This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Symmetries of the Black-Scholes equation

Paul Lescot Laboratoire de Mathématiques Raphaël Salem
UMR 6085 CNRS
Université de Rouen
Technopôle du Madrillet
Avenue de l’Université, B.P. 12
76801 Saint-Etienne-du-Rouvray (FRANCE)
Phone 00 33 (0)2 32 95 52 24
Fax 00 33 (0)2 32 95 52 86
Paul.Lescot@univ-rouen.fr
(Date: January 14, 2011)
Abstract.

We determine the algebra of isovectors for the Black–Scholes equation. As a consequence, we obtain some previously unknown transformations on the solutions.

MSC 34 A 26, 91 B 28

1. Introduction

We study the algebro–geometrical structure of the Black–Scholes equation.

The computation of the symmetry group of a partial differential equation has proven itself to be a very useful tool in Classical Mathematical Physics (see e.g. [Harrison-Estabrook 1971]), as well as in Euclidean Quantum Mechanics (see e.g. [Lescot-Zambrini 2004] and [Lescot-Zambrini 2008]). It was therefore natural to try and use the same method in Financial Mathematics.

After setting the general framework (§2), and performing some preliminary reductions (§3), we determine (§4) the isovectors for the Black-Scholes equation in a way broadly similar to the one used for the backward heat equation with potential term in the second of the two aforementioned joint papers with J.-C. Zambrini. Our computation turns out to suggest Black and Scholes’ original solution method ([Black-Scholes 1973]) of their equation; in particular, the quantities rσ22r-\frac{{\sigma}^{2}}{2} and r+σ22r+\frac{{\sigma}^{2}}{2} appear naturally in this context. As corollaries, we determine (§5) the structure of the Lie algebra of the symmetry group of the equation, then (§6) we obtain some interesting transformations on the solutions.

2. Generalities and notations

We shall be concerned with the classical Black-Scholes equation :

Ct+12σ2S22CS2+rSCSrC=0()\displaystyle\frac{\partial C}{\partial t}+\displaystyle\frac{1}{2}\sigma^{2}S^{2}\displaystyle\frac{\partial^{2}C}{\partial S^{2}}+rS\displaystyle\frac{\partial C}{\partial S}-rC=0\,\,(\mathcal{E})

for the price C(t,S)C(t,S) of a call option with maturity TT and strike price KK on an underlying asset satisfying St=SS_{t}=S (see [Black-Scholes 1973], where σ\sigma is denoted by vv, CC by ww, and SS by xx). As is well–known ([Black-Scholes 1973], p.646), the same equation is satisfied by the price of a put option.

We assume σ>0\sigma>0, and define

r~:=rσ22\tilde{r}:=r-\displaystyle\frac{\sigma^{2}}{2}\,\,

and

s~:=r+σ22.\tilde{s}:=r+\displaystyle\frac{\sigma^{2}}{2}\,\,.

It is useful to remark that

r~22σ2+r=s~22σ2.\displaystyle\frac{\tilde{r}^{2}}{2\sigma^{2}}+r=\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}\,\,.

We intend to determine the isovectors for ()(\mathcal{E}), using the method applied, in [Harrison-Estabrook 1971], pp. 657–658 (see also [Lescot-Zambrini 2004], pp.189–192) to the heat equation, and in [Lescot-Zambrini 2008], §3, to the (backward) heat equation with a potential term.

Let us set x=ln(S)x=\ln(S) and

φ(t,x):=C(t,ex)=C(t,S);\varphi(t,x):=C(t,e^{x})=C(t,S)\,\,;

then φ\varphi is defined on 𝐑+×𝐑\mathbf{R}_{+}\times\mathbf{R}. One has

CS=1Sφx,\displaystyle\frac{\partial C}{\partial S}=\displaystyle\frac{1}{S}\displaystyle\frac{\partial\varphi}{\partial x}\,\,,
2CS2=1S2φx+1S22φx2\displaystyle\frac{\partial^{2}C}{\partial S^{2}}=-\displaystyle\frac{1}{S^{2}}\displaystyle\frac{\partial\varphi}{\partial x}+\displaystyle\frac{1}{S^{2}}\displaystyle\frac{\partial^{2}\varphi}{\partial x^{2}}

and

Ct=φt.\displaystyle\frac{\partial C}{\partial t}=\displaystyle\frac{\partial\varphi}{\partial t}\,\,.

Equation ()(\mathcal{E}) is therefore equivalent to the following equation in φ\varphi :

φt+σ22(2φx2φx)+rφxrφ=0(1),\displaystyle\frac{\partial\varphi}{\partial t}+\displaystyle\frac{\sigma^{2}}{2}(\displaystyle\frac{\partial^{2}\varphi}{\partial x^{2}}-\displaystyle\frac{\partial\varphi}{\partial x})+r\displaystyle\frac{\partial\varphi}{\partial x}-r\varphi=0\,\,(\mathcal{E}_{1})\,\,,

that is :

φt+σ222φx2+r~φxrφ=0(2).\displaystyle\frac{\partial\varphi}{\partial t}+\displaystyle\frac{\sigma^{2}}{2}\displaystyle\frac{\partial^{2}\varphi}{\partial x^{2}}+\tilde{r}\displaystyle\frac{\partial\varphi}{\partial x}-r\varphi=0\,\,(\mathcal{E}_{2})\,\,.

3. Computation of the isovectors : preliminary reductions

Let us set A=φxA=\displaystyle\frac{\partial\varphi}{\partial x} and B=φtB=\displaystyle\frac{\partial\varphi}{\partial t}, and consider thenceforth tt, xx, φ\varphi, AA and BB as independent variables . Then (2)(\mathcal{E}_{2}) is equivalent to the vanishing, on the five–dimensional manifold M=𝐑+×𝐑4M=\mathbf{R}_{+}\times\mathbf{R}^{4} of (t,x,φ,A,B)(t,x,\varphi,A,B), of the following system of differential forms :

(3.1) α=dφAdxBdt,\displaystyle\alpha=d\varphi-Adx-Bdt\,\,,
(3.2) dα=dAdxdBdt,\displaystyle d\alpha=-dAdx-dBdt\,\,,

and

(3.3) β=(B+r~Arφ)dxdt+12σ2dAdt.\displaystyle\beta=(B+\tilde{r}A-r\varphi)dxdt+\displaystyle\frac{1}{2}\sigma^{2}dAdt\,\,.

