This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Systematic analysis of strange single heavy baryons Ξc\Xi_{c} and Ξb\Xi_{b}

Zhen-Yu Li1 zhenyvli@163.com    Guo-Liang Yu2 yuguoliang2011@163.com    Zhi-Gang Wang2 zgwang@aliyun.com    Jian-Zhong Gu3    Jie Lu2 1 School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
2 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
3 China Institute of Atomic Energy, Beijing 102413, China
Abstract

Motivated by the experimental progress in the study of heavy baryons, we investigate the mass spectra of strange single heavy baryons in the λ\lambda-mode, where the relativistic quark model and the infinitesimally shifted Gaussian basis function method are employed. It is shown that the experimental data can be well reproduced by the predicted masses. The root mean square radii and radial probability density distributions of the wave functions are analyzed in detail. Meanwhile, the mass spectra allow us to successfully construct the Regge trajectories in the (J,M2)(J,M^{2}) plane. We also preliminarily assign quantum numbers to the recently observed baryons, including Ξc(3055)\Xi_{c}(3055), Ξc(3080)\Xi_{c}(3080), Ξc(2930)\Xi_{c}(2930), Ξc(2923)\Xi_{c}(2923), Ξc(2939)\Xi_{c}(2939), Ξc(2965)\Xi_{c}(2965), Ξc(2970)\Xi_{c}(2970), Ξc(3123)\Xi_{c}(3123), Ξb(6100)\Xi_{b}(6100), Ξb(6227)\Xi_{b}(6227), Ξb(6327)\Xi_{b}(6327) and Ξb(6333)\Xi_{b}(6333). At last, the spectral structure of the strange single heavy baryons is shown. Accordingly, we predict several new baryons that might be observed in forthcoming experiments.

Key words: Single heavy baryons, Mass spectra, Relativistic quark model.

pacs:
13.25.Ft; 14.40.Lb

I. Introduction

In recent years, many single heavy baryons have been observed in experiments, and the mass spectra of single heavy baryon families have become more and more abundant art77 ; art210 ; art81 ; art24 ; art25 ; art30 ; art83 ; art201 ; art202 ; art84 ; art85 ; art31 ; art29 ; art88 ; art601 ; art87 ; art203 ; art204 ; art89 ; art78 ; art79 ; art130 ; art15 ; art18 ; art120 ; art16 ; art125 ; art2 ; art90 ; art213 ; art126 . Such a wealth of experimental data gives theorists an opportunity to test the validity of current theoretical frameworks. Additionally, this is also a good time to carry out a systematic and precise calculation with some theoretical methods, so as to promote the consistency between the experiments and theories.

The strange single heavy baryon ΞQ\Xi_{Q} families including Ξc\Xi_{c} (Ξc\Xi_{c}^{{}^{\prime}})  art81 ; art210 ; art30 ; art25 ; art31 ; art29 ; art83 ; art84 ; art85 ; art88 ; art89 ; art87 ; art120 ; art125 ; art213 and Ξb\Xi_{b} (Ξb\Xi_{b}^{{}^{\prime}}art77 ; art201 ; art202 ; art203 ; art204 ; art78 ; art79 ; art15 ; art130 ; art90 ; art126 , are being established step by step with the cooperative efforts of experimentalists and theorists. So far, more than a dozen ΞQ\Xi_{Q} baryons have been recorded in the latest particle data group (PDG) art2 , even though the JPJ^{P} values of some baryons are still undetermined, such as Ξc(3055)\Xi_{c}(3055), Ξc(3080)\Xi_{c}(3080) and Ξc(6227)\Xi_{c}(6227). Recently, some other ΞQ\Xi_{Q} baryons have been observed in experiment, including Ξc(3123)\Xi_{c}(3123) art31 , Ξc(2930)\Xi_{c}(2930) art120 , Ξc(2923)\Xi_{c}(2923), Ξc(2939)\Xi_{c}(2939), Ξc(2964)\Xi_{c}(2964) art125 , Ξb(6327)\Xi_{b}(6327) and Ξb(6333)\Xi_{b}(6333) art126 . Accordingly, there have been a lot of theoretical studies on these baryons, such as Ξc(3055)\Xi_{c}(3055) art309 ; art44 ; art322 ; art23 ; art128 , Ξc(3080)\Xi_{c}(3080) art23 ; art45 ; art70 ; art311 , Ξc(2923)0\Xi_{c}(2923)^{0} (including Ξc(2939)0\Xi_{c}(2939)^{0} and Ξc(2965)0\Xi_{c}(2965)^{0}art321 , Ξc(2930)0\Xi_{c}(2930)^{0} art32 , Ξc(2970)\Xi_{c}(2970) art27 ; art46 ; art305 ; art901 ; art902 ; art903 , Ξc\Xi_{c}(3123) art310 , Ξb(6227)\Xi_{b}(6227) art319 ; art318 ; art313 ; art306 ; art316 , Ξb(6100)\Xi_{b}(6100) art129 ; art317 and Ξb(6327)\Xi_{b}(6327) (Ξb(6333)\Xi_{b}(6333)art320 . In order to identify their quantum numbers and assign them suitable positions in the mass spectra, it is necessary to systematically investigate their spectroscopies.

In recent decades, the heavy baryons have been studied by many theoretical methods, including the quark potential model in the heavy quark-light diquark picture art5 ; art1 ; art35 ; art36 ; art310 , relativistic quark model art4 , harmonic oscillator quark model art321 , constituent quark model art28 ; art94 ; art95 ; art119 , chiral quark model art32 ; art309 ; art319 ; art320 , chiral perturbation theory art37 ; art38 ; art39 ; art40 ; art41 , relativistic flux tube model art27 , Bethe-Salpeter formalism art42 , effective Lagrangian approach art318 , P03{}^{3}P_{0} decay model art33 ; art34 ; art43 ; art47 ; art48 ; art49 ; art50 ; art76 , lattice QCD art51 ; art52 ; art53 ; art54 , bound state picture art55 , light cone QCD sum rules art56 ; art57 ; art58 ; art59 ; art60 ; art61 ; art62 ; art63 ; art64 ; art65 , and QCD sum rules method art66 ; art67 ; art68 ; art69 ; art71 ; art72 ; art73 ; art74 ; art75 ; art308 .

In particular, it is worth mentioning that Ebert etal.et\ al. art5 ; art1 put forward a heavy quark-light diquark picture in the framework of a QCD-motivated relativistic quark model, in which an initial three-body problem is reduced to a two-step two-body problem. They systematically studied the spectroscopy and Regge trajectories of heavy baryons, and have achieved a great success in predicting new singly heavy baryons. Because the excited states in the heavy quark-light diquark picture are very similar to those of the λ\lambda-mode in a three-quark system art28 , it would be interesting to investigate the λ\lambda-mode in a three-quark system systematically and study the difference in mass spectra between this mode and the heavy quark-light diquark picture.

In the 1980s, Godfrey and Isgur developed a relativistic quark model by which they studied mass spectra of mesons art91 . Then, Capstick and Isgur extended it to the study of baryons art4 . In the relativistic quark model, the Hamiltonian contains almost all of the interactions between two quarks, which is expected to give accurate calculations for heavy baryon spectra.

The Gaussian expansion method (GEM) and the infinitesimally-shifted Gaussian (ISG) basis functions art92 have been successfully applied to few-body systems in nuclear physics. ISG method has great advantages to improve the computational accuracy and efficiency in the calculation of few-body systems. In recent years, they were introduced in the study of heavy baryons art28 ; art94 ; art95 , tetraquarks art93 ; art96 ; art97 and pentaquarks art115 .

Inspired by the above discussion, we try to combine the relativistic quark model with the ISG method, so as to investigate the strange single heavy baryon spectra in a three-quark system. For the excited states, we would only focus on the λ\lambda-mode and compare the results with those of the heavy quark-light diquark picture and the relevant experimental data as well. The present work is a preliminary attempt to systematically investigate strange single heavy baryon spectra and this method is promising to be used in the study of other multi-quark systems, including the exotic ones art801 ; art802 ; art803 ; art804 ; art805 .

This paper is organized as follows. In Sect.II, we briefly describe the methods used in the theoretical calculations, mainly including the relativistic quark model and the GEM(ISG) method. In Sect.III, we present the root mean square radii and the mass spectra of the ΞQ\Xi_{Q} baryons, analyze the radial probability distributions, and construct the Regge trajectories. On these bases, we perform a detailed analysis of the baryons that have been of interest recently. At last, the mass spectral structures are displayed. And Sect.IV is reserved for our conclusions.

II. Phenomenological methods adopted in this work

2.1 Relativistic quark model and Jacobi coordinates

The relativistic quark model is based on the hypothesis that baryons may be approximately described in terms of center-of-mass (CM) frame valence-quark configurations, the dynamics of which are governed by a Hamiltonian with a one-gluon exchange dominant component at short distances and with a confinement implemented by a flavor-independent Lorentz-scalar interaction art4 . For a three-quark system the Hamiltonian reads,

H=H0+V,\displaystyle H=H_{0}+V, (1)
H0=i=13(pi2+mi2)1/2,\displaystyle H_{0}=\sum_{i=1}^{3}(p_{i}^{2}+m_{i}^{2})^{1/2}, (2)
V=i<j(H~ijconf+H~ijso+H~ijhyp),\displaystyle V=\sum_{i<j}(\tilde{H}^{conf}_{ij}+\tilde{H}^{so}_{ij}+\tilde{H}^{hyp}_{ij}), (3)

where H~ijconf\tilde{H}^{conf}_{ij}, H~ijso\tilde{H}^{so}_{ij} and H~ijhyp\tilde{H}^{hyp}_{ij} are the confinement, spin-orbit and hyperfine interactions, respectively. The confinement item includes one-gluon exchange potentials and the linear confined potentials. Due to the relativistic effect, the interactions should be modified with CM momentum-dependent factors. It is worth noting that the forms of the interactions in this paper have been rearranged for ease of use art116 ; art93 . The interactions are decomposed as follows:

H~ijconf=Gij(r)+S~ij(r),\displaystyle\tilde{H}^{conf}_{ij}=G^{\prime}_{ij}(r)+\tilde{S}_{ij}(r), (4)
H~ijso=H~ijso(v)+H~ijso(s),\displaystyle\tilde{H}^{so}_{ij}=\tilde{H}^{so(v)}_{ij}+\tilde{H}^{so(s)}_{ij}, (5)
H~ijhyp=H~ijtensor+H~ijc,\displaystyle\tilde{H}^{hyp}_{ij}=\tilde{H}^{tensor}_{ij}+\tilde{H}^{c}_{ij}, (6)

with

H~ijso(v)=SiLij2mi2rijG~iiso(v)rij+SjLij2mj2rijG~jjso(v)rij+(Si+Sj)LijmimjrijG~ijso(v)rij,\displaystyle\tilde{H}^{so(v)}_{ij}=\frac{\textbf{S}_{i}\cdot\textbf{L}_{ij}}{2m^{2}_{i}r_{ij}}\frac{\partial\tilde{G}^{so(v)}_{ii}}{\partial{r_{ij}}}+\frac{\textbf{S}_{j}\cdot\textbf{L}_{ij}}{2m^{2}_{j}r_{ij}}\frac{\partial\tilde{G}^{so(v)}_{jj}}{\partial{r_{ij}}}+\frac{(\textbf{S}_{i}+\textbf{S}_{j})\cdot\textbf{L}_{ij}}{m_{i}m_{j}r_{ij}}\frac{\partial\tilde{G}^{so(v)}_{ij}}{\partial{r_{ij}}}, (7)
H~ijso(s)=SiLij2mi2rijS~iiso(s)rijSjLij2mj2rijS~jjso(s)rij,\displaystyle\tilde{H}^{so(s)}_{ij}=-\frac{\textbf{S}_{i}\cdot\textbf{L}_{ij}}{2m^{2}_{i}r_{ij}}\frac{\partial\tilde{S}^{so(s)}_{ii}}{\partial{r_{ij}}}-\frac{\textbf{S}_{j}\cdot\textbf{L}_{ij}}{2m^{2}_{j}r_{ij}}\frac{\partial\tilde{S}^{so(s)}_{jj}}{\partial{r_{ij}}}, (8)
H~ijtensor=SirijSjrij/rij213SiSjmimj×(2rij21rijrij)G~ijt,\displaystyle\tilde{H}^{tensor}_{ij}=-\frac{\textbf{S}_{i}\cdot\textbf{r}_{ij}\textbf{S}_{j}\cdot\textbf{r}_{ij}/r^{2}_{ij}-\frac{1}{3}\textbf{S}_{i}\cdot\textbf{S}_{j}}{m_{i}m_{j}}\times(\frac{\partial^{2}}{\partial{r^{2}_{ij}}}-\frac{1}{r_{ij}}\frac{\partial}{\partial{r_{ij}}})\tilde{G}^{t}_{ij}, (9)
H~ijc=2SiSj3mimj2G~ijc.\displaystyle\tilde{H}^{c}_{ij}=\frac{2\textbf{S}_{i}\cdot\textbf{S}_{j}}{3m_{i}m_{j}}\nabla^{2}\tilde{G}^{c}_{ij}. (10)

