1}^{3}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 0 1-1 11 0 w2=x23w^{\prime}_{2}=x_{2}^{3}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 0 0 11 w3=x33w^{\prime}_{3}=x_{3}^{3}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 0 11 0 0 w4=x43w^{\prime}_{4}=x_{4}^{3}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 0 11 0 0 w5=x53w^{\prime}_{5}=x_{5}^{3}
v6v^{\prime}_{6} 11 0 0 0 0 0 11 0 11 0 0 w6=x63w^{\prime}_{6}=x_{6}^{3}
v7v^{\prime}_{7} 0 11 0 0 0 0 0 1-1 2-2 11 0 w7=y1w0w^{\prime}_{7}=y_{1}w^{\prime}_{0}
v8v^{\prime}_{8} 0 11 11 0 0 0 0 1-1 22 1-1 0 w8=y1w2w^{\prime}_{8}=y_{1}w^{\prime}_{2}
v9v^{\prime}_{9} 0 11 0 0 0 0 0 11 1-1 0 11 w9=y2w0w^{\prime}_{9}=y_{2}w^{\prime}_{0}
v10v^{\prime}_{10} 0 11 0 11 0 0 0 11 11 0 1-1 w10=y2w3w^{\prime}_{10}=y_{2}w^{\prime}_{3}

where viv^{\prime}_{i}’s are the integral vertices and wiw^{\prime}_{i},their corresponding monomials. The A-model closed string charge vectors and A-branes charge vectors satisfy the relations l1=l1+2l2+l3l^{1}=l^{\prime}_{1}+2l^{\prime}_{2}+l^{\prime}_{3}, l^1=l3\hat{l}^{1}=l^{\prime}_{3}, l^2=l4\hat{l}^{2}=l^{\prime}_{4}.

The coordinates ziz_{i} by 2.7on the complex structure moduli space of XX^{\prime},

z1=a1a4a5a6a8a10a0,23a2a72a9,z2=a2a7a0,1a8,z3=a3a9a0,1a10z_{1}=\frac{a_{1}a_{4}a_{5}a_{6}a_{8}a_{10}}{a_{0,2}^{3}a_{2}a_{7}^{2}a_{9}},\quad z_{2}=\frac{a_{2}a_{7}}{a_{0,1}a_{8}},\quad z_{3}=\frac{a_{3}a_{9}}{a_{0,1}a_{10}} (4.8)

Next, we convert the i\mathcal{L}_{i} operators in 4.7 to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aja_{j} to those about zjz_{j},

𝒟1\displaystyle\mathcal{D}_{1} =θ14(2θ1θ2)2(θ1θ3)z1(θ1+θ2)(2θ1+θ2)2(θ1+θ3)i=13(3θ1i),\displaystyle=\theta_{1}^{4}(2\theta_{1}-\theta_{2})^{2}(\theta_{1}-\theta_{3})-z_{1}(-\theta_{1}+\theta_{2})(-2\theta_{1}+\theta_{2})^{2}(-\theta_{1}+\theta_{3})\prod^{3}_{i=1}(-3\theta_{1}-i), (4.9)
𝒟2\displaystyle\mathcal{D}_{2} =(θ1+θ2)(2θ1+θ2)z2(θ2θ31)(2θ1θ2)\displaystyle=(-\theta_{1}+\theta_{2})(-2\theta_{1}+\theta_{2})-z_{2}(-\theta_{2}-\theta_{3}-1)(2\theta_{1}-\theta_{2})
𝒟3\displaystyle\mathcal{D}_{3} =θ3(θ1+θ3)z3(θ2θ31)(θ1θ3),\displaystyle=\theta_{3}(-\theta_{1}+\theta_{3})-z_{3}(-\theta_{2}-\theta_{3}-1)(\theta_{1}-\theta_{3}),
\displaystyle\cdots

where θi=zizi\theta_{i}=z_{i}\frac{\partial}{\partial z_{i}}’s are the logarithmic derivatives and each operator 𝒟a\mathcal{D}_{a} corresponds to a linear combination among the charge vectors l1e,l2e,l3el^{e}_{1},l^{e}_{2},l^{e}_{3}.

4.1.2   Brane Superpotential and Disk Instantons

Now, we solve the Picard-Fuchs equations 4.9derived in the last section and identified the mirror maps and superpotentials. By the methods introduced in 2.1, at zi0z_{i}\rightarrow 0, the fundamental period of XX as series expansion is

ω0=1+36z1z22z3+8100z12z24z32+2822400z13z26z33+1200622500z14z28z34+𝒪(z16)\omega_{0}=1+36z_{1}z_{2}^{2}z_{3}+8100z_{1}^{2}z_{2}^{4}z_{3}^{2}+2822400z_{1}^{3}z_{2}^{6}z_{3}^{3}+1200622500z_{1}^{4}z_{2}^{8}z_{3}^{4}+\mathcal{O}(z^{16})

There are four the single logarithmic solutions

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)+2z2z2212z1z22+23z2312z24+25z25+z324z1z2z3+90z1z22z3\displaystyle\omega_{0}\log(z_{1})+2z_{2}-z_{2}^{2}-12z_{1}z_{2}^{2}+\frac{2}{3}z_{2}^{3}-\frac{1}{2}z_{2}^{4}+\frac{2}{5}z_{2}^{5}+z_{3}-24z_{1}z_{2}z_{3}+90z_{1}z_{2}^{2}z_{3}
+144z1z23z312z32+72z1z22z32+13z3314z34+15z35+𝒪(z5)\displaystyle+144z_{1}z_{2}^{3}z3-\frac{1}{2}z_{3}^{2}+72z_{1}z_{2}^{2}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-\frac{1}{4}z_{3}^{4}+\frac{1}{5}z_{3}^{5}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)z2+12z2213z23+14z2415z25+12z1z2z3+30z1z22z372z1z23z3+𝒪(z6)\displaystyle\omega_{0}\log(z_{2})-z2+\frac{1}{2}z2^{2}-\frac{1}{3}z2^{3}+\frac{1}{4}z2^{4}-\frac{1}{5}z2^{5}+12z_{1}z_{2}z_{3}+30z_{1}z_{2}^{2}z_{3}-72z_{1}z_{2}^{3}z_{3}+\mathcal{O}(z^{6})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+12z1z22270z12z24z3+30z1z22z3+12z3272z1z22z3213z33+14z34\displaystyle\omega_{0}\log(z_{3})+12z_{1}z_{2}^{2}-270z_{1}^{2}z_{2}^{4}-z_{3}+30z_{1}z_{2}^{2}z_{3}+\frac{1}{2}z3^{2}-72z_{1}z_{2}^{2}z_{3}^{2}-\frac{1}{3}z_{3}^{3}+\frac{1}{4}z_{3}^{4}
15z35+𝒪(z5)\displaystyle-\frac{1}{5}z_{3}^{5}+\mathcal{O}(z^{5})

such that they are consistent with the single logarithmic periods of XX, Π1=ω1,1+2ω1,2+ω1,3\Pi^{1}=\omega_{1,1}+2\omega_{1,2}+\omega_{1,3}.

By the definition of the flat coordinates and mirror maps

tj=ω1,jω0t_{j}=\frac{\omega_{1,j}}{\omega_{0}} (4.10)
qj=e2πitjq_{j}=e^{2\pi it_{j}} (4.11)

we obtain the zjz_{j} as a series of qjq_{j} upon inversion of the mirror maps

z1=\displaystyle z_{1}= q12q1q2+q1q22+12q12q2224q12q23q1q3+2q1q2q3+24q12q2q3q1q22q3\displaystyle q_{1}-2q_{1}q_{2}+q_{1}q_{2}^{2}+12q_{1}^{2}q_{2}^{2}-24q_{1}^{2}q_{2}^{3}-q_{1}q_{3}+2q_{1}q_{2}q_{3}+24q_{1}^{2}q_{2}q_{3}-q_{1}q_{2}^{2}q_{3}
150q12q22q324q12q2q32+𝒪(q5)\displaystyle-150q_{1}^{2}q_{2}^{2}q_{3}-24q_{1}^{2}q_{2}q_{3}^{2}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q2+q22+q23+q24+q2512q1q22q342q1q23q3+𝒪(q5)\displaystyle q_{2}+q_{2}^{2}+q_{2}^{3}+q_{2}^{4}+q_{2}^{5}-12q_{1}q_{2}^{2}q_{3}-42q_{1}q_{2}^{3}q_{3}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q312q1q22q3+q3242q1q22q32+q33+q34+q35+𝒪(q5)\displaystyle q_{3}-12q_{1}q_{2}^{2}q_{3}+q_{3}^{2}-42q_{1}q_{2}^{2}q_{3}^{2}+q_{3}^{3}+q_{3}^{4}+q_{3}^{5}+\mathcal{O}(q^{5})

In addition, there are also double logarithmic solutions with leading terms

121222,3222+12,1232+13,23\begin{gathered}\frac{1}{2}\ell_{1}^{2}-\ell_{2}^{2},\quad\frac{3}{2}\ell_{2}^{2}+\ell_{1}\ell_{2},\quad\frac{1}{2}\ell_{3}^{2}+\ell_{1}\ell_{3},\quad\ell_{2}\ell_{3}\end{gathered}

where log(zi)\log(z_{i})’s are abbreviated as i\ell_{i}’s. According to above, a specific linear combination of double logarithmic solutions is constructed and its disk instantons expansions are extracted.

𝒲brane=4t1t2+6t22+4t2t3+NNd1,d2,d3Li2(q1d1q2d2q3d3)\mathcal{W}_{\mathrm{brane}}=4t_{1}t_{2}+6t_{2}^{2}+4t_{2}t_{3}+\sum_{N}N_{d_{1},d_{2},d_{3}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}) (4.12)

We present first a few invariants of the form Nm,m+n,mN_{m,m+n,m} in Table16.

4.2   Branes on Complete Intersections [4,4](112|112)\mathbb{P}^{(112|112)}_{[4,4]} and [6,6](123|123)\mathbb{P}^{(123|123)}_{[6,6]}

Similar to the last section, we also calculate the superpotential and extract the Ooguri-Vafa invariants at large volume phase for complete intersections Calabi-Yau manifolds of [4,4](112|112)\mathbb{P}^{(112|112)}_{[4,4]} and [6,6](123|123)\mathbb{P}^{(123|123)}_{[6,6]}. We summarize the main formulas and tables in Appendix A and Ooguri-Vafa invariants for first several orders in Appendix C.

5   One Closed and Three Open Moduli Case

5.1   Open-Closed GKZ-System: Branes on Sextic Hypersurface

5.1.1   Branes Wrapping Rational Curves and Blowing up Geometry

In this section, we consider the A-model manifold XX^{*} with charge vector l=(6,1,1,1,1,2)l=(-6,1,1,1,1,2). The corresponding toric polyhedron for XX^{*} consists of following integral vertices

(0,0,0,0),(1,1,1,2),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)(0,0,0,0),\quad(-1,-1,-1,-2),\quad(1,0,0,0),\quad(0,1,0,0),\quad(0,0,1,0),\quad(0,0,0,1) (5.1)

The mirror sextic hypersurface XX arises as the Calabi-Yau hypersurfacesis a mirror pair of Calabi-Yau hypersurface in (1,1,1,1,2)4\mathbb{P}^{4}_{(1,1,1,1,2)} . Its defining equation in homogeneous coordinates is

P=a1x16+a2x26+a3x36+a4x46+a5x53+a0x1x2x3x4x5P=a_{1}x_{1}^{6}+a_{2}x_{2}^{6}+a_{3}x_{3}^{6}+a_{4}x_{4}^{6}+a_{5}x_{5}^{3}+a_{0}x_{1}x_{2}x_{3}x_{4}x_{5}

. On XX ,we consider parallel branes SS which are described by

S:P=0,h1a6(x1x2x3x4x5)2+a7x1x2x3x4x54+a8x56=0,h2a9x16+a10x53=0S:\quad P=0,\quad h_{1}\equiv a_{6}(x_{1}x_{2}x_{3}x_{4}x_{5})^{2}+a_{7}x_{1}x_{2}x_{3}x_{4}x_{5}^{4}+a_{8}x_{5}^{6}=0,\quad h_{2}\equiv a_{9}x_{1}^{6}+a_{10}x_{5}^{3}=0

The GKZ operators are derived by 2.6

𝒵0=i=05ϑi+1,𝒵i=ϑi+1ϑ1,i=1,2,3,𝒵4=ϑ52ϑ11=a1a2a3a4a52(a0)6\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{5}\vartheta_{i}+1,\quad\mathcal{Z}_{i}=\vartheta_{i+1}-\vartheta_{1},i=1,2,3,\quad\mathcal{Z}_{4}=\vartheta_{5}-2\vartheta_{1}\\ \mathcal{L}_{1}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{4}}\frac{\partial}{\partial a_{5}}^{2}-(\frac{\partial}{\partial a_{0}})^{6}\end{gathered} (5.2)

where 𝒵0\mathcal{Z}_{0} represents the invariance of PP under overall rescaling, 𝒵i\mathcal{Z}_{i}’s relate to the torus symmetry, and i\mathcal{L}_{i}’s relate to the symmetries among monomials consisting of PP. And all GKZ operators above annihilate the period matrix and determine the mirror maps and superpotential.

