This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Symplectic homology product via Legendrian surgery

Frédéric Bourgeois111Partially supported by the Fonds National de la Recherche Scientifique (Belgium)
Université Libre de Bruxelles
   Tobias Ekholm222Partially supported by the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine
Uppsala University
   Yakov Eliashberg333Partially supported by NSF grants DMS-0707103 and DMS 0244663
Stanford University
Abstract

This research announcement continues the study of the symplectic homology of Weinstein manifolds undertaken in [2] where the symplectic homology, as a vector space, was expressed in terms of the Legendrian homology algebra of the attaching spheres of critical handles. Here we express the product and BV\operatorname{BV}-operator of symplectic homology in that context.

1 Introduction

Weinstein manifolds are symplectic counterparts of affine (Stein) complex manifolds. They are exact symplectic manifolds which admit symplectic handle decompositions with isotropic core disks. In particular the index of any handle is at most half of the dimension of the manifold. We refer the reader to [2, 15, 10] for precise definitions. Middle dimensional handles are called critical and handles below middle dimension subcritical. Given a Weinstein manifold XX, its symplectic homology S(X)S{\mathbb{H}}(X) is a symplectic invariant which was first defined by A. Floer and H. Hofer in [11]. It vanishes if XX is subcritical, see [3]. A general Weinstein manifold XX is obtained by attaching critical handles to a subcritical manifold X0X_{0} along a collection Λ\Lambda of Legendrian spheres in the contact manifold Y0Y_{0} which is the ideal boundary of X0X_{0}. In [2], S(X)S{\mathbb{H}}(X) was expressed in terms of the Legendrian homology algebra of ΛY0\Lambda\subset Y_{0}.

Symplectic homology comes with TQFT-like operations which on the homology level are all expressed in terms of a (pair-of-pants) product and a BV-operator, see [14, 12]. In this paper we express the product and the BV-operator in terms of the Legendrian homology algebra of Λ\Lambda and some additional operations on it. The BV-operator is determined by the algebra itself, whereas the expression of the product involves a duality operation which can be identified with the first term in the extension of Legendrian homology algebra to Legendrian rational symplectic field theory (SFT).

The paper is organized as follows. In Section 2 we introduce algebraic constructions which we later apply to Legendrian homology algebras. In Section 3 we express the Legendrian homology algebra results from [2] in the terminology of Section 2 and also include a discussion on the construction of a version of rational SFT in the Legendrian setting (completion of this construction is work in progress). In Section 4 we present the symplectic homology product and the BV-operator in terms of Legendrian homology algebra and a duality operator and in Section 5 we use the result to compute the symplectic homology, with product and BV-operator, of cotangent bundles of spheres. While proofs are mostly omitted, we note that the proofs of the algebraic results from Section 2 are fairly straightforward.

The authors thank M. Abouzaid, S. Ganatra, E. Getzler, L. Ng, and P. Seidel for inspiring discussions, and Y. Lekili for correcting a sign error in (2.4).

2 Algebraic preliminaries

In this section we describe a number of constructions in a purely algebraic setting. The constructions will be applied in geometrically relevant situations in Sections 3 and 4.

2.1 A tensor algebra and associated objects

We associate to a differential graded algebra AA over a field KK a pair of dual AA-modules and a corresponding tensor algebra. We also discuss cyclic versions of these objects, which are vector spaces over KK.

2.1.A The algebra AA

Let RR be an algebra over a field KK of characteristic 0 generated by idempotents 11,,1m1_{1},\dots,1_{m}, where 1k1l=δkl1k1_{k}1_{l}=\delta_{kl}1_{k}, where δkl\delta_{kl} is the Kronecker delta. We define a graded module VV over RR, which is generated by a countable set 𝒞{\mathcal{C}} decomposed as a disjoint union 𝒞=1i,jm𝒞ij{\mathcal{C}}=\bigcup_{1\leq i,j\leq m}{\mathcal{C}}_{ij}. The degree of an element aVa\in V will be denoted by |a||a|. The decomposition of 𝒞{\mathcal{C}} induces a decomposition V=1i,jmV(ij)V=\bigoplus\limits_{1\leq i,j\leq m}V^{(ij)}, where V(ij)V^{(ij)} is generated by 𝒞ij{\mathcal{C}}_{ij}. When applied on the left, the element 1j1_{j}, j=1,,mj=1,\dots,m, acts as the identity on V(ij)V^{(ij)} and as the 0-map on V(il)V^{(il)}, ljl\neq j. Similarly, when applied on the right, the element 1j1_{j} acts as the identity on V(ji)V^{(ji)} and as 0 on V(li)V^{(li)}, ljl\neq j.

We define an extension V^\widehat{V} of the module VV as follows. The module V^\widehat{V} is generated by 𝒞^𝒳\widehat{\mathcal{C}}\cup\mathcal{X}, where 𝒞^={c^:c𝒞}\widehat{\mathcal{C}}=\{\widehat{c}\colon c\in\mathcal{C}\} and 𝒳={x1,,xm}{\mathcal{X}}=\{x_{1},\dots,x_{m}\}, where |c^|=|c|+1|\widehat{c}|=|c|+1, for c𝒞c\in\mathcal{C} and |xj|=0|x_{j}|=0, j=1,,mj=1,\dots,m. We define

V^:=K𝒳V[1],\widehat{V}:=K\langle{\mathcal{X}}\rangle\oplus V[1],

where K𝒳K\langle{\mathcal{X}}\rangle denotes the mm-dimensional module freely generated by the set 𝒳{\mathcal{X}} and where V[1]V[1] denotes VV with grading shifted up by 11. The module V^\widehat{V} inherits a decomposition V^=1i,jmV^(ij)\widehat{V}=\bigoplus\limits_{1\leq i,j\leq m}\widehat{V}^{(ij)} from VV, where

V^(ij)={V(ij)[1]if ij,KxjV(jj)[1]if i=j.\widehat{V}^{(ij)}=\begin{cases}V^{(ij)}[1]&\text{if }i\neq j,\\ Kx_{j}\oplus V^{(jj)}[1]&\text{if }i=j.\end{cases}

Here the idempotents act as before on VV[1]V\approx V[1] as a subset of V^\widehat{V}, and as follows on the new generators: 1jxi=δjixj1_{j}x_{i}=\delta_{ji}x_{j} and xi1j=δijxjx_{i}1_{j}=\delta_{ij}x_{j}, 1i,jm1\leq i,j\leq m.

We will use the following notation. If aVa\in V then a^\widehat{a} denotes the element in V[1]V^V[1]\subset\widehat{V} that corresponds to aa. Furthermore, if FF and GG are either VV or V^\widehat{V} and if (u,v)(u,v) is an ordered pair of elements in F(ij)G(kl)F^{(ij)}\oplus G^{(kl)} then (u,v)(u,v) is composable if j=kj=k.

Let

A:=RVVR2A:=R\oplus V\oplus V^{{\mathop{\otimes}\limits_{R}}^{2}}\oplus\dots (2.1)

be the tensor algebra over RR generated by VV with its natural grading. Then AA is generated additively by composable monomials w=c1ckw=c_{1}\dots c_{k}, cjVc_{j}\in V, j=1,,kj=1,\dots,k, where we say that ww is composable provided (cj,cj+1)(c_{j},c_{j+1}) is composable for 1jk11\leq j\leq k-1. (Here, as often in the following, we will suppress the tensor sign in the notation for tensor products). The decomposition of VV induces a corresponding decomposition of AA, A=1i,jmA(ij)A=\bigoplus_{1\leq i,j\leq m}A^{(ij)}, where A(ij)A^{(ij)} is generated by composable monomials c1ckc_{1}\dots c_{k} with c1V(is)c_{1}\in V^{(is)} for some s{1,,m}s\in\{1,\dots,m\} and ckV(tj)c_{k}\in V^{(tj)} for some t{1,,m}t\in\{1,\dots,m\}.

We will assume that the algebra AA has a differential d:AAd\colon A\to A of degree 1-1 which leaves the subspaces A(ij)A^{(ij)}, i,j{1,,m}i,j\in\{1,\dots,m\} invariant (i.e., d2=0d^{2}=0, dd satisfies the Leibniz rule, and d(A(ij))A(ij)d(A^{(ij)})\subset A^{(ij)}). We will usually write H(A)H(A) for the homology algebra H(A,d)H_{*}(A,d).

2.1.B The AA-module MM and the KK-complex McycM^{\rm cyc}

Define

M=M(A):=ARV^RA.M=M(A):=A\mathop{\otimes}\limits_{R}\widehat{V}\mathop{\otimes}\limits_{R}A. (2.2)

Then MM is a graded left-right module over the differential graded algebra AA which is additively generated by composable monomials w=c1ckuf1flw=c_{1}\dots c_{k}uf_{1}\dots f_{l}, where ci𝒞c_{i}\in{\mathcal{C}}, i=1,,ki=1,\dots,k, u𝒞^𝒳u\in\widehat{\mathcal{C}}\cup{\mathcal{X}}, and fj𝒞f_{j}\in{\mathcal{C}}, j=1,,lj=1,\dots,l. We say that a composable monomial ww is cyclically composable if the pair (fl,c1)(f_{l},c_{1}) is composable. Let MdiagMM^{{\operatorname{diag}}}\subset M be the submodule generated (over KK) by cyclically composable monomials and define McycM^{{\rm cyc}} as the quotient space of MdiagM^{{\operatorname{diag}}} in which monomials which differ by graded cyclic permutation are identified. If wMdiagw\in M^{{\operatorname{diag}}} then we write w\llbracket w\rrbracket for its equivalence class in McycM^{{\rm cyc}}, i.e. if π:MdiagMcyc\pi\colon M^{{\operatorname{diag}}}\to M^{\rm cyc} denotes the natural projection then w:=π(w)Mcyc\llbracket w\rrbracket:=\pi(w)\in M^{\rm cyc}.

The differential d:AAd\colon A\to A induces a differential dM:MMd_{M}\colon M\to M as follows. If w1uw2Mw_{1}u\,w_{2}\in M, uV^u\in\widehat{V}, and w1,w2Aw_{1},w_{2}\in A, then

dM(w1uw2):=(dw1)uw2+(1)|w1|w1(dMu)w2+(1)|w1u|w1u(dw2).d_{M}(w_{1}u\,w_{2}):=(dw_{1})u\,w_{2}+(-1)^{|w_{1}|}w_{1}(d_{M}u)w_{2}+(-1)^{|w_{1}u|}w_{1}u(dw_{2}). (2.3)

Here

dMu={axixjaS(da)if u=a^,aV(ij),0if u=xj,j{1,,m},d_{M}u=\begin{cases}ax_{i}-x_{j}a-S(da)&\text{if }u=\widehat{a},\,\,a\in V^{(ij)},\\ 0&\text{if }u=x_{j},\;j\in\{1,\dots,m\},\end{cases} (2.4)

where the RR-module homomorphism S:AMS:A\to M is defined by

S(a1ak)\displaystyle S(a_{1}\dots a_{k}) =a^1a2a3ak+(1)|a1|a1a^2a3ak\displaystyle=\widehat{a}_{1}a_{2}a_{3}\dots a_{k}\,\,+\,\,(-1)^{|a_{1}|}a_{1}\widehat{a}_{2}a_{3}\dots a_{k}
++(1)|a1ak1|a1a2ak1a^k,\displaystyle+\,\,\dots\,\,+\,\,(-1)^{|a_{1}\dots a_{k-1}|}a_{1}a_{2}\dots a_{k-1}\widehat{a}_{k}, (2.5)

and S(1j)=0S(1_{j})=0, for j=1,,mj=1,\ldots,m.

Lemma 2.1.

The map dM:MMd_{M}\colon M\to M is a differential (i.e. dM  2=0d_{M}^{\;\,2}=0) which leaves MdiagM^{{\operatorname{diag}}} invariant and descends to a differential McycMcycM^{{\rm cyc}}\to M^{{\rm cyc}}, still denoted dMd_{M}, in such a way that the natural projection π:(Mdiag,dM)(Mcyc,dM)\pi\colon(M^{{\operatorname{diag}}},d_{M})\to(M^{\rm cyc},d_{M}) is a chain map.

We write H(M)H(M) and H(Mcyc)H(M^{\rm cyc}), respectively, for the homologies H(M,dM)H_{*}(M,d_{M}) and H(Mcyc,dM)H_{*}(M^{\rm cyc},d_{M}). Note that H(M)H(M) is a left-right module over H(A)H(A), while H(Mcyc)H(M^{\rm cyc}) is just a KK-vector space.

Remark 2.2.

We can write

Mcyc=(j=1mAxj)ARV[1]:=McycMcyc′′M^{\rm cyc}=\left(\bigoplus_{j=1}^{m}Ax_{j}\right)\oplus A\mathop{\otimes}\limits_{R}V[1]:={{}^{\prime}}\!M^{\rm cyc}\oplus{{}^{\prime\prime}}\!M^{\rm cyc}

(i.e. Mcyc{{}^{\prime}}\!M^{{\rm cyc}} is the submodule of McycM^{{\rm cyc}} generated by 𝒳\mathcal{X} and Mcyc′′{{}^{\prime\prime}}\!M^{{\rm cyc}} its complement). Let p:McycMcyc′′p\colon M^{\rm cyc}\to{{}^{\prime\prime}}\!M^{\rm cyc} be the projection and let dMcyc′′:=p(dMcyc)|Mcyc′′{{}^{\prime\prime}}\!d_{M^{\rm cyc}}:=p\circ(d_{M^{\rm cyc}})|_{{{}^{\prime\prime}}\!M^{\rm cyc}}. The second summand Mcyc′′{{}^{\prime\prime}}\!M^{\rm cyc} can be viewed as a non-commutative version of the “Lie algebra of vector fields” on the space VV. Indeed, we can identify the cyclic monomial wu^Mcyc\llbracket w\widehat{u}\rrbracket\in M^{{\rm cyc}}, wAw\in A, uVu\in V, with the vector field wuw\,\frac{\partial}{\partial u}. The differential dMcyc′′{{}^{\prime\prime}}\!d_{M^{\rm cyc}} can be naturally viewed as a vector field on VV, and hence an element of Mcyc′′{{}^{\prime\prime}}\!M^{\rm cyc}, given by c𝒞dcc\sum_{c\in{\mathcal{C}}}dc\,\frac{\partial}{\partial c}. For any XMcyc′′X\in{{}^{\prime\prime}}\!M^{\rm cyc} its differential dM′′X{{}^{\prime\prime}}\!d_{M}X is just the Lie bracket [dM′′,X][{{}^{\prime\prime}}\!d_{M},X] of vector fields, or equivalently the Lie derivative LdM′′XL_{{{}^{\prime\prime}}\!d_{M}}X.