Let II denote the ideal of ΛT(M)\Lambda T^{*}(M) generated by α\alpha, dαd\alpha and β\beta ; as

(3.4) dβ\displaystyle d\beta =\displaystyle= (dB+r~dArdφ)dxdt\displaystyle(dB+\tilde{r}dA-rd\varphi)dxdt
=\displaystyle= dα(dxr~dt)+α(rdxdt)I,\displaystyle d\alpha(dx-\tilde{r}dt)+\alpha(-rdxdt)\in I\,\,,

II is a differential ideal of ΛT(M)\Lambda T^{*}(M). By definition (see [Harrison-Estabrook 1971]), an isovector for (2)(\mathcal{E}_{2}) is a vector field

(3.5) N=Ntt+Nxx+Nφφ+NAA+NBB\displaystyle N=N^{t}\displaystyle\frac{\partial}{\partial t}+N^{x}\displaystyle\frac{\partial}{\partial x}+N^{\varphi}\displaystyle\frac{\partial}{\partial\varphi}+N^{A}\displaystyle\frac{\partial}{\partial A}+N^{B}\displaystyle\frac{\partial}{\partial B}

such that

(3.6) N(I)I.\displaystyle\mathcal{L}_{N}(I)\subseteq I\,\,.

Using the formal properties of the Lie derivative ([Harrison-Estabrook 1971], p.654), one easily proves that the set 𝒢\mathcal{G} of these isovectors constitutes a Lie algebra (for the usual bracket of vector fields).

In order to determine 𝒢\mathcal{G}, we may use a trick first explained in

[Harrison-Estabrook 1971], p.657, that applies in all situations in which there is only one 11–form among the given generators of the ideal II (see also [Lescot-Zambrini 2008], p.211).

Let N𝒢N\in\mathcal{G} ; as N(I)I\mathcal{L}_{N}(I)\subseteq I, one has N(α)I=<α,dα,β>\mathcal{L}_{N}(\alpha)\in I=<\alpha,d\alpha,\beta>, whence there is a 0–form (i.e. a function) λ\lambda such that N(α)=λα\mathcal{L}_{N}(\alpha)=\lambda\alpha. Let us define

(3.7) F:=Nα=NφANxBNt.\displaystyle F:=N\rfloor\alpha=N^{\varphi}-AN^{x}-BN^{t}\,\,.

This can be rewritten as

(3.8) λα=N(α)=Ndα+d(Nα)=Ndα+dF,\displaystyle\lambda\alpha=\mathcal{L}_{N}(\alpha)=N\rfloor d\alpha+d(N\rfloor\alpha)=N\rfloor d\alpha+dF\,\,,

whence

(3.9) Ndα=λαdF,\displaystyle N\rfloor d\alpha=\lambda\alpha-dF\,\,,

that is

(3.10) N(dAdxdBdt)=λαdF\displaystyle N\rfloor(-dAdx-dBdt)=\lambda\alpha-dF

i.e.

NAdx+NxdANBdt+NtdB\displaystyle-N^{A}dx+N^{x}dA-N^{B}dt+N^{t}dB
=\displaystyle= λαdF\displaystyle\lambda\alpha-dF
=\displaystyle= λ(dφAdxBdt)dF.\displaystyle\lambda(d\varphi-Adx-Bdt)-dF\,\,.

Whence (letters as lower indices indicating differentiation, as usual)

(){NB=λBFtNA=λAFx0=λFφNx=FANt=FB.(*)\left\{\begin{array}[]{lr}-N^{B}=-\lambda B-F_{t}\\ -N^{A}=-\lambda A-F_{x}\\ 0=\lambda-F_{\varphi}\\ N^{x}=-F_{A}\\ N^{t}=-F_{B}\,\,.\end{array}\right.

Using the third equation, we can eliminate λ\lambda and obtain

(){Nt=FBNx=FANφ=FAFABFBNA=Fx+AFφNB=Ft+BFφ.(**)\left\{\begin{array}[]{lr}N^{t}=-F_{B}\\ N^{x}=-F_{A}\\ N^{\varphi}=F-AF_{A}-BF_{B}\\ N^{A}=F_{x}+AF_{\varphi}\\ N^{B}=F_{t}+BF_{\varphi}\,\,.\end{array}\right.

Conversely, the existence of a function F(t,x,φ,A,B)F(t,x,\varphi,A,B) such that the above equations hold clearly implies that N(α)=FφαI\mathcal{L}_{N}(\alpha)=F_{\varphi}\alpha\in I ; but then

N(dα)=d(N(α))d(I)I,\mathcal{L}_{N}(d\alpha)=d(\mathcal{L}_{N}(\alpha))\in d(I)\subseteq I\,\,,

and there only remains to be satisfied the condition

N(β)I.\mathcal{L}_{N}(\beta)\in I\,\,.

4. The general isovector

The last condition in the previous paragraph can be stated as

(4.1) N(β)=ρα+ξdα+ωβ,\displaystyle\mathcal{L}_{N}(\beta)=\rho\alpha+\xi d\alpha+\omega\beta\,\,,

for ρ\rho a 11–form, ξ\xi a 0–form and ω\omega a 0–form. Let DD denote the coefficient of dφd\varphi in ρ\rho ; replacing ρ\rho by ρDα\rho-D\alpha (which doesn’t affect the validity of (4.1)(4.1) as α2=0\alpha^{2}=0), we may assume that D=0D=0. Setting then

(4.2) ρ=R1dt+R2dx+R3dA+R4dB,\displaystyle\rho=R_{1}dt+R_{2}dx+R_{3}dA+R_{4}dB\,\,,
(4.3) ξ=R5,\displaystyle\xi=R_{5}\,\,,

and

(4.4) ω=R6,\displaystyle\omega=R_{6}\,\,,

we shall obtain a system of ten equations in FF ; we shall then eliminate R1R_{1},…,R6R_{6}.

Identifying the coefficients of, in that order, dtdxdtdx, dtdφdtd\varphi, dtdAdtdA, dtdBdtdB, dxdφdxd\varphi, dxdAdxdA, dxdBdxdB, dφdAd\varphi dA, dφdBd\varphi dB and dAdBdAdB yields the following system :