After blowing up XX along SS, the blow-up manifold is obtained as the complete intersection in the projective bundle

X:P\displaystyle X^{\prime}:P =a1x16+x26+x36+x46+x53+a0(x1x2x3x4x5)=0\displaystyle=a_{1}x_{1}^{6}+x_{2}^{6}+x_{3}^{6}+x_{4}^{6}+x_{5}^{3}+a_{0}(x_{1}x_{2}x_{3}x_{4}x_{5})=0 (5.3)
Q\displaystyle Q =y1(a9x16+a10x53)y2(a6(x1x2x3x4x5)2+a7x1x2x3x4x54+a8x56)\displaystyle=y_{1}(a_{9}x_{1}^{6}+a_{10}x_{5}^{3})-y_{2}(a_{6}(x_{1}x_{2}x_{3}x_{4}x_{5})^{2}+a_{7}x_{1}x_{2}x_{3}x_{4}x_{5}^{4}+a_{8}x_{5}^{6})

where aia_{i}’s are free complex-valued coefficients. By observation on the symmetry of obove defining equations, we can obtain the GKZ system of XX^{\prime} as complement to GKZ system of XX.

𝒵0=i=05ϑi+1,𝒵1=i=610ϑi,𝒵2=ϑ1+ϑ2+ϑ7+2ϑ8ϑ9,𝒵3=1ϑ1+ϑ3ϑ9,𝒵4=ϑ1+ϑ4ϑ9,𝒵5=2ϑ1+ϑ52ϑ6+ϑ86ϑ9,𝒵6=ϑ6ϑ7ϑ8+ϑ9+ϑ101=i=25ai(a7)2a9(a0)4a6a10,2=a6a8(a7)23=a5a7a0a8,4=a1a10a5a9\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{5}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=6}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}+\vartheta_{7}+2\vartheta_{8}-\vartheta_{9},\quad\mathcal{Z}_{3}^{\prime}=-1\vartheta_{1}+\vartheta_{3}-\vartheta_{9},\\ \mathcal{Z}_{4}^{\prime}=-\vartheta_{1}+\vartheta_{4}-\vartheta_{9},\quad\mathcal{Z}_{5}^{\prime}=-2\vartheta_{1}+\vartheta_{5}-2\vartheta_{6}+\vartheta_{8}-6\vartheta_{9},\quad\mathcal{Z}_{6}^{\prime}=-\vartheta_{6}-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{5}_{i=2}\frac{\partial}{\partial a_{i}}(\frac{\partial}{\partial a_{7}})^{2}\frac{\partial}{\partial a_{9}}-(\frac{\partial}{\partial a_{0}})^{4}\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{10}},\quad\mathcal{L}_{2}^{\prime}=\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{8}}-(\frac{\partial}{\partial a_{7}})^{2}\\ \mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{5}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{0}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{4}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{10}}-\frac{\partial}{\partial a_{5}}\frac{\partial}{\partial a_{9}}\end{gathered} (5.4)

where 𝒵0,𝒵1\mathcal{Z}_{0}^{\prime},\mathcal{Z}_{1}^{\prime} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0, 𝒵i,i=2,,6\mathcal{Z}_{i}^{\prime},i=2,...,6 are related to the torus symmetry, and 3,4\mathcal{L}_{3}^{\prime},\mathcal{L}_{4}^{\prime} incorporate the parameter a6,,a10a_{6},...,a_{10} that are associated with the moduli of the curve SS. The new manifold XX^{\prime} is describe by the following charge vectors

0 11 22 33 44 55 66 77 88 99 1010
l1l^{\prime}_{1} 4-4 0 11 11 11 11 2-2 22 0 11 1-1
l2l^{\prime}_{2} 0 0 0 0 0 0 11 2-2 11 0 0
l3l^{\prime}_{3} 1-1 0 0 0 0 11 0 11 1-1 0 0
l4l_{4}^{\prime} 0 1-1 11 0 0 0 0 0 0 11 1-1

The the local coordinates ziz^{i}’s on the complex structure moduli space of XX^{\prime} by 2.7 is,

z1=a2a3a4a5a72a9a04a62a10,z2=a6a8a72,z3=a5a7a0a8,z4=a1a10a5a9z_{1}=\frac{a_{2}a_{3}a_{4}a_{5}a_{7}^{2}a_{9}}{a_{0}^{4}a_{6}^{2}a_{10}},\quad z_{2}=\frac{a_{6}a_{8}}{a_{7}^{2}},\quad z_{3}=\frac{a_{5}a_{7}}{a_{0}a_{8}},\quad z_{4}=\frac{a_{1}a_{10}}{a_{5}a_{9}} (5.5)

Next, we convert the i\mathcal{L}_{i}^{\prime} in 5.4operators to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aj(j=0,,10)a_{j}(j=0,\dots,10) to those about zj(j=1,,4)z_{j}(j=1,\dots,4) ,

𝒟1\displaystyle\mathcal{D}_{1} =θ13(θ1+θ3θ4)(2θ12θ2+θ3)2(θ1θ4)z1(2θ1+θ2)2(θ1+θ4)i=14(4θ1θ3i),\displaystyle=\theta_{1}^{3}(\theta_{1}+\theta_{3}-\theta_{4})(2\theta_{1}-2\theta_{2}+\theta_{3})^{2}(\theta_{1}-\theta_{4})-z_{1}(-2\theta_{1}+\theta_{2})^{2}(-\theta_{1}+\theta_{4})\prod^{4}_{i=1}(-4\theta_{1}-\theta_{3}-i), (5.6)
𝒟2\displaystyle\mathcal{D}_{2} =(2θ1+θ2)(θ2θ3)z2(2θ22θ2+θ3)2\displaystyle=(-2\theta_{1}+\theta_{2})(\theta_{2}-\theta_{3})-z_{2}(2\theta_{2}-2\theta_{2}+\theta_{3})^{2}
𝒟3\displaystyle\mathcal{D}_{3} =(θ1+θ3θ4)(2θ12θ2+θ3)z3(θ2θ3)(4θ1θ31),\displaystyle=(\theta_{1}+\theta_{3}-\theta_{4})(2\theta_{1}-2\theta_{2}+\theta_{3})-z_{3}(\theta_{2}-\theta_{3})(-4\theta_{1}-\theta_{3}-1),
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ1+θ4)z4(θ1+θ3θ4)(θ1θ4)\displaystyle=\theta_{4}(-\theta_{1}+\theta_{4})-z_{4}(\theta_{1}+\theta_{3}-\theta_{4})(\theta_{1}-\theta_{4})
\displaystyle\cdots

where θi=zizi\theta_{i}=z_{i}\frac{\partial}{\partial z_{i}}’s are the logarithmic derivatives.

5.1.2   Brane Superpotential and Disk Instantons

Along the line of 2.1, we solve the differential equations 5.6 at zi0z_{i}\rightarrow 0 and identify the mirror maps and superpotential. The fundamental period of SS is

ω0=1+360z1z22z32z4+1247400z12z24z34z42+6861254400z13z26z36z43+𝒪(z10)\omega_{0}=1+360z_{1}z_{2}^{2}z_{3}^{2}z_{4}+1247400z_{1}^{2}z_{2}^{4}z_{3}^{4}z_{4}^{2}+6861254400z_{1}^{3}z_{2}^{6}z_{3}^{6}z_{4}^{3}+\mathcal{O}(z^{10})

. The single logarithmic solutions are

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)2z23z22203z23352z242525z25+2z2z3+2z22z3+4z23z3+10z24z3z22z32\displaystyle\omega_{0}\log(z_{1})-2z_{2}-3z_{2}^{2}-\frac{20}{3}z_{2}^{3}-\frac{35}{2}z_{2}^{4}-\frac{252}{5}z_{2}^{5}+2z_{2}z_{3}+2z_{2}^{2}z_{3}+4z_{2}^{3}z_{3}+10z_{2}^{4}z_{3}-z_{2}^{2}z_{3}^{2}
120z1z22z322z23z32+24z1z448z1z2z424z1z22z448z1z23z4240z1z2z3z4\displaystyle-120z_{1}z_{2}^{2}z_{3}^{2}-2z_{2}^{3}z_{3}^{2}+24z_{1}z_{4}-48z_{1}z_{2}z_{4}-24z_{1}z_{2}^{2}z_{4}-48z_{1}z_{2}^{3}z_{4}-240z_{1}z_{2}z_{3}z_{4}
+240z1z22z3z4+1260z12z425040z12z2z42++𝒪(z5)\displaystyle+240z_{1}z_{2}^{2}z_{3}z_{4}+1260z_{1}^{2}z_{4}^{2}-5040z_{1}^{2}z_{2}z_{4}^{2}++\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+2z2+3z22+203z23+352z24+2525z25+z32z2z32z22z34z23z310z24z3\displaystyle\omega_{0}\log(z_{2})+2z_{2}+3z_{2}^{2}+\frac{20}{3}z_{2}^{3}+\frac{35}{2}z_{2}^{4}+\frac{252}{5}z_{2}^{5}+z_{3}-2z_{2}z_{3}-2z_{2}^{2}z_{3}-4z_{2}^{3}z_{3}-10z_{2}^{4}z_{3}
12z32+z2z32+z22z32+2z23z32+13z33z2z3314z34+z2z3412z1z4+24z1z2z4+24z1z22z4\displaystyle-\frac{1}{2}z_{3}^{2}+z_{2}z_{3}^{2}+z_{2}^{2}z_{3}^{2}+2z_{2}^{3}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-z_{2}z_{3}^{3}-\frac{1}{4}z_{3}^{4}+z_{2}z_{3}^{4}-12z_{1}z_{4}+24z_{1}z_{2}z_{4}+24z_{1}z_{2}^{2}z_{4}
+48z1z23z4+120z1z2z3z4240z1z22z3z4630z12z42+2520z12z2z42+𝒪(z5)\displaystyle+48z_{1}z_{2}^{3}z_{4}+120z_{1}z_{2}z_{3}z_{4}-240z_{1}z_{2}^{2}z_{3}z_{4}-630z_{1}^{2}z_{4}^{2}+2520z_{1}^{2}z_{2}z_{4}^{2}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)z232z22103z23354z241265z25z3+z2z3+z22z3+2z23z3+5z24z3+\displaystyle\omega_{0}\log(z_{3})-z_{2}-\frac{3}{2}z_{2}^{2}-\frac{10}{3}z_{2}^{3}-\frac{35}{4}z_{2}^{4}-\frac{126}{5}z_{2}^{5}-z_{3}+z_{2}z_{3}+z_{2}^{2}z_{3}+2z_{2}^{3}z_{3}+5z_{2}^{4}z_{3}+
12z32z2z3212z22z32z23z3213z33+z2z33+14z34z2z3415z3512z1z22z424z1z23z4+𝒪(z5)\displaystyle\frac{1}{2}z_{3}^{2}-z_{2}z_{3}^{2}-\frac{1}{2}z_{2}^{2}z_{3}^{2}-z_{2}^{3}z_{3}^{2}-\frac{1}{3}z_{3}^{3}+z_{2}z_{3}^{3}+\frac{1}{4}z_{3}^{4}-z_{2}z_{3}^{4}-\frac{1}{5}z_{3}^{5}-12z_{1}z_{2}^{2}z_{4}-24z_{1}z_{2}^{3}z_{4}+\mathcal{O}(z^{5})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)+120z1z22z3241580z12z24z34+180z1z22z32z4+498960z12z24z34z4\displaystyle\omega_{0}\log(z_{4})+120z_{1}z_{2}^{2}z_{3}^{2}-41580z_{1}^{2}z_{2}^{4}z_{3}^{4}+180z_{1}z_{2}^{2}z_{3}^{2}z_{4}+498960z_{1}^{2}z_{2}^{4}z_{3}^{4}z_{4}
360z1z22z32z42+727650z12z24z34z42+60z1z22z32z43+𝒪(z10)\displaystyle-360z_{1}z_{2}^{2}z_{3}^{2}z_{4}^{2}+727650z_{1}^{2}z_{2}^{4}z_{3}^{4}z_{4}^{2}+60z_{1}z_{2}^{2}z_{3}^{2}z_{4}^{3}+\mathcal{O}(z^{10})

by which the open-closed mirror maps are inverse series of flat coordinates

z1=\displaystyle z_{1}= q1+2q1q2+q1q224q1q2q34q1q22q3+4q1q22q32+𝒪(q5)\displaystyle q_{1}+2q_{1}q_{2}+q_{1}q_{2}^{2}-4q_{1}q_{2}q_{3}-4q_{1}q_{2}^{2}q_{3}+4q_{1}q_{2}^{2}q_{3}^{2}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q22q22+3q234q24+5q25q2q3+5q22q313q23q3+25q24q33q22q32+18q23q32+𝒪(q5)\displaystyle q_{2}-2q_{2}^{2}+3q_{2}^{3}-4q_{2}^{4}+5q_{2}^{5}-q_{2}q_{3}+5q_{2}^{2}q_{3}-13q_{2}^{3}q_{3}+25q_{2}^{4}q_{3}-3q_{2}^{2}q_{3}^{2}+18q_{2}^{3}q_{3}^{2}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q3+q2q3+q32+q22q32+q33+q34+q35+𝒪(q5)\displaystyle q_{3}+q_{2}q_{3}+q_{3}^{2}+q_{2}^{2}q_{3}^{2}+q_{3}^{3}+q_{3}^{4}+q_{3}^{5}+\mathcal{O}(q^{5})
z4=\displaystyle z_{4}= q4120q1q22q32q4180q1q22q32q42+𝒪(q7)\displaystyle q_{4}-120q_{1}q_{2}^{2}q_{3}^{2}q_{4}-180q_{1}q_{2}^{2}q_{3}^{2}q_{4}^{2}+\mathcal{O}(q^{7})

Then we construct a linear combination of double logarithmic solutions and insert the inverse mirror maps .

