This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tate Conjecture and Higher Brauer Groups of Abelian Varieties in Characteristic Zero

Thomas Jahn Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, Universitätsstr. 25, 33501 Bielefeld, Germany tjahn@math.uni-bielefeld.de
(Date: July 28, 2025)
Abstract.

Let AA be an abelian variety over a field finitely generated over \mathbb{Q}. We show that the finiteness of the \ell-primary torsion subgroup of the higher Brauer group is a sufficient criterion for the Tate conjecture to hold. Furthermore, we extend methods for computations of transcendental Brauer groups to higher Brauer groups.

Key words and phrases:
Tate conjecture, higher Brauer groups, Lichtenbaum cohomology
2010 Mathematics Subject Classification:
14C25, 14G25, 14F22, 11G05

1. Introduction

Let XX be a smooth projective variety over a field kk. The cohomological Brauer groups Br(X)=Het2(X,𝔾m)\mathrm{Br}(X)=\mathrm{H}_{\operatorname{et}}^{2}(X,\mathbb{G}_{m}) appears in several different settings in algebraic geometry. For example it obstructs the Hasse principle on XX (see [5]) and it appears in a formula describing Zeta functions (see [10, Conjecture C]).

The list of applications also includes obstructions to the Tate conjecture: Let kk be finitely generated over its prime field and let XX be a smooth projective kk-variety. The Tate conjecture TCr(X)\mathrm{TC}^{r}(X)_{\mathbb{Q}_{\ell}} in codimension rr at a prime char(k)\ell\neq\operatorname{char}(k) is the statement that the canonical cycle map cr:CHr(X)Het2r(X¯,(r))Gkc^{r}_{\mathbb{Q}_{\ell}}:\mathrm{CH}^{r}(X)\otimes\mathbb{Q}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Q}_{\ell}(r))^{G_{k}} is surjective [11]. Here X¯=X×kk¯\overline{X}=X\times_{k}\overline{k} denotes the base change to a separable closure k¯\overline{k} of kk and Gk=Gal(k¯/k)G_{k}=\mathrm{Gal}(\overline{k}/k) is the absolute Galois group. For a surface XX over a finite field kk Tate has shown that TC1(X)\mathrm{TC}^{1}(X)_{\mathbb{Q}_{\ell}} holds if and only if the \ell-primary torsion subgroup Br(X){}\mathrm{Br}(X)\{\ell\} of the cohomological Brauer group is finite [10, Theorem 5.2].

This has been generalised using higher Brauer groups which are defined using Lichtenbaum cohomology. The Lichtenbaum cohomology groups HLm(X,(n))\mathrm{H}_{\textrm{L}}^{m}(X,\mathbb{Z}(n)) are defined to be the hyper-cohomology groups of the (unbounded) complex of étale sheaves X(n)et\mathbb{Z}_{X}(n)_{\textrm{et}} given by Bloch’s cycle complex [1] on the small étale site XetX_{\textrm{et}}. The higher Brauer groups considered in this note are Brr(X)=HL2r+1(X,(r))\mathrm{Br}^{r}(X)=\mathrm{H}_{\textrm{L}}^{2r+1}(X,\mathbb{Z}(r)); as there exists a quasi-isomorphism X(1)et𝔾m[1]\mathbb{Z}_{X}(1)_{\textrm{et}}\sim\mathbb{G}_{m}[-1], we retrieve the Brauer group Br(X)=Het2(X,𝔾m)HL3(X,(1))=Br1(X)\mathrm{Br}(X)=\mathrm{H}_{\operatorname{et}}^{2}(X,\mathbb{G}_{m})\cong\mathrm{H}_{\textrm{L}}^{3}(X,\mathbb{Z}(1))=\mathrm{Br}^{1}(X). For any smooth projective, geometrically integral variety XX over a finite field kk and any prime char(k)\ell\neq\operatorname{char}(k), the Tate conjecture TCr(X)\mathrm{TC}^{r}(X)_{\mathbb{Q}_{\ell}} holds precisely when the \ell-primary subgroup of Brr(X)\mathrm{Br}^{r}(X) is finite [7, Theorem 1.4].

We give a partial answer to the question whether higher Brauer groups provide a similar obstruction to the Tate conjecture when kk is finitely generated over \mathbb{Q} in Section 3 where we prove the following

Theorem.

Let AA be an abelian variety over a field kk finitely generated over \mathbb{Q}. Fix an integer rr and a prime >2r\ell>2r. If the group Brr(A){}\mathrm{Br}^{r}(A)\{\ell\} is finite, then the Tate conjecture TCr(A)\mathrm{TC}^{r}(A)_{\mathbb{Q}_{\ell}} for AA in codimension rr holds at the prime \ell.