This interpretation corresponds to the “satellite philosophy” from [9]. Another interpretation was pointed out to the authors by M. Abouzaid: H(Mcyc)H(M^{\rm cyc}) is isomorphic to the Hochschild homology HH(A,A)HH_{*}(A,A).

2.1.C The extended tensor algebra UU and the space UbalU^{\mathrm{bal}}

Recall that the module VV is generated over RR by a set 𝒞{\mathcal{C}} and that the module MM is generated over AA as a left-right module by 𝒞^𝒳\widehat{\mathcal{C}}\cup{\mathcal{X}}, where 𝒞^={c^:c𝒞}\widehat{\mathcal{C}}=\{\widehat{c}\colon c\in{\mathcal{C}}\} and 𝒳={x1,,xm}{\mathcal{X}}=\{x_{1},\dots,x_{m}\}. Let V^\widehat{V}^{\ast} denote the KK-vector space dual to V^\widehat{V}. Then V^\widehat{V}^{\ast} is the direct product of the 1-dimensional KK-vector spaces which are generated by elements of 𝒞^𝒳\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}, where 𝒞^={c^:c𝒞}\widehat{\mathcal{C}}^{\ast}=\{\widehat{c}^{\,\ast}\colon c\in{\mathcal{C}}\} and 𝒳={xj:xj𝒳}{\mathcal{X}}^{\ast}=\{x_{j}^{\ast}\colon x_{j}\in{\mathcal{X}}\}. Furthermore, we have

V^=1i,jmV^(ij),whereV^(ij):=(V^(ij)).\widehat{V}^{\ast}=\bigoplus_{1\leq i,j\leq m}\widehat{V}^{\ast\,(ij)},\quad\text{where}\quad\widehat{V}^{\ast\,(ij)}:=\bigl{(}\widehat{V}^{(ij)}\bigr{)}^{\ast}.

In V^\widehat{V}^{\ast}, the idempotent 1j1_{j}, j=1,,mj=1,\dots,m, acts from the left as the identity on V^(ji)\widehat{V}^{\ast\,(ji)} and as 0 on V^(li)\widehat{V}^{\ast\,(li)}, ljl\neq j, and acts from the right as the identity on V^(ij)\widehat{V}^{\ast\,(ij)} and as 0 on V^(il)\widehat{V}^{\ast\,(il)}, ljl\neq j. Fix an integer n2n\geq 2 (it will correspond to half the dimension of the Liouville domain X0X_{0} in Section 3). We endow V^\widehat{V}^{\ast} with a grading defined as follows:

|c^|=n3|c^|, for c^𝒞^,\displaystyle|{\widehat{c}}^{\,\ast}|=n-3-|\widehat{c}\,|,\text{ for }\widehat{c}\in\widehat{\mathcal{C}}, (2.6)
|xj|=n3, for j=1,,m.\displaystyle|x_{j}^{\ast}|=n-3,\text{ for }j=1,\dots,m. (2.7)

Define

M:=ARV^RA.M^{\ast}:=A\mathop{\otimes}\limits_{R}\widehat{V}^{\ast}\mathop{\otimes}\limits_{R}A. (2.8)

We define the tensor algebra

U(0,0):=k0(MM)Ak.U(0,0):={\bigoplus}_{k\geq 0}\,(M\oplus M^{\ast})^{{\mathop{\otimes}\limits_{A}}^{k}}. (2.9)

as a certain completion of the free associative algebra generated by 𝒞𝒞^𝒞^𝒳𝒳{\mathcal{C}}\cup\widehat{\mathcal{C}}\cup\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}\cup\mathcal{X}^{\ast}. Its elements are infinite series in the (𝒞^𝒳)(\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast})-variables with polynomial coefficients in the (𝒞𝒞^𝒳)({\mathcal{C}}\cup\widehat{\mathcal{C}}\cup{\mathcal{X}})-variables (compare to the above definitions of MM as an infinite sum and MM^{\ast} as an infinite product). For simplicity of notation and since all completions we consider below are of the same type as that of (2.9), we will, as in that equation, suppress completions from notation and use the direct sum symbol in decompositions. Consider the extension UU of U(0,0)U(0,0) obtained by adding multiplicative generators ,1\hbar,\hbar^{-1} and σ,σ1\sigma,\sigma^{-1} of degrees

|σ|=1,|σ1|=1,||=n3,|1|=(n3)|\sigma|=1,\quad|\sigma^{-1}|=-1,\quad|\hbar|=n-3,\quad|\hbar^{-1}|=-(n-3)

which satisfy the following relations:

σσ1=σ1σ=1,1=1=1,σ=(1)n3σ,\sigma\sigma^{-1}=\sigma^{-1}\sigma=1,\quad\hbar\hbar^{-1}=\hbar^{-1}\hbar=1,\quad\sigma\hbar=(-1)^{n-3}\hbar\sigma,

and

σu\displaystyle\sigma u ={(1)|u|uσ,u𝒞;(1)|u|+1uσ,u𝒞^𝒳𝒞^𝒳,\displaystyle=\begin{cases}(-1)^{|u|}u\sigma,&u\in{\mathcal{C}};\cr(-1)^{|u|+1}u\sigma,&u\in\widehat{\mathcal{C}}\cup\mathcal{X}\cup\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast},\end{cases}
u\displaystyle\hbar u ={(1)|u|(n3)u,u𝒞𝒳𝒞^;(1)(|u|+n3)(n3)u,u𝒞^𝒳.\displaystyle=\begin{cases}(-1)^{|u|(n-3)}u\hbar,&u\in{\mathcal{C}}\cup{\mathcal{X}}\cup\widehat{\mathcal{C}};\cr(-1)^{(|u|+n-3)(n-3)}u\hbar,&u\in\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast}.\end{cases}

The algebra UU can be decomposed according to tensor type: U=p,q0UqpU=\bigoplus_{p,q\geq 0}U^{p}_{q}, where UqpUU^{p}_{q}\subset U is the KK-subspace generated by monomials with qq factors from MM and pp from MM^{\ast}. We decompose further: Uqp=s,hUqp(s,h)U^{p}_{q}=\bigoplus_{s,h\in{\mathbb{Z}}}U^{p}_{q}(s,h), where Uqp(s,h)UqpU^{p}_{q}(s,h)\subset U^{p}_{q} is the subspace spanned by all monomials of total σ\sigma-degree ss and total \hbar-degree hh. In particular, U00(0,0)=AU^{0}_{0}(0,0)=A, U10(0,0)=MU^{0}_{1}(0,0)=M, and U01(0,0)=MU^{1}_{0}(0,0)=M^{\ast}. We also write Up:=q0UqpU^{p}:=\bigoplus_{q\geq 0}U^{p}_{q}, U+:=p>0UpU^{+}:=\bigoplus_{p>0}U^{p}, Uq:=p0UqpU_{q}:=\bigoplus_{p\geq 0}U^{p}_{q}, Uq(s,h):=p0Uqp(s,h)U_{q}(s,h):=\bigoplus_{p\geq 0}U^{p}_{q}(s,h), and Up(s,h):=q0Uqp(s,h)U^{p}(s,h):=\bigoplus_{q\geq 0}U^{p}_{q}(s,h).

For XUqp(s,h)X\in U^{p}_{q}(s,h), let

st(X):=p+handjp(X):=p+q+s.\operatorname{st}(X):=p+h\quad\text{and}\quad{\operatorname{jp}}(X):=p+q+s.

In analogy with the definition of MdiagM^{\operatorname{diag}} in Section 2.1.B, we define UdiagU^{\operatorname{diag}}. Further, define UcycU^{\rm cyc} as the quotient of UdiagU^{{\operatorname{diag}}} obtained by dividing by the following graded cyclic permutation rule: if a1,,ak𝒞𝒞^𝒳𝒞^𝒳a_{1},\dots,a_{k}\in{\mathcal{C}}\cup\widehat{\mathcal{C}}\cup{\mathcal{X}}\cup\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast} and if a1akUdiaga_{1}\dots a_{k}\in U^{{\operatorname{diag}}} then a2aka1Udiaga_{2}\dots a_{k}a_{1}\in U^{{\operatorname{diag}}}, and we identify a1akUdiaga_{1}\dots a_{k}\in U^{{\operatorname{diag}}} with ε1ε2ε3a2aka1Udiag\varepsilon_{1}\varepsilon_{2}\varepsilon_{3}\;a_{2}\dots a_{k}a_{1}\in U^{{\operatorname{diag}}}, where

ε1=(1)|a1||a2ak|,\displaystyle\varepsilon_{1}=(-1)^{|a_{1}||a_{2}\dots a_{k}|},
ε2={1if a1𝒞{,1},(1)jp(a2ak)if a1𝒞^𝒳𝒞^𝒳{σ,σ1},\displaystyle\varepsilon_{2}={\begin{cases}1&\text{if }a_{1}\in{\mathcal{C}}\cup\{\hbar,\hbar^{-1}\},\cr(-1)^{{\operatorname{jp}}(a_{2}\dots a_{k})}&\text{if }a_{1}\in\widehat{\mathcal{C}}\cup{\mathcal{X}}\cup\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}\cup\{\sigma,\sigma^{-1}\},\cr\end{cases}}
ε3={1if a1𝒞𝒞^𝒳{σ,σ1},(1)st(a2ak)if a1𝒞^𝒳{,1}.\displaystyle\varepsilon_{3}={\begin{cases}1&\text{if }a_{1}\in{\mathcal{C}}\cup\widehat{\mathcal{C}}\cup{\mathcal{X}}\cup\{\sigma,\sigma^{-1}\},\cr(-1)^{\operatorname{st}(a_{2}\dots a_{k})}&\text{if }a_{1}\in\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}\cup\{\hbar,\hbar^{-1}\}.\end{cases}}

We will often think of cyclic monomials as written on a circle S1S^{1} with the first letter at 1S11\in S^{1}. This allows us to speak about generators in a cyclic monomial as ordered in the (counter) clockwise direction staring from some fixed generator in the monomial. In this language, the above permutations correspond to rotations of the circle.

The vector space UcycU^{{\rm cyc}} inherits the decomposition by tensor type:

Ucyc=p,q0(Uqp)cyc=p,q0s,h(Uqp(s,h))cyc.U^{{\rm cyc}}=\bigoplus_{p,q\geq 0}(U^{p}_{q})^{{\rm cyc}}=\bigoplus_{p,q\geq 0}\bigoplus_{s,h\in{\mathbb{Z}}}\,\left(U^{p}_{q}(s,h)\right)^{{\rm cyc}}.

If the monomials XX and XX^{\prime} differ by a graded cyclic permutation, i.e. if X=X\llbracket X\rrbracket=\llbracket X^{\prime}\rrbracket, then, for z{σ,σ1,,1}z\in\{\sigma,\sigma^{-1},\hbar,\hbar^{-1}\}, Xz=Xz\llbracket Xz\rrbracket=\llbracket X^{\prime}z\rrbracket and zX=zX\llbracket zX\rrbracket=\llbracket zX^{\prime}\rrbracket. We thus define zX:=zXz\llbracket X\rrbracket:=\llbracket zX\rrbracket and Xz:=Xz\llbracket X\rrbracket z:=\llbracket Xz\rrbracket, and note that this definition does not depend on choice of representative XX.

A monomial X(Uqp(s,h))cycX\in\left(U^{p}_{q}(s,h)\right)^{{\rm cyc}} is balanced if h=1h=-1 and pqs=0p-q-s=0. The subspace of UcycU^{\rm cyc} generated by balanced monomials will be denoted by UbalU^{\mathrm{bal}}. It contains balanced versions MbalM^{\mathrm{bal}} and (M)bal\left(M^{\ast}\right)^{{\mathrm{bal}}} of McycM^{\rm cyc} and (M)cyc\left(M^{\ast}\right)^{{\rm cyc}}, respectively. More precisely,

Mbal\displaystyle M^{\mathrm{bal}} :=(U10(1,1))cyc=U10Ubal,\displaystyle:=\left(U^{0}_{1}(-1,-1)\right)^{\rm cyc}=U^{0}_{1}\cap U^{\mathrm{bal}},
(M)bal\displaystyle\left(M^{\ast}\right)^{{\mathrm{bal}}} :=(U01(1,1))cyc=U01Ubal.\displaystyle:=\left(U^{1}_{0}(1,-1)\right)^{\rm cyc}=U^{1}_{0}\cap U^{\mathrm{bal}}.

2.1.D The operator 𝒮:UcycUcyc{\mathcal{S}}\colon U^{{\rm cyc}}\to U^{{\rm cyc}}

Consider a monomial X(Uqp(s,h))cycX\in\left(U^{p}_{q}(s,h)\right)^{\rm cyc} and fix a factor c𝒞c\in{\mathcal{C}} in XX. Then X=XccXc′′X=\llbracket X_{c}^{\prime}cX_{c}^{\prime\prime}\rrbracket for monomials Xc,Xc′′UX_{c}^{\prime},X_{c}^{\prime\prime}\in U. Define

𝒮(X)=cXcσ1c^Xc′′(Uq+1p(s1,h))cyc,{\mathcal{S}}(X)=\sum\limits_{c}\llbracket X_{c}^{\prime}\sigma^{-1}\widehat{c}X_{c}^{\prime\prime}\rrbracket\in\left(U^{p}_{q+1}(s-1,h)\right)^{\rm cyc},

where the sum is taken over all factors c𝒞c\in{\mathcal{C}} in XX. It is straightforward to check that this gives a well defined operation and by definition 𝒮(Ubal)Ubal{\mathcal{S}}(U^{{\mathrm{bal}}})\subset U^{{\mathrm{bal}}}. In particular, if X=c1cma^(U01(0,0))cycX=\llbracket c_{1}\dots c_{m}\widehat{a}^{\ast}\rrbracket\in\left(U^{1}_{0}(0,0)\right)^{\rm cyc} then 𝒮(X)(U10(1,0))cyc{\mathcal{S}}(X)\in\left(U^{0}_{1}(-1,0)\right)^{\rm cyc} satisfies

𝒮(c1cma^)\displaystyle{\mathcal{S}}(c_{1}\dots c_{m}\widehat{a}^{\ast}) =σ1j=1m(1)|c1cj1|c1cj1c^jcj+1cma^\displaystyle=\sigma^{-1}\sum_{j=1}^{m}(-1)^{|c_{1}\dots c_{j-1}|}c_{1}\dots c_{j-1}\widehat{c}_{j}c_{j+1}\dots c_{m}\widehat{a}^{\ast}
=σ1S(c1cm)a^,\displaystyle=\sigma^{-1}S(c_{1}\dots c_{m})\widehat{a}^{\ast},

where SS is the operator AMA\to M defined in (2.5) above. Furthermore,

𝒮k(c1cma^)=k!σkj1<<jkm(1)l=1k|c1cjl1|c1c^j1c^jkcma^.{\mathcal{S}}^{k}(c_{1}\dots c_{m}\widehat{a}^{\ast})=k!\sigma^{-k}\sum_{j_{1}<\dots<j_{k}}^{m}(-1)^{\sum\limits_{l=1}^{k}|c_{1}\dots c_{j_{l}-1}|}c_{1}\dots\widehat{c}_{j_{1}}\dots\widehat{c}_{j_{k}}\dots c_{m}\widehat{a}^{\ast}.

