This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Temperature and Field Dependence of Ferromagnetic Magnon in Monolayer Honeycomb Spin Lattice

Niem T. Nguyen1, Giang H. Bach1, Thao H. Pham2, Huy D. Nguyen1, Oanh T. K. Nguyen3, Cong T. Bach1 1Faculty of Physics, University of Science, Vietnam National University,
334 Nguyen Trai street, Thanh Xuan, Hanoi, Vietnam
2Hue University, 34 Le Loi, Hue, Vietnam
3Electric Power University, 235 Hoang Quoc Viet street, Bac Tu Liem, Hanoi, Vietnam
Abstract

Temperature and field dependence of collective spin excitations or magnon in monolayer honeycomb spin lattices is investigated using an anisotropic exchange XZ-Heisenberg model in an external field. Magnetic phase transition in the presence of the transverse field is the spin reorientation (SR) transition with magnon intensity existing above the SR temperature. The transverse field either decreases or sustains the spin-wave intensity in the temperature region below or above the SR temperature, respectively. The gap of the zero-momentum low-energy magnon branch closes at the SR transverse field, which is the critical quantum phase transition field at zero temperature. The application of the model to a two-dimensional CrI3 explains the existence of the zero-momentum magnon mode above the Curie temperature and shows the suitable values of the exchange parameters compared with the DFT calculations. The estimated magnon velocity near the Dirac point in this material is about 1.74 km/s.

keywords:
ferromagnetic magnon, quantum phase transition, Dirac magnon band structure, Heisenberg model, Vander Waals crystals
journal: Journal of Magnetism and Magnetic Materials

1 Introduction

Dirac materials having elementary excitation spectra similar to the Dirac electronic quasiparticle in graphene are intensively investigated for the last decade [1]. Among the Dirac fermion, Dirac bosons such as magnon in honeycomb structural magnets have drawn great attention to both fundamental and practical research. It is shown that due to the spatial symmetry of the honeycomb spin-lattice, the magnon energy spectra have a Dirac-like dispersion either around the K and K’ points of the Brillouin zone (BZ) for the ferromagnetic (FM) magnon or around the center of the BZ for the antiferromagnetic (AF) magnon [2, 3]. It is also proposed that competing interactions in the FM structure induce Dirac and Weyl points while Dirac nodes relate to the magnetic structure but not to the overall crystal symmetry [4].

Based on graphene-like two-dimensional (2D) materials, Van der Waals crystal chromium triiodide CrI3, one of the typical 2D magnets, exhibits ferromagnetic order when the size of the crystal is down to a single layer [5, 6]. Acoustical and optical magnon branches are recognized in the mono-layer CrI3 using magneto-Raman spectroscopy [7]. Temperature dependence of the two branches of the zero-momentum magnon (k=0) has been experimentally investigated in the 2D honeycomb ferromagnet CrI3 [8] and analyzed by the anisotropic Heisenberg model. It is indicated that the magnon energy reduces with increasing temperature below the phase transition temperature (TC), whereas it remains finite, and nearly temperature-independent above this. In the framework of the XZ-Heisenberg model with the transverse field (TF), the spin wave in the monolayer square spin-lattice can exist above TC and displays a weak temperature dependence [9]. The phase transition temperature in the presence of the TF can be interpreted as the spin reorientation (SR) temperature following Ref. [10]. This transition due to the TF at zero temperature belongs to quantum phase transition (QPT) where the TR plays a role of tuning parameters which probably are pressure, doping fraction, in-plane stress, etc. [11].

The longitudinal magnetic-field-induced quantum phase transition was experimentally explored in the CrI3 bulk with honeycomb spin structure, where antiferromagnetic surface layers transformed to a ferromagnetic (FM) state at the critical field of about 2 T [12]. The magnetic phase transitions in the single CrI3 layer induced by stress due to in-plane lattice deformation are theoretically examined in Ref. [13]. The temperature-independent magnon intensity above the phase transition temperature [8] was particularly described by the spin-wave theory in the XZ-Heisenberg model with the TF which mimics the in-plane stress [9]. According to our knowledge, the finite temperature and transverse field behaviors of the honeycomb spin-lattice FM magnon have received relatively modest attention.

For this reason, we aim to deeply understand the temperature and the TF behavior of the monolayer honeycomb spin-lattice magnons, including the QPT case. Our results bring specific features of magnon energy in the CrI3 and other 2D systems observed in experiments. The paper is organized as follows: the next part describes the model and the calculation method. In Section III, we analyze the FM magnon spectra in the monolayer honeycomb spin-lattice and compare our model parameters with experimental calculations. We will summarize our results in the conclusion part.