𝒲brane\displaystyle\mathcal{W}_{\mathrm{brane}} =3t12+6t1t4+3t42+NNd1,d2,d3,d4Li2(q1d1q2d2q3d3q4d4)\displaystyle=3t_{1}^{2}+6t_{1}t_{4}+3t_{4}^{2}+\sum_{N}N_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}}) (5.7)

Invariants of the form Nm,n,n,mN_{\mathrm{m,n,n,m}} are summarized in Table17, where the rows and columns are labelled by m and n, respectively.

When a72=a6a8a_{7}^{2}=a_{6}a_{8}, the two individual branes coincide. We obtain a new set of charge vectors,

0 11 22 33 44 55 66 88 99 1010
l1cl^{c}_{1} 4-4 0 11 11 11 11 1-1 11 11 1-1
l2cl^{c}_{2} 2-2 0 0 0 0 22 11 1-1 0 0
l3cl^{c}_{3} 0 1-1 11 0 0 0 0 0 11 1-1

by which the new complex structure moduli space coordinates are

z1c=a2a3a4a5a8a9a04a6a10,z2c=a52a6a02a8,z3c=a2a9a1a10z_{1}^{c}=\frac{a_{2}a_{3}a_{4}a_{5}a_{8}a_{9}}{a_{0}^{4}a_{6}a_{10}},\quad z_{2}^{c}=\frac{a_{5}^{2}a_{6}}{a_{0}^{2}a_{8}},\quad z_{3}^{c}=\frac{a_{2}a_{9}}{a_{1}a_{10}} (5.8)

Similar to the separate case, the superpotential is constructed as linear combination of double logarithmic solutions and Ooguri-Vafa invariants are exacted in 17.

5.2   Open-Closed GKZ-System: Branes on Sextic Hypersurface

5.2.1   Branes Wrapping Rational Curves and Blowing up Geometry

The mirror octic hypersurface XX arises as the Calabi-Yau hypersurfaces in (1,1,1,1,4)4\mathbb{P}^{4}_{(1,1,1,1,4)}

P=a1x18+a2x28+a3x38+a4x48+a5x52+a0x1x2x3x4x5P=a_{1}x_{1}^{8}+a_{2}x_{2}^{8}+a_{3}x_{3}^{8}+a_{4}x_{4}^{8}+a_{5}x_{5}^{2}+a_{0}x_{1}x_{2}x_{3}x_{4}x_{5}

on which we consider parallel branes which are described by intersections of divisors

S:P=0,h1a6(x1x2x3x4x5)2+a7x1x2x3x4x53+a8x54=0,h2a9x18+a10x52=0S:\quad P=0,\quad h_{1}\equiv a_{6}(x_{1}x_{2}x_{3}x_{4}x_{5})^{2}+a_{7}x_{1}x_{2}x_{3}x_{4}x_{5}^{3}+a_{8}x_{5}^{4}=0,\quad h_{2}\equiv a_{9}x_{1}^{8}+a_{10}x_{5}^{2}=0

The GKZ operators are derived by 2.6

𝒵0=i=05ϑi+1,𝒵i=ϑi+1ϑ1,i=1,2,3,𝒵4=ϑ54ϑ11=a1a2a3a4a54(a0)8\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{5}\vartheta_{i}+1,\quad\mathcal{Z}_{i}=\vartheta_{i+1}-\vartheta_{1},i=1,2,3,\quad\mathcal{Z}_{4}=\vartheta_{5}-4\vartheta_{1}\\ \mathcal{L}_{1}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{4}}\frac{\partial}{\partial a_{5}}^{4}-(\frac{\partial}{\partial a_{0}})^{8}\end{gathered} (5.9)

where 𝒵0\mathcal{Z}_{0} represents the invariance of PP under overall rescaling, 𝒵i\mathcal{Z}_{i}’s relate to the torus symmetry, and i\mathcal{L}_{i}’s relate to the symmetries among monomials consisting of PP. And all GKZ operators above annihilate the period matrix and determine the mirror maps and superpotential.

After blowing up XX along SS, the blow-up manifold XX^{\prime} is obtained as the complete intersection

X:P\displaystyle X^{\prime}:P =a1x18+x28+x38+x48+x52+a0(x1x2x3x4x5)=0\displaystyle=a_{1}x_{1}^{8}+x_{2}^{8}+x_{3}^{8}+x_{4}^{8}+x_{5}^{2}+a_{0}(x_{1}x_{2}x_{3}x_{4}x_{5})=0 (5.10)
Q\displaystyle Q =y1(a9x18+a10x52)y2(a6(x1x2x3x4x5)2+a7x1x2x3x4x53+a8x54)\displaystyle=y_{1}(a_{9}x_{1}^{8}+a_{10}x_{5}^{2})-y_{2}(a_{6}(x_{1}x_{2}x_{3}x_{4}x_{5})^{2}+a_{7}x_{1}x_{2}x_{3}x_{4}x_{5}^{3}+a_{8}x_{5}^{4})

where aia_{i}’s are free complex-valued coefficients. By observation on above defining equations, GKZ system of XX^{\prime} is obtained as complement to GKZ system of XX.

𝒵0=i=05ϑi+1,𝒵1=i=610ϑi,𝒵2=ϑ1+ϑ2+ϑ7+2ϑ8ϑ10,𝒵3=ϑ1+ϑ3ϑ10,𝒵4=ϑ1+ϑ4ϑ10,𝒵5=4ϑ1+ϑ54ϑ10,𝒵6=ϑ6ϑ7ϑ8+ϑ9+ϑ101=i=24ai(a7)4a10(a0)3(a6)4a9,2=a6a8(a7)23=a5a7a0a8,4=a1a9a0a10\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{5}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=6}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}+\vartheta_{7}+2\vartheta_{8}-\vartheta_{1}0,\quad\mathcal{Z}_{3}^{\prime}=-\vartheta_{1}+\vartheta_{3}-\vartheta_{10},\\ \mathcal{Z}_{4}^{\prime}=-\vartheta_{1}+\vartheta_{4}-\vartheta_{10},\quad\mathcal{Z}_{5}^{\prime}=-4\vartheta_{1}+\vartheta_{5}-4\vartheta_{10},\quad\mathcal{Z}_{6}^{\prime}=-\vartheta_{6}-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\prod^{4}_{i=2}\frac{\partial}{\partial a_{i}}(\frac{\partial}{\partial a_{7}})^{4}\frac{\partial}{\partial a_{10}}-(\frac{\partial}{\partial a_{0}})^{3}(\frac{\partial}{\partial a_{6}})^{4}\frac{\partial}{\partial a_{9}},\quad\mathcal{L}_{2}^{\prime}=\frac{\partial}{\partial a_{6}}\frac{\partial}{\partial a_{8}}-(\frac{\partial}{\partial a_{7}})^{2}\\ \mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{5}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{0}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{4}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{9}}-\frac{\partial}{\partial a_{0}}\frac{\partial}{\partial a_{10}}\end{gathered} (5.11)

where 𝒵0,𝒵1\mathcal{Z}_{0}^{\prime},\mathcal{Z}_{1}^{\prime} are associated with the overall rescaling with respect to P=0,Q=0P=0,Q=0, 𝒵i,i=2,,5\mathcal{Z}_{i}^{\prime},i=2,...,5 are related to the torus symmetry, and 3,4\mathcal{L}_{3}^{\prime},\mathcal{L}_{4}^{\prime} incorporate the parameter a6,,a10a_{6},...,a_{10} that are associated with the moduli of the curve SS.The new manifold XX^{\prime} is describe by the following charge vectors

0 11 22 33 44 55 66 77 88 99 1010
l1l^{\prime}_{1} 3-3 0 11 11 11 0 4-4 44 0 1-1 11
l2l^{\prime}_{2} 0 0 0 0 0 0 11 2-2 11 0 0
l3l^{\prime}_{3} 1-1 0 0 0 0 11 0 11 1-1 0 0
l4l_{4}^{\prime} 1-1 11 0 0 0 0 0 0 0 1-1 11

The local coordinates ziz^{i}’s on the complex structure moduli space of XX^{\prime} by 2.7,

z1=a3a4a5a74a10a04a9,z2=a6a8a72,z3=a5a7a0a8,z4=a1a9a0a10z_{1}=\frac{a_{3}a_{4}a_{5}a_{7}^{4}a_{10}}{a_{0}^{4}a_{9}},\quad z_{2}=\frac{a_{6}a_{8}}{a_{7}^{2}},\quad z_{3}=\frac{a_{5}a_{7}}{a_{0}a_{8}},\quad z_{4}=\frac{a_{1}a_{9}}{a_{0}a_{10}} (5.12)

Next, we convert the i\mathcal{L}_{i}^{\prime} in 3.36operators to Picard-Fuchs operators 𝒟i\mathcal{D}_{i}, from differential equations about aj(j=0,,10)a_{j}(j=0,\dots,10) to those about zj(j=1,,4)z_{j}(j=1,\dots,4) ,

𝒟1\displaystyle\mathcal{D}_{1} =θ13(4θ12θ2+θ3)4(θ1θ4)z1(4θ1+θ2)4(θ1+θ4)i=14(3θ1θ3θ4i),\displaystyle=\theta_{1}^{3}(4\theta_{1}-2\theta_{2}+\theta_{3})^{4}(\theta_{1}-\theta_{4})-z_{1}(-4\theta_{1}+\theta_{2})^{4}(-\theta_{1}+\theta_{4})\prod^{4}_{i=1}(-3\theta_{1}-\theta_{3}-\theta_{4}-i), (5.13)
𝒟2\displaystyle\mathcal{D}_{2} =(2θ1+θ2)(θ2θ3)z2(2θ22θ2+θ3)2\displaystyle=(-2\theta_{1}+\theta_{2})(\theta_{2}-\theta_{3})-z_{2}(2\theta_{2}-2\theta_{2}+\theta_{3})^{2}
𝒟3\displaystyle\mathcal{D}_{3} =(θ1+θ3θ4)(2θ12θ2+θ3)z3(θ2θ3)(4θ1θ31),\displaystyle=(\theta_{1}+\theta_{3}-\theta_{4})(2\theta_{1}-2\theta_{2}+\theta_{3})-z_{3}(\theta_{2}-\theta_{3})(-4\theta_{1}-\theta_{3}-1),
𝒟4\displaystyle\mathcal{D}_{4} =θ4(θ1+θ4)z4(θ1+θ3θ4)(θ1θ4)\displaystyle=\theta_{4}(-\theta_{1}+\theta_{4})-z_{4}(\theta_{1}+\theta_{3}-\theta_{4})(\theta_{1}-\theta_{4})
\displaystyle\cdots

where θi=zizi\theta_{i}=z_{i}\frac{\partial}{\partial z_{i}}’s are the logarithmic derivatives.