The modified terms in Eqs. (4), (7), (8), (9) and (10) read,

Gij=(1+pij2EiEj)12G~ij(rij)(1+pij2EiEj)12,\displaystyle G^{\prime}_{ij}=(1+\frac{p^{2}_{ij}}{E_{i}E_{j}})^{\frac{1}{2}}\tilde{G}_{ij}(r_{ij})(1+\frac{p^{2}_{ij}}{E_{i}E_{j}})^{\frac{1}{2}}, (11)
G~ijso(v)=(mimjEiEj)12+ϵso(v)G~ij(rij)(mimjEiEj)12+ϵso(v),\displaystyle\tilde{G}^{so(v)}_{ij}=(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{so(v)}}\tilde{G}_{ij}(r_{ij})(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{so(v)}}, (12)
S~iiso(s)=(mimiEiEi)12+ϵso(s)S~ij(rij)(mimiEiEi)12+ϵso(s),\displaystyle\tilde{S}^{so(s)}_{ii}=(\frac{m_{i}m_{i}}{E_{i}E_{i}})^{\frac{1}{2}+\epsilon_{so(s)}}\tilde{S}_{ij}(r_{ij})(\frac{m_{i}m_{i}}{E_{i}E_{i}})^{\frac{1}{2}+\epsilon_{so(s)}}, (13)
G~ijt=(mimjEiEj)12+ϵtG~ij(rij)(mimjEiEj)12+ϵt,\displaystyle\tilde{G}^{t}_{ij}=(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{t}}\tilde{G}_{ij}(r_{ij})(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{t}}, (14)
G~ijc=(mimjEiEj)12+ϵcG~ij(rij)(mimjEiEj)12+ϵc,\displaystyle\tilde{G}^{c}_{ij}=(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{c}}\tilde{G}_{ij}(r_{ij})(\frac{m_{i}m_{j}}{E_{i}E_{j}})^{\frac{1}{2}+\epsilon_{c}}, (15)

where Ei=mi2+pij2E_{i}=\sqrt{m^{2}_{i}+p^{2}_{ij}} is the relativistic kinetic energy, and pijp_{ij} is the momentum magnitude of either of the quarks in the CM frame of the ijij quark subsystem art93 .

G~ij(rij)\tilde{G}_{ij}(r_{ij}) and S~ij(rij)\tilde{S}_{ij}(r_{ij}) are obtained by the smearing transformations of the one-gluon exchange potential G(r)=4αs(r)3rG(r)=-\frac{4\alpha_{s}(r)}{3r} and linear confinement potential S(r)=br+cS(r)=br+c, respectively,

G~ij(rij)=FiFjk=132αkπrij0τkijrijex2dx,\displaystyle\begin{aligned} &\tilde{G}_{ij}(r_{ij})=\textbf{F}_{i}\cdot\textbf{F}_{j}\sum^{3}_{k=1}\frac{2\alpha_{k}}{\sqrt{\pi}r_{ij}}\int^{\tau_{kij}r_{ij}}_{0}e^{-x^{2}}\mathrm{d}x,\end{aligned} (16)
S~ij(rij)=34FiFj{brij[eσij2rij2πσijrij+(1+12σij2rij2)2π0σijrijex2dx]+c},\displaystyle\begin{aligned} &\tilde{S}_{ij}(r_{ij})=-\frac{3}{4}\textbf{F}_{i}\cdot\textbf{F}_{j}\{br_{ij}[\frac{e^{-\sigma^{2}_{ij}r^{2}_{ij}}}{\sqrt{\pi}\sigma_{ij}r_{ij}}+(1+\frac{1}{2\sigma^{2}_{ij}r^{2}_{ij}})\frac{2}{\sqrt{\pi}}\int^{\sigma_{ij}r_{ij}}_{0}e^{-x^{2}}\mathrm{d}x]+c\},\end{aligned} (17)

with

τkij=11σij2+1γk2,\displaystyle\tau_{kij}=\frac{1}{\sqrt{\frac{1}{\sigma^{2}_{ij}}+\frac{1}{\gamma^{2}_{k}}}}, (18)
σij=s2(2mimjmi+mj)2+σ02(12(4mimj(mi+mj)2)4+12).\displaystyle\sigma_{ij}=\sqrt{s^{2}(\frac{2m_{i}m_{j}}{m_{i}+m_{j}})^{2}+\sigma^{2}_{0}(\frac{1}{2}(\frac{4m_{i}m_{j}}{(m_{i}+m_{j})^{2}})^{4}+\frac{1}{2})}. (19)

Here αk\alpha_{k} and γk\gamma_{k} are constants. FiFj\textbf{F}_{i}\cdot\textbf{F}_{j} stands for the inner product of the color matrices of quarks ii and jj. F includes 8 components (the so-called Gell-mann matrices), which can be written as

Fn={λ^n2,forquarks,λ^n2,forantiquarks,\displaystyle\begin{split}F_{n}=\left\{\begin{array}[]{ll}\frac{\hat{\lambda}_{n}}{2},&\mathrm{for\ quarks},\\ -\frac{\hat{\lambda}^{*}_{n}}{2},&\mathrm{for\ antiquarks},\end{array}\right.\end{split} (20)

with n=1,,8n=1,\cdot\cdot\cdot,8. All of the parameters in these formulas are taken from reference art4 , except that bb and cc are revised to be 0.14 GeV2 and -0.198 GeV, respectively.

To represent the internal motion of quarks in a few-body system, one commonly introduces the Jacobi coordinates. As shown in Fig.1, there are totally three channels of Jacobi coordinates for the three-body system. The corresponding Jacobi coordinates are defined as

𝝆i=rjrk,\displaystyle\boldsymbol{\rho}_{i}=\textbf{r}_{j}-\textbf{r}_{k}, (21)
𝝀i=rimjrj+mkrkmj+mk,\displaystyle\boldsymbol{\lambda}_{i}=\textbf{r}_{i}-\frac{m_{j}\textbf{r}_{j}+m_{k}\textbf{r}_{k}}{m_{j}+m_{k}}, (22)

where ii, jj, kk = 1, 2, 3(or replace their positions in turn). ri\textbf{r}_{i} and mim_{i} denote the position vector and the mass of the iith quark, respectively.

Refer to caption
Figure 1: (Color online)Jacobi coordinates for the three-quark system. We denote the heavy quark as the 3rd particle in the case of single heavy baryons.

We perform the calculations based on the channel 3. In this case, the 3rd quark is just the heavy quark, which is consistent with the heavy quark limit art118 ; art117 . What is more, lρ3\textbf{\emph{l}}_{\rho 3} (denoted in short as lρ\textbf{\emph{l}}_{\rho}) is clearly defined as the orbital angular momentum between the light quarks, and lλ3\textbf{\emph{l}}_{\lambda 3} (denoted in short as lλ\textbf{\emph{l}}_{\lambda}) represents the one between the heavy quark and the light-quark pair.

2.2 The heavy quark limit and wave function

In the heavy quark limit, the heavy quark within the heavy baryon system is decoupled from the two light quarks. With the requirement of the flavor SU(3) subgroups for the light quarks, the baryons belong to either a sextet (6F)(6_{F}) of flavor symmetric states ΞQ\Xi_{Q}^{{}^{\prime}}, or an antitriplet (3¯F)(\bar{3}_{F}) of the flavor antisymmetric states ΞQ\Xi_{Q}. The flavor wave functions of strange single heavy baryons are written as,

ΞQ=12(qqs+qsq)Q,ΞQ=12(qqsqsq)Q.\displaystyle\begin{aligned} &&\Xi_{Q}^{{}^{\prime}}=\frac{1}{\sqrt{2}}(qq_{s}+q_{s}q)Q,\\ &&\Xi_{Q}=\frac{1}{\sqrt{2}}(qq_{s}-q_{s}q)Q.\end{aligned} (23)

Here qq denotes up or down quark, and QQ is charm or bottom quark. qsq_{s} is strange quark. For a quantum state with specified angular momenta in this work, the spatial wave function is combined with the spin function as follow.

|lρlλLsjJMJ=ms3=1/21/2mj=jjML=LLms=ssms1=1/21/2ms2=1/21/2mρ=lρlρmλ=lλlλ×jmjs3ms3|js3JMJ×LMLsms|Lsjmj×s1ms1s2ms2|s1s2sms×lρmρlλmλ|lρlλLML×|lρmρ|lλmλ|s1ms1|s2ms2|s3ms3,\displaystyle\begin{aligned} |l_{\rho}\ l_{\lambda}\ L\ s\ j\ J\ M_{J}\rangle&=\sum^{1/2}_{m_{s3}=-1/2}\sum^{j}_{m_{j}=-j}\sum^{L}_{M_{L}=-L}\sum^{s}_{m_{s}=-s}\sum^{1/2}_{m_{s1}=-1/2}\sum^{1/2}_{m_{s2}=-1/2}\sum^{l_{\rho}}_{m_{\rho}=-l_{\rho}}\sum^{l_{\lambda}}_{m_{\lambda}=-l_{\lambda}}\\ &\ \times\langle j\ m_{j}\ s_{3}\ m_{s_{3}}|j\ s_{3}\ J\ M_{J}\rangle\times\langle L\ M_{L}\ s\ m_{s}|L\ s\ j\ m_{j}\rangle\\ &\times\langle s_{1}\ m_{s_{1}}\ s_{2}\ m_{s_{2}}|s_{1}\ s_{2}\ s\ m_{s}\rangle\times\langle l_{\rho}\ m_{\rho}l_{\lambda}\ m_{\lambda}|l_{\rho}\ l_{\lambda}\ L\ M_{L}\rangle\\ &\times|l_{\rho}\ m_{\rho}\rangle\otimes|l_{\lambda}\ m_{\lambda}\rangle\otimes|s_{1}\ m_{s_{1}}\rangle\otimes|s_{2}\ m_{s_{2}}\rangle\otimes|s_{3}\ m_{s_{3}}\rangle,\end{aligned} (24)

with L=lρ+lλ\textbf{L}=\textbf{\emph{l}}_{\rho}+\textbf{\emph{l}}_{\lambda}, s=s1+s2\textbf{s}=\textbf{s}_{1}+\textbf{s}_{2}, j=L+s\textbf{j}=\textbf{L}+\textbf{s}, J=j+s3\textbf{J}=\textbf{j}+\textbf{s}_{3}. lρl_{\rho}, lλl_{\lambda}, LL, ss, jj, JJ and MJM_{J} are the quantum numbers which characterize a given quantum state in theory. This scheme |lρlλLsjJMJ|l_{\rho}\ l_{\lambda}\ L\ s\ j\ J\ M_{J}\rangle (jj-ss coupling) is also commonly used to analyze the strong decay of heavy baryons art48 .

2.3 GEM and ISG

In calculations, the spatial wave function |lρmρ|lλmλ|l_{\rho}\ m_{\rho}\rangle\otimes|l_{\lambda}\ m_{\lambda}\rangle in formula (24) should be expanded in a set of basis functions. Naturally, one of the candidates is the simple harmonic oscillator(SHO) basis for its good orthogonality. However, the completeness of the SHO is not rigorous in calculations because a truncated set has to be used art91 ; art4 . Compared to the SHO basis functions, the advantage of the Gaussian basis functions is that they can form an approximately complete set in a finite coordinate space.