2.1.E Symmetry breaking and contraction operations

We next effectively break the cyclic symmetry of UbalU^{\mathrm{bal}}. An excited monomial is a cyclic monomial XUbalX\in U^{{\mathrm{bal}}} with one of its factors from 𝒞^𝒞^𝒳𝒳\widehat{\mathcal{C}}\cup\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}\cup{\mathcal{X}}^{\ast} distinguished. We call the distinguished factor of an excited monomial XX the excited generator of XX. The KK-vector space generated by excited monomials from UbalU^{\mathrm{bal}} will be denoted by 𝐔bal{\mathbf{U}}^{\mathrm{bal}}. Note that 𝐔bal{\mathbf{U}}^{{\mathrm{bal}}} inherits decompositions from UbalU^{{\mathrm{bal}}}, 𝐔bal=p,q(𝐔qp)bal{\mathbf{U}}^{{\mathrm{bal}}}=\bigoplus_{p,q}({\mathbf{U}}^{p}_{q})^{{\mathrm{bal}}}, etc. We set (𝐔00)bal=0({\mathbf{U}}^{0}_{0})^{{\mathrm{bal}}}=0. Define the excitation operator :Ubal𝐔bal{\mathcal{E}}:U^{\mathrm{bal}}\to{\mathbf{U}}^{\mathrm{bal}} to be the linear map which maps a monomial XX the sum of all its excitations.

Note that 𝐔bal{\mathbf{U}}^{{\mathrm{bal}}} contain excited versions 𝐌bal=(𝐔10)bal{\mathbf{M}}^{\mathrm{bal}}=\left({\mathbf{U}}^{0}_{1}\right)^{{\mathrm{bal}}} and (𝐌)bal=(𝐔01)bal\left({\mathbf{M}}^{\ast}\right)^{{\mathrm{bal}}}=\left({\mathbf{U}}^{1}_{0}\right)^{{\mathrm{bal}}} of MbalM^{\mathrm{bal}} and (M)bal\left(M^{\ast}\right)^{{\mathrm{bal}}}, respectively, which are isomorphic to their non-excited counterparts. (In the context of 𝐔bal{\mathbf{U}}^{{\mathrm{bal}}} we think of MbalM^{{\mathrm{bal}}} and (M)bal\left(M^{\ast}\right)^{{\mathrm{bal}}} as generated by monomials in (U10)bal\left(U^{0}_{1}\right)^{{\mathrm{bal}}} and (U01)bal\left(U^{1}_{0}\right)^{{\mathrm{bal}}} without excited generator.)

We will use the following notation to identify excited generators in monomials: we underline the excited generator in a monomial in UbalU^{{\mathrm{bal}}} and write e.g. x¯{\underline{x}}, x¯{\underline{x}}^{\ast} c¯^\widehat{\underline{c}}, and c¯^\widehat{\underline{c}}^{\ast}.

We next define a product on 𝐔bal{\mathbf{U}}^{\mathrm{bal}}. Consider two excited cyclic monomials X,Y𝐔balX,Y\in{\mathbf{U}}^{\mathrm{bal}}. Fix a factor u𝒞^𝒳u\in\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast} from XX and a factor v𝒞^𝒳v\in\widehat{\mathcal{C}}\cup\mathcal{X} from YY. Write X=ε1XuuX=\varepsilon_{1}\llbracket X_{u}^{\prime}u\rrbracket and Y=ε2vYvY=\varepsilon_{2}\llbracket vY_{v}^{\prime}\rrbracket, where ε1\varepsilon_{1} is the sign which arises from cyclically rotating XX so that uu is its last factor and where ε2\varepsilon_{2} is the sign which arises from cyclically rotating YY so that vv is its first factor. Define the contraction operation :𝐔bal𝐔bal𝐔bal\mathop{\star}\limits\colon{\mathbf{U}}^{{\mathrm{bal}}}\otimes{\mathbf{U}}^{{\mathrm{bal}}}\to{\mathbf{U}}^{{\mathrm{bal}}},

XY:=(u,v)ε1ε2u(v)XuYv,X\star Y:=\sum\limits_{(u,v)}\varepsilon_{1}\varepsilon_{2}u(v)\llbracket X_{u}^{\prime}Y_{v}^{\prime}\rrbracket, (2.10)

where the sum is taken over all pairs (u,v)(u,v) of factors u𝒞^𝒳u\in\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast} from XX and v𝒞^𝒳v\in\widehat{\mathcal{C}}\cup\mathcal{X} from YY, and where

u(v)={if exactly one of u and v is excited, u=v, and v𝒳 ,(1)n1if u=x¯j and v=xj, for some j=1,,m,if u=xj and v=x¯j, for some j=1,,m,0otherwise.u(v)=\begin{cases}\hbar&\text{if exactly one of $u$ and $v$ is excited, $u=v^{\ast}$, and $v\notin{\mathcal{X}}$ ,}\\ (-1)^{n-1}\hbar&\text{if $u={\underline{x}}_{j}^{\ast}$ and $v=x_{j}$, for some $j=1,\dots,m$,}\\ \hbar&\text{if $u=x_{j}^{\ast}$ and $v={\underline{x}}_{j}$, for some $j=1,\dots,m$,}\\ 0&\text{otherwise}.\end{cases}

If Y(𝐔q1)balY\in\left({\mathbf{U}}^{1}_{q}\right)^{\mathrm{bal}} and X𝐔balX\in{\mathbf{U}}^{{\mathrm{bal}}} then we define, for j=1,,qj=1,\dots,q, the partial contraction XjYX\mathop{\star}\limits_{j}Y as follows:

XjY:=uε1ε2u(vj)XuYvj,X\mathop{\star}\limits\limits_{j}Y:=\sum\limits_{u}\varepsilon_{1}\varepsilon_{2}u(v_{j})\llbracket X_{u}^{\prime}Y_{v_{j}}^{\prime}\rrbracket,

where the sum is taken over all u𝒞^𝒳u\in\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast} from XX and where vjv_{j} is the jthj^{\rm th} factor from 𝒞^𝒳\widehat{\mathcal{C}}\cup\mathcal{X} in YY counting counter-clockwise from the unique factor from 𝒞^𝒳\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast}. Similarly, if X(𝐔1p)balX\in\left({\mathbf{U}}^{p}_{1}\right)^{\mathrm{bal}} and Y𝐔balY\in{\mathbf{U}}^{{\mathrm{bal}}} then we define, for i=1,,pi=1,\dots,p the partial contraction XiYX\mathop{\star}\limits^{i}Y:

XiY:=vε1ε2ui(v)XuiYv,X\mathop{\star}\limits\limits^{i}Y:=\sum\limits_{v}\varepsilon_{1}\varepsilon_{2}u_{i}(v)\llbracket X_{u_{i}}^{\prime}Y_{v}^{\prime}\rrbracket,

where the sum is taken over all v𝒞^𝒳v\in\widehat{\mathcal{C}}\cup\mathcal{X} from YY and where uiu_{i} is the ii-th factor from 𝒞^𝒳\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}^{\ast} in XX counting clockwise from the unique factor from 𝒞^𝒳\widehat{\mathcal{C}}\cup\mathcal{X}.

Remark 2.3.

Let X,Y𝐔balX,Y\in{\mathbf{U}}^{\mathrm{bal}} then XY𝐔balX\star Y\in{\mathbf{U}}^{\mathrm{bal}}. Further if X(𝐔q1)balX\in\left({\mathbf{U}}^{1}_{q}\right)^{{\mathrm{bal}}} then XjY𝐔balX\mathop{\star}\limits_{j}Y\in{\mathbf{U}}^{{\mathrm{bal}}}, and if Y(𝐔1p)balY\in\left({\mathbf{U}}^{p}_{1}\right)^{{\mathrm{bal}}} then XiY𝐔balX\mathop{\star}\limits^{i}Y\in{\mathbf{U}}^{{\mathrm{bal}}}.

Define the bracket or commutator [,]:𝐔bal𝐔bal𝐔bal[\,,]\colon{\mathbf{U}}^{{\mathrm{bal}}}\otimes{\mathbf{U}}^{{\mathrm{bal}}}\to{\mathbf{U}}^{{\mathrm{bal}}} as

[X,Y]=XY(1)|X||Y|YX.[X,Y]=X\star Y-(-1)^{|X||Y|}\,Y\star X. (2.11)
Lemma 2.4.

The bracket satisfies the graded Jacobi identity:

(1)|X||Z|[X,[Y,Z]]+(1)|Z||Y|[Z,[X,Y]]+(1)|Y||X|[Y,[Z,X]]=0.(-1)^{|X||Z|}[X,[Y,Z]]+(-1)^{|Z||Y|}[Z,[X,Y]]+(-1)^{|Y||X|}[Y,[Z,X]]=0.

Let

τ𝐌bal=𝐌balMbaland(τ𝐌)bal=(𝐌)bal(M)bal.\tau{\mathbf{M}}^{{\mathrm{bal}}}={\mathbf{M}}^{{\mathrm{bal}}}\oplus M^{{\mathrm{bal}}}\quad\text{and}\quad\left(\tau{\mathbf{M}}^{\ast}\right)^{{\mathrm{bal}}}=\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\oplus\left(M^{\ast}\right)^{\mathrm{bal}}.

We associate with X(𝐔1p)balX\in\left({\mathbf{U}}^{p}_{1}\right)^{\mathrm{bal}} a multi-linear operation X:(τ𝐌bal)pτ𝐌balX^{\downarrow}\colon\left(\tau{\mathbf{M}}^{{\mathrm{bal}}}\right)^{\otimes^{p}}\to\tau{\mathbf{M}}^{{\mathrm{bal}}} defined by

X(A1Ap)=(((X1A1)1A2)1)1Ap.X^{\downarrow}(A_{1}\otimes\dots\otimes A_{p})=\left(\dots\left(\left(X\mathop{\star}\limits^{1}A_{1}\right)\mathop{\star}\limits^{1}A_{2}\right)\mathop{\star}\limits^{1}\dots\right)\mathop{\star}\limits^{1}A_{p}. (2.12)

Note that if A1,,Ap𝐌balA_{1},\dots,A_{p}\in{\mathbf{M}}^{\mathrm{bal}} then X(A1Ap)𝐌balX^{\downarrow}(A_{1}\otimes\dots\otimes A_{p})\in{\mathbf{M}}^{\mathrm{bal}}, that if exactly one of the arguments lies in MbalM^{\mathrm{bal}} then the image lies in MbalM^{\mathrm{bal}}, and that the operation vanishes on pp-tuples with more than component in MbalM^{\mathrm{bal}}.

Similarly, Y(𝐔q1)balY\in\left({\mathbf{U}}_{q}^{1}\right)^{\mathrm{bal}} defines a multi-linear operation Y:((τ𝐌)bal)q(τ𝐌)balY^{\uparrow}\colon\left(\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\right)^{\otimes^{q}}\to\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}},

Y(B1Bq)=Bq1(1(B21(B11Y))),Y^{\uparrow}(B_{1}\otimes\dots\otimes B_{q})=B_{q}\mathop{\star}\limits_{1}\left(\dots\mathop{\star}\limits_{1}\left(B_{2}\mathop{\star}\limits_{1}\left(B_{1}\mathop{\star}\limits_{1}Y\right)\right)\dots\right), (2.13)

if B1,,Bq(𝐌)balB_{1},\dots,B_{q}\in\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} then Y(B1Bq)(𝐌)balY^{\uparrow}(B_{1}\otimes\dots\otimes B_{q})\in\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}, if exactly one of the arguments lies in (M)bal\left(M^{\ast}\right)^{\mathrm{bal}} then the image lies in (M)bal\left(M^{\ast}\right)^{\mathrm{bal}}, and the operation vanishes on qq-tuples with more than one component in (M)bal\left(M^{\ast}\right)^{\mathrm{bal}}.

In the special case q=2q=2, we associate with Y(𝐔21)balY\in\left({\mathbf{U}}^{1}_{2}\right)^{\mathrm{bal}} two more operations,

Y:(τ𝐌)balτ𝐌balτ𝐌balY^{{\uparrow\downarrow}}\colon\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\otimes\tau{\mathbf{M}}^{\mathrm{bal}}\to\tau{\mathbf{M}}^{\mathrm{bal}} (2.14)

and

Y:τ𝐌bal(τ𝐌)balτ𝐌bal,Y^{{\downarrow\uparrow}}\colon\tau{\mathbf{M}}^{\mathrm{bal}}\otimes\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\oplus\to\tau{\mathbf{M}}^{{\mathrm{bal}}}, (2.15)

where

Y(X,Z)\displaystyle Y^{{\uparrow\downarrow}}(X,Z) =(X1Y)Z,X(τ𝐌)bal,Zτ𝐌bal,\displaystyle=\left(X\mathop{\star}\limits_{1}Y\right)\star Z,\quad X\in\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}},\;Z\in\tau{\mathbf{M}}^{\mathrm{bal}},
Y(Z,X)\displaystyle Y^{{\downarrow\uparrow}}(Z,X) =(X2Y)Z,Zτ𝐌bal,X(τ𝐌)bal.\displaystyle=\left(X\mathop{\star}\limits_{2}Y\right)\star Z,\quad Z\in\tau{\mathbf{M}}^{\mathrm{bal}},\;X\in\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}.

Similarly, X(𝐔02)balX\in\left({\mathbf{U}}^{2}_{0}\right)^{\mathrm{bal}} induces an operation X:τ𝐌bal(τ𝐌)balX^{\circlearrowleft}\colon\tau{\mathbf{M}}^{\mathrm{bal}}\to\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}},

X(Y)=XY.X^{\circlearrowleft}(Y)=X\star Y. (2.16)

We observe that X(𝐌bal)(𝐌)balX^{\circlearrowleft}({\mathbf{M}}^{\mathrm{bal}})\subset\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} and X(Mbal)(M)balX^{\circlearrowleft}(M^{\mathrm{bal}})\subset\left(M^{\ast}\right)^{\mathrm{bal}}.

2.1.F The Hamiltonian

We define special elements Hq1𝐔balH^{1}_{q}\in{\mathbf{U}}^{\mathrm{bal}} which derive from the differential on AA and which, in the spirit of SFT, see [9], are called Hamiltonians.