5.2.2   Brane Superpotential and Disk Instantons

Along the line of 2.1, we solve the differential equations 5.13 at zi0z_{i}\rightarrow 0 and identify the mirror maps and superpotential. The fundamental period of XX is

ω0=1+1680z1z24z34z4+32432400z12z28z38z42+𝒪(z20)\omega_{0}=1+1680z_{1}z_{2}^{4}z_{3}^{4}z_{4}+32432400z_{1}^{2}z_{2}^{8}z_{3}^{8}z_{4}^{2}+\mathcal{O}(z^{20})

. The single logarithmic solutions are

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)4z26z22403z23+4z2z3+4z22z3+z4+24z1z496z1z2z4+48z1z22z4\displaystyle\omega_{0}\log(z_{1})-4z_{2}-6z_{2}^{2}-\frac{40}{3}z2^{3}+4z_{2}z_{3}+4z_{2}^{2}z_{3}+z_{4}+24z_{1}z_{4}-96z_{1}z_{2}z_{4}+48z_{1}z_{2}^{2}z_{4}
12z42+13z43+𝒪(z3)\displaystyle-\frac{1}{2}z_{4}^{2}+\frac{1}{3}z_{4}^{3}+\mathcal{O}(z^{3})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+2z2+3z22+203z23++z32z2z32z22z312z32+z2z32+13z336z1z4\displaystyle\omega_{0}\log(z_{2})+2z_{2}+3z_{2}^{2}+\frac{20}{3}z_{2}^{3}++z_{3}-2z_{2}z_{3}-2z_{2}^{2}z_{3}-\frac{1}{2}z_{3}^{2}+z_{2}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-6z_{1}z_{4}
+24z1z2z4+𝒪(z3)\displaystyle+24z_{1}z_{2}z_{4}+\mathcal{O}(z^{3})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)z232z22103z23354z24z3+z2z3+z22z3+2z23z3+12z32z2z32\displaystyle\omega_{0}\log(z_{3})-z_{2}-\frac{3}{2}z_{2}^{2}-\frac{10}{3}z_{2}^{3}-\frac{35}{4}z_{2}^{4}-z_{3}+z_{2}z_{3}+z_{2}^{2}z_{3}+2z_{2}^{3}z_{3}+\frac{1}{2}z_{3}^{2}-z_{2}z_{3}^{2}
12z22z3213z33+z2z33+14z34+𝒪(z4)\displaystyle-\frac{1}{2}z_{2}^{2}z_{3}^{2}-\frac{1}{3}z_{3}^{3}+z_{2}z_{3}^{3}+\frac{1}{4}z3^{4}+\mathcal{O}(z^{4})
ω1,4=\displaystyle\omega_{1,4}= ω0log(z4)z4+12z4213z43+14z44+𝒪(z4)\displaystyle\omega_{0}\log(z_{4})-z_{4}+\frac{1}{2}z_{4}^{2}-\frac{1}{3}z_{4}^{3}+\frac{1}{4}z_{4}^{4}+\mathcal{O}(z^{4})

by which the open-closed mirror maps are inverse series of flat coordinates

z1=\displaystyle z_{1}= q1+4q1q2+6q1q22+4q1q23+q1q248q1q2q324q1q22q3q1q424q12q44q1q2q4\displaystyle q_{1}+4q_{1}q_{2}+6q_{1}q_{2}^{2}+4q_{1}q_{2}^{3}+q_{1}q_{2}^{4}-8q_{1}q_{2}q_{3}-24q_{1}q_{2}^{2}q_{3}-q_{1}q_{4}-24q_{1}^{2}q_{4}-4q_{1}q_{2}q_{4}
72q12q2q46q1q22q4+8q1q2q3q4+24q12q42+𝒪(q4)\displaystyle-72q_{1}^{2}q_{2}q_{4}-6q_{1}q_{2}^{2}q_{4}+8q_{1}q_{2}q_{3}q_{4}+24q_{1}^{2}q_{4}^{2}+\mathcal{O}(q^{4})
z2=\displaystyle z_{2}= q22q22+3q234q24q2q3+5q22q313q23q33q22q32+6q1q2q424q1q22q4+𝒪(q4)\displaystyle q_{2}-2q_{2}^{2}+3q_{2}^{3}-4q_{2}^{4}-q_{2}q_{3}+5q2^{2}q3-13q_{2}^{3}q_{3}-3q_{2}^{2}q_{3}^{2}+6q_{1}q_{2}q_{4}-24q_{1}q_{2}^{2}q_{4}+\mathcal{O}(q^{4})
z3=\displaystyle z_{3}= q3+q2q3+q32+q22q32+q33+q34+6q1q2q3q4+𝒪(q4)\displaystyle q_{3}+q_{2}q_{3}+q_{3}^{2}+q_{2}^{2}q_{3}^{2}+q_{3}^{3}+q_{3}^{4}+6q_{1}q_{2}q_{3}q_{4}+\mathcal{O}(q^{4})
z4=\displaystyle z_{4}= q4+q42+q43+q44+𝒪(q4)\displaystyle q_{4}+q_{4}^{2}+q_{4}^{3}+q_{4}^{4}+\mathcal{O}(q^{4})

Then we construct a linear combination of double logarithmic solutions and insert the inverse mirror maps,

𝒲brane\displaystyle\mathcal{W}_{\mathrm{brane}} =2t12+4t1t4+2t42+NNd1,d2,d3,d4Li2(q1d1q2d2q3d3q4d4)\displaystyle=2t_{1}^{2}+4t_{1}t_{4}+2t_{4}^{2}+\sum_{N}N_{d_{1},d_{2},d_{3},d_{4}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}q_{4}^{d_{4}}) (5.14)

Invariants of the form Nm,n,n,mN_{\mathrm{m,n,n,m}} are summarized in Table17, where the rows and columns are labelled by m and n, respectively.

When a72=a6a8a_{7}^{2}=a_{6}a_{8}, the two individual branes coincide. We obtain a new set of charge vectors,

0 11 22 33 44 55 66 88 99 1010
l1cl^{c}_{1} 3-3 0 11 11 11 0 2-2 22 1-1 11
l2cl^{c}_{2} 2-2 0 0 0 0 22 11 1-1 0 0
l3cl^{c}_{3} 1-1 11 0 0 0 0 0 0 11 1-1

by which the new complex structure moduli space coordinates are

z1c=a2a3a4a82a10a03a62a9,z2c=a52a6a02a8,z3c=a1a9a0a10z_{1}^{c}=\frac{a_{2}a_{3}a_{4}a_{8}^{2}a_{10}}{a_{0}^{3}a_{6}^{2}a_{9}},\quad z_{2}^{c}=\frac{a_{5}^{2}a_{6}}{a_{0}^{2}a_{8}},\quad z_{3}^{c}=\frac{a_{1}a_{9}}{a_{0}a_{10}} (5.15)

Similar to the separate case, the superpotential is constructed as linear combination of double logarithmic solutions and Ooguri-Vafa invariants are exacted 18.

6   Summary and Conclusions

In this work, we calculate the superpotentials in d=4 N=1 supersymmetric field theories arising from IIA D6-branes wrapping special Lagrangian three cycles of Calabi-Yau threefold. The special Lagrangian three-cycles with non-trivial topology are mirror to obstructed rational curves, which correspond to the brane excitation about the supersymmetric minimum. We consider a five brane wrapping a rational curve that coincides with a toric curve SS at certain locus of the deformation space (S)\mathcal{M}(S). SS is described by the intersection of two divisors D1D2D_{1}\cap D_{2} and its unobstructed deformation space match with the obstructed deformation space of the rational curve wrapped by the five brane. After blowing up, the toric curve SS is replaced by a exceptional divisor EE without introducing new degree of freedom. All the complex structure moduli and brane moduli are embedded into the complex moduli space of the blow-up new manifold, given as the complete intersection in the projective bundle 𝒲=(𝒪(D1)𝒪(D2))\mathcal{W}=\mathbb{P}(\mathcal{O}(D_{1})\oplus\mathcal{O}(D_{2})).

From observation on the defining equation of XX^{\prime}, we obtain the Picard-Fuchs equations that annihilate the period matrix defined by the natural pairing between the elements of relative homology H(X,S)H_{*}(X,S) and cohomology H(X,S)H^{*}(X,S). Via GKZ system of XX^{\prime}, the system of Picard-Fuchs equations are solved at zi0z_{i}\rightarrow 0. The single logarithmic solutions are interpreted as mirror maps and specific linear combinations of double logarithmic solutions are the B-brane superpotentials. Using multi-cover formula and inverse mirror maps, the Ooguri-Vafa invariants are extracted from A-model side and interpreted as counting disk instantons,i.e. holomorphic disks with boundary in a nontrivial homology class on a special Lagrangian submanifold. It would be interesting to directly extract these invariants on the A-model side directly by adequate localization techniques.

Appendix A Blow-up Geometry of X[4,4](112|112)X^{(112|112)}_{[4,4]} and X[6,6](123|123)X^{(123|123)}_{[6,6]}

A.1   X[4,4](112|112)X^{(112|112)}_{[4,4]}

Polyhedron vertices and charge vectors associated to A-model manifold of XX^{*} and A-branes on it:

Δ\Delta^{*} ll l^1\hat{l}^{1} l^2\hat{l}^{2}
v0,1v^{*}_{0,1} 0 0 0 0 0 4-4 x1x2x3x_{1}x_{2}x_{3} 1-1 1-1
v0,2v^{*}_{0,2} 0 0 0 0 0 4-4 x4x5x6x_{4}x_{5}x_{6} 0 0
v1v^{*}_{1} 1-1 2-2 1-1 1-1 2-2 11 x14x_{1}^{4} 0 0
v2v^{*}_{2} 11 0 0 0 0 11 x24x_{2}^{4} 11 0
v3v^{*}_{3} 0 11 0 0 0 22 x34x_{3}^{4} 0 11
v4v^{*}_{4} 0 0 11 0 0 11 x44x_{4}^{4} 0 0
v5v^{*}_{5} 0 0 0 11 0 11 x54x_{5}^{4} 0 0
v6v^{*}_{6} 0 0 0 0 11 22 x62x_{6}^{2} 0 0
Table 6: toric data of A-model manifold

The GKZ system of XX as follows

𝒵0=i=06ϑi+1,𝒵1=ϑ1+ϑ2,𝒵2=2ϑ1+ϑ3,𝒵3=ϑ1+ϑ4,𝒵4=2ϑ1+ϑ5,𝒵5=2ϑ1+ϑ61=a1a2(a3)2a4a5(a6)2(a0,1)3(a0,2)3\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}=-\vartheta_{1}+\vartheta_{2},\quad\mathcal{Z}_{2}=-2\vartheta_{1}+\vartheta_{3},\\ \mathcal{Z}_{3}=-\vartheta_{1}+\vartheta_{4},\quad\mathcal{Z}_{4}=-2\vartheta_{1}+\vartheta_{5},\quad\mathcal{Z}_{5}=-2\vartheta_{1}+\vartheta_{6}\\ \mathcal{L}_{1}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}(\frac{\partial}{\partial a_{3}})^{2}\frac{\partial}{\partial a_{4}}\frac{\partial}{\partial a_{5}}(\frac{\partial}{\partial a_{6}})^{2}-(\frac{\partial}{\partial a_{0,1}})^{3}(\frac{\partial}{\partial a_{0,2}})^{3}\end{gathered} (A.1)

After blowing up XX along the curve specified by l^1,l^2\hat{l}^{1},\hat{l}^{2}, the GKZ system of blow-up manifold XX^{\prime}:

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=ϑ1+ϑ2ϑ8+ϑ10,𝒵3=2ϑ1+ϑ32ϑ8,𝒵4=ϑ1+ϑ4ϑ8,𝒵5=ϑ1+ϑ5ϑ8,𝒵6=2ϑ1+ϑ62ϑ8,𝒵7=ϑ7ϑ8+ϑ9+ϑ101=a1a2(a3)2a4a5(a6)2(a0,1)3(a0,2)3,2=a1a7a0,1a8,3=a2a9a0,1a10\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-\vartheta_{1}+\vartheta_{2}-\vartheta_{8}+\vartheta_{10},\quad\mathcal{Z}_{3}^{\prime}=-2\vartheta_{1}+\vartheta_{3}-2\vartheta_{8},\\ \mathcal{Z}_{4}^{\prime}=-\vartheta_{1}+\vartheta_{4}-\vartheta_{8},\quad\mathcal{Z}_{5}^{\prime}=-\vartheta_{1}+\vartheta_{5}-\vartheta_{8},\quad\mathcal{Z}_{6}^{\prime}=-2\vartheta_{1}+\vartheta_{6}-2\vartheta_{8},\quad\mathcal{Z}_{7}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{2}}(\frac{\partial}{\partial a_{3}})^{2}\frac{\partial}{\partial a_{4}}\frac{\partial}{\partial a_{5}}(\frac{\partial}{\partial a_{6}})^{2}-(\frac{\partial}{\partial a_{0,1}})^{3}(\frac{\partial}{\partial a_{0,2}})^{3},\\ \mathcal{L}_{2}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{7}}-\frac{\partial}{\partial a_{0,1}}\frac{\partial}{\partial a_{8}},\quad\mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{9}}-\frac{\partial}{\partial a_{0,1}}\frac{\partial}{\partial a_{10}}\end{gathered} (A.2)

Toric data for the enhanced polyhedron associated to the XX^{\prime} :

