This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

System theory and orthogonal multi-wavelets

Maria Charina maria.charina@univie.ac.at Fakultät für Mathematik, University of Vienna, 1090 Vienna, Austria Costanza Conti costanza.conti@unifi.it DIEF, Università di Firenze, Viale Morgagni 40/44, 50134 Firenze, Italy Mariantonia Cotronei mariantonia.cotronei@unirc.it DIIES, Università Mediterranea di Reggio Calabria, Via Graziella, loc. Feo di Vito, 89122 Reggio Calabria, Italy Mihai Putinar mputinar@math.ucsb.edu University of California at Santa Barbara, USA, and University of Newcastle, Newcastle upon Tyne, UK
Abstract

In this paper we provide a complete and unifying characterization of compactly supported univariate scalar orthogonal wavelets and vector-valued or matrix-valued orthogonal multi-wavelets. This characterization is based on classical results from system theory and basic linear algebra. In particular, we show that the corresponding wavelet and multi-wavelet masks are identified with a transfer function

F(z)=A+Bz(IDz)1C,z𝔻={z:|z|<1},F(z)=A+Bz(I-Dz)^{-1}\,C,\quad z\in{\mathbb{D}}=\{z\in{\mathbb{C}}\ :\ |z|<1\},

of a conservative linear system. The complex matrices A,B,C,DA,\ B,\ C,\ D define a block circulant unitary matrix. Our results show that there are no intrinsic differences between the elegant wavelet construction by Daubechies or any other construction of vector-valued or matrix-valued multi-wavelets. The structure of the unitary matrix defined by A,B,C,DA,\ B,\ C,\ D allows us to parametrize in a systematic way all classes of possible wavelet and multi-wavelet masks together with the masks of the corresponding refinable functions.

keywords:
Quadrature mirror filters , Unitary Extension Principle , Transfer function , Wavelets
MSC:
[2010] 65T60 , 11E25 , 65D99
journal: Journal of Approximation Theory

1 Introduction and notation

There has been a multitude of results on orthogonal wavelet and multi-wavelet constructions and on the characterization of the corresponding filterbank systems, since the pioneering work [16]. Our goal is to unify all those approaches. Indeed we show that there are no intrinsic differences between the elegant construction of wavelets by Daubechies, in the scalar case, or any other construction of vector or matrix-valued multi-wavelets. In particular, we compare our results with the recent characterization of orthogonal multi-wavelets in [1].

By [29], the constructions of compactly supported multi-wavelets via the Unitary Extension Principle boil down to manipulations with certain trigonometric polynomials on the unit circle

𝕋={z:|z|=1}.{\mathbb{T}}=\{z\in{\mathbb{C}}\ :\ |z|=1\}.

Any such construction requires that the underlying orthogonal scaling function satisfies

ϕ:K×M,ϕ=αϕ(2α)pα,K,M,KM,\phi:{\mathbb{R}}\rightarrow{\mathbb{C}}^{K\times M},\quad\phi=\sum_{\alpha\in{\mathbb{Z}}}\phi(2\cdot-\alpha)p_{\alpha},\quad K,M\in{\mathbb{N}},\quad K\leq M, (1)

with the mask 𝒑={pαM×M:α{0,,n}}{\boldsymbol{p}}=\{p_{\alpha}\in{\mathbb{C}}^{M\times M}\ :\ \alpha\in\{0,\ldots,n\}\}, nn\in{\mathbb{N}}. The corresponding wavelet or multi-wavelet is defined by

ψ:K×M,ψ=αϕ(2α)qα\psi:{\mathbb{R}}\rightarrow{\mathbb{C}}^{K\times M},\quad\psi=\sum_{\alpha\in{\mathbb{Z}}}\phi(2\cdot-\alpha)q_{\alpha}

with the finitely supported mask 𝒒={qαM×M:α{0,,n}}{\boldsymbol{q}}=\{q_{\alpha}\in{\mathbb{C}}^{M\times M}\ :\ \alpha\in\{0,\ldots,n\}\}, nn\in{\mathbb{N}},

By [8, 18], to ensure the existence of the compactly supported distributional solution of (1), we require that for the symbol

p(z)=αpαzα,z{0},p(z)=\sum_{\alpha\in{\mathbb{Z}}}p_{\alpha}z^{\alpha},\quad z\in{\mathbb{C}}\setminus\{0\},

there exist M~M\tilde{M}\leq M vectors 𝒗1,,𝒗M~M{\boldsymbol{v}}_{1},\ldots,{\boldsymbol{v}}_{\tilde{M}}\in{\mathbb{R}}^{M} satisfying

p(1)𝒗j=𝒗jandp(1)𝒗j=0,j=1,,M~.p(1){\boldsymbol{v}}_{j}={\boldsymbol{v}}_{j}\quad\hbox{and}\quad p(-1){\boldsymbol{v}}_{j}=0,\quad j=1,\ldots,\tilde{M}. (2)

Additionally, the other eigenvalues of p(1)p(1) should be in the absolute values less than 11. In this case, we say that 𝒑{\boldsymbol{p}} satisfies sum rules of order 11. Sum rules of order 11 imply that the associated multi-wavelet mask possesses a discrete vanishing moment

q(1)𝒗j=0,j=1,,M~,q(1)^{*}{\boldsymbol{v}}_{j}=0,\quad j=1,\ldots,\tilde{M}, (3)

with the same vectors 𝒗j{\boldsymbol{v}}_{j} are as in (2). In the literature, the cases M~=1\tilde{M}=1 and M~=M\tilde{M}=M are called the 11-rank and the full rank cases, respectively [8, 9, 26]. The higher smoothness of ϕ\phi imposes additional sum rule conditions on the symbol p(z)p(z), see e.g. [6, 21, 23].

In the scalar or full rank cases (i.e. M~=M\tilde{M}=M), the sum rules of order +1\ell+1 are equivalent to the existence of the factor (1+z)(1+z)^{\ell} in p(z)p(z). The vanishing moment conditions of order +1\ell+1 in these cases guarantee the existence of the factors (1z)(1-z)^{\ell} in q(z)q(z).

In the scalar case (K=M=1K=M=1), the wavelet construction by Daubechies [17] amounts to defining the wavelet mask 𝒒{\boldsymbol{q}} by

qα=(1)αpnα,α{0,,n}.q_{\alpha}=(-1)^{\alpha}\,p_{n-\alpha},\quad\alpha\in\{0,\ldots,n\}. (4)

In the case M>1M>1, due to the non-commutativity of the matrices pαp_{\alpha} and qαq_{\alpha}, the trick in (4) does not apply. Nevertheless, the interest in constructing multi-wavelets has not decreased for the last 3030 years and it is motivated, for example, by the fact that the growth of the support of ϕ\phi in this case is decoupled from the smoothness of ϕ\phi and symmetry does not conflict with orthogonality [8].

The constructions of the corresponding matrix-valued masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} are based on the so-called QMF (quadrature mirror filter) and UEP (Unitary Extension Principle) conditions. To state them, we define the matrix polynomial map

F:2M×2M,F(ξ)=j=0NFjξj,ξ=z2,N=n2,F:{\mathbb{C}}\rightarrow{\mathbb{C}}^{2M\times 2M},\quad F(\xi)=\sum_{j=0}^{N}F_{j}\xi^{j},\quad\xi=z^{2},\quad N=\lfloor\frac{n}{2}\rfloor, (5)

with the matrix coefficients Fj2M×2MF_{j}\in{\mathbb{C}}^{2M\times 2M}, MM\in{\mathbb{N}},

Fj=2(p2jq2jp2j+1q2j+1),j=0,,N.F_{j}=\sqrt{2}\left(\begin{array}[]{cc}p_{2j}&q_{2j}\\ p_{2j+1}&q_{2j+1}\end{array}\right),\quad j=0,\ldots,N.

The entries in the first column of FF are usually called the polyphase components of p(z)p(z). The QMF-condition states that

IF(ξ)F(ξ)=0,ξ𝕋,I-F^{*}(\xi)F(\xi)=0,\quad\xi\in{\mathbb{T}}, (6)

and, equivalently, the UEP-conditions are

IF(ξ)F(ξ)=0,ξ𝕋.I-F(\xi)F^{*}(\xi)=0,\quad\xi\in{\mathbb{T}}. (7)

To use classical results from the theory of linear systems, we look at FF in (5) as a holomorphic function on the unit disk

𝔻={ξ:|ξ|<1}.{\mathbb{D}}=\{\xi\in{\mathbb{C}}\ :\ |\xi|<1\}.

The QMF-condition (6) and the maximum principle imply that F(ξ)F(\xi) is contractive for any ξ𝔻\xi\in{\mathbb{D}}. Such matrix valued inner functions can be interpreted as transfer functions of conservative linear control systems; specifically it means that the representation

F(ξ)=A+Bξ(IDξ)1C,ξ𝔻,F(\xi)=A+B\xi(I-D\xi)^{-1}\,C,\quad\xi\in{\mathbb{D}}, (8)

holds, with the (2M+2MN)×(2M+2MN)(2M+2MN)\times(2M+2MN) unitary matrix

(ABCD)\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right) (9)

which we shall call the ABCDABCD matrix. For possible further use in the present wavelet framework we refer for a proof and details to the mathematical article [5], which even treats realization theory in the case of several complex variables.