Definition 2.5.
(h11):=c𝒞S(dc)1c^\displaystyle(h^{1}_{1})^{\prime}:=\sum\limits_{c\in{\mathcal{C}}}\llbracket S(dc)\hbar^{-1}\widehat{c}^{\ast}\rrbracket
(h11)′′:=i,j=1mc𝒞ij(cxj1c^xic1c^)\displaystyle(h^{1}_{1})^{\prime\prime}:=\sum\limits_{i,j=1}^{m}\sum\limits_{c\in{\mathcal{C}}_{ij}}\left(\llbracket cx_{j}\hbar^{-1}\widehat{c}^{\ast}\rrbracket-\llbracket x_{i}c\hbar^{-1}\widehat{c}^{\ast}\rrbracket\right)
h11:=(h11)+(h11)′′\displaystyle h^{1}_{1}:=(h^{1}_{1})^{\prime}+(h^{1}_{1})^{\prime\prime}
h21:=12!𝒮(h11)+𝒮(h11)′′+(1)n1σ1j=1mxjxj1xj\displaystyle h^{1}_{2}:=\frac{1}{2!}{\mathcal{S}}(h^{1}_{1})^{\prime}+{\mathcal{S}}(h^{1}_{1})^{\prime\prime}+(-1)^{n-1}\sigma^{-1}\sum\limits_{j=1}^{m}\llbracket x_{j}x_{j}\hbar^{-1}x_{j}^{\ast}\rrbracket
hq1:=1q!𝒮q1h11, for q>2,\displaystyle h^{1}_{q}:=\frac{1}{q!}{\mathcal{S}}^{q-1}h^{1}_{1},\quad\text{ for }q>2,
Hq1:=(hq1),H1=q1Hq1.\displaystyle H^{1}_{q}:={\mathcal{E}}(h^{1}_{q}),\;\;{H}^{1}=\sum\limits_{q\geq 1}{H}^{1}_{q}.

We use the Hamiltonian H11H^{1}_{1} to define a differential on τ𝐔bal:=𝐔balMbal(M)bal\tau{\mathbf{U}}^{\mathrm{bal}}:={\mathbf{U}}^{{\mathrm{bal}}}\oplus M^{{\mathrm{bal}}}\oplus(M^{\ast})^{{\mathrm{bal}}}. First define the exterior differential d:τ𝐔balτ𝐔bald\colon\tau{\mathbf{U}}^{\mathrm{bal}}\to\tau{\mathbf{U}}^{\mathrm{bal}} as follows. Consider the map d:UUd\colon U\to U which acts as the algebra differential d:AAd\colon A\to A on generators of UU from AA, which maps all other generators to 0, and which satisfies the graded Leibniz rule. Then dd preserves UdiagU^{{\operatorname{diag}}}, descends to UcycU^{{\rm cyc}} where it preserves UbalU^{{\mathrm{bal}}}. It then induces a map d:τ𝐔balτ𝐔bald\colon\tau{\mathbf{U}}^{{\mathrm{bal}}}\to\tau{\mathbf{U}}^{{\mathrm{bal}}} as follows. The map is already determined on Mbal(M)balM^{{\mathrm{bal}}}\oplus(M^{\ast})^{{\mathrm{bal}}} and if u¯X\llbracket\underline{u}X\rrbracket is a monomial in 𝐔bal{\mathbf{U}}^{{\mathrm{bal}}}, where u𝒞𝒳𝒞^𝒞^𝒳u\in{\mathcal{C}}\cup{\mathcal{X}}\cup\widehat{\mathcal{C}}\cup\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast} then d(u¯X)=(1)|u|u¯(dX)d(\llbracket\underline{u}X\rrbracket)=(-1)^{|u|}\llbracket\underline{u}(dX)\rrbracket. Then d2=0d^{2}=0 and we observe that H1H^{1} satisfies the following master equation

dH1+H1H1=0.d{H}^{1}+{H}^{1}\star{H}^{1}=0. (2.17)

Since |H1|=1|H^{1}|=-1, H1H1=12[H1,H1]{H}^{1}\star{H}^{1}=\frac{1}{2}[{H}^{1},{H}^{1}] and (2.17) can be rewritten in Maurer-Cartan form:

dH1+12[H1,H1]=0.d{H}^{1}+\frac{1}{2}[{H}^{1},{H}^{1}]=0. (2.18)

Decomposing H1=q1Hq1{H}^{1}=\sum_{q\geq 1}{H}^{1}_{q}, (2.17) is equivalent to the following sequence of identities for the (𝐔q1)bal\left({\mathbf{U}}^{1}_{q}\right)^{\mathrm{bal}}-components of H1H1{H}^{1}\star{H}^{1}:

dHq1+k=1qj=1kHqk+11jHk1=0,q=1,2,3,d{H}_{q}^{1}+\sum_{k=1}^{q}\sum_{j=1}^{k}{H}^{1}_{q-k+1}\mathop{\star}\limits_{j}{H}^{1}_{k}=0,\quad q=1,2,3,\dots (2.19)

The first identity in this sequence is

dH11+H11H11=0,d{H}^{1}_{1}+{H}^{1}_{1}\star{H}^{1}_{1}=0, (2.20)
Definition 2.6.

Define the differential dU:τ𝐔balτ𝐔bald_{U}\colon\tau{\mathbf{U}}^{{\mathrm{bal}}}\to\tau{\mathbf{U}}^{{\mathrm{bal}}},

dUX:=dX+[H11,X].d_{U}X:=dX+[H^{1}_{1},X].

(Note that (2.20) is equivalent to dU 2=0d_{U}^{\,2}=0.)

The differential interacts with the bracket in the following way.

Lemma 2.7.

For X,Yτ𝐔balX,Y\in\tau{\mathbf{U}}^{{\mathrm{bal}}},

dU([X,Y])=[dUX,Y]+(1)|X|[X,dUY].d_{U}([X,Y])=[d_{U}X,Y]+(-1)^{|X|}[X,d_{U}Y].

In particular, the operation [,][\,,] descends to the homology H(τ𝐔bal,dU)H(\tau{\mathbf{U}}^{\mathrm{bal}},d_{U}).

We observe that dUd_{U} leaves MbalM^{\mathrm{bal}}, 𝐌bal{\mathbf{M}}^{\mathrm{bal}}, (M)bal\left(M^{\ast}\right)^{\mathrm{bal}}, and (𝐌)bal\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} invariant. For simple notation we write dτMd_{\tau M} for the restriction of dUd_{U} to any one of these subspaces. Consider the isomorphisms β:McycMbal\beta\colon M^{\rm cyc}\to M^{\mathrm{bal}} and β¯:Mcyc𝐌bal\underline{\beta}\colon M^{{\rm cyc}}\to{\mathbf{M}}^{{\mathrm{bal}}},

β(X)=X1σ1 and β¯=β, respectively.\beta(X)=X\hbar^{-1}\sigma^{-1}\;\text{ and }\;{\underline{\beta}}={\mathcal{E}}\circ\beta,\;\text{ respectively}. (2.21)
Lemma 2.8.

The maps β:(Mcyc,dM)(Mbal,dτM)\beta\colon(M^{\rm cyc},d_{M})\to(M^{\mathrm{bal}},{d_{\tau}M}) and β¯:(Mcyc,dM)(𝐌bal,dτM){\underline{\beta}}\colon(M^{\rm cyc},d_{M})\to({\mathbf{M}}^{\mathrm{bal}},d_{\tau M}) are chain isomorphisms.

The following result is a consequence of Lemma 2.7.

Corollary 2.9.

If X𝐔balX\in{\mathbf{U}}^{{\mathrm{bal}}} satisfies dUX=0d_{U}X=0 and has the correct tensorial type to define one of the operations (2.12) – (2.16), see Section 2.1.E, then this operation is a chain map. If furthermore X=dUYX=d_{U}Y for some Y𝐔balY\in{\mathbf{U}}^{\mathrm{bal}} then the operation is chain homotopic to 0.

2.2 Products

We introduce product operations on 𝐌bal{\mathbf{M}}^{\mathrm{bal}} and (𝐌)bal\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}.

2.2.A The product on H((𝐌)bal)H(\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}})

Recall the operation (H21):(τ𝐌)bal(τ𝐌)bal(τ𝐌)bal\left({H}^{1}_{2}\right)^{\uparrow}\colon\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\otimes\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\to\left(\tau{\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} defined by the formula

(H21)(X,Y)=Y(X1H21),\left({H}^{1}_{2}\right)^{\uparrow}(X,Y)=Y\star\left(X\mathop{\star}\limits\limits_{1}{H}^{1}_{2}\right),

see (2.13). Define XY:=(1)|X|(H21)(X,Y)X\diamond Y:=(-1)^{|X|}\left({H}^{1}_{2}\right)^{\uparrow}(X,Y). Then (𝐌)bal(𝐌)bal(𝐌)bal\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\diamond\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\subset\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}.

Proposition 2.10.

The operation :(𝐌)bal(𝐌)bal(𝐌)bal\diamond\colon\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\otimes\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\to\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} descends to an associative product on the homology H((𝐌)bal,dτM)H(\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}},d_{\tau M}) which satisfies the following graded commutativity relation for the grading shifted by 11:

XY=(1)(|X|+1)(|Y|+1)YX.X\diamond Y=(-1)^{(|X|+1)(|Y|+1)}Y\diamond X.

The homology class of the cycle E:=(1)n1i=1k1x¯iσ(𝐌)balE:=(-1)^{n-1}\sum_{i=1}^{k}\hbar^{-1}{\underline{x}}_{\,i}^{\ast}\sigma\in({\mathbf{M}}^{\ast})^{\mathrm{bal}} is the unit for this product on H((𝐌)bal)H(\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}). In fact, EE is a unit for \diamond already on the chain level, before passing to homology.

Consider the second and third identities satisfied by the Hamiltonian H1{H}^{1}:

dH21+[H11,H21]=0,\displaystyle d{H}^{1}_{2}+[{H}^{1}_{1},{H}^{1}_{2}]=0, (2.22)
dH31+[H11,H31]+H211H21+H212H21=0.\displaystyle d{H}^{1}_{3}+[{H}^{1}_{1},{H}^{1}_{3}]+{H}^{1}_{2}\mathop{\star}\limits_{1}{H}^{1}_{2}+{H}^{1}_{2}\mathop{\star}\limits_{2}{H}^{1}_{2}=0. (2.23)

Here (2.22) is the chain map equation for (H21):(𝐌)bal(𝐌)bal(𝐌)bal\left({H}^{1}_{2}\right)^{\uparrow}\colon\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\otimes\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\to\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}, and (2.23) shows that this product is associative on the homology level. Indeed,

(XY)Z\displaystyle(X\diamond Y)\diamond Z =(1)|Y|+1Z((Y(X1H21))1H12)\displaystyle=(-1)^{|Y|+1}Z\mathop{\star}\limits((Y\star(X\mathop{\star}\limits_{1}H^{1}_{2}))\mathop{\star}\limits_{1}H_{1}^{2})
=(1)|Y|Z(Y1(X1(H212H12)))\displaystyle=(-1)^{|Y|}Z\mathop{\star}\limits(Y\mathop{\star}\limits_{1}(X\mathop{\star}\limits_{1}(H^{1}_{2}\mathop{\star}\limits_{2}H_{1}^{2})))
=(1)|Y|+|X|(Z(Y1H21))(X1H12)\displaystyle=(-1)^{|Y|+|X|}(Z\mathop{\star}\limits(Y\mathop{\star}\limits_{1}H^{1}_{2}))\mathop{\star}\limits(X\mathop{\star}\limits_{1}H_{1}^{2})
=X(YZ).\displaystyle=X\diamond(Y\diamond Z).

The unit property can be checked directly if one observes that the sum GG of all terms in H21{H}^{1}_{2} with excited generator from 𝒞^𝒳\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast} and which contain at least one xjx_{j}-factor, j=1,,mj=1,\dots,m is

G=σ1((1)n1jxjxj1x¯j+i,jc𝒞ijxic^1c¯^+c^xj1c¯^).G=\sigma^{-1}\left((-1)^{n-1}\sum_{j}\llbracket x_{j}x_{j}\hbar^{-1}{\underline{x}}^{\ast}_{j}\rrbracket+\sum_{i,j}\sum\limits_{c\in{\mathcal{C}}_{ij}}\llbracket x_{i}\widehat{c}\hbar^{-1}\widehat{\underline{c}}^{\,\ast}\,\rrbracket+\llbracket\widehat{c}x_{j}\hbar^{-1}\widehat{\underline{c}}^{\,\ast}\rrbracket\right).

Hence, taking into account that |E|=1|E|=1 we have for any Y(𝐌)balY\in\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}

EY=Y(i=1m(1)n11x¯iσ1G)\displaystyle E\diamond Y=Y\star\left(\sum_{i=1}^{m}(-1)^{n-1}\hbar^{-1}{\underline{x}}_{i}^{\ast}\sigma\mathop{\star}\limits_{1}G\right)
=Y(j(1)n1xj1x¯j+c𝒞c^1c¯^)=Y\displaystyle=Y\star\left(\sum_{j}(-1)^{n-1}\llbracket x_{j}\hbar^{-1}{\underline{x}}^{\ast}_{j}\rrbracket+\sum\limits_{c\in{\mathcal{C}}}\llbracket\widehat{c}\hbar^{-1}\widehat{\underline{c}}^{\,\ast}\,\rrbracket\right)=Y

To verify the commutativity relation, let XX be a dMd_{M}-cycle in 𝐌bal{\mathbf{M}}^{{\mathrm{bal}}}. Applying the 𝒮{\mathcal{S}}-operator to the equation dX+[H11,X]=0dX+[H^{1}_{1},X]=0 gives dU(𝒮X)=XH21d_{U}({\mathcal{S}}X)=X\mathop{\star}\limits H^{1}_{2} and thus, on the level of homology, X1H21+X2H21=0X\mathop{\star}\limits_{1}H^{1}_{2}+X\mathop{\star}\limits_{2}H^{1}_{2}=0 and we calculate

XY=(1)|X|Y(X1H21)=(1)|X|+1Y(X2H21)\displaystyle X\diamond Y=(-1)^{|X|}Y\mathop{\star}\limits(X\mathop{\star}\limits_{1}H^{1}_{2})=(-1)^{|X|+1}Y\mathop{\star}\limits(X\mathop{\star}\limits_{2}H^{1}_{2})
=(1)|X|+1+|X||Y|X(Y1H21)=(1)(|X|+1)(|Y|+1)YX.\displaystyle=(-1)^{|X|+1+|X||Y|}X\mathop{\star}\limits(Y\mathop{\star}\limits_{1}H^{1}_{2})=(-1)^{(|X|+1)(|Y|+1)}Y\diamond X.