2 XZ-Heisenberg model and Green function

2.1 Hamiltonian of the XZ- Heisenberg model for monolayer films

Refer to caption
(a)
Refer to caption
(b)
Figure 1: Orientation of a spin in the honeycomb spin-lattice relates to the crystallographic (xyz) and rotated (XYZ) coordinate systems LABEL:sub@fig:1a and the first Brillouin zone LABEL:sub@fig:1b.

We consider a monolayer honeycomb spin-lattice consisting of 2N spins residing in two triangular aa and bb spin sub-lattices shown in Fig. 1LABEL:sub@fig:1a. Position vectors of these spins in the sub-lattices are denoted by two-dimensional lattice vectors 𝐣\bf j and 𝐠\bf g. Three nearest-neighbors (NN) of an aa-spin at site j are bb-spins defined by three vectors 𝚫\bm{\Delta} which are 𝚫1=a02(3,3){\bm{\Delta}_{1}}={a_{0}\over 2}(3,\sqrt{3}), 𝚫2=a02(3,3){\bm{\Delta}_{2}}={a_{0}\over 2}(3,-\sqrt{3}), 𝚫3=a02(1,0){\bm{\Delta}_{3}}={a_{0}\over 2}(-1,0) with the length of the hexagonal edge a0a_{0}. Similarly, three NN of a bb-spin at site g are aa-spins positioned by vectors 𝚫-\bm{\Delta}. The six next-nearest-neighbors (NNN) of the aa(bb)-sub-lattice are the same spin types defined by vectors 𝝆1=a02(3,3)=𝝆4{\bm{\rho}}_{1}={a_{0}\over 2}(3,\sqrt{3})=-{\bm{\rho}}_{4}, 𝝆2=a02(3,3)=𝝆5{\bm{\rho}}_{2}={a_{0}\over 2}(3,-\sqrt{3})=-{\bm{\rho}}_{5}, 𝝆3=a02(0,3)=𝝆6{\bm{\rho}}_{3}={a_{0}\over 2}(0,-\sqrt{3})=-{\bm{\rho}}_{6}.

The Hamiltonian of the XZ-Heisenberg model for the honeycomb monolayer spin-lattice in the external fields is written by

H=𝐣(h0sa𝐣z+Ω0sa𝐣x)𝐠(h0sb𝐠z+Ω0sb𝐠x)12𝐣,𝚫(Jsa𝐣zsb,𝐣+𝚫z+Lsa𝐣xsb,𝐣+𝚫x)\displaystyle H=-\sum_{\bf j}(h_{0}s^{z}_{a{\bf j}}+\Omega_{0}s^{x}_{a\bf j})-\sum_{\bf g}(h_{0}s^{z}_{b\bf g}+\Omega_{0}s^{x}_{b\bf g})-{1\over 2}\sum_{{\bf j},{\bm{\Delta}}}(Js^{z}_{a\bf j}s^{z}_{b,{\bf j}+{\bm{\Delta}}}+Ls^{x}_{a\bf j}s^{x}_{b,{\bf j}+{\bm{\Delta}}})
12𝐠,𝚫(Jsb𝐠zsa,𝐠𝚫z+Lsb𝐠xsa,𝐠𝚫x)12𝐣,𝝆J(sa𝐣zsb,𝐣+𝝆z+sa𝐣xsb,𝐣+𝝆x)\displaystyle-{1\over 2}\sum_{{\bf g},{\bm{\Delta}}}(Js^{z}_{b\bf g}s^{z}_{a,{\bf g}-{\bm{\Delta}}}+Ls^{x}_{b\bf g}s^{x}_{a,{\bf g}-{\bm{\Delta}}})-{1\over 2}\sum_{\bf j,{\bm{\rho}}}J^{{}^{\prime}}(s^{z}_{a\bf j}s^{z}_{b,{\bf j}+{\bm{\rho}}}+s^{x}_{a\bf j}s^{x}_{b,{\bf j}+{\bm{\rho}}})
12𝐠,𝝆J(sb𝐠zsa,𝐠𝝆z+sb𝐠xsa,𝐠𝝆x)\displaystyle-{1\over 2}\sum_{\bf g,\bm{\rho}}J^{{}^{\prime}}(s^{z}_{b\bf g}s^{z}_{a,\bf g-\bm{\rho}}+s^{x}_{b\bf g}s^{x}_{a,\bf g-\bm{\rho}}) (1)

Here h0h_{0}, Ω0\Omega_{0} are the external longitudinal and transverse field intensity given in the energy unit. The components of sub-lattice spin operators in the crystallographic xyzxyz frame, where the zz–axis is perpendicular to the honeycomb spin-lattice plane, are denoted by sa𝐣zs^{z}_{a\bf j}, sa𝐣xs^{x}_{a\bf j}, sb𝐠zs^{z}_{b\bf g}, sb𝐠xs^{x}_{b\bf g}. JJ and LL are NN exchange parameters between spin-pair components along the out-of-plane zz and in-plane xx directions, respectively. Since long-range order generally does not exist in a 2D isotropic exchange Heisenberg model [14], the exchange parameters are chosen as JLJ\neq L. JJ’ is the NNN exchange between spins of the same types.