Following formula (24), the spatial wave function is expanded in terms of a set of Gaussian basis functions,

|lρmρ|lλmλ=nρ=1nmaxnλ=1nmaxcnρnλ|nρlρmρG|nλlλmλG,\displaystyle\begin{aligned} |l_{\rho}m_{\rho}\rangle\otimes|l_{\lambda}m_{\lambda}\rangle=\sum_{n_{\rho}=1}^{n_{max}}\sum_{n_{\lambda}=1}^{n_{max}}c_{n_{\rho}n_{\lambda}}|n_{\rho}l_{\rho}m_{\rho}\rangle^{G}\otimes|n_{\lambda}l_{\lambda}m_{\lambda}\rangle^{G},\end{aligned} (25)

where the Gaussian basis function |nlmG|nlm\rangle^{G} is commonly written in position space as

ϕnlmG(r)=ϕnlG(r)Ylm(r^),ϕnlG(r)=Nnlrleνnr2,Nnl=2l+2(2νn)l+3/2π(2l+1)!!,\displaystyle\begin{aligned} &\phi^{G}_{nlm}(\textbf{r})=\phi^{G}_{nl}(r)Y_{lm}(\hat{\textbf{r}}),\\ &\phi^{G}_{nl}(r)=N_{nl}r^{l}e^{-\nu_{n}r^{2}},\\ &N_{nl}=\sqrt{\frac{2^{l+2}(2\nu_{n})^{l+3/2}}{\sqrt{\pi}(2l+1)!!}},\end{aligned} (26)

or in momentum space as

ϕnlmG(p)=ϕnlG(p)Ylm(p^),ϕnlG(p)=Nnlplep24νn,Nnl=(i)l2l+2π(2νn)l+3/2(2l+1)!!,\displaystyle\begin{aligned} &\phi^{{}^{\prime}G}_{nlm}(\textbf{p})=\phi^{{}^{\prime}G}_{nl}(p)Y_{lm}(\hat{\textbf{p}}),\\ &\phi^{{}^{\prime}G}_{nl}(p)=N^{{}^{\prime}}_{nl}p^{l}e^{-\frac{p^{2}}{4\nu_{n}}},\\ &N^{{}^{\prime}}_{nl}=(-i)^{l}\sqrt{\frac{2^{l+2}}{\sqrt{\pi}(2\nu_{n})^{l+3/2}(2l+1)!!}},\end{aligned} (27)

with

νn=1rn2,rn=r1an1(n=1, 2,,nmax).\displaystyle\begin{aligned} &\nu_{n}=\frac{1}{r^{2}_{n}},\\ &r_{n}=r_{1}a^{n-1}\ \ \ (n=1,\ 2,\ ...,\ n_{max}).\end{aligned} (28)

r1r_{1}, aa, and nmaxn_{max} are the Gaussian size parameters in the geometric progression for numerical calculations, and the final results are stable and independent of these parameters within an approximately complete set in a sufficiently large space.

The Gaussian basis functions are non-orthogonal, which leads to a generalized matrix eigenvalue problem,

κ,κ=1κmax[HκκEN~κκ]cκ=0,\displaystyle\sum_{\kappa,\kappa^{\prime}=1}^{\kappa_{max}}[H_{\kappa\kappa^{\prime}}-E\tilde{N}_{\kappa\kappa^{\prime}}]c_{\kappa^{\prime}}=0, (29)

with

N~κκ=ϕnρlρmρG|ϕnρlρmρG×ϕnλlλmλG|ϕnλlλmλG\displaystyle\tilde{N}_{\kappa\kappa^{\prime}}=\langle\phi^{G}_{n_{\rho}l_{\rho}m_{\rho}}|\phi^{G}_{n_{\rho^{\prime}}l_{\rho^{\prime}}m_{\rho^{\prime}}}\rangle\times\langle\phi^{G}_{n_{\lambda}l_{\lambda}m_{\lambda}}|\phi^{G}_{n_{\lambda^{\prime}}l_{\lambda^{\prime}}m_{\lambda^{\prime}}}\rangle (30)
=(2νnρνnρνnρ+νnρ)lρ+3/2×(2νnλνnλνnλ+νnλ)lλ+3/2,\displaystyle=(\frac{2\sqrt{\nu_{n_{\rho}}\nu_{n_{\rho^{\prime}}}}}{\nu_{n_{\rho}}+\nu_{n_{\rho^{\prime}}}})^{l_{\rho}+3/2}\times(\frac{2\sqrt{\nu_{n_{\lambda}}\nu_{n_{\lambda^{\prime}}}}}{\nu_{n_{\lambda}}+\nu_{n_{\lambda^{\prime}}}})^{l_{\lambda}+3/2},

where κ=1, 2,,κmax\kappa=1,\ 2,\ ...,\ \kappa_{max}, κmax=nmax×nmax\kappa_{max}=n_{max}\times n_{max} and cκ=cnρnλc_{\kappa}=c_{n_{\rho}n_{\lambda}}. HH and EE denote the Hamiltonian and the eigenvalue, respectively.

In the calculation of Hamiltonian matrix elements of three-body systems, particularly when complicated interactions are employed, integrations over all of the radial and angular coordinates become laborious even with the Gaussian basis functions. This process can be simplified by introducing the ISG basis functions art92 .

III. Numerical results and discussions

3.1 Numerical stabilities and the λ\lambda-mode

To obtain stable numerical solutions, the Gaussian size parameters set {nmax,r1,rnmax}\{n_{max},\ r_{1},\ r_{n_{max}}\} should be optimized. For the Gaussian functions which are a set of non-orthogonal bases in a finite coordinate space, the number of the bases should be in a reasonable range. As shown in Fig.2, the numerical stability is achieved when the dimension parameter nmaxn_{max} falls in the range of 9149\sim 14, with r1=0.18r_{1}=0.18GeV-1 and rnmax=15r_{n_{max}}=15GeV-1. nmax=10n_{max}=10 is finally adopted in this work, with which both the computation efficiency and accuracy are actually satisfied.

Refer to caption
Figure 2: (Color online) Numerical stability of Ξc1S(12+)\Xi_{c}1S(\frac{1}{2}^{+}) mass with respect to the dimension parameter nmaxn_{max}.

nL(JP)nL(J^{P}) is commonly used to describe a baryon state. If angular momentum L0L\neq 0, there exist several |lρlλLsjJMJ|l_{\rho}l_{\lambda}LsjJM_{J}\rangle states under the condition L=lρ+lλ\textbf{L}=\textbf{\emph{l}}_{\rho}+\textbf{\emph{l}}_{\lambda}. They may be divided into the following three modes: (1) The ρ\rho-mode with lρ0l_{\rho}\neq 0 and lλ=0l_{\lambda}=0; (2) The λ\lambda-mode with lρ=0l_{\rho}=0 and lλ0l_{\lambda}\neq 0; (3) The λ\lambda-ρ\rho mixing mode with lρ0l_{\rho}\neq 0 and lλ0l_{\lambda}\neq 0.

As an example, the excitation energies of the 1P(12,32)j=11P(\frac{1}{2}^{-},\frac{3}{2}^{-})_{j=1} states of 3¯F\bar{3}_{F} as functions of mQm_{Q} are investigated, where the dependence of excitation energies on mQm_{Q} of the λ\lambda-mode is compared with that of the ρ\rho-mode. As shown in Fig.3, the λ\lambda-mode and the ρ\rho-mode are clearly separated when mQm_{Q} increases from 1.0 GeV to 5.0 GeV. In the case of 6F6_{F}, we come to the same conclusion when mQ>1.5m_{Q}>1.5GeV as shown in Fig.4. Besides of pp-wave states, the same feature is also shown in higher angular excited states actually. This conclusion has been obtained in reference art28 . Thus, we investigate the mass spectrum in the λ\lambda-mode.

Refer to caption
Figure 3: (Color online)The dependence of excitation energies on mQm_{Q} for different modes of ΞQ\Xi_{Q}. The black and red curves represent the λ\lambda-mode. The blue and green ones denote the ρ\rho-mode.
Refer to caption
Figure 4: (Color online)The excitation energies versus mQm_{Q} for different modes of ΞQ\Xi_{Q}^{{}^{\prime}}. Note that the black curve is lower than the blue one with mQ>1.5m_{Q}>1.5GeV and the red curve is overall lower than the green one (mc=1.628m_{c}=1.628 GeV and mb=4.977m_{b}=4.977 GeV are taken in this work).

3.2 Mass spectra, root mean square radius and radial probability density distribution

In this subsection, the root mean square radii, radial probability density distributions and the mass spectra of strange single heavy baryons are presented. For convenience, the relevant experimental data are given together. The detailed results are listed in Tables I-VI (see the appendix). There are a total of four families, namely Ξc\Xi_{c}, Ξc\Xi_{c}^{{}^{\prime}}, Ξb\Xi_{b} and Ξb\Xi_{b}^{{}^{\prime}}. The mass spectra of excited states with quantum numbers up to n=4n=4 and L=4L=4 are displayed. There have been a lot of other theoretical works on this subject art23 ; art70 ; art411 ; art12 ; art318 . Among them, Ebert etal.et\ al. have studied the heavy baryon spectra with a quark potential model in the heavy quark-light diquark picture art1 . As an important reference, their numerical results are also placed in the tables.

Through the analysis of these calculated results, some general features of the mass spectra are summarized as follows: First, ΞQ\Xi_{Q} is lower than ΞQ\Xi_{Q}^{{}^{\prime}} in energy. This feature has been recognized in light baryons where the highly orbitally excited states have an antisymmetric structure which minimizes the energy art122 ; Second, the mass splitting of spin-doublet states becomes smaller with increasing LL. For example, Table I shows the mass differences of the spin-doublets of 1P1P-, 1D1D-, 1F1F-, and 1G1G-wave are 30 MeV, 13 MeV, 5 MeV, and 1 MeV, respectively; Thirdly, for the same LL, the mass splitting hardly changes with the increase of jj. For example, Tables II and III show the mass differences of 1D1D doublets with j=1,2,3j=1,2,3 are 10 MeV, 10 MeV and 13 MeV, respectively; The last, the mass difference between the two adjacent radial excited states gradually decreases with increasing nn, which is clearly different from that given by Ebert etal.et\ al..

On the other hand, the calculated root mean square radii and radial probability density distributions carry important information. For a three-quark system, the radial probability densities ω(rρ)\omega(r_{\rho}) and ω(rλ)\omega(r_{\lambda}) can be defined as follows,

ω(rρ)=|Ψ(rρ,rλ)|2drλdΩρ,ω(rλ)=|Ψ(rρ,rλ)|2drρdΩλ,\displaystyle\begin{aligned} &\omega(r_{\rho})=\int|\Psi(\textbf{r}_{\rho},\textbf{r}_{\lambda})|^{2}\mathrm{d}\textbf{r}_{\lambda}\mathrm{d}\Omega_{\rho},\\ &\omega(r_{\lambda})=\int|\Psi(\textbf{r}_{\rho},\textbf{r}_{\lambda})|^{2}\mathrm{d}\textbf{r}_{\rho}\mathrm{d}\Omega_{\lambda},\end{aligned} (31)

where Ωρ\Omega_{\rho} and Ωλ\Omega_{\lambda} are the solid angles spanned by vectors rρ\textbf{r}_{\rho} and rλ\textbf{r}_{\lambda}, respectively. From Figs.5-7 and tables I-VI, one can find some interesting properties.

(1) For the same nn states, when LL changes from 1 to 4, their rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} values increase small. But their rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} values become larger gradually. The similar phenomenon can be seen in Figs.5 and 6, where the radial probability of rρ2ω(rρ)r_{\rho}^{2}\omega(r_{\rho}) changes a little with different LL values. However, the peak of the rλ2ω(rλ)r_{\lambda}^{2}\omega(r_{\lambda}) significantly shifts outward with increasing LL.

(2) For the same LL states, rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} and rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} generally become larger with increasing nn. And the peaks of their probability densities are generally shifted outward, as shown in Fig.7.

(3) The shapes of the eight black (solid) lines in Fig.5 are almost as same as those in Fig.6. And the values of rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} for the same state are almost the same for Ξc\Xi_{c}(Ξc\Xi_{c}^{{}^{\prime}}) and Ξb\Xi_{b}(Ξb\Xi_{b}^{{}^{\prime}}) families. This reflects the fact that the configurations of the two light quarks in Ξc\Xi_{c}(Ξc\Xi_{c}^{{}^{\prime}}) and Ξb\Xi_{b}(Ξb\Xi_{b}^{{}^{\prime}}) baryons are similar to each other.