Note that the identity in (8) can be equivalently written as

F(ξ)=A+ξBN(ξ),N(ξ)=C+ξDN(ξ),ξ𝔻.\displaystyle\begin{array}[]{l}F(\xi)=A+\xi\,B\,\ell_{N}(\xi),\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr\ell_{N}(\xi)=C+\xi\,D\,\ell_{N}(\xi),\end{array}\quad\xi\in{\mathbb{D}}. (12)

This system of equations plays an important role in constructions of appropriate blocks of the ABCDABCD matrix.

The paper is organized as follows: In subsection 2.1 we discuss the structure of N\ell_{N} appearing in the transfer function system (12). In subsection 2.2, we provide the explicit form of the ABCDABCD matrix under the assumptions that FF satisfies QMF-conditions on 𝕋{\mathbb{T}}, see Theorem 2.7. The compact support of the constructed multi-wavelets is ensured by the property BDN=0B\,D^{N}=0, see Proposition 2.8. The constructions of several compactly supported scaling functions and multi-wavelets are given in Section 4. In subsection 3, we compare our results with the characterization in [1]. The characterization in [1] makes use of the so-called Potapov-Blaschke-products and is also valid for rational FF.

We remark that although we prove our results for the case of dilation 22, they all can be generalized in a natural way to the case of a general dilation factor, since this mainly affects the dimensions of the matrices FjF_{j} in (5).

2 Characterization of orthogonal univariate multi-wavelets

The main goal of this section is to provide the explicit form of the ABCDABCD matrix in (9) for all FF that satisfy the QMF-condition (6) or, equivalently, the UEP-condition (7). We start by deriving the structure of N\ell_{N} in (12). Then we determine the explicit structure of the ABCDABCD matrix (see Definition 2.4 and Theorem 2.7). Further properties of the matrix ABCDABCD are studied in subsection 2.3.

2.1 Structure of N\ell_{N}

In order to derive the structure of N\ell_{N} (see Theorem 2.2), we make use of the following straightforward observation.

Proposition 2.1.

The QMF-condition (6) is equivalent to the identity

I(k=1N(i,j{0,,N}i+j=kFiFj)η¯k+k=0N(i,j{0,,N}i+j=kFiFj)ξk)=0I-\left(\sum_{k=1}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=-k}F_{i}^{*}F_{j}\right)\bar{\eta}^{k}+\sum_{k=0}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=k}F_{i}^{*}F_{j}\right)\xi^{k}\right)=0 (13)

for ξ,η𝔻\xi,\eta\in{\mathbb{D}}.

Proof.

Note that the QMF-condition (6) is equivalent to

Ik=NN(i,j{0,,N}i+j=kFiFj)ξk=0,ξ𝕋,I-\sum_{k=-N}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=k}F_{i}^{*}F_{j}\right)\xi^{k}=0,\quad\xi\in{\mathbb{T}}, (14)

i.e. all the coefficients of the above Laurent-polynomial are equal to zero. This implies (13) for all ξ,η𝔻\xi,\eta\in{\mathbb{D}}. Conversely, if (13) is satisfied, then, setting η¯=ξ1\bar{\eta}=\xi^{-1}, we obtain (14) . ∎

The following result is an important step for determining the structure of the ABCDABCD matrix in (9).

Theorem 2.2.

The polynomial map FF satisfies the QMF-condition (6) if and only if

IF(η)F(ξ)=(1η¯ξ)N(η)N(ξ),ξ,η𝔻,I-F^{*}(\eta)F(\xi)=(1-\bar{\eta}\xi)\ell_{N}^{*}(\eta)\ell_{N}(\xi),\quad\xi,\eta\in{\mathbb{D}}, (15)

with

N(ξ)=(F1F2FN1FNF2F3FN0FN000)(1ξξN1).\ell_{N}(\xi)=\left(\begin{array}[]{ccccc}F_{1}&F_{2}&\dots&F_{N-1}&F_{N}\\ F_{2}&F_{3}&\dots&F_{N}&0\\ \vdots&&&&\vdots\\ F_{N}&0&\dots&0&0\end{array}\right)\left(\begin{array}[]{c}1\\ \xi\\ \vdots\\ \xi^{N-1}\end{array}\right). (16)

The proof of Theorem 2.2 for general NN\in{\mathbb{N}} is rather technical, thus, we first present the idea of the proof on the example of the case N=1N=1.

Example 2.3.

Let ξ,η𝔻\xi,\eta\in{\mathbb{D}}. For N=1N=1, due to (5), we have

IF(η)F(ξ)\displaystyle I-F^{*}(\eta)F(\xi) =\displaystyle= IF0F0F0F1ξF1F0η¯F1F1η¯ξ\displaystyle I-F_{0}^{*}F_{0}-F_{0}^{*}F_{1}\xi-F_{1}^{*}F_{0}\bar{\eta}-F_{1}^{*}F_{1}\bar{\eta}\xi (17)
=\displaystyle= I(F0F0+F1F1)F0F1ξF1F0η¯\displaystyle I-\left(F_{0}^{*}F_{0}+F_{1}^{*}F_{1}\right)-F_{0}^{*}F_{1}\xi-F_{1}^{*}F_{0}\bar{\eta}
+\displaystyle+ (1η¯ξ)F1F1.\displaystyle(1-\bar{\eta}\xi)F_{1}^{*}F_{1}.

The QMF-condition (6), by Proposition 2.1, imply

I(F0F0+F1F1)F0F1ξF1F0η¯=0,I-\left(F_{0}^{*}F_{0}+F_{1}^{*}F_{1}\right)-F_{0}^{*}F_{1}\xi-F_{1}^{*}F_{0}\bar{\eta}=0,

thus, yielding

IF(η)F(ξ)=(1η¯ξ)1(η)1(ξ)with1(ξ)=F1.I-F^{*}(\eta)F(\xi)=(1-\bar{\eta}\xi)\ell_{1}^{*}(\eta)\ell_{1}(\xi)\quad\hbox{with}\quad\ell_{1}(\xi)=F_{1}.
Proof of Theorem 2.2..

The proof of ”\Longrightarrow“ is by induction on NN. Let ξ,η𝔻\xi,\eta\in{\mathbb{D}}. The starting point of the inductive argument is given in (17). For general NN\in{\mathbb{N}}, we need to show that

IF(η)F(ξ)\displaystyle I-F^{*}(\eta)F(\xi) =\displaystyle= I(k=1N(i,j{0,,N}i+j=kFiFj)η¯k+k=0N(i,j{0,,N}i+j=kFiFj)ξk)\displaystyle I-\left(\sum_{k=1}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=-k}F_{i}^{*}F_{j}\right)\bar{\eta}^{k}+\sum_{k=0}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=k}F_{i}^{*}F_{j}\right)\xi^{k}\right)
+(1η¯ξ)N(η)N(ξ).\displaystyle+(1-\bar{\eta}\xi)\ell_{N}^{*}(\eta)\ell_{N}(\xi).

Then the QMF-condition, by Proposition 2.1, implies that

IF(η)F(ξ)=(1η¯ξ)N(η)N(ξ).\displaystyle I-F^{*}(\eta)F(\xi)=(1-\bar{\eta}\xi)\ell_{N}^{*}(\eta)\ell_{N}(\xi).

We start by writing

IF(η)F(ξ)\displaystyle I-F^{*}(\eta)F(\xi) =\displaystyle= Ii=0N1Fiη¯ij=0N1FjξjFNη¯Nj=0N1Fjξj\displaystyle I-\sum_{i=0}^{N-1}F^{*}_{i}\bar{\eta}^{i}\sum_{j=0}^{N-1}F_{j}\xi^{j}-F_{N}^{*}\bar{\eta}^{N}\sum_{j=0}^{N-1}F_{j}\xi^{j}
i=0N1Fiη¯jFNξNFNFNη¯NξN.\displaystyle-\sum_{i=0}^{N-1}F^{*}_{i}\bar{\eta}^{j}F_{N}\xi^{N}-F_{N}^{*}F_{N}\bar{\eta}^{N}\xi^{N}.

By the induction assumption

Ii=0N1Fiη¯ij=0N1Fjξj\displaystyle I-\sum_{i=0}^{N-1}F^{*}_{i}\bar{\eta}^{i}\sum_{j=0}^{N-1}F_{j}\xi^{j}
=\displaystyle= I(k=1N1(i,j{0,,N1}i+j=kFiFj)η¯k+k=0N1(i,j{0,,N1}i+j=kFiFj)ξk)\displaystyle I-\left(\sum_{k=1}^{N-1}\left(\sum_{{i,j\in\{0,\ldots,N-1\}}\atop-i+j=-k}F_{i}^{*}F_{j}\right)\bar{\eta}^{k}+\sum_{k=0}^{N-1}\left(\sum_{{i,j\in\{0,\ldots,N-1\}}\atop-i+j=k}F_{i}^{*}F_{j}\right)\xi^{k}\right)
+(1η¯ξ)N1(η)N1(ξ).\displaystyle+(1-\bar{\eta}\xi)\ell_{N-1}^{*}(\eta)\ell_{N-1}(\xi).