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3}
v0,1v^{\prime}_{0,1} 11 0 0 0 0 0 0 0 1-1 1-1 1-1 w0,1=x1x2x3w^{\prime}_{0,1}=x_{1}x_{2}x_{3}
v0,2v^{\prime}_{0,2} 11 0 0 0 0 0 0 0 4-4 0 0 w0,2=x4x5x6w^{\prime}_{0,2}=x_{4}x_{5}x_{6}
v1v^{\prime}_{1} 11 0 1-1 2-2 1-1 1-1 2-2 0 1-1 11 0 w1=x14w^{\prime}_{1}=x_{1}^{4}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 0 0 0 11 w2=x24w^{\prime}_{2}=x_{2}^{4}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 22 0 0 w3=x34w^{\prime}_{3}=x_{3}^{4}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 0 11 0 0 w4=x42w^{\prime}_{4}=x_{4}^{2}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 0 11 0 0 w5=x54w^{\prime}_{5}=x_{5}^{4}
v6v^{\prime}_{6} 11 0 0 0 0 0 11 0 22 0 0 w6=x64w^{\prime}_{6}=x_{6}^{4}
v7v^{\prime}_{7} 0 11 0 0 0 0 0 1-1 2-2 11 0 w7=y1w0w^{\prime}_{7}=y_{1}w^{\prime}_{0}
v8v^{\prime}_{8} 0 11 1-1 2-2 1-1 1-1 2-2 1-1 22 1-1 0 w8=y1w2w^{\prime}_{8}=y_{1}w^{\prime}_{2}
v9v^{\prime}_{9} 0 11 0 0 0 0 0 11 1-1 0 11 w9=y2w0w^{\prime}_{9}=y_{2}w^{\prime}_{0}
v10v^{\prime}_{10} 0 11 11 0 0 0 0 11 11 0 1-1 w10=y2w3w^{\prime}_{10}=y_{2}w^{\prime}_{3}

Picard-Fuchs operators from above table:

𝒟1\displaystyle\mathcal{D}_{1} =(2θ1)2(θ1)2(2θ1)2(2θ1θ2)2(θ1θ3)\displaystyle=(2\theta_{1})^{2}(\theta_{1})^{2}(2\theta_{1})^{2}(2\theta_{1}-\theta_{2})^{2}(\theta_{1}-\theta_{3}) (A.3)
z1(θ1+θ2)(2θ1+θ2)2(θ1+θ3)(θ1θ2θ31)i=14(4θ1i)\displaystyle-z_{1}(-\theta_{1}+\theta_{2})(-2\theta_{1}+\theta_{2})^{2}(-\theta_{1}+\theta_{3})(-\theta_{1}-\theta_{2}-\theta_{3}-1)\prod_{i=1}^{4}(-4\theta_{1}-i)
𝒟2\displaystyle\mathcal{D}_{2} =(θ1+θ2)(2θ1+θ2)z2(θ1θ2θ31)(2θ1θ2)\displaystyle=(-\theta_{1}+\theta_{2})(-2\theta_{1}+\theta_{2})-z_{2}(-\theta_{1}-\theta_{2}-\theta_{3}-1)(2\theta_{1}-\theta_{2})
𝒟3\displaystyle\mathcal{D}_{3} =θ3(θ1+θ3)z3(θ1θ2θ31)(θ1θ3)\displaystyle=\theta_{3}(-\theta_{1}+\theta_{3})-z_{3}(-\theta_{1}-\theta_{2}-\theta_{3}-1)(\theta_{1}-\theta_{3})
\displaystyle\cdots

Solving above equations by GKZ-system, the unique power series solution,as well as the fundamental period of XX, is

ω0=\displaystyle\omega_{0}= 1+144z1z22z3+176400z12z24z32+341510400z13z26z33+811620810000z14z28z34\displaystyle 1+144z_{1}z_{2}^{2}z_{3}+176400z_{1}^{2}z_{2}^{4}z_{3}^{2}+341510400z_{1}^{3}z_{2}^{6}z_{3}^{3}+811620810000z_{1}^{4}z_{2}^{8}z_{3}^{4} (A.4)
+𝒪(z16)\displaystyle+\mathcal{O}(z^{16})

and four single logarithmic solutions

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)+2z2z2236z1z22+23z2312z24+3150z12z24+25z25+z3\displaystyle\omega_{0}\log(z_{1})+2z_{2}-z_{2}^{2}-36z_{1}z_{2}^{2}+\frac{2}{3}z_{2}^{3}-\frac{1}{2}z_{2}^{4}+3150z_{1}^{2}z_{2}^{4}+\frac{2}{5}z_{2}^{5}+z_{3} (A.5)
72z1z2z3+492z1z22z3+720z1z23z312z32+360z1z22z32+13z3314z34\displaystyle-72z_{1}z_{2}z_{3}+492z_{1}z_{2}^{2}z_{3}+720z_{1}z_{2}^{3}z_{3}-\frac{1}{2}z_{3}^{2}+360z_{1}z_{2}^{2}z_{3}^{2}+\frac{1}{3}z_{3}^{3}-\frac{1}{4}z_{3}^{4}
+15z35+𝒪(z5)\displaystyle+\frac{1}{5}z_{3}^{5}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)z2+12z2213z23+14z2415z25+36z1z2z3+156z1z22z3\displaystyle\omega_{0}\log(z_{2})-z_{2}+\frac{1}{2}z_{2}^{2}-\frac{1}{3}z_{2}^{3}+\frac{1}{4}z_{2}^{4}-\frac{1}{5}z_{2}^{5}+36z_{1}z_{2}z_{3}+156z_{1}z_{2}^{2}z_{3}
360z1z23z3+𝒪(z5)\displaystyle-360z_{1}z_{2}^{3}z_{3}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+36z1z22z3+156z1z22z3+12z32360z1z22z3213z33\displaystyle\omega_{0}\log(z_{3})+36z_{1}z_{2}^{2}-z_{3}+156z_{1}z_{2}^{2}z_{3}+\frac{1}{2}z_{3}^{2}-360z_{1}z_{2}^{2}z_{3}^{2}-\frac{1}{3}z3^{3}
+360z1z22z33+14z3415z35+𝒪(z5)\displaystyle+360z_{1}z_{2}^{2}z_{3}^{3}+\frac{1}{4}z_{3}^{4}-\frac{1}{5}z3^{5}+\mathcal{O}(z^{5})

Upon the fundamental period and single logarithmic solutions, the inverse mirror maps are

z1=\displaystyle z_{1}= q12q1q2+q1q22+36q12q2272q12q23q1q3+2q1q2q3+72q12q2q3q1q22q3\displaystyle q_{1}-2q_{1}q_{2}+q_{1}q_{2}^{2}+36q_{1}^{2}q_{2}^{2}-72q_{1}^{2}q_{2}^{3}-q_{1}q_{3}+2q_{1}q_{2}q_{3}+72q_{1}^{2}q_{2}q_{3}-q_{1}q_{2}^{2}q_{3} (A.6)
672q12q22q372q12q2q32+𝒪(q5)\displaystyle-672q_{1}^{2}q_{2}^{2}q_{3}-72q_{1}^{2}q_{2}q_{3}^{2}+\mathcal{O}(q^{5})
z2=\displaystyle z_{2}= q2+q22+q23+q24+q2536q1q22q3192q1q23q3+𝒪(q5)\displaystyle q_{2}+q_{2}^{2}+q_{2}^{3}+q_{2}^{4}+q_{2}^{5}-36q_{1}q_{2}^{2}q_{3}-192q_{1}q_{2}^{3}q_{3}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q336q1q22q3+q32192q1q22q32+q33+𝒪(q5)\displaystyle q_{3}-36q_{1}q_{2}^{2}q_{3}+q_{3}^{2}-192q_{1}q_{2}^{2}q_{3}^{2}+q_{3}^{3}+\mathcal{O}(q^{5})

The brane superpotential as linear combination of double logarithmic solutions is

𝒲brane=4t1t2+6t22+4t2t3+NNd1,d2,d3Li2(q1d1q2d2q3d3)\mathcal{W}_{\mathrm{brane}}=4t_{1}t_{2}+6t_{2}^{2}+4t_{2}t_{3}+\sum_{N}N_{d_{1},d_{2},d_{3}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}) (A.7)

and the disk instantons are presented in Table 16

A.2   X[6,6](123|123)X^{(123|123)}_{[6,6]}

Polyhedron vertices and charge vectors A-model manifold XX^{*} and A-branes on it:

Δ\Delta^{*} ll l^1\hat{l}^{1} l^2\hat{l}^{2}
v0,1v^{*}_{0,1} 0 0 0 0 0 6-6 x1x2x3x_{1}x_{2}x_{3} 0 0
v0,2v^{*}_{0,2} 0 0 0 0 0 6-6 x4x5x6x_{4}x_{5}x_{6} 0 0
v1v^{*}_{1} 2-2 3-3 1-1 2-2 3-3 11 x16x_{1}^{6} 1-1 1-1
v2v^{*}_{2} 11 0 0 0 0 22 x23x_{2}^{3} 11 0
v3v^{*}_{3} 0 11 0 0 0 33 x32x_{3}^{2} 0 11
v4v^{*}_{4} 0 0 11 0 0 11 x46x_{4}^{6} 0 0
v5v^{*}_{5} 0 0 0 11 0 22 x53x_{5}^{3} 0 0
v6v^{*}_{6} 0 0 0 0 11 33 x62x_{6}^{2} 0 0
Table 7: Toric Data of A-model side

GKZ system of XX as follows

𝒵0=i=06ϑi+1,𝒵1=2ϑ1+ϑ2,𝒵2=3ϑ1+ϑ3,𝒵3=ϑ1+ϑ4,𝒵4=2ϑ1+ϑ5,𝒵5=3ϑ5+ϑ61=(a1)(a2)2(a3)3(a4)(a5)2(a6)3(a0,1)6(a0,2)6\begin{gathered}\mathcal{Z}_{0}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}=-2\vartheta_{1}+\vartheta_{2},\quad\mathcal{Z}_{2}=-3\vartheta_{1}+\vartheta_{3},\\ \mathcal{Z}_{3}=-\vartheta_{1}+\vartheta_{4},\quad\mathcal{Z}_{4}=-2\vartheta_{1}+\vartheta_{5},\quad\mathcal{Z}_{5}=-3\vartheta_{5}+\vartheta_{6}\\ \mathcal{L}_{1}=(\frac{\partial}{\partial a_{1}})(\frac{\partial}{\partial a_{2}})^{2}(\frac{\partial}{\partial a_{3}})^{3}(\frac{\partial}{\partial a_{4}})(\frac{\partial}{\partial a_{5}})^{2}(\frac{\partial}{\partial a_{6}})^{3}-(\frac{\partial}{\partial a_{0,1}})^{6}(\frac{\partial}{\partial a_{0,2}})^{6}\end{gathered} (A.8)

After blowing up along the curve specified by l^1,l^2\hat{l}^{1},\hat{l}^{2}, the GKZ system of blow-up manifold XX^{\prime}:

𝒵0=i=06ϑi+1,𝒵1=i=710ϑi,𝒵2=2ϑ1+ϑ22ϑ7+ϑ82ϑ9,𝒵3=3ϑ1+ϑ33ϑ73ϑ9+ϑ10,𝒵4=ϑ1+ϑ4ϑ7ϑ9,𝒵5=2ϑ1+ϑ52ϑ72ϑ9,𝒵6=3ϑ1+ϑ63ϑ73ϑ9,𝒵7=ϑ7ϑ8+ϑ9+ϑ101=(a1)(a2)2(a3)3(a4)(a5)2(a6)3(a0,1)6(a0,2)6,2=a1a8a3a7,3=a1a10a2a9\begin{gathered}\mathcal{Z}_{0}^{\prime}=\sum_{i=0}^{6}\vartheta_{i}+1,\quad\mathcal{Z}_{1}^{\prime}=\sum_{i=7}^{10}\vartheta_{i},\quad\mathcal{Z}_{2}^{\prime}=-2\vartheta_{1}+\vartheta_{2}-2\vartheta_{7}+\vartheta_{8}-2\vartheta_{9},\\ \mathcal{Z}_{3}^{\prime}=-3\vartheta_{1}+\vartheta_{3}-3\vartheta_{7}-3\vartheta_{9}+\vartheta_{10},\quad\mathcal{Z}_{4}^{\prime}=-\vartheta_{1}+\vartheta_{4}-\vartheta_{7}-\vartheta_{9},\quad\mathcal{Z}_{5}^{\prime}=-2\vartheta_{1}+\vartheta_{5}-2\vartheta_{7}-2\vartheta_{9},\\ \mathcal{Z}_{6}^{\prime}=-3\vartheta_{1}+\vartheta_{6}-3\vartheta_{7}-3\vartheta_{9},\quad\mathcal{Z}_{7}^{\prime}=-\vartheta_{7}-\vartheta_{8}+\vartheta_{9}+\vartheta_{10}\\ \mathcal{L}_{1}^{\prime}=(\frac{\partial}{\partial a_{1}})(\frac{\partial}{\partial a_{2}})^{2}(\frac{\partial}{\partial a_{3}})^{3}(\frac{\partial}{\partial a_{4}})(\frac{\partial}{\partial a_{5}})^{2}(\frac{\partial}{\partial a_{6}})^{3}-(\frac{\partial}{\partial a_{0,1}})^{6}(\frac{\partial}{\partial a_{0,2}})^{6},\\ \mathcal{L}_{2}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{8}}-\frac{\partial}{\partial a_{3}}\frac{\partial}{\partial a_{7}},\quad\mathcal{L}_{3}^{\prime}=\frac{\partial}{\partial a_{1}}\frac{\partial}{\partial a_{10}}-\frac{\partial}{\partial a_{2}}\frac{\partial}{\partial a_{9}}\end{gathered} (A.9)