(4) As shown in tables I-VI, the root mean square radii of those baryons which have been experimentally well established are generally less than 0.8 fm.

When the root mean square radius becomes larger, the radial probability distribution of the wave function appears more outwardly extended, and the baryons become even looser. Generally speaking, the root mean square radius of a compact baryon might be within a threshold, which is of help to estimate the upper limit of the mass spectrum and constrain the number of members for each heavy baryon family.

Refer to caption
Figure 5: (Color online)Radial probability density distributions for some 1L1L states in the Ξc\Xi_{c} and Ξc\Xi_{c}^{{}^{\prime}} families. The solid line denotes the probability density with rρr_{\rho}, and the dash line denotes the one with rλr_{\lambda}.
Refer to caption
Figure 6: (Color online)Same as Fig.5, but for the Ξb\Xi_{b} and Ξb\Xi_{b}^{{}^{\prime}} families.
Refer to caption
Figure 7: (Color online)Radial probability density distributions for some nSnS states in the Ξc\Xi_{c} and Ξb\Xi_{b} families.

3.3 Regge trajectories

Regge trajectories is an effective method to discribe the hadron mass spectrumart503 ; art504 ; art501 ; art502 ; art505 . In 2011, Ebert etal.et\ al. constructed the heavy baryon Regge trajectories in both the (J,M2)(J,M^{2}) and the (n,M2)(n,M^{2}) planes art1 .

In this subsection, we investigate the Regge trajectories in the (J,M2)(J,M^{2}) plane based on our calculated mass spectra. The states in a baryon family can be classified according to the following parities and angular momenta: (1) Natural P=(1)J+1/2P=(-1)^{J+1/2} and unnatural P=(1)J1/2P=(-1)^{J-1/2} parities (written in short as NPNP and UPUP, respectively)art124 ; (2) J=j+1/2J=j+1/2 and J=j1/2J=j-1/2 (written in short as NJNJ and UJUJ). Thus, the states in the Ξc\Xi_{c} or Ξb\Xi_{b} family are divided into two groups, and the states in the Ξc\Xi_{c}^{{}^{\prime}} or Ξb\Xi_{b}^{{}^{\prime}} family are divided into six groups. In this paper, we use the following definition for the (J,M2)(J,M^{2}) Regge trajectories,

M2=αJ+β,\displaystyle M^{2}=\alpha J+\beta, (32)

where α\alpha and β\beta are the slope and intercept. In Figs. 7 and 8, we plot the Regge trajectories in the (J,M2)(J,M^{2}) plane. The three lines in each figure correspond to the radial quantum number nn= 1, 2, 3, respectively. The fitted slopes and intercepts of the Regge trajectories are given in Tables VII and VIII.

It is shown that the linear trajectories appear clearly in the (J,M2)(J,M^{2}) plane. All the data points fall on the trajectory lines. This indicates that the Regge trajectory has a strong universality and our theoretical calculations are reliable. These trajectories are almost parallel, but not equidistant, which is an apparent difference between our mass spectra and those in reference art1 .

In this paper, we do not show the Regge trajectories in the (n,M2)(n,M^{2}) plane. In fact, the linear trajectories in the (n,M2)(n,M^{2}) plane can not be constructed from our predicted masses. As will be mentioned in subsection 3.5, if the observation of heavy baryons in forthcoming experiments touched the 3S3S sub shell, it would be a chance to check the (n,M2)(n,M^{2}) Regge trajectories, and then we can determine whether a single heavy baryons is a three-quark system or a quark-diquark system.

Refer to caption
Figure 8: (Color online)(J,M2)(J,M^{2}) Regge trajectories for the Ξc\Xi_{c} (Ξc\Xi_{c}^{{}^{\prime}}) families and M2M^{2} is in GeV2.
Refer to caption
Figure 9: (Color online)(J,M2)(J,M^{2}) Regge trajectories for the Ξb\Xi_{b} (Ξb\Xi_{b}^{{}^{\prime}}) families and M2M^{2} is in GeV2.

3.4 Preliminary assignment to some observed heavy baryons

For the well determined Ξc\Xi_{c} (Ξc\Xi^{{}^{\prime}}_{c}) baryons in the PDG, we can assign them to the corresponding positions nicely as follows, Ξc+\Xi_{c}^{+} and Ξc0\Xi_{c}^{0} \leftrightarrow Ξc\Xi_{c} 1S(12+)1S(\frac{1}{2}^{+}), Ξc+,0\Xi_{c}^{{}^{\prime}+,0} \leftrightarrow Ξc\Xi_{c} 1S(12+)1S(\frac{1}{2}^{+}), Ξc(2645)+,0\Xi_{c}(2645)^{+,0} \leftrightarrow Ξc\Xi_{c}^{{}^{\prime}} 1S(32+)1S(\frac{3}{2}^{+}), Ξc(2790)+,0\Xi_{c}(2790)^{+,0} and Ξc(2815)+,0\Xi_{c}(2815)^{+,0} \leftrightarrow Ξc\Xi_{c} 1P(12,32)1P(\frac{1}{2}^{-},\frac{3}{2}^{-}) as shown in Tables I and II. The measured masses can be well reproduced in our calculations and the deviation is usually less than 14 MeV. Additionally, it needs to be noted that Ξc(2645)\Xi_{c}(2645) in the PDG should be labelled with Ξc(2645)\Xi_{c}^{{}^{\prime}}(2645).

Ξc(2970)\Xi_{c}(2970), earlier known as Ξc(2980)\Xi_{c}(2980), was first observed by the Belle art30 in 2006. Now the quantum numbers of Ξc(2970)\Xi_{c}(2970) are determined as 12+\frac{1}{2}^{+} in the latest PDG. In our calculations, the only candidate is the 2S(12+)2S(\frac{1}{2}^{+}) of Ξc\Xi_{c} as shown in Tables I. And the predicted mass is 15 MeV less than the experimental data. At last, Ξc\Xi_{c}(3055) and Ξc\Xi_{c}(3080) were observed by the BABAR art31 and the Belle art89 ; art30 ; art601 . As shown in the PDG, their spin and parity values have not yet been clear so far. According to the measured masses, Ξc\Xi_{c}(3055) and Ξc\Xi_{c}(3080) are likely to be the 1D1D doublet (32+\frac{3}{2}^{+}, 52+\frac{5}{2}^{+}) of Ξc\Xi_{c} in Table I or the 2S2S doublet (12+\frac{1}{2}^{+}, 32+\frac{3}{2}^{+}) of Ξc\Xi_{c}^{{}^{\prime}} in Table II. Considering the system with a smaller root mean square radius (especially for rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2}) is more stable, the 2S2S doublet states should then be the ideal candidates.

Outside of the PDG data, the Belle and the LHCb observed four charm-strange baryons, namely Ξc(2930)\Xi_{c}(2930) art120 , Ξc(2923)\Xi_{c}(2923), Ξc(2939)\Xi_{c}(2939), and Ξc(2964)\Xi_{c}(2964) art125 , whose masses are very close to each other. By the predicted masses in Tables I and II, the above four baryons can be assigned to be the first orbital (1P1P) excitation of Ξc\Xi_{c}^{{}^{\prime}} or the first radial (2S) excitation of Ξc\Xi_{c}. At present, we can not determine their quantum numbers accurately.

The Ξc\Xi_{c}(3123) was observed by the BABAR Collaboration art31 . However, it has not yet appeared in the PDG art2 so far. In our calculations, the predicted masses of the Ξc\Xi_{c} 3S(12+)3S(\frac{1}{2}^{+}) and Ξc\Xi_{c}^{{}^{\prime}} 2S(32+)2S(\frac{3}{2}^{+}) are 3155 MeV and 3095 MeV, respectively, which are relatively closer to the measured value of the Ξc\Xi_{c}(3123) than those of other states. Because the Ξc\Xi_{c}^{{}^{\prime}} 2S(32+)2S(\frac{3}{2}^{+}) has been considered as the candidate of the Ξc(3080)\Xi_{c}(3080), the Ξc\Xi_{c}(3123) is likely to be the Ξc\Xi_{c} 3S(12+)3S(\frac{1}{2}^{+}) state. Of course, whether Ξc\Xi_{c}(3123) exists remains to be tested.

The calculated mass spectra of Ξb\Xi_{b} and Ξb\Xi^{{}^{\prime}}_{b} families are listed in Tables IV-VI where a total of six bottom-strange baryons with determined quantum numbers in the PDG have been assigned to the possible states, such as Ξb,0\Xi_{b}^{-,0} \leftrightarrow Ξb\Xi_{b} 1S(12+)1S(\frac{1}{2}^{+}), Ξb(5935)\Xi_{b}^{{}^{\prime}}(5935)^{-} \leftrightarrow Ξb\Xi_{b}^{{}^{\prime}} 1S(12+)1S(\frac{1}{2}^{+}), Ξb(5945)0\Xi_{b}(5945)^{0} and Ξb(5955)\Xi_{b}(5955)^{-} \leftrightarrow Ξb\Xi_{b}^{{}^{\prime}} 1S(32+)1S(\frac{3}{2}^{+}).

In 2021, AMS collaboration determined the Ξb(6100)\Xi_{b}(6100) with the quantum numbers JP=32J^{P}=\frac{3}{2}^{-} by measuring the typical decay chain of Ξb(6100)Ξb0πΞbπ+π\Xi_{b}(6100)^{-}\rightarrow\Xi_{b}^{*0}\pi^{-}\rightarrow\Xi_{b}^{-}\pi^{+}\pi^{-} art90 . Very recently, the values of JP=32J^{P}=\frac{3}{2}^{-} of Ξb(6100)\Xi_{b}(6100) were written into the PDG data. Table IV shows the mass of the Ξb(6100)\Xi_{b}(6100) is very close to that of the Ξb\Xi_{b} 1P(32)1P(\frac{3}{2}^{-}) state. So, the Ξb(6100)\Xi_{b}(6100) is most likely to be the 1P(32)1P(\frac{3}{2}^{-}) state of Ξb\Xi_{b}. From Tables IV and V, we find the experimental data can be well reproduced by our theoretical calculations. In addition, it should be pointed out Ξb(5945)0\Xi_{b}(5945)^{0} and Ξb(5955)\Xi_{b}(5955)^{-} in the PDG ought to be labelled with Ξb(5945)0\Xi_{b}^{{}^{\prime}}(5945)^{0} and Ξb(5955)\Xi_{b}^{{}^{\prime}}(5955)^{-}.

The last two Ξb\Xi_{b} baryons in the PDG, Ξb(6227)\Xi_{b}(6227)^{-} and Ξb(6227)0\Xi_{b}(6227)^{0}, were reported by the LHCb Collaboration in 2018 art130 . But their spin and parity values are still not confirmed. In Tables IV and V, there are six states (one 2S2S state of Ξb\Xi_{b} and five 1P1P states of Ξb\Xi_{b}^{{}^{\prime}}) whose masses range from 6224 MeV to 6243 MeV. Each of them could be considered as a possible assignment to the Ξb(6227)\Xi_{b}(6227).

In 2021, two bottom-strange baryons Ξb(6327)\Xi_{b}(6327) and Ξb(6333)\Xi_{b}(6333) were reported by the LHCb Collaboration. Very recently, the LHCb implied in experiment that they should belong to the Ξb\Xi_{b} 1D(32+\frac{3}{2}^{+}, 52+\frac{5}{2}^{+}) doublet art126 . In Table IV, one can see the predicted masses of the 1D doublet (32+\frac{3}{2}^{+}, 52+\frac{5}{2}^{+}) of Ξb\Xi_{b} indeed match with the experimental data of the Ξb(6327)\Xi_{b}(6327) and Ξb(6333)\Xi_{b}(6333).

3.5 Shell structure of the mass spectra

The shell structure of the mass spectra are presented in Figs.10 and 11, where only the states with their root mean square radii less than 1 fm are collected. In this two figures, the well established baryons in experiment are labeled next to the corresponding states, and the recently observed baryons in experiment are arranged in their possible positions preliminarily according to the discussions in subsection 3.4.