Next observe that

FNη¯Nj=0N1Fjξji=0N1Fiη¯jFNξNFNFNη¯NξN\displaystyle-F_{N}^{*}\bar{\eta}^{N}\sum_{j=0}^{N-1}F_{j}\xi^{j}-\sum_{i=0}^{N-1}F^{*}_{i}\bar{\eta}^{j}F_{N}\xi^{N}-F_{N}^{*}F_{N}\bar{\eta}^{N}\xi^{N}
=j=0N1(FNFjη¯Nξj+FjFNη¯jξN)FNFNη¯NξN\displaystyle=-\sum_{j=0}^{N-1}\left(F^{*}_{N}F_{j}\bar{\eta}^{N}\xi^{j}+F^{*}_{j}F_{N}\bar{\eta}^{j}\xi^{N}\right)-F_{N}^{*}F_{N}\bar{\eta}^{N}\xi^{N}
=j=1N1(1η¯jξj)(FNFjη¯Nj+FjFNξNj)j=0N1(FNFjη¯Nj+FjFNξNj)+\displaystyle=\sum_{j=1}^{N-1}(1-\bar{\eta}^{j}\xi^{j})\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)-\sum_{j=0}^{N-1}\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)+
(1η¯NξN)FNFNFNFN.\displaystyle(1-\bar{\eta}^{N}\xi^{N})F_{N}^{*}F_{N}-F_{N}^{*}F_{N}.

Thus, we get

IF(η)F(ξ)\displaystyle I-F^{*}(\eta)F(\xi) =\displaystyle= I(k=1N(i,j{0,,N}i+j=kFiFj)η¯k+k=0N(i,j{0,,N}i+j=kFiFj)ξk)\displaystyle I-\left(\sum_{k=1}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=-k}F_{i}^{*}F_{j}\right)\bar{\eta}^{k}+\sum_{k=0}^{N}\left(\sum_{{i,j\in\{0,\ldots,N\}}\atop-i+j=k}F_{i}^{*}F_{j}\right)\xi^{k}\right)
+(1η¯ξ)N1(η)N1(ξ)\displaystyle+(1-\bar{\eta}\xi)\ell_{N-1}^{*}(\eta)\ell_{N-1}(\xi)
+j=1N1(1η¯jξj)(FNFjη¯Nj+FjFNξNj)+(1η¯NξN)FNFN.\displaystyle+\sum_{j=1}^{N-1}(1-\bar{\eta}^{j}\xi^{j})\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)+(1-\bar{\eta}^{N}\xi^{N})F_{N}^{*}F_{N}.

The QMF-condition, due to Proposition 2.1, and the geometric sum argument for (1η¯jξj)(1-\bar{\eta}^{j}\xi^{j}) lead to

IF(η)F(ξ)\displaystyle I-F^{*}(\eta)F(\xi) =\displaystyle= (1η¯ξ)(N1(η)N1(ξ)\displaystyle(1-\bar{\eta}\xi)\Big{(}\ell_{N-1}^{*}(\eta)\ell_{N-1}(\xi)
+j=1N1(k=0j1(η¯ξ)j1k)(FNFjη¯Nj+FjFNξNj)\displaystyle+\sum_{j=1}^{N-1}\left(\sum_{k=0}^{j-1}\left(\bar{\eta}\xi\right)^{j-1-k}\right)\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)
+k=0N1(η¯ξ)N1kFNFN).\displaystyle+\sum_{k=0}^{N-1}\left(\bar{\eta}\xi\right)^{N-1-k}F^{*}_{N}F_{N}\Big{)}.

By the definition of N1\ell_{N-1}, we have

N1(η)N1(ξ)=i=1N1(1η¯N1i)(FiFN1)(FiFN1)(1ξN1i).\ell_{N-1}^{*}(\eta)\ell_{N-1}(\xi)=\sum_{i=1}^{N-1}\left(1\ \dots\ \bar{\eta}^{N-1-i}\right)\left(\begin{array}[]{c}F_{i}^{*}\\ \vdots\\ F_{N-1}^{*}\end{array}\right)\left(\begin{array}[]{ccc}F_{i}&\dots&F_{N-1}\end{array}\right)\left(\begin{array}[]{c}1\\ \vdots\\ \xi^{N-1-i}\end{array}\right).

Note that, for i=1,,N1i=1,\ldots,N-1,

(1η¯Ni)(FiFN)(FiFN)(1ξNi)\displaystyle\left(\begin{array}[]{ccc}1&\dots&\bar{\eta}^{N-i}\end{array}\right)\left(\begin{array}[]{c}F_{i}^{*}\\ \vdots\\ F_{N}^{*}\end{array}\right)\left(\begin{array}[]{ccc}F_{i}&\dots&F_{N}\end{array}\right)\left(\begin{array}[]{c}1\\ \vdots\\ \xi^{N-i}\end{array}\right)
=\displaystyle= (1η¯Ni)(FiFN10)(FiFN10)(1ξNi)\displaystyle\left(\begin{array}[]{ccc}1&\dots&\bar{\eta}^{N-i}\end{array}\right)\left(\begin{array}[]{c}F_{i}^{*}\\ \vdots\\ F_{N-1}^{*}\\ 0\end{array}\right)\left(\begin{array}[]{cccc}F_{i}&\dots&F_{N-1}&0\end{array}\right)\left(\begin{array}[]{c}1\\ \vdots\\ \xi^{N-i}\end{array}\right)
+j=iN1(η¯ξ)ji(FNFjη¯Nj+FjFNξNj)+(η¯ξ)NiFNFN\displaystyle+\sum_{j=i}^{N-1}\left(\bar{\eta}\xi\right)^{j-i}\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)+\left(\bar{\eta}\xi\right)^{N-i}F_{N}^{*}F_{N}

and the reordering of the summands leads to

j=1N1(k=0j1(η¯ξ)j1k)(FNFjη¯Nj+FjFNξNj)\displaystyle\sum_{j=1}^{N-1}\left(\sum_{k=0}^{j-1}\left(\bar{\eta}\xi\right)^{j-1-k}\right)\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right)
=\displaystyle= i=1N1(j=iN1(η¯ξ)ji)(FNFjη¯Nj+FjFNξNj).\displaystyle\sum_{i=1}^{N-1}\left(\sum_{j=i}^{N-1}\left(\bar{\eta}\xi\right)^{j-i}\right)\left(F^{*}_{N}F_{j}\bar{\eta}^{N-j}+F^{*}_{j}F_{N}\xi^{N-j}\right).

Therefore, we obtain (15) with N\ell_{N} in (16). The proof of ”\Longleftarrow“ follows by substituting η=ξ\eta=\xi in (15) and since ξ¯=ξ1\bar{\xi}=\xi^{-1} for ξ𝕋\xi\in{\mathbb{T}}. ∎

2.2 Structure of the ABCDABCD matrix

The main result of this section characterizes all orthogonal wavelets and multi-wavelets in terms of transfer function representations for the analytic map F:𝔻2M×2MF:{\mathbb{D}}\rightarrow{\mathbb{C}}^{2M\times 2M} defined in (5). Such representations involve certain complex matrices, which we define next.

Definition 2.4.

For Fj2M×2MF_{j}\in{\mathbb{C}}^{2M\times 2M}, j=0,,Nj=0,\ldots,N, in (5), define the 2M(N+1)×2M(N+1)2M(N+1)\times 2M(N+1) block matrix

(ABCD)=(F0FNF1F1F0FNF1FNFNFN1F1F0)(I00U),\displaystyle\left(\begin{array}[]{ccc}A&\vline&B\\ \hline\cr C&\vline&D\end{array}\right)=\left(\begin{array}[]{cccccc}F_{0}&\vline&F_{N}&\dots&\dots&F_{1}\\ \hline\cr F_{1}&\vline&F_{0}&F_{N}&&\vdots\\ \vdots&\vline&F_{1}&\ddots&\ddots&\vdots\\ \vdots&\vline&&\ddots&\ddots&F_{N}\\ F_{N}&\vline&F_{N-1}&\dots&F_{1}&F_{0}\end{array}\right)\cdot\left(\begin{array}[]{ccc}I&\vline&0\\ \hline\cr 0&\vline&U\end{array}\right),

where the 2MN×2MN2MN\times 2MN matrix UU is given by

U\displaystyle U =\displaystyle= (F0+FNF1FN1FN1F1F1FN1F0+FN).\displaystyle\left(\begin{array}[]{cccc}F_{0}^{*}+F_{N}^{*}&F_{1}^{*}&\dots&F_{N-1}^{*}\\ F_{N-1}^{*}&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&F_{1}^{*}\\ F_{1}^{*}&\dots&F_{N-1}^{*}&F_{0}^{*}+F_{N}^{*}\end{array}\right).

The proof of our main result, Theorem 2.7, relies on the unitary property of the matrix UU in Definition 2.4.

Example 2.5.

