This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: Department of General Education, Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka, Osaka 535-8585, Japan.

Supersymmetry of the Robinson-Trautman solution

Masato Nozawa masato.nozawa@oit.ac.jp
Abstract

The Robinson-Trautman solution in the Einstein-Maxwell-Λ\Lambda system admits a shear-free and twist-free null geodesic congruence with a nonvanishing expansion. Restricting to the case where the Maxwell field is aligned, i.e., the spacetime is algebraically special, we provide an exhaustive classification of supersymmetric Robinson-Trautman spacetimes in the four-dimensional 𝒩=2{\cal N}=2 gauged supergravity. The differential constraints that arise from the integrability conditions of the Killing spinor equation enable us to systematically reconstruct the metric. We derive the explicit form of the Killing spinor either by directly integrating the Killing spinor equation or by casting the solution into the canonical form of supersymmetric solutions given in hep-th/0307022. In any case, the supersymmetric Robinson-Trautman solution generically exhibits a naked singularity.

1 Introduction

In recent years, gauged supergravity theories have significantly advanced our understanding of string theory and M-theory. The scope of gauged supergravities is very extensive, ranging from the exploration of black hole physics to flux compactifications. Since the gauged supergravities accommodate anti-de Sitter (AdS) spacetimes, they offer valuable testbeds for addressing quantum gravity and the behavior of strongly coupled field theories via holographic duality. Nevertheless, the exact asymptotically AdS solutions are hardly available due to the inapplicability of solution-generating methods Klemm:2015uba .

Among the gravitational solutions in supergravity, bosonic backgrounds preserving supersymmetry have played a pivotal role, since they are less susceptible to quantum corrections. The supersymmetric solutions possess a set of Killing spinors satisfying the first-order differential equations, which considerably constrain a possible form of spacetime metrics and fluxes. Consequently, the Killing spinors facilitate the construction of exact solutions, providing crucial insights into the geometry and topology of the underlying spacetime. Indeed, the Killing spinors prescribe the preferred GG-structures, which yield a number of algebraic and differential relations for the bilinear tensors constructed out of the Killing spinors Gauntlett:2001ur ; Gauntlett:2002sc . The classification scheme based on the bilinear tensors, originally propounded in Gauntlett:2002nw , enables us to cast the permissible metrics and fluxes into the canonical form. This prescription has been successfully applied to a variety of other supergravity theories in diverse dimensions Gauntlett:2003fk ; Gutowski:2004yv ; Gutowski:2005id ; Bellorin:2006yr ; Bellorin:2007yp ; Gutowski:2003rg ; Gauntlett:2002fz ; Gauntlett:2003wb ; Caldarelli:2003pb ; Bellorin:2005zc ; Meessen:2010fh ; Meessen:2012sr ; Nozawa:2010rf . Another algorithm for classifying supersymmetric solutions is the spinorial geometry, wherein the spinors are expressed in terms of form-fields and subsequently brought into the preferred representative of their orbit Gran:2005wn ; Gran:2005ct ; Cacciatori:2007vn ; Gutowski:2007ai ; Grover:2008ih ; Cacciatori:2008ek ; Klemm:2009uw ; Klemm:2010mc . For further insights into these developments, we direct readers to recent review articles Maeda:2011sh ; Gran:2018ijr .

In four-dimensional 𝒩=2\mbox{$\mathcal{N}$}=2 ungauged supergravity, Tod made a pioneering contribution Tod:1983pm , prior to the above series of works, by obtaining a comprehensive list of supersymmetric solutions utilizing the Newman-Penrose formalism Newman:1961qr . In the case where the Killing vector built out of the Killing spinor is timelike, the solution reduces to the Israel-Perjes-Wilson family Perjes:1971gv ; Israel:1972vx which is completely specified by a complex harmonic function on the three-dimensional base space 𝔼3\mathbb{E}^{3}. In four-dimensional 𝒩=2\mbox{$\mathcal{N}$}=2 gauged supergravity, the systematic classification of supersymmetric solutions was undertaken in Caldarelli:2003pb and later scrutinized in detail by Cacciatori:2007vn ; Cacciatori:2004rt . It turns out that the solution belonging to the timelike class obeys a set of differential equations on a curved three-dimensional base space.111The holonomy of this space is reduced with respect to the torsionfull connection Klemm:2015mga . In contrast to the ungauged case, these differential equations remain nonlinear. This is a primary obstacle to obtaining exhaustive list of supersymmetric asymptotically AdS solutions. It therefore follows that the physical properties and the entire landscape of supersymmetric solutions remain elusive in the gauged case, notwithstanding the overarching motivations such as holography and the attractor mechanism.

A first trailblazing work concerning supersymmetric static solutions to 𝒩=2\mbox{$\mathcal{N}$}=2 gauged supergravity was carried out by Romans Romans:1991nq (see also Sabra:1999ux ; Chamseddine:2000bk ). As demonstrated in Romans:1991nq , the Killing spinor equation is essentially dependent on a single variable for the Reissner-Nordström-AdS family, for which the direct integration of the Killing spinor equation is possible. In the rotating case, several authors have investigated the integrability conditions for the Killing spinor Caldarelli:1998hg ; AlonsoAlberca:2000cs . Since the integrability conditions are merely necessary conditions for supersymmetry vanNieuwenhuizen:1983wu , it remains uncertain whether the configurations satisfying the integrability conditions in Caldarelli:1998hg ; AlonsoAlberca:2000cs indeed admit a Killing spinor. It has been widely recognized as an unfeasible task to solve the Killing spinor equation directly, since equations depend nontrivially both on radial and angular coordinates (see Lemos:2000wp for an exceptional instance). Nevertheless, in Klemm:2013eca , Klemm and the present author were able to demonstrate the existence of the Killing spinor for the Plebański-Demiański solution Plebanski:1976gy , which describes the most general Petrov-D spacetime with an aligned non-null electromagnetic field and corresponds to a rotating, charged, and uniformly accelerating mass. The Plebański-Demiański solution harbors two-commuting Killing vectors and encompasses the Reissner-Nordström-AdS, Kerr-Newman-AdS, and the AdS C-metric as special cases. The basic strategy in Klemm:2013eca is to implement the coordinate transformation in such a way that the solution fits into the canonical form in Caldarelli:2003pb , where the explicit solution to the Killing spinor equation is given, provided that the underlying nonlinear set of equations is solved. The technique outlined in Klemm:2013eca has seen broad application in finding rotating solutions in other supergravity theories, e.g., Gnecchi:2013mja ; Nozawa:2015qea ; Nozawa:2017yfl ; Hristov:2019mqp ; Ferrero:2020twa . In this paper, we delve deeply into the supersymmetric Robinson-Trautman class of solutions which represents another avenue for generalizing the Reissner-Nordström-AdS family.

The Robinson-Trautman solution describes a radiating spacetime admitting an expanding congruence of null geodesics which is shear-free and twist-free RT ; RT2 . In general, the Robinson-Trautman solution is devoid of Killing symmetry. The vacuum Robinson-Trautman solution is specified by a solution to the fourth-order nonlinear partial differential equation, which is identified as the Calabi flow Tod . Foster and Newman delved into the linear perturbation FN and demonstrated that perturbations decay exponentially at large retarded time, implying that the spacetime eventually settles down to the Schwarzschild solution. Lukács et al. demonstrated the validity of this argument at the nonlinear level by exploiting the Lyapunov functional Lukacs:1983hr . The global solution was addressed extensively by numerous authors Rendall ; Singleton ; Chrusciel:1991vxx ; Chrusciel:1992rv ; Chrusciel:1992tj . Their work shows that the Robinson-Trautman solution exists globally for generic, arbitrarily strong, and smooth initial data, providing a conclusive proof that the solution eventually converges to the Schwarzschild metric. However, we must note that the existence of radiation implies an alluring physical consequence that the extension across the event horizon is available only with a finite degree of differentiability. Other physical properties were explored by many authors, including the asymptotic solutions Vandyck ; Vandyck2 ; Schmidt , the Bäcklund transformation Glass ; Hoenselaers ; Hoenselaers2 , the Petrov types Podolsky:2016sff , the cosmic no-hair conjecture Bicak:1995vc ; Bicak:1997ne and the holography BernardideFreitas:2014eoi ; Bakas:2014kfa ; Adami:2024mtu .

The charged Robinson-Trautman solution was constructed via the spin coefficient method Newman:1969nvq as well as the complexification technique LN . However, its physical properties have been less explored. In this paper, the supersymmetry of the charged Robinson-Trautman solution is worked out. Since the charged Robinson-Trautman solution is dynamical and specified by a set of differential equations, one might expect that there appear solutions endowed with richer physical structures than static solutions. This expectation motivates our study.

We lay out the present paper as follows. In the next section, we review the Robinson-Trautman solution in the Einstein-Maxwell-Λ\Lambda theory. In section 3, we derive the necessary conditions for supersymmetry from the integrability conditions of the Killing spinor equation. Section 4 consists of the main results of our paper. By classifying the realizable supersymmetric solutions in a systematic fashion, we construct the explicit metric and gauge field, by integrating the integrability conditions. We discuss some physical aspects of each solution. The final conclusion is described in section 5. Appendix A discusses the ungauged Robinson-Trautman solution.

2 Charged Robinson-Trautman solution

The action of the Einstein-Maxwell-Λ\Lambda system is

S=116πGd4xg(R2ΛFμνFμν),\displaystyle S=\frac{1}{16\pi G}\int{\rm d}^{4}x\sqrt{-g}\left(R-2\Lambda-F_{\mu\nu}F^{\mu\nu}\right)\,, (1)

where F=dAF={\rm d}A is the Faraday tensor and Λ=3g2<0\Lambda=-3g^{2}<0. Here g(>0)g\leavevmode\nobreak\ (>0) is the inverse of the AdS radius. This is the bosonic part of the 𝒩=2\mbox{$\mathcal{N}$}=2 minimal gauged supergravity in four dimensions. The field equations are

Rμν=2(FμρFνρ14gμνFρσFρσ)+Λgμν,\displaystyle R_{\mu\nu}=2\left(F_{\mu\rho}F_{\nu}{}^{\rho}-\frac{1}{4}g_{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}\right)+\Lambda g_{\mu\nu}\,, (2)

and

dF=0,dF=0.\displaystyle{\rm d}F=0\,,\qquad{\rm d}\star F=0\,. (3)

Here the star denotes the Hodge dual operation (F)μν=12ϵμνρσFρσ(\star F)_{\mu\nu}=\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}.

The Robinson-Trautman solution describes a radiating spacetime that admits a twist-free and shear-free null geodesic congruence 𝒍\boldsymbol{l} with a nonvanishing expansion RT ; RT . In the Λ\Lambda-vacuum case, the theorem of Goldberg-Sachs GS allows us to find that the spacetime is algebraically special. The algebraically special feature is maintained in the Einstein-Maxwell-Λ\Lambda case, provided that the null direction 𝒍\boldsymbol{l} corresponds to the eigenvector of the Maxwell field, on which we shall focus in this paper. In the aligned case, the charged Robinson-Trautman solution reads Stephani:2003tm ; Kozameh:2006hk ; Griffiths:2009dfa

ds2\displaystyle{\rm d}s^{2} =2dudrH(u,r,z,z¯)du2+2r2P(u,z,z¯)2dzdz¯,\displaystyle=-2{\rm d}u{\rm d}r-H(u,r,z,\bar{z}){\rm d}u^{2}+2r^{2}P(u,z,\bar{z})^{-2}{\rm d}z{\rm d}\bar{z}\,, (4)

with

F=\displaystyle F= Q+Q¯2r2dudr+12P2(QQ¯)dzdz¯\displaystyle-\frac{Q+\bar{Q}}{2r^{2}}{\rm d}u\wedge{\rm d}r+\frac{1}{2}P^{-2}\left(Q-\bar{Q}\right){\rm d}z\wedge{\rm d}\bar{z}
+du[(ϕ2+Q2r)dz+(ϕ¯2+¯Q¯2r)dz¯],\displaystyle+{\rm d}u\wedge\left[\left(\phi_{2}+\frac{\partial Q}{2r}\right){\rm d}z+\left(\bar{\phi}_{2}+\frac{\bar{\partial}\bar{Q}}{2r}\right){\rm d}\bar{z}\right]\,, (5)

where

H(u,r,z,z¯)\displaystyle H(u,r,z,\bar{z}) =K(u,z,z¯)2M(u,z,z¯)r+|Q(u,z)|2r22r(lnP(u,z,z¯))u+g2r2.\displaystyle=K(u,z,\bar{z})-\frac{2M(u,z,\bar{z})}{r}+\frac{|Q(u,z)|^{2}}{r^{2}}-2r\big{(}\ln P(u,z,\bar{z})\big{)}_{u}+g^{2}r^{2}\,. (6)

Here, we have introduced the abbreviation =/z\partial=\partial/\partial z, ¯=/z¯\bar{\partial}=\partial/\partial\bar{z} and Pu=P/uP_{u}=\partial P/\partial u. The function K(u,z,z¯)K(u,z,\bar{z}) is defined in terms of P(u,z,z¯)P(u,z,\bar{z}) as

K(u,z,z¯)2P(u,z,z¯)2¯lnP(u,z,z¯),\displaystyle K(u,z,\bar{z})\equiv 2P(u,z,\bar{z})^{2}\partial\bar{\partial}\ln P(u,z,\bar{z})\,, (7)

which denotes the Gauss curvature of the (possibly uu-dependent) two-dimensional space

ds22=gij(2)(u,xi)dxidxj=2P2dzdz¯,xi=(z,z¯).\displaystyle{\rm d}s_{2}^{2}=g_{ij}^{(2)}(u,x^{i}){\rm d}x^{i}{\rm d}x^{j}=\frac{2}{P^{2}}{\rm d}z{\rm d}\bar{z}\,,\qquad x^{i}=(z,\bar{z})\,. (8)

It follows that the solution is specified by four rr-independent functions M=M(u,z,z¯)M=M(u,z,\bar{z}), P=P(u,z,z¯)P=P(u,z,\bar{z}) (>0>0), Q=Q(u,z)Q=Q(u,z) and ϕ2=ϕ2(u,z,z¯)\phi_{2}=\phi_{2}(u,z,\bar{z}). The functions MM and PP are real, whereas QQ and ϕ2\phi_{2} are complex. Note that QQ is holomorphic in the complex coordinate zz. For the satisfaction of field equations (2) and (3), these functions must obey the following set of partial differential equations

M=\displaystyle\partial M= 2Q¯ϕ2,\displaystyle\,-2\bar{Q}\phi_{2}\,, (9)
QQ¯uQ¯Qu=\displaystyle Q\bar{Q}_{u}-\bar{Q}Q_{u}=  2P2(ϕ¯2Qϕ2¯Q¯),\displaystyle\,2{P^{2}}(\bar{\phi}_{2}\partial Q-\phi_{2}\bar{\partial}\bar{Q})\,, (10)
Δ2K=\displaystyle\Delta_{2}K=  4Mu12M(lnP)u+8P2|ϕ2|2,\displaystyle\,4M_{u}-12M(\ln P)_{u}+8P^{2}|\phi_{2}|^{2}\,, (11)
¯ϕ2=\displaystyle\bar{\partial}\phi_{2}= 12(QP2)u.\displaystyle\,-\frac{1}{2}(QP^{-2})_{u}\,. (12)

Equation (10) corresponds to the integrability condition (¯¯)M=0(\partial\bar{\partial}-\bar{\partial}\partial)M=0 of (9) when equation (12) is fulfilled. Equation (12) ensures the existence of the gauge potential AA satisfying F=dAF={\rm d}A as

A=Q+Q¯2rdu+(ϕ2du)dz+(ϕ¯2du)dz¯.\displaystyle A=-\frac{Q+\bar{Q}}{2r}{\rm d}u+\left(\int\phi_{2}{\rm d}u\right){\rm d}z+\left(\int\bar{\phi}_{2}{\rm d}u\right){\rm d}\bar{z}\,. (13)

The curvature invariant reads

RμνρσRμνρσ=24g4+48r6(M|Q|2r)2+8|Q|4r8.\displaystyle R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}=24g^{4}+\frac{48}{r^{6}}\left(M-\frac{|Q|^{2}}{r}\right)^{2}+\frac{8|Q|^{4}}{r^{8}}\,. (14)

It follows that r=0r=0 is the spacetime curvature singularity except for M=Q=0M=Q=0.