From these two figures, we could get a bird’s-eye view of the mass spectra. Firstly, the baryon spectra of the Ξc\Xi_{c} (Ξc\Xi_{c}^{{}^{\prime}}) and Ξb\Xi_{b} (Ξb\Xi_{b}^{{}^{\prime}}) almost have the same shell structure. Secondly, the baryons with lighter masses were discovered earlier in experiment. Thirdly, there is a serious energy degeneracy in the PP, DD and FF states for the Ξc\Xi_{c}^{{}^{\prime}} (Ξb\Xi_{b}^{{}^{\prime}}) family. And the calculated masses for the 2S2S states of Ξc\Xi_{c} (Ξb\Xi_{b}) family are very close to those of the 1P1P states of the Ξc\Xi_{c}^{{}^{\prime}} (Ξb\Xi_{b}^{{}^{\prime}}) family. This makes these states hard to be identified in experiment.

At last, the states which are possibly observed in experiment can be predicted. For the Ξc\Xi_{c} family, the 1D1D doublets and the 3S(1/2)+3S(1/2)^{+} are likely to be experimentally observed first. In the Ξc\Xi_{c}^{{}^{\prime}} family, the 3S3S doublets might be the next ones to be observed. However, the predicted mass range of 3S3S doublet states overlaps heavily with that of the 1D1D states. As to the Ξb\Xi_{b} family, we find the 1P(1/2)1P(1/2)^{-} state should have been discovered earlier in experiment and the predicted mass is 60846084 MeV. The possibly observed states in the Ξb\Xi_{b}^{{}^{\prime}} family should be the 1P1P states where experimental observations will encounter the difficulty of the energy degeneracy.

Refer to caption
Figure 10: (Color online)Mass spectrum shells of the Ξc\Xi_{c} and Ξc\Xi_{c}^{{}^{\prime}} families.
Refer to caption
Figure 11: (Color online)Mass spectrum shells of the Ξb\Xi_{b} and Ξb\Xi_{b}^{{}^{\prime}} families.

IV. Conclusions

Motivated by the experimental development of singly heavy baryons, we investigate the strange single heavy baryon spectra in a three-quark system, where the relativistic quark model and the ISG method are employed. Considering the feature that the λ\lambda-mode appears lower in energy for definite states nL(JP)nL(J^{P}), we only focus on the λ\lambda-mode and obtain the mass spectra of the Ξc\Xi_{c}, Ξc\Xi_{c}^{{}^{\prime}}, Ξb\Xi_{b} and Ξb\Xi_{b}^{{}^{\prime}} families. For the well established baryons, our predicted masses can nicely reproduce the experimental data. We also investigate the root mean square radii and the radial probability density distributions, from which we can learn more about the structure of the strange single heavy baryons.

Based on the predicted mass spectra, we construct the Regge trajectories in the (J,M2)(J,M^{2}) plane. Nevertheless, we can not currently construct the linear trajectories in the (n,M2)(n,M^{2}) plane, which is an apparent difference between our mass spectra and those in the relativistic quark-diquark picture art1 .

For some recently observed baryons, We have preliminarily determined their reasonable positions in the mass spectra. At last, the mass spectral structure of the Ξc\Xi_{c} (Ξc\Xi_{c}^{{}^{\prime}}) and Ξb\Xi_{b} (Ξb\Xi_{b}^{{}^{\prime}}) families is presented, from which we could get a bird’s-eye view of the mass spectra and easily foresee where the experiment is going. Then, we analyze some states which might be observed in the forthcoming experiments.

Acknowledgements

Zhen-yu Li, one of the authors, thanks Wen-chao Dong for his valuable reference, helpful discussion and kind help in programming. And Li is also grateful to Professor Xian-Jian Shi for his support and encouragement. This work could not have been done without the joint efforts of all members of the phenomenological QCD theory group in North China Electric Power University. This research is supported by the Science and Technology Talent Project of Education Bureau of Guizhou Province, China (QJHKY [2018]058)), the National Natural Science Foundation of China (Grant No. 11675265), the Continuous Basic Scientific Research Project (Grant No. WDJC-2019-13), and the Leading Innovation Project (Grant No. LC 192209000701).