In the case N=1N=1, it is easy to check that the QMF-condition (6) implies that the matrix UU in Definition 2.4 is unitary

UU=(F0+F1)(F0+F1)=F0F0+F1F1=I,UU^{*}=(F_{0}^{*}+F_{1}^{*})(F_{0}+F_{1})=F_{0}^{*}F_{0}+F_{1}^{*}F_{1}=I,

where we used that F1F0=F0F1=0F_{1}^{*}F_{0}=F_{0}^{*}F_{1}=0. The case N=2N=2 illustrates the idea of the proof of the unitary property of UU in the general case (see Proposition 2.6). Assume that the QMF-condition is satisfied. Let I2MI_{2M} be the 2M×2M2M\times 2M identity matrix. Then writing (using the circulant structure of UU)

U=(F0+F200F0+F2)+(F100F1)(0I2MI2M0)\displaystyle U=\left(\begin{array}[]{cc}F_{0}^{*}+F_{2}^{*}&0\\ 0&F_{0}^{*}+F_{2}^{*}\end{array}\right)+\left(\begin{array}[]{cc}F_{1}^{*}&0\\ 0&F_{1}^{*}\end{array}\right)\left(\begin{array}[]{cc}0&I_{2M}\\ I_{2M}&0\end{array}\right)

we get, using F2F0=F0F2=0F_{2}^{*}F_{0}=F_{0}^{*}F_{2}=0,

UU\displaystyle UU^{*} =\displaystyle= (F0F0+F2F200F0F0+F2F2)\displaystyle\left(\begin{array}[]{cc}F_{0}^{*}F_{0}+F_{2}^{*}F_{2}&0\\ 0&F_{0}^{*}F_{0}+F_{2}^{*}F_{2}\end{array}\right) (25)
+\displaystyle+ (0F1F2+F2F1F1F2+F2F10)+(F1F100F1F1).\displaystyle\left(\begin{array}[]{cc}0&F_{1}^{*}F_{2}+F_{2}^{*}F_{1}\\ F_{1}^{*}F_{2}+F_{2}^{*}F_{1}&0\end{array}\right)+\left(\begin{array}[]{cc}F_{1}^{*}F_{1}&0\\ 0&F_{1}^{*}F_{1}\end{array}\right). (30)

Thus, the rest of the QMF-conditions imply that UU=I4MUU^{*}=I_{4M}.

Proposition 2.6.

If the polynomial map FF in (5) satisfies the QMF-condition (6), then the matrix UU from Definition 2.4 is unitary.

Proof.

For the 2M×2M2M\times 2M identity matrix I2MI_{2M}, define

P:=(00I2MI2M000I2M0)2MN×2MN.P:=\left(\begin{array}[]{ccccc}0&\dots&0&I_{2M}\\ I_{2M}&\dots&0&0\\ \vdots&\ddots&\vdots&\vdots\\ 0&\dots&I_{2M}&0\end{array}\right)\in{\mathbb{R}}^{2MN\times 2MN}.

Note that, similarly to the standard definition of circulant matrices,

U=(IN(F0+FN))P0+j=1N1(INFNj)Pj.U=(I_{N}\otimes(F_{0}^{*}+F_{N}^{*}))P^{0}+\sum_{j=1}^{N-1}(I_{N}\otimes F^{*}_{N-j})\,P^{j}.

where P0P^{0} is the 2MN×2MN2MN\times 2MN identity matrix. Analogously,

U=(IN(F0+FN))P0+j=1N1(INFj)Pj.U^{*}=(I_{N}\otimes(F_{0}+F_{N}))P^{0}+\displaystyle{\sum_{j=1}^{N-1}(I_{N}\otimes F_{j}})\,P^{j}.

Using these representations of UU and of UU^{*} and the fact that PN+k=PkP^{N+k}=P^{k}, k=0,,N1k=0,\dots,N-1, similarly to (25), we get that the product UUUU^{*} contains j=0NFjFj=I2M\displaystyle\sum_{j=0}^{N}F_{j}^{*}F_{j}=I_{2M} on its main diagonal and other (zero) QMF-conditions on its subdiagonals. Thus, the claim follows. ∎

We are finally ready to state the following characterization of all compactly supported orthogonal wavelet and multi-wavelet masks.

Theorem 2.7.

Let FF be a polynomial map in (5). The map FF satisfies the QMF-condition (6) if and only if FF satisfies

F(ξ)=A+Bξ(IDξ)1C,ξ𝔻,F(\xi)=A+B\xi(I-D\xi)^{-1}C,\quad\xi\in{\mathbb{D}}, (31)

with the unitary map

(ABCD):2M2M2MN2MN\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right):\begin{array}[]{lll}{\mathbb{C}}^{2M}&&{\mathbb{C}}^{2M}\\ \oplus&\rightarrow&\oplus\\ {\mathbb{C}}^{2MN}&&{\mathbb{C}}^{2MN}\end{array} (32)

given in Definition 2.4.

Proof.

The proof of ”\Longrightarrow“ consists of two parts. Firstly, note that the special choice of the matrices AA, BB, CC, DD, Proposition 2.6 and the hypothesis imply that the matrix in (32) is indeed unitary. Next, we show that FF satisfies (31). Let ξ𝔻\xi\in{\mathbb{D}}. By [5], the identity in (31) is equivalent to the system of equations

A+ξBN(ξ)=F(ξ)C+ξDN(ξ)=N(ξ),\begin{array}[]{l}A+\xi\,B\,\ell_{N}(\xi)=F(\xi)\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr C+\xi\,D\,\ell_{N}(\xi)=\ell_{N}(\xi),\end{array} (33)

with N\ell_{N} as in Theorem 2.2. By the definitions of the matrices AA, CC and the polynomial map N\ell_{N}, the system in (33) is equivalent to

ξBN(ξ)=F1ξ+FNξN=(F1FN)(ξξN)ξDN(ξ)=N(ξ)C=(F2FN0FN000)(ξξN).\displaystyle\begin{array}[]{l}\xi\,B\,\ell_{N}(\xi)=F_{1}\xi+\ldots F_{N}\xi^{N}=\left(\begin{array}[]{ccc}F_{1}&\dots F_{N}\end{array}\right)\left(\begin{array}[]{c}\xi\\ \vdots\\ \xi^{N}\end{array}\right)\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr\xi\,D\,\ell_{N}(\xi)=\ell_{N}(\xi)-C=\left(\begin{array}[]{cccc}F_{2}&\dots&F_{N}&0\\ \vdots&&&\vdots\\ F_{N}&&&\\ 0&\dots&0&0\end{array}\right)\left(\begin{array}[]{c}\xi\\ \vdots\\ \xi^{N}\end{array}\right).\end{array} (47)

After the division of both sides of (47) by ξ\xi and by UU=IU^{*}U=I, we get another equivalent system

(B(F0+FNFN1F1)U)N(ξ)=0(D(F1F0+FNF2FN1FN2F0+FN000)U)N(ξ)=0.\displaystyle\begin{array}[]{l}\Big{(}B-\left(\begin{array}[]{cccc}F_{0}+F_{N}&F_{N-1}&\dots&F_{1}\end{array}\right)U\Big{)}\,\ell_{N}(\xi)=0\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr\Big{(}D-\left(\begin{array}[]{cccc}F_{1}&F_{0}+F_{N}&\dots&F_{2}\\ \vdots&\vdots&\ddots&\vdots\\ F_{N-1}&F_{N-2}&\dots&F_{0}+F_{N}\\ 0&0&\dots&0\end{array}\right)U\Big{)}\,\ell_{N}(\xi)=0.\end{array} (55)

Observe that the QMF-conditions yield

UN(ξ)\displaystyle U\ell_{N}(\xi) =\displaystyle= ((FN0F1FN)+(F0FN10F0))N(ξ)\displaystyle\Big{(}\left(\begin{array}[]{ccc}F_{N}^{*}&\dots&0\\ \vdots&\ddots&\vdots\\ F_{1}^{*}&\dots&F_{N}^{*}\end{array}\right)+\left(\begin{array}[]{ccc}F_{0}^{*}&\dots&F_{N-1}^{*}\\ \vdots&\ddots&\vdots\\ 0&\dots&F_{0}^{*}\end{array}\right)\Big{)}\ell_{N}(\xi) (62)
=\displaystyle= (FN0F1FN)N(ξ)\displaystyle\left(\begin{array}[]{ccc}F_{N}^{*}&\dots&0\\ \vdots&\ddots&\vdots\\ F_{1}^{*}&\dots&F_{N}^{*}\end{array}\right)\ell_{N}(\xi) (66)

Thus, due to F0FN=0F_{0}F_{N}^{*}=0 and (62), the first identity in (55) is satisfied for BB in Definition 2.4

(F000)UN(ξ)\displaystyle-\left(\begin{array}[]{cccc}F_{0}&0&\dots&0\end{array}\right)U\,\ell_{N}(\xi)
=\displaystyle= (F000)(FN0F1FN)N(ξ)=0.\displaystyle-\left(\begin{array}[]{cccc}F_{0}&0&\dots&0\end{array}\right)\left(\begin{array}[]{ccc}F_{N}^{*}&\dots&0\\ \vdots&\ddots&\vdots\\ F_{1}^{*}&\dots&F_{N}^{*}\end{array}\right)\,\ell_{N}(\xi)=0.

The rest of the QMF- and UEP-conditions and (62) imply that the second identity in (55) is satisfied for DD in Definition 2.4

(D(F1F0+FNF2FN1FN2F0+FN000)U)N(ξ)=\displaystyle\Big{(}D-\left(\begin{array}[]{cccc}F_{1}&F_{0}+F_{N}&\dots&F_{2}\\ \vdots&\vdots&\ddots&\vdots\\ F_{N-1}&F_{N-2}&\dots&F_{0}+F_{N}\\ 0&0&\dots&0\end{array}\right)U\Big{)}\,\ell_{N}(\xi)=
((F000F1F00FN1FN2F0)(F1F00FN1FN2F0000))UN(ξ)=0.\displaystyle\Big{(}\left(\begin{array}[]{cccc}F_{0}&0&\dots&0\\ F_{1}&F_{0}&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\ F_{N-1}&F_{N-2}&\dots&F_{0}\end{array}\right)-\left(\begin{array}[]{cccc}F_{1}&F_{0}&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\ F_{N-1}&F_{N-2}&\dots&F_{0}\\ 0&0&\dots&0\end{array}\right)\Big{)}U\,\ell_{N}(\xi)=0.