(4.5) rNφr~NANB+(rφr~AB)Nxx+(rφr~AB)Ntt12σ2NxA\displaystyle rN^{\varphi}-\tilde{r}N^{A}-N^{B}+(r\varphi-\tilde{r}A-B)N_{x}^{x}+(r\varphi-\tilde{r}A-B)N_{t}^{t}-\displaystyle\frac{1}{2}\sigma^{2}N_{x}^{A}
=\displaystyle= AR1+BR2(B+r~Arφ)R6\displaystyle-AR_{1}+BR_{2}-(B+\tilde{r}A-r\varphi)R_{6}
(4.6) (rφr~AB)Nφx12σ2NφA=R1\displaystyle(r\varphi-\tilde{r}A-B)N_{\varphi}^{x}-\displaystyle\frac{1}{2}\sigma^{2}N_{\varphi}^{A}=R_{1}
(4.7) (rφr~AB)NAx12σ2NAA12σ2Ntt=BR312σ2R6\displaystyle(r\varphi-\tilde{r}A-B)N_{A}^{x}-\displaystyle\frac{1}{2}\sigma^{2}N_{A}^{A}-\displaystyle\frac{1}{2}\sigma^{2}N_{t}^{t}=BR_{3}-\displaystyle\frac{1}{2}\sigma^{2}R_{6}
(4.8) (rφr~AB)NBx12σ2NBA=BR4+R5\displaystyle(r\varphi-\tilde{r}A-B)N_{B}^{x}-\displaystyle\frac{1}{2}\sigma^{2}N_{B}^{A}=BR_{4}+R_{5}
(4.9) (B+r~Arφ)Nφt=R2\displaystyle(B+\tilde{r}A-r\varphi)N_{\varphi}^{t}=R_{2}
(4.10) (B+r~Arφ)NAt12σ2Nxt=AR3+R5\displaystyle(B+\tilde{r}A-r\varphi)N_{A}^{t}-\displaystyle\frac{1}{2}\sigma^{2}N_{x}^{t}=AR_{3}+R_{5}
(4.11) (B+r~Arφ)NBt=AR4\displaystyle(B+\tilde{r}A-r\varphi)N_{B}^{t}=AR_{4}
(4.12) 12σ2Nφt=R3\displaystyle-\displaystyle\frac{1}{2}\sigma^{2}N_{\varphi}^{t}=-R_{3}
(4.13) 0=R4\displaystyle 0=-R_{4}
(4.14) 12σ2NBt=0.\displaystyle\displaystyle\frac{1}{2}\sigma^{2}N_{B}^{t}=0\,\,.

Equation (4.13)(4.13) gives R4=0R_{4}=0 ; then (4.8)(4.8) defines R5R_{5}. Equation (4.14)(4.14) is equivalent to NBt=0N_{B}^{t}=0 ; if that be the case, then (4.11)(4.11) holds automatically. Now (4.9)(4.9) defines R2R_{2}, (4.12)(4.12) defines R3R_{3}, (4.6)(4.6) defines R1R_{1} and (4.7)(4.7) defines R6R_{6}. We are left with equations (4.5)(4.5) and (4.10)(4.10) and the condition NBt=0N_{B}^{t}=0.

Let us begin with the last mentioned ; it is equivalent to FBB=0F_{BB}=0 : FF is affine in BB, i.e. F=c+BdF=c+Bd, where cc and dd depend only on (t,x,φ,A)(t,x,\varphi,A). Now ()(**) can be rewritten as

(){Nt=dNx=cABdANφ=cAcAABdANA=cx+Bdx+Acφ+ABdφNB=ct+Bdt+Bcφ+B2dφ.(***)\left\{\begin{array}[]{lr}N^{t}=-d\\ N^{x}=-c_{A}-Bd_{A}\\ N^{\varphi}=c-Ac_{A}-ABd_{A}\\ N^{A}=c_{x}+Bd_{x}+Ac_{\varphi}+ABd_{\varphi}\\ N^{B}=c_{t}+Bd_{t}+Bc_{\varphi}+B^{2}d_{\varphi}\,\,.\end{array}\right.

From (4.12)(4.12) follows

(4.15) R3=12σ2dφ,\displaystyle R_{3}=-\displaystyle\frac{1}{2}\sigma^{2}d_{\varphi}\,\,,

and (4.8)(4.8) yields

(4.16) R5=(B+r~Arφ)dA12σ2(dx+Adφ).\displaystyle R_{5}=(B+\tilde{r}A-r\varphi)d_{A}-\displaystyle\frac{1}{2}\sigma^{2}(d_{x}+Ad_{\varphi})\,\,.

Now we can rewrite (4.10)(4.10) as

(B+r~Arφ)(dA)12σ2(dx)\displaystyle(B+\tilde{r}A-r\varphi)(-d_{A})-\displaystyle\frac{1}{2}\sigma^{2}(-d_{x})
=\displaystyle= (B+r~Arφ)dA12σ2(dx+Adφ).\displaystyle(B+\tilde{r}A-r\varphi)d_{A}-\displaystyle\frac{1}{2}\sigma^{2}(d_{x}+Ad_{\varphi})\,\,.

Comparing the coefficients of BB on both sides gives dA=dA-d_{A}=d_{A}, that is dA=0d_{A}=0, i.e. dd depends only upon (t,x,φ)(t,x,\varphi). Now (4.17)(4.17) becomes

(4.18) 12σ2dx=12σ2(dx+Adφ)\displaystyle\displaystyle\frac{1}{2}\sigma^{2}d_{x}=-\displaystyle\frac{1}{2}\sigma^{2}(d_{x}+Ad_{\varphi})

that is

(4.19) 2dx=Adφ.\displaystyle 2d_{x}=-Ad_{\varphi}\,\,.

Differentiating with respect to AA leads to

(4.20) 0=2dAx=dφ,\displaystyle 0=2d_{Ax}=-d_{\varphi}\,\,,

whence dφ=0d_{\varphi}=0 and dx=12Adφ=0d_{x}=-\displaystyle\frac{1}{2}Ad_{\varphi}=0 : dd depends only upon tt. Then ()(***) becomes

(){Nt=dNx=cANφ=cAcANA=cx+AcφNB=ct+Bdt+Bcφ,(****)\left\{\begin{array}[]{lr}N^{t}=-d\\ N^{x}=-c_{A}\\ N^{\varphi}=c-Ac_{A}\\ N^{A}=c_{x}+Ac_{\varphi}\\ N^{B}=c_{t}+Bd_{t}+Bc_{\varphi}\,\,,\\ \end{array}\right.

the new unknowns being a function c(t,x,φ,A)c(t,x,\varphi,A) and a function d(t)d(t), and we still have to satisfy equation (4.5)(4.5). Now (4.9)(4.9) implies R2=0R_{2}=0, and (4.6)(4.6) gives

(4.21) R1=(rφr~AB)cAφ12σ2(cxφ+Acφφ).\displaystyle R_{1}=-(r\varphi-\tilde{r}A-B)c_{A\varphi}-\displaystyle\frac{1}{2}\sigma^{2}(c_{x\varphi}+Ac_{\varphi\varphi})\,\,.