2.2.B The product on H(𝐌bal)H({\mathbf{M}}^{\mathrm{bal}})

If there exists an element

H=p2Hpp2(𝐔p)bal{H}^{\prime}=\sum_{p\geq 2}{H}^{p}\;\in\;\bigoplus\limits_{p\geq 2}\left({\mathbf{U}}^{p}\right)^{\mathrm{bal}}

such that H=H1+H=p1Hp{H}={H}^{1}+{H}^{\prime}=\sum_{p\geq 1}{H}^{p} satisfies the master equation

dH+HH=dH+12[H,H]=0,d{H}+{H}\star{H}=d{H}+\frac{1}{2}[{H},{H}]=0, (2.24)

then we say that H{H}^{\prime} is compatible with H1{H}^{1} and we call H=H1+H{H}={H}^{1}+H^{\prime} the full (rational) Hamiltonian. As we shall see later, when AA is a Legendrian homology algebra then we can always find H{H}^{\prime} compatible with H1{H}^{1} using a relative SFT formalism associated with parallel copies of the Legendrian submanifold in the spirit of [5].

Assume now that H{H}, and in particular H02{H}^{2}_{0}, which satisfies (2.24) exists and is given. Then we define the operation :τ𝐌balτ𝐌balτ𝐌bal\boxdot\colon\tau{\mathbf{M}}^{{\mathrm{bal}}}\otimes\tau{\mathbf{M}}^{{\mathrm{bal}}}\to\tau{\mathbf{M}}^{{\mathrm{bal}}},

XY=(H021H21)(X,Y)=((H021H21)1X)Y.X\boxdot Y=\left({H}^{2}_{0}\mathop{\star}\limits_{1}{H}^{1}_{2}\right)^{\downarrow}(X,Y)=(({H}^{2}_{0}\mathop{\star}\limits_{1}{H}^{1}_{2})\mathop{\star}\limits^{1}X)\mathop{\star}\limits Y.

Note that if X,Y𝐌balτ𝐌balX,Y\in{\mathbf{M}}^{{\mathrm{bal}}}\subset\tau{\mathbf{M}}^{{\mathrm{bal}}} then XY𝐌balX\boxdot Y\in{\mathbf{M}}^{{\mathrm{bal}}}.

Theorem 2.11.

  1. 1.

    The operation :𝐌bal𝐌bal𝐌bal\boxdot\colon{\mathbf{M}}^{{\mathrm{bal}}}\otimes{\mathbf{M}}^{{\mathrm{bal}}}\to{\mathbf{M}}^{{\mathrm{bal}}} descends to an operation on the homology H(𝐌bal,dτM)H({\mathbf{M}}^{\mathrm{bal}},d_{\tau M}) where it can be expressed by the following three equivalent expressions:

    XY=\displaystyle X\boxdot Y= (H022H21)(X,Y)=(1)|X|(H21)((H02)(X),Y)\displaystyle-\left({H}^{2}_{0}\mathop{\star}\limits_{2}{H}^{1}_{2}\right)^{\downarrow}(X,Y)=(-1)^{|X|}\left(H^{1}_{2}\right)^{{\uparrow\downarrow}}\left(\left(H^{2}_{0}\right)^{\circlearrowleft}(X),Y\right)
    =\displaystyle= (1)|X||Y|+|X|+1(H21)(X,(H02)(Y)).\displaystyle\;(-1)^{|X||Y|+|X|+1}\left(H^{1}_{2}\right)^{{\downarrow\uparrow}}\left(X,\left(H^{2}_{0}\right)^{\circlearrowleft}(Y)\right).

    Equivalently, the following diagram commutes on the homology level,

    (𝐌)bal𝐌bal\textstyle{\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\otimes{\mathbf{M}}^{\mathrm{bal}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(H21)~\scriptstyle{({H}^{1}_{2})^{\widetilde{\downarrow\uparrow}}}𝐌bal𝐌bal\textstyle{{\mathbf{M}}^{\mathrm{bal}}\otimes{\mathbf{M}}^{\mathrm{bal}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(H02)id\scriptstyle{({H}^{2}_{0})^{\circlearrowleft}\otimes\mathrm{id}\;}(H022H21)\scriptstyle{\boxdot\;\simeq\;-({H}^{2}_{0}\mathop{\star}\limits_{2}{H}^{1}_{2})^{\downarrow}}id(H02)\scriptstyle{\mathrm{id}\otimes({H}^{2}_{0})^{\circlearrowleft}\;\;}𝐌bal\textstyle{{\mathbf{M}}^{\mathrm{bal}}}𝐌bal(𝐌)bal\textstyle{{\mathbf{M}}^{\mathrm{bal}}\otimes\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(H21)~\scriptstyle{({H}^{1}_{2})^{\widetilde{\uparrow\downarrow}}}

    where

    (H21)~(X,Y)\displaystyle({H}^{1}_{2})^{\widetilde{\uparrow\downarrow}}(X,Y) :=(1)|X|(H21)(X,Y),\displaystyle:=(-1)^{|X|}({H}^{1}_{2})^{{\uparrow\downarrow}}(X,Y),
    (H21)~(Y,X)\displaystyle({H}^{1}_{2})^{\widetilde{\downarrow\uparrow}}(Y,X) :=(1)|Y||X|+|Y|+1(H21)(Y,X),\displaystyle:=(-1)^{|Y||X|+|Y|+1}\linebreak({H}^{1}_{2})^{{\downarrow\uparrow}}(Y,X),

    for X(𝐌)balX\in\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} and Y𝐌balY\in{\mathbf{M}}^{\mathrm{bal}}.

  2. 2.

    The operation \boxdot is associative and graded commutative on homology, i.e. if X,YH(𝐌bal)X,Y\in H({\mathbf{M}}^{{\mathrm{bal}}}) then XY=(1)|X||Y|YX.X\boxdot Y=(-1)^{|X||Y|}Y\boxdot X.

The above result is a consequence of the master equation (2.24) which in particular implies the identities

dH02+[H11,H02]=dH02+H02H11=0,\displaystyle d{H}^{2}_{0}+[{H}^{1}_{1},{H}^{2}_{0}]=d{H}^{2}_{0}+{H}^{2}_{0}\star{H}_{1}^{1}=0, (2.25)
dH12+[H11,H12]+H021H21+H022H21=0.\displaystyle dH^{2}_{1}+[H^{1}_{1},H^{2}_{1}]+H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2}+H^{2}_{0}\mathop{\star}\limits_{2}H^{1}_{2}=0. (2.26)

A straightforward calculation shows that dU(H021H21)=(dUH02)1H21H021(dUH21)d_{U}(H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2})=(d_{U}H^{2}_{0})\mathop{\star}\limits_{1}H^{1}_{2}-H^{2}_{0}\mathop{\star}\limits_{1}(d_{U}H^{1}_{2}). By (2.25), dUH02=0d_{U}{H}^{2}_{0}=0, by (2.22), dUH21=0d_{U}{H}^{1}_{2}=0, and therefore H021H21{H}^{2}_{0}\mathop{\star}\limits_{1}{H}^{1}_{2} is a cycle in (𝐔12)bal\left({\mathbf{U}}^{2}_{1}\right)^{\mathrm{bal}}. Similarly, H022H21-{H}^{2}_{0}\mathop{\star}\limits_{2}{H}^{1}_{2} is a cycle and (2.26) implies that their homology classes coincide. This shows that the product descends to homology and implies the first equation of part 1 of the theorem. The alternative expressions for \boxdot in part 1 are immediate from the definitions of the operations (H02)\left(H^{2}_{0}\right)^{\circlearrowleft}, (H21)\left(H^{1}_{2}\right)^{{\downarrow\uparrow}}, and (H21)\left(H^{1}_{2}\right)^{{\uparrow\downarrow}}.

\labellist
\hair

2pt \pinlabel(I)(\mathrm{I}) at -30 460 \pinlabel++ at 90 460 \pinlabel++ at 208 460 \pinlabel++ at 316 460 \pinlabel++ at 428 460 \pinlabel= 0=\;0 at 550 460 \pinlabel(II)(\mathrm{II}) at -30 300 \pinlabel++ at 72 300 \pinlabel++ at 175 300 \pinlabel++ at 264 300 \pinlabel++ at 360 300 \pinlabel++ at 450 300 \pinlabel= 0=\;0 at 550 300 \pinlabel(I)\stackrel{{\scriptstyle(\mathrm{I})}}{{\simeq}} at 170 120 \pinlabel(II)\stackrel{{\scriptstyle(\mathrm{II})}}{{\simeq}} at 400 120 \endlabellistRefer to caption

Figure 1: A graphical proof of associativity. A tree with pp upwards and qq downwards 11-valent vertices represents Hqp{H}^{p}_{q}. The dot represents the \mathop{\star}\limits-operator. Equations (I)(\mathrm{I}) and (II)(\mathrm{II}) are consequences of dH+HH=0d{H}+{H}\mathop{\star}\limits{H}=0 (terms from dHd{H} are not shown in the figures).

To verify the commutativity we observe that given a cycle X𝐌balX\in{\mathbf{M}}^{\mathrm{bal}}, using the homological identity (H02X)1H21=(H02X)2H21(H^{2}_{0}\mathop{\star}\limits X)\mathop{\star}\limits_{1}H^{1}_{2}=-(H^{2}_{0}\mathop{\star}\limits X)\mathop{\star}\limits_{2}H^{1}_{2}, we calculate

XY=((H021H21)1X)Y=(1)|X|((H02X)1H21)Y\displaystyle X\boxdot Y=(({H}^{2}_{0}\mathop{\star}\limits_{1}{H}^{1}_{2})\mathop{\star}\limits^{1}X)\star Y=(-1)^{|X|}((H^{2}_{0}\mathop{\star}\limits X)\mathop{\star}\limits_{1}H^{1}_{2})\star Y
=(1)|X|+1((H02X)2H21)Y=(1)|X||Y|+1((H022H21)1Y)X\displaystyle=(-1)^{|X|+1}((H^{2}_{0}\star X)\mathop{\star}\limits_{2}H^{1}_{2})\mathop{\star}\limits Y=(-1)^{|X||Y|+1}((H^{2}_{0}\mathop{\star}\limits_{2}H^{1}_{2})\mathop{\star}\limits^{1}Y)\star X
=(1)|X||Y|((H021H21)1Y)X=(1)|X||Y|YX.\displaystyle=(-1)^{|X||Y|}((H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2})\mathop{\star}\limits^{1}Y)\mathop{\star}\limits X=(-1)^{|X||Y|}Y\boxdot X.

Finally, the proof of associativity is pictorially illustrated on Figure 1.

The products \boxdot on 𝐌bal{\mathbf{M}}^{\mathrm{bal}} and \diamond on (𝐌)bal\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} are related via the chain map (H02):𝐌bal(𝐌)bal\left({H}^{2}_{0}\right)^{\circlearrowleft}\colon{\mathbf{M}}^{{\mathrm{bal}}}\to\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}} in the following way.

Proposition 2.12.

The map induced by (H02)\left({H}^{2}_{0}\right)^{\circlearrowleft} on homology is a homomorphism of rings Φ:(H(𝐌bal),)(H((𝐌)bal),)\Phi\colon\left(H({\mathbf{M}}^{\mathrm{bal}}),\boxdot\right)\to\left(H(\left({\mathbf{M}}^{\ast}\right)^{\mathrm{bal}}),\diamond\right). Moreover, if there is a unit ee for \boxdot on H(𝐌bal)H({\mathbf{M}}^{\mathrm{bal}}), i.e. eX=Xee\boxdot X=X\boxdot e, for all XH(𝐌bal)X\in H({\mathbf{M}}^{{\mathrm{bal}}}), then Φ\Phi is injective.

Indeed, if X,Y𝐌balX,Y\in{\mathbf{M}}^{\mathrm{bal}} then, taking into account that |Φ(X)|=|X|1|\Phi(X)|=|X|-1, we calculate

Φ(X)Φ(Y)\displaystyle\Phi(X)\diamond\Phi(Y) =(1)|X|+1(H02Y)((H02X)1H21)\displaystyle=(-1)^{|X|+1}(H^{2}_{0}\star Y)\mathop{\star}\limits((H^{2}_{0}\star X)\mathop{\star}\limits_{1}H^{1}_{2})
=H02(((YH02)1H21)X)\displaystyle=H^{2}_{0}\star(((Y\star H^{2}_{0})\mathop{\star}\limits_{1}H^{1}_{2})\star X)
=(1)|X||Y|H02(((H021H21)1Y)X)\displaystyle=(-1)^{|X||Y|}H^{2}_{0}\mathop{\star}\limits(((H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2})\mathop{\star}\limits^{1}Y)\mathop{\star}\limits X)
=(1)|X||Y|Φ(YX)=Φ(XY).\displaystyle=(-1)^{|X||Y|}\Phi(Y\boxdot X)=\Phi(X\boxdot Y).

To verify the injectivity of Φ\Phi we use one of equivalent definitions of \boxdot from Theorem 2.11, part 1:

X=Xe=(1)|X|+1(H21)(Φ(X),e),X=X\boxdot e=(-1)^{|X|+1}\left({H}^{1}_{2}\right)^{{\downarrow\uparrow}}\left(\Phi(X),e\right),

and hence, Φ(X)=0\Phi(X)=0 implies X=0.X=0.

Using the isomorphism β¯:Mcyc𝐌bal\underline{\beta}\colon M^{\rm cyc}\to{\mathbf{M}}^{\mathrm{bal}}, β¯(X)=(Xσ11)\underline{\beta}(X)={\mathcal{E}}(X\sigma^{-1}\hbar^{-1}) defined above we transport the product to McycM^{\rm cyc}. Given X,YMcycX,Y\in M^{\rm cyc}, we define

XY\displaystyle X\boxtimes Y :=β¯1(β¯(X)β¯(Y))\displaystyle:=\underline{\beta}^{-1}\left(\underline{\beta}(X)\boxdot\underline{\beta}(Y)\right)
=(((H021H21)1(Xσ11))(Yσ11))σ\displaystyle=\left(((H^{2}_{0}\mathop{\star}\limits\limits_{1}H^{1}_{2})\mathop{\star}\limits^{1}{\mathcal{E}}(X\sigma^{-1}\hbar^{-1}))\star{\mathcal{E}}(Y\sigma^{-1}\hbar^{-1})\right)\hbar\sigma
=(1)(n2)|Y|+1((H021H21)1(X))(Y)σ11.\displaystyle=(-1)^{(n-2)|Y|+1}((H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2})\mathop{\star}\limits^{1}{\mathcal{E}}(X))\star{\mathcal{E}}(Y)\sigma^{-1}\hbar^{-1}. (2.27)

Note that the homomorphism β¯\underline{\beta} shifts the grading by 2n2-n, and hence the commutation equation for \boxdot translates to the equation

XY=(1)(|X|n)(|X|n)YX.X\boxtimes Y=(-1)^{(|X|-n)(|X|-n)}Y\boxtimes X.

Let us also point out that the degree of the product \boxtimes is equal to n-n.

3 Legendrian algebra constructions

In this section we first reformulate the main result relating Legendrian homology algebra and symplectic homology [2, Corollary 5.7] in the terminology of Section 2, and second give a brief sketch of the geometry that enters the construction of the full rational Hamiltonian in the framework of Legendrian SFT with focus on the parts of it that enter the expression of the product.