For any smooth projective variety XX over a field kk there exists a natural homomorphism Brr(X)Brr(X¯)\mathrm{Br}^{r}(X)\to\mathrm{Br}^{r}(\overline{X}) where again X¯=X×kk¯\overline{X}=X\times_{k}\overline{k} denotes the base change to a separable closure k¯\overline{k} of kk. The kernel Bralgr(X):=ker(Brr(X)Brr(X¯))\mathrm{Br}_{\textrm{alg}}^{r}(X):=\ker\left(\mathrm{Br}^{r}(X)\to\mathrm{Br}^{r}\left(\overline{X}\right)\right) is referred to as algebraic Brauer group while the quotient Brr(X)/Bralgr(X)\mathrm{Br}^{r}(X)/\mathrm{Br}^{r}_{\textrm{alg}}(X) is called transcendental Brauer group.

We remark that if the characteristic if kk is zero and XX is geometrically integral, the cokernel of Br(X)Br(X¯)\mathrm{Br}(X)\to\mathrm{Br}(\overline{X}) is finite [2, Théorème 2.1]. The question whether this is also true for r2r\geq 2 is open.

If furthermore X=AX=A is an abelian variety, Skorobogatov and Zarhin have proven (in the classical case, i.e. r=1r=1) the formula

Br(A)[n]/Bralg(A)[n]Het2(A¯,μn)Gk/(CH1(A¯)/n)Gk\mathrm{Br}(A)[n]/\mathrm{Br}_{\textrm{alg}}(A)[n]\cong\mathrm{H}_{\operatorname{et}}^{2}(\overline{A},\mu_{n})^{G_{k}}/(\mathrm{CH}^{1}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z})^{G_{k}}

for any odd integer nn [8, Corollary 2.3], relating the transcendental Brauer group of AA with étale cohomology and the Chow group of the base change A¯\overline{A}. This formula allows some computations of transcendental Brauer groups, see for example [8].

While we cannot say anything about Brr(A)\mathrm{Br}^{r}(A) itself, we prove an analogue of the above formula for higher Brauer groups and discuss how some of the computations of transcendental Brauer groups carry over to higher Brauer groups.

Notations and Conventions.

For a field kk we fix a separable closure k¯\overline{k} and denote by Gk=Gal(k¯/k)G_{k}=\mathrm{Gal}(\overline{k}/k) its absolute Galois group. For each kk-variety XX we denote by X¯=X×kk¯\overline{X}=X\times_{k}\overline{k} the base change to the closure.

For an abelian group GG we denote by G[n]G[n] the kernel of the multiplication by nn. Let \ell be a prime; the subgroup G{}=limnG[n]G\{\ell\}=\varinjlim_{n}G[\ell^{n}] is referred to as the \ell-primary torsion subgroup. Taking the projective limit instead gives us the Tate module TG=limnG[n]\mathrm{T}_{\ell}G=\varprojlim_{n}G[\ell^{n}] which is a torsion free \mathbb{Z}_{\ell}-module.

Similarly, for an abelian variety AA over kk we denote by A[n]A[n] the kernel of the multiplication by nn in End(A¯)\mathrm{End}(\overline{A}).

For a group GG and a GG-module MM we define MGM^{G} to be the maximal subgroup of MM being invariant under the action of GG.

2. Lichtenbaum cohomology

We start with the definitions of Lichtenbaum cohomology, higher Brauer groups and Chow-L groups as used in this paper.

For the entire section let XX be an equi-dimensional smooth quasi-projective variety over a field kk and denote by zn(X,)z^{n}(X,\bullet) the cycle complex of abelian groups defined by Bloch [1]. As the assertion

zn(,):Uzn(U,)z^{n}(-,\bullet):U\mapsto z^{n}(U,\bullet)

defines a complex of sheaves on the flat site of XX, it also defines complexes zn(,)etz^{n}(-,\bullet)_{\textrm{et}} resp. zn(,)Zarz^{n}(-,\bullet)_{\mathrm{Zar}} of sheaves on the étale resp. Zariski site of XX. We remark, that these complexes are unbounded on the left. For an abelian group AA, we set AX(n)et=(zn(,)etA)[2n]A_{X}(n)_{\textrm{et}}=(z^{n}(-,\bullet)_{\textrm{et}}\otimes A)[-2n] and define the Lichtenbaum respectively motivic cohomology groups with coefficients in AA by letting

HLm(X,A(n)):=etm(X,AX(n)et),resp.\displaystyle\mathrm{H}_{\textrm{L}}^{m}(X,A(n)):=\mathbb{H}_{\textrm{et}}^{m}(X,A_{X}(n)_{\textrm{et}}),\quad\textrm{resp.}
HMm(X,A(n)):=Zarm(X,AX(n)Zar).\displaystyle\mathrm{H}_{\textrm{M}}^{m}(X,A(n)):=\mathbb{H}_{\textrm{Zar}}^{m}(X,A_{X}(n)_{\textrm{Zar}})\,.