The proof of ”\Longleftarrow“ follows by a linear algebra argument. Namely, (31), in its equivalent form

(F(ξ)N(ξ))=(ABCD)(IξN(ξ)),N(ξ)=(IξD)1C,ξ𝔻,\left(\begin{array}[]{c}F(\xi)\\ \ell_{N}(\xi)\end{array}\right)=\left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\left(\begin{array}[]{c}I\\ \xi\ell_{N}(\xi)\end{array}\right),\quad\ell_{N}(\xi)=(I-\xi D)^{-1}C,\quad\xi\in{\mathbb{D}},

and the fact that ABCDABCD is a unitary matrix is reflected in the conservation law

F(ξ)2+N(ξ)2=1+ξN(ξ)2,ξ𝔻.\|F(\xi)\|^{2}+\|\ell_{N}(\xi)\|^{2}=1+\|\xi\ell_{N}(\xi)\|^{2},\quad\xi\in{\mathbb{D}}. (71)

Note that the matrix DD is contractive, so N(ξ)\ell_{N}(\xi) is a rational function, analytic in the unit disk 𝔻{\mathbb{D}}. Let zz be a point on the unit torus 𝕋{\mathbb{T}} which is not a pole of N\ell_{N}. Passing to the limit ξz\xi\rightarrow z in the identity (71), we obtain

1=F(z)2for every z𝕋 which is not a pole of N.1=\|F(z)\|^{2}\quad\hbox{for every $z\in{\mathbb{T}}$ which is not a pole of $\ell_{N}$}.

Recall that FF is assumed to be a polynomial map, hence

1=F(z)2for allz𝕋,1=\|F(z)\|^{2}\quad\hbox{for all}\quad z\in{\mathbb{T}},

i.e. the matrix F(z)F(z) is unitary for all z𝕋z\in{\mathbb{T}}. ∎

2.3 Further properties of the ABCDABCD matrix

In this section, we analyze the properties of the matrices BB and DD that guarantee that the representation in (31) leads to a polynomial FF.

Proposition 2.8.

If FF of degree NN in (5) satisfies QMF-condition (6), then the matrices BB and DD from Definition 2.4 satisfy

BDN=0.B\,D^{N}=0.
Proof.

Using Definition 2.4, we write B=B~UB=\tilde{B}\,U and D=D~UD=\tilde{D}\,U. Note that, due to the invertibility of UU, we only need to show that B~(UD~)N=0\tilde{B}(U\,\tilde{D})^{N}=0. To prove the claim, we show that

B~UD~=(FNF2F1)UD~=(0FNF2),\displaystyle\tilde{B}\,U\,\tilde{D}=(F_{N}\ \dots\ F_{2}\ F_{1})\,U\,\tilde{D}=(0\ F_{N}\ \dots\ F_{2}),
B~(UD~)2=(0FNF2)UD~=(0 0FNF3)\displaystyle\tilde{B}\,\left(U\,\tilde{D}\right)^{2}=(0\ F_{N}\ \dots\ F_{2})\,U\,\tilde{D}=(0\ 0\ F_{N}\ \dots\ F_{3})

and so on until

B~(UD~)N=(0 0FN)UD~=(0 0).\tilde{B}\,\left(U\,\tilde{D}\right)^{N}=(0\ \ldots\ 0\ \ F_{N})\,U\,\tilde{D}=(0\ \ldots\ \ 0).

First, note that, due to the structure of UU and D~\tilde{D}, we have

U=U1+U2:=(F0F1FN10F100F0)+(FN00FN10F1FN1FN)U=U_{1}+U_{2}:=\left(\begin{array}[]{cccc}F_{0}^{*}&F_{1}^{*}&\dots&F_{N-1}^{*}\\ \vdots&\ddots&\ddots&\vdots\\ 0&&\ddots&F_{1}^{*}\\ 0&0&\dots&F_{0}^{*}\end{array}\right)+\left(\begin{array}[]{cccc}F_{N}^{*}&\dots&0&0\\ F_{N-1}^{*}&\ddots&&0\\ \vdots&\ddots&\ddots&\vdots\\ F_{1}^{*}&\dots&F_{N-1}^{*}&F_{N}^{*}\end{array}\right)

and

D~=D~1+D~2:=(F000F10FN1F1F0)+(0FNF20FN000).\tilde{D}=\tilde{D}_{1}+\tilde{D}_{2}:=\left(\begin{array}[]{cccc}F_{0}&\dots&0&0\\ F_{1}&\ddots&&0\\ \vdots&\ddots&\ddots&\vdots\\ F_{N-1}&\dots&F_{1}&F_{0}\end{array}\right)+\left(\begin{array}[]{cccc}0&F_{N}&\dots&F_{2}\\ \vdots&\ddots&\ddots&\vdots\\ 0&&\ddots&F_{N}\\ 0&0&\dots&0\end{array}\right).

For =N1,,0\ell=N-1,\ldots,0, by QMF-condition, we have U2D~1=0U_{2}\tilde{D}_{1}=0 and, by UEP-condition, (0N1FNFN)U1=0(0_{N-\ell-1}\ F_{N}\ \dots\ F_{N-\ell})U_{1}=0. Thus,

(0N1FNFN)UD~\displaystyle(0_{N-\ell-1}\ F_{N}\ \dots\ F_{N-\ell})\,U\tilde{D} =\displaystyle= (0N1FNFN)U2D~2\displaystyle(0_{N-\ell-1}\ F_{N}\ \dots\ F_{N-\ell})\,U_{2}\tilde{D}_{2}
=\displaystyle= ((i,j)Γ,1,NFiFj(i,j)Γ,N,NFiFj)D~2,\displaystyle\Big{(}\sum_{(i,j)\in\Gamma_{\ell,1,N}}F_{i}\,F_{j}^{*}\ \ldots\ \sum_{(i,j)\in\Gamma_{\ell,N,N}}F_{i}\,F_{j}^{*}\Big{)}\,\tilde{D}_{2},

where, for k=1,,Nk=1,\ldots,N,

Γ,k,N={(i,j):i+j=N+k,i{N,,N},j{1,,N}}.\Gamma_{\ell,k,N}=\{(i,j)\ :\ -i+j=\ell-N+k,\ i\in\{N-\ell,\ldots,N\},\ j\in\{1,\ldots,N\}\}.

The UEP-condition implies, for k=1,,Nk=1,\ldots,N,

(i,j)Γ,k,NFiFj={I(i,j)Λ,k,NFiFj,ifk=N,(i,j)Λ,k,NFiFj,otherwise,\sum_{(i,j)\in\Gamma_{\ell,k,N}}F_{i}\,F_{j}^{*}=\left\{\begin{array}[]{cc}I-\displaystyle\sum_{(i,j)\in\Lambda_{\ell,k,N}}F_{i}\,F_{j}^{*},&\hbox{if}\ \ k=N-\ell,\\ \\ -\displaystyle\sum_{(i,j)\in\Lambda_{\ell,k,N}}F_{i}\,F_{j}^{*},&\hbox{otherwise},\end{array}\right.

where

Λ,k,N={(i,j):i+j=N+k,i{N,,N},j{0,,k1}}.\Lambda_{\ell,k,N}=\{(i,j)\ :\ -i+j=\ell-N+k,\ i\in\{N-\ell,\ldots,N\},\ j\in\{0,\ldots,k-1\}\}.

Therefore,

((i,j)Γ,1,NFiFj(i,j)Γ,N,NFiFj)\displaystyle\Big{(}\sum_{(i,j)\in\Gamma_{\ell,1,N}}F_{i}\,F_{j}^{*}\ \ldots\ \sum_{(i,j)\in\Gamma_{\ell,N,N}}F_{i}\,F_{j}^{*}\Big{)} =\displaystyle= (0N1I 0)\displaystyle(0_{N-\ell-1}\ I\ 0_{\ell})
\displaystyle- Nk0k{1,,N}FNk(0k1F0FNk).\displaystyle\sum_{N-\ell-k\geq 0\atop k\in\{1,\ldots,N\}}\,F_{N-k-\ell}\,(0_{k-1}\ F_{0}^{*}\ \ldots\ F_{N-k}^{*}).

Multiplication by D~2\tilde{D}_{2} of both sides of the above equation, due to QMF-condition, yields the claim. ∎

3 Special case N=1N=1

In this section, we consider the special situation of polynomials FF of degree N=1N=1. The following Lemma 3.1 is crucial for comparison of Theorem 2.7 with [1, Theorem 3.1] and also for our specific constructions in Section 4.

Lemma 3.1.

Let A,B,C,DA,B,C,D be matrices in 2M×2M{\mathbb{R}}^{2M\times 2M}. The following two sets of conditions (I)(I) and (II)(II) are equivalent.

(I)(I)

{The block matrix(ABCD)is unitary ,(I.a)DC=0,BC=C,(I.b)B=CU,D=AU,U=A+C.(I.c)\left\{\begin{array}[]{lll}&\hbox{The block matrix}\ \left(\begin{array}[]{cc}A&B\\ C&D\end{array}\right)\hbox{is unitary\ },&(I.a)\\ \\ &DC=0,\quad BC=C,&(I.b)\\ \\ &B=CU,\quad D=AU,\quad U=A^{*}+C^{*}.&(I.c)\end{array}\right.