3.1 The complex LHHo(Λ)LH^{\mathrm{Ho}}(\Lambda) expressed as McycM^{{\rm cyc}}

Let (X¯0,λ)(\overline{X}_{0},\lambda) be a Liouville domain with contact boundary (Y0,ker(λ))(Y_{0},\ker(\lambda)) and let Λ=Λ1ΛmY0\Lambda=\Lambda_{1}\cup\dots\Lambda_{m}\subset Y_{0} be a union of Legendrian spheres. Let 𝒞{\mathcal{C}} be the set of Reeb chords of Λ\Lambda and consider the decomposition 𝒞=1i,jm𝒞ij{\mathcal{C}}=\bigcup_{1\leq i,j\leq m}{\mathcal{C}}_{ij}, where a chord in 𝒞ij{\mathcal{C}}_{ij} starts on Λj\Lambda_{j} and ends on Λi\Lambda_{i}. Let VV be the graded module K𝒞K\langle{\mathcal{C}}\rangle generated by the set 𝒞{\mathcal{C}} with decomposition V=1i,jmV(ij)V=\bigoplus_{1\leq i,j\leq m}V^{(ij)}, where V(ij)V^{(ij)} is generated by 𝒞ij{\mathcal{C}}_{ij}. Then the Legendrian homology algebra LHA(Λ)LHA(\Lambda) is the tensor algebra AA associated to VV as in (2.1) and the differential dLHAd_{LHA} gives a differential graded algebra (A,d):=(LHA(Λ),dLHA)(A,d):=(LHA(\Lambda),d_{LHA}), see [2, Section 4.1]. Let M=M(A)M=M(A) be the chain complex defined in (2.2). The following result is a consequence of [2, Remark 7.4].

Lemma 3.1.

The chain complex McycM^{{\rm cyc}} is canonically isomorphic to the chain complex LHHo(Λ)LH^{\mathrm{Ho}}(\Lambda) defined in [2, Section 4.5].

In [2, Corollary 5.7] it was shown that if S(X0)=0S{\mathbb{H}}(X_{0})=0 (e.g. if X0X_{0} is a subcritical Weinstein manifold) and if XX is obtained from X0X_{0} by attaching Lagrangian nn-handles along Λ\Lambda, then there is a quasi-isomorphism

Φ:SH(X)LHHo(Λ)=Mcyc=β¯𝐌bal,\Phi\colon SH(X)\to LH^{\mathrm{Ho}}(\Lambda)=M^{{\rm cyc}}\stackrel{{\scriptstyle\underline{\beta}}}{{=}}{\mathbf{M}}^{{\mathrm{bal}}}, (3.1)

where SH(X)SH(X) denotes a chain complex with homology equal to S(X)S{\mathbb{H}}(X).

3.2 Legendrian rational SFT

The differential in the Legendrian algebra A=LHA(Λ)A=LHA(\Lambda) is defined by counting elements of moduli spaces of rigid holomorphic disks in ×Y0{\mathbb{R}}\times Y_{0}, with boundary on ×Λ{\mathbb{R}}\times\Lambda, and with exactly one positive and several negative punctures, see e.g. [2, Section 4.1]. The formalism of Legendrian rational SFT comes from algebraic structures associated with holomorphic disks with an arbitrary number of positive and negative punctures. As is well known, in order to construct such a theory one needs to handle boundary cusp-degenerations of holomorphic disks. The problem of boundary cusp-degeneration can be solved by incorporating string topology operations into the SFT formalism. The corresponding theory has not yet been constructed in sufficient generality for it to be applicable in the setting of this paper. (See, however [13] for the case of 11-dimensional Legendrian knots in 3{\mathbb{R}}^{3}).

However, the algebraic formalism described in Section 2 requires a different version of the full rational Hamiltonian H{H}, in the spirit of [5]. It arises naturally when one considers moduli spaces of holomorphic disks with boundaries on multiple parallel copies of ×Λ{\mathbb{R}}\times\Lambda.

Let us first consider the term H02{H}^{2}_{0}. This is the only term besides H21{H}^{1}_{2} which is needed for defining the product on McycM^{\rm cyc}, see Figure 3. We recall here that Hk1{H}^{1}_{k} for any k1k\geq 1 is determined by the differential on the Legendrian algebra AA.

For each i=1,,mi=1,\ldots,m fix a point yiΛiy_{i}\in\Lambda_{i}. Let Z=u¯1w1u2w2(𝐔02)balZ=\llbracket\underline{u}_{1}w_{1}u_{2}w_{2}\rrbracket\in\left({\mathbf{U}}^{2}_{0}\right)^{{\mathrm{bal}}}, where wj=cj1cjrjAw_{j}=c_{j}^{1}\dots c_{j}^{r_{j}}\in A and uj𝒞^𝒳u_{j}\in\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}, j=1,2j=1,2, be an excited cyclic monomial. We associate to it a moduli space (Z)=(Z)′′(Z)\mathcal{M}(Z)=\mathcal{M}^{\prime}(Z)\cup\mathcal{M}^{\prime\prime}(Z). Here the moduli space (Z)\mathcal{M}^{\prime}(Z) consists of holomorphic disks anchored in X0X_{0}, see [2, Section 2.2],

f:(D,D𝐳)(×Y0,×Λ),f\colon(D,\partial D\setminus\mathbf{z})\to({\mathbb{R}}\times Y_{0},{\mathbb{R}}\times\Lambda),

where

𝐳={zu1,zc11,,zc1r1,zu2,zc21,,zc2r2}D\mathbf{z}=\left\{z_{u_{1}}\,,\,z_{c_{1}^{1}},\dots,z_{c_{1}^{r_{1}}}\,,\,z_{u_{2}}\,,\,z_{c_{2}^{1}},\dots,z_{c_{2}^{r_{2}}}\right\}\subset\partial D

is a set of cyclically ordered boundary punctures on D\partial D, with the following properties:

  • (ch\mathrm{ch}^{-})

    at the puncture zcjiz_{c^{i}_{j}}, ff is asymptotic to the chord cjic^{i}_{j} at -\infty;

  • (ch+\mathrm{ch}^{+})

    if uj=c^𝒞^u_{j}=\widehat{c}^{\,\ast}\in\widehat{\mathcal{C}}^{\ast} then at the puncture zujz_{u_{j}} ff is asymptotic to the chord cc at ++\infty;

  • (pt+)(\mathrm{pt}^{+})

    if uj=xi𝒳u_{j}=x_{i}^{\ast}\in{\mathcal{X}}^{\ast} then, ff extends continuously over zujz_{u_{j}}, and f(zuj)×{yi}f(z_{u_{j}})\in{\mathbb{R}}\times\{y_{i}\}.

The moduli space ′′(Z)\mathcal{M}^{\prime\prime}(Z) consists of holomorphic disks connected by Morse flow lines. To define it, choose auxiliary Morse functions ϕi:Λi\phi_{i}\colon\Lambda_{i}\to{\mathbb{R}}, i=1,,mi=1,\dots,m, each with exactly two critical points. For (s,t){0,1,,r1}×{0,1,,r2}(s,t)\in\{0,1,\dots,r_{1}\}\times\{0,1,\dots,r_{2}\} define the auxiliary moduli space (s,t)(Z)\mathcal{M}_{(s,t)}(Z) of pairs (f1,f2)(f_{1},f_{2}) of holomorphic disks anchored in X0X_{0},

fσ:(D,D𝐳σ)(×Y0,×Λ),σ=1,2,f_{\sigma}\colon(D,\partial D\setminus\mathbf{z}_{\sigma})\to({\mathbb{R}}\times Y_{0},{\mathbb{R}}\times\Lambda),\;\;\sigma=1,2,

where

𝐳1\displaystyle\mathbf{z}_{1} ={zu1,zc11,,zc1s,ζ1,zc2t+1,,zc2r2}D,\displaystyle=\left\{z_{u_{1}},\,z_{c_{1}^{1}},\dots,z_{c_{1}^{s}}\,,\,\zeta_{1},z_{c_{2}^{t+1}},\dots,z_{c_{2}^{r_{2}}}\right\}\subset\partial D,
𝐳2\displaystyle\mathbf{z}_{2} ={zu2,zc21,,zc2t,ζ2,zc1s+1,,zc2r2}D\displaystyle=\left\{z_{u_{2}},\,z_{c_{2}^{1}},\dots,z_{c_{2}^{t}}\,,\,\zeta_{2},z_{c_{1}^{s+1}},\dots,z_{c_{2}^{r_{2}}}\right\}\subset\partial D

are sets of cyclically ordered boundary punctures on D\partial D, with the following properties. At zuσz_{u_{\sigma}}, fσf_{\sigma} satisfies condition (ch+)(\mathrm{ch}^{+}) if uσ𝒞^u_{\sigma}\in\widehat{\mathcal{C}}^{\ast} or condition (pt+)(\mathrm{pt}^{+}) if uσ𝒳u_{\sigma}\in{\mathcal{X}}^{\ast}. At zcijz_{c_{i}^{j}}, fσf_{\sigma} satisfies condition (ch)(\mathrm{ch}^{-}). At the puncture ζσ\zeta_{\sigma}, σ=1,2\sigma=1,2, fσf_{\sigma} extends continuously and the following condition holds:

  • (mo)(\mathrm{mo})

    The points f1(ζ1)f_{1}(\zeta_{1}) and f2(ζ2)f_{2}(\zeta_{2}) lie in the same component ΛiΛ\Lambda_{i}\subset\Lambda and there exists a trajectory of ϕi-\nabla\phi_{i} which starts at f1(ζ1)f_{1}(\zeta_{1}) and ends at f2(ζ2)f_{2}(\zeta_{2}), where ϕi:Λi\phi_{i}\colon\Lambda_{i}\to{\mathbb{R}} is the auxiliary Morse function on Λi\Lambda_{i}. Here the gradient is taken with respect to the metric induced by the symplectic form and the almost complex structure.

Finally, define

′′(Z):=(s,t){0,,r1}×{0,,r2}(s,t)(Z).\mathcal{M}^{\prime\prime}(Z):=\bigcup_{(s,t)\in\{0,\dots,r_{1}\}\times\{0,\dots,r_{2}\}}\mathcal{M}_{(s,t)}(Z).

Given u𝒞^𝒞^u\in\widehat{\mathcal{C}}\cup\widehat{\mathcal{C}}^{\ast}, let u~=a\widetilde{u}=a if u=a^u=\widehat{a} or u=a^u=\widehat{a}^{\,\ast}. Define |x~j|=|x~j|=1|\widetilde{x}_{j}|=|\widetilde{x}_{j}^{\ast}|=-1, j=1,,mj=1,\dots,m. Then we have the dimension formula

dim((Z))=|u~1|+|u~2||w1||w2|(n3).\dim({\mathcal{M}}(Z))=|\widetilde{u}_{1}|+|\widetilde{u}_{2}|-|w_{1}|-|w_{2}|-(n-3).

In particular in terms of the grading on UU, for the balanced monomial σ21Z\sigma^{2}\hbar^{-1}Z we have

dim((Z))=|σ21Z|.\dim({\mathcal{M}}(Z))=-|\sigma^{2}\hbar^{-1}Z|.

Define H02(𝐔02)bal{H}^{2}_{0}\in\left({\mathbf{U}}^{2}_{0}\right)^{{\mathrm{bal}}} as (h02){\mathcal{E}}(h^{2}_{0}), where

h02=σ21|σ21Z|=1#(Z)Z,h^{2}_{0}\;=\sigma^{2}\hbar^{-1}\sum\limits_{|\sigma^{2}\hbar^{-1}Z|=-1}\#{\mathcal{M}}(Z)\,Z, (3.2)

where the sum is taken over all balanced monomials σ21Z\sigma^{2}\hbar^{-1}Z which additively generate (𝐔02)bal\left({\mathbf{U}}^{2}_{0}\right)^{\mathrm{bal}} and for which |σ21Z|=1|\sigma^{2}\hbar^{-1}Z|=-1. Here #(Z)\#{\mathcal{M}}(Z) is the algebraic number of 11-dimensional components of the moduli space (Z){\mathcal{M}}(Z). As will be briefly discussed below, the above definition of H02H^{2}_{0} can generalized to more than two positive punctures and as a consequence we get the following result.

Proposition 3.2.

There exists an element H′′𝐔bal{H}^{\prime\prime}\in{\mathbf{U}}^{\mathrm{bal}}, with trivial component in (𝐔1)bal(𝐔02)bal\left({\mathbf{U}}^{1}\right)^{\mathrm{bal}}\oplus\left({\mathbf{U}}^{2}_{0}\right)^{\mathrm{bal}}, such that H=H02+H′′{H}^{\prime}={H}^{2}_{0}+{H}^{\prime\prime} complements H1{H}^{1} to the full rational SFT Hamiltonian (i.e. if H=H1+H02+H′′{H}={H}^{1}+{H}^{2}_{0}+{H}^{\prime\prime} then dH+HH=0d{H}+{H}\star{H}=0).

Here the components Hqp(𝐔qp)bal{H}^{p}_{q}\in\left({\mathbf{U}}^{p}_{q}\right)^{{\mathrm{bal}}}, p>2p>2, of the full rational Hamiltonian HH satisfies the relation Hqp=1q!𝒮q(h0p){H}^{p}_{q}=\frac{1}{q!}{\mathcal{S}}^{q}(h^{p}_{0}), h0p=1pπ(H0p)h^{p}_{0}=\frac{1}{p}\pi(H^{p}_{0}), and are defined through a construction which generalizes that used in the definition of H02{H}^{2}_{0} above. These higher order components of the Hamiltonian are not needed for the definition of the product (but some of them are needed for proving its properties) and will not be defined in this paper. We give however a brief description: Hqp{H}^{p}_{q} is defined using moduli spaces (Z)\mathcal{M}(Z) of so-called generalized holomorphic disks. Generalized holomorphic disks are combined objects consisting of holomorphic disks with boundary on one copy of Λ\Lambda connected by gradient flow trees associated to auxiliary Morse functions on Λ\Lambda, an example is depicted in Figure 2, see [7] for similar considerations. The elements of the moduli space ′′(Z)\mathcal{M}^{\prime\prime}(Z) defined above are examples of generalized holomorphic disks where the gradient flow tree consists of only one gradient trajectory. A more general configuration is shown in Figure 2. More precisely, if Z=u¯1w1u2w2ukwkZ=\underline{u}_{1}w_{1}u_{2}w_{2}\dots u_{k}w_{k} is a monomial in 𝐔qp(0,0){\mathbf{U}}^{p}_{q}(0,0), where ui𝒞^𝒳𝒞^𝒳u_{i}\in\widehat{\mathcal{C}}\cup{\mathcal{X}}\cup\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast} and where wiAw_{i}\in A, i=1,,ki=1,\dots,k, then we consider the moduli space (Z)\mathcal{M}(Z) of generalized holomorphic disks with asymptotic data according to ZZ, i.e. positive punctures at u~i\widetilde{u}_{i} if ui𝒞^𝒳u_{i}\in\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}, negative punctures at u~j\widetilde{u}_{j} if uj𝒞^𝒳u_{j}\in\widehat{\mathcal{C}}\cup{\mathcal{X}}, auxiliary negative punctures at the Reeb chords in the monomials wjw_{j}, and these punctures appearing along the boundary of the disk in the cyclic order given by ZZ. The dimension of (Z)\mathcal{M}(Z) is given by

dim((Z))=(n3)+ui𝒞^𝒳(|u~i|(n3))uj𝒞^𝒳|u~j|j=1m|wj|.\dim(\mathcal{M}(Z))=(n-3)+\sum_{u_{i}\in\widehat{\mathcal{C}}^{\ast}\cup{\mathcal{X}}^{\ast}}\bigl{(}|\widetilde{u}_{i}|-(n-3)\bigr{)}-\sum_{u_{j}\in\widehat{\mathcal{C}}\cup{\mathcal{X}}}|\widetilde{u}_{j}|-\sum_{j=1}^{m}|w_{j}|.