The definition of the hypercohomology of an unbounded complex was given in [9, p. 121].

For Chow groups we have the isomorphisms CHr(A)HM2r(X,(r))\mathrm{CH}^{r}(A)\cong\mathrm{H}_{\textrm{M}}^{2r}(X,\mathbb{Z}(r)) which motivates the definition CHLr(A):=HL2r(X,(r))\mathrm{CH}_{\mathrm{L}}^{r}(A):=\mathrm{H}_{\textrm{L}}^{2r}(X,\mathbb{Z}(r)) of Chow-L groups. With rational coefficients motivic cohomology and Lichtenbaum cohomology agree and therefore CHLr(A)CHr(A)\mathrm{CH}_{\mathrm{L}}^{r}(A)\otimes\mathbb{Q}\cong\mathrm{CH}^{r}(A)\otimes\mathbb{Q}.

We define higher Brauer groups as Brr(X):=HL2r+1(X,(r))\mathrm{Br}^{r}(X):=\mathrm{H}_{\textrm{L}}^{2r+1}(X,\mathbb{Z}(r)). The term ‘higher Brauer groups’ is justified by the fact that in weight n=1n=1 we have a quasi-isomorphism X(1)et𝔾m[1]\mathbb{Z}_{X}(1)_{\textrm{et}}\sim\mathbb{G}_{m}[-1] which implies that Br1(X)\mathrm{Br}^{1}(X) and Br(X)\mathrm{Br}(X) are isomorphic.

We remark that with rational coefficients Lichtenbaum cohomology groups and motivic cohomology groups coincide and therefore HL2r+1(X,(r))\mathrm{H}_{\textrm{L}}^{2r+1}(X,\mathbb{Q}(r)) is trivial. This implies that the higher Brauer groups Brr(X)\mathrm{Br}^{r}(X) is a quotient of HL2r(X,/(r))\mathrm{H}_{\textrm{L}}^{2r}(X,\mathbb{Q}/\mathbb{Z}(r)) and thus a torsion group.

For each prime \ell multiplication by m\ell^{m} gives us the exact sequence

0X(n)etmX(n)et(/m)X(n)et0.\displaystyle 0\to\mathbb{Z}_{X}(n)_{\textrm{et}}\overset{\ell^{m}}{\to}\mathbb{Z}_{X}(n)_{\textrm{et}}\to(\mathbb{Z}/\ell^{m}\mathbb{Z})_{X}(n)_{\textrm{et}}\to 0\,.

For primes \ell different from the characteristic of kk this sequence together with the quasi-isomorphism (/m)X(n)etμlmn(\mathbb{Z}/\ell^{m}\mathbb{Z})_{X}(n)_{\textrm{et}}\sim\mu_{l^{m}}^{\otimes n} constructed by Geisser and Levine [4, Theorem 1.5] furnishes us with short exact universal coefficient sequences

0HLi(X,(n))/mHeti(X,μmn)HLi+1(X,(n))[m]0.\displaystyle 0\to\mathrm{H}_{\textrm{L}}^{i}(X,\mathbb{Z}(n))\otimes\mathbb{Z}/\ell^{m}\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{i}(X,\mu_{\ell^{m}}^{\otimes n})\to\mathrm{H}_{\textrm{L}}^{i+1}(X,\mathbb{Z}(n))[{\ell^{m}}]\to 0\,.

In particular, in bidegree (i,n)=(2r,r)(i,n)=(2r,r) this sequence reads

(1) 0CHLr(X)/mHet2r(X,μmr)Brr(X)[m]0\displaystyle 0\to\mathrm{CH}_{\mathrm{L}}^{r}(X)\otimes\mathbb{Z}/\ell^{m}\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{2r}(X,\mu_{\ell^{m}}^{\otimes r})\to\mathrm{Br}^{r}(X)[{\ell^{m}}]\to 0

and generalises the exact sequence for the classical Brauer group induced by the Kummer sequence.

3. Tate Conjecture for Abelian Varieties

Let kk be a field finitely generated over \mathbb{Q}. Fix a separable closure k¯\overline{k} of kk and denote by Gk:=Gal(k¯/k)G_{k}:=\mathrm{Gal}(\overline{k}/k) the absolute Galois group. For a smooth projective geometrically integral kk-variety we consider the composition of canonical homomorphisms