Equation (4.7)(4.7) now becomes

(rφr~AB)(cAA)12σ2(cxA+cφ+AcAφ)12σ2(dt)\displaystyle(r\varphi-\tilde{r}A-B)(-c_{AA})-\displaystyle\frac{1}{2}\sigma^{2}(c_{xA}+c_{\varphi}+Ac_{A\varphi})-\displaystyle\frac{1}{2}\sigma^{2}(-d_{t})
=\displaystyle= 12σ2R6,\displaystyle-\displaystyle\frac{1}{2}\sigma^{2}R_{6}\,\,,

that is :

(4.23) R6=dt+cxA+cφ+AcAφ+2σ2(B+r~Arφ)(cAA).\displaystyle R_{6}=-d_{t}+c_{xA}+c_{\varphi}+Ac_{A\varphi}+\displaystyle\frac{2}{\sigma^{2}}(B+\tilde{r}A--r\varphi)(-c_{AA})\,\,.

Eliminating R1R_{1}, R2R_{2} and R6R_{6} turns (4.5)(4.5) into

r(cAcA)r~(cx+Acφ)(ct+Bdt+Bcφ)+(rφr~AB)(cAx)\displaystyle r(c-Ac_{A})-\tilde{r}(c_{x}+Ac_{\varphi})-(c_{t}+Bd_{t}+Bc_{\varphi})+(r\varphi-\tilde{r}A-B)(-c_{Ax})
+\displaystyle+ (rφr~AB)(dt)12σ2(cxx+Acφx)\displaystyle(r\varphi-\tilde{r}A-B)(-d_{t})-\displaystyle\frac{1}{2}\sigma^{2}(c_{xx}+Ac_{\varphi x})
=\displaystyle= A((rφr~AB)cA,φ12σ2(cxφ+Acφφ))\displaystyle-A(-(r\varphi-\tilde{r}A-B)c_{A,\varphi}-\displaystyle\frac{1}{2}\sigma^{2}(c_{x\varphi}+Ac_{\varphi\varphi}))
(B+r~Arφ)(dt+cxA+cφ+AcAφ+2σ2(B+r~Arφ)(cAA)).\displaystyle-(B+\tilde{r}A-r\varphi)(-d_{t}+c_{xA}+c_{\varphi}+Ac_{A\varphi}+\displaystyle\frac{2}{\sigma^{2}}(B+\tilde{r}A-r\varphi)(-c_{AA}))\,\,.

Both members of (4.24)(4.24) are second–order polynomials in BB ; equating the coefficients of B2B^{2} gives cAA=0c_{AA}=0, whence cc is affine in AA : c=e+Afc=e+Af with ee and ff functions of (t,x,φ)(t,x,\varphi).

Equating the coefficients of BB yields

(4.25) dtcφ+cAx+dt=AcAφ(dt+cAx+cφ+AcAφ)\displaystyle-d_{t}-c_{\varphi}+c_{Ax}+d_{t}=-Ac_{A\varphi}-(-d_{t}+c_{Ax}+c_{\varphi}+Ac_{A\varphi})

that is :

(4.26) dt=2cAx+2AcAφ=2fx+2Afφ.\displaystyle d_{t}=2c_{Ax}+2Ac_{A\varphi}=2f_{x}+2Af_{\varphi}\,\,.

Differentiating the last equality with respect to AA gives fφ=0f_{\varphi}=0 (that is, ff is a function of (t,x)(t,x)), and then we get that dt=2fxd_{t}=2f_{x}, i.e.

(4.27) f=12d(t)x+μ(t)\displaystyle f=\displaystyle\frac{1}{2}d^{{}^{\prime}}(t)x+\mu(t)

for some function μ\mu of tt alone.

Equating the constant terms in BB now gives us

rer~(ex+Afx+Aeφ)(et+Aft)+(rφr~A)(fx)\displaystyle re-\tilde{r}(e_{x}+Af_{x}+Ae_{\varphi})-(e_{t}+Af_{t})+(r\varphi-\tilde{r}A)(-f_{x})
+(rφr~A)(dt)12σ2(exx+Afxx+Aeφx)\displaystyle+(r\varphi-\tilde{r}A)(-d_{t})-\displaystyle\frac{1}{2}\sigma^{2}(e_{xx}+Af_{xx}+Ae_{\varphi x})
=\displaystyle= A12σ2(exφ+Aeφφ)(r~Arφ)(dt+fx+eφ).\displaystyle A\displaystyle\frac{1}{2}\sigma^{2}(e_{x\varphi}+Ae_{\varphi\varphi})-(\tilde{r}A-r\varphi)(-d_{t}+f_{x}+e_{\varphi})\,\,.

Both sides of equation (4.28)(4.28) are polynomials in AA with coefficients depending only upon (t,x,φ)(t,x,\varphi). Identifying the terms in A2A^{2} leads us to eφφ=0e_{\varphi\varphi}=0, whence e=g+hφe=g+h\varphi with gg and hh depending only upon (t,x)(t,x). The unknowns are now dd and μ\mu (functions of tt alone) and gg and hh (functions of (t,x)(t,x)).

Identifying the coefficients of AA on both sides of (4.29)(4.29) yields

r~(fx+eφ)ft+r~fx+r~dt12σ2(fxx+eφx)\displaystyle-\tilde{r}(f_{x}+e_{\varphi})-f_{t}+\tilde{r}f_{x}+\tilde{r}d_{t}-\displaystyle\frac{1}{2}\sigma^{2}(f_{xx}+e_{\varphi x})
=\displaystyle= 12σ2exφr~(dt+fx+eφ),\displaystyle\displaystyle\frac{1}{2}\sigma^{2}e_{x\varphi}-\tilde{r}(-d_{t}+f_{x}+e_{\varphi})\,\,,

that is

(4.30) ft12σ2fxx=σ2hxr~fx\displaystyle-f_{t}-\displaystyle\frac{1}{2}\sigma^{2}f_{xx}=\sigma^{2}h_{x}-\tilde{r}f_{x}

or

(4.31) σ2hx=r~12d(t)12d′′(t)xμ(t),\displaystyle\sigma^{2}h_{x}=\tilde{r}\displaystyle\frac{1}{2}d^{{}^{\prime}}(t)-\displaystyle\frac{1}{2}d^{{}^{\prime\prime}}(t)x-\mu^{{}^{\prime}}(t)\,\,,

that is

(4.32) h(t,x)=r~2σ2d(t)xd′′(t)4σ2x2μ(t)σ2x+k(t),\displaystyle h(t,x)=\displaystyle\frac{\tilde{r}}{2\sigma^{2}}d^{{}^{\prime}}(t)x-\displaystyle\frac{d^{{}^{\prime\prime}}(t)}{4\sigma^{2}}x^{2}-\displaystyle\frac{\mu^{{}^{\prime}}(t)}{\sigma^{2}}x+k(t)\,\,,

for some function kk of tt alone.