Toric data for the enhanced polyhedron associated to the XX^{\prime} ’s mirror manifold :

Δ\Delta^{\prime} l1l^{\prime}_{1} l2l^{\prime}_{2} l3l^{\prime}_{3}
v0,1v^{\prime}_{0,1} 11 0 0 0 0 0 0 0 6-6 0 0 w0,1=x1x2x3w^{\prime}_{0,1}=x_{1}x_{2}x_{3}
v0,2v^{\prime}_{0,2} 11 0 0 0 0 0 0 0 6-6 0 0 w0,2=x4x5x6w^{\prime}_{0,2}=x_{4}x_{5}x_{6}
v1v^{\prime}_{1} 11 0 2-2 3-3 1-1 2-2 3-3 0 2-2 11 11 w1=x16w^{\prime}_{1}=x_{1}^{6}
v2v^{\prime}_{2} 11 0 11 0 0 0 0 0 33 0 1-1 w2=x23w^{\prime}_{2}=x_{2}^{3}
v3v^{\prime}_{3} 11 0 0 11 0 0 0 0 55 1-1 0 w3=x32w^{\prime}_{3}=x_{3}^{2}
v4v^{\prime}_{4} 11 0 0 0 11 0 0 0 11 0 0 w4=x46w^{\prime}_{4}=x_{4}^{6}
v5v^{\prime}_{5} 11 0 0 0 0 11 0 0 22 0 0 w5=x53w^{\prime}_{5}=x_{5}^{3}
v6v^{\prime}_{6} 11 0 0 0 0 0 11 0 33 0 0 w6=x62w^{\prime}_{6}=x_{6}^{2}
v7v^{\prime}_{7} 0 11 2-2 3-3 1-1 2-2 3-3 1-1 11 0 1-1 w7=y1w0w^{\prime}_{7}=y_{1}w^{\prime}_{0}
v8v^{\prime}_{8} 0 11 11 0 0 0 0 1-1 1-1 0 11 w8=y1w2w^{\prime}_{8}=y_{1}w^{\prime}_{2}
v9v^{\prime}_{9} 0 11 2-2 3-3 1-1 2-2 3-3 11 22 1-1 0 w9=y2w0w^{\prime}_{9}=y_{2}w^{\prime}_{0}
v10v^{\prime}_{10} 0 11 0 11 0 0 0 11 2-2 11 0 w10=y2w3w^{\prime}_{10}=y_{2}w^{\prime}_{3}

Picard-Fuchs equations from above table:

𝒟1\displaystyle\mathcal{D}_{1} =(3θ1θ3)3(5θ1θ2)5θ1(2θ1)2(3θ1)3(2θ1θ2)2(θ1θ3)\displaystyle=(3\theta_{1}-\theta_{3})^{3}(5\theta_{1}-\theta_{2})^{5}\theta_{1}(2\theta_{1})^{2}(3\theta_{1})^{3}(2\theta_{1}-\theta_{2})^{2}(\theta_{1}-\theta_{3}) (A.10)
z1(2θ1+θ2+θ3)2(2θ1+θ2)2(θ1+θ3)i=16j=16(6θ1i)(6θ1j)\displaystyle-z_{1}(-2\theta_{1}+\theta_{2}+\theta_{3})^{2}(-2\theta_{1}+\theta_{2})^{2}(-\theta_{1}+\theta_{3})\prod_{i=1}^{6}\prod_{j=1}^{6}(-6\theta_{1}-i)(-6\theta_{1}-j)
𝒟2\displaystyle\mathcal{D}_{2} =(2θ1+θ2+θ3)(2θ1+θ2)z2(5θ1θ2)(2θ1θ2)\displaystyle=(-2\theta_{1}+\theta_{2}+\theta_{3})(-2\theta_{1}+\theta_{2})-z_{2}(5\theta_{1}-\theta_{2})(2\theta_{1}-\theta_{2})
𝒟3\displaystyle\mathcal{D}_{3} =(2θ1+θ2+θ3)(θ1+θ3)z3(3θ1θ3)(θ1θ3)\displaystyle=(-2\theta_{1}+\theta_{2}+\theta_{3})(-\theta_{1}+\theta_{3})-z_{3}(3\theta_{1}-\theta_{3})(\theta_{1}-\theta_{3})
\displaystyle\cdots

Soling above equations by GKZ-system, the unique power series solution,as well as the fundamental period of XX, is

ω0=\displaystyle\omega_{0}= 1+3600z1z22z3+192099600z12z24z32+16679709446400z13z26z33\displaystyle 1+3600z_{1}z_{2}^{2}z_{3}+192099600z_{1}^{2}z_{2}^{4}z_{3}^{2}+16679709446400z_{1}^{3}z_{2}^{6}z_{3}^{3} (A.11)
+1791735431214128400z14z28z34+𝒪(z16)\displaystyle+1791735431214128400z_{1}^{4}z_{2}^{8}z_{3}^{4}+\mathcal{O}(z^{16})

and the single logarithmic solutions are

ω1,1=\displaystyle\omega_{1,1}= ω0log(z1)1200z1z221800z1z2z3+29640z1z22z3+10800z1z23z3\displaystyle\omega_{0}\log(z_{1})-1200z_{1}z_{2}^{2}-1800z_{1}z_{2}z_{3}+29640z_{1}z_{2}^{2}z_{3}+10800z_{1}z_{2}^{3}z_{3} (A.12)
+3600z1z22z32+𝒪(z5)\displaystyle+3600z_{1}z_{2}^{2}z_{3}^{2}+\mathcal{O}(z^{5})
ω1,2=\displaystyle\omega_{1,2}= ω0log(z2)+900z1z2z3+3000z1z22z35400z1z23z3+𝒪(z5)\displaystyle\omega_{0}\log(z_{2})+900z_{1}z_{2}z_{3}+3000z_{1}z_{2}^{2}z_{3}-5400z_{1}z_{2}^{3}z_{3}+\mathcal{O}(z^{5})
ω1,3=\displaystyle\omega_{1,3}= ω0log(z3)+1200z1z22+1800z1z22z33600z1z22z32+𝒪(z5)\displaystyle\omega_{0}\log(z_{3})+1200z_{1}z_{2}^{2}+1800z_{1}z_{2}^{2}z_{3}-3600z_{1}z_{2}^{2}z_{3}^{2}+\mathcal{O}(z^{5})

By the fundamental period and single logarithmic solutions,the inverse mirror maps are

z1=\displaystyle z_{1}= q1+1200q12q224243320q13q24+1800q12q2q329640q12q22q3+𝒪(q5)\displaystyle q_{1}+1200q_{1}^{2}q_{2}^{2}-4243320q_{1}^{3}q_{2}^{4}+1800q_{1}^{2}q_{2}q_{3}-29640q_{1}^{2}q_{2}^{2}q_{3}+\mathcal{O}(q^{5}) (A.13)
z2=\displaystyle z_{2}= q2900q1q22q33000q1q23q3+𝒪(q5)\displaystyle q_{2}-900q_{1}q_{2}^{2}q_{3}-3000q_{1}q_{2}^{3}q_{3}+\mathcal{O}(q^{5})
z3=\displaystyle z_{3}= q31200q1q22q3+5683320q12q24q31800q1q22q32+𝒪(q5)\displaystyle q_{3}-1200q_{1}q_{2}^{2}q_{3}+5683320q_{1}^{2}q_{2}^{4}q_{3}-1800q_{1}q_{2}^{2}q_{3}^{2}+\mathcal{O}(q^{5})

The brane superpotential is

𝒲brane=4t1t2+6t22+4t2t3+NNd1,d2,d3Li2(q1d1q2d2q3d3)\mathcal{W}_{\mathrm{brane}}=4t_{1}t_{2}+6t_{2}^{2}+4t_{2}t_{3}+\sum_{N}N_{d_{1},d_{2},d_{3}}\mathrm{Li}_{2}(q_{1}^{d_{1}}q_{2}^{d_{2}}q_{3}^{d_{3}}) (A.14)

and the disk instantons are presented in Table 16

Appendix B Ooguri-Vafa Invariants for Two Closed and Two Open Moduli

B.1   Ooguri-Vafa Invariants for X9(1,1,3,3,3)X^{(1,1,3,3,3)}_{9}

k=0: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N0,m,0,m+nN_{0,m,0,m+n} n=1n=1 22 33 44 55 66
m=0m=0 33 0 0 0 0 0
11 3-3 3-3 3-3 3-3 3-3 3-3
22 1515 2121 2727 3636 4545 5757
33 120-120 183-183 279-279 420-420 618-618 *
44 11791179 19441944 32103210 52505250 * *
55 13572-13572 22983-22983 39771-39771 * * *
k=1: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N1,m,1,m+nN_{1,m,1,m+n} n=1n=1 22 33 44 55 66
m=0m=0 2727 0 0 0 0 0
11 9090 9090 9090 9090 9090 9090
22 684-684 954-954 1314-1314 1764-1764 2304-2304 2934-2934
33 74707470 1173611736 1848618486 2862028620 4321843218 *
44 94644-94644 158022-158022 267768-267768 450270-450270 * *
55 13021201302120 22549682254968 39987183998718 * * *
k=2: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N2,m,2,m+nN_{2,m,2,m+n} n=1n=1 22 33 44 55 66
m=0m=0 8181 108108 0 0 0 0
11 1539-1539 1377-1377 1377-1377 1377-1377 1377-1377 1377-1377
22 1355413554 1972819728 2907929079 4111241112 5591755917 7340473404
33 204120-204120 333612-333612 553878-553878 898587898587 1412154-1412154 *
44 33519693351969 57813845781384 1020996910209969 1784876417848764 * *
55 56886543-56886543 101222919-101222919 185715828-185715828 * * *
k=3: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N3,m,3,m+nN_{3,m,3,m+n} n=1n=1 22 33 44 55 66
m=0m=0 255255 984-984 729729 0 0 0
11 1815018150 1676416764 1479614796 1479614796 1479614796 1479614796
22 132492-132492 221262-221262 370224-370224 580212-580212 864306-864306 1168506-1168506
33 30638763063876 53456405345640 96474249647424 1688554816885548 2823082228230822 *
44 68640885-68640885 123720696-123720696 231991668-231991668 428397570-428397570 * *
55 19039500481903950048 28120111382812011138 53156453085315645308 * * *
Table 8: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n} for X9(1,1,1,3,3)X_{9}^{(1,1,1,3,3)} with brane I at large volume. kk and mm label the class t1,t2t_{1},t_{2} of X9X_{9} and nn labels the brane winding. Blue entries agree with Table 5 of [2] and entries * exceed in this table the order of our calculation
k=0: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N0,m,0,m+nN_{0,m,0,m+n} n=1n=1 22 33 44 55 66
m=0m=0 5454 0 0 0 0 0
11 5454 18-18 0 0 0 0
22 3636 0 0 0 0 0
33 5454 0 0 0 0 *
44 5454 18-18 0 0 * *
55 3636 0 0 * * *
k=1: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N1,m,1,m+nN_{1,m,1,m+n} n=1n=1 22 33 44 55 66
m=0m=0 0 0 0 0 0 0
11 108-108 3636 0 0 0 0
22 27722772 1026-1026 0 1818 0 0
33 243756243756 193050-193050 100548100548 33588-33588 66966696 *
44 29473202947320 2801070-2801070 22122722212272 1340010-1340010 * *
55 2379837623798376 22631562-22631562 1996585219965852 * * *
k=2: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N2,m,2,m+nN_{2,m,2,m+n} n=1n=1 22 33 44 55 66
m=0m=0 0 0 0 0 0 0
11 270270 90-90 0 0 0 0
22 11160-11160 41044104 0 72-72 0 0
33 174960174960 74358-74358 162162 29162916 0 *
44 7067304-7067304 62353446235344 4430376-4430376 26344442634444 * *
55 9208053092080530 71321472-71321472 602803296602803296 * * *
k=3: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n}
N3,m,3,m+nN_{3,m,3,m+n} n=1n=1 22 33 44 55 66
m=0m=0 0 0 0 0 0 0
11 0 0 0 0 0 0
22 0 0 0 0 0 0
33 0 0 1212 0 0 *
44 0 0 0 0 * *
55 0 194724194724 541296-541296 * * *
Table 9: Ooguri-Vafa Invariants Nk,m,k,m+nN_{k,m,k,m+n} for X9(1,1,1,3,3)X_{9}^{(1,1,1,3,3)} with brane II at large volume. kk and mm label the class t1,t2t_{1},t_{2} of X9X_{9} and nn labels the brane winding. Blue entries agree with Table 6 of [2] and entries * exceed in this table the order of our calculation
k=1: Ooguri-Vafa Invariants Nk,m+n,k,nN_{k,m+n,k,n}
N1,m+n,1,nN_{1,m+n,1,n} n=0n=0 11 22 33 44 55
m=1m=1 7272 1728-1728 80460-80460 1075140-1075140 9482724-9482724 65006280-65006280
22 36-36 1728017280 340092340092 34889403488940 2589521425895214 156528234156528234
33 1224-1224 64800-64800 977832-977832 8913456-8913456 61353288-61353288 350009424-350009424
44 55085508 176688176688 23015882301588 1944100819441008 127166868127166868 *
55 15336-15336 398304-398304 4742280-4742280 38004912-38004912 * *
66 3394833948 787968787968 88539488853948 * * *
k=2: Ooguri-Vafa Invariants Nk,m+n,k,nN_{k,m+n,k,n}
N2,m+n,2,nN_{2,m+n,2,n} n=0n=0 11 22 33 44 55
m=1m=1 180-180 70207020 97686-97686 26433722643372 37415520-37415520 6097896648-6097896648
22 108108 5832-5832 588276-588276 39249543924954 17972120161797212016 467071781328-467071781328
33 108-108 133488133488 368388368388 441631440-441631440 17699810580-17699810580 467071781328-467071781328
44 10944-10944 411264-411264 7585423275854232 42825205444282520544 107873699400107873699400 *
55 6130861308 6824952-6824952 730782756-730782756 24887701224-24887701224 * *
66 153828153828 7400872874008728 41054982844105498284 * * *
k=3: Ooguri-Vafa Invariants Nk,m+n,k,nN_{k,m+n,k,n}
N3,m+n,3,nN_{3,m+n,3,n} n=0n=0 11 22 33 44 55
m=1m=1 0 0 0 0 0 0
22 0 0 0 0 0 0
33 8-8 0 0 192192 0 0
44 0 0 0 0 0 *
55 0 0 0 0 * *
66 44 0 0 * * *
Table 10: Ooguri-Vafa Invariants Nk,m+n,k,nN_{k,m+n,k,n} for X9(1,1,1,3,3)X_{9}^{(1,1,1,3,3)} with brane II at large volume. kk and mm label the class t1,t2t_{1},t_{2} of X9X_{9} and nn labels the brane winding. Blue entries agree with Table 6 of [2] and entries * exceed in this table the order of our calculation