(2) CHLr(X)CHLr(X¯)HL2r(X¯,/n(r))Het2r(X¯,μnr)\displaystyle\mathrm{CH}_{\mathrm{L}}^{r}(X)\to\mathrm{CH}_{\mathrm{L}}^{r}(\overline{X})\to\mathrm{H}_{\textrm{L}}^{2r}(\overline{X},\mathbb{Z}/\ell^{n}\mathbb{Z}(r))\overset{\cong}{\to}\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mu_{\ell^{n}}^{\otimes r})

which induces a bunch of homomorphisms

cnr\displaystyle c^{r}_{\ell^{n}} :CHLr(X)Het2r(X¯,μnr)Gk\displaystyle:\mathrm{CH}_{\mathrm{L}}^{r}(X)\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mu_{\ell^{n}}^{\otimes r})^{G_{k}}
limncnr\displaystyle\varprojlim_{n}c^{r}_{\ell^{n}} :CHLr(X)Het2r(X¯,(r))Gk\displaystyle:\mathrm{CH}_{\mathrm{L}}^{r}(X)\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Z}_{\ell}(r))^{G_{k}}
c¯nr\displaystyle\overline{c}^{r}_{\ell^{n}} :CHLr(X)/nHet2r(X¯,μnr)Gk\displaystyle:\mathrm{CH}_{\mathrm{L}}^{r}(X)\otimes\mathbb{Z}/\ell^{n}\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mu_{\ell^{n}}^{\otimes r})^{G_{k}}
limnc¯nr\displaystyle\varprojlim_{n}\overline{c}^{r}_{\ell^{n}} :CHLr(X)Het2r(X¯,(r))Gk\displaystyle:\mathrm{CH}_{\mathrm{L}}^{r}(X)^{\wedge}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Z}_{\ell}(r))^{G_{k}}

where CHLr(X):=limnCHLr(X)/n\mathrm{CH}_{\mathrm{L}}^{r}(X)^{\wedge}:=\varprojlim_{n}\mathrm{CH}_{\mathrm{L}}^{r}(X)\otimes\mathbb{Z}/\ell^{n}\mathbb{Z}. The map limncnr\varprojlim_{n}c^{r}_{\ell^{n}} induces a map

limncnrid:CHLr(X)Het2r(X¯,(r))Gk\varprojlim_{n}c^{r}_{\ell^{n}}\otimes\mathrm{id}_{\mathbb{Z}_{\ell}}:\mathrm{CH}_{\mathrm{L}}^{r}(X)\otimes\mathbb{Z}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Z}_{\ell}(r))^{G_{k}}

and the image of limncnrid\varprojlim_{n}c^{r}_{\ell^{n}}\otimes\mathrm{id}_{\mathbb{Z}_{\ell}} agrees with the image of limnc¯nr\varprojlim_{n}\overline{c}_{\ell^{n}}^{r}. Moreover, the homomorphism limncnrid\varprojlim_{n}c_{\ell^{n}}^{r}\otimes\mathrm{id}_{\mathbb{Q}_{\ell}} agrees the cycle map cr:CHr(X)Het2r(X¯,(r))Gkc_{\mathbb{Q}_{\ell}}^{r}:\mathrm{CH}^{r}(X)\otimes\mathbb{Q}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Q}_{\ell}(r))^{G_{k}}.

Theorem 3.1.

Let AA be an abelian variety over a finite field extension kk of \mathbb{Q}. Fix an integer rr and a prime >2r\ell>2r. If the group Brr(A){}\mathrm{Br}^{r}(A)\{\ell\} is finite, then the Tate conjecture TCr(A)\mathrm{TC}^{r}(A)_{\mathbb{Q}_{\ell}} for AA in codimension rr holds at the prime \ell.

Proof.

We have the following commutative diagram with exact rows.

Skorobogatov and Zarhin have shown [8, Proposition 2.2] that with our assumptions the canonical homomorphism ρn2r,r\rho_{\ell^{n}}^{2r,r} admits a section and hence is surjective. This implies that for each integer nn the group coker(c¯nr)\operatorname{coker}(\overline{c}_{\ell^{n}}^{r}) is quotient of Brr(A)[n]\mathrm{Br}^{r}(A)[\ell^{n}].

Since Brr(A){}=mBrr(A)[m]\mathrm{Br}^{r}(A)\{\ell\}=\bigcup_{m}\mathrm{Br}^{r}(A)[\ell^{m}] is finite, there exists an integer NN such that Brr(A){}=Brr(A)[N]\mathrm{Br}^{r}(A)\{\ell\}=\mathrm{Br}^{r}(A)[\ell^{N}]. Since for all nn the cardinality of the cokernels is bounded by #coker(c¯nr)#Brr(A)[N]\#\operatorname{coker}(\overline{c}_{\ell^{n}}^{r})\leq\#\mathrm{Br}^{r}(A)[\ell^{N}], it follows that the limit limncoker(c¯nr)\varprojlim_{n}\operatorname{coker}(\overline{c}_{\ell^{n}}^{r}) is a finite group.