The constant term gives

(4.33) rer~exetrφfxrφdt12σ2exx=rφ(dt+fx+eφ).\displaystyle re-\tilde{r}e_{x}-e_{t}-r\varphi f_{x}-r\varphi d_{t}-\displaystyle\frac{1}{2}\sigma^{2}e_{xx}=r\varphi(-d_{t}+f_{x}+e_{\varphi})\,\,.

According to the relation dt=2fxd_{t}=2f_{x}, this becomes

(4.34) rgr~gxr~φhxgtφhtrφdt12σ2gxx12σ2φhxx=0.\displaystyle rg-\tilde{r}g_{x}-\tilde{r}\varphi h_{x}-g_{t}-\varphi h_{t}-r\varphi d_{t}-\displaystyle\frac{1}{2}\sigma^{2}g_{xx}-\displaystyle\frac{1}{2}\sigma^{2}\varphi h_{xx}=0\,\,.

Equating the constant term (in φ\varphi) of (4.34)(4.34) to zero gives that gg is a solution of (2)(\mathcal{E}_{2}).

The value of the term in φ\varphi means that

(4.35) r~hxhtrdt12σ2hxx=0,\displaystyle-\tilde{r}h_{x}-h_{t}-rd_{t}-\displaystyle\frac{1}{2}\sigma^{2}h_{xx}=0\,\,,

that is

r~(r~2σ2d(t)d′′(t)2σ2xμ(t)σ2)\displaystyle-\tilde{r}(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}d^{{}^{\prime}}(t)-\displaystyle\frac{d^{{}^{\prime\prime}}(t)}{2\sigma^{2}}x-\displaystyle\frac{\mu^{{}^{\prime}}(t)}{\sigma^{2}})
(r~2σ2d′′(t)xd′′′(t)4σ2x2μ′′(t)σ2x+k(t))rd(t)12σ2(d′′(t)2σ2)=0.\displaystyle-(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}d^{{}^{\prime\prime}}(t)x-\displaystyle\frac{d^{{}^{\prime\prime\prime}}(t)}{4\sigma^{2}}x^{2}-\displaystyle\frac{\mu^{{}^{\prime\prime}}(t)}{\sigma^{2}}x+k^{{}^{\prime}}(t))-rd^{{}^{\prime}}(t)-\displaystyle\frac{1}{2}\sigma^{2}(-\displaystyle\frac{d^{{}^{\prime\prime}}(t)}{2\sigma^{2}})=0.

This is a polynomial equation in xx with functions of tt as coefficients. Considering the coefficient of x2x^{2} gives d′′′(t)=0d^{{}^{\prime\prime\prime}}(t)=0, that is d(t)=C1t2+C2t+C3d(t)=C_{1}t^{2}+C_{2}t+C_{3} for constants C1C_{1}, C2C_{2} and C3C_{3}.

Equating the terms in xx leads to

(4.37) r~2σ2d′′(t)r~2σ2d′′(t)+μ′′(t)σ2=0,\displaystyle\displaystyle\frac{\tilde{r}}{2\sigma^{2}}d^{{}^{\prime\prime}}(t)-\displaystyle\frac{\tilde{r}}{2\sigma^{2}}d^{{}^{\prime\prime}}(t)+\displaystyle\frac{\mu^{{}^{\prime\prime}}(t)}{\sigma^{2}}=0\,\,,

that is

(4.38) μ′′(t)=0\displaystyle\mu^{{}^{\prime\prime}}(t)=0

or

(4.39) μ(t)=C4t+C5\displaystyle\mu(t)=C_{4}t+C_{5}

(C4C_{4}, C5C_{5} real constants).

We are left with the constant term in xx :

(4.40) r~22σ2d(t)+r~μ(t)σ2k(t)rd(t)+d′′(t)4=0,\displaystyle-\displaystyle\frac{\tilde{r}^{2}}{2\sigma^{2}}d^{{}^{\prime}}(t)+\tilde{r}\displaystyle\frac{\mu^{{}^{\prime}}(t)}{\sigma^{2}}-k^{{}^{\prime}}(t)-rd^{{}^{\prime}}(t)+\displaystyle\frac{d^{{}^{\prime\prime}}(t)}{4}=0\,\,,

or

k(t)\displaystyle k(t) =\displaystyle= (r~22σ2+r)d(t)+r~μ(t)σ2+d(t)4+C6\displaystyle-(\displaystyle\frac{\tilde{r}^{2}}{2\sigma^{2}}+r)d(t)+\tilde{r}\displaystyle\frac{\mu(t)}{\sigma^{2}}+\displaystyle\frac{d^{{}^{\prime}}(t)}{4}+C_{6}
=\displaystyle= s~22σ2d(t)+r~μ(t)σ2+d(t)4+C6\displaystyle-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}d(t)+\tilde{r}\displaystyle\frac{\mu(t)}{\sigma^{2}}+\displaystyle\frac{d^{{}^{\prime}}(t)}{4}+C_{6}

for some constant C6C_{6}. Therefore

f(t,x)\displaystyle f(t,x) =\displaystyle= 12d(t)x+μ(t)\displaystyle\displaystyle\frac{1}{2}d^{{}^{\prime}}(t)x+\mu(t)
=\displaystyle= 12x(2C1t+C2)+C4t+C5\displaystyle\displaystyle\frac{1}{2}x(2C_{1}t+C_{2})+C_{4}t+C_{5}

and

h(t,x)\displaystyle h(t,x) =\displaystyle= r~2σ2x(2C1t+C2)C12σ2x2\displaystyle\displaystyle\frac{\tilde{r}}{2\sigma^{2}}x(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}}{2\sigma^{2}}x^{2}
\displaystyle- C4xσ2s~22σ2(C1t2+C2t+C3)\displaystyle\displaystyle\frac{C_{4}x}{\sigma^{2}}-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(C_{1}t^{2}+C_{2}t+C_{3})
+\displaystyle+ r~(C4t+C5)σ2+2C1t+C24+C6.\displaystyle\tilde{r}\displaystyle\frac{(C_{4}t+C_{5})}{\sigma^{2}}+\displaystyle\frac{2C_{1}t+C_{2}}{4}+C_{6}\,\,.

We have established

Theorem 4.1.