B.2   Ooguri-Vafa Invariants for X8(1,1,2,2,2)X^{(1,1,2,2,2)}_{8}

k=0: Ooguri-Vafa Invariants Nm+n,k,n,kN_{m+n,k,n,k}
N0,m+n,0,nN_{0,m+n,0,n} n=0n=0 11 22 33 44
m=1m=1 18-18 216-216 4892-4892 151264-151264 5681870-5681870
22 7272 26242624 100832100832 42141124214112 191601760191601760
33 486-486 33048-33048 1797228-1797228 94486824-94486824 5033832642-5033832642
44 46084608 449280449280 3144665631446656 19828428801982842880 120829061120120829061120
55 50850-50850 6447800-6447800 550590500-550590500 40388001000-40388001000 *
66 614304614304 9615801696158016 96793859529679385952 * *
k=1: Ooguri-Vafa Invariants Nm+n,k,n,kN_{m+n,k,n,k}
N1,m+n,1,nN_{1,m+n,1,n} n=0n=0 11 22 33 44
m=1m=1 42-42 6192-6192 733644-733644 79606336-79606336 8211597214-8211597214
22 774774 137232137232 1779728017797280 20376918722037691872 218057272396218057272396
33 14136-14136 2930112-2930112 416393532-416393532 50570319792-50570319792 5639510827530-5639510827530
44 258054258054 6121108861211088 95004843849500484384 12262118534241226211853424 142918383992888142918383992888
55 4712292-4712292 1258590240-1258590240 212363598836-212363598836 29126855887056-29126855887056 *
66 8608255286082552 2556183052825561830528 46660345211524666034521152 * *
k=2: Ooguri-Vafa Invariants Nm+n,k,n,kN_{m+n,k,n,k}
N2,m+n,2,nN_{2,m+n,2,n} n=0n=0 11 22 33 44
m=1m=1 0 1368-1368 1077372-1077372 365059512-365059512 86759396282-86759396282
22 204204 198576198576 7546680075466800 1930788729619307887296 39557500794883955750079488
33 19302-19302 11637432-11637432 3670150356-3670150356 847235304168-847235304168 162420251412438-162420251412438
44 903132903132 485877600485877600 144775961928144775961928 3229341375182432293413751824 60425413344436166042541334443616
55 32358618-32358618 16917337440-16917337440 4997647584648-4997647584648 1110817713352920-1110817713352920 *
66 995862804995862804 525552662880525552662880 157318976664144157318976664144 * *
k=3: Ooguri-Vafa Invariants Nm+n,k,n,kN_{m+n,k,n,k}
N3,m+n,3,nN_{3,m+n,3,n} n=0n=0 11 22 33 44
m=1m=1 0 0 0 55820-55820 150679552-150679552
22 0 1174411744 3233657632336576 2435933356824359333568 1080635166227210806351662272
33 1566-1566 5076-5076 4570885188-4570885188 2261841187392-2261841187392 932100832928880-932100832928880
44 413766413766 596077920596077920 374635723374635723 152201297231776152201297231776 5729609405293110357296094052931103
55 38831778-38831778 42101500720-42101500720 22526450326120-22526450326120 9573014306940528-9573014306940528 *
66 23505748022350574802 22414171504322241417150432 11075341041028801107534104102880 * *
Table 11: Ooguri-Vafa Invariants Nk,m+n,k,nN_{k,m+n,k,n} for X8(1,1,2,2,2)X^{(1,1,2,2,2)}_{8}. kk and mm label the class t1,t2t_{1},t_{2} of X8X_{8} and nn labels the brane winding. Entries * exceed in this table the order of our calculation

B.3   Ooguri-Vafa Invariants for X12(1,1,2,2,6)X_{12}^{(1,1,2,2,6)}

k=0: Ooguri-Vafa Invariants Nm,n,k,kIN^{I}_{m,n,k,k}
Nm,n,0,0N_{m,n,0,0} n=0n=0 11 22 33 44 55 66
m=0m=0 0 33 12-12 8181 768-768 84758475 102384-102384
11 66 2424 150-150 15361536 18876-18876 255192255192 3658740-3658740
22 3-3 5151 828-828 1278912789 210525-210525 35677593567759 61486848-61486848
33 0 0 2448-2448 6242462424 1424304-1424304 3084595230845952 647281800-647281800
44 0 51-51 4284-4284 200175200175 6560640-6560640 185328198185328198 4798234056-4798234056
55 0 24-24 3822-3822 446208446208 21903294-21903294 824369400824369400 26693892732-26693892732
66 0 3-3 0 707832707832 55037712-55037712 28240147802824014780 115993486620-115993486620
77 0 0 38223822 785040785040 106603500-106603500 76511969287651196928 404555630886-404555630886
88 0 0 42844284 527133527133 161311872-161311872 1670660865316706608653 1155008094300-1155008094300
k=1: Ooguri-Vafa Invariants Nm,n,k,kIN^{I}_{m,n,k,k}
Nm,n,1,1N_{m,n,1,1} n=0n=0 11 22 33 44 55 66
m=0m=0 0 77 129-129 23562356 43009-43009 785382785382 14347092-14347092
11 0 6060 1812-1812 4630846308 1087560-1087560 2428855224288552 524645988-524645988
22 0 231231 11688-11688 422769422769 12912432-12912432 355724019355724019 9146942640-9146942640
33 0 0 44796-44796 23691842369184 95605692-95605692 32828001603282800160 101243194536-101243194536
44 0 231-231 118617-118617 91722759172275 495951000-495951000 2145027804621450278046 799644722631-799644722631
55 0 60-60 233400-233400 2639781626397816 1925808876-1925808876 105855800388105855800388 4805576016564-4805576016564
66 0 7-7 0 5955582359555823 5856840424-5856840424 411529509612411529509612 22896432050424-22896432050424
77 0 0 233400233400 111805968111805968 14462333760-14462333760 13000435269601300043526960 89053059573312-89053059573312
88 0 0 118617118617 179694201179694201 29956661529-29956661529 34225313452653422531345265 289181994799893-289181994799893
Table 12: Ooguri-Vafa Invariants NI(m,n,k,k)N^{I}(m,n,k,k) for X12(1,1,2,2,6)X^{(1,1,2,2,6)}_{12} at large volume. Blue result agree with Table 1 of [16] and entries * exceed in this table the order of our calculation
k=2: Ooguri-Vafa Invariants Nm,n,k,kIN^{I}_{m,n,k,k}
Nm,n,2,2N_{m,n,2,2} n=0n=0 11 22 33 44 55 66
m=0m=0 0 0 34-34 31723172 150522-150522 53931035393103 165977134-165977134
11 0 0 438-438 6258062580 3849906-3849906 168975888168975888 6150177030-6150177030
22 0 0 2556-2556 576165576165 46702074-46702074 25311364352531136435 109516928532-109516928532
33 0 0 8592-8592 32737203273720 356493366-356493366 2409463233624094632336 1247189399850-1247189399850
44 0 0 20250-20250 1292675112926751 1922497884-1922497884 163696266396163696266396 10205528854440-10205528854440
55 0 0 43854-43854 3806671238066712 7813282584-7813282584 846085289856846085289856 63961350090048-63961350090048
66 0 0 0 8748372387483723 24949597038-24949597038 34659673808763465967380876 319764160565976-319764160565976
77 0 0 4385443854 166124856166124856 64549577412-64549577412 1158411907425611584119074256 1712597040576252-1712597040576252
88 0 0 2025020250 288193197288193197 139132564554-139132564554 4365028962643650289626 *
k=3: Ooguri-Vafa Invariants Nm,n,k,kIN^{I}_{m,n,k,k}
Nm,n,1,1N_{m,n,1,1} n=0n=0 11 22 33 44 55 66
m=0m=0 0 0 0 261261 6896168961 64719636471963 391762467-391762467
11 0 0 0 49924992 1750680-1750680 203030160203030160 14586604596-14586604596
22 0 0 0 4248942489 20943672-20943672 30477325833047732583 261743302824-261743302824
33 0 0 0 215676215676 156884940-156884940 2910160814429101608144 3011532345432-3011532345432
44 0 0 0 738051738051 827067552-827067552 198520743132198520743132 24958437292476-24958437292476
55 0 0 0 18349441834944 3278132892-3278132892 10313019491031301949 191124519232428-191124519232428
66 0 0 0 35439123543912 10209175968-10209175968 52734111517535273411151753 *
77 0 0 0 58871765887176 32716895652-32716895652 * *
88 0 0 0 1085670010856700 * * *
Table 13: Ooguri-Vafa Invariants NI(m,n,k,k)N^{I}(m,n,k,k) for X(1,1,2,2,6)X_{(1,1,2,2,6)}. Blue entries agree with Table 1 of [16] and entries * in this table exceed the order of our calculation
k=0: Ooguri-Vafa Invariants Nm,n,k,kIIN^{II}_{m,n,k,k}
Nm,n,0,0N_{m,n,0,0} n=0n=0 11 22 33 44 55 66
m=0m=0 0 22 11-11 9090 956-956 1147011470 148104-148104
11 0 1818 144-144 17281728 23688-23688 347634347634 5319648-5319648
22 0 9090 864-864 1485014850 268794-268794 49148824914882 90121788-90121788
33 0 0 3072-3072 7662676626 1869000-1869000 4320969643209696 959687352-959687352
44 0 90-90 7983-7983 268938268938 8964558-8964558 265751964265751964 7224918462-7224918462
55 0 18-18 20016-20016 694368694368 31713192-31713192 12199918501219991850 41011490232-41011490232
66 0 2-2 0 14180401418040 86560046-86560046 43581414604358141460 182848393872-182848393872
77 0 0 2001620016 25510682551068 189151560-189151560 1248206716812482067168 658806706584-658806706584
88 0 0 79837983 52205585220558 343903860-343903860 2935714825829357148258 1959719830479-1959719830479
k=1: Ooguri-Vafa Invariants Nm,n,k,kIIN^{II}_{m,n,k,k}
Nm,n,1,1N_{m,n,1,1} n=0n=0 11 22 33 44 55 66
m=0m=0 0 2-2 0 408408 12976-12976 318240318240 7064886-7064886
11 0 18-18 0 81368136 331560-331560 99213669921366 260033616-260033616
22 0 90-90 0 7669876698 4015620-4015620 147332466147332466 4580847000-4580847000
33 0 0 0 452268452268 30639624-30639624 13872456001387245600 51445509768-51445509768
44 0 9090 0 18772381877238 165558276-165558276 93100826169310082616 414111436578-414111436578
55 0 1818 0 58344485834448 676162008-676162008 4750850646047508506460 2548090964232-2548090964232
66 0 22 0 1396395013963950 2176167772-2176167772 192171282588192171282588 12488328860112-12488328860112
77 0 0 0 2715944427159444 5689981368-5689981368 634779163584634779163584 50184535778280-50184535778280
88 0 0 0 5424949854249498 12403534176-12403534176 17524614468781752461446878 169030073870352-169030073870352
Table 14: Ooguri-Vafa Invariants NII(m,n,k,k)N^{II}(m,n,k,k) for X12(1,1,2,2,6)X^{(1,1,2,2,6)}_{12}. Blue entries agree with Table 2 of [16] and entries * in this table exceed the order of our calculation
k=2: Ooguri-Vafa Invariants Nm,n,k,kIIN^{II}_{m,n,k,k}
Nm,n,2,2N_{m,n,2,2} n=0n=0 11 22 33 44 55 66
m=0m=0 0 0 1111 408-408 0 539430539430 30383709-30383709
11 0 0 144144 8136-8136 0 1702713617027136 1132913808-1132913808
22 0 0 864864 76698-76698 0 258298074258298074 20374948188-20374948188
33 0 0 30723072 452268-452268 0 25034879042503487904 235230388200-235230388200
44 0 0 79837983 1877238-1877238 0 1741223836817412238368 1958962807170-1958962807170
55 0 0 2001620016 5834448-5834448 0 9260832960092608329600 12543118517016-12543118517016
66 0 0 0 13963950-13963950 0 391990737708391990737708 64292612674320-64292612674320
77 0 0 20016-20016 27159444-27159444 0 13570196276161357019627616 289834848988800-289834848988800
88 0 0 7983-7983 54249498-54249498 0 41364936485464136493648546 *
k=3: Ooguri-Vafa Invariants Nm,n,k,kIIN^{II}_{m,n,k,k}
Nm,n,3,3N_{m,n,3,3} n=0n=0 11 22 33 44 55 66
m=0m=0 0 0 0 90-90 1297612976 539430-539430 0
11 0 0 0 1728-1728 331560331560 17027136-17027136 0
22 0 0 0 14850-14850 40156204015620 258298074-258298074 0
33 0 0 0 76626-76626 3063962430639624 2503487904-2503487904 0
44 0 0 0 268938-268938 165558276165558276 17412238368-17412238368 0
55 0 0 0 694368-694368 676162008676162008 92608329600-92608329600 2309467987008-2309467987008
66 0 0 0 1418040-1418040 21761677722176167772 351774546534-351774546534 22545027404271-22545027404271
77 0 0 0 2551068-2551068 52002287045200228704 1014274703904-1014274703904 *
88 0 0 0 6391956-6391956 84487405598448740559 * *
Table 15: Ooguri-Vafa Invariants NII(m,n,k,k)N^{II}(m,n,k,k) for X12(1,1,2,2,6)X^{(1,1,2,2,6)}_{12}. Blue entries agree with Table 2 of [16] and entries * in this table exceed the order of our calculation