(II)(II)

{B2=B,B=B.(II.a)D=IB;(II.b)C=BU,A=DU,U=A+C.(II.c)\left\{\begin{array}[]{lll}&B^{2}=B,\quad B^{*}=B.&(II.a)\\ \\ &D=I-B;&(II.b)\\ \\ &C=BU^{*},\quad A=DU^{*},\quad U=A^{*}+C^{*}.&(II.c)\end{array}\right.

Proof.

Note first that the conditions (I.c)(I.c) and (II.c)(II.c) are equivalent.

Assume that (I)(I) are satisfied. The ABCDABCD matrix is unitary, in particular AA+CC=IA^{*}A+C^{*}C=I and AB+CD=0A^{*}B+C^{*}D=0, and (II.c)(II.c) imply that UU is unitary

UU=(A+C)(A+C)=AA+CC+AC+CA=I+(AB+CD)U=I.UU^{*}=(A^{*}+C^{*})(A+C)=A^{*}A+C^{*}C+A^{*}C+C^{*}A=I+(A^{*}B+C^{*}D)U^{*}=I.

Next, BC=CBC=C and (II.c)(II.c) yield

B2=BB=B(CU)=(BC)U=CU=B.B^{2}=B\,B=B\,(CU)=(BC)\,U=C\,U=B.

The definitions of AA and CC in (II.c)(II.c) imply AC=12AC+12DBAC^{*}=\frac{1}{2}AC^{*}+\frac{1}{2}DB^{*}. Because ABCDABCD is unitary, in particular AC+DB=0AC^{*}+DB^{*}=0, we get

B=UC=(A+C)C=AC+CC=CC=B.B^{*}=UC^{*}=(A+C)C^{*}=AC^{*}+CC^{*}=CC^{*}=B.

By (II.c)(II.c) we obtain U=A+C=(D+B)UU^{*}=A+C=(D+B)U^{*}. Thus, UU=IU^{*}U=I, leads to D=IBD=I-B.

Assume that (II)(II) are satisfied. By (II.a)(II.a) and (II.b)(II.b), the matrix DD also satisfies D2=DD^{2}=D and D=DD^{*}=D. Thus, by the definitions of AA and CC in (II.c)(II.c), U=A+CU=A^{*}+C^{*} is unitary

UU=D2+B2+DB+BD=(IB)2+B2+(IB)B+B(IB)=I.U^{*}U=D^{2}+B^{2}+DB+BD=(I-B)^{2}+B^{2}+(I-B)B+B(I-B)=I.

Moreover, (I.a)(I.c)(I.a)-(I.c) yield

AA+CC=U(DD+BB)U=U((IB)2+B2)U=UU=I,A^{*}A+C^{*}C=U(D^{*}D+B^{*}B)U^{*}=U((I-B)^{2}+B^{2})U^{*}=UU^{*}=I,

which also proves that BB+DD=IB^{*}B+D^{*}D=I. Furthermore,

AB+CD=UDB+UBD=U((IB)B+B(IB))=0.A^{*}B+C^{*}D=UD^{*}B+UB^{*}D=U((I-B)B+B(I-B))=0.

Similarly, BA+DC=0B^{*}A+D^{*}C=0. Next, we show that DC=0DC=0 and BC=CBC=C. From (II.a)(II.a) and (II.b)(II.b) we get

DC=(IB)C=(IB)BU=(BB2)U=0DC=(I-B)C=(I-B)BU^{*}=(B-B^{2})U^{*}=0

and, by the definition of CC,

BC=BBU=B2U=BU=C,BC=BBU^{*}=B^{2}U^{*}=BU^{*}=C,

which concludes the proof. ∎

4 Examples

This section illustrates our results with several examples. In particular, for N=1N=1, the examples point out the strength of the algorithm given by the conditions (II)(II) in Lemma 3.1. This algorithm allows us to characterize all possible wavelet and multi-wavelet masks with support on [0,2][0,2] or [0,3][0,3]. In subsection 4.2, we show how to apply the result of Theorem 2.7 for construction of FF in (5) of degree N=2N=2 with support on [0,5][0,5].

4.1 Wavelets and multi-wavelets supported on [0,2][0,2] or on [0,3][0,3]

Several properties of FF in (5) are similar in the scalar (K=M=1K=M=1) and full rank (K=M>1K=M>1) cases. The corresponding masks are characterized in subsection 4.1.1. The rank one case (1=K<M1=K<M) is considered in subsection 4.1.2.

4.1.1 Wavelets and full rank multi-wavelets

We first consider the full rank K=MK=M matrix case, which includes the wavelet case K=M=1K=M=1. Note first that the full rank requirement in the case K=MK=M uniquely determines the unitary matrix UU. In fact, since U=F0+F1U=F_{0}^{*}+F_{1}^{*}, the first order sum rule/vanishing moments conditions (2)-(3) are equivalent to

(IMIMIMIM)U=2(IM00W),WW=IM.\left(\begin{array}[]{rr}I_{M}&I_{M}\\ I_{M}&-I_{M}\end{array}\right)U^{*}=\sqrt{2}\,\left(\begin{array}[]{cc}I_{M}&0\\ 0&W\end{array}\right),\quad W^{*}W=I_{M}.

Therefore,

U=22(IMWIMW).U=\frac{\sqrt{2}}{2}\left(\begin{array}[]{rr}I_{M}&W\\ I_{M}&-W\end{array}\right).

By Lemma 3.1, the masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} are, thus, determined by the choice of the projection BB. In the scalar case K=M=1K=M=1, there are only three choices for BB: identity or two one-parameter families

B+=(bbb2bb21b)andB=(bbb2bb21b),b.B_{+}=\left(\begin{array}[]{cc}b&\sqrt{b-b^{2}}\\ \sqrt{b-b^{2}}&1-b\end{array}\right)\quad\hbox{and}\quad B_{-}=\left(\begin{array}[]{cc}b&-\sqrt{b-b^{2}}\\ -\sqrt{b-b^{2}}&1-b\end{array}\right),\quad b\in{\mathbb{R}}. (72)

Once a particular BB is chosen, set F0=A=(IB)UF_{0}=A=(I-B)U^{*}, F1=C=BUF_{1}=C=BU^{*}. To recover Haar masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} choose B=I2B=I_{2} or b=1b=1. To impose additional sum rules/vanishing moments [6, 21, 23] for k=1k=1 we solve for bb

(01230123)(F0F1)=(0000).\left(\begin{array}[]{rrrr}0&-1&2&-3\\ 0&1&2&3\end{array}\right)\left(\begin{array}[]{c}F_{0}\\ F_{1}\end{array}\right)=\left(\begin{array}[]{c}0\\ 0\\ 0\\ 0\end{array}\right). (73)

This system yields a unique solution b=34b=\frac{3}{4}, determining the Daubechies (D4) masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} with the supports [0,3][0,3].

In the case K=M=2K=M=2, there are several choices for the projection BB. If we look for the masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} with supports [0,2][0,2], then the only possible projections BB are given by

B=(B±020202),B=\left(\begin{array}[]{cc}B_{\pm}&0_{2}\\ 0_{2}&0_{2}\end{array}\right), (74)

where the blocks B±B_{\pm} are given in (72) and 020_{2} are 2×22\times 2 zero blocks. Note, however, that these choices of BB lead to essentially diagonal matrix-valued masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} specified in [10]. Such essentially diagonal matrix-valued masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} are equivalent to some scalar masks 𝒑j{\boldsymbol{p}}_{j} and 𝒒j{\boldsymbol{q}}_{j}, j=1,2j=1,2, since 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} are jointly diagonalizable. This means that there are only trivial full rank matrix-valued masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} supported on [0,2][0,2].

If we consider K=M=2K=M=2 and look for the masks with supports [0,3][0,3], then we retrieve e.g. all the full rank families of masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} in [14]. For example, the ones in [14, Table A.4] are obtained for the projections

B=(1b100b1b1201b2b2b2200b2b22b20b1b1200b1),0b1,b21.B=\left(\begin{array}[]{cccc}1-b_{1}&0&0&\sqrt{b_{1}-b_{1}^{2}}\\ 0&1-b_{2}&\sqrt{b_{2}-b_{2}^{2}}&0\\ 0&\sqrt{b_{2}-b_{2}^{2}}&b_{2}&0\\ \sqrt{b_{1}-b_{1}^{2}}&0&0&b_{1}\end{array}\right),\quad 0\leq b_{1},b_{2}\leq 1.

Whereas, the masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} in [14, Table A.3] come from the projection

B=(1000014(b+1)214(b21)24b2+1(b+1)014(b21)14(b1)224b2+1(b1)024b2+1(b+1)24b2+1(b1)12(b2+1)),\small{B=\left(\begin{array}[]{cccc}1&0&0&0\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr 0&\frac{1}{4}\,\left(b+1\right)^{2}&\frac{1}{4}\,({b}^{2}-1)&-\frac{\sqrt{2}}{4}\sqrt{-{b}^{2}+1}(b+1)\\ 0&\frac{1}{4}\,({b}^{2}-1)&\frac{1}{4}\,\left(b-1\right)^{2}&-\frac{\sqrt{2}}{4}\,\sqrt{-{b}^{2}+1}\left(b-1\right)\\ 0&-\frac{\sqrt{2}}{4}\sqrt{-{b}^{2}+1}(b+1)&-\frac{\sqrt{2}}{4}\sqrt{-{b}^{2}+1}(b-1)&\frac{1}{2}\,(-{b}^{2}+1)\end{array}\right),}

with |b|1|b|\leq 1. As in the scalar case, the free parameters bb, b1b_{1} and b2b_{2} are determined by imposing additional sum rules/vanishing moment conditions. These conditions are similar to the ones in (73), due to the nature of the full rank case:

(01230123)replaced by(02I22I23I202I22I23I2).\left(\begin{array}[]{rrrr}0&-1&2&-3\\ 0&1&2&3\end{array}\right)\quad\hbox{replaced by}\quad\left(\begin{array}[]{rrrr}0_{2}&-I_{2}&2I_{2}&-3I_{2}\\ 0_{2}&I_{2}&2I_{2}&3I_{2}\end{array}\right).