The general isovector NN for (2)(\mathcal{E}_{2}) is given, in terms of an arbitrary solution gg of (2)(\mathcal{E}_{2}) and six arbitrary real constants C1C_{1},…,C6C_{6}, by the formulas

Nt=C1t2C2tC3N^{t}=-C_{1}t^{2}-C_{2}t-C_{3}
Nx=12x(2C1t+C2)(C4t+C5)N^{x}=-\displaystyle\frac{1}{2}x(2C_{1}t+C_{2})-(C_{4}t+C_{5})
Nφ\displaystyle N^{\varphi} =\displaystyle= g+φ(r~2σ2x(2C1t+C2)C12σ2x2C4xσ2\displaystyle g+\varphi(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}x(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}}{2\sigma^{2}}x^{2}-\displaystyle\frac{C_{4}x}{\sigma^{2}}
s~22σ2(C1t2+C2t+C3)+r~C4t+C5σ2+2C1t+C24+C6)\displaystyle-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(C_{1}t^{2}+C_{2}t+C_{3})+\tilde{r}\displaystyle\frac{C_{4}t+C_{5}}{\sigma^{2}}+\displaystyle\frac{2C_{1}t+C_{2}}{4}+C_{6})
NA\displaystyle N^{A} =\displaystyle= gx+φ(r~2σ2(2C1t+C2)C1xσ2C4σ2)\displaystyle g_{x}+\varphi(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}x}{\sigma^{2}}-\displaystyle\frac{C_{4}}{\sigma^{2}})
+\displaystyle+ A2(2C1t+C2)\displaystyle\displaystyle\frac{A}{2}(2C_{1}t+C_{2})
+\displaystyle+ A(r~2σ2x(2C1t+C2)C12σ2x2\displaystyle A(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}x(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}}{2\sigma^{2}}x^{2}
\displaystyle- C4xσ2s~22σ2(C1t2+C2t+C3)\displaystyle\displaystyle\frac{C_{4}x}{\sigma^{2}}-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(C_{1}t^{2}+C_{2}t+C_{3})
+\displaystyle+ r~(C4t+C5)σ2+2C1t+C24+C6).\displaystyle\tilde{r}\displaystyle\frac{(C_{4}t+C_{5})}{\sigma^{2}}+\displaystyle\frac{2C_{1}t+C_{2}}{4}+C_{6}).
NB\displaystyle N^{B} =\displaystyle= gt+φ(r~xσ2s~22σ2(2C1t+C2)+r~C4σ2+C12)\displaystyle g_{t}+\varphi(\displaystyle\frac{\tilde{r}x}{\sigma^{2}}-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(2C_{1}t+C_{2})+\displaystyle\frac{\tilde{r}C_{4}}{\sigma^{2}}+\displaystyle\frac{C_{1}}{2})
+\displaystyle+ A(xC1+C4)+B(2C1t+C2)\displaystyle A(xC_{1}+C_{4})+B(2C_{1}t+C_{2})
+\displaystyle+ B(r~2σ2x(2C1t+C2)C12σ2x2\displaystyle B(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}x(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}}{2\sigma^{2}}x^{2}
\displaystyle- C4xσ2s~22σ2(C1t2+C2t+C3)\displaystyle\displaystyle\frac{C_{4}x}{\sigma^{2}}-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(C_{1}t^{2}+C_{2}t+C_{3})
+\displaystyle+ r~(C4t+C5)σ2+2C1t+C24+C6).\displaystyle\tilde{r}\displaystyle\frac{(C_{4}t+C_{5})}{\sigma^{2}}+\displaystyle\frac{2C_{1}t+C_{2}}{4}+C_{6}).

5. The Lie algebra

For uu a solution of (2)(\mathcal{E}_{2}), let NuN_{u} denote the isovector defined by g=ug=u and C1==C6=0C_{1}=...=C_{6}=0, and, for 1i61\leq i\leq 6, let NiN_{i} denote the isovector defoned by by g=0g=0, Ci=1C_{i}=1 and Cj=0C_{j}=0 for jij\neq i.

The function gg and hh are determined by the isovector NN :

g=NφφNφφg=N^{\varphi}-\varphi\displaystyle\frac{\partial N^{\varphi}}{\partial\varphi}

and

h=Nφφ;h=\displaystyle\frac{\partial N^{\varphi}}{\partial\varphi}\,\,;

we shall denote them repectively by gNg_{N} and hNh_{N}. As seen in §4, hNh_{N} is a function of (t,x)(t,x).

Lemma 5.1.

For all (M,N)𝒢2(M,N)\in\mathcal{G}^{2},

g[M,N]=MtgNt+MxgNx+gMhNNtgMtNxgMxgNhMg_{[M,N]}=M^{t}\displaystyle\frac{\partial g_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial g_{N}}{\partial x}+g_{M}h_{N}-N^{t}\displaystyle\frac{\partial g_{M}}{\partial t}-N^{x}\displaystyle\frac{\partial g_{M}}{\partial x}-g_{N}h_{M}

and

h[M,N]=MthNt+MxhNxNthMtNxhMx.h_{[M,N]}=M^{t}\displaystyle\frac{\partial h_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial h_{N}}{\partial x}-N^{t}\displaystyle\frac{\partial h_{M}}{\partial t}-N^{x}\displaystyle\frac{\partial h_{M}}{\partial x}\,\,.
Proof.

One has

[M,N]φ\displaystyle[M,N]^{\varphi} =\displaystyle= M(Nφ)N(Mφ)\displaystyle M(N^{\varphi})-N(M^{\varphi})
=\displaystyle= M(gN+φhN)N(gM+φhM)\displaystyle M(g_{N}+\varphi h_{N})-N(g_{M}+\varphi h_{M})
=\displaystyle= MtgNt+MxgNx+φ(MthNt+MxhNx)\displaystyle M^{t}\displaystyle\frac{\partial g_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial g_{N}}{\partial x}+\varphi(M^{t}\displaystyle\frac{\partial h_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial h_{N}}{\partial x})
+MφhN(NtgMt+NxgMx\displaystyle+M^{\varphi}h_{N}-(N^{t}\displaystyle\frac{\partial g_{M}}{\partial t}+N^{x}\displaystyle\frac{\partial g_{M}}{\partial x}
+φ(NthMt+NxhMx)+NφhM)\displaystyle+\varphi(N^{t}\displaystyle\frac{\partial h_{M}}{\partial t}+N^{x}\displaystyle\frac{\partial h_{M}}{\partial x})+N^{\varphi}h_{M})
=\displaystyle= MtgNt+MxgNx+φ(MthNt+MxhNx)\displaystyle M^{t}\displaystyle\frac{\partial g_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial g_{N}}{\partial x}+\varphi(M^{t}\displaystyle\frac{\partial h_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial h_{N}}{\partial x})
+\displaystyle+ (gM+φhM)hNNtgMtNxgMx\displaystyle(g_{M}+\varphi h_{M})h_{N}-N^{t}\displaystyle\frac{\partial g_{M}}{\partial t}-N^{x}\displaystyle\frac{\partial g_{M}}{\partial x}
φ(NthMt+NxhMx)(gN+φhN)hM\displaystyle-\varphi(N^{t}\displaystyle\frac{\partial h_{M}}{\partial t}+N^{x}\displaystyle\frac{\partial h_{M}}{\partial x})-(g_{N}+\varphi h_{N})h_{M}
=\displaystyle= (MtgNt+MxgNx+gMhNNtgMtNxgMxgNhM)\displaystyle(M^{t}\displaystyle\frac{\partial g_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial g_{N}}{\partial x}+g_{M}h_{N}-N^{t}\displaystyle\frac{\partial g_{M}}{\partial t}-N^{x}\displaystyle\frac{\partial g_{M}}{\partial x}-g_{N}h_{M})
+\displaystyle+ φ(MthNt+MxhNxNthMtNxhMx);\displaystyle\varphi(M^{t}\displaystyle\frac{\partial h_{N}}{\partial t}+M^{x}\displaystyle\frac{\partial h_{N}}{\partial x}-N^{t}\displaystyle\frac{\partial h_{M}}{\partial t}-N^{x}\displaystyle\frac{\partial h_{M}}{\partial x})\,\,;