Using the mean-field approximation (MFA), we rewrite the Hamiltonian (1) in terms of spin fluctuation operators δsa(b)𝐣z=sa(b)𝐣zmaz(bz)\delta s^{z}_{a(b)\bf j}=s^{z}_{a(b)\bf j}-m_{az(bz)},

H=H0+H1,H=H_{0}+H_{1}\,, (2)

where

H0=\displaystyle H_{0}= 3N[Jmazmbz+Lmaxmbx+J(ma2+mb2)]\displaystyle 3N[Jm_{az}m_{bz}+Lm_{ax}m_{bx}+J^{\prime}(m^{2}_{a}+m^{2}_{b})]
\displaystyle- 𝐣(hasa𝐣z+Ωasa𝐣x)𝐠(hbsb𝐠z+Ωbsb𝐠x),\displaystyle\sum_{\bf j}(h_{a}s^{z}_{a\bf j}+\Omega_{a}s^{x}_{a\bf j})-\sum_{\bf g}(h_{b}s^{z}_{b\bf g}+\Omega_{b}s^{x}_{b\bf g})\,, (3)
H1=\displaystyle H_{1}= 12𝐣𝚫(Jδsa𝐣zδsb,𝐣+𝚫z+Lδsa𝐣xδsb,𝐣+𝚫x)\displaystyle-{1\over 2}\sum_{{\bf j}{\bm{\Delta}}}(J\delta s^{z}_{a\bf j}\delta s^{z}_{b,{\bf j}+{\bm{\Delta}}}+L\delta s^{x}_{a\bf j}\delta s^{x}_{b,{\bf j}+{\bm{\Delta}}})
\displaystyle- 12𝐠𝚫(Jδsa𝐠zδsb,𝐠𝚫z+Lδsa𝐠xδsb,𝐠𝚫x)\displaystyle{1\over 2}\sum_{{\bf g}{\bm{\Delta}}}(J\delta s^{z}_{a\bf g}\delta s^{z}_{b,{\bf g}-{\bm{\Delta}}}+L\delta s^{x}_{a\bf g}\delta s^{x}_{b,{\bf g}-{\bm{\Delta}}})
\displaystyle- 12𝐣𝝆J(δsa𝐣zδsb,𝐣+𝝆z+δsa𝐣xδsb,𝐣+𝝆x)\displaystyle{1\over 2}\sum_{\bf j\bm{\rho}}J^{\prime}(\delta s^{z}_{a\bf j}\delta s^{z}_{b,\bf j+\bm{\rho}}+\delta s^{x}_{a\bf j}\delta s^{x}_{b,\bf j+\bm{\rho}})
\displaystyle- 12𝐠𝝆J(δsa𝐠zδsb,𝐠𝝆z+Lδsa𝐠xδsb,𝐠𝝆x),\displaystyle{1\over 2}\sum_{\bf g\bm{\rho}}J^{\prime}(\delta s^{z}_{a\bf g}\delta s^{z}_{b,\bf g-\bm{\rho}}+L\delta s^{x}_{a\bf g}\delta s^{x}_{b,\bf g-\bm{\rho}}), (4)

and

ha(b)=\displaystyle h_{a(b)}= h0+3Jmbz(az)+6Jmaz(bz),\displaystyle h_{0}+3Jm_{bz(az)}+6J^{\prime}m_{az(bz)},
Ωa(b)=\displaystyle\Omega_{a(b)}= Ω0+3Lmbx(ax)+6Jmax(bx).\displaystyle\Omega_{0}+3Lm_{bx(ax)}+6J^{\prime}m_{ax(bx)}\,. (5)

Here mνx=<sνx>m_{\nu x}=<s^{x}_{\nu}>, mνz=<sνz>m_{\nu z}=<s^{z}_{\nu}> with ν=a,b\nu=a,b are thermodynamic average of the spin-moment components per site and mν=mνx2+mνz2m_{\nu}=\sqrt{m^{2}_{\nu x}+m^{2}_{\nu z}}, and <>=Tr(eβH)/Tr(eβH)<...>={\rm Tr}(e^{-\beta H}...)/{\rm Tr}(e^{-\beta H}). The formula (5) produces the longitudinal and transverse components, hνh_{\nu} and Ων\Omega_{\nu}, of the net field acting on the ν\nu-sub-lattice. The Hamiltonian H0H_{0} is diagonalized using the transformation,

sν𝐣x=\displaystyle s^{x}_{\nu\bf j}= hνγνSν𝐣X+ΩνγνSν𝐣Z,\displaystyle{h_{\nu}\over\gamma_{\nu}}S^{X}_{\nu\bf j}+{\Omega_{\nu}\over\gamma_{\nu}}S^{Z}_{\nu\bf j}\,,
sν𝐣z=\displaystyle s^{z}_{\nu\bf j}= ΩνγνSν𝐣X+hνγνSν𝐣Z.\displaystyle-{\Omega_{\nu}\over\gamma_{\nu}}S^{X}_{\nu\bf j}+{h_{\nu}\over\gamma_{\nu}}S^{Z}_{\nu\bf j}\,. (6)