References

  • (1) P. Avery, et al. [CLEO Collaboration], Phys. Rev. Lett. 75, 4364-4368 (1995), arXiv:hep-ex/9508010.
  • (2) R. Mizuk, et al. [Belle Collaboration], Phys. Rev. Lett. 94, 122002 (2005), arXiv:hep-ex/0412069.
  • (3) B. Aubert, et al. [BaBar Collaboration], arXiv:hep-ex/0607042.
  • (4) R. Chistov, et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162001 (2006), arXiv:hep-ex/0606051.
  • (5) B. Aubert, et al. [BABAR Collaboration], Phys. Rev. D 77, 012002, (2008), arXiv:0710.5763 [hep-ex]
  • (6) B. Aubert, et al. [BaBar Collaboration], Phys. Rev. Lett. 97, 232001 (2006), arXiv:hep-ex/0608055.
  • (7) B. Aubert, et al. [BaBar Collaboration], Phys. Rev. Lett. 98, 012001 (2007), arXiv:hep-ex/0603052.
  • (8) K. Abe, et al. [Belle Collaboration], Phys. Rev. Lett. 98, 262001 (2007), arXiv:hep-ex/0608043.
  • (9) B. Aubert, et al. [BaBar Collaboration], Phys. Rev. D 77, 031101 (2008).
  • (10) T. Lesiak, et al. [Belle Collaboration], Phys. Lett. B 665, 9 (2008), arXiv:0802.3968[hep-ex].
  • (11) Y. Kato, et al. [Belle Collaboration], Phys. Rev. D 89, 052003 (2014), arXiv:1312.1026 [hep-ex].
  • (12) E. Solovieva, et al., Phys. Lett. B 672, 1 (2009), arXiv:0808.3677 [hep-ex].
  • (13) Y. B. Li, et al. [Belle Collaboration], Eur. Phys. J. C 78, 928 (2018), arXiv:1806.09182 [hep-ex].
  • (14) R. Aaij, et al. [LHCb collaboration], Phys. Rev. Lett. 124, 222001 (2020), arXiv:2003.13649 [hep-ex].
  • (15) T. J. Moon, et al. [Belle Collaboration], Phys. Rev. D 103, 111101 (2021), arXiv:2007.14700 [hep-ex].
  • (16) Y. Kato, et al. [Belle Collaboration], Phys. Rev. D 94, 032002 (2016), arXiv:1605.09103 [hep-ex].
  • (17) P. Abreu, et al. [DELPHI Collaboration], Z. Phys. C 68, 541 (1995).
  • (18) V. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett. 99, 052001 (2007), arXiv:0706.1690 [hep-ex].
  • (19) T. Aaltonen, et al. [CDF Collaboration], Phys. Rev. Lett. 99, 052002 (2007), arXiv:0707.0589 [hep-ex].
  • (20) T. Aaltonen [CDF Collaboration], Phys. Rev. Lett. 107, 102001 (2011), arXiv:1107.4015 [hep-ex].
  • (21) CMS Collaboration, Phys. Rev. Lett 108, 252002 (2012), arXiv:1204.5955 [hep-ex].
  • (22) R. Aaij, et al. [LHCb Collaboration], Phys. Rev. Lett. 114, 062004 (2015).
  • (23) R. Aaij, et al. [LHCb Collaboration], J. High Energy Phys. 05, 161 (2016).
  • (24) R. Aaij, et al. [LHCb Collaboration], Phys. Rev. Lett. 121, 072002 (2018), arXiv:1805.09418 [hep-ex].
  • (25) R. Aaij, et al. [LHCb Collaboration], Phys. Rev. Lett. 121, 072002 (2018).
  • (26) A. M. Sirunyan, et al. [CMS Collaboration], Phys. Rev. Lett. 126, 252003 (2021).
  • (27) R. Aaij, et al. [LHCb collaboration], Phys. Rev. Lett. 128, 162001 (2022), arXiv:2110.04497 [hep-ex].
  • (28) R. Aaij, et al. [LHCb Collaboration], Phys. Rev. Lett. 122, 012001 (2019), arXiv:1809.07752.
  • (29) R. Aaij, et al. [LHCb Collaboration], Phys. Rev. Lett. 123, 152001 (2019).
  • (30) P. A. Zyla, et al. [Particle Data Group], Prog. Theor. Exp. Phys. 083C01 (2020).
  • (31) R.Chistov, et al. [Belle Collaboration], Phys. Rev. Lett. 97, 162001 (2006).
  • (32) L. H. Liu, L. Y. Xiao, and X. H. Zhong, Phys. Rev. D 86, 034024 (2012), arXiv:1205.2943 [hep-ph].
  • (33) D. D. Ye, Z. Zhao and A. Zhang, Phys. Rev. D 96, 114009 (2017), arXiv:1709.00689 [hep-ph].
  • (34) Z. Zhao, D. D. Ye and A. Zhang, Phys. Rev. D 94, 114020 (2016).
  • (35) Y. X. Yao, K. L. Wang and X. H. Zhong, Phys. Rev. D 98 076015 (2018), arXiv:1803.00364.
  • (36) H. X. Chen, Q. Mao, A. Hosaka et al., Phys. Rev. D 94, 114016 (2016), arXiv:1611.02677v2 [hep-ph].
  • (37) D. D. Ye, Z. Zhao and A. Zhang, Phys. Rev. D 96, 114003 (2017), arXiv:1710.10165 [hep-ph].
  • (38) Z. G. Wang, Nucl. Phys. B 926, 467 (2018), arXiv:1705.07745 [hep-ph].
  • (39) H. X. Chen and Q. Mao, Atsushi Hosaka et al. Phys. Rev. D 94, 114016 (2016), arXiv:1611.02677 [hep-ph].
  • (40) B. Roelof, G. T. Hugo, G. Alessandro, et al., arXiv:2010.12437 [hep-ph].
  • (41) K. L. Wang, Y. X. Yao, X. H. Zhong, et al., Phys. Rev. D 96, 116016 (2017). arXiv: hep-ph/1709.04268.
  • (42) B. Chen, K. W. Wei and A. Zhang, Eur. Phys. J. A 51, 82 (2015), arXiv: hep-ph/1406.6561v4.
  • (43) B. Chen, X. Liu and A. Zhang, Phys. Rev. D 95, 074022 (2017).
  • (44) Z. G. Wang and H. J. Wang, Chin. Phys. C 45 013109 (2021) arXiv:2006.16776 [hep-ph].
  • (45) J. Nieves, R. Pavao and L. Tolos, Eur. Phys. J. C 80, 22 (2020), arXiv:1911.06089 [hep-ph].
  • (46) K. Gandhi and A. Kumar Rai, Eur. Phys. J. Plus 135, 213 (2020), arXiv:1911.11039 [hep-ph].
  • (47) Z. Zhao, Phys. Rev. D 102, 096021 (2020), arXiv:2008.00630 [hep-ph].
  • (48) B. Chen, K. W. Wei and A. Zhang, Eur. Phys. J. A 51, 82 (2015), arXiv:1406.6561 [hep-ph].
  • (49) K. L. Wang, Q. F. Lü, and X. H. Zhong, Phys. Rev. D 99, 014011 (2019).
  • (50) Y. Huang, C. J. Xiao, L. S. Geng et al., Phys. Rev. D 99, 014008 (2019).
  • (51) B. Chen, K. W. Wei, X. Liu et al., Phys. Rev. D 98, 031502 (2018), arXiv:1805.10826 [hep-ph].
  • (52) H. J. Wang, Z. Y. Di and Z. G. Wang, Int. J. Theor. Phys. 59(10): 3124-3133,(2020).
  • (53) K. Azizi, Y. Sarac and H. Sundu, Journal of High Energy Physics 2021, 244 (2021), arXiv:2012.01086 [hep-ph].
  • (54) G. L. Yu, Z. G. Wang and X. W. Wang, arXiv:2109.02217 [hep-ph].
  • (55) H. M. Yang, H. X. Chen, E. L. Cui et al., arXiv:2205.07224 [hep-ph].
  • (56) W. J. Wang, Y. H. Zhou, L. Y. Xiao, et al., Phys. Rev. D 105, 074008 (2022), arXiv:2202.05426 [hep-ph].
  • (57) D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Lett. B 659, 612 (2008), arXiv:0705.2957v2.
  • (58) D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 84, 014025 (2011),
  • (59) R. N. Faustov and V. O. Galkin, Phys. Rev. D 105, 014013 (2022), arXiv: hep-ph/2111.07702v1.
  • (60) H. Mutuk, Eur. Phys. J. Plus 137:10 (2022), arXiv: hep-ph/2112.06205v1.
  • (61) S. Capstick and N.Isgur, Phys. Rev. D 34, 2809 (1986).
  • (62) T. Yoshida, E. Hiyama, A. Hosaka, et al., Phys. Rev. D 92, 114029 (2015). arXiv: hep-ph/1510.01067.
  • (63) G. Yang, J. Ping, and J. Segovia, Few Body Syst. 59, 113 (2018). arXiv:1709.09315 [hep-ph].
  • (64) G. Yang, J. Ping, P. G. Ortega, et al., Chinese Phys. C 44, 023102 (2020). arXiv:1904.10166 [hep-ph].
  • (65) J. Segovia, D. R. Entem, F. Fernandez, et al., Int. J. Mod. Phys. E 22, 1330026 (2013). arXiv:1309.6926.
  • (66) M. Q. Huang, Y. B. Dai and C. S. Huang, Phys. Rev. D 52, 3986 (1995); 55, 7317(E) (1997).
  • (67) M. C. Banuls, A. Pich and I. Scimemi, Phys. Rev. D 61, 094009 (2000).
  • (68) H. Y. Cheng and C. K. Chua, Phys. Rev. D 75, 014006 (2007).
  • (69) N. Jiang, X. L. Chen and S. L. Zhu, Phys. Rev. D 92, 054017 (2015).
  • (70) H. Y. Cheng and C. K. Chua, Phys. Rev. D 92, 074014 (2015).
  • (71) X. H. Guo, K. W. Wei and X. H. Wu, Phys. Rev. D 77, 036003 (2008).
  • (72) G. L. Yu, Z. G. Wang and Z. Y. Li, Chinese Physics C 39, 6, 063101 (2015), arXiv: hep-ph/1402.5955.
  • (73) H. Z. He, W. Liang and Q. F. Lü, Phys. Rev. D 105, 014010 (2022), arXiv: hep-ph/2106.11045v2.
  • (74) C. Chen, X. L. Chen, X. Liu et al., Phys. Rev. D 75, 094017 (2007).
  • (75) P. Yang, J. J. Guo and A. Zhang, Phys. Rev. D 99, 034018 (2019), arXiv:1810.06947 [hep-ph].
  • (76) J. J. Guo, P. Yang, and A. Zhang, Phys. Rev. D 100, 014001 (2019), arXiv:1902.07488 [hep-ph].
  • (77) W. Liang, Q. F. Lü and X. H. Zhong, Phys. Rev. D 100, 054013 (2019).
  • (78) Q. F. Lü and X. H. Zhong, Phys. Rev. D 101, 014017 (2020).
  • (79) H. Z. He, W. Liang, Q. F. Lü et al., Sci. China Phys. Mech. Astron. 64, 261012(2021).
  • (80) M. Padmanath, R. G. Edwards, N. Mathur et al., arXiv:1311.4806.
  • (81) H. Bahtiyar, K. U. Can, G. Erkol et al., Phys. Lett. B 747, 281 (2015).
  • (82) P. Perez-Rubio, S. Collins and G. S. Bali, Phys. Rev. D 92, 034504 (2015).
  • (83) H. Bahtiyar, K. U. Can, G. Erkol et al., Phys. Lett. B 772, 121 (2017).
  • (84) C. K. Chow, Phys. Rev. D 54, 3374 (1996).
  • (85) S. L. Zhu and Y. B. Dai, Phys. Rev. D 59, 114015 (1999).
  • (86) S. S. Agaev, K. Azizi and H. Sundu, Phys. Rev. D 96, 094011 (2017).
  • (87) H. X. Chen, Q. Mao, W. Chen et al., Phys. Rev. D 95, 094008 (2017).
  • (88) Z. G. Wang, Phys. Rev. D 81, 036002 (2010).
  • (89) Z. G. Wang, Eur. Phys. J. A 44, 105 (2010).
  • (90) T. M. Aliev, K. Azizi and H. Sundu, Eur. Phys. J. C 75, 14 (2015).
  • (91) T. M. Aliev, K. Azizi and A. Ozpineci, Phys. Rev. D 79, 056005 (2009).
  • (92) T. M. Aliev, T. Barakat and M. Savc, Phys. Rev. D 93, 056007 (2016).
  • (93) T. M. Aliev, K. Azizi and M. Savci, Phys. Lett. B 696, 220(2011).
  • (94) T. M. Aliev, K. Azizi, Y. Sarac et al., Phys. Rev. D 99, 094003 (2019).
  • (95) S. L. Zhu, Phys. Rev. D 61, 114019 (2000).
  • (96) Z. G. Wang, Eur. Phys. J. A 47, 81 (2011).
  • (97) Q. Mao, H. X. Chen, W. Chen et al., Phys. Rev. D 92, 114007 (2015), arXiv:1510.05267 [hep-ph].
  • (98) H. X. Chen, Q. Mao, A. Hosaka et al., Phys. Rev. D 94, 114016 (2016).
  • (99) Q. Mao, H. X. Chen, A. Hosaka et al., Phys. Rev. D 96, 074021 (2017).
  • (100) T. M. Aliev, K. Azizi, Y. Sarac et al., Phys. Rev. D 98, 094014 (2018).
  • (101) E. L. Cui, H. M. Yang, H. X. Chen et al., Phys.Rev. D 99, 094021 (2019).
  • (102) K. Azizi, Y. Sarac and H. Sundu, Phys. Rev. D 101, 074026 (2020).
  • (103) K. Azizi, Y. Sarac and H. Sundu, Phys. Rev. D 102, 034007 (2020).
  • (104) Z. G. Wang, Eur. Phys. J. C, 75(8), 359 (2015).
  • (105) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
  • (106) E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).
  • (107) Q. F. Lü, D. Y. Chen and Y. B. Dong, Phys. Rev. D 102, 034012 (2020).
  • (108) Q. F. Lü, D. Y. Chen and Y. B. Dong, Eur. Phys. J. C 80, 871 (2020).
  • (109) Q. F. Lü, D. Y. Chen and Y. B. Dong, Phys. Rev. D 102, 074021 (2020).
  • (110) E. Hiyama, A. Hosaka, M. Oka et al., Phys. Rev. C 98, 045208 (2018), arXiv:1803.11369v1 [nucl-th].
  • (111) H. X. Chen, W. Chen, X. Liu, et al. Physics Reports 639,1-121(2016), arXiv:1601.02092 [hep-ph].
  • (112) F. K. Guo, C. Hanhart, U. G. Meiß{\ss}ner, et al., Rev. Mod. Phys. 90,015004(2018), arXiv:1705.00141 [hep-ph].
  • (113) R. Aaij, et al.,[LHCb collaboration], Phys. Rev. Lett. 122,222001(2019), arXiv:1904.03947 [hep-ex].
  • (114) X. K. Dong, F. K. Guo, B. S. Zou,Commun. Theor. Phys. 73(2021)125201, arXiv:2108.02673 [hep-ph].
  • (115) T. Ji, X. K. Dong, F. K. Guo, et al.,Phys. Rev. Lett. 129,102002(2022), arXiv:2205.10994 [hep-ph].
  • (116) C. Q. Pang, J. Z. Wang, X. Liu et al., Eur. Phys. J. C 77, 861 (2017).
  • (117) H. Georgi, Physics Letters B 240, 447-450, (1990).
  • (118) B. Chen, S. Q. Luo, X. Liu et al., Phys. Rev. D 100, 094032 (2019), arXiv:1910.03318.
  • (119) H. X. Chen, W. Chen, X. Liu et al., Rept. Prog. Phys. 80, 7, 076201 (2017), arXiv:1609.08928,
  • (120) H. Garcilazo, J. Vijande and A. Valcarce, J. phys. G 34, 961(2007).
  • (121) S. Migura, D. Merten, B. Metsch et al., Eur. Phys. J. A 28, 41 (2006).
  • (122) A. Martin, Z. Phys. C 32, 359 (1986).
  • (123) T. Regge, Nuovo Cim. 14, 951 (1959).
  • (124) T. Regge, Nuovo Cim. 18, 947-956 (1960).
  • (125) G. F. Chew and S. C. Frautschi, Phys. Rev. Lett. 7, 394-397 (1961) .
  • (126) G. F. Chew and S. C. Frautschi, Phys. Rev. Lett. 8, 41-44 (1962).
  • (127) M. Baker and R. Steinke, Phys. Rev. D 65, 094042 (2002).
  • (128) P. D. B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press),Cambridge, England, 1977.