the result follows. ∎

Let us set

={N𝒢|gN=0}\mathcal{H}=\{N\in\mathcal{G}|g_{N}=0\}

and

𝒥={N𝒢|hN=0}.\mathcal{J}=\{N\in\mathcal{G}|h_{N}=0\}\,\,.
Proposition 5.2.

𝒥\mathcal{J} is an ideal of 𝒢\mathcal{G} and \mathcal{H} is a subalgebra of 𝒢\mathcal{G}. Furthermore 𝒢=𝒥\mathcal{G}=\mathcal{H}\oplus\mathcal{J}, \mathcal{H} has dimension 66 and admits (N1,,N6)(N_{1},...,N_{6}) as a basis, and 𝒥={Nu|usolution of(2)}\mathcal{J}=\{N_{u}|u\,\,\text{solution of}\,\,(\mathcal{E}_{2})\}.

Proof.

Clearly, N𝒥N\in\mathcal{J} if and only if C1==C6=0C_{1}=...=C_{6}=0 ; in particular, if N𝒥N\in\mathcal{J} then Nt=Nx=0N^{t}=N^{x}=0. Therefore M𝒢M\in\mathcal{G} and N𝒥N\in\mathcal{J} imply h[M,N]=0h_{[M,N]}=0, i.e. [M,N]𝒥[M,N]\in\mathcal{J}: 𝒥\mathcal{J} is an ideal of 𝒢\mathcal{G}.

Furthermore, gM=gN=0g_{M}=g_{N}=0 imply g[M,N]=0g_{[M,N]}=0 : \mathcal{H} is a subalgebra of 𝒢\mathcal{G}. The last two assertions clearly hold. ∎

6. Some symmetries

Let N𝒢N\in\mathcal{G}, let κ𝐑\kappa\in\mathbf{R}, and let φ\varphi be a solution of (2)(\mathcal{E}_{2}) ; then eκNe^{\kappa N} maps (t,x,φ,A,B)(t,x,\varphi,A,B) to (tκ,xκ,φκ,Aκ,Bκ)(t_{\kappa},x_{\kappa},\varphi_{\kappa},A_{\kappa},B_{\kappa}) ; setting

(6.1) φκ=ψκ(tκ,xκ),\displaystyle\varphi_{\kappa}=\psi_{\kappa}(t_{\kappa},x_{\kappa})\,\,,

it follows that ψκ\psi_{\kappa} is also a solution of (2)(\mathcal{E}_{2}). We shall denote

(6.2) eκN~:φψκ\displaystyle e^{\kappa\tilde{N}}:\varphi\mapsto\psi_{\kappa}

the associated one–parameter group.

Lemma 6.1.

If

N=Ntt+Nxx+Nφφ+𝒢\displaystyle N=N^{t}\displaystyle\frac{\partial}{\partial t}+N^{x}\displaystyle\frac{\partial}{\partial x}+N^{\varphi}\displaystyle\frac{\partial}{\partial\varphi}+...\in\mathcal{G}

then

N~(φ)=NtφtNxφx+Nφ,\displaystyle\tilde{N}(\varphi)=-N^{t}\displaystyle\frac{\partial\varphi}{\partial t}-N^{x}\displaystyle\frac{\partial\varphi}{\partial x}+N^{\varphi}\,\,,

that is

N~(φ)\displaystyle\tilde{N}(\varphi) =(C1t2+C2t+C3)φt+(12x(2C1t+C2)+(C4t+C5))φx\displaystyle=(C_{1}t^{2}+C_{2}t+C_{3})\displaystyle\frac{\partial\varphi}{\partial t}+(\displaystyle\frac{1}{2}x(2C_{1}t+C_{2})+(C_{4}t+C_{5}))\displaystyle\frac{\partial\varphi}{\partial x}
+g+φ(r~2σ2x(2C1t+C2)C12σ2x2C4xσ2s~22σ2(C1t2+C2t+C3)\displaystyle+g+\varphi(\displaystyle\frac{\tilde{r}}{2\sigma^{2}}x(2C_{1}t+C_{2})-\displaystyle\frac{C_{1}}{2\sigma^{2}}x^{2}-\displaystyle\frac{C_{4}x}{\sigma^{2}}-\displaystyle\frac{\tilde{s}^{2}}{2\sigma^{2}}(C_{1}t^{2}+C_{2}t+C_{3})
+r~C4t+C5σ2+2C1t+C24+C6).\displaystyle+\tilde{r}\displaystyle\frac{C_{4}t+C_{5}}{\sigma^{2}}+\displaystyle\frac{2C_{1}t+C_{2}}{4}+C_{6})\,\,.
Proof.

Let us rewrite (6.1)(6.1) as

(eκN(φ))(t,x)=(eκN~(φ))(eκN(t),eκN(x)).(e^{\kappa N}(\varphi))(t,x)=(e^{\kappa\tilde{N}}(\varphi))(e^{\kappa N}(t),e^{\kappa N}(x))\,\,.