This implies that the cokernel of limnc¯nr\varprojlim_{n}\overline{c}_{\ell^{n}}^{r} and hence the cokernel of limncnrid\varprojlim_{n}c_{\ell^{n}}^{r}\otimes\mathrm{id}_{\mathbb{Z}_{\ell}} is finite. But this means that limncnrid\varprojlim_{n}c_{\ell^{n}}^{r}\otimes\mathrm{id}_{\mathbb{Q}_{\ell}} and thus crc_{\mathbb{Q}_{\ell}}^{r} are surjective. ∎

Remark 3.2.

With similar arguments Rosenschon and Srinivas [7, Theorem 1.4] have proven that for any smooth projective, geometrically connected variety XX over a finite field 𝔽q\mathbb{F}_{q} and a prime char𝔽q\ell\neq\operatorname{char}\mathbb{F}_{q} the Tate conjecture TCr(X)\operatorname{TC}^{r}(X)_{\mathbb{Q}_{\ell}} for XX at \ell in codimension rr holds precisely when the group Brr(X){}\mathrm{Br}^{r}(X)\{\ell\} is finite. Moreover, they constructed an integral cycle map

cr:CHLn(X)Het2r(X¯,(n))G𝔽qc_{\mathbb{Z}_{\ell}}^{r}:\mathrm{CH}_{\mathrm{L}}^{n}(X)\otimes\mathbb{Z}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Z}_{\ell}(n))^{G_{\mathbb{F}_{q}}}

and showed that TCr(X)\mathrm{TC}^{r}(X)_{\mathbb{Q}_{\ell}} is equivalent to the surjectivity of crc_{\mathbb{Z}_{\ell}}^{r}. Note that the latter is not true when the Chow-L group is replaced by the Chow group. More precisely, there exists examples where the cycle map CHr(X)Het2r(X¯,(n))G𝔽q\mathrm{CH}^{r}(X)\otimes\mathbb{Z}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{X},\mathbb{Z}_{\ell}(n))^{G_{\mathbb{F}_{q}}} is not surjective; see [3, Section 2].

So far the author is not aware of an answer to the question whether the converse of the above theorem holds. We also do not know whether in the situation of the Theorem the Tate conjecture implies surjectivity of an integral cycle map such as crc_{\mathbb{Z}_{\ell}}^{r}.

Let kk\subseteq\mathbb{C} is a field finitely generated over \mathbb{Q} and let XX be a smooth projective geometrically integral kk-variety. In that case Rosenschon and Srinivas [7, Theorem 1.2] have shown that the Tate conjecture for X¯\overline{X} in codimension rr at prime \ell is equivalent to the surjectivity of the integral cycle map

CHLr(X¯)Het2n(X¯,(r))Gk.\mathrm{CH}_{\mathrm{L}}^{r}(\overline{X})\otimes\mathbb{Z}_{\ell}\to\mathrm{H}_{\operatorname{et}}^{2n}(\overline{X},\mathbb{Z}_{\ell}(r))^{G_{k}}\,.

4. Computing Higher Brauer Groups

In view of the previous section it is desirable being able to compute higher Brauer groups, at least for abelian varieties. The objective of this section is to extend efforts of computing transcendental Brauer groups of abelian varieties in characteristic zero to higher Brauer groups.

The main result of this section is the following theorem which for r=1r=1 was shown by Skorobogatov and Zarhin [8, Corollary 2.3].

Theorem 4.1.

Let kk be a field finitely generated over \mathbb{Q} and let AA be an abelian variety over kk. For any integers i,n1i,n\geq 1 such that (n,2r!)=1(n,2r!)=1 we have an isomorphism

Brr(A)[n]/Bralgr(A)[n]Het2r(A¯,μnr)Gk/(CHLr(A¯)/n)Gk.\mathrm{Br}^{r}(A)[n]\big{/}\mathrm{Br}_{\mathrm{alg}}^{r}(A)[n]\cong\mathrm{H}_{\operatorname{et}}^{2r}\left(\overline{A},\mu_{n}^{\otimes r}\right)^{G_{k}}\big{/}\left(\mathrm{CH}_{\mathrm{L}}^{r}\left(\overline{A}\right)\otimes\mathbb{Z}/n\mathbb{Z}\right)^{G_{k}}\,.
Proof.

Restricting the exact sequence (1) with X=A¯X=\overline{A} to the Galois invariants and using the exact sequence (1) with X=AX=A we get the following commutative diagram with exact rows

(7)

By [8, Proposition 2.2] the homomorphism α\alpha is split surjective. In that case the commutativity of the diagram implies that the images of ψ\psi and β\beta coincide which implies that the groups Bri(A)[n]/Bralgi(A)[n]\mathrm{Br}^{i}(A)[n]/\mathrm{Br}_{\mathrm{alg}}^{i}(A)[n] and Het2i(A¯,μni)Gk/(CHLi(A¯)/n)Gk\mathrm{H}_{\operatorname{et}}^{2i}(\overline{A},\mu_{n}^{\otimes i})^{G_{k}}/(\mathrm{CH}_{\mathrm{L}}^{i}(\overline{A})\otimes\mathbb{Z}/\mathbb{Z}n)^{G_{k}} are isomorphic. ∎

For products of elliptic curves we can prove even more precise formulae. Let E0,,ErE_{0},\dots,E_{r} be elliptic curves and set A=E0×E1××ErA=E_{0}\times E_{1}\times\dots\times E_{r}. Our aim is to obtain a better understanding of the higher Brauer group Brr(A)\mathrm{Br}^{r}(A). For this we need some results concerning the Chow-L group CHLr(A¯)\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A}) and the étale cohomology groups Het2r(A¯,μnr)\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r}).