In the coordinate system (4), the nontwisting shear-free null geodesics are generated by 𝒍=/r\boldsymbol{l}=\partial/\partial r, i.e., rr is an affine parameter of the null geodesics. Taking the Newman-Penrose null frame (we follow the notations in Stephani:2003tm )

𝒍=r,𝒏=u12Hr,𝒎=Prz,\displaystyle\boldsymbol{l}=\frac{\partial}{\partial r}\,,\qquad\boldsymbol{n}=\frac{\partial}{\partial u}-\frac{1}{2}H\frac{\partial}{\partial r}\,,\qquad\boldsymbol{m}=\frac{P}{r}\frac{\partial}{\partial z}\,, (15)

the metric reads

gμν=2l(μnν)+2m(μm¯ν).\displaystyle g_{\mu\nu}=-2l_{(\mu}n_{\nu)}+2m_{(\mu}\bar{m}_{\nu)}\,. (16)

The Maxwell field is aligned with respect to 𝒍\boldsymbol{l}, in the sense that

Φ0\displaystyle\Phi_{0}\equiv Fμνlμmν=0,\displaystyle\,F_{\mu\nu}l^{\mu}m^{\nu}=0\,, (17a)
Φ1\displaystyle\Phi_{1}\equiv 12Fμν(lμnν+m¯μmν)=Q¯2r2,\displaystyle\,\frac{1}{2}F_{\mu\nu}(l^{\mu}n^{\nu}+\bar{m}^{\mu}m^{\nu})=\frac{\bar{Q}}{2r^{2}}\,, (17b)
Φ2\displaystyle\Phi_{2}\equiv Fμνm¯μnν=P2r2(¯Q¯+2rϕ¯2).\displaystyle\,F_{\mu\nu}\bar{m}^{\mu}n^{\nu}=-\frac{P}{2r^{2}}\left(\bar{\partial}\bar{Q}+2r\bar{\phi}_{2}\right)\,. (17c)

In this aligned case, the Goldberg-Sachs’ theorem is straightforwardly extended to the Einstein-Maxwell-Λ\Lambda system to conclude that the solution is algebraically special

Ψ0\displaystyle\Psi_{0}\equiv Cμνρσlμmνlρmσ=0,Ψ1Cμνρσlμnνlρmσ=0.\displaystyle\,C_{\mu\nu\rho\sigma}l^{\mu}m^{\nu}l^{\rho}m^{\sigma}=0\,,\qquad\Psi_{1}\equiv\,C_{\mu\nu\rho\sigma}l^{\mu}n^{\nu}l^{\rho}m^{\sigma}=0\,. (18)

It turns out that the Petrov type is at least degenerate to type-II. The nonvanishing Weyl scalars are given by

Ψ2\displaystyle\Psi_{2}\equiv\, Cμνρσlμmνm¯ρnσ=Mr3+|Q|2r4,\displaystyle C_{\mu\nu\rho\sigma}l^{\mu}m^{\nu}\bar{m}^{\rho}n^{\sigma}=-\frac{M}{r^{3}}+\frac{|Q|^{2}}{r^{4}}\,, (19)
Ψ3\displaystyle\Psi_{3}\equiv\, Cμνρσnμlνnρm¯σ=P¯K2r23PQϕ¯2r3PQ¯Q¯r4,\displaystyle\,C_{\mu\nu\rho\sigma}n^{\mu}l^{\nu}n^{\rho}\bar{m}^{\sigma}=-\frac{P\bar{\partial}K}{2r^{2}}-\frac{3PQ\bar{\phi}_{2}}{r^{3}}-\frac{PQ\bar{\partial}\bar{Q}}{r^{4}}\,, (20)
Ψ4\displaystyle\Psi_{4}\equiv\, Cμνρσnμm¯νnρm¯σ=¯(P2(¯lnP)ur+P2¯K2r2+2QP2ϕ¯2r3+P2Q¯Q¯2r4).\displaystyle C_{\mu\nu\rho\sigma}n^{\mu}\bar{m}^{\nu}n^{\rho}\bar{m}^{\sigma}=\bar{\partial}\left(-\frac{P^{2}(\bar{\partial}\ln P)_{u}}{r}+\frac{P^{2}\bar{\partial}K}{2r^{2}}+\frac{2QP^{2}\bar{\phi}_{2}}{r^{3}}+\frac{P^{2}Q\bar{\partial}\bar{Q}}{2r^{4}}\right)\,. (21)

From the behavior of these curvature scalars, one deduces that MM and QQ play the role of mass and (complex) electromagnetic charge, respectively.

The above null tetrad frame (15) is parallelly propagated along 𝒍\boldsymbol{l} as

lννlμ=lννnμ=lννmμ=0.\displaystyle l^{\nu}\nabla_{\nu}l^{\mu}=l^{\nu}\nabla_{\nu}n^{\mu}=l^{\nu}\nabla_{\nu}m^{\mu}=0\,. (22)

It follows that the each Weyl scalar measures the Weyl curvature component in a basis that is parallelly propagated along to the null geodesics. Thus, the r=0r=0 corresponds to the the parallelly propagated (p.p.) curvature singularity even when M=Q=0M=Q=0.

It is worth mentioning that the line element (4) and the Maxwell field (5) are preserved under the reparameterization

u\displaystyle u\to\, U(u),\displaystyle U(u)\,, r\displaystyle r\to\, rUu1,\displaystyle rU_{u}^{-1}\,, z\displaystyle z\to\, ζ(z),\displaystyle\zeta(z)\,, P\displaystyle P\to\, P|ζ|Uu1,\displaystyle P|\partial\zeta|U_{u}^{-1}\,,
K\displaystyle K\to Uu2K,\displaystyle\,U_{u}^{-2}K\,, M\displaystyle M\to MUu3,\displaystyle\,MU_{u}^{-3}\,, Q\displaystyle Q\to\, QUu2,\displaystyle QU_{u}^{-2}\,, ϕ2\displaystyle\phi_{2}\to\, Uu1(ζ)1ϕ2,\displaystyle U_{u}^{-1}(\partial\zeta)^{-1}\phi_{2}\,, (23)

where U=U(u)U=U(u) is real and ζ=ζ(z)\zeta=\zeta(z) is holomorphic in zz. Furthermore, the Einstein equations (2), the Maxwell field equations and the Bianchi identity (3) are invariant under the U(1){\rm U}(1) electromagnetic duality transformations

F+iFeiγ(F+iF),\displaystyle F+i\star F\to e^{i\gamma}(F+i\star F)\,, (24)

where γ\gamma is a constant. Here we take the orientation as ϵ=ir2P2dudrdzdz¯\boldsymbol{\epsilon}=-ir^{2}P^{-2}{\rm d}u\wedge{\rm d}r\wedge{\rm d}z\wedge{\rm d}\bar{z}. Under the electromagnetic duality, QQ and ϕ2\phi_{2} transform as

QeiγQ,ϕ2eiγϕ2.\displaystyle Q\to e^{i\gamma}Q\,,\qquad\phi_{2}\to e^{i\gamma}\phi_{2}\,. (25)

It should be kept in mind that the electromagnetic duality is the invariance of equations of motion. This transformation retains neither the Lagrangian nor the Killing spinor equation, as we will see in the next section.

Since the general Robinson-Trautman family (4) is fairly general, let us now consider its subclasses to capture the physical meaning.

2.1 AdS

To begin with, it is instructive to see how the background AdS spacetime is embedded into the Robinson-Trautman family. The maximally symmetric AdS space is achieved if and only if all the Weyl scalars and the Maxwell scalars vanish, implying M=Q=ϕ2=0M=Q=\phi_{2}=0 with

K=0,(P12P)u=0.\displaystyle\partial K=0\,,\qquad(P^{-1}\partial^{2}P)_{u}=0\,. (26)

Upon integration, one finds a real function K0=K0(u)K_{0}=K_{0}(u) and a complex function h0=h0(z,z¯)h_{0}=h_{0}(z,\bar{z}) with

K=K0(u),2P=h0(z,z¯)P.\displaystyle K=K_{0}(u)\,,\qquad\partial^{2}P=h_{0}(z,\bar{z})P\,. (27)

Taking z¯\bar{z} derivative of the second equation, the compatibility of above equations leads to ¯h0=0\bar{\partial}h_{0}=0, i.e., h0h_{0} is a holomorphic function of zz. Using the reparametrization freedom (23), one can set K0(u)=k={0,±1}K_{0}(u)=k=\{0,\pm 1\} without losing any generality. Since the first equation of (27) is the uu-dependent Liouville’s equation for PP, its general solution in the simply connected region is given by

P(u,z,z¯)=1+12k|h1|2(h1¯h¯1)1/2,\displaystyle P(u,z,\bar{z})=\frac{1+\frac{1}{2}k|h_{1}|^{2}}{(\partial h_{1}\bar{\partial}\bar{h}_{1})^{1/2}}\,, (28)

where h1=h1(u,z)h_{1}=h_{1}(u,z) admits at most simple poles Henrici . Inserting this into the second equation of (27), one finds that h1(u,z)h_{1}(u,z) must satisfy

{h1(u,z),z}=2h0(z),\displaystyle\{h_{1}(u,z),z\}=-2h_{0}(z)\,, (29)

where the right hand side of this equation denotes the Schwarzian derivative

{h1(u,z),z}3h1h132(2h1h1)2.\displaystyle\{h_{1}(u,z),z\}\equiv\frac{\partial^{3}h_{1}}{\partial h_{1}}-\frac{3}{2}\left(\frac{\partial^{2}h_{1}}{\partial h_{1}}\right)^{2}\,. (30)

This means that h1h_{1} is given by h1(u,z)=f1(u,z)/f2(u,z)h_{1}(u,z)=f_{1}(u,z)/f_{2}(u,z), where f1f_{1} and f2f_{2} are linearly independent holomorphic solutions to the differential equation

2fi(u,z)h0(z)fi(u,z)=0.\displaystyle\partial^{2}f_{i}(u,z)-h_{0}(z)f_{i}(u,z)=0\,. (31)

One possible way to realize AdS is to choose h1h_{1} to be independent of uu, for which the reparameterization freedom (23) enables us to set

h0(z)=0h1=z.\displaystyle h_{0}(z)=0\qquad h_{1}=z\,. (32)

This yields the AdS metric in the conventional form

ds2=(k+g2r2)du22dudr+r2dΣk2,\displaystyle{\rm d}s^{2}=-\left(k+g^{2}r^{2}\right){\rm d}u^{2}-2{\rm d}u{\rm d}r+r^{2}{\rm d}\Sigma_{k}^{2}\,, (33)

where dΣk2{\rm d}\Sigma_{k}^{2} is the two-dimensional metric of constant Gauss curvature kk,

dΣk2=2Pk2dzdz¯,Pk=1+k2zz¯.\displaystyle{\rm d}\Sigma_{k}^{2}=2P_{k}^{-2}{\rm d}z{\rm d}\bar{z}\,,\qquad P_{k}=1+\frac{k}{2}z\bar{z}\,. (34)

Alternatively, a coordinate transformation z=2/ktan(kθ/2)eiφz=\sqrt{2/k}\tan(\sqrt{k}\theta/2)e^{i\varphi} leads to a manifestly axisymmetric form

dΣk2=dθ2+(1ksin(kθ))2dφ2.\displaystyle{\rm d}\Sigma_{k}^{2}={\rm d}\theta^{2}+\left(\frac{1}{\sqrt{k}}\sin(\sqrt{k}\theta)\right)^{2}{\rm d}\varphi^{2}\,. (35)

2.2 Vacuum case

In the vacuum case Q=ϕ2=0Q=\phi_{2}=0, equation (9) implies M=M(u)M=M(u), while the reparametrization freedom (23) enables us to set MM to be a constant. Then, the vacuum Robinson-Trautman equation (11) amounts to the Calabi-flow equation for the two-dimensional metric (8) as Tod

tgzz¯(2)=¯R(2),\displaystyle\frac{\partial}{\partial t}g_{z\bar{z}}^{(2)}=\partial\bar{\partial}R^{(2)}\,, (36)

where t=u/(6M)t=u/(6M) is a time coordinate of the flow, gzz¯(2)g^{(2)}_{z\bar{z}} is the two-dimensional (Kähler) metric and R(2)=2KR^{(2)}=2K is its scalar curvature. This is a parabolic, nonlinear partial differential equation of fourth order, which resembles considerably the heat flow diffusion equation. This flow equation is well-suited for analyzing the global behavior of the solution, since it defines an appropriate functional that is positive-definite and monotonically decreasing along the flow Lukacs:1983hr .

In the charged case, on the other hand, it appears that the generalized Robinson-Trautman equation (11) cannot be recast into the first-order flow equation. This is a primary adversity when trying to explore the global behavior of the charged Robinson-Trautman solution. See Lun:1994up ; Kozameh:2007yf ; Chrusciel:2021pnv for related discussions.

3 Integrability conditions for supersymmetry

The bosonic part of the minimal 𝒩=2\mbox{$\mathcal{N}$}=2 gauged supergravity (1) consists of vielbein eaμe^{a}{}_{\mu} and the U(1){\rm U}(1) gauge field AμA_{\mu} Freedman:1976aw . This four-dimensional theory can be embedded into eleven-dimensional supergravity on the deformed seven sphere Chamblin:1999tk ; Gauntlett:2006ai .

The Killing spinor equation for minimal 𝒩=2\mbox{$\mathcal{N}$}=2 gauged supergravity is given by Freedman:1976aw

^μϵ(μ+i4Fνργνργμ+12gγμigAμ)ϵ=0,\displaystyle\hat{\nabla}_{\mu}\epsilon\equiv\left(\nabla_{\mu}+\frac{i}{4}F_{\nu\rho}\gamma^{\nu\rho}\gamma_{\mu}+\frac{1}{2}g\gamma_{\mu}-igA_{\mu}\right)\epsilon=0\,, (37)

where μ=μ+14ωμabγab\nabla_{\mu}=\partial_{\mu}+\frac{1}{4}\omega_{\mu ab}\gamma^{ab} is a covariant derivative acting on the spinor, where ωμab=eaνμebν\omega_{\mu ab}=e_{a\nu}\nabla_{\mu}e_{b}{}^{\nu} denotes the spin connection. Gamma matrices satisfy γ(μγν)=gμν\gamma_{(\mu}\gamma_{\nu)}=g_{\mu\nu} and γμν=γ[μγν]\gamma_{\mu\nu}=\gamma_{[\mu}\gamma_{\nu]}. Under the gauge transformation AμAμ+μχA_{\mu}\to A_{\mu}+\nabla_{\mu}\chi, the Killing spinor equation remains invariant, provided that the Killing spinor transforms as

ϵeigχϵ.\displaystyle\epsilon\to e^{ig\chi}\epsilon\,. (38)

To rephrase, the Killing spinor possesses a gauge charge.

Taking the supercovariant derivative of (37) and antisymmetrizing indices, we obtain the integrability conditions for the Killing spinor equation

μνϵ=0,μν[^μ,^ν],\displaystyle\mbox{$\mathcal{R}$}_{\mu\nu}\epsilon=0\,,\qquad\mbox{$\mathcal{R}$}_{\mu\nu}\equiv[\hat{\nabla}_{\mu},\hat{\nabla}_{\nu}]\,, (39)

where μν\mbox{$\mathcal{R}$}_{\mu\nu} denotes the supercurvature. The viable structure of supercurvature in the context of positive energy theorem was worked out in Nozawa:2013maa . For the existence of the nontrivial solutions to the algebraic equations μνϵ=0\mbox{$\mathcal{R}$}_{\mu\nu}\epsilon=0, the following integrability conditions must be satisfied

det(μν)=0.\displaystyle{\rm det}(\mbox{$\mathcal{R}$}_{\mu\nu})=0\,. (40)

It is tedious but straightforward to compute det(μν)=0{\rm det}(\mbox{$\mathcal{R}$}_{\mu\nu})=0 for the Robinson-Trautman solution. For the calculation, we take the tetrad frame

e+=dr+12Hdu,e=du,e=rP1dz,e¯=rP1dz¯,\displaystyle e^{+}={\rm d}r+\frac{1}{2}H{\rm d}u\,,\qquad e^{-}={\rm d}u\,,\qquad e^{\bullet}=rP^{-1}{\rm d}z\,,\qquad e^{\bar{\bullet}}=rP^{-1}{\rm d}\bar{z}\,, (41)

with

gμν=ηabeaebμ,νηab=(0100100000010010),\displaystyle g_{\mu\nu}=\eta_{ab}e^{a}{}_{\mu}e^{b}{}_{\nu}\,,\qquad\eta_{ab}=\left(\begin{array}[]{cccc}0&-1&0&0\\ -1&0&0&0\\ 0&0&0&1\\ 0&0&1&0\end{array}\right)\,, (46)

and the following gamma matrix representation

γ+\displaystyle\gamma_{+} =(0000000220000000),γ=(0020000000000200),\displaystyle=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&0&\sqrt{2}\\ \sqrt{2}&0&0&0\\ 0&0&0&0\end{array}\right)\,,\qquad\gamma_{-}=\left(\begin{array}[]{cccc}0&0&-\sqrt{2}&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&-\sqrt{2}&0&0\end{array}\right)\,, (55)
γ\displaystyle\gamma_{\bullet} =(0000002000002000),γ¯=(0002000002000000),\displaystyle=\left(\begin{array}[]{cccc}0&0&0&0\\ 0&0&-\sqrt{2}&0\\ 0&0&0&0\\ \sqrt{2}&0&0&0\end{array}\right)\,,\qquad\gamma_{\bar{\bullet}}=\left(\begin{array}[]{cccc}0&0&0&\sqrt{2}\\ 0&0&0&0\\ 0&-\sqrt{2}&0&0\\ 0&0&0&0\end{array}\right)\,, (64)

with γ5=γ+¯=diag(1,1,1,1)\gamma_{5}=\gamma_{+-\bullet\bar{\bullet}}={\rm diag}(-1,-1,1,1). We find that only the (u,ru,r)-component of (40) gives rise to nontrivial conditions, which are reduced to the following form

det(ur)=1r12+2i3r11+4i52r10,\displaystyle{\rm det}(\mbox{$\mathcal{R}$}_{ur})=\frac{\mbox{$\mathcal{B}$}_{1}}{r^{12}}+\frac{\mbox{$\mathcal{B}$}_{2}-i\mbox{$\mathcal{B}$}_{3}}{r^{11}}+\frac{\mbox{$\mathcal{B}$}_{4}-i\mbox{$\mathcal{B}$}_{5}}{2r^{10}}\,, (65)

where each i\mbox{$\mathcal{B}$}_{i} is real and independent of rr. Their explicit expressions read