Appendix

Table 1: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξc\Xi_{c} family.
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass exp.art2 art1
0 0 0 0 0 1S1S(12+\frac{1}{2}^{+}) 0.512 0.437 2479
Ξc+\Xi_{c}^{+} 2467.71(0.23)
Ξc0\Xi_{c}^{0} 2470.44(0.28)
2476
2S2S(12+\frac{1}{2}^{+}) 0.645 0.768 2949 2970? 2959
3S3S(12+\frac{1}{2}^{+}) 0.968 0.607 3155 3123?art31 3323
4S4S(12+\frac{1}{2}^{+}) 0.690 1.131 3318 3632
0 1 1 0 1 1P1P(12\frac{1}{2}^{-}) 0.542 0.627 2789
2791.9(0.5)
2793.9(0.5)
2792
2P2P(12\frac{1}{2}^{-}) 0.615 0.948 3176 3179
3P3P(12\frac{1}{2}^{-}) 1.038 0.763 3390 3500
4P4P(12\frac{1}{2}^{-}) 0.655 1.285 3492 3785
0 1 1 0 1 1P1P(32\frac{3}{2}^{-}) 0.550 0.654 2819
2816.51(0.25)
2819.79(0.30)
2819
2P2P(32\frac{3}{2}^{-}) 0.613 0.977 3199 3201
3P3P(32\frac{3}{2}^{-}) 1.053 0.779 3412 3519
4P4P(32\frac{3}{2}^{-}) 0.645 1.278 3508 3804
0 2 2 0 2 1D1D(32+\frac{3}{2}^{+}) 0.561 0.825 3063 3055? 3059
2D2D(32+\frac{3}{2}^{+}) 0.601 1.161 3406 3388
3D3D(32+\frac{3}{2}^{+}) 1.084 0.936 3617 3678
4D4D(32+\frac{3}{2}^{+}) 0.627 1.349 3676 3945
0 2 2 0 2 1D1D(52+\frac{5}{2}^{+}) 0.565 0.843 3076 3080? 3076
2D2D(52+\frac{5}{2}^{+}) 0.604 1.190 3419 3407
3D3D(52+\frac{5}{2}^{+}) 1.092 0.945 3627 3699
4D4D(52+\frac{5}{2}^{+}) 0.618 1.328 3688 3965
0 3 3 0 3 1F1F(52\frac{5}{2}^{-}) 0.567 0.998 3289 3278
2F2F(52\frac{5}{2}^{-}) 0.604 1.413 3613 3572
3F3F(52\frac{5}{2}^{-}) 1.103 1.087 3817 3845
4F4F(52\frac{5}{2}^{-}) 0.602 1.314 3861 4098
0 3 3 0 3 1F1F(72\frac{7}{2}^{-}) 0.569 1.009 3294 3292
2F2F(72\frac{7}{2}^{-}) 0.607 1.439 3619 3592
3F3F(72\frac{7}{2}^{-}) 1.111 1.088 3821 3865
4F4F(72\frac{7}{2}^{-}) 0.589 1.290 3871 4120
0 4 4 0 4 1G1G(72+\frac{7}{2}^{+}) 0.566 1.147 3486 3469
2G2G(72+\frac{7}{2}^{+}) 0.612 1.676 3798 3745
3G3G(72+\frac{7}{2}^{+}) 1.121 1.205 4000
4G4G(72+\frac{7}{2}^{+}) 0.559 1.222 4054
0 4 4 0 4 1G1G(92+\frac{9}{2}^{+}) 0.567 1.154 3487 3483
2G2G(92+\frac{9}{2}^{+}) 0.613 1.692 3799 3763
3G3G(92+\frac{9}{2}^{+}) 1.126 1.208 4001
4G4G(92+\frac{9}{2}^{+}) 0.551 1.202 4064
Table 2: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξc\Xi^{{}^{\prime}}_{c} family (Part I).
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass exp.art2 art1
0 0 0 1 1 1S1S(12+\frac{1}{2}^{+}) 0.590 0.431 2590
Ξc+\Xi_{c}^{{}^{\prime}+} 2578.2(0.5)
Ξc0\Xi_{c}^{{}^{\prime}0} 2578.7(0.5)
2579
2S2S(12+\frac{1}{2}^{+}) 0.821 0.705 3046 3055? 2983
3S3S(12+\frac{1}{2}^{+}) 0.918 0.671 3201 3377
4S4S(12+\frac{1}{2}^{+}) 0.897 1.053 3425 3695
0 0 0 1 1 1S1S(32+\frac{3}{2}^{+}) 0.611 0.476 2658
2645.10(0.30)
2646.16(0.25)
2654
2S2S(32+\frac{3}{2}^{+}) 0.801 0.763 3095 3080? 3026
3S3S(32+\frac{3}{2}^{+}) 0.968 0.676 3244 3396
4S4S(32+\frac{3}{2}^{+}) 0.850 1.095 3456 3709
0 1 1 1 0 1P1P(12\frac{1}{2}^{-}) 0.649 0.671 2952 2936
2P2P(12\frac{1}{2}^{-}) 0.762 0.978 3326 3313
3P3P(12\frac{1}{2}^{-}) 1.055 0.811 3469 3630
4P4P(12\frac{1}{2}^{-}) 0.783 1.245 3636 3912
0 1 1 1 1 1P1P(12\frac{1}{2}^{-}) 0.644 0.659 2941 2854
2P2P(12\frac{1}{2}^{-}) 0.763 0.962 3315 3267
3P3P(12\frac{1}{2}^{-}) 1.048 0.804 3460 3598
4P4P(12\frac{1}{2}^{-}) 0.788 1.248 3628 3887
0 1 1 1 1 1P1P(32\frac{3}{2}^{-}) 0.651 0.677 2958 2935
2P2P(32\frac{3}{2}^{-}) 0.761 0.985 3331 3311
3P3P(32\frac{3}{2}^{-}) 1.059 0.814 3473 3628
4P4P(32\frac{3}{2}^{-}) 0.780 1.243 3640 3911
0 1 1 1 2 1P1P(32\frac{3}{2}^{-}) 0.642 0.653 2934 2930?art120 2912
2P2P(32\frac{3}{2}^{-}) 0.764 0.955 3310 3293
3P3P(32\frac{3}{2}^{-}) 1.043 0.801 3456 3613
4P4P(32\frac{3}{2}^{-}) 0.791 1.249 3624 3898
0 1 1 1 2 1P1P(52\frac{5}{2}^{-}) 0.652 0.682 2964 2929
2P2P(52\frac{5}{2}^{-}) 0.761 0.993 3335 3303
3P3P(52\frac{5}{2}^{-}) 1.062 0.817 3477 3619
4P4P(52\frac{5}{2}^{-}) 0.778 1.241 3644 3902
0 2 2 1 1 1D1D(12+\frac{1}{2}^{+}) 0.668 0.851 3201 3163
2D2D(12+\frac{1}{2}^{+}) 0.744 1.195 3541 3505
3D3D(12+\frac{1}{2}^{+}) 1.104 0.955 3676
4D4D(12+\frac{1}{2}^{+}) 0.738 1.303 3816
0 2 2 1 1 1D1D(32+\frac{3}{2}^{+}) 0.671 0.865 3211 3167
2D2D(32+\frac{3}{2}^{+}) 0.745 1.219 3550 3506
3D3D(32+\frac{3}{2}^{+}) 1.111 0.963 3684
4D4D(32+\frac{3}{2}^{+}) 0.734 1.285 3827
Table 3: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξc\Xi^{{}^{\prime}}_{c} family (Part II).
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass art1
0 2 2 1 2 1D1D(32+\frac{3}{2}^{+}) 0.668 0.851 3201 3160
2D2D(32+\frac{3}{2}^{+}) 0.744 1.195 3541 3497
3D3D(32+\frac{3}{2}^{+}) 1.104 0.955 3676
4D4D(32+\frac{3}{2}^{+}) 0.738 1.303 3816
0 2 2 1 2 1D1D(52+\frac{5}{2}^{+}) 0.671 0.865 3211 3166
2D2D(52+\frac{5}{2}^{+}) 0.745 1.219 3551 3504
3D3D(52+\frac{5}{2}^{+}) 1.111 0.963 3685
4D4D(52+\frac{5}{2}^{+}) 0.734 1.285 3828
0 2 2 1 3 1D1D(52+\frac{5}{2}^{+}) 0.667 0.850 3200 3153
2D2D(52+\frac{5}{2}^{+}) 0.744 1.193 3540 3493
3D3D(52+\frac{5}{2}^{+}) 1.104 0.954 3676
4D4D(52+\frac{5}{2}^{+}) 0.738 1.304 3815
0 2 2 1 3 1D1D(72+\frac{7}{2}^{+}) 0.672 0.868 3213 3147
2D2D(72+\frac{7}{2}^{+}) 0.746 1.224 3552 3486
3D3D(72+\frac{7}{2}^{+}) 1.112 0.965 3686
4D4D(72+\frac{7}{2}^{+}) 0.733 1.281 3829
0 3 3 1 2 1F1F(32\frac{3}{2}^{-}) 0.676 1.022 3424 3418
2F2F(32\frac{3}{2}^{-}) 0.742 1.454 3744
3F3F(32\frac{3}{2}^{-}) 1.136 1.096 3872
4F4F(32\frac{3}{2}^{-}) 0.699 1.262 4010
0 3 3 1 2 1F1F(52\frac{5}{2}^{-}) 0.678 1.031 3428 3408
2F2F(52\frac{5}{2}^{-}) 0.744 1.474 3748
3F3F(52\frac{5}{2}^{-}) 1.140 1.101 3876
4F4F(52\frac{5}{2}^{-}) 0.698 1.243 4020
0 3 3 1 3 1F1F(52\frac{5}{2}^{-}) 0.676 1.022 3424 3394
2F2F(52\frac{5}{2}^{-}) 0.742 1.454 3744
3F3F(52\frac{5}{2}^{-}) 1.136 1.096 3872
4F4F(52\frac{5}{2}^{-}) 0.699 1.263 4009
0 3 3 1 3 1F1F(72\frac{7}{2}^{-}) 0.678 1.031 3428 3393
2F2F(72\frac{7}{2}^{-}) 0.744 1.475 3748
3F3F(72\frac{7}{2}^{-}) 1.140 1.101 3876
4F4F(72\frac{7}{2}^{-}) 0.698 1.242 4021
0 3 3 1 4 1F1F(72\frac{7}{2}^{-}) 0.676 1.021 3423 3373
2F2F(72\frac{7}{2}^{-}) 0.742 1.453 3744
3F3F(72\frac{7}{2}^{-}) 1.136 1.095 3872
4F4F(72\frac{7}{2}^{-}) 0.699 1.264 4009
0 3 3 1 4 1F1F(92\frac{9}{2}^{-}) 0.678 1.032 3428 3357
2F2F(92\frac{9}{2}^{-}) 0.744 1.476 3749
3F3F(92\frac{9}{2}^{-}) 1.140 1.102 3876
4F4F(92\frac{9}{2}^{-}) 0.698 1.241 4021
Table 4: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξb\Xi_{b} family.
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass exp.art2 art1
0 0 0 0 0 1S1S(12+\frac{1}{2}^{+}) 0.518 0.400 5806
Ξb\Xi_{b}^{-} 5797.0(0.6)
Ξb0\Xi_{b}^{0} 5791.9(0.5)
5803
2S2S(12+\frac{1}{2}^{+}) 0.607 0.705 6224 6266
3S3S(12+\frac{1}{2}^{+}) 0.990 0.549 6480 6601
4S4S(12+\frac{1}{2}^{+}) 0.672 1.066 6568 6913
0 1 1 0 1 1P1P(12\frac{1}{2}^{-}) 0.539 0.571 6084 6120
2P2P(12\frac{1}{2}^{-}) 0.586 0.844 6421 6496
3P3P(12\frac{1}{2}^{-}) 1.034 0.713 6690 6805
4P4P(12\frac{1}{2}^{-}) 0.673 1.281 6732 7068
0 1 1 0 1 1P1P(32\frac{3}{2}^{-}) 0.543 0.583 6097 6100.3(0.6) 6130
2P2P(32\frac{3}{2}^{-}) 0.585 0.853 6432 6502
3P3P(32\frac{3}{2}^{-}) 1.043 0.719 6700 6810
4P4P(32\frac{3}{2}^{-}) 0.668 1.293 6739 7073
0 2 2 0 2 1D1D(32+\frac{3}{2}^{+}) 0.551 0.743 6320 6366
2D2D(32+\frac{3}{2}^{+}) 0.568 0.962 6613 6690
3D3D(32+\frac{3}{2}^{+}) 0.990 1.040 6883 6966
4D4D(32+\frac{3}{2}^{+}) 0.778 1.359 6890 7208
0 2 2 0 2 1D1D(52+\frac{5}{2}^{+}) 0.553 0.751 6327 6373
2D2D(52+\frac{5}{2}^{+}) 0.568 0.967 6621 6696
3D3D(52+\frac{5}{2}^{+}) 0.948 1.124 6888 6970
4D4D(52+\frac{5}{2}^{+}) 0.831 1.294 6894 7212
0 3 3 0 3 1F1F(52\frac{5}{2}^{-}) 0.555 0.903 6518 6577
2F2F(52\frac{5}{2}^{-}) 0.553 1.064 6795 6863
3F3F(52\frac{5}{2}^{-}) 0.619 1.646 7032 7114
4F4F(52\frac{5}{2}^{-}) 1.110 0.960 7057 7339
0 3 3 0 3 1F1F(72\frac{7}{2}^{-}) 0.556 0.909 6523 6581
2F2F(72\frac{7}{2}^{-}) 0.553 1.070 6801 6867
3F3F(72\frac{7}{2}^{-}) 0.618 1.641 7034 7117
4F4F(72\frac{7}{2}^{-}) 1.111 0.965 7060 7342
0 4 4 0 4 1G1G(72+\frac{7}{2}^{+}) 0.554 1.048 6692 6760
2G2G(72+\frac{7}{2}^{+}) 0.542 1.178 6970 7020
3G3G(72+\frac{7}{2}^{+}) 0.607 1.745 7167
4G4G(72+\frac{7}{2}^{+}) 1.119 1.095 7214