The map cnr:CHr(A¯)/nHet2r(A¯,μnr)c^{r}_{n}:\mathrm{CH}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r}) induced by the cycle map factors through the map c¯nr:CHLr(A¯)/nHet2r(A¯,μnr)\overline{c}_{n}^{r}:\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r}) which is induced by the composition of caninical homomorphisms (2).

The isomorphisms Hom(Ei[n],/n)Het1(Ei¯,/n)\operatorname{Hom}(E_{i}[n],\mathbb{Z}/n\mathbb{Z})\overset{\cong}{\to}\mathrm{H}_{\operatorname{et}}^{1}(\overline{E_{i}},\mathbb{Z}/n\mathbb{Z}) and the perfect Weil pairings furnish us with canonical isomorphisms (see [8, Section 3])

Het1(Ei¯,μn)Het1(Ej¯,/n)Hom(Ei[n],Ej[n]).\displaystyle\mathrm{H}_{\operatorname{et}}^{1}\left(\overline{E_{i}},\mu_{n}\right)\otimes\mathrm{H}_{\operatorname{et}}^{1}\left(\overline{E_{j}},\mathbb{Z}/n\mathbb{Z}\right)\overset{\cong}{\to}\operatorname{Hom}(E_{i}[n],E_{j}[n])\,.

Using these isomorphisms and the Künneth formula [6, VI. §8] we obtain an isomorphism of GkG_{k}-modules

(/n)r+1(0i<jrHom(Ei[n],Ej[n]))Het2r(A¯,μnr).\displaystyle(\mathbb{Z}/n\mathbb{Z})^{r+1}\oplus\left(\bigoplus_{0\leq i<j\leq r}\operatorname{Hom}(E_{i}[n],E_{j}[n])\right)\overset{\cong}{\to}\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r})\,.

Deeper investigation of the above isomorphism shows that each of the three /n\mathbb{Z}/n\mathbb{Z}-copies is generated by a fundamental class coming from one of the elliptic curves Ei¯\overline{E_{i}}.

Lemma 4.2.

The group CHLr(A¯)/n\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z} contains a direct summand (/n)r+1(\mathbb{Z}/n\mathbb{Z})^{r+1} generated by the classes coming from the elliptic curves.

Proof.

The group CHr(A¯)/n\mathrm{CH}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z} has the direct summand (/n)r(\mathbb{Z}/n\mathbb{Z})^{r} which is generated by the classes [Ei¯][\overline{E_{i}}] of the elliptic curves. The composition

(/n)r+1CHr(A¯)/nHet2r(A¯,μnr)(/n)r+1,(\mathbb{Z}/n\mathbb{Z})^{r+1}\to\mathrm{CH}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z}\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r})\to(\mathbb{Z}/n\mathbb{Z})^{r+1}\,,

where the first map is (λ0,λ1,,λr)i=0rλi[Ei](\lambda_{0},\lambda_{1},\dots,\lambda_{r})\mapsto\sum_{i=0}^{r}\lambda_{i}[E_{i}] and the last map is the obvious projection to a direct summand, is the identity map. Since the involved cycle map and thus the whole composition factors through CHLr(A¯)/n\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z}, this implies that CHLr(A¯)/n\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z} has a direct summand (/n)r+1(\mathbb{Z}/n\mathbb{Z})^{r+1} generated by classes coming from the elliptic curves. ∎

In the case r=1r=1 the following theorem and its applications presented below were shown by Skorobogatov and Zarhin [8].

Theorem 4.3.

Let RnR_{n} be the quotient (CHLr(A¯)/n)/(/n)r+1\left(\mathrm{CH}_{\mathrm{L}}^{r}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z}\right)\big{/}\left(\mathbb{Z}/n\mathbb{Z}\right)^{r+1} and let HnH_{n} be the GkG_{k}-module 0i<jrHom(Ei[n],Ej[n])\bigoplus_{0\leq i<j\leq r}\operatorname{Hom}(E_{i}[n],E_{j}[n]). Then:

  1. (i)

    For each integer nn there exists an isomorphism

    Hn/RnBrr(A¯)[n].H_{n}/R_{n}\overset{\cong}{\to}\mathrm{Br}^{r}(\overline{A})[n]\,.
  2. (ii)

    For each integer nn not divisible by primes r\ell\leq r we get an isomorphism

    Brr(A)[n]/Bralgr(A)[n]HnGk/RnGk.\mathrm{Br}^{r}(A)[n]/\mathrm{Br}^{r}_{\mathrm{alg}}(A)[n]\cong H_{n}^{G_{k}}/R_{n}^{G_{k}}\,.
Proof.