1\displaystyle\mbox{$\mathcal{B}$}_{1}\equiv (M2|Q|2K)2+2P2|MQ+2|Q|2ϕ2|2+g2|Q|4(QQ¯)2,\displaystyle\,(M^{2}-|Q|^{2}K)^{2}+2P^{2}\left|M\partial Q+2|Q|^{2}\phi_{2}\right|^{2}+g^{2}|Q|^{4}(Q-\bar{Q})^{2}\,, (66a)
2\displaystyle\mbox{$\mathcal{B}$}_{2}\equiv P4(|Q|2P4)u(M2|Q|2K)2g2|Q|2(QQ¯)2M\displaystyle\,-P^{4}(|Q|^{2}P^{-4})_{u}(M^{2}-|Q|^{2}K)-2g^{2}|Q|^{2}(Q-\bar{Q})^{2}M
+P2{(QK+2Mϕ2)(M¯Q¯+2|Q|2ϕ¯2)+c.c},\displaystyle+P^{2}\left\{(Q\partial K+2M\phi_{2})(M\bar{\partial}\bar{Q}+2|Q|^{2}\bar{\phi}_{2})+{\rm c.c}\right\}\,, (66b)
3\displaystyle\mbox{$\mathcal{B}$}_{3}\equiv gP2Q¯Q¯(MQ+2|Q|2ϕ2)+c.c,\displaystyle\,gP^{2}Q\bar{\partial}\bar{Q}(M\partial Q+2|Q|^{2}\phi_{2})+{\rm c.c}\,, (66c)
4\displaystyle\mbox{$\mathcal{B}$}_{4}\equiv P2|QK+2Mϕ2|2+2|Q|2P4(QP2)u(Q¯P2)u\displaystyle\,P^{2}|Q\partial K+2M\phi_{2}|^{2}+2|Q|^{2}P^{4}(QP^{-2})_{u}(\bar{Q}P^{-2})_{u}
+g2[2M2(QQ¯)2P2|Q|2|Q|2],\displaystyle+g^{2}\left[2M^{2}(Q-\bar{Q})^{2}-P^{2}|Q|^{2}|\partial Q|^{2}\right]\,, (66d)
5\displaystyle\mbox{$\mathcal{B}$}_{5}\equiv g[{P2Q¯¯Q¯(QK+2Mϕ2)+c.c}+2M(QQ¯)(QQ¯uQ¯Qu)].\displaystyle\,g\Bigl{[}\left\{P^{2}\bar{Q}\bar{\partial}\bar{Q}(Q\partial K+2M\phi_{2})+{\rm c.c}\right\}+2M(Q-\bar{Q})(Q\bar{Q}_{u}-\bar{Q}Q_{u})\Bigr{]}\,. (66e)

Here we have imposed (9) and (10). It turns out that the integrability conditions put the following five constraints

i=0,i=1,,5.\displaystyle\mbox{$\mathcal{B}$}_{i}=0\,,\qquad i=1,...,5. (67)

Defining complex scalars ZiZ_{i} and real scalars XiX_{i} (i=1,,4i=1,...,4) by

Z1=\displaystyle Z_{1}= P(MQ+2|Q|2ϕ2),\displaystyle\,P(M\partial Q+2|Q|^{2}\phi_{2})\,, Z2=\displaystyle Z_{2}= P(QK+2Mϕ2),\displaystyle\,P(Q\partial K+2M\phi_{2})\,,
Z3=\displaystyle Z_{3}= Q¯P2(QP2)u,\displaystyle\,\bar{Q}P^{2}(QP^{-2})_{u}\,, Z4=\displaystyle Z_{4}= gP¯Q¯,\displaystyle\,gP\bar{\partial}\bar{Q}\,, (68)

and

X1=\displaystyle X_{1}= M2|Q|2K,\displaystyle\,M^{2}-|Q|^{2}K\,, X2=\displaystyle X_{2}= ig(QQ¯),\displaystyle\,ig(Q-\bar{Q})\,,
X3=\displaystyle X_{3}= P4(|Q|2P4)u,\displaystyle\,P^{4}(|Q|^{2}P^{-4})_{u}\,, X4=\displaystyle X_{4}= i(QQ¯uQ¯Qu),\displaystyle\,-i(Q\bar{Q}_{u}-\bar{Q}Q_{u})\,, (69)

the supersymmetry conditions are recast into a simpler form

1=\displaystyle\mbox{$\mathcal{B}$}_{1}= X12+2|Z1|2|Q|4X22,\displaystyle\,X_{1}^{2}+2|Z_{1}|^{2}-|Q|^{4}X_{2}^{2}\,, (70a)
2=\displaystyle\mbox{$\mathcal{B}$}_{2}= X3X1+Z2Z¯1+Z¯2Z1+2M|Q|2X22,\displaystyle\,-X_{3}X_{1}+Z_{2}\bar{Z}_{1}+\bar{Z}_{2}Z_{1}+2M|Q|^{2}X_{2}^{2}\,, (70b)
3=\displaystyle\mbox{$\mathcal{B}$}_{3}= QZ4Z1+Q¯Z¯4Z¯1,\displaystyle\,QZ_{4}Z_{1}+\bar{Q}\bar{Z}_{4}\bar{Z}_{1}\,, (70c)
4=\displaystyle\mbox{$\mathcal{B}$}_{4}= |Z2|2+2|Z3|22M2X22|Q|2|Z4|2,\displaystyle\,|Z_{2}|^{2}+2|Z_{3}|^{2}-2M^{2}X_{2}^{2}-|Q|^{2}|Z_{4}|^{2}\,, (70d)
5=\displaystyle\mbox{$\mathcal{B}$}_{5}= Q¯Z4Z2+QZ¯4Z¯2+2MX2X4.\displaystyle\,\bar{Q}Z_{4}Z_{2}+Q\bar{Z}_{4}\bar{Z}_{2}+2MX_{2}X_{4}\,. (70e)

These scalars are subjected to the constraints

Z3=\displaystyle Z_{3}= 12(X3iX4),\displaystyle\,\frac{1}{2}(X_{3}-iX_{4})\,, (71)
ig|Q|2X4=\displaystyle ig|Q|^{2}X_{4}= (Z1Z4Z¯1Z¯4).\displaystyle\,-(Z_{1}Z_{4}-\bar{Z}_{1}\bar{Z}_{4})\,. (72)

Several issues are worthy of emphasis. First, the supersymmetry conditions give rise to differential restrictions, which depend in a fairly nontrivial way on zz, z¯\bar{z} and uu. This is in sharp contrast to the supersymmetry conditions for the Plebański-Demiański solution, where they are purely algebraic Klemm:2013eca , because the Plebański-Demiański solution does not involve arbitrary functions. Nevertheless, a vital observation is that these supersymmetry conditions (70) do not involve the second derivative of KK. This means that the degree of the differential equation has decreased compared to equations of motion. As a matter of fact, even though it is a formidable task to solve equations of motion (9)–(12) in full generality, it is possible to find the exhaustive list of supersymmetric solutions, as we will demonstrate in the following. This feature epitomizes the restrictive nature of supersymmetry. With these remarks in mind, our remaining tasks are (1) to classify the possible cases systematically, (2) to obtain each explicit metric and (3) to check the existence of the Killing spinor. The significance of the last step (3) cannot be overstated, since the first integrability conditions (40) are merely the necessary conditions for the existence of the Killing spinor vanNieuwenhuizen:1983wu .

Second, the Killing spinor equation (37) is not invariant under the electromagnetic duality (24). The principal reason is that the duality transformation (24) acts on the complexified field strength Fμν+iFμνF_{\mu\nu}+i\star F_{\mu\nu}, rather than the gauge potential AμA_{\mu}. Although the electromagnetic duality is the symmetry of the equations of motion, it does not maintain the Killing spinor equation, since the Killing spinor has the gauge charge (38). The most unequivocal manifestation of this fact is provided by the supersymmetric cosmic dyon Romans:1991nq , for which the electric charge makes no contribution to the supersymmetry condition. This solution will be encountered in the next section. The lack of invariance of the Killing spinor under the electromagnetic duality is also made more compelling by the fact that the Bogomol’ny bound in AdS–first advocated in Kostelecky:1995ei –fails to admit the magnetic charge, from the viewpoints of the superalgebra Dibitetto:2010sp and the positive energy theorem Nozawa:2014zia .

4 Classification

We now turn to the main part of this work. We implement the systematic classification of explicit supersymmetric solutions belonging to the Robinson-Trautman family. In this section, we limit ourselves exclusively to the gauged case (g0g\neq 0). The discussion of the ungauged case (g=0g=0) is postponed to appendix A.

For the systematic classification of solutions, it is adequate to perform the polar decomposition Zi=RieiΘiZ_{i}=R_{i}e^{i\Theta_{i}} (i=1,..,4i=1,..,4) for the complex scalars, where Ri=Ri(u,z,z¯)R_{i}=R_{i}(u,z,\bar{z}) and Θi=Θi(u,z,z¯)\Theta_{i}=\Theta_{i}(u,z,\bar{z}) are real functions. In terms of these variables, the supersymmetry conditions are reduced to

1=\displaystyle\mbox{$\mathcal{B}$}_{1}= X12+2R124g2q6sin2α,\displaystyle\,X_{1}^{2}+2R_{1}^{2}-4g^{2}q^{6}\sin^{2}\alpha\,, (73a)
2=\displaystyle\mbox{$\mathcal{B}$}_{2}= 2X1R3cosΘ3+2R1R2cos(Θ1Θ2)+8g2Mq4sin2α,\displaystyle\,-2X_{1}R_{3}\cos\Theta_{3}+2R_{1}R_{2}\cos(\Theta_{1}-\Theta_{2})+8g^{2}Mq^{4}\sin^{2}\alpha\,, (73b)
3=\displaystyle\mbox{$\mathcal{B}$}_{3}=  2qR1R4cos(α+Θ1+Θ4),\displaystyle\,2qR_{1}R_{4}\cos(\alpha+\Theta_{1}+\Theta_{4})\,, (73c)
4=\displaystyle\mbox{$\mathcal{B}$}_{4}= R22+2R32q2(R42+8g2M2sin2α),\displaystyle\,R_{2}^{2}+2R_{3}^{2}-q^{2}\left(R_{4}^{2}+8g^{2}M^{2}\sin^{2}\alpha\right)\,, (73d)
5=\displaystyle\mbox{$\mathcal{B}$}_{5}=  2q[R2R4cos(αΘ2Θ4)+4gMR3sinΘ3sinα],\displaystyle\,2q\left[R_{2}R_{4}\cos(\alpha-\Theta_{2}-\Theta_{4})+4gMR_{3}\sin\Theta_{3}\sin\alpha\right]\,, (73e)

with

gq2R3sinΘ3=R1R4sin(Θ1+Θ4)\displaystyle gq^{2}R_{3}\sin\Theta_{3}=R_{1}R_{4}\sin(\Theta_{1}+\Theta_{4}) (74)

Here, we have also introduced real scalars q(u,z,z¯)q(u,z,\bar{z}) and α(u,z,z¯)\alpha(u,z,\bar{z}) by

q(u,z,z¯)=QQ¯,eiα(u,z,z¯)=Q/q.\displaystyle q(u,z,\bar{z})=\sqrt{Q\bar{Q}}\,,\qquad e^{i\alpha(u,z,\bar{z})}=Q/q\,. (75)

We are now ready to proceed with the classification of supersymmetric Robinson-Trautman solutions. We first divide the analysis into Q=Q¯Q=\bar{Q} or not. In the case of the real charge function (Q=Q¯Q=\bar{Q}), we can consider two subclasses: the Case (I) Q=0Q=0 and Case (II) Q0Q\neq 0. For QQ¯Q\neq\bar{Q}, the inspection of (73c) allows us to categorize the solutions according to (III) R4=0R_{4}=0, (IV) R1=0R_{1}=0 (R40R_{4}\neq 0) and (V) cos(α+Θ1+Θ4)=0\cos(\alpha+\Theta_{1}+\Theta_{4})=0 (R1R40R_{1}R_{4}\neq 0). See figure 1 for the flowchart of classification.

Refer to caption
Figure 1: Flowchart of classification for supersymmetric Robinson-Trautman solutions. The gray-shaded cases do not admit supersymmetric solutions.

4.1 Case (I): Q=0Q=0

Let us first begin with the Q=0Q=0 case, for which 1=0\mbox{$\mathcal{B}$}_{1}=0 implies M=0M=0. Then, other conditions 2=3=4=5=0\mbox{$\mathcal{B}$}_{2}=\mbox{$\mathcal{B}$}_{3}=\mbox{$\mathcal{B}$}_{4}=\mbox{$\mathcal{B}$}_{5}=0 are trivially met. Now, the field equations imply

Δ2K=8P2|ϕ2|2,¯ϕ2=0.\displaystyle\Delta_{2}K=8P^{2}|\phi_{2}|^{2}\,,\qquad\bar{\partial}\phi_{2}=0\,. (76)

The solution is therefore given by

ds2=\displaystyle{\rm d}s^{2}= 2dudr[K2r(lnP)u+g2r2]du2+2r2P2dzdz¯,\displaystyle\,-2{\rm d}u{\rm d}r-\left[K-2r(\ln P)_{u}+g^{2}r^{2}\right]{\rm d}u^{2}+\frac{2r^{2}}{P^{2}}{\rm d}z{\rm d}\bar{z}\,, (77)
A=\displaystyle A= (ψ+ψ¯)du,\displaystyle\,-(\psi+\bar{\psi}){\rm d}u\,, (78)

where we have written ϕ2(u,z)=ψ(u,z)\phi_{2}(u,z)=\partial\psi(u,z) and performed the gauge transformation AA+dχA\to A+{\rm d}\chi, χ=(ψ+ψ¯)du\chi=-\int(\psi+\bar{\psi}){\rm d}u compared to (13). Since the gravitational Coulomb part vanishes, this solution belongs to Petrov type III, due to Ψ0=Ψ1=Ψ2=0\Psi_{0}=\Psi_{1}=\Psi_{2}=0. Up to this point, the source function ψ(u,z)\psi(u,z) is completely arbitrary.

We next explore if this type III metric admits supersymmetry or not, by directly integrating the Killing spinor equation. As it turns out, the functions PP and ψ\psi are subjected to more constraints to preserve supersymmetry.

The rr-component of the Killing spinor is immediately integrated to give

ϵ=Ξrϵ,Ξr=𝟙412grγ+,\displaystyle\epsilon=\Xi_{r}\epsilon^{\prime}\,,\qquad\Xi_{r}=\mathds{1}_{4}-\frac{1}{2}gr\gamma_{+}\,, (79)

where ϵ\epsilon^{\prime} is an rr-independent spinor. The solution ϵ\epsilon to the Killing spinor equation (37) satisfies Πϵ=0\Pi\epsilon=0, where the projection operator Π=ur/P\Pi=\mbox{$\mathcal{R}$}_{ur}/P reads explicitly

Π=(¯K4r2+igϕ¯22r)γ++(K4r2+igϕ22r)γ+¯iϕ22r2(𝟙4+γ5)γ¯iϕ¯22r2(𝟙4γ5)γ.\displaystyle\Pi=\left(\frac{\bar{\partial}K}{4r^{2}}+\frac{ig\bar{\phi}_{2}}{2r}\right)\gamma_{+\bullet}+\left(\frac{\partial K}{4r^{2}}+\frac{ig\phi_{2}}{2r}\right)\gamma_{+\bar{\bullet}}-\frac{i\phi_{2}}{2r^{2}}(\mathds{1}_{4}+\gamma_{5})\gamma_{\bar{\bullet}}-\frac{i\bar{\phi}_{2}}{2r^{2}}(\mathds{1}_{4}-\gamma_{5})\gamma_{\bullet}\,. (80)

Under the projection Πϵ=ΠΞrϵ=0\Pi\epsilon=\Pi\Xi_{r}\epsilon^{\prime}=0, the remaining components of the Killing spinor equation are rr-independent and are boiled down to

[u+12u(lnP)γ++12gγ+ig(ψ+ψ¯)𝟙4+14Kgγ+\displaystyle\left[\partial_{u}+\frac{1}{2}\partial_{u}(\ln P)\gamma_{+-}+\frac{1}{2}g\gamma_{-}+ig(\psi+\bar{\psi})\mathds{1}_{4}+\frac{1}{4}Kg\gamma_{+}\right.\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\
12P{((lnP)u+igψ)γ+¯+(¯(lnP)u+ig¯ψ¯)γ+}]ϵ\displaystyle\left.-\frac{1}{2}P\left\{(\partial(\ln P)_{u}+ig\partial\psi)\gamma_{+\bar{\bullet}}+(\bar{\partial}(\ln P)_{u}+ig\bar{\partial}\bar{\psi})\gamma_{+\bullet}\right\}\right]\epsilon^{\prime} =0,\displaystyle\,=0\,, (81a)
[K4Pγ+12(lnP)γ¯+12Pγi2ψ(𝟙4+γ5)γ+]ϵ\displaystyle\left[\partial-\frac{K}{4P}\gamma_{+\bullet}-\frac{1}{2}\partial(\ln P)\gamma_{\bullet\bar{\bullet}}+\frac{1}{2P}\gamma_{-\bullet}-\frac{i}{2}\partial\psi(\mathds{1}_{4}+\gamma_{5})\gamma_{+}\right]\epsilon^{\prime} =0,\displaystyle\,=0\,, (81b)
[¯K4Pγ+¯+12(lnP)γ¯+12Pγ¯i2¯ψ¯(𝟙4γ5)γ+]ϵ\displaystyle\left[\bar{\partial}-\frac{K}{4P}\gamma_{+\bar{\bullet}}+\frac{1}{2}\partial(\ln P)\gamma_{\bullet\bar{\bullet}}+\frac{1}{2P}\gamma_{-\bar{\bullet}}-\frac{i}{2}\bar{\partial}\bar{\psi}(\mathds{1}_{4}-\gamma_{5})\gamma_{+}\right]\epsilon^{\prime} =0.\displaystyle\,=0\,. (81c)