0 4 4 0 4 1G1G(92+\frac{9}{2}^{+}) 0.555 1.052 6695 6762
2G2G(92+\frac{9}{2}^{+}) 0.544 1.189 6975 7032
3G3G(92+\frac{9}{2}^{+}) 0.605 1.737 7169
4G4G(92+\frac{9}{2}^{+}) 1.120 1.098 7217
Table 5: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξb\Xi^{{}^{\prime}}_{b} family (Part I).
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass exp.art2 art1
0 0 0 1 1 1S1S(12+\frac{1}{2}^{+}) 0.604 0.411 5943 5935.02(0.05) 5936
2S2S(12+\frac{1}{2}^{+}) 0.741 0.697 6350 6329
3S3S(12+\frac{1}{2}^{+}) 0.998 0.559 6535 6687
4S4S(12+\frac{1}{2}^{+}) 0.804 1.063 6691 6978
0 0 0 1 1 1S1S(32+\frac{3}{2}^{+}) 0.614 0.431 5971
5952.3(0.6)
5955.33(0.13)
5963
2S2S(32+\frac{3}{2}^{+}) 0.735 0.716 6370 6342
3S3S(32+\frac{3}{2}^{+}) 1.017 0.566 6554 6695
4S4S(32+\frac{3}{2}^{+}) 0.793 1.087 6705 6984
0 1 1 1 0 1P1P(12\frac{1}{2}^{-}) 0.642 0.608 6238 6233
2P2P(12\frac{1}{2}^{-}) 0.709 0.866 6569 6611
3P3P(12\frac{1}{2}^{-}) 1.074 0.705 6758 6915
4P4P(12\frac{1}{2}^{-}) 0.772 1.296 6866 7174
0 1 1 1 1 1P1P(12\frac{1}{2}^{-}) 0.640 0.603 6232 6227
2P2P(12\frac{1}{2}^{-}) 0.709 0.862 6564 6604
3P3P(12\frac{1}{2}^{-}) 1.071 0.701 6754 6904
4P4P(12\frac{1}{2}^{-}) 0.774 1.292 6863 7164
0 1 1 1 1 1P1P(32\frac{3}{2}^{-}) 0.643 0.610 6240 6234
2P2P(32\frac{3}{2}^{-}) 0.709 0.868 6572 6605
3P3P(32\frac{3}{2}^{-}) 1.076 0.707 6760 6905
4P4P(32\frac{3}{2}^{-}) 0.771 1.297 6868 7163
0 1 1 1 2 1P1P(32\frac{3}{2}^{-}) 0.639 0.600 6229
6227.9(0.9)?
6226.8(1.6)?
6224
2P2P(32\frac{3}{2}^{-}) 0.709 0.859 6562 6598
3P3P(32\frac{3}{2}^{-}) 1.069 0.700 6752 6900
4P4P(32\frac{3}{2}^{-}) 0.774 1.291 6861 7159
0 1 1 1 2 1P1P(52\frac{5}{2}^{-}) 0.644 0.613 6243 6226
2P2P(52\frac{5}{2}^{-}) 0.708 0.871 6574 6596
3P3P(52\frac{5}{2}^{-}) 1.077 0.708 6762 6897
4P4P(52\frac{5}{2}^{-}) 0.770 1.299 6869 7156
0 2 2 1 1 1D1D(12+\frac{1}{2}^{+}) 0.656 0.773 6460 6447
2D2D(12+\frac{1}{2}^{+}) 0.690 0.992 6757 6767
3D3D(12+\frac{1}{2}^{+}) 1.109 0.845 6941
4D4D(12+\frac{1}{2}^{+}) 0.754 1.464 7017
0 2 2 1 1 1D1D(32+\frac{3}{2}^{+}) 0.658 0.780 6466 6459
2D2D(32+\frac{3}{2}^{+}) 0.690 0.998 6763 6775
3D3D(32+\frac{3}{2}^{+}) 1.111 0.850 6946
4D4D(32+\frac{3}{2}^{+}) 0.751 1.462 7020
Table 6: The root mean square radius (fm) and the mass spectrum (MeV) of the Ξb\Xi^{{}^{\prime}}_{b} family (Part II).
lρl_{\rho} lλl_{\lambda} LL ss jj nLnL(JPJ^{P}) rρ21/2\langle r_{\rho}^{2}\rangle^{1/2} rλ21/2\langle r_{\lambda}^{2}\rangle^{1/2} mass art1
0 2 2 1 2 1D1D(32+\frac{3}{2}^{+}) 0.656 0.773 6460 6431
2D2D(32+\frac{3}{2}^{+}) 0.690 0.992 6758 6751
3D3D(32+\frac{3}{2}^{+}) 1.109 0.845 6941
4D4D(32+\frac{3}{2}^{+}) 0.754 1.464 7017
0 2 2 1 2 1D1D(52+\frac{5}{2}^{+}) 0.658 0.780 6466 6432
2D2D(52+\frac{5}{2}^{+}) 0.690 0.999 6764 6751
3D3D(52+\frac{5}{2}^{+}) 1.112 0.851 6946
4D4D(52+\frac{5}{2}^{+}) 0.751 1.462 7021
0 2 2 1 3 1D1D(52+\frac{5}{2}^{+}) 0.656 0.773 6460 6420
2D2D(52+\frac{5}{2}^{+}) 0.690 0.991 6757 6740
3D3D(52+\frac{5}{2}^{+}) 1.108 0.844 6941
4D4D(52+\frac{5}{2}^{+}) 0.754 1.464 7017
0 2 2 1 3 1D1D(72+\frac{7}{2}^{+}) 0.658 0.781 6467 6414
2D2D(72+\frac{7}{2}^{+}) 0.690 1.000 6765 6736
3D3D(72+\frac{7}{2}^{+}) 1.112 0.851 6946
4D4D(72+\frac{7}{2}^{+}) 0.751 1.461 7021
0 3 3 1 2 1F1F(32\frac{3}{2}^{-}) 0.663 0.931 6657 6675
2F2F(32\frac{3}{2}^{-}) 0.678 1.121 6942
3F3F(32\frac{3}{2}^{-}) 1.130 0.986 7110
4F4F(32\frac{3}{2}^{-}) 0.734 1.580 7162
0 3 3 1 2 1F1F(52\frac{5}{2}^{-}) 0.664 0.936 6660 6686
2F2F(52\frac{5}{2}^{-}) 0.680 1.130 6946
3F3F(52\frac{5}{2}^{-}) 1.131 0.991 7114
4F4F(52\frac{5}{2}^{-}) 0.732 1.573 7164
0 3 3 1 3 1F1F(52\frac{5}{2}^{-}) 0.663 0.931 6657 6640
2F2F(52\frac{5}{2}^{-}) 0.678 1.121 6942
3F3F(52\frac{5}{2}^{-}) 1.130 0.986 7110
4F4F(52\frac{5}{2}^{-}) 0.734 1.580 7162
0 3 3 1 3 1F1F(72\frac{7}{2}^{-}) 0.664 0.936 6660 6641
2F2F(72\frac{7}{2}^{-}) 0.680 1.131 6947
3F3F(72\frac{7}{2}^{-}) 1.131 0.991 7114
4F4F(72\frac{7}{2}^{-}) 0.731 1.572 7165
0 3 3 1 4 1F1F(72\frac{7}{2}^{-}) 0.663 0.931 6657 6619
2F2F(72\frac{7}{2}^{-}) 0.678 1.121 6942
3F3F(72\frac{7}{2}^{-}) 1.130 0.986 7110
4F4F(72\frac{7}{2}^{-}) 0.734 1.580 7162
0 3 3 1 4 1F1F(92\frac{9}{2}^{-}) 0.664 0.937 6661 6610
2F2F(92\frac{9}{2}^{-}) 0.680 1.132 6947
3F3F(92\frac{9}{2}^{-}) 1.131 0.991 7114
4F4F(92\frac{9}{2}^{-}) 0.731 1.572 7165
Table 7: Fitted values for the slope and intercept of the Regge trajectories for the Ξc\Xi_{c} and Ξc\Xi_{c}^{{}^{\prime}} families.
Trajectory n=1n=1 n=2n=2 n=3n=3
 α\alpha(GeV2)  β\beta(GeV2)  α\alpha(GeV2)  β\beta(GeV2)  α\alpha(GeV2)  β\beta(GeV2)
3¯F(NP)(NJ)\bar{3}_{F}(NP)(NJ)  1.493±0.0561.493\pm 0.056  5.580±0.1605.580\pm 0.160  1.433±0.0221.433\pm 0.022  8.047±0.0638.047\pm 0.063  1.507±0.0321.507\pm 0.032  9.305±0.0919.305\pm 0.091
3¯F(UP)(UJ)\bar{3}_{F}(UP)(UJ)   1.456±0.0431.456\pm 0.043  7.122±0.0987.122\pm 0.098  1.446±0.0231.446\pm 0.023  9.399±0.0529.399\pm 0.052  1.501±0.0261.501\pm 0.026  10.784±0.05910.784\pm 0.059
6F(NP)(UJ)6_{F}(NP)(UJ)  1.592±0.0581.592\pm 0.058  6.098±0.1666.098\pm 0.166  1.530±0.0331.530\pm 0.033  8.611±0.0968.611\pm 0.096  1.539±0.0311.539\pm 0.031  9.574±0.0899.574\pm 0.089
6F(UP)(UJ)6_{F}(UP)(UJ)   1.487±0.0331.487\pm 0.033  7.959±0.0767.959\pm 0.076  1.473±0.0261.473\pm 0.026  10.292±0.05910.292\pm 0.059  1.482±0.0181.482\pm 0.018  11.260±0.04111.260\pm 0.041
6F(NP)(UJ)6_{F}(NP)(UJ)   1.433±0.0261.433\pm 0.026  9.545±0.0449.545\pm 0.044  1.433±0.0261.433\pm 0.026  11.837±0.04511.837\pm 0.045  1.453±0.0151.453\pm 0.015  12.795±0.02612.795\pm 0.026
6F(UP)(NJ)6_{F}(UP)(NJ)   1.507±0.0401.507\pm 0.040  4.933±0.1534.933\pm 0.153  1.459±0.0221.459\pm 0.022  7.451±0.0827.451\pm 0.082  1.474±0.0191.474\pm 0.019  8.371±0.0718.371\pm 0.071
6F(NP)(NJ)6_{F}(NP)(NJ)   1.455±0.0311.455\pm 0.031  6.618±0.0986.618\pm 0.098  1.437±0.0251.437\pm 0.025  8.980±0.0798.980\pm 0.079  1.454±0.0181.454\pm 0.018  9.911±0.0589.911\pm 0.058
6F(UP)(NJ)6_{F}(UP)(NJ)   1.463±0.0341.463\pm 0.034  8.041±0.0788.041\pm 0.078  1.444±0.0251.444\pm 0.025  10.383±0.05710.383\pm 0.057  1.460±0.0191.460\pm 0.019  11.336±0.04311.336\pm 0.043
Table 8: Fitted values for the slope and intercept of the Regge trajectories for the Ξb\Xi_{b} and Ξb\Xi_{b}^{{}^{\prime}} families.
Trajectory n=1n=1 n=2n=2 n=3n=3
 α\alpha(GeV2)  β\beta(GeV2)  α\alpha(GeV2)  β\beta(GeV2)  α\alpha(GeV2)  β\beta(GeV2)
3¯F(NP)(NJ)\bar{3}_{F}(NP)(NJ)  2.760±0.1342.760\pm 0.134  32.756±0.38632.756\pm 0.386  2.470±0.0272.470\pm 0.027  37.595±0.07737.595\pm 0.077  2.341±0.1222.341\pm 0.122  41.187±0.35041.187\pm 0.350
3¯F(UP)(UJ)\bar{3}_{F}(UP)(UJ)   2.582±0.0992.582\pm 0.099  35.891±0.22635.891\pm 0.226  2.449±0.0142.449\pm 0.014  40.029±0.03340.029\pm 0.033  2.190±0.1142.190\pm 0.114  43.86±0.26243.86\pm 0.262
6F(NP)(UJ)6_{F}(NP)(UJ)  2.820±0.1292.820\pm 0.129  34.316±0.37134.316\pm 0.371  2.592±0.0322.592\pm 0.032  39.116±0.09239.116\pm 0.092  2.518±0.0762.518\pm 0.076  41.681±0.21941.681\pm 0.219
6F(UP)(UJ)6_{F}(UP)(UJ)   2.605±0.0872.605\pm 0.087  37.677±0.19937.677\pm 0.199  2.529±0.0142.529\pm 0.014  41.849±0.03341.849\pm 0.033  2.388±0.0512.388\pm 0.051  44.509±0.11644.509\pm 0.116
6F(NP)(UJ)6_{F}(NP)(UJ)   2.465±0.0682.465\pm 0.068  40.538±0.11740.538\pm 0.117  2.512±0.0132.512\pm 0.013  44.409±0.02244.409\pm 0.022  2.309±0.0382.309\pm 0.038  47.045±0.06547.045\pm 0.065
6F(UP)(NJ)6_{F}(UP)(NJ)   2.747±0.1132.747\pm 0.113  31.888±0.42831.888\pm 0.428  2.536±0.0192.536\pm 0.019  36.834±0.07236.834\pm 0.072  2.462±0.0622.462\pm 0.062  39.454±0.23539.454\pm 0.235
6F(NP)(NJ)6_{F}(NP)(NJ)   2.580±0.0852.580\pm 0.085  35.207±0.27335.207\pm 0.273  2.510±0.0162.510\pm 0.016  39.450±0.05039.450\pm 0.050  2.374±0.0532.374\pm 0.053  42.222±0.17042.222\pm 0.170
6F(UP)(NJ)6_{F}(UP)(NJ)   2.588±0.0892.588\pm 0.089  37.766±0.20537.766\pm 0.205  2.522±0.0182.522\pm 0.018  41.921±0.04141.921\pm 0.041  2.382±0.0572.382\pm 0.057  44.573±0.13144.573\pm 0.131