4.1.2 11-rank orthogonal multi-wavelets

In this subsection we relax the full rank requirement and consider the multi-wavelet (rank 11) setting with 1=K<M=21=K<M=2. If we require the support of the masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} to be [0,2][0,2], then the projection BB is as in (74). To impose sum rule/vanishing moment conditions on the unitary matrix UU, we consider, for some non-zero v=(v1,v2)T2v=(v_{1},v_{2})^{T}\in{\mathbb{R}}^{2}, the system

(v1v200)U=22(v1v2v1v2).\left(\begin{array}[]{cccc}v_{1}&v_{2}&0&0\end{array}\right)\,U=\frac{\sqrt{2}}{2}\left(\begin{array}[]{cccc}v_{1}&v_{2}&v_{1}&v_{2}\end{array}\right). (75)

and

(v1v2v1v2)U=2(v1v200).\left(\begin{array}[]{cccc}v_{1}&v_{2}&v_{1}&v_{2}\end{array}\right)\,U^{*}={\sqrt{2}}\left(\begin{array}[]{cccc}v_{1}&v_{2}&0&0\end{array}\right). (76)

Note that, by [6, 21], we can restrict our attention w.l.g. to the case v=(1,0)Tv=(1,0)^{T} (though one can allow for different v2v\in{\mathbb{R}}^{2} to be able to reproduce other known constructions). Since v=ϕ^(0)v=\hat{\phi}(0), this happens for example under the assumption that the components of ϕ=(ϕ1,ϕ2)\phi=(\phi_{1},\phi_{2}) are symmetric/antisymmetric, respectively, around the center of their support, see e.g. [7]. In this case, the first row of UU can be determined from

(1000)U=22(1010).\left(\begin{array}[]{cccc}1&0&0&0\end{array}\right)\,U=\frac{\sqrt{2}}{2}\left(\begin{array}[]{cccc}1&0&1&0\end{array}\right).

To impose the symmetry/antisymmetry assumptions, we set the zero entry of the mask 𝒑{\boldsymbol{p}} to be p0=Sp2Sp_{0}=S\,p_{2}\,S and its first entry p1p_{1} to be diagonal. Here we use S:=(1001)S:=\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right). Then F0F_{0} and F1F_{1} are diagonal matrices and the matrix UU, which depends only on one parameter, is one of the following matrices

V1(U1U2U2U1)V2,V_{1}\left(\begin{array}[]{cc}U_{1}&U_{2}\\ -U_{2}&U_{1}\end{array}\right)V_{2},

where

U1=(2200),U2=(220012),,U_{1}=\left(\begin{array}[]{cc}\frac{\sqrt{2}}{2}&0\\ 0&\ell\end{array}\right),\quad U_{2}=\left(\begin{array}[]{cc}\frac{\sqrt{2}}{2}&0\\ 0&\sqrt{1-\ell^{2}}\end{array}\right),\quad\ell\in{\mathbb{R}},

and

V1{(IOO±I),(IOO±S)},V2{(IOOI),(IOOS)}.V_{1}\in\left\{\left(\begin{array}[]{cc}I&O\\ O&\pm I\end{array}\right),\left(\begin{array}[]{cc}I&O\\ O&\pm S\end{array}\right)\right\},\quad V_{2}\in\left\{\left(\begin{array}[]{cc}I&O\\ O&I\end{array}\right),\left(\begin{array}[]{cc}I&O\\ O&S\end{array}\right)\right\}.

The Chui-Lian multi-wavelets [7] correspond to the choice =144\ell=-\frac{\sqrt{14}}{4} and b=12b=\frac{1}{2} in (74).

The next example, is related to a special type of multi-wavelet systems proposed in [25]. By similar argument as the ones used in [4, 13], the authors in [25] derive proper pre-filters associated to any multi-wavelet basis. The construction is based on the requirement that the mask 𝒑{\boldsymbol{p}} preserves the constant data which make any pre-filtering step obsolete. Preservation of constants is equivalent to the choice v=(1,1)Tv=(1,1)^{T} in (75)-(76). In order to reduce the degrees of freedom, we impose some symmetry constraints on 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} (see [25]) directly on the matrix UU. Thus, we split UU into four symmetric blocks. One of such matrices UU (the other possibilities differ only by sign changes) is given by

U=(1224(1+J)24(1J)1224(1J)24(1+J)1212121222+12(821)J+J22+12(821)J+J12J+12J+)U=\left(\begin{array}[]{cccc}\ell&\frac{1}{2}-\ell&\frac{\sqrt{2}}{4}(1+J_{\ell}^{-})&\frac{\sqrt{2}}{4}(1-J_{\ell}^{-})\\ \frac{1}{2}-\ell&\ell&\frac{\sqrt{2}}{4}(1-J_{\ell}^{-})&\frac{\sqrt{2}}{4}(1+J_{\ell}^{-})\\ -\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\ \frac{2\sqrt{2}\ell+1}{2(8\ell^{2}-1)}J_{\ell}^{+}J_{\ell}^{-}&-\frac{2\sqrt{2}\ell+1}{2(8\ell^{2}-1)}J_{\ell}^{+}J_{\ell}^{-}&-\frac{1}{2}J_{\ell}^{+}&\frac{1}{2}J_{\ell}^{+}\end{array}\right)

with J±=1±8242J^{\pm}_{\ell}=\sqrt{1\pm 8\ell^{2}\mp 4\sqrt{2}\ell}. The masks 𝒑{\boldsymbol{p}} and 𝒒{\boldsymbol{q}} in [25] correspond to =28(27)\ell=\frac{\sqrt{2}}{8}\left(2-\sqrt{7}\right) and to the value b=1b=1 in (74).

4.2 Wavelets with support [0,5][0,5].

In this section, we consider the case K=M=1K=M=1 and N=2N=2 and apply the method for determining the masks of Daubechies (D6) given by Theorem 2.7. By such theorem, the unitary matrix

U=(F0+F2F1F1F0+F2)U^{*}=\left(\begin{array}[]{cc}F_{0}+F_{2}&F_{1}\\ F_{1}&F_{0}+F_{2}\end{array}\right)

contains already all the information about the unitary F(z)F(z) we aim to determine. Imposing the sum rules/vanishing moments of order 33 on UU^{*} leads to

F0\displaystyle F_{0} =\displaystyle= 2(p0q0p1q1),\displaystyle\sqrt{2}\left(\begin{array}[]{cc}p_{0}&q_{0}\\ p_{1}&q_{1}\end{array}\right),
F1\displaystyle F_{1} =\displaystyle= 2(184p0+2p1184q02q1382p038+2q0),\displaystyle\sqrt{2}\left(\begin{array}[]{cc}\frac{1}{8}-4p_{0}+2p_{1}&\frac{1}{8}-4q_{0}-2q_{1}\\ \frac{3}{8}-2p_{0}&-\frac{3}{8}+2q_{0}\end{array}\right),
F2\displaystyle F_{2} =\displaystyle= 2(38+3p02p138+3q0+2q118+2p0p1182q0q1),p0,p1,q0,q1.\displaystyle\sqrt{2}\left(\begin{array}[]{cc}\frac{3}{8}+3p_{0}-2p_{1}&\frac{3}{8}+3q_{0}+2q_{1}\\ \frac{1}{8}+2p_{0}-p_{1}&-\frac{1}{8}-2q_{0}-q_{1}\end{array}\right),\quad p_{0},p_{1},q_{0},q_{1}\in{\mathbb{R}}.

The condition UU=IU^{*}U=I reduces the 44 parameters to one, t=q0t=q_{0}. This requires us to solve 44 quadratic equations in 44 unknowns. We obtain four possible solutions depending on tt. We present only one of them that corresponds to the Daubechies wavelets D6D6. The others are the same up to a sign change.

p0=116(1+at),p1=18(28t+at),q1=116(1+8tat),p_{0}=\frac{1}{16}(1+a_{t}),\,p_{1}=\frac{1}{8}(2-8t+a_{t}),\,q_{1}=-\frac{1}{16}(1+8t-a_{t}),

where at=255t2+32t+7a_{t}=\sqrt{-255t^{2}+32t+7}. The parameter tt is determined by solving one equation with the radical ata_{t} and yields t=132+132101325+210t=\frac{1}{32}+\frac{1}{32}\sqrt{10}\mp\frac{1}{32}\sqrt{5+2\sqrt{10}}.

5 Potapov-Blaschke factorizations: scalar case

In this subsection, we consider only the cases K=M=1K=M=1 and N=1,2N=1,2. We think the corresponding examples are sufficient for the comparison of our results with the ones in [1]. The case of N=1N=1 is of special interest as it directly establishes a link between our results and the results in [1].