We now suppose ψ0\partial\psi\neq 0 and K0\partial K\neq 0, since otherwise the solution would reduce to AdS, c.f. section 2.1. Writing the spinor components corresponding to the gamma matrix representation (64) as ϵ=(ϵ1,ϵ2,ϵ3,ϵ4)T\epsilon^{\prime}=(\epsilon_{1}^{\prime},\epsilon_{2}^{\prime},\epsilon_{3}^{\prime},\epsilon_{4}^{\prime})^{T}, the condition ΠΞrϵ=0\Pi\,\Xi_{r}\epsilon^{\prime}=0 projects out half of spinor components as

ϵ3=i¯K22¯ψ¯ϵ1,ϵ2=iK22ψϵ4.\displaystyle\epsilon_{3}^{\prime}=\frac{i\bar{\partial}K}{2\sqrt{2}\bar{\partial}\bar{\psi}}\epsilon_{1}^{\prime}\,,\qquad\epsilon_{2}^{\prime}=\frac{i\partial K}{2\sqrt{2}\partial\psi}\epsilon_{4}^{\prime}\,. (82)

Taking the derivative of ΠΞrϵ=0\Pi\,\Xi_{r}\epsilon^{\prime}=0, we have

(μ)(μΠ)Ξrϵ+Π(μΞr)ϵ+ΠΞrμϵ=0,\displaystyle\mbox{$\mathscr{R}$}_{(\mu)}\equiv(\partial_{\mu}\Pi)\Xi_{r}\epsilon^{\prime}+\Pi\,(\partial_{\mu}\Xi_{r})\epsilon^{\prime}+\Pi\,\Xi_{r}\partial_{\mu}\epsilon^{\prime}=0\,, (83)

We shall refer to this equation as the second integrability conditions. Inspecting (z)=(z¯)=0\mbox{$\mathscr{R}$}_{(z)}=\mbox{$\mathscr{R}$}_{(\bar{z})}=0 and (81), we have the 2×22\times 2 linear system 1ϵ=0\mbox{$\mathcal{M}$}_{1}\vec{\epsilon}^{\,\prime}=0, where ϵ=(ϵ1,ϵ4)T\vec{\epsilon}^{\,\prime}=(\epsilon_{1}^{\prime},\epsilon_{4}^{\prime})^{T} and

1(i(2Kψ|K|222¯ψ¯)P(2K2ψKψ)P(¯2K¯2ψ¯¯K¯ψ¯)i(2K¯ψ¯|K|222ψ)).\displaystyle\mbox{$\mathcal{M}$}_{1}\equiv\left(\begin{array}[]{cc}i\left(\sqrt{2}K\partial\psi-\frac{|\partial K|^{2}}{2\sqrt{2}\bar{\partial}\bar{\psi}}\right)&P\left(\partial^{2}K-\frac{\partial^{2}\psi\partial K}{\partial\psi}\right)\\ P\left(\bar{\partial}^{2}K-\frac{\bar{\partial}^{2}\bar{\psi}\bar{\partial}K}{\bar{\partial}\bar{\psi}}\right)&i\left(\sqrt{2}K\bar{\partial}\bar{\psi}-\frac{|\partial K|^{2}}{2\sqrt{2}\partial\psi}\right)\end{array}\right)\,. (86)

The nontrivial solutions to 1ϵ=0\mbox{$\mathcal{M}$}_{1}\vec{\epsilon}^{\,\prime}=0 exist only if det1=0{\rm det}\mbox{$\mathcal{M}$}_{1}=0. Here, we remark that the general solution to (76) is given by

K(u,z,z¯)=4|ψ(u,z)|2+κ(u,z)+κ¯(u,z¯),\displaystyle K(u,z,\bar{z})=4|\psi(u,z)|^{2}+\kappa(u,z)+\bar{\kappa}(u,\bar{z})\,, (87)

where κ(u,z)\kappa(u,z) is an arbitrary function independent of z¯\bar{z}. Plugging this into det1=0{\rm det}\mbox{$\mathcal{M}$}_{1}=0, we obtain κ(u,z)=4κ0(u)ψ(u,z)+2|κ0|2+iκ1(u)\kappa(u,z)=4\kappa_{0}(u)\psi(u,z)+2|\kappa_{0}|^{2}+i\kappa_{1}(u), where κ0(u)\kappa_{0}(u) is complex and κ1(u)\kappa_{1}(u) is real. In this case, K=4|ψ+κ¯0|2K=4|\psi+\bar{\kappa}_{0}|^{2}, to which κ1\kappa_{1} does not contribute. κ¯0\bar{\kappa}_{0} can be set to zero by the redefinition ψψκ¯0\psi\to\psi-\bar{\kappa}_{0} together with the gauge transformation AμAμ+μχA_{\mu}\to A_{\mu}+\nabla_{\mu}\chi, thus K=4|ψ|2>0K=4|\psi|^{2}>0. Defining PP/(2|ψ|)P_{*}\equiv P/(2|\psi|), we obtain K2P2¯lnP=1K_{*}\equiv 2P_{*}^{2}\partial\bar{\partial}\ln P_{*}=1. It follows that 2P2dzdz¯2P_{*}^{-2}{\rm d}z{\rm d}\bar{z} is a uu-dependent metric of unit two-sphere. By the reasoning in section 2.1, we can thus set

P=2|ψ|P,P=1+12|h1|2|h1|,h1(u,z)=f1(u,z)f2(u,z),2fi=h0(z)fi.\displaystyle P=2|\psi|P_{*}\,,\qquad P_{*}=\frac{1+\frac{1}{2}|h_{1}|^{2}}{|\partial h_{1}|}\,,\qquad h_{1}(u,z)=\frac{f_{1}(u,z)}{f_{2}(u,z)}\,,\qquad\partial^{2}f_{i}=h_{0}(z)f_{i}\,. (88)

This is the condition which cannot be captured by the first integrability conditions det(μν)=0{\rm det}(\mbox{$\mathcal{R}$}_{\mu\nu})=0 for the Killing spinor.

The uu and z¯\bar{z} components of (81b) and (81c) are integrated to give

ϵ1=ψ¯Pε¯1(u,z¯),ϵ4=ψPε2(u,z),\displaystyle\epsilon_{1}^{\prime}=\sqrt{\frac{\bar{\psi}}{P}}\bar{\varepsilon}_{1}(u,\bar{z})\,,\qquad\epsilon_{4}^{\prime}=\sqrt{\frac{\psi}{P}}\varepsilon_{2}(u,z)\,, (89)

where εi(u,z)(i=1,2)\varepsilon_{i}(u,z)\leavevmode\nobreak\ (i=1,2) are uu-dependent holomorphic functions. The remaining components of (81b) and (81c) yield

¯(P1ε¯1)=i2P2ε2,(P1ε2)=i2P2ε¯1,\displaystyle\bar{\partial}\left(P_{*}^{-1}\bar{\varepsilon}_{1}\right)=-\frac{i}{\sqrt{2}}P_{*}^{-2}\varepsilon_{2}\,,\qquad\partial\left(P_{*}^{-1}\varepsilon_{2}\right)=-\frac{i}{\sqrt{2}}P_{*}^{-2}\bar{\varepsilon}_{1}\,, (90)

implying 2εi=h0(z)εi\partial^{2}\varepsilon_{i}=h_{0}(z)\varepsilon_{i}. The above relation (90) means that ε1=0\varepsilon_{1}=0 implies ε2=0\varepsilon_{2}=0 and vice versa, which enforces both of εi\varepsilon_{i} to be nonvanishing. The uu and z¯\bar{z} components of (81a) give

ψ=12ig((ε1)uε1(ε2)uε2),\displaystyle\psi=\frac{1}{2ig}\left(\frac{(\varepsilon_{1})_{u}}{\varepsilon_{1}}-\frac{(\varepsilon_{2})_{u}}{\varepsilon_{2}}\right)\,, (91)

and

(ε1)uuε1=(ε2)uuε2.\displaystyle\frac{(\varepsilon_{1})_{uu}}{\varepsilon_{1}}=\frac{(\varepsilon_{2})_{uu}}{\varepsilon_{2}}\,. (92)

Under these conditions, all components of the Killing spinor equation are satisfied. Thus, the problem at hand is whether the functions εi\varepsilon_{i} satisfying (90), (92) and 2εi=h0(z)εi\partial^{2}\varepsilon_{i}=h_{0}(z)\varepsilon_{i} exist or not.

To see this, let us expand εi\varepsilon_{i} and fif_{i} in terms of uu-independent holomorphic functions ςi(z)\varsigma_{i}(z) satisfying 2ςi=h0(z)ςi\partial^{2}\varsigma_{i}=h_{0}(z)\varsigma_{i} as

εi(u,z)=j=12Aij(u)ςj(z),fi(u,z)=j=12Bij(u)ςj(z).\displaystyle\varepsilon_{i}(u,z)=\sum_{j=1}^{2}A_{ij}(u)\varsigma_{j}(z)\,,\qquad f_{i}(u,z)=\sum_{j=1}^{2}B_{ij}(u)\varsigma_{j}(z)\,. (93)

Equation (92) then implies

(Aij)uu=a0(u)Aij,\displaystyle(A_{ij})_{uu}=a_{0}(u)A_{ij}\,, (94)

where a0a_{0} is a function of uu, whereas equation (90) leads to

A22=iA¯11B12W¯02W0B¯21=B12B11A21,A12=B22B21A11.\displaystyle A_{22}=-\frac{i\bar{A}_{11}B_{12}\sqrt{\bar{W}_{0}}}{\sqrt{2W_{0}}\bar{B}_{21}}=\frac{B_{12}}{B_{11}}A_{21}\,,\qquad A_{12}=\frac{B_{22}}{B_{21}}A_{11}\,. (95)

Here we have defined W0(u)(B11B22B12B21)𝒲(0)W_{0}(u)\equiv(B_{11}B_{22}-B_{12}B_{21})\mbox{$\mathcal{W}$}(\neq 0), where 𝒲=ς2ς1ς1ς2\mbox{$\mathcal{W}$}=\varsigma_{2}\partial\varsigma_{1}-\varsigma_{1}\partial\varsigma_{2} is a constant. Writing b1(u)=B22/B21b_{1}(u)=B_{22}/B_{21} and b2(u)=B12/B11b_{2}(u)=B_{12}/B_{11}, equations (94) and (95) give

A11=𝖺1(b1)u,A21=𝖺2(b2)u,{bi(u),u}u=2a0(u),\displaystyle A_{11}=\frac{\mathsf{a}_{1}}{\sqrt{(b_{1})_{u}}}\,,\qquad A_{21}=\frac{\mathsf{a}_{2}}{\sqrt{(b_{2})_{u}}}\,,\qquad\{b_{i}(u),u\}_{u}=-2a_{0}(u)\,, (96)

where 𝖺1\mathsf{a}_{1} and 𝖺2\mathsf{a}_{2} are complex constants, and {b(u),u}u(2bubuuu3buu2)/(2bu2)\{b(u),u\}_{u}\equiv(2b_{u}b_{uuu}-3b_{uu}^{2})/(2b_{u}^{2}) is the Schwarzian derivative with respect to uu. Thus, the condition {b1(u),u}u={b2(u),u}u\{b_{1}(u),u\}_{u}=\{b_{2}(u),u\}_{u} implies that they are related by the Möbius transformation

b2(u)=𝖼1b1(u)+𝖼2𝖼3b1(u)+𝖼4,𝖼1𝖼4𝖼2𝖼30,\displaystyle b_{2}(u)=\frac{\mathsf{c}_{1}b_{1}(u)+\mathsf{c}_{2}}{\mathsf{c}_{3}b_{1}(u)+\mathsf{c}_{4}}\,,\qquad\mathsf{c}_{1}\mathsf{c}_{4}-\mathsf{c}_{2}\mathsf{c}_{3}\neq 0\,, (97)

where 𝖼14\mathsf{c}_{1-4} are complex constants. These are all constraints coming from equations (90) and (92).

To encapsulate, the Case (I) Petrov-III solution (77) preserves half of supersymmetry, provided that the base space is conformally spherical, viz, P=2|ψ|PP=2|\psi|P_{*} with K=4|ψ|2K=4|\psi|^{2}, where PP_{*} and ψ\psi are given by (88) and (91), respectively. The functions fif_{i} are given by

f1(u,z)=B11(u)[ς1(z)+b2(u)ς2(z)],f2(u,z)=B21(u)[ς1(z)+b1(u)ς2(z)],\displaystyle f_{1}(u,z)=B_{11}(u)\left[\varsigma_{1}(z)+b_{2}(u)\varsigma_{2}(z)\right]\,,\qquad f_{2}(u,z)=B_{21}(u)\left[\varsigma_{1}(z)+b_{1}(u)\varsigma_{2}(z)\right]\,, (98)

where 2ςi=h0(z)ςi\partial^{2}\varsigma_{i}=h_{0}(z)\varsigma_{i} and b2(u)b_{2}(u) is given by (97). B11B_{11} and B21B_{21} are subjected to

B21=W0B11(b1b2),|B11|4=2𝖺22|W0|2(b¯1)u𝖺¯12(b2)u(b¯1b¯2)2.\displaystyle B_{21}=\frac{W_{0}}{B_{11}(b_{1}-b_{2})}\,,\qquad|B_{11}|^{4}=-\frac{2{\mathsf{a}}_{2}^{2}|W_{0}|^{2}(\bar{b}_{1})_{u}}{\bar{\mathsf{a}}_{1}^{2}(b_{2})_{u}(\bar{b}_{1}-\bar{b}_{2})^{2}}\,. (99)

The components of the Killing spinor are given by (82) and (89), where εi=𝖺i(ς1+bi(u)ς2)/(bi)u\varepsilon_{i}=\mathsf{a}_{i}(\varsigma_{1}+b_{i}(u)\varsigma_{2})/\sqrt{(b_{i})_{u}}. It follows that functions ψ\psi and P=P/(2|ψ|)P_{*}=P/(2|\psi|) appearing in the metric read

ψ=\displaystyle\psi= i(b1)u[𝖼3ς12+(𝖼1𝖼4)ς1ς2𝖼2ς22]2g(ς1+b2ς2)[(𝖼3b1+𝖼4)ς1+(𝖼1b1+𝖼2)ς2],\displaystyle\,\frac{i(b_{1})_{u}[\mathsf{c}_{3}\varsigma_{1}^{2}+(\mathsf{c}_{1}-\mathsf{c}_{4})\varsigma_{1}\varsigma_{2}-\mathsf{c}_{2}\varsigma_{2}^{2}]}{2g(\varsigma_{1}+b_{2}\varsigma_{2})[(\mathsf{c}_{3}b_{1}+\mathsf{c}_{4})\varsigma_{1}+(\mathsf{c}_{1}b_{1}+\mathsf{c}_{2})\varsigma_{2}]}\,, (100a)
P=\displaystyle P_{*}= |B11|2|ς1+b2ς2|2+2|B21|2|ς1+b1ς2|22|𝒲B11B21(b1b2)|.\displaystyle\,\frac{|B_{11}|^{2}|\varsigma_{1}+b_{2}\varsigma_{2}|^{2}+2|B_{21}|^{2}|\varsigma_{1}+b_{1}\varsigma_{2}|^{2}}{2|\mathcal{W}B_{11}B_{21}(b_{1}-b_{2})|}\,. (100b)

Note that one can always normalize the Wronskians as W0=𝒲=1W_{0}=\mbox{$\mathcal{W}$}=1 and thus the solution is controlled by two functions b1(u)b_{1}(u) and h0(z)h_{0}(z).

An important lesson here is that the first integrability conditions (40) are not sufficient to guarantee the existence of a Killing spinor. The second integrability conditions (μ)=0\mbox{$\mathscr{R}$}_{(\mu)}=0 put more restrictions on the configuration of P=P(u,z,z¯)P=P(u,z,\bar{z}).222 In hindsight, we can make prognostications about the nonexistence of the Killing spinor for generic PP and ψ\psi from the outset, since, as it stands, the solution (77) does not admit any timelike or null Killing vectors. On the other hand, the solution with (98) and (99) allows a timelike Killing vector ΛruΛur2g(ψε1ε2+ψ¯ε¯1ε¯2¯),Λr(|ε1|2+|ε2|2)2P,\Lambda_{r}\partial_{u}-\Lambda_{u}\partial_{r}-2g\left(\psi\varepsilon_{1}\varepsilon_{2}\partial+\bar{\psi}\bar{\varepsilon}_{1}\bar{\varepsilon}_{2}\bar{\partial}\right)\,,\qquad\Lambda\equiv\frac{r(|\varepsilon_{1}|^{2}+|\varepsilon_{2}|^{2})}{\sqrt{2}P_{*}}\,, as a bilinear vector of the Killing spinor. The classification of spacetimes that admit Killing vectors follows the same line of reasoning; see Nozawa:2019dwu for reference.