The exact sequence (1) with X=AX=A and i=2i=2 stays exact when we remove the (/n)r+1(\mathbb{Z}/n\mathbb{Z})^{r+1} summands in the first two terms, i.e. we have an exact sequence 0RnHnBrr(A¯)[n]00\to R_{n}\to H_{n}\to\mathrm{Br}^{r}(\overline{A})[n]\to 0 proving (i).

For (ii) consider the commutative diagram with exact rows

(12)

where the vertical arrow α\alpha is the composition of the canonical maps Het4(A,μnr)Het2r(A¯,μnr)Gk\mathrm{H}_{\operatorname{et}}^{4}(A,\mu_{n}^{\otimes r})\to\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r})^{G_{k}} and Het2r(A¯,μnr)GkHnGk\mathrm{H}_{\operatorname{et}}^{2r}(\overline{A},\mu_{n}^{\otimes r})^{G_{k}}\to H_{n}^{G_{k}}. If nn is not divisible by a prime less or equal r+1r+1, the first arrow is split surjective by [8, Proposition 2.2] and composing the section of the second with the section of the first arrow we get a section for α\alpha. With the arguments of the proof of Theorem 4.1 we get that Brr(A)[n]/Bralgr(A)[n]\mathrm{Br}^{r}(A)[n]/\mathrm{Br}_{\mathrm{alg}}^{r}(A)[n] is isomorphic to the group HnGk/RnGkH_{n}^{G_{k}}/R_{n}^{G_{k}}. ∎

We now consider the special case of a triple product A=E×E×EA=E\times E\times E of a elliptic curve EE and r=2r=2. The groups RnR_{n} and HnH_{n} are defined as in Theorem 4.3.

Proposition 4.4.

Let EE be an elliptic curve such that for each prime 2,3\ell\neq 2,3 the image of GkG_{k} in Aut(E)\mathrm{Aut}(E_{\ell}) is GL(2,𝔽)\mathrm{GL}(2,\mathbb{F}_{\ell}). Then Br2(A){}=Bralg2(A){}\mathrm{Br}^{2}(A)\{\ell\}=\mathrm{Br}^{2}_{\mathrm{alg}}(A)\{\ell\}.

Proof.

First note, that as GL(2,𝔽)\mathrm{GL}(2,\mathbb{F}_{\ell}) is not solvable for 5\ell\geq 5, the elliptic curve of the proposition is without complex multiplication, i.e. End(E¯)=\mathrm{End}(\overline{E})=\mathbb{Z}, c.f. an argument given in [8, Proposition 4.1].

In view of Theorem 4.3 it suffices to prove that HnGk/RnGkH_{n}^{G_{k}}/R_{n}^{G_{k}} is trivial. Application of [8, Lemma 4.4] to HnGkH_{n}^{G_{k}} yields that HnGk(/n)3H_{n}^{G_{k}}\cong(\mathbb{Z}/\ell^{n}\mathbb{Z})^{3} (generated by the identity endomorphisms in the copies of End(E¯)\mathrm{End}(\overline{E}) in HnH_{n}). It therefore suffices to prove that RnGk(/n)3R_{n}^{G_{k}}\cong(\mathbb{Z}/\ell^{n}\mathbb{Z})^{3}.

Consider the composition of canonical maps

(End(E¯)/n)3𝜑\displaystyle(\mathrm{End}(\overline{E})/n)^{3}\overset{\varphi}{\to} CH2(A¯)/n𝜄CHL2(A¯)/n\displaystyle\mathrm{CH}^{2}(\overline{A})/n\overset{\iota}{\to}\mathrm{CH}_{\mathrm{L}}^{2}(\overline{A})/n
cn2\displaystyle\overset{c_{n}^{2}}{\to} Het4(A¯,μn2)End(E[n])3\displaystyle\mathrm{H}_{\operatorname{et}}^{4}(\overline{A},\mu_{n}^{\otimes 2})\to\mathrm{End}(E[n])^{3}

where φ\varphi is given by

(f,g,h)[{(x,f(x),0)}]+[{(x,0,g(x))}]+[{(0,x,h(x))}].(f,g,h)\mapsto[\{(x,f(x),0)\}]+[\{(x,0,g(x))\}]+[\{(0,x,h(x))\}]\,.