It has been observed already in [28] , see also e.g. [20, Theorem 4.3], that any trigonometric polynomial of degree NN, which is unitary on the unit circle, possesses a factorization into so-called Blaschke-Potapov factors. These factorizations were applied for constructions of finite impulse response filters in [1]. In the case N=1N=1, the result of Lemma 3.1 also leads us to Blaschke-Potapov factors. Indeed in this case A=DU=(IB)UA=DU^{*}=(I-B)U^{*} and C=BUC=BU^{*} and hence,

F(ξ)=A+Cz=DU+BUξ=(IB)U+BUξ=(IB+Bξ)U,|ξ|=1.F(\xi)=A+Cz=DU^{*}+BU^{*}\xi=(I-B)U^{*}+BU^{*}\xi=(I-B+B\xi)U^{*},\quad|\xi|=1.

For factorizations of higher degree FF into Blaschke-Potapov factors we use the matrices BB and UU constructed via the algorithm in (II)(II) Lemma 3.1. In general, any unitary F(ξ)2M×2MF(\xi)\in{\mathbb{C}}^{2M\times 2M}, |ξ|=1|\xi|=1, of degree NN possesses a factorization

F(ξ)=j=1N=(IBj+Bjξ)Uj,UjUj=I,j=1,,N,F(\xi)=\prod_{j=1}^{N}=(I-B_{j}+B_{j}\xi)U_{j},\quad U_{j}^{*}U_{j}=I,\quad j=1,\ldots,N,

where BjB_{j} are some rank-1 projections.

For N=2N=2, the Daubechies (D6) scaling and wavelet masks are obtained by considering

F(ξ)=(IB1+B1ξ)(IB2+B2ξ)UF(\xi)=(I-B_{1}+B_{1}\xi)(I-B_{2}+B_{2}\xi)\,U^{*}

for some B1B_{1} and B2B_{2} in (72). To determine the corresponding parameters b1b_{1} and b2b_{2}, as mentioned above, we determine the corresponding FjF_{j} and, then, impose further the sum rules/vanishing moments of order 22

j=02((2j)k(2j+1)k(2j)k(2j+1)k)Fj=(00),k=1,2,\sum_{j=0}^{2}\left(\begin{array}[]{cc}(2j)^{k}&-(2j+1)^{k}\\ (2j)^{k}&(2j+1)^{k}\end{array}\right)F_{j}=\left(\begin{array}[]{cc}0&*\\ &0\end{array}\right),\quad k=1,2,

where * symbolizes the matrix entries that do not contribute to our computations. We get

b1=541810,b2=1810,b_{1}=\frac{5}{4}-\frac{1}{8}\,\sqrt{10},\quad b_{2}=\frac{1}{8}\,\sqrt{10},

or more explicitly

B1\displaystyle B_{1} =\displaystyle= (5/41/8101/830+12101/830+12101/4+1/810),\displaystyle\left(\begin{array}[]{cc}5/4-1/8\,\sqrt{10}&-1/8\,\sqrt{-30+12\,\sqrt{10}}\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr-1/8\,\sqrt{-30+12\,\sqrt{10}}&-1/4+1/8\,\sqrt{10}\end{array}\right),
B2\displaystyle B_{2} =\displaystyle= (1/8101/810+8101/810+81011/810).\displaystyle\left(\begin{array}[]{cc}1/8\,\sqrt{10}&-1/8\,\sqrt{-10+8\,\sqrt{10}}\\ \vskip 6.0pt plus 2.0pt minus 2.0pt\cr-1/8\,\sqrt{-10+8\,\sqrt{10}}&1-1/8\,\sqrt{10}\end{array}\right).

To obtain b1b_{1} and b2b_{2}, we, additionally, need to solve one quadratic and one equation with the radicals. Thus, the computational effort is exactly the same as in Section 4.2.

Conclusion

In this paper we have shown that results from system theory provide complete characterization of all orthogonal (multi)wavelet filters. This has been achieved by explicitly determining the structure of the ABCDABCD matrix from which an algorithm for multi-wavelet construction can be derived. The aim of the paper was not to propose new classes of multi-wavelets, but rather to provide a unifying framework for all the different constructions proposed in literature.

Future work includes the non-straightforward generalization to the bivariate case and the use of our results for the explicit construction of new classes of matrix wavelet filters satisfying more general properties, for example the exponential rather than polynomial vanishing moment property, or customized according to the problem.

Acknowledgements

Maria Charina was sponsored by the Austrian Science Foundation (FWF) grant P28287-N35. Part of the research was carried out during a visit of the first author at the University of Reggio Calabria supported by GNCS-INdAM.

References

  • [1] D. Alpay, P. Jorgensen, I. Lewkowicz, Characterization of rectangular (para-)unitary rational functions, arXiv:1410.0283arXiv:1410.0283.
  • [2] S. Bacchelli, M. Cotronei, D. Lazzaro, An algebraic construction of kk-balanced multi-wavelets via the lifting scheme, Numer. Algorithms 23 (2000) 329-356.
  • [3] S. Bacchelli, M. Cotronei, T. Sauer, Wavelets for multichannel signals, Adv. Appl. Math. 29 (2002) 581-598.
  • [4] S. Bacchelli, M. Cotronei, T. Sauer, Multifilters with and without prefilters, BIT 42:2 (2002) 231-261.
  • [5] J. A. Ball, T. T. Trent, Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables, J. Funct. Anal. 157 (1998) 1-61.
  • [6] M. Charina, Vector multivariate subdivision schemes: comparison of spectral methods for their regularity analysis, App. Comp. Harm. Anal. 32 (2012) 86-108.
  • [7] C.K. Chui, J. Lian, A study of orthonormal multi-wavelets, Appl. Num. Math. 20:3 (1996) 273-298.
  • [8] D. Colella, C. Heil, Characterizations of scaling functions: Continuous solutions, SIAM J. Matrix Anal. Appl. 15 (1994) 469-518.
  • [9] C. Conti and M. Cotronei, Construction of multichannel wavelets from orthogonal full rank refinable function, Wavelets and multiscale analysis, J. Cohen and A.I. Zayed (eds), Birkhauser, (2011) 109-130.
  • [10] C. Conti, M. Cotronei, T. Sauer, Full rank interpolatory vector subdivision schemes, in Curve and Surface Fitting: Avignon 2006, A. Cohen, J.L. Merrien and L. Schumaker (eds.), 71 (2007) 71-80.
  • [11] C. Conti, M. Cotronei, T. Sauer, Full rank positive matrix symbols: interpolation and orthogonality, BIT, 48 (2008) 5-27.
  • [12] C. Conti, M. Cotronei, T. Sauer, Full rank interpolatory subdivision schemes: Kronecker, filters and multiresolution, J. Comput. Appl. Math. 233:7 (2010) 1649-1659.
  • [13] M. Cotronei, L. Lo Cascio, T. Sauer, Multifilters and prefilters: Uniqueness and algorithmic aspects, J. Comput. Appl. Math. 221 (2008) 346-354.
  • [14] M. Cotronei, M. Holschneider, Partial parameterization of orthogonal wavelet matrix filters, J. Comput. Appl. Math. 243 (2013) 113-125.
  • [15] M. Cotronei, T. Sauer, Full rank filters and polynomial reproduction, Comm. Pure Appl. Anal. 6 (2007) 667-687.
  • [16] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41-7 (1988), 909–996.
  • [17] I. Daubechies, Ten lectures on wavelets, in: CBMS Conf. Series in Appl. Math. 61 (1992).
  • [18] I. Daubechies, J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl. 162 (1992), 227-263.
  • [19] J. S. Geronimo, D. P. Hardin, P. R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994) 373-401.
  • [20] I. Gohberg, M.A. Kaashoek, A. C. M. Ran, Factorizations of and extensions to JJ-unitary rational matrix functions on the unit circle, Integr. Equat. Oper. Th. 15 (1992) 262-300.
  • [21] B. Han, Vector cascade algorithm and refinable function vectors in Sobolev spaces, J. Approx. Theory 124 (2003) 44-88.
  • [22] C. Heil, D. Colella, Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl. 2 (1996) 363-377.
  • [23] K. Jetter, G. Plonka, A survey on L2L_{2}-approximation order from shift-invariant spaces, Multivariate Approximation and Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), Cambridge University Press, 2001, 73-111.
  • [24] F. Keinert, Wavelets and Multiwavelets, Chapman & Hall/CRC, (2004).
  • [25] J. Lebrun, M. Vetterli, High-order balanced multiwavelets: theory, factorization, and design, IEEE Trans. Signal Process., 49:9 (2001) 1918-1930.
  • [26] C. A. Micchelli, T. Sauer, Regularity of multiwavelets, Adv. Comput. Math. 7 (1997) 455-545.
  • [27] G. Plonka, V. Strela, Construction of multiscaling functions with approximation and symmetry, SIAM J. Math. Anal. 29 (1998) 481-510.
  • [28] V. P. Potapov, Multiplicative structure of JJ-nonexpansive matrix functions, Trudy Mosk. Math. Ob. 4 (1955) 125-236 [Russian]; English translation: AMS Translations, Series 2 (1960) 131-243.
  • [29] A. Ron, Z. Shen, Affine systems in L2(d)L_{2}({\mathbb{R}}^{d}): the analysis of the analysis operator, J. Funct. Anal. 148 (1997) 408-447.
  • [30] G. Strang, V. Strela, Orthogonal multiwavelets with vanishing moments, J. Optical Eng. 33 (1994) 2104-2107.
  • [31] M. Vetterli, J. Kovačević, Wavelets and subband coding, Prentice Hall PTR (1995).