In particular for σpq1Z(𝐔qp)bal\sigma^{p-q}\hbar^{-1}Z\in\left({\mathbf{U}}^{p}_{q}\right)^{{\mathrm{bal}}} we have

dim((Z))=|σpq1Z|\dim(\mathcal{M}(Z))=-|\sigma^{p-q}\hbar^{-1}Z|

and Hqp{H}^{p}_{q} is defined as

Hqp=σpq1|σpq1Z|=1#(Z)Z,{H}^{p}_{q}=\sigma^{p-q}\hbar^{-1}\sum_{|\sigma^{p-q}\hbar^{-1}Z|=-1}\#{\mathcal{M}}(Z)\,Z,

where the sum ranges over all σpq1Z(𝐔qp)bal\sigma^{p-q}\hbar^{-1}Z\in\left({\mathbf{U}}^{p}_{q}\right)^{{\mathrm{bal}}} with |σpq1Z|=1|\sigma^{p-q}\hbar^{-1}Z|=-1.

Refer to caption
Figure 2: A generalized holomorphic disk in Y0×Y_{0}\times{\mathbb{R}} with boundary on ×Λ{\mathbb{R}}\times\Lambda.
Remark 3.3.

In this geometric context, the excitation operator {\mathcal{E}} has the following meaning. Given a generalized holomorphic disk with boundary in the ordered union of (symplectizations of) parallel copies of a Legendrian manifold Λ\Lambda we always insist that the boundary arcs of the disk between punctures corresponding to generators from 𝒞^𝒞^𝒳𝒳\widehat{\mathcal{C}}\cup\widehat{\mathcal{C}}^{\ast}\cup\mathcal{X}\cup\mathcal{X}^{\ast} be mapped to different copies of Λ\Lambda. We also require that when going around the boundary of the disk in the counter-clockwise direction we jump at every such puncture except one to a higher copy of Λ\Lambda in terms of the natural ordering corresponding to the direction of the Reeb vector field. The unique puncture where we jump down corresponds to the excited generator of the monomial corresponding to the boundary punctures. Here the moduli spaces corresponding to different assignment of the distinguished “jump-down” punctures are canonically diffeomorphic, and the operator {\mathcal{E}} just associates with this universal moduli space the moduli spaces corresponding to all possible assignments of the “jump-down” vertex.

Remark 3.4.

The geometric motivation for the “gluing sign” in the equations x¯j(xj)=(1)n1{\underline{x}}_{j}^{\ast}(x_{j})=(-1)^{n-1}\hbar, j=1,,mj=1,\dots,m is as follows. The algebraic variables xjx_{j} and xjx^{\ast}_{j}, j=1,,mj=1,\dots,m has two dual geometric meanings as follows: when xjx_{j}^{\ast} is glued to x¯j{\underline{x}}_{j}, xjx_{j}^{\ast} corresponds to a positive puncture at a short Reeb chord between copies of Λ\Lambda at the minimum of the Morse function ϕ:Λ\phi\colon\Lambda\to{\mathbb{R}} and x¯j{\underline{x}}_{j} corresponds to a negative puncture at this chord, when x¯j{\underline{x}}_{j}^{\ast} is glued to xjx_{j}, x¯j{\underline{x}}_{j}^{\ast} corresponds to a negative puncture at the maximum of ϕ\phi and xjx_{j} to a positive puncture at this maximum. In a coherent orientation scheme there is a sign difference (a factor (1)n1(-1)^{n-1}) between the gluings at these two types of punctures.

4 The product and the BV-operator via Legendrian algebra

Let X0X_{0}, ΛY0\Lambda\subset Y_{0}, and XX be as above. Let A=LHA(Λ)A=LHA(\Lambda) and M=M(A)M=M(A). Then (3.1) gives a quasi-isomorphism Φ:SH(X)Mcyc𝐌bal\Phi\colon SH(X)\to M^{{\rm cyc}}\approx{\mathbf{M}}^{{\mathrm{bal}}}. In this section we present the operations on McycM^{{\rm cyc}} which correspond to the product and the BV-operator on SH(X)SH(X) under Φ\Phi.

4.1 The product

Let H𝐔bal{H}\in{\mathbf{U}}^{{\mathrm{bal}}} be the full rational Hamiltonian determined by ΛY0\Lambda\subset Y_{0}, see (3.2). Then Proposition 3.2 implies that H02{H}^{2}_{0} satisfies (2.25). Hence, according to Theorem 2.11 and (2.27), there exists a product :McycMcycMcyc\boxtimes\colon M^{\rm cyc}\otimes M^{\rm cyc}\to M^{\rm cyc} of degree n-n which is associative and commutative on homology and which is defined by conjugating one of the following homotopically equivalent formulas for the product on 𝐌bal{\mathbf{M}}^{{\mathrm{bal}}} with β¯\underline{\beta}:

XY\displaystyle X\boxdot Y =(H021H21)(X,Y)(H022H21)(X,Y)\displaystyle\;=\;({H}^{2}_{0}\mathop{\star}\limits_{1}{H}^{1}_{2})^{\downarrow}(X,Y)\;\simeq\;-({H}^{2}_{0}\mathop{\star}\limits_{2}{H}^{1}_{2})^{\downarrow}(X,Y)
(1)|X|(H21)((H02)(X)Y)\displaystyle\simeq\;(-1)^{|X|}\left({H}^{1}_{2}\right)^{{\downarrow\uparrow}}\circ\left(\left({H}^{2}_{0}\right)^{\circlearrowleft}(X)\otimes Y\right)
(1)|X||Y|+|X|+|Y|(H21)(X(H02)(Y)),\displaystyle\simeq\;(-1)^{|X||Y|+|X|+|Y|}\left({H}^{1}_{2}\right)^{{\uparrow\downarrow}}\circ\left(X\otimes\left({H}^{2}_{0}\right)^{\circlearrowleft}(Y)\right), (4.1)

see Figure 3.

Theorem 4.1.

If S(X0)=0S{\mathbb{H}}(X_{0})=0 (e.g. if X0X_{0} is subcritical) then, under the map on homology induced by the quasi-isomorphism Φ:SH(X)Mcyc\Phi\colon SH(X)\to M^{\rm cyc}, see (3.1), the pair of pants product on S(X)S{\mathbb{H}}(X) corresponds to the product \boxtimes on H(Mcyc)H(M^{{\rm cyc}}).

\labellist
\hair

2pt \pinlabelΛ1\Lambda^{1} at 31 114 \pinlabelΛ0\Lambda^{0} at 140 114 \pinlabelΛ2\Lambda^{2} at 88 35 \pinlabelΛ1\Lambda^{1} at 340 130 \pinlabelΛ2\Lambda^{2} at 340 50 \pinlabelin at 672 190 \pinlabelout at 713 57 \pinlabelin at 515 80 \endlabellistRefer to caption

Figure 3: Holomorphic disks used in the expression of the product, Λj\Lambda^{j}, j=0,1,2j=0,1,2 are parallel copies of Λ\Lambda. The leftmost disk has three punctures at mixed (i.e. connecting different components) Reeb chords, one positive and two negative, and auxiliary negative punctures at pure (i.e. connecting a component to itself) chords which are not shown in the picture. The middle disk has two mixed positive punctures and auxiliary pure negative punctures, the latter again not shown. The rightmost picture shows how the disks are joined at a common mixed chord between Λ2\Lambda^{2} and Λ1\Lambda^{1} to form the tensor, with inputs and output as indicated, which represents the product.

4.2 The BV-operator

Let A=LHA(Λ)A=LHA(\Lambda) and consider the linear map Δ:McycMcyc\Delta\colon M^{{\rm cyc}}\to M^{{\rm cyc}} of degree 11 defined as follows on monomials uw\llbracket uw\rrbracket, u𝒞^𝒳u\in\widehat{\mathcal{C}}\cup{\mathcal{X}}, wAw\in A:

Δ(uw)={S(w)if u𝒳,0if u𝒞^.\Delta(\llbracket uw\rrbracket)=\begin{cases}S(w)&\text{if }u\in{\mathcal{X}},\\ 0&\text{if }u\in\widehat{\mathcal{C}}.\end{cases}
Proposition 4.2.

The map Δ\Delta is a chain map and if S(X0)=0S{\mathbb{H}}(X_{0})=0 then, under the map on homology induced by the quasi-isomorphism Φ:SH(X)Mcyc\Phi\colon SH(X)\to M^{\rm cyc}, see (3.1), the BV-operator on S(X)S{\mathbb{H}}(X) corresponds to the operator Δ\Delta on H(Mcyc)H(M^{{\rm cyc}}).

5 Example: SH(TSn)SH(T^{*}S^{n})

In this section we compute the symplectic homology with product and BV-operator for cotangent bundles of spheres presented as the result of attaching a Lagrangian nn-handle to the Legendrian unknot in the boundary of the ball.

Consider the Legendrian unknot in 2n1{\mathbb{R}}^{2n-1} with coordinates (q,p,z)n1×n1×(q,p,z)\in{\mathbb{R}}^{n-1}\times{\mathbb{R}}^{n-1}\times{\mathbb{R}} and contact form dzpdqdz-p\cdot dq. Figure 4 shows the projection of the Legendrian unknot Λ\Lambda for n=2n=2 to the qpqp-plane.

\labellist
\hair

2pt \pinlabelΛ\Lambda at 125 218 \pinlabelyy at 595 123 \endlabellistRefer to caption

Figure 4: The Legendrian unknot.

To define the Legendrian unknot of dimension n1n-1 consider the 11-dimensional unknot Λ\Lambda with Reeb chord over q=p=0q=p=0 and symmetric with respect to the rotation by a half turn around the zz axis. Include Λ\Lambda into the q1p1zq_{1}p_{1}z-subspace of 2n1{\mathbb{R}}^{2n-1} and take the (n1)(n-1)-dimensional unknot as the orbit of Λ\Lambda under the action by SO(n1)SO(n-1) given by σ(q,p,z)=(σq,σp,z)\sigma(q,p,z)=(\sigma\cdot q,\sigma\cdot p,z) for σSO(n1)\sigma\in SO(n-1). For simplicity, we let Λ\Lambda denote the Legendrian unknot in 2n1{\mathbb{R}}^{2n-1} for any nn.

Consider Λ2n1\Lambda\subset{\mathbb{R}}^{2n-1} and include it into a Darboux chart in the boundary of the 2n2n-ball B2nB^{2n}. Then attaching a Lagrangian nn-handle to B2nB^{2n} along Λ\Lambda gives a symplectic manifold which is symplectomorphic to the cotangent bundle TSnT^{\ast}S^{n} of the nn-sphere. As explained in [2], in order to determine LHA(Λ)LHA(\Lambda) it suffices to study Reeb chords and holomorphic disks that are contained in the Darboux chart. The unknot Λ\Lambda has only one Reeb chord which we denote aa and |a|=n1|a|=n-1.

The moduli space of holomorphic disks with positive puncture at aa and a marked point on the boundary evaluates with degree ±1\pm 1 to Λ\Lambda. To see this, note that for n=2n=2, holomorphic disks that are rigid up to translation correspond to polygons with boundary on the knot diagram and with convex corners, where at positive punctures the boundary orientation goes from the lower to the upper strand and vice versa at negative punctures. There are thus two disks with evaluation maps that give a degree ±1\pm 1 map since we use the null-cobordant spin structure on the circle to orient moduli spaces. For n>2n>2 we note that we may take the almost complex structure to be invariant with respect to the SO(n1)SO(n-1) action and it follows that the moduli space of holomorphic disks with positive puncture at aa is diffeomorphic to Sn2×S^{n-2}\times{\mathbb{R}} and that, when equipped with a marked point on the boundary, it evaluates with degree ±1\pm 1.

The above description of moduli spaces implies in particular that the differential dd on A=LHA(Λ)=aA=LHA(\Lambda)={\mathbb{Q}}\langle a\rangle is trivial, i. e., d=0d=0. Consequently, the differential on 𝐌bal{\mathbf{M}}^{{\mathrm{bal}}} satisfies

dMX=dX+[H11,X]=[H11,X],d_{M}X=dX+[{H}_{1}^{1},X]=[{H}_{1}^{1},X],

where

H11=(ax¯1a^x¯a1a^).{H}_{1}^{1}=\left(\llbracket a{\underline{x}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket-\llbracket{\underline{x}}a\hbar^{-1}\widehat{a}^{\ast}\rrbracket\right). (5.1)

Thus H(𝐌bal)H({\mathbf{M}}^{{\mathrm{bal}}}) and H(Mcyc)H(M^{{\rm cyc}}) (recall the chain isomorphism β¯:Mcyc𝐌bal\underline{\beta}\colon M^{{\rm cyc}}\to{\mathbf{M}}^{{\mathrm{bal}}}, see (2.21)) are generated by the cycles listed in Tables 1 and 2 when n1n-1 is even and odd, respectively.