It is instructive to see the properties of the solution (77) in more detail. Notwithstanding the absence of any curvature singularities RμνρσRμνρσ=24g4R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}=24g^{4}, the solution exhibits a p.p. curvature singularity at r=0r=0. On top of this, the spacetime suffers from a different type of singular behavior. When the surface SS spanned by (z,z¯z,\bar{z}) is compact and regular, the integration of Δ2K=8P2|ϕ2|2\Delta_{2}K=8P^{2}|\phi_{2}|^{2} over SS gives

8SP2|ϕ2|2dS=SΔ2KdS=0,\displaystyle 8\int_{S}P^{2}|\phi_{2}|^{2}{\rm d}S=\int_{S}\Delta_{2}K{\rm d}S=0\,, (101)

leading to ϕ2=0\phi_{2}=0, i.e., the spacetime is AdS. It follows that this Petrov-III radiating solution fails to describe a regular spacetime.

4.2 Case (II): Q=Q¯(0)Q=\bar{Q}(\neq 0)

Let us next consider the Case (II) where QQ is real and nonvanishing, i.e., q0q\neq 0 and sinα=0\sin\alpha=0. If QQ is real, zz derivative of Q(u,z)=Q¯(u,z¯)Q(u,z)=\bar{Q}(u,\bar{z}) implies Q=Q(u)Q=Q(u), which can be taken to be a real constant Q=𝖰e(0)Q=\mathsf{Q}_{e}(\neq 0) by the reparametrization (23). This renders X2=X4=Z4=0X_{2}=X_{4}=Z_{4}=0. It follows that 1\mbox{$\mathcal{B}$}_{1} and 4\mbox{$\mathcal{B}$}_{4} reduce to the sum of positive-definite terms, leading to X1=X3=0X_{1}=X_{3}=0 and Z1=Z2=0Z_{1}=Z_{2}=0. We therefore have P=P(z,z¯)P=P(z,\bar{z}), ϕ2=0\phi_{2}=0 and K=0\partial K=0. Thus, ds22=2P2dzdz¯{\rm d}s_{2}^{2}=2P^{-2}{\rm d}z{\rm d}\bar{z} is a space of constant Gauss curvature K(u,z,z¯)=k=constantK(u,z,\bar{z})=k={\rm constant} and M2=k𝖰e2=constantM^{2}=k\mathsf{Q}_{e}^{2}={\rm constant}, leading to k=0,1k=0,1. Now, the field equations are automatically satisfied.

It follows that the solution is uu-independent and recovers the Reissner-Nordström-AdS family endowed with an electric charge

ds2=2dudr[(k𝖰er)2+g2r2]du2+r2dΣk02,A=𝖰erdu,\displaystyle{\rm d}s^{2}=-2{\rm d}u{\rm d}r-\left[\left(\sqrt{k}-\frac{\mathsf{Q}_{e}}{r}\right)^{2}+g^{2}r^{2}\right]{\rm d}u^{2}+r^{2}{\rm d}\Sigma_{k\geq 0}^{2}\,,\qquad A=-\frac{\mathsf{Q}_{e}}{r}{\rm d}u\,, (102)

where dΣk2{\rm d}\Sigma_{k}^{2} with k=0,1k=0,1 is given by (35). The supersymmetry of this solution was first demonstrated by Romans Romans:1991nq . This solution admits more supersymmetry than minimally required.

Note that this solution always admits a naked singularity at r=0r=0, since it is not veiled by event horizon. This should be contrasted with the asymptotically flat case (g=0g=0 and k=1k=1), in which the solution describes a black hole with a degenerate event horizon.

4.3 Case (III): R4=0R_{4}=0 (QQ¯Q\neq\bar{Q})

The Case (III) is defined by R4=0R_{4}=0 with QQ¯Q\neq\bar{Q}, which leads to Q=Q(u)Q=Q(u). The solution to (10) becomes Q=Q0(u)ei𝖺Q=Q_{0}(u)e^{i\mathsf{a}}, where Q0(u)Q_{0}(u) is a real function of uu and 𝖺\mathsf{a} is a real constant. By the reparametrization freedom (23), one can set Q0(u)=𝖰Q_{0}(u)=\mathsf{Q}, where 𝖰\mathsf{Q} is a real constant. Thus, the electric and magnetic charges are constants

𝖰e=𝖰cos𝖺,𝖰m=𝖰sin𝖺(0),\displaystyle\mathsf{Q}_{e}=\mathsf{Q}\cos\mathsf{a}\,,\qquad\mathsf{Q}_{m}=\mathsf{Q}\sin\mathsf{a}(\neq 0)\,, (103)

where sin𝖺0\sin\mathsf{a}\neq 0 follows from QQ¯Q\neq\bar{Q}. Note that we cannot set 𝖺=0\mathsf{a}=0 by the electromagnetic duality, since the duality invariance is broken for the Killing spinor equation (37). For the constant charge Q=𝖰ei𝖺Q=\mathsf{Q}e^{i\mathsf{a}}, we have X4=Z4=0X_{4}=Z_{4}=0. Since we have assumed sin𝖺0\sin\mathsf{a}\neq 0, equation (73a) implies that R1R_{1} and X1X_{1} do not vanish simultaneously, which enables us to solve 1=2=0\mbox{$\mathcal{B}$}_{1}=\mbox{$\mathcal{B}$}_{2}=0 as

M=𝖰2[X1X32R1R2cos(Θ1Θ2)]2(2R12+X12),sin𝖺=±2R12+X122g𝖰3,\displaystyle M=\frac{\mathsf{Q}^{2}[X_{1}X_{3}-2R_{1}R_{2}\cos(\Theta_{1}-\Theta_{2})]}{2(2R_{1}^{2}+X_{1}^{2})}\,,\qquad\sin\mathsf{a}=\pm\frac{\sqrt{2R_{1}^{2}+X_{1}^{2}}}{2g\mathsf{Q}^{3}}\,, (104)

Substituting these conditions into 4=0\mbox{$\mathcal{B}$}_{4}=0, we obtain

(2R12+X12)R22sin2(Θ1Θ2)+[X1R2cos(Θ1Θ2)+R1X3]2=0.\displaystyle(2R_{1}^{2}+X_{1}^{2})R_{2}^{2}\sin^{2}(\Theta_{1}-\Theta_{2})+\left[X_{1}R_{2}\cos(\Theta_{1}-\Theta_{2})+R_{1}X_{3}\right]^{2}=0\,. (105)

Since this equation is the sum of perfect squares and we have assumed 2R12+X12>02R_{1}^{2}+X_{1}^{2}>0 (by 𝖰sin𝖺0\mathsf{Q}\sin\mathsf{a}\neq 0), we need

R2sin(Θ1Θ2)=0,X1R2cos(Θ1Θ2)+R1X3=0.\displaystyle R_{2}\sin(\Theta_{1}-\Theta_{2})=0\,,\qquad X_{1}R_{2}\cos(\Theta_{1}-\Theta_{2})+R_{1}X_{3}=0\,. (106)

Thus, the Case (III) solutions are divided into (III-i) R2=0R_{2}=0 or (III-ii) R20R_{2}\neq 0. The Case (III-i) is further branched into subcategory as (III-i-a) X3=0X_{3}=0 and (III-i-b) X30X_{3}\neq 0.

4.3.1 Case (III-i-a): R2=X3=0R_{2}=X_{3}=0

In this case, equation (104) implies M=0M=0. The conditions R2=X3=0R_{2}=X_{3}=0 are then boiled down to K=Pu=0\partial K=P_{u}=0, implying that the two-dimensional space ds22=2P2dzdz¯{\rm d}s_{2}^{2}=2P^{-2}{\rm d}z{\rm d}\bar{z} must be a space of constant Gauss curvature K=k={0,±1}K=k=\{0,\pm 1\}. Thus, we have ϕ2=0\phi_{2}=0 by (9). Lastly, 1=0\mbox{$\mathcal{B}$}_{1}=0 puts the following constraint to the magnetic charge

𝖰m=±k2g.\displaystyle\mathsf{Q}_{m}=\pm\frac{k}{2g}\,. (107)

This is reminiscent of Dirac’s quantization condition. Since Class (III) requires QQ¯Q\neq\bar{Q}, we need k0k\neq 0. It follows that the solution is static and takes the form

ds2=\displaystyle{\rm d}s^{2}= 2dudr[(k2gr+gr)2+𝖰e2r2]du2+r2dΣk=±12,\displaystyle\,-2{\rm d}u{\rm d}r-\left[\left(\frac{k}{2gr}+gr\right)^{2}+\frac{\mathsf{Q}_{e}^{2}}{r^{2}}\right]{\rm d}u^{2}+r^{2}{\rm d}\Sigma_{k=\pm 1}^{2}\,, (108)
A=\displaystyle A= 𝖰erdui2g[(lnPk)dz¯(lnPk)dz¯].\displaystyle\,-\frac{\mathsf{Q}_{e}}{r}{\rm d}u\mp\frac{i}{2g}\left[\partial(\ln P_{k}){\rm d}z-\bar{\partial}(\ln P_{k}){\rm d}\bar{z}\right]\,. (109)

where PkP_{k} (k=±1k=\pm 1) is given by (34). Note that the value of electric charge 𝖰e\mathsf{Q}_{e} remains unrestricted under supersymmetry. The Killing spinor for this solution was already constructed by Romans:1991nq . The solution keeps one quarter of supersymmetry. This solution illustrates the asymmetry between electric and magnetic charges in the gauged case.

This solution is referred to as the cosmic dyon in Romans:1991nq , which does not allow the flat space counterpart, i.e., the g0g\to 0 limit cannot be taken. The solution asymptotically approaches to AdS with 𝖰m0\mathsf{Q}_{m}\neq 0, which defines a vacuum topologically distinct to (33) Hristov:2011ye . Indeed, this magnetic AdS vacuum is not maximally supersymmetric. When 𝖰e0\mathsf{Q}_{e}\neq 0 or k=1k=1, the singularity at r=0r=0 is naked. The unique option to evade the naked singularity is k=1k=-1 and 𝖰e=0\mathsf{Q}_{e}=0.

4.3.2 Case (III-i-b): R2=0R_{2}=0 and X30X_{3}\neq 0

From (106), we have R1=0R_{1}=0 with X10X_{1}\neq 0. Since Case (III) is characterized by Q(u,z)=𝖰ei𝖺=constantQ(u,z)=\mathsf{Q}e^{i\mathsf{a}}={\rm constant}, R1=0R_{1}=0 implies ϕ2=0\phi_{2}=0, while equations of motion (9) and (12) lead to M=M(u)M=M(u) and Pu=0P_{u}=0. The last condition is incompatible with the assumption X30X_{3}\neq 0 for the Case (III-i-b). We therefore have no supersymmetric solutions belonging to Case (III-i-b).

4.3.3 Case (III-ii): R20R_{2}\neq 0

In this case, the first condition in (106) reduces to sin(Θ1Θ2)=0\sin(\Theta_{1}-\Theta_{2})=0, viz, Θ2=Θ112(1+δ1±)π\Theta_{2}=\Theta_{1}-\frac{1}{2}(1+\delta_{1}^{\pm})\pi with δ1±=±1\delta_{1}^{\pm}=\pm 1. This implies that Z2/Z1=δ1±r2/r1Z_{2}/Z_{1}=-\delta_{1}^{\pm}r_{2}/r_{1}. Substitution of this into the second equation of (106) yields

K=2ei𝖺ϕ2𝖰(𝖰2KM2)P[M(𝖰2KM2)P+4𝖰4Pu].\displaystyle\partial K=-\frac{2e^{-i\mathsf{a}}\phi_{2}}{\mathsf{Q}(\mathsf{Q}^{2}K-M^{2})P}\left[M(\mathsf{Q}^{2}K-M^{2})P+4\mathsf{Q}^{4}P_{u}\right]\,. (110)

Inserting this into 2=0\mbox{$\mathcal{B}$}_{2}=0, we have

Pu=2g2𝖰2MPsin2𝖺(𝖰2KM2)(𝖰2KM2)2+8𝖰4P2|ϕ2|2.\displaystyle P_{u}=\frac{2g^{2}\mathsf{Q}^{2}MP\sin^{2}\mathsf{a}(\mathsf{Q}^{2}K-M^{2})}{(\mathsf{Q}^{2}K-M^{2})^{2}+8\mathsf{Q}^{4}P^{2}|\phi_{2}|^{2}}\,. (111)

Substituting this back into (110) and taking its complex conjugation, the integrability condition (¯¯)K=0(\partial\bar{\partial}-\bar{\partial}\partial)K=0 gives rise to

M[M¯(P2|ϕ2|2)¯M(P2|ϕ2|2)]=0.\displaystyle M\left[\partial M\bar{\partial}(P^{2}|\phi_{2}|^{2})-\bar{\partial}M\partial(P^{2}|\phi_{2}|^{2})\right]=0\,. (112)

Supposing M=0M=0, equations (110) and (111) imply Pu=K=0P_{u}=\partial K=0, which undermines the assumption R20R_{2}\neq 0 of Case (III-ii). The ϕ2=0\phi_{2}=0 case is also excluded by R20R_{2}\neq 0. It follows that PP takes the following form

P(u,z,z¯)=P^(u,M(u,z,z¯))ϕ2(u,z,z¯)ϕ¯2(u,z,z¯),\displaystyle P(u,z,\bar{z})=\frac{\hat{P}(u,M(u,z,\bar{z}))}{\sqrt{\phi_{2}(u,z,\bar{z})\bar{\phi}_{2}(u,z,\bar{z})}}\,, (113)

where P^\hat{P} is real. Plugging this into 1=0\mbox{$\mathcal{B}$}_{1}=0, we get

K=M2𝖰2+2δ2±g2𝖰2sin2𝖺2P^2,δ2±=±1.\displaystyle K=\frac{M^{2}}{\mathsf{Q}^{2}}+2\delta_{2}^{\pm}\sqrt{g^{2}\mathsf{Q}^{2}\sin^{2}\mathsf{a}-2\hat{P}^{2}}\,,\qquad\delta_{2}^{\pm}=\pm 1\,. (114)

Replacing the right-hand side of (110) by (113) and (114), we obtain

K=6ei𝖺Mϕ2𝖰.\displaystyle\partial K=-\frac{6e^{-i\mathsf{a}}M\phi_{2}}{\mathsf{Q}}\,. (115)

The consistency of (114) and (115) brings about

P^(u,M)=12g2𝖰2sin2𝖺132𝖰4(M24𝖰4P0(u))2,\displaystyle\hat{P}(u,M)=\sqrt{\frac{1}{2}g^{2}\mathsf{Q}^{2}\sin^{2}\mathsf{a}-\frac{1}{32\mathsf{Q}^{4}}\left(M^{2}-4\mathsf{Q}^{4}P_{0}(u)\right)^{2}}\,, (116)

where P0P_{0} is an arbitrary function of uu and δ2±=sgn(M24𝖰4P0(u))\delta_{2}^{\pm}={\rm sgn}(M^{2}-4\mathsf{Q}^{4}P_{0}(u)). We are thus led to

K(u,z,z¯)=3M(u,z,z¯)24𝖰4P0(u)2𝖰2.\displaystyle K(u,z,\bar{z})=\frac{3M(u,z,\bar{z})^{2}-4\mathsf{Q}^{4}P_{0}(u)}{2\mathsf{Q}^{2}}\,. (117)

Acting ¯\bar{\partial} to (115) and eliminating Δ2K\Delta_{2}K from (11), we obtain

Mu=16g2𝖰6sin2α[M24𝖰4P0(u)]28𝖰4.\displaystyle M_{u}=\frac{16g^{2}\mathsf{Q}^{6}\sin^{2}\alpha-[M^{2}-4\mathsf{Q}^{4}P_{0}(u)]^{2}}{8\mathsf{Q}^{4}}\,. (118)

Using (9), the compatibility Mu(M)u=0\partial M_{u}-(\partial M)_{u}=0 implies

(ϕ2)u=M(M24𝖰4P0(u))2𝖰4ϕ2.\displaystyle(\phi_{2})_{u}=-\frac{M(M^{2}-4\mathsf{Q}^{4}P_{0}(u))}{2\mathsf{Q}^{4}}\phi_{2}\,. (119)

Inserting (113), (116), (117), (118) and (119) into (111), we obtain

(M24𝖰4P0(u))P0(u)=0.\displaystyle\big{(}M^{2}-4\mathsf{Q}^{4}P_{0}(u)\big{)}P_{0}^{\prime}(u)=0\,. (120)

For the M=±2Q2P0(u)M=\pm 2Q^{2}\sqrt{P_{0}(u)} case, equation (9) is not satisfied since we have assumed Q¯ϕ20\bar{Q}\phi_{2}\neq 0. Thus we have P0(u)=𝖢P_{0}(u)=\mathsf{C}, where 𝖢\mathsf{C} is a real constant. One can then verify that [(M24𝖰4𝖢)216g2𝖰6sin2𝖺]/ϕ¯2[(M^{2}-4\mathsf{Q}^{4}\mathsf{C})^{2}-16g^{2}\mathsf{Q}^{6}\sin^{2}\mathsf{a}]/\bar{\phi}_{2} is zz-independent, implying a nonvanishing function h=h(u,z)h=h(u,z) such that

ϕ2(u,z,z¯)=h(u,z)[(M24𝖰4𝖢)216g2𝖰6sin2𝖺].\displaystyle\phi_{2}(u,z,\bar{z})=h(u,z)\left[(M^{2}-4\mathsf{Q}^{4}\mathsf{C})^{2}-16g^{2}\mathsf{Q}^{6}\sin^{2}\mathsf{a}\right]\,. (121)