The two outer groups are (/n)3(\mathbb{Z}/n\mathbb{Z})^{3} (generated by the identity maps) and one easily checks that this composition is the identity. This implies that ιφ\iota\varphi is injective and, as its image is contained in RnR_{n}, that RnR_{n} contains (/n)3(\mathbb{Z}/n\mathbb{Z})^{3}. ∎

For our second application let EE be an elliptic curve over \mathbb{Q} with complex multiplication. For an odd prime \ell the curve EE has no rational isogeny of degree \ell, if and only if E[]E[\ell] does not contain a Galois invariant subgroup of order \ell.

Proposition 4.5.

Let \ell be an odd prime such that EE has no rational isogeny of degree \ell. Then the group Br2(A¯)[]G\mathrm{Br}^{2}(\overline{A})[\ell]^{G_{\mathbb{Q}}} is trivial.

Proof.

The GG_{\mathbb{Q}}-module Het4(A¯,μn2)(/)3End(E)3\mathrm{H}_{\operatorname{et}}^{4}(\overline{A},\mu_{n}^{\otimes 2})\cong(\mathbb{Z}/\ell\mathbb{Z})^{3}\oplus\mathrm{End}(E_{\ell})^{3} is semisimple since End(E[])\mathrm{End}(E[\ell]) is semisimple. This implies that the exact sequence (1) yields an isomorphism Het4(A¯,μn2)(CHL2(A¯)/n)Br2(A¯)[]\mathrm{H}_{\operatorname{et}}^{4}(\overline{A},\mu_{n}^{\otimes 2})\cong(\mathrm{CH}_{\mathrm{L}}^{2}(\overline{A})\otimes\mathbb{Z}/n\mathbb{Z})\oplus\mathrm{Br}^{2}(\overline{A})[\ell].

Denote by GG_{\ell} the image of GG_{\mathbb{Q}} in End(E[])\mathrm{End}(E[\ell]). It is known that the centraliser of GG_{\ell} in End(E[])\mathrm{End}(E[\ell]) is isomorphic to /\mathbb{Z}/\ell\mathbb{Z} [8, Theorem 4.6]. On the other hand, the centraliser equals the subgroup End(E[])G\mathrm{End}(E[\ell])^{G_{\mathbb{Q}}} of Galois invariant endomorphisms and contains all the /\mathbb{Z}/\ell\mathbb{Z} multiples of the identity endomorphism which come from the multiples of the three diagonals in A¯\overline{A}. Thus, we have the inclusion Het4(A¯,μ2)GCHL2(A¯)/\mathrm{H}_{\operatorname{et}}^{4}(\overline{A},\mu_{\ell}^{\otimes 2})^{G_{\mathbb{Q}}}\subseteq\mathrm{CH}_{\mathrm{L}}^{2}(\overline{A})\otimes\mathbb{Z}/\ell\mathbb{Z} proving the triviality of Br2(A¯)[]\mathrm{Br}^{2}(\overline{A})[\ell]. ∎

Acknowledgement

The author thanks Andreas Rosenschon for sugesting to work on these questions. Parts of this paper were written while the author was member of DFG Sonderforschungsbereich 701 at Bielefeld University.

References

  • [1] Spencer Bloch, Algebraic Cycles and Higher K-Theory, Adv. in Math 61 (1986), no. 3, 267–304.
  • [2] Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov, Descente galoisienne sur le groupe de Brauer, J. Reine Angew. Math. 682 (2013), 141–165. MR 3181502
  • [3] Jean-Louis Colliot-Thélène and Tamás Szamuely, Autour de la conjecture de Tate à coefficients 𝐙{\bf Z}_{\ell} pour les variétés sur les corps finis, The geometry of algebraic cycles, Clay Math. Proc., vol. 9, Amer. Math. Soc., Providence, RI, 2010, pp. 83–98.
  • [4] Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, Journal für die reine und angewandte Mathematik 530 (2001), 55–103.
  • [5] Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 401–411. MR 0427322
  • [6] James S Milne, Etale Cohomology (pms-33), vol. 33, Princeton university press, 1980.
  • [7] Andreas Rosenschon and V. Srinivas, Étale motivic cohomology and algebraic cycles, J. Inst. Math. Jussieu 15 (2016), no. 3, 511–537.
  • [8] Alexei N. Skorobogatov and Yuri G. Zarhin, The Brauer group of Kummer surfaces and torsion of elliptic curves, J. Reine Angew. Math. 666 (2012), 115–140. MR 2920883
  • [9] Andrei Suslin and Vladimir Voevodsky, Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients, The Arithmetic and Geometry of Algebraic Cycles, NATO Science Series, vol. 548, Springer Netherlands, 2000, pp. 117–189.
  • [10] John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analogon, Séminaire Bourbaki 18 (1965/66), no. 306, 415–440.
  • [11] John Tate, Conjectures on algebraic cycles in l-adic cohomology, Motives (Seattle, WA, 1991) 55 (1994), 71–83.