H(𝐌bal)H({\mathbf{M}}^{{\mathrm{bal}}}) degree H(Mcyc)H(M^{{\rm cyc}}) degree
x¯1σ1\llbracket{\underline{x}}\rrbracket\hbar^{-1}\sigma^{-1} (n2)-(n-2) x\llbracket x\rrbracket 0
x¯a2k+11σ1\llbracket{\underline{x}}a^{2k+1}\rrbracket\hbar^{-1}\sigma^{-1} 2k(n1)+12k(n-1)+1 xa2k+1\llbracket xa^{2k+1}\rrbracket (2k+1)(n1)(2k+1)(n-1)
a¯^a2k1σ1\llbracket\widehat{\underline{a}}a^{2k}\rrbracket\hbar^{-1}\sigma^{-1} 2k(n1)+22k(n-1)+2 a^a2k\llbracket\widehat{a}a^{2k}\rrbracket (2k+1)(n1)+1(2k+1)(n-1)+1
Table 1: Homology of 𝐌bal{\mathbf{M}}^{{\mathrm{bal}}} and McycM^{{\rm cyc}} for n1n-1 odd, k=0,1,2,k=0,1,2,\dots.
H(𝐌bal)H({\mathbf{M}}^{{\mathrm{bal}}}) degree H(Mcyc)H(M^{{\rm cyc}}) degree
x¯1σ1\llbracket{\underline{x}}\rrbracket\hbar^{-1}\sigma^{-1} (n2)-(n-2) x\llbracket x\rrbracket 0
x¯ak1σ1\llbracket{\underline{x}}a^{k}\rrbracket\hbar^{-1}\sigma^{-1} (k1)(n1)+1(k-1)(n-1)+1 xak\llbracket xa^{k}\rrbracket k(n1)k(n-1)
a¯^ak11σ1\llbracket\widehat{\underline{a}}a^{k-1}\rrbracket\hbar^{-1}\sigma^{-1} (k1)(n1)+2(k-1)(n-1)+2 a^ak1\llbracket\widehat{a}a^{k-1}\rrbracket k(n1)+1k(n-1)+1
Table 2: Homology of 𝐌bal{\mathbf{M}}^{{\mathrm{bal}}} and McycM^{{\rm cyc}} for n1n-1 even, k=1,2,k=1,2,\dots.

In order to compute the product we need to determine H21{H}^{1}_{2} and H02{H}^{2}_{0}. Consider first H21{H}^{1}_{2} (see Definition 2.5):

h21\displaystyle h^{1}_{2} =12𝒮h11+σ1xx1x\displaystyle=\frac{1}{2}{\mathcal{S}}h^{1}_{1}+\sigma^{-1}\llbracket xx\hbar^{-1}x^{\ast}\rrbracket
=σ1(a^x1a^+xa^1a^+(1)n1xx1x),\displaystyle=\sigma^{-1}\left(\llbracket\widehat{a}x\hbar^{-1}\widehat{a}^{\ast}\rrbracket+\llbracket x\widehat{a}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+(-1)^{n-1}\llbracket xx\hbar^{-1}x^{\ast}\rrbracket\right), (5.2)

see Remark 5.2 for a discussion of the sign in this formula.

Remark 5.1.

In our description of hh in terms of generalized holomorphic disks, the disks which give rise to (5.2) are degenerate. The first two terms comes from the trivial strip of aa with an unconstrained Morse puncture lying in one of the two boundary components. The last term comes from the {\mathbb{R}}-family of three-punctured constant disks lying in {y}×\{y\}\times{\mathbb{R}} with one puncture constrained to lie in {y}×\{y\}\times{\mathbb{R}} and remaining two punctures unconstrained.

Next, consider h02h^{2}_{0}. Since the evaluation map from the moduli space of holomorphic disks with positive puncture at aa into Λ\Lambda has degree ±1\pm 1 there is algebraically ±1\pm 1 disk which satisfies a point constraint at yΛy\in\Lambda and we conclude from the description of generalized holomorphic disks that

h02=σ2a^x1,h^{2}_{0}=\sigma^{2}\llbracket\widehat{a}^{\ast}x^{\ast}\rrbracket\hbar^{-1}, (5.3)

see Remark 5.2 for a discussion of the sign in this formula.

Remark 5.2.

Orientations of moduli spaces are fixed by orienting capping operators at Reeb chords, see [8] for details. The overall sign in (5.2) is independent of the choice of capping operator for aa since variables associated to aa appears quadratically in H21H^{1}_{2}, the overall signs in (5.2) changes with the orientation data at xx, and the overall sign in (5.3) changes, independently, with the orientations of capping operators at both xx and aa. It follows that we can choose any sign combination in the two equations and in particular the one under consideration.

To compute H021H21H^{2}_{0}\mathop{\star}\limits_{1}H^{1}_{2} acting on 𝐌bal𝐌bal{\mathbf{M}}^{{\mathrm{bal}}}\otimes{\mathbf{M}}^{{\mathrm{bal}}} we use the components of H21H^{1}_{2} in which the puncture at the second leg is excited. We will denote the sum of these by H˙21\dot{H}^{1}_{2}. The relevant parts of the Hamiltonian are thus, see (5.3) and (5.2), (recall gradings: |a^|=n|\widehat{a}|=n, |a^|=n3n=3|\widehat{a}^{\ast}|=n-3-n=-3, |x|=0|x|=0, and |x|=n3|x^{\ast}|=n-3)

H02\displaystyle H^{2}_{0} =σ2(a^1x¯x1a¯^),\displaystyle=\sigma^{2}\left(\llbracket\widehat{a}^{\ast}\hbar^{-1}{\underline{x}}^{\ast}\rrbracket-\llbracket x^{\ast}\hbar^{-1}\widehat{\underline{a}}^{\ast}\rrbracket\right),
H˙21\displaystyle\dot{H}^{1}_{2} =σ1(a^x¯1a^+xa¯^1a^+(1)n1xx¯1x).\displaystyle=\sigma^{-1}\left(\llbracket\widehat{a}{\underline{x}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+\llbracket x\widehat{\underline{a}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+(-1)^{n-1}\llbracket x{\underline{x}}\hbar^{-1}x^{\ast}\rrbracket\right).

and we get

H021H˙21\displaystyle{H}^{2}_{0}\mathop{\star}\limits_{1}\dot{H}_{2}^{1} =H021(a^x¯1a^+xa¯^1a^+(1)n1xx¯1x)σ1\displaystyle=-H^{2}_{0}\;\mathop{\star}\limits_{1}\;\left(\llbracket\widehat{a}{\underline{x}}\,\hbar^{-1}\widehat{a}^{\ast}\rrbracket+\llbracket x\widehat{\underline{a}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+(-1)^{n-1}\llbracket x{\underline{x}}\hbar^{-1}x^{\ast}\rrbracket\right)\sigma^{-1}
=σ2(xx¯1a^+(1)na^a¯^1a^a^x¯1x)σ1\displaystyle=\sigma^{2}\left(\llbracket x^{\ast}{\underline{x}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+(-1)^{n}\llbracket\widehat{a}^{\ast}\widehat{\underline{a}}\hbar^{-1}\widehat{a}^{\ast}\rrbracket-\llbracket\widehat{a}^{\ast}{\underline{x}}\hbar^{-1}x^{\ast}\rrbracket\right)\sigma^{-1}
=σ(xx¯a^1+(1)n1a^a¯^a^1+a^x¯x1)\displaystyle=\sigma\left(-\llbracket x^{\ast}{\underline{x}}\widehat{a}^{\ast}\hbar^{-1}\rrbracket+(-1)^{n-1}\llbracket\widehat{a}^{\ast}\widehat{\underline{a}}\widehat{a}^{\ast}\hbar^{-1}\rrbracket+\llbracket\widehat{a}^{\ast}{\underline{x}}x^{\ast}\hbar^{-1}\rrbracket\right)
=σ(x¯a^1x+(1)n1a¯^a^1a^+x¯x1a^).\displaystyle=\sigma\left(-\llbracket{\underline{x}}\widehat{a}^{\ast}\hbar^{-1}x^{\ast}\rrbracket+(-1)^{n-1}\llbracket\widehat{\underline{a}}\widehat{a}^{\ast}\hbar^{-1}\widehat{a}^{\ast}\rrbracket+\llbracket{\underline{x}}x^{\ast}\hbar^{-1}\widehat{a}^{\ast}\rrbracket\right).

Using (4.1) for the tensor of the product :H(𝐌bal)H(𝐌bal)H(𝐌bal)\boxdot\colon H({\mathbf{M}}^{{\mathrm{bal}}})\otimes H({\mathbf{M}}^{{\mathrm{bal}}})\to H({\mathbf{M}}^{{\mathrm{bal}}}) then gives the following expression for the product, with θ=1σ1\theta=\hbar^{-1}\sigma^{-1}: If n1n-1 is odd then

x¯θx¯θ=0,x¯θx¯a2k+1θ=0,x¯a2k+1θx¯a2l+1θ=0,\displaystyle\llbracket{\underline{x}}\rrbracket\theta\boxdot\llbracket{\underline{x}}\rrbracket\theta=0,\quad\llbracket{\underline{x}}\rrbracket\theta\boxdot\llbracket{\underline{x}}a^{2k+1}\rrbracket\theta=0,\quad\llbracket{\underline{x}}a^{2k+1}\rrbracket\theta\boxdot\llbracket{\underline{x}}a^{2l+1}\rrbracket\theta=0,
a¯^a2kθa¯^a2lθ=a¯^a2(l+k)θ,\displaystyle\llbracket\widehat{\underline{a}}a^{2k}\rrbracket\theta\boxdot\llbracket\widehat{\underline{a}}a^{2l}\rrbracket\theta=\llbracket\widehat{\underline{a}}a^{2(l+k)}\rrbracket\theta,
a¯^θx¯θ=x¯θ,\displaystyle\llbracket\widehat{\underline{a}}\rrbracket\theta\boxdot\llbracket{\underline{x}}\rrbracket\theta=\llbracket{\underline{x}}\rrbracket\theta,
a¯^a2kθx¯θ=x¯a2kθ=12dτMa¯^a2kθ0 if k>0,\displaystyle\llbracket\widehat{\underline{a}}a^{2k}\rrbracket\theta\boxdot\llbracket{\underline{x}}\rrbracket\theta=\llbracket{\underline{x}}a^{2k}\rrbracket\theta=\tfrac{1}{2}d_{\tau M}\llbracket\widehat{\underline{a}}a^{2k}\rrbracket\theta\simeq 0\text{ if $k>0$},
a¯^a2kθx¯a2l+1θ=x¯a2(k+l)+1θ.\displaystyle\llbracket\widehat{\underline{a}}a^{2k}\rrbracket\theta\boxdot\llbracket{\underline{x}}a^{2l+1}\rrbracket\theta=\llbracket{\underline{x}}a^{2(k+l)+1}\rrbracket\theta.

and if n1n-1 is even then for k,l0k,l\geq 0

x¯akθx¯alθ=0,\displaystyle\llbracket{\underline{x}}a^{k}\rrbracket\theta\boxdot\llbracket{\underline{x}}a^{l}\rrbracket\theta=0,
a¯^akθx¯alθ=x¯ak+lθ,\displaystyle\llbracket\widehat{\underline{a}}a^{k}\rrbracket\theta\boxdot\llbracket{\underline{x}}a^{l}\rrbracket\theta=\llbracket{\underline{x}}a^{k+l}\rrbracket\theta,
a¯^akθa¯^alθ=a¯^ak+lθ.\displaystyle\llbracket\widehat{\underline{a}}a^{k}\rrbracket\theta\boxdot\llbracket\widehat{\underline{a}}a^{l}\rrbracket\theta=\llbracket\widehat{\underline{a}}a^{k+l}\rrbracket\theta.

We conclude from this calculation that the commutative product :McycMcycMcyc\boxtimes\colon M^{{\rm cyc}}\otimes M^{{\rm cyc}}\to M^{{\rm cyc}} which corresponds to the pair of pants product on S(TSn)S{\mathbb{H}}(T^{\ast}S^{n}) has unit represented by the class a^Mcyc\llbracket\widehat{a}\rrbracket\in M^{{\rm cyc}} and multiplication according to the above formulas after substituting θ\theta with 11 everywhere.

To finish the example we determine also the operator Δ:H(Mcyc)H(Mcyc)\Delta\colon H(M^{{\rm cyc}})\to H(M^{{\rm cyc}}) which corresponds to the BV\operatorname{BV}-operator on S(TSn)S{\mathbb{H}}(T^{\ast}S^{n}). If n1n-1 is odd then

Δ(x)=0,Δ(a^a2k)=0,k0,Δ(xa2k+1)=a^a2k,k0,\Delta(\llbracket x\rrbracket)=0,\quad\Delta(\llbracket\widehat{a}a^{2k}\rrbracket)=0,\;k\geq 0,\quad\Delta(\llbracket xa^{2k+1}\rrbracket)=\llbracket\widehat{a}a^{2k}\rrbracket,\;k\geq 0,

and if n1n-1 is even then

Δ(x)=0,Δ(a^ak1)=0,k1,Δ(xak)=a^ak1,k1.\Delta(\llbracket x\rrbracket)=0,\quad\Delta(\llbracket\widehat{a}a^{k-1}\rrbracket)=0,\;k\geq 1,\quad\Delta(\llbracket xa^{k}\rrbracket)=\llbracket\widehat{a}a^{k-1}\rrbracket,\;k\geq 1.

References

  • [1] M. Abouzaid, P. Seidel, An open-string analogue of Viterbo functoriality, Geom. Topol., 14 (2010), no. 2, 627–718.
  • [2] F. Bourgeois, T. Ekholm, Y. Eliashberg, Effect of Legendrian surgery, arXiv:0911.0026
  • [3] K. Cieliebak, Handle attaching in symplectic homology and the Chord Conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), 115–142.
  • [4] K. Cieliebak, T. Ekholm, J. Latschev, Compactness for holomorphic curves with switching Lagrangian boundary conditions, J. Symplectic Geom., 8 (2010), no. 3, 267–298.
  • [5] T. Ekholm, Rational symplectic field theory over 2\mathbb{Z}_{2} for exact Lagrangian cobordisms, J. Eur. Math. Soc., 10 (2008), no. 3, 641–704.
  • [6] T. Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, arXiv:0902.4317.
  • [7] T. Ekholm, J. Etnyre, J. Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J., 150 (2009), no. 1, 1–75.
  • [8] T. Ekholm, J. Etnyre, M. Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005), no. 5, 453–532.
  • [9] Y. Eliashberg, A. Givental and H. Hofer, Introduction to Symplectic Field Theory, GAFA, Special volume GAFA-2000, 560–673.
  • [10] Y. Eliashberg, M. Gromov, Convex symplectic manifolds, in “Several complex variables and complex geometry, Part 2” (Santa Cruz, CA, 1989), 135–162, Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.
  • [11] A. Floer, H. Hofer, Symplectic homology. I. Open sets in n{\mathbb{C}}^{n}, Math. Z. 215 (1994), no. 1, 37–88.
  • [12] E. Getzler, Batalin-Vilkovisky algebras and 2d Topological Field Theories, Commun. Math. Phys, 159(1994), 265–285.
  • [13] L. Ng, Rational Symplectic Field Theory for Legendrian knots, arXiv:0806.4598.
  • [14] P. Seidel, A biased survey of symplectic cohomology. In Current Developments in Mathematics (Harvard, 2006), Intl. Press, 2008, 211–253.
  • [15] A. Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J., 20(1991), 241–251.