The compatibility of (119) and (121) implies h=h(z)h=h(z). By the reparametrization (23), one can always set h(z)=ei𝖺/(16𝖰4)=constanth(z)=e^{i\mathsf{a}}/(16\mathsf{Q}^{4})={\rm constant}. With this gauge fixing, MM obeys

M𝖰Mu=0,\displaystyle\partial M-\mathsf{Q}M_{u}=0\,, (122)

by virtue of (9), (118) and (121). Since MM is real, it turns out that MM depends on a single variable η=u+𝖰(z+z¯)\eta=u+\mathsf{Q}(z+\bar{z}) as M=M(η)M=M(\eta), which is constrained by (118) as

dMdη=2g2𝖰2sin2𝖺(M2(η)4𝖢𝖰4)28𝖰4,\displaystyle\frac{{\rm d}M}{{\rm d}\eta}=2g^{2}\mathsf{Q}^{2}\sin^{2}\mathsf{a}-\frac{(M^{2}(\eta)-4\mathsf{C}\mathsf{Q}^{4})^{2}}{8\mathsf{Q}^{4}}\,, (123)

giving

P=[2g2𝖰2sin2𝖺(M24𝖢𝖰4)28𝖰4]1/2,K=3M24𝖢𝖰42𝖰2.\displaystyle P=\left[2g^{2}\mathsf{Q}^{2}\sin^{2}\mathsf{a}-\frac{(M^{2}-4\mathsf{C}\mathsf{Q}^{4})^{2}}{8\mathsf{Q}^{4}}\right]^{-1/2}\,,\qquad K=\frac{3M^{2}-4\mathsf{C}\mathsf{Q}^{4}}{2\mathsf{Q}^{2}}\,. (124)

We have exhausted all the constraints coming from supersymmetry conditions and equations of motion. In order to illustrate the physical interpretation of spacetime, we are now going to switch the metric into a more familiar set of coordinates. To this end, it is of convenience to employ MM itself as an independent variable as x=M/(2𝖠𝖰2)x=M/(2\mathsf{A}\mathsf{Q}^{2}), where 𝖠\mathsf{A} is a constant. Performing the coordinate transformation

z=𝖠(ηu)+iφ2𝖠𝖰,r=1𝖠(xy),dt=𝖠du+dyΔy(y),\displaystyle z=\frac{\mathsf{A}(\eta-u)+i\varphi}{2\mathsf{A}\mathsf{Q}}\,,\qquad r=\frac{1}{\mathsf{A}(x-y)}\,,\qquad{\rm d}t=\mathsf{A}{\rm d}u+\frac{{\rm d}y}{\Delta_{y}(y)}\,, (125)

with dη=𝖠dx/[g2sin2𝖺𝖰2(𝖢𝖠2x2)2]{\rm d}\eta=\mathsf{A}{\rm d}x/[g^{2}\sin^{2}\mathsf{a}-\mathsf{Q}^{2}(\mathsf{C}-\mathsf{A}^{2}x^{2})^{2}] [c.f (123)], one arrives at the manifestly static form

ds2=\displaystyle{\rm d}s^{2}= 1𝖠2(xy)2(Δy(y)dt2+dy2Δy(y)+dx2Δx(x)+Δx(x)dφ2),\displaystyle\,\frac{1}{\mathsf{A}^{2}(x-y)^{2}}\left(-\Delta_{y}(y){\rm d}t^{2}+\frac{{\rm d}y^{2}}{\Delta_{y}(y)}+\frac{{\rm d}x^{2}}{\Delta_{x}(x)}+\Delta_{x}(x){\rm d}\varphi^{2}\right)\,, (126)
A=\displaystyle A= 𝖰cos𝖺ydt+𝖰sin𝖺xdφ,\displaystyle\,\mathsf{Q}\cos\mathsf{a}y{\rm d}t+\mathsf{Q}\sin\mathsf{a}x{\rm d}\varphi\,, (127)

where we have dropped the exact form from AA, and the structure functions are given by

Δy(y)=g2𝖠2cos2𝖺+𝖰2𝖠2(𝖢𝖠2y2)2,Δx(x)=g2𝖠2Δy(x).\displaystyle\Delta_{y}(y)=\frac{g^{2}}{\mathsf{A}^{2}}\cos^{2}\mathsf{a}+\frac{\mathsf{Q}^{2}}{\mathsf{A}^{2}}\left(\mathsf{C}-\mathsf{A}^{2}y^{2}\right)^{2}\,,\qquad\Delta_{x}(x)=\frac{g^{2}}{\mathsf{A}^{2}}-\Delta_{y}(x)\,. (128)

This spacetime is commonly referred to as the C-metric and belongs to the Petrov-type D. The supersymmetry and the existence of Killing spinor was addressed in Klemm:2013eca .

The C-metric in the Einstein-Λ\Lambda system describes either a pair of accelerated black holes or an accelerated black hole in AdS, depending on the parameters. See e.g., Podolsky:2002nk ; Dias:2002mi for details. Remark that the supersymmetric C-metric does not permit the Killing horizon when the electric charge is nonvanishing, since Δy(y)\Delta_{y}(y) is expressed as a sum of squares, for which the curvature singularity at y=y=-\infty is visible from an observer at infinity x=yx=y. The degenerate horizon exists only for the purely magnetic case cos𝖺=0\cos\mathsf{a}=0. The requirement of the nonvanishing magnetic charge (sin𝖺0\sin\mathsf{a}\neq 0) is also apparent from the Lorentzian condition Δx(x)=[g2sin2𝖺𝖰2(𝖢𝖠2x2)2]/𝖠2>0\Delta_{x}(x)=[g^{2}\sin^{2}\mathsf{a}-\mathsf{Q}^{2}(\mathsf{C}-\mathsf{A}^{2}x^{2})^{2}]/\mathsf{A}^{2}>0.

4.4 Case (IV): R1=0R_{1}=0 (R40R_{4}\neq 0)

The Case (IV) corresponds to (QQ¯)R40(Q-\bar{Q})R_{4}\neq 0 and R1=0R_{1}=0. Solving Z1=0Z_{1}=0, we have

ϕ2=MQ2|Q|2.\displaystyle\phi_{2}=-\frac{M\partial Q}{2|Q|^{2}}\,. (129)

The constraint (72) implies X4=0X_{4}=0, which is solved as Q(u,z)=Q0(u)Q1(z)(0)Q(u,z)=Q_{0}(u)Q_{1}(z)(\neq 0), where Q0Q_{0} is a real function of uu and Q1Q_{1} is holomorphic in zz. By the reparametrization (23), one can set Q0=1Q_{0}=1 without loss of generality. The condition R40R_{4}\neq 0 requires Q1(z)Q_{1}(z) not to be constant. Equations (9) and (129) yield M=M0(u)Q1(z)Q¯1(z¯)M=M_{0}(u)Q_{1}(z)\bar{Q}_{1}(\bar{z}), where M0M_{0} is a real function of uu. Plugging this into (12), we obtain Pu=0P_{u}=0, resulting in X3=Z3=0X_{3}=Z_{3}=0. Equation 2=0\mbox{$\mathcal{B}$}_{2}=0 gives M0=0M_{0}=0 and hence ϕ2=0\phi_{2}=0 due to (129), whereas equation 1=0\mbox{$\mathcal{B}$}_{1}=0 derives

K(z,z¯)=±ig(Q1(z)Q¯1(z¯)).\displaystyle K(z,\bar{z})=\pm ig\Big{(}Q_{1}(z)-\bar{Q}_{1}(\bar{z})\Big{)}\,. (130)

Other equations 3=4=5=0\mbox{$\mathcal{B}$}_{3}=\mbox{$\mathcal{B}$}_{4}=\mbox{$\mathcal{B}$}_{5}=0 and equations of motion are trivially satisfied. The solution is then static and reads (Q10\partial Q_{1}\neq 0)

ds2=\displaystyle{\rm d}s^{2}= 2dudr|±iQ1(z)r+gr|2du2+2r2P(z,z¯)2dzdz¯,\displaystyle\,-2{\rm d}u{\rm d}r-\left|\pm\frac{iQ_{1}(z)}{r}+gr\right|^{2}{\rm d}u^{2}+\frac{2r^{2}}{P(z,\bar{z})^{2}}{\rm d}z{\rm d}\bar{z}\,, (131a)
A=\displaystyle A= Q1(z)+Q¯1(z¯)2rdu±i2g((lnP)dz¯(lnP)dz¯),\displaystyle\,-\frac{Q_{1}(z)+\bar{Q}_{1}(\bar{z})}{2r}{\rm d}u\pm\frac{i}{2g}\left(\partial(\ln P){\rm d}z-\bar{\partial}(\ln P){\rm d}\bar{z}\right)\,, (131b)

where P=P(z,z¯)P=P(z,\bar{z}) satisfies K2P2¯lnP=±ig(Q1Q¯1)K\equiv 2P^{2}\partial\bar{\partial}\ln P=\pm ig(Q_{1}-\bar{Q}_{1}), i.e., Δ2K=0\Delta_{2}K=0. No other restrictions are placed upon PP. This is a solution obtained in Cacciatori:2004rt and indeed admits a Killing spinor.

The charge function Q1(z)Q_{1}(z) is pertinent to the topology of the angular surface SS spanned by (z,z¯)(z,\bar{z}) as follows. Assuming SS is compact and regular, the Gauss-Bonnet theorem implies

χ=14πSKdS=±ig4πS(Q1(z)Q¯1(z¯))dS,\displaystyle\chi=\frac{1}{4\pi}\int_{S}K{\rm d}S=\pm\frac{ig}{4\pi}\int_{S}\big{(}Q_{1}(z)-\bar{Q}_{1}(\bar{z})\big{)}{\rm d}S\,, (132)

where χ\chi is the Euler characteristic of SS. For any value of Q1Q_{1}, the present solution possesses a naked singularity at r=0r=0, on account of guu>0g_{uu}>0.

4.5 Case (V): cos(α+Θ1+Θ4)=0\cos(\alpha+\Theta_{1}+\Theta_{4})=0 (R1R40R_{1}R_{4}\neq 0)

Finally, we consider the case (V) where cos(α+Θ1+Θ4)=0\cos(\alpha+\Theta_{1}+\Theta_{4})=0 (R1R40R_{1}R_{4}\neq 0). As we will demonstrate below, it turns out that this case does not admit supersymmetric solutions. Given the extensive mathematical intricacies and calculations involved, readers uninterested in these details may opt to bypass this section.

For R1R40R_{1}R_{4}\neq 0, equation (73c) requires cos(α+Θ1+Θ4)=0\cos(\alpha+\Theta_{1}+\Theta_{4})=0, i.e., Θ4=±π/2(α+Θ1)\Theta_{4}=\pm\pi/2-(\alpha+\Theta_{1}). Eliminating X4X_{4} from (72), we obtain

5=±2R4Q[2MR1sin(2α)+Q2R2sin(2α+Θ1Θ2)]=0.\displaystyle\mbox{$\mathcal{B}$}_{5}=\pm\frac{2R_{4}}{Q}\left[2MR_{1}\sin(2\alpha)+Q^{2}R_{2}\sin(2\alpha+\Theta_{1}-\Theta_{2})\right]=0\,. (133)

Assuming sin(2α)=0\sin(2\alpha)=0 (α=±π/2\alpha=\pm\pi/2), we have Q(u,z)=Q¯(u,z¯)Q(u,z)=-\bar{Q}(u,\bar{z}). This leads to Q=0\partial Q=0, which is inconsistent with R40R_{4}\neq 0. Thus we find that Q+Q¯=2iqcosαQ+\bar{Q}=2iq\cos\alpha is nonvanishing. It is also concluded that X40X_{4}\neq 0, since equation (74) implies gq2X4=2R1R4sin(Θ1+Θ4)=2R1R4cosα0gq^{2}X_{4}=2R_{1}R_{4}\sin(\Theta_{1}+\Theta_{4})=2R_{1}R_{4}\cos\alpha\neq 0. Assuming next M=0M=0, we have ϕ2=0\phi_{2}=0 by (9), giving rise to Z1=0Z_{1}=0. This also runs counter to the assumption R10R_{1}\neq 0 of Case (V). Owing to MR1sin(2α)0MR_{1}\sin(2\alpha)\neq 0, we need R2sin(2α+Θ1+Θ2)0R_{2}\sin(2\alpha+\Theta_{1}+\Theta_{2})\neq 0 by (133). The condition Z40Z_{4}\neq 0 also implies the electromagnetic phase α\alpha fails to be constant, since constant α\alpha implies Q=Q(u)Q=Q(u), which does not comply with the assumption R40R_{4}\neq 0 of Case (V). Thus, we allege MR1R4R2X4dα0MR_{1}R_{4}R_{2}X_{4}{\rm d}\alpha\neq 0 in the following analysis.

Combining 3=0\mbox{$\mathcal{B}$}_{3}=0 and (10), we obtain

Z1=igQQ¯2X4(Q+Q¯)Z4.\displaystyle Z_{1}=-\frac{igQ\bar{Q}^{2}X_{4}}{(Q+\bar{Q})Z_{4}}\,. (134)

Inserting this into 2=5=0\mbox{$\mathcal{B}$}_{2}=\mbox{$\mathcal{B}$}_{5}=0, we find

Z2=2MQ¯X2X4(Q2+Q¯2)Z4+i(Q+Q¯)(2M|Q|2X22X1X3)Z¯4gQ¯(Q2+Q¯2)X4.\displaystyle Z_{2}=-\frac{2M\bar{Q}X_{2}X_{4}}{(Q^{2}+\bar{Q}^{2})Z_{4}}+\frac{i(Q+\bar{Q})(2M|Q|^{2}X_{2}^{2}-X_{1}X_{3})\bar{Z}_{4}}{g\bar{Q}(Q^{2}+\bar{Q}^{2})X_{4}}\,. (135)

Note that Q2+Q¯20Q^{2}+\bar{Q}^{2}\neq 0 due to αconstant\alpha\neq{\rm constant}. Next, we define real functions

Yg2(QQ¯)22|Q|2X42P2|Q|2(Q+Q¯)2,X±iQ1δ1±Q¯1δ1±(Q2Q¯2)δ1±P4,\displaystyle Y\equiv-g^{2}(Q-\bar{Q})^{2}-\frac{2|Q|^{2}X_{4}^{2}}{P^{2}|\partial Q|^{2}(Q+\bar{Q})^{2}}\,,\qquad X_{\pm}\equiv\frac{iQ^{1-\delta_{1}^{\pm}}\bar{Q}^{1-\delta_{1}^{\pm}}(Q^{2}-\bar{Q}^{2})^{\delta_{1}^{\pm}}}{P^{4}}\,, (136)

where δ1±=±1\delta_{1}^{\pm}=\pm 1. Here, X+X_{+} corresponds to δ1±=1\delta_{1}^{\pm}=1, and XX_{-} corresponds to δ1±=1\delta_{1}^{\pm}=-1. The nonnegativity of YY follows from 1=X12|Q|2Y=0\mbox{$\mathcal{B}$}_{1}=X_{1}^{2}-|Q|^{2}Y=0. Supposing Y=0Y=0, we have X1=M2K|Q|2=0X_{1}=M^{2}-K|Q|^{2}=0. By inserting K=M2/|Q|2K=M^{2}/|Q|^{2} into (135) and its complex conjugation, we end up with a contradiction X4=0X_{4}=0, yielding no solutions for Y=0Y=0. For Y>0Y>0, we can solve 1=4=0\mbox{$\mathcal{B}$}_{1}=\mbox{$\mathcal{B}$}_{4}=0 with (134) and (135) as

M=\displaystyle M= δ2±|Q|22Y(lnX±)u,\displaystyle\,\frac{\delta_{2}^{\pm}|Q|^{2}}{2\sqrt{Y}}(\ln X_{\pm})_{u}\,, (137)
K=\displaystyle K= M2|Q|2δ2±Y,\displaystyle\,\frac{M^{2}}{|Q|^{2}}-\delta_{2}^{\pm}\sqrt{Y}\,, (138)

where δ2±=±1\delta_{2}^{\pm}=\pm 1. The emergence of four branches of MM reflects the fact that 1\mbox{$\mathcal{B}$}_{1} is quartic in MM. The relation (135) is then reduced to

K=M2QQ2Q¯+δ1±δ2±YQQQ¯+3iMQ¯X4P2Q(Q+Q¯)¯Q¯.\displaystyle\partial K=\frac{M^{2}\partial Q}{Q^{2}\bar{Q}}+\delta_{1}^{\pm}\delta_{2}^{\pm}\frac{\sqrt{Y}\partial Q}{Q-\bar{Q}}+\frac{3iM\bar{Q}X_{4}}{P^{2}Q(Q+\bar{Q})\bar{\partial}\bar{Q}}\,. (139)

Using (9) and (134), the compatibility of (138) and (139) gives

X42(Q)2(QX42P2)=\displaystyle\frac{X_{4}^{2}}{(\partial Q)^{2}}\partial\left(\frac{\partial Q}{X_{4}^{2}}P^{2}\right)= iP4Q¯(Q+Q¯)Q2X4(QP2)u+P2(Q¯2+4|Q|2Q2)2Q2(Q+Q¯)+δ1±P2(3Q2Q¯2)2Q2(QQ¯)\displaystyle\,-i\frac{P^{4}\bar{Q}(Q+\bar{Q})}{Q^{2}X_{4}}\left(\frac{Q}{P^{2}}\right)_{u}+\frac{P^{2}(\bar{Q}^{2}+4|Q|^{2}-Q^{2})}{2Q^{2}(Q+\bar{Q})}+\delta_{1}^{\pm}\frac{P^{2}(3Q^{2}-\bar{Q}^{2})}{2Q^{2}(Q-\bar{Q})}
+g2(1+δ1±)P4(QQ¯)(Q+Q¯)2|Q|2|Q|2X42.\displaystyle\,+g^{2}(1+\delta_{1}^{\pm})\frac{P^{4}(Q-\bar{Q})(Q+\bar{Q})^{2}|\partial Q|^{2}}{|Q|^{2}X_{4}^{2}}\,. (140)

Inserting (134) into (12) and eliminating P\partial P by (4.5), we obtain 𝒪1=0\mbox{$\mathcal{O}$}_{1}=0, where

𝒪1\displaystyle\mbox{$\mathcal{O}$}_{1}\equiv iX4Q3(Q2Q¯2)2[ln(i(Q2Q¯2)|Q|4)]u\displaystyle\,iX_{4}Q^{3}(Q^{2}-\bar{Q}^{2})^{2}\left[\partial\ln\left(\frac{i(Q^{2}-\bar{Q}^{2})}{|Q|^{4}}\right)\right]_{u}
+(1+δ1±)(Q+Q¯)Q[2P2Q|Q|2(Q2Q¯2)2g2+(3Q2Q¯2)Q¯X42].\displaystyle+(1+\delta_{1}^{\pm})(Q+\bar{Q})\partial Q\left[2P^{2}Q|\partial Q|^{2}(Q^{2}-\bar{Q}^{2})^{2}g^{2}+(3Q^{2}-\bar{Q}^{2})\bar{Q}X_{4}^{2}\right]\,. (141)

If we take δ1±=1\delta_{1}^{\pm}=-1 in (141), we obtain i(Q2Q¯2)=h0(u)h1(z)h¯1(z¯)i(Q^{-2}-\bar{Q}^{-2})=h_{0}(u)h_{1}(z)\bar{h}_{1}(\bar{z}), where h0h_{0} is a real function of uu and h1h_{1} is a holomorphic function. Taking the zz derivative of this equation, we find that h1(z)h_{1}(z) needs to be constant. This requires Q=Q(u)Q=Q(u), leading to the contradiction to the assumption of Case (V).