During the transformation, spin fluctuation operators δsν𝐣α\delta s^{\alpha}_{\nu\bf j} (α=x,z\rm\alpha=x,z) are transformed to new operators δSν𝐣α=Sν𝐣α<Sνα>\delta S^{\alpha}_{\nu\bf j}=S^{\alpha}_{\nu\bf j}-<S^{\alpha}_{\nu}>, (α=X,Z\alpha=X,Z). Performing Fourier transformation δSν𝐣α=N1/2𝐤δSνα(𝐤)ei𝐤𝐣\delta S^{\alpha}_{\nu\bf j}=N^{-1/2}\sum_{\bf k}\delta S^{\alpha}_{\nu}({\bf k})e^{i{\bf kj}} with two-dimensional wave vector 𝐤\bf k defined in the first Brillouin zone (shown in Fig. 1(b)), we rewrite the Hamiltonian (3) and (4) as

H0=3N{Jmazmbz+Lmaxmbx+J(ma2+mb2)}νjγνSνjz,\displaystyle H_{0}=3N\{Jm_{az}m_{bz}+Lm_{ax}m_{bx}+J^{\prime}(m^{2}_{a}+m^{2}_{b})\}-\sum_{\nu j}\gamma_{\nu}S^{z}_{\nu j},\qquad (7)

and

H1=12𝐤λλIλλ(𝐤)δSλ(𝐤)δSλ(𝐤),\displaystyle H_{1}=-{1\over 2}\sum_{\bf k}\sum_{\lambda\lambda^{\prime}}I_{\lambda\lambda^{\prime}}({\bf k})\delta S^{\lambda}({\bf k})\delta S^{\lambda^{\prime}}({\bf-k}), (8)

where λ\lambda and λ\lambda^{\prime} run from 1 to 4 meaning 1aX1\equiv aX, 2aZ2\equiv aZ, 3bX3\equiv bX, 4bZ4\equiv bZ. The anisotropic exchange interaction is a Hermitian matrix defined by

I^(𝐤)=(ξ2𝐤0Cξ1𝐤Dξ1𝐤0ξ2𝐤D~ξ1𝐤C~ξ1𝐤Cξ1𝐤D~ξ1𝐤ξ2𝐤0Dξ1𝐤C~ξ1𝐤0ξ2𝐤),\hat{I}({\bf k})=\begin{pmatrix}\xi_{2\bf k}&0&C\xi^{\ast}_{1\bf k}&D\xi^{\ast}_{1\bf k}\\ 0&\xi_{2\bf k}&\tilde{D}\xi^{\ast}_{1\bf k}&\tilde{C}\xi^{\ast}_{1\bf k}\\ C\xi_{1\bf k}&\tilde{D}\xi_{1\bf k}&\xi_{2\bf k}&0\\ D\xi_{1\bf k}&\tilde{C}\xi_{1\bf k}&0&\xi_{2\bf k}\end{pmatrix}\,, (9)

where

C=(JΩaΩb+Lhahb)γaγb,C~=(LΩaΩb+Jhahb)γaγb,\displaystyle C=\frac{(J\Omega_{a}\Omega_{b}+Lh_{a}h_{b})}{\gamma_{a}\gamma_{b}},\,\tilde{C}={(L\Omega_{a}\Omega_{b}+Jh_{a}h_{b})\over\gamma_{a}\gamma_{b}},\qquad (10)
D=(JΩahb+LΩbha)γaγb,D~=(LΩahbJΩbha)γaγb,\displaystyle D={(-J\Omega_{a}h_{b}+L\Omega_{b}h_{a})\over\gamma_{a}\gamma_{b}},\,\,\tilde{D}={(L\Omega_{a}h_{b}-J\Omega_{b}h_{a})\over\gamma_{a}\gamma_{b}},\,\qquad (11)

and

ξ1𝐤=\displaystyle\xi_{1\bf k}= 𝚫ei𝐤𝚫=\displaystyle\sum_{\bm{\Delta}}e^{i{\bf k}{\bm{\Delta}}}= eikxa0(1+2ei3kxa0/2cos(3kya0/2)),\displaystyle e^{