Developping at order one in κ\kappa gives

φ+κNφ\displaystyle\varphi+\kappa N^{\varphi} =\displaystyle= φ(t+κNt,x+κNx)+κN~(φ)+o(κ)\displaystyle\varphi(t+\kappa N^{t},x+\kappa N^{x})+\kappa\tilde{N}(\varphi)+o(\kappa)
=\displaystyle= φ+κNtφt+κNxφx+κN~(φ)+o(κ),\displaystyle\varphi+\kappa N^{t}\displaystyle\frac{\partial\varphi}{\partial t}+\kappa N^{x}\displaystyle\frac{\partial\varphi}{\partial x}+\kappa\tilde{N}(\varphi)+o(\kappa)\,\,,

whence the result. ∎

We shall set

(6.3) CNκ(t,S):=(eκN~φ)(t,ln(S))\displaystyle C_{N}^{\kappa}(t,S):=(e^{\kappa\tilde{N}}\varphi)(t,\ln(S))

and

(6.4) Cjκ:=CNjκ\displaystyle C_{j}^{\kappa}:=C_{N_{j}}^{\kappa}

(1j61\leq j\leq 6).

Some of these transforms can actually be explicitly computed ; for instance

(6.5) N3~(φ)=φts~22σ2φ\displaystyle\tilde{N_{3}}(\varphi)=\displaystyle\frac{\partial\varphi}{\partial t}-\frac{\tilde{s}^{2}}{2\sigma^{2}}\varphi

whence

(6.6) (eκN3~φ)(t,x)=eκs~22σ2φ(t+κ,x)\displaystyle(e^{\kappa\tilde{N_{3}}}\varphi)(t,x)=e^{-\displaystyle\frac{\kappa\tilde{s}^{2}}{2\sigma^{2}}}\varphi(t+\kappa,x)

and

(6.7) C3κ(t,S)=eκs~22σ2C(t+κ,S).\displaystyle C_{3}^{\kappa}(t,S)=e^{-\displaystyle\frac{\kappa\tilde{s}^{2}}{2\sigma^{2}}}C(t+\kappa,S)\,\,.
(6.8) N4~(φ)=tφx+(r~txσ2)φ\displaystyle\tilde{N_{4}}(\varphi)=t\displaystyle\frac{\partial\varphi}{\partial x}+(\displaystyle\frac{\tilde{r}t-x}{\sigma^{2}})\varphi

therefore

(6.9) (eκN4~φ)(t,x)=eκσ2(r~tx)κ2t2σ2φ(t,x+κt)\displaystyle(e^{\kappa\tilde{N_{4}}}\varphi)(t,x)=e^{\displaystyle\frac{\kappa}{\sigma^{2}}(\tilde{r}t-x)-\displaystyle\frac{\kappa^{2}t}{2\sigma^{2}}}\varphi(t,x+\kappa t)

and

(6.10) C4κ(t,S)=eκt2σ2(2r~κ)Sκσ2C(t,eκtS).\displaystyle C_{4}^{\kappa}(t,S)=e^{\displaystyle\frac{\kappa t}{2\sigma^{2}}(2\tilde{r}-\kappa)}S^{-\displaystyle\frac{\kappa}{\sigma^{2}}}C(t,e^{\kappa t}S)\,\,.
(6.11) N5~(φ)=φx+r~φσ2\displaystyle\tilde{N_{5}}(\varphi)=\displaystyle\frac{\partial\varphi}{\partial x}+\displaystyle\frac{\tilde{r}\varphi}{\sigma^{2}}

whence

(6.12) (eκN5~φ)(t,x)=eκr~σ2φ(t,x+κ),\displaystyle(e^{\kappa\tilde{N_{5}}}\varphi)(t,x)=e^{\displaystyle\frac{\kappa\tilde{r}}{\sigma^{2}}}\varphi(t,x+\kappa)\,\,,

and

(6.13) C5κ(t,S)=eκr~σ2C(t,eκS).\displaystyle C_{5}^{\kappa}(t,S)=e^{\displaystyle\frac{\kappa\tilde{r}}{\sigma^{2}}}C(t,e^{\kappa}S)\,\,.

Lastly,

(6.14) N6~(φ)=φ\displaystyle\tilde{N_{6}}(\varphi)=\varphi

whence

(6.15) (eκN6~φ)(t,x)=eκφ(t,x)\displaystyle(e^{\kappa\tilde{N_{6}}}\varphi)(t,x)=e^{\kappa}\varphi(t,x)

and

(6.16) C6κ(t,S)=eκC(t,S).\displaystyle C_{6}^{\kappa}(t,S)=e^{\kappa}C(t,S)\,\,.
Corollary 6.2.

Let CC denote a solution of ()(\mathcal{E}). Then, for each κ𝐑\kappa\in\mathbf{R}, the CiκC_{i}^{\kappa}(3i63\leq i\leq 6) defined by (6.7)(6.7), (6.10)(6.10), (6.13)(6.13) and (6.16)(6.16) are also solutions of ()(\mathcal{E}).

Together the transformations described in (6.7)(6.7) and (6.16)(6.16) come from the invariance of the original equation via multiplication of the solution by a scalar and translation in time ; (6.13)(6.13) then comes from the homogeneity in SS — these could be expected. The transformation given by (6.10)(6.10) is, however, not so easy to understand. It would be interesting to find some financial interpretation for it.

7. Acknowledgements

I presented prior versions of this work at the Ascona Conference (May 2008), at the seminar of the Grupo de Física–Matemática (Lisbon, July 2008), at the Stochastic Analysis Seminar (Loughborough, January 2010) and at the Séminaire de Sciences Actuarielles (Université Libre de Bruxelles, February 2010). For these invitations I am deeply indebted to (respectively) Professors Robert Dalang, Marco Dozzi and Francesco Russo, Professors Ana Bela Cruzeiro and Jean–Claude Zambrini, Professor József Lörinczi, and Professor Pierre Patie. I am grateful to many members of the various audiences, notably Professors Eckhard Platen and Eric Carlen, for their remarks. I also thank Professor Archil Gulisashvili for his remarks on the original text.

References

  • [Black-Scholes 1973] F. Black and M. Scholes The pricing of options and corporate liabilities Journal of Political Economy 81(3), 1973, pp. 637–654.
  • [Harrison-Estabrook 1971] B.K. Harrison and F.B. Estabrook Geometric Approach to Invariance Groups and Solution of Partial Differential Systems J. Math. Phys. 12 (1971), pp. 653–666.
  • [Lescot-Zambrini 2004] P.Lescot and J.-C. Zambrini Isovectors for the Hamilton–Jacobi–Bellman Equation, Formal Stochastic Differentials and First Integrals in Euclidean Quantum Mechanics Progress in Probability, vol. 58, Birkhaüser, 2004, pp. 187–202.
  • [Lescot-Zambrini 2008] P.Lescot and J.-C. Zambrini Probabilistic deformation of contact geometry, diffusion processes and their quadratures Progress in Probability, vol. 59, Birkhaüser, 2008, pp. 203-226.