We shall next consider the case δ1±=+1\delta_{1}^{\pm}=+1. Computing the integrability condition (¯¯)K=0(\partial\bar{\partial}-\bar{\partial}\partial)K=0 from (135) and using 𝒪1=𝒪¯1=0\mbox{$\mathcal{O}$}_{1}=\mbox{$\mathcal{\bar{O}}$}_{1}=0, we find another obstruction 𝒪2=0\mbox{$\mathcal{O}$}_{2}=0, where

𝒪2\displaystyle\mbox{$\mathcal{O}$}_{2}\equiv (Q2Q¯2P4)u.\displaystyle\left(\frac{Q^{2}-\bar{Q}^{2}}{P^{4}}\right)_{u}\,. (142)

Solving 𝒪2=0\mbox{$\mathcal{O}$}_{2}=0, we find P=[i(Q2Q¯2)]1/4P1(z,z¯)P=[i(Q^{2}-\bar{Q}^{2})]^{1/4}P_{1}(z,\bar{z}), where P1P_{1} is real and independent of uu. This profile of PP corresponds to (X+)u=0(X_{+})_{u}=0, and hence M=0M=0 by (137). This violates the assumption of Case (V).

In conclusion, we do not have supersymmetric solutions in Case (V).

5 Final remarks

In this paper, we investigated the supersymmetry conditions for the Robinson-Trautman family of solutions in the Einstein-Maxwell theory with a negative cosmological constant. Making full use of integrability conditions (66) of the Killing spinor equation, we comprehensively categorized all conceivable supersymmetric solutions. By a close investigation of supersymmetry conditions, we were able to find the explicit metric expressions. It turns out that five distinct classes of solutions are realized; (I) the Petrov-III radiating solution (77) with (88), (91) and (93)–(99), (II) the electric Reissner-Nordstöm-AdS solution (102), (III-i-a) the cosmic dyon (108), (III-ii) the C-metric (126) and (IV) the Cacciatori-Caldarelli-Klemm-Mansi (CCKM) solution (131). The supersymmetry for Case (I) is new, while other solutions have already been shown to be supersymmetric in the literature. The significance of the present work lies in demonstrating that these are exhaustive. Apart from Case (I), the solution is static. In either case, the solution describes a naked singularity unless some parameters are tuned. Physical properties are summarized in table 1.

metric SUSY g0g\to 0 horizon static Petrov-type
Case (I) (77) 1/21/2 no no no III
Case (II) electric RN-AdS (102) 1/21/2 \checkmark g=0g=0, k=1k=1 \checkmark D
Case (III-i-a) cosmic dyon (108) 1/41/4 no 𝖰e=0\mathsf{Q}_{e}=0, k=1k=-1 \checkmark D
Case (III-ii) C-metric (126) 1/41/4 no 𝖰e=0\mathsf{Q}_{e}=0 \checkmark D
Case (IV) CCKM solution (131) 1/41/4 no no \checkmark II
Table 1: Summary of the supersymmetric Robinson-Trautman solution.

We highlighted that the electromagnetic duality invariance is broken for the Killing spinor equation. Obviously, the electric and magnetic charges are not on equal footing for these supersymmetric configurations. To restore the electromagnetic duality invariance, the analysis needs to be discussed within the symplectically invariant framework of supergravity deWit:2011gk . This is an interesting avenue, but beyond the central scope of this paper.

This paper concentrated on the aligned case, in which one of the principal null directions of the electromagnetic field is parallel to the principal null direction of the Weyl tensor. Since the non-aligned case is more complex, the possible metric expression is not yet obtained in a closed form, see VandenBergh:2020lvf for the study of Petrov-D. An accessible strategy to this problem is to reconstruct the metric by imposing supersymmetry, as we have done in this paper.

In the present paper, attention was focused exclusively on the minimal model of gauged supergravity, for which the single AdS vacuum is realized by a pure cosmological constant. In gauged supergravity, various scalar fields belonging to vector and hypermultiplets may contribute to the bosonic Lagrangian. The critical points of scalar fields typically correspond to AdS vacua. If we allow the scalar fields to flow, regular geometries might be obtained in the supersymmetric limit. The uncharged Robinson-Trautman solution with scalar hair in supergravity has been recently constructed in Nozawa:2023boa , which includes the hairy black hole Faedo:2015jqa ; Nozawa:2020gzz and the C-metric Lu:2014sza ; Nozawa:2022upa as special cases. It has been demonstrated that the generalized Robinson-Trautman equation is tantamount to the integrability condition of the Ricci flow equation. It is thus of great interest to explore the relevance of the flow equation to supersymmetry. These issues are currently under investigation.

Acknowledgements.
The author would like to thank Silke Klemm and Norihiro Tanahashi for stimulating discussions at an early stage of this work. The work of MN is partially supported by MEXT KAKENHI Grant-in-Aid for Transformative Research Areas (A) through the “Extreme Universe” collaboration 21H05189 and JSPS Grant-Aid for Scientific Research (20K03929).

Appendix A Ungauged case g=0g=0

This appendix collects some issues that are valid only for the ungauged case g=0g=0.

A.1 Supersymmetry

Setting g=0g=0 in (70), one finds X1=Z1=Z2=0X_{1}=Z_{1}=Z_{2}=0 and Z3=(X3iX4)/2=0Z_{3}=(X_{3}-iX_{4})/2=0. Due to X4=0X_{4}=0, we find Q=Q0(u)Q1(z)Q=Q_{0}(u)Q_{1}(z), where Q0Q_{0} is real and therefore can be set to unity by the reparametrization (23). The condition X3=0X_{3}=0 then gives Pu=0P_{u}=0, while equation (12) implies ϕ2=ϕ2(u,z)\phi_{2}=\phi_{2}(u,z). The following analysis is split into two, according to Q0Q\neq 0 or Q=0Q=0.

A.1.1 Q0Q\neq 0

Eliminating ϕ2\phi_{2} from Z1=0Z_{1}=0 and Z2=0Z_{2}=0, and using X1=0X_{1}=0, we find K/K=Q1(z)/Q1(z)\partial K/K=\partial Q_{1}(z)/Q_{1}(z). Integration of this equation yields K(z,z¯)=CQ1(z)Q¯1(z¯)K(z,\bar{z})=CQ_{1}(z)\bar{Q}_{1}(\bar{z}), where the constancy of CC follows from Pu=0P_{u}=0. This implies P=Q1(z)Q¯1(z¯)P0(z,z¯)P=\sqrt{Q_{1}(z)\bar{Q}_{1}(\bar{z})}P_{0}(z,\bar{z}) with 2P02¯lnP02P_{0}^{2}\partial\bar{\partial}\ln P_{0} being constant. By the reparametrization zζ(z)z\to\zeta(z), one can set Q1Q_{1} to be constant, i.e., KK turns out to be constant K=k={0,+1}K=k=\{0,+1\}. Here we note that k=1k=-1 is excluded by Z1=0Z_{1}=0. Equation (11) then gives ϕ2=0\phi_{2}=0, which renders M(u,z,z¯)=𝖬M(u,z,\bar{z})=\mathsf{M} and to be constant by (9) and Z1=0Z_{1}=0 and subjected to the constraint 𝖬2=k𝖰2\mathsf{M}^{2}=k\mathsf{Q}^{2} in view of X1=0X_{1}=0. The solution therefore reads

ds2=\displaystyle{\rm d}s^{2}= 2dudr(k𝖰r)2du2+r2dΣk02,\displaystyle\,-2{\rm d}u{\rm d}r-\left(k-\frac{\mathsf{Q}}{r}\right)^{2}{\rm d}u^{2}+r^{2}{\rm d}\Sigma_{k\geq 0}^{2}\,, (143a)
A=\displaystyle A= 𝖰cos𝖺rdu+i𝖰sin𝖺k[(lnPk)dz¯(lnPk)dz¯].\displaystyle\,-\frac{\mathsf{Q}\cos\mathsf{a}}{r}{\rm d}u+i\frac{\mathsf{Q}\sin\mathsf{a}}{k}\left[\partial(\ln P_{k}){\rm d}z-\bar{\partial}(\ln P_{k}){\rm d}\bar{z}\right]\,. (143b)

This is the extreme Reissner-Nordström family contained in the most general Israel-Wilson-Perjes class Perjes:1971gv ; Israel:1972vx preserving half of supersymmetry. As opposed to the g0g\neq 0 case, this solution admits an event horizon for k=1k=1. It is also noteworthy to remark that one can apply the electromagnetic duality transformation to the ungauged solution (143) to achieve, say, sin𝖺=0\sin\mathsf{a}=0, without breaking supersymmetry, since the Killing spinor has no longer gauge charge for g=0g=0.

A.1.2 Q=0Q=0

In the Q=0Q=0 case, we recover the metric (77). The subsequent argument is identical up to (89). Plugging (89) into (81a), we obtain

ψ(u,z)=ψ1(z)ε2(u,z)2,ψ¯(u,z¯)=ψ¯2(z¯)ε¯1(u,z¯)2,\displaystyle\psi(u,z)=\frac{\psi_{1}(z)}{\varepsilon_{2}(u,z)^{2}}\,,\qquad\bar{\psi}(u,\bar{z})=\frac{\bar{\psi}_{2}(\bar{z})}{\bar{\varepsilon}_{1}(u,\bar{z})^{2}}\,, (144)

where ψi(z)\psi_{i}(z) are arbitrary holomorphic functions and εi(u,z)\varepsilon_{i}(u,z) satisfy 2εi=h0(z)εi\partial^{2}\varepsilon_{i}=h_{0}(z)\varepsilon_{i} and (90). Then we obtain P=2|ψ|P=2ψ1(z)ψ¯2(z¯)P/(ε¯1ε2)P=2|\psi|P_{*}=2\sqrt{\psi_{1}(z)\bar{\psi}_{2}(\bar{z})}P_{*}/(\bar{\varepsilon}_{1}\varepsilon_{2}). By the reparametrization (23) and 2εi=h0(z)εi\partial^{2}\varepsilon_{i}=h_{0}(z)\varepsilon_{i}, one can set ψ1(z)=ψ¯2=1\psi_{1}(z)=\bar{\psi}_{2}=1, yielding ε1=±ε2\varepsilon_{1}=\pm\varepsilon_{2}. This renders the independent components of the Killing spinor down to one. However, the one quarter of supersymmetry is not allowed in the ungauged case Tod:1983pm . Thus, we conclude that the Q=g=0Q=g=0 Robinson-Trautman solution does not admit the supersymmetric limit.

A.2 Minkowski spacetime in the Robinson-Trautman form

Setting M=Q=ϕ2=g=0M=Q=\phi_{2}=g=0 in (4), all components of the Riemann tensor vanish, leading to the Minkowski spacetime

ds2=[k2r(lnP)u]du22dudr+2r2P2dzdz¯,\displaystyle{\rm d}s^{2}=-\left[k-2r\left(\ln P\right)_{u}\right]{\rm d}u^{2}-2{\rm d}u{\rm d}r+\frac{2r^{2}}{P^{2}}{\rm d}z{\rm d}\bar{z}\,, (145)

where P=P(u,z,z¯)P=P(u,z,\bar{z}) is given by

P=1+12k|h1|2|h1|,h1(u,z)=f1(u,z)f2(u,z),2fi=h0(z)fi.\displaystyle P=\frac{1+\frac{1}{2}k|h_{1}|^{2}}{|\partial h_{1}|}\,,\qquad h_{1}(u,z)=\frac{f_{1}(u,z)}{f_{2}(u,z)}\,,\qquad\partial^{2}f_{i}=h_{0}(z)f_{i}\,. (146)

To bring the above metric (145) into the standard form, we define uu-independent holomorphic functions ςi(z)\varsigma_{i}(z) (i=1,2i=1,2) satisfying 2ςi=h0(z)ςi\partial^{2}\varsigma_{i}=h_{0}(z)\varsigma_{i}. Since ςi\varsigma_{i} obey the second-order linear differential equations, their Wronskian 𝒲ς2ς1ς1ς2\mbox{$\mathcal{W}$}\equiv\varsigma_{2}\partial\varsigma_{1}-\varsigma_{1}\partial\varsigma_{2} is constant, which can be set to 𝒲=1\mbox{$\mathcal{W}$}=1 without loss of generality. In terms of these variables, we introduce new coordinates

u^=r|ς1|2P+u^0(u),v^=r|ς2|2P+v^0(u),z^=rς¯1ς2P+z^0(u),\displaystyle\hat{u}=\frac{r|\varsigma_{1}|^{2}}{P}+\hat{u}_{0}(u)\,,\qquad\hat{v}=\frac{r|\varsigma_{2}|^{2}}{P}+\hat{v}_{0}(u)\,,\qquad\hat{z}=\frac{r\bar{\varsigma}_{1}\varsigma_{2}}{P}+\hat{z}_{0}(u)\,, (147)

where

u^0(u)=\displaystyle\hat{u}_{0}(u)= [P2¯(P1|ς1|2)+k|ς1|2P]du,\displaystyle\,\int\left[P^{2}\partial\bar{\partial}\left(P^{-1}|\varsigma_{1}|^{2}\right)+\frac{k|\varsigma_{1}|^{2}}{P}\right]{\rm d}u\,,
v^0(u)=\displaystyle\hat{v}_{0}(u)= [P2¯(P1|ς2|2)+k|ς2|2P]du,\displaystyle\,\int\left[P^{2}\partial\bar{\partial}\left(P^{-1}|\varsigma_{2}|^{2}\right)+\frac{k|\varsigma_{2}|^{2}}{P}\right]{\rm d}u\,, (148)
z^0(u)=\displaystyle\hat{z}_{0}(u)= [P2¯(P1ς¯1ς2)+kς¯1ς2P]du.\displaystyle\,\int\left[P^{2}\partial\bar{\partial}\left(P^{-1}\bar{\varsigma}_{1}\varsigma_{2}\right)+\frac{k\bar{\varsigma}_{1}\varsigma_{2}}{P}\right]{\rm d}u\,.

The equation 2ςi=h0(z)ςi\partial^{2}\varsigma_{i}=h_{0}(z)\varsigma_{i} assures that u^0\hat{u}_{0}, v^0\hat{v}_{0} and z^0\hat{z}_{0} are independent of zz and z¯\bar{z}. It is then straightforward to verify that the metric (145) is rewritten into a familiar form

ds2=2du^dv^+2dz^dz¯^.\displaystyle{\rm d}s^{2}=-2{\rm d}\hat{u}{\rm d}\hat{v}+2{\rm d}\hat{z}{\rm d}\hat{\bar{z}}\,. (149)

Although the standard metric of AdS is obtained in a similar fashion, we shall not attempt to do this here, since the expression is rather lengthy and not illuminating.