Appendix C Ooguri-Vafa Invariants for One Closed and Two Open Moduli

Ooguri-Vafa Invariants Nm,m+n,mN_{m,m+n,m} for 11111[3,3]\mathbb{P}_{11111}[3,3]
Nm,m+n,mN_{m,m+n,m} n=0n=0 11 22 33
m=0m=0 0 12-12 0 0
11 120120 108108 288-288 6060
22 2100-2100 1166411664 96129612 33876-33876
33 7044070440 525264-525264 20662802066280 17511121751112
44 3191280-3191280 2972732429727324 139852800-139852800 478494708478494708
Ooguri-Vafa Invariants Nm,m+n,mN_{m,m+n,m} for 112112[4,4]\mathbb{P}_{112112}[4,4]
Nm,m+n,mN_{m,m+n,m} n=0n=0 11 22 33
m=0m=0 0 16-16 0 0
11 552552 11201120 2544-2544 10561056
22 39264-39264 281280281280 539392539392 1693632-1693632
33 55329845532984 52350528-52350528 280580256280580256 557960544557960544
44 1043002176-1043002176 1234601006412346010064 77352996864-77352996864 372579061488372579061488
Ooguri-Vafa Invariants Nm,m+n,mN_{m,m+n,m} for 123123[6,6]\mathbb{P}_{123123}[6,6]
Nm,m+n,mN_{m,m+n,m} n=0n=0 11 22 33
m=1m=1 0 16-16 0 0
11 2724027240 7280072800 144240-144240 5328053280
22 93024240-93024240 697855680697855680 17468039681746803968 4807419840-4807419840
33 633116600568633116600568 6085353582144-6085353582144 3458909168630434589091686304 8668743686179286687436861792
44 5741552410002720-5741552410002720 6858589676495304068585896764953040 442591883444977920-442591883444977920 22748672026981557602274867202698155760
Table 16: Ooguri-Vafa Invariants for [3,3](111|111)\mathbb{P}^{(111|111)}_{[3,3]},[4,4][112|112]\mathbb{P}^{[112|112]}_{[4,4]} and [6,6][123|123]\mathbb{P}^{[123|123]}_{[6,6]} at large volume. The entries * in this table exceed the order of our calculation.

Appendix D Ooguri-Vafa Invariants for One Closed and Three Open Moduli

U(1)U(1) Ooguri-Vafa Invariants Nm,m,m,nN_{m,m,m,n}
Nm,m,m,nN_{m,m,m,n} n=0n=0 11 22 33 44 55
m=0m=0 0 0 0 0 0 0
11 0 4896-4896 0 0 0 0
22 0 0 17297281729728 0 0 0
33 0 0 0 1530550656-1530550656 0 0
44 0 0 0 0 18820076695021882007669502 0
U(2)U(2) Ooguri-Vafa Invariants Nm,m,nN_{m,m,n}
Nm,m,nN_{m,m,n} n=0n=0 11 22 33 44 55
m=0m=0 0 0 0 0 0 0
11 0 48324832 0 0 0 0
22 0 0 62661046266104 0 0 0
33 0 0 0 553361855683\frac{55336185568}{3} 0 0
44 0 0 0 0 7577942601028275779426010282 3443691801600-3443691801600
Table 17: Ooguri-Vafa invariant of Sextic Hypersurface
U(1)U(1) Ooguri-Vafa Invariants Nm,m,m,nN_{m,m,m,n}
Nm,m,m,nN_{m,m,m,n} n=0n=0 n=1n=1 n=2n=2 n=3n=3 n=4n=4 n=5n=5
m=0m=0 0 0 0 0 0 0
11 0 3328-3328 0 0 0 0
22 0 0 20303362030336 0 0 0
33 0 0 0 3115785728-3115785728 0 0
44 0 0 0 237081600237081600 * *
U(2)U(2) Ooguri-Vafa Invariants Nm,m,nN_{m,m,n}
Nm,m,nN_{m,m,n} n=0n=0 n=1n=1 n=2n=2 n=3n=3 n=4n=4 n=5n=5
m=0m=0 0 0 0 0 0 0
11 0 5504-5504 0 0 0 0
22 0 0 95200169520016 0 0 0
33 0 0 0 43042961382415\frac{-430429613824}{15} 0 0
44 0 0 0 0 10006050234576087\frac{1000605023457608}{7} 9744720529920-9744720529920
Table 18: Ooguri-Vafa invariant of Octic Hypersurface

References

  • [1] Mina Aganagic and Cumrun Vafa “Mirror Symmetry, D-Branes and Counting Holomorphic Discs”, 2000 arXiv:hep-th/0012041 [hep-th]
  • [2] M. Alim, M. Hecht, P. Mayr and A. Mertens “Mirror Symmetry for Toric Branes on Compact Hypersurfaces” In JHEP 0909:126,2009, 2009 arXiv:0901.2937 [hep-th]
  • [3] Michela Artebani and Igor Dolgachev “The Hesse pencil of plane cubic curves”, 2006 arXiv:math/0611590 [math.AG]
  • [4] Victor V. Batyrev “Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties”, 1993 arXiv:alg-geom/9310003 [alg-geom]
  • [5] Victor V. Batyrev and Lev A. Borisov “On Calabi-Yau Complete Intersections in Toric Varieties”, 1994 arXiv:alg-geom/9412017 [alg-geom]
  • [6] David Cox “Mirror symmetry and algebraic geometry” Providence, R.I: American Mathematical Society, 1999
  • [7] David Cox, John Little and Henry Schenck “Toric Varieties” American Mathematical Society, 2011
  • [8] Thomas W. Grimm, Albrecht Klemm and Denis Klevers “Five-Brane Superpotentials, Blow-Up Geometries and SU(3) Structure Manifolds” In JHEP 1105:113,2011, 2010 arXiv:1011.6375 [hep-th]
  • [9] Thomas W. Grimm, Tae-Won Ha, Albrecht Klemm and Denis Klevers “The D5-brane effective action and superpotential in N=1 compactifications” In Nucl.Phys.B816:139-184,2009, 2008 arXiv:0811.2996 [hep-th]
  • [10] Allen Hatcher “Algebraic Topology” Cambridge University Pr., 2001
  • [11] S. Hosono, B.. Lian and S.-T. Yau “GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces” In Commun.Math.Phys. 182 (1996) 535-578, 1995 arXiv:alg-geom/9511001 [alg-geom]
  • [12] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau “Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces” In Commun.Math.Phys.167:301-350,1995, 1993 arXiv:hep-th/9308122 [hep-th]
  • [13] S. Hosono, A. Klemm, S. Theisen and Shing-Tung Yau “Mirror Symmetry, Mirror Map and Applications to Complete Intersection Calabi-Yau Spaces” In Nucl.Phys. B433 (1995) 501-554, 1994 arXiv:hep-th/9406055 [hep-th]
  • [14] Xiao-Tian Jiang and Fu-Zhong Yang “D-brane superpotentials, SU(2) Ooguri-Vafa invariants and TypeII/F -theory duality”, 2017 arXiv:1710.06184 [hep-th]
  • [15] Hans Jockers and Masoud Soroush “Effective superpotentials for compact D5-brane Calabi-Yau geometries” In Commun.Math.Phys.290:249-290,2009, 2008 arXiv:0808.0761 [hep-th]
  • [16] Hans Jockers and Masoud Soroush “Relative periods and open-string integer invariants for a compact Calabi-Yau hypersurface” In Nucl.Phys.B821:535-552,2009, 2009 arXiv:0904.4674 [hep-th]
  • [17] Sheldon Katz and Chiu-Chu Melissa Liu “Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc” In Adv.Theor.Math.Phys. 5 (2002) 1-49 and Geom. Topol. Monogr. 8 (2006) 1-47, 2001
  • [18] W. Lerche, P. Mayr and N. Warner “Holomorphic N=1 Special Geometry of Open–Closed Type II Strings”, 2002 arXiv:hep-th/0207259 [hep-th]
  • [19] W. Lerche, P. Mayr and N. Warner “N=1 Special Geometry, Mixed Hodge Variations and Toric Geometry”, 2002 arXiv:hep-th/0208039 [hep-th]
  • [20] Jun Li and Yun S. Song “Open string instantons and relative stable morphisms” In Adv.Theor.Math.Phys.5:67-91,2002, 2001 DOI: 10.2140/gtm.2006.8.49
  • [21] P. Mayr “N=1 Mirror Symmetry and Open/Closed String Duality” In Adv.Theor.Math.Phys.5:213-242,2002, 2001 arXiv:hep-th/0108229 [hep-th]
  • [22] Igor R. Shafarevich “Basic Algebraic Geometry 2” Springer Berlin Heidelberg, 2016
  • [23] Jan Stienstra “GKZ Hypergeometric Structures”, 2005 arXiv:math/0511351 [math.AG]
  • [24] Edward Witten “Chern-Simons Gauge Theory As A String Theory” In Prog.Math.133:637-678,1995, 1992 arXiv:hep-th/9207094 [hep-th]
  • [25] Edward Witten “Phases of N=2N=2 Theories In Two Dimensions” In Nucl.Phys.B403:159-222,1993, 1993 arXiv:hep-th/9301042 [hep-th]