References

  • (1) D. Klemm, M. Nozawa and M. Rabbiosi, Class. Quant. Grav. 32, no.20, 205008 (2015) doi:10.1088/0264-9381/32/20/205008 [arXiv:1506.09017 [hep-th]].
  • (2) J. P. Gauntlett, N. Kim, D. Martelli and D. Waldram, “Five-branes wrapped on SLAG three-cycles and related geometry,” JHEP 0111 (2001) 018 [hep-th/0110034].
  • (3) J. P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, “G-structures and wrapped NS5-branes,” Commun. Math. Phys.  247 (2004) 421 [hep-th/0205050].
  • (4) J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, “All supersymmetric solutions of minimal supergravity in five- dimensions,” Class. Quant. Grav.  20 (2003) 4587 [hep-th/0209114].
  • (5) J. P. Gauntlett and J. B. Gutowski, “All supersymmetric solutions of minimal gauged supergravity in five dimensions,” Phys. Rev. D 68 (2003) 105009 [Erratum-ibid. D 70 (2004) 089901] [hep-th/0304064].
  • (6) J. B. Gutowski and H. S. Reall, “General supersymmetric AdS5 black holes,” JHEP 0404 (2004) 048 [hep-th/0401129].
  • (7) J. B. Gutowski and W. Sabra, “General supersymmetric solutions of five-dimensional supergravity,” JHEP 0510 (2005) 039 [hep-th/0505185].
  • (8) J. Bellorín, P. Meessen and T. Ortín, “All the supersymmetric solutions of N=1N=1, d=5d=5 ungauged supergravity,” JHEP 0701 (2007) 020 [hep-th/0610196].
  • (9) J. Bellorín and T. Ortín, “Characterization of all the supersymmetric solutions of gauged N=1N=1, d=5d=5 supergravity,” JHEP 0708 (2007) 096 [arXiv:0705.2567 [hep-th]].
  • (10) J. B. Gutowski, D. Martelli and H. S. Reall, “All supersymmetric solutions of minimal supergravity in six dimensions,” Class. Quant. Grav.  20 (2003) 5049 [hep-th/0306235].
  • (11) J. P. Gauntlett and S. Pakis, “The geometry of D=11D=11 Killing spinors,” JHEP 0304 (2003) 039 [hep-th/0212008].
  • (12) J. P. Gauntlett, J. B. Gutowski and S. Pakis, “The geometry of D=11D=11 null Killing spinors,” JHEP 0312 (2003) 049 [hep-th/0311112].
  • (13) M. M. Caldarelli and D. Klemm, “All supersymmetric solutions of 𝒩=2{\cal N}=2, D=4D=4 gauged supergravity,” JHEP 0309 (2003) 019 [hep-th/0307022].
  • (14) J. Bellorín and T. Ortín, “All the supersymmetric configurations of N=4N=4, d=4d=4 supergravity,” Nucl. Phys. B 726 (2005) 171 [hep-th/0506056].
  • (15) P. Meessen, T. Ortín and S. Vaulà, “All the timelike supersymmetric solutions of all ungauged d=4d=4 supergravities,” JHEP 1011 (2010) 072 [arXiv:1006.0239 [hep-th]].
  • (16) P. Meessen and T. Ortín, “Supersymmetric solutions to gauged N=2N=2 d=4d=4 sugra: the full timelike shebang,” Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493 [hep-th]].
  • (17) M. Nozawa, Class. Quant. Grav. 28, 175013 (2011) doi:10.1088/0264-9381/28/17/175013 [arXiv:1011.0261 [hep-th]].
  • (18) U. Gran, J. Gutowski and G. Papadopoulos, “The spinorial geometry of supersymmetric IIB backgrounds,” Class. Quant. Grav.  22 (2005) 2453 [hep-th/0501177].
  • (19) U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, “Systematics of IIB spinorial geometry,” Class. Quant. Grav.  23 (2006) 1617 [hep-th/0507087].
  • (20) S. L. Cacciatori, M. M. Caldarelli, D. Klemm, D. S. Mansi and D. Roest, “Geometry of four-dimensional Killing spinors,” JHEP 0707 (2007) 046 [arXiv:0704.0247 [hep-th]].
  • (21) J. B. Gutowski and W. A. Sabra, “Half-supersymmetric solutions in five-dimensional supergravity,” JHEP 0712 (2007) 025 [Erratum-ibid.  1004 (2010) 042] [arXiv:0706.3147 [hep-th]].
  • (22) J. Grover, J. B. Gutowski and W. Sabra, “Null half-supersymmetric solutions in five-dimensional supergravity,” JHEP 0810 (2008) 103 [arXiv:0802.0231 [hep-th]].
  • (23) S. L. Cacciatori, D. Klemm, D. S. Mansi and E. Zorzan, “All timelike supersymmetric solutions of 𝒩=2{\cal N}=2, D=4D=4 gauged supergravity coupled to abelian vector multiplets,” JHEP 0805 (2008) 097 [arXiv:0804.0009 [hep-th]].
  • (24) D. Klemm and E. Zorzan, “All null supersymmetric backgrounds of 𝒩=2{\cal N}=2, D=4D=4 gauged supergravity coupled to abelian vector multiplets,” Class. Quant. Grav.  26 (2009) 145018 [arXiv:0902.4186 [hep-th]].
  • (25) D. Klemm and E. Zorzan, “The timelike half-supersymmetric backgrounds of 𝒩=2{\cal N}=2, D=4D=4 supergravity with Fayet-Iliopoulos gauging,” Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974 [hep-th]].
  • (26) K. -i. Maeda and M. Nozawa, “Black hole solutions in string theory,” Prog. Theor. Phys. Suppl.  189 (2011) 310 [arXiv:1104.1849 [hep-th]].
  • (27) U. Gran, J. Gutowski and G. Papadopoulos, Phys. Rept. 794, 1-87 (2019) doi:10.1016/j.physrep.2018.11.005 [arXiv:1808.07879 [hep-th]].
  • (28) K. P. Tod, “All metrics admitting supercovariantly constant spinors,” Phys. Lett. B 121 (1983) 241.
  • (29) E. Newman and R. Penrose, J. Math. Phys. 3, 566-578 (1962) doi:10.1063/1.1724257
  • (30) Z. Perjes, Phys. Rev. Lett. 27, 1668 (1971) doi:10.1103/PhysRevLett.27.1668
  • (31) W. Israel and G. A. Wilson, J. Math. Phys. 13, 865-871 (1972) doi:10.1063/1.1666066
  • (32) S. L. Cacciatori, M. M. Caldarelli, D. Klemm and D. S. Mansi, “More on BPS solutions of 𝒩=2{\cal N}=2, D=4D=4 gauged supergravity,” JHEP 0407 (2004) 061 [hep-th/0406238].
  • (33) D. Klemm and M. Nozawa, Class. Quant. Grav. 32, no.18, 185012 (2015) doi:10.1088/0264-9381/32/18/185012 [arXiv:1504.02710 [hep-th]].
  • (34) L. J. Romans, Nucl. Phys. B 383, 395 (1992) doi:10.1016/0550-3213(92)90684-4 [hep-th/9203018].
  • (35) W. A. Sabra, Phys. Lett. B 458, 36-42 (1999) doi:10.1016/S0370-2693(99)00564-X [arXiv:hep-th/9903143 [hep-th]].
  • (36) A. H. Chamseddine and W. A. Sabra, Phys. Lett. B 485, 301-307 (2000) doi:10.1016/S0370-2693(00)00652-3 [arXiv:hep-th/0003213 [hep-th]].
  • (37) M. M. Caldarelli and D. Klemm, “Supersymmetry of Anti-de Sitter black holes,” Nucl. Phys. B 545 (1999) 434 [hep-th/9808097].
  • (38) N. Alonso-Alberca, P. Meessen and T. Ortín, “Supersymmetry of topological Kerr-Newman-Taub-NUT-adS spacetimes,” Class. Quant. Grav.  17 (2000) 2783 [arXiv:hep-th/0003071].
  • (39) P. van Nieuwenhuizen and N. P. Warner, “Integrability conditions for Killing spinors,” Commun. Math. Phys.  93 (1984) 277.
  • (40) J. P. S. Lemos, Nucl. Phys. B 600, 272-284 (2001) doi:10.1016/S0550-3213(01)00064-5 [arXiv:hep-th/0011234 [hep-th]].
  • (41) D. Klemm and M. Nozawa, JHEP 1305, 123 (2013) doi:10.1007/JHEP05(2013)123 [arXiv:1303.3119 [hep-th]].
  • (42) J. F. Plebański and M. Demiański, “Rotating, charged, and uniformly accelerating mass in general relativity,” Annals Phys.  98 (1976) 98.
  • (43) A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, JHEP 01, 127 (2014) doi:10.1007/JHEP01(2014)127 [arXiv:1311.1795 [hep-th]].
  • (44) M. Nozawa and T. Houri, Class. Quant. Grav. 33, no.12, 125008 (2016) doi:10.1088/0264-9381/33/12/125008 [arXiv:1510.07470 [hep-th]].
  • (45) M. Nozawa, Phys. Lett. B 770, 166-173 (2017) doi:10.1016/j.physletb.2017.04.064 [arXiv:1702.05210 [hep-th]].
  • (46) K. Hristov, S. Katmadas and C. Toldo, Phys. Rev. D 100, no.6, 066016 (2019) doi:10.1103/PhysRevD.100.066016 [arXiv:1907.05192 [hep-th]].
  • (47) P. Ferrero, J. P. Gauntlett, J. M. P. Ipiña, D. Martelli and J. Sparks, Phys. Rev. D 104, no.4, 046007 (2021) doi:10.1103/PhysRevD.104.046007 [arXiv:2012.08530 [hep-th]].
  • (48) I. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431-432 (1960) doi:10.1103/PhysRevLett.4.431
  • (49) I. Robinson and A. Trautman, Proc. Roy. Soc. Lond. A 265, 463-473 (1962) doi:10.1098/rspa.1962.0036
  • (50) K. P. Tod, Class. Quant. Grav. 6, 1159 (1989). doi:10.1088/0264-9381/6/8/015
  • (51) J. Foster, E. T. Newman, J. Math. Phys. 8, 189-194 (1967). doi:10.1063/1.1705185
  • (52) B. Lukács, Z. Perjés, J. Porter and A. Sebestyén, Gen. Rel. Grav. 16, 7, 691-701 (1984). doi:10.1007/BF00767861
  • (53) A. D. Rendall, Class. Quant. Grav. 5, 1339 (1988). doi:10.1088/0264-9381/5/10/012
  • (54) D. Singleton, Class. Quant. Grav. 7, 1333 (1990). doi:10.1088/0264-9381/7/8/012
  • (55) P. Chruściel, Commun. Math. Phys. 137, 289-313 (1991) doi:10.1007/BF02431882
  • (56) P. T. Chrusciel, Proc. Roy. Soc. Lond. A 436, 299-316 (1992) doi:10.1098/rspa.1992.0019
  • (57) P. T. Chrusciel and D. B. Singleton, Commun. Math. Phys. 147, 137-162 (1992) doi:10.1007/BF02099531
  • (58) M. A. J. Vandyck, Class. Quant. Grav. 2, 77 (1985). doi:10.1088/0264-9381/2/1/008
  • (59) M. A. J. Vandyck, Class. Quant. Grav. 4, 759 (1987). doi:10.1088/0264-9381/4/3/032
  • (60) B. G. Schmidt, Gen. Rel. Grav, 20, 65 (1988). doi:10.1007/BF00759256
  • (61) E. N. Glass, D. C. Robinson, J. Math. Phys. 25, 3382-3386 (1984). doi.org/10.1063/1.526107
  • (62) C. Hoenselaers and W. K. Schief, J. Phys. A: Math. Gen. 25 601 (1992). doi:10.1088/0305-4470/25/3/018
  • (63) C. Hoenselaers and Z. Perjes, Class. Quant. Grav. 10, 375 (1993). doi:10.1088/0264-9381/10/2/019
  • (64) J. Podolský and R. Švarc, Phys. Rev. D 94, no.6, 064043 (2016) doi:10.1103/PhysRevD.94.064043 [arXiv:1608.07118 [gr-qc]].
  • (65) J. Bicak and J. Podolsky, Phys. Rev. D 52, 887-895 (1995) doi:10.1103/PhysRevD.52.887
  • (66) J. Bicak and J. Podolsky, Phys. Rev. D 55, 1985-1993 (1997) doi:10.1103/PhysRevD.55.1985 [arXiv:gr-qc/9901018 [gr-qc]].
  • (67) G. Bernardi de Freitas and H. S. Reall, JHEP 06, 148 (2014) doi:10.1007/JHEP06(2014)148 [arXiv:1403.3537 [hep-th]].
  • (68) I. Bakas and K. Skenderis, JHEP 08, 056 (2014) doi:10.1007/JHEP08(2014)056 [arXiv:1404.4824 [hep-th]].
  • (69) H. Adami, A. Parvizi, M. M. Sheikh-Jabbari and V. Taghiloo, JHEP 05, 191 (2024) doi:10.1007/JHEP05(2024)191 [arXiv:2402.17658 [hep-th]].
  • (70) E. T. Newman and R. Posadas, Phys. Rev. 187, 1784-1791 (1969) doi:10.1103/PhysRev.187.1784
  • (71) R. W. Lind and E. T. Newman, J. Math. Phys. 15, 1103-1112 (1974) doi.org/10.1063/1.1666760
  • (72) J. N. Goldberg and R. K. Sachs, Gen. Relat. Grav, 41, 2, 433-444, (2009). doi:10.1007/s10714-008-0722-5
  • (73) H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers and E. Herlt, doi:10.1017/CBO9780511535185
  • (74) C. Kozameh, E. T. Newman and G. Silva-Ortigoza, Class. Quant. Grav. 23, 6599-6620 (2006) doi:10.1088/0264-9381/23/23/002 [arXiv:gr-qc/0607074 [gr-qc]].
  • (75) J. B. Griffiths and J. Podolsky, Cambridge University Press, 2009, ISBN 978-1-139-48116-8 doi:10.1017/CBO9780511635397
  • (76) Henrici, Peter, “Applied and computational complex analysis, Volume 3: Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions,” Vol. 41. John Wiley & Sons, (1993).
  • (77) A. W. C. Lun and E. W. M. Chow, [arXiv:gr-qc/9409024 [gr-qc]].
  • (78) C. Kozameh, H. O. Kreiss and O. Reula, Class. Quant. Grav. 25, 025004 (2008) doi:10.1088/0264-9381/25/2/025004 [arXiv:0708.1933 [gr-qc]].
  • (79) P. T. Chrusciel, [arXiv:2112.02126 [gr-qc]].
  • (80) D. Z. Freedman and A. K. Das, Nucl. Phys. B 120, 221 (1977). doi:10.1016/0550-3213(77)90041-4
  • (81) A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. D 60, 064018 (1999) doi:10.1103/PhysRevD.60.064018 [arXiv:hep-th/9902170 [hep-th]].
  • (82) J. P. Gauntlett, E. O Colgain and O. Varela, JHEP 02, 049 (2007) doi:10.1088/1126-6708/2007/02/049 [arXiv:hep-th/0611219 [hep-th]].
  • (83) M. Nozawa and T. Shiromizu, Phys. Rev. D 89, no.2, 023011 (2014) doi:10.1103/PhysRevD.89.023011 [arXiv:1310.1663 [gr-qc]].
  • (84) V. A. Kostelecky and M. J. Perry, Phys. Lett. B 371, 191-198 (1996) doi:10.1016/0370-2693(95)01607-4 [arXiv:hep-th/9512222 [hep-th]].
  • (85) G. Dibitetto and D. Klemm, JHEP 12, 005 (2010) doi:10.1007/JHEP12(2010)005 [arXiv:1005.4334 [hep-th]].
  • (86) M. Nozawa and T. Shiromizu, Nucl. Phys. B 887, 380-399 (2014) doi:10.1016/j.nuclphysb.2014.09.002 [arXiv:1407.3355 [hep-th]].
  • (87) M. Nozawa and K. Tomoda, Class. Quant. Grav. 36, 155005 (2019) doi:10.1088/1361-6382/ab2da7 [arXiv:1902.07899 [gr-qc]].
  • (88) K. Hristov, C. Toldo and S. Vandoren, JHEP 12, 014 (2011) doi:10.1007/JHEP12(2011)014 [arXiv:1110.2688 [hep-th]].
  • (89) J. Podolsky, Czech. J. Phys. 52, 1-10 (2002) doi:10.1023/A:1013961411430 [arXiv:gr-qc/0202033 [gr-qc]].
  • (90) O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 67, 064001 (2003) doi:10.1103/PhysRevD.67.064001 [arXiv:hep-th/0210065 [hep-th]].
  • (91) B. de Wit and M. van Zalk, JHEP 10, 050 (2011) doi:10.1007/JHEP10(2011)050 [arXiv:1107.3305 [hep-th]].
  • (92) N. Van den Bergh and J. Carminati, Class. Quant. Grav. 37, no.21, 215010 (2020) doi:10.1088/1361-6382/abbba3 [arXiv:2009.11516 [gr-qc]].
  • (93) M. Nozawa and T. Torii, Class. Quant. Grav. 41, no.6, 065016 (2024) doi:10.1088/1361-6382/ad26ec [arXiv:2310.05460 [hep-th]].
  • (94) F. Faedo, D. Klemm and M. Nozawa, JHEP 11, 045 (2015) doi:10.1007/JHEP11(2015)045 [arXiv:1505.02986 [hep-th]].
  • (95) M. Nozawa, Phys. Rev. D 103, no.2, 024005 (2021) doi:10.1103/PhysRevD.103.024005 [arXiv:2010.07561 [gr-qc]].
  • (96) H. Lü and J. F. Vázquez-Poritz, JHEP 12, 057 (2014) doi:10.1007/JHEP12(2014)057 [arXiv:1408.6531 [hep-th]].
  • (97) M. Nozawa and T. Torii, Phys. Rev. D 107, no.6, 064064 (2023) doi:10.1103/PhysRevD.107.064064 [arXiv:2211.06517 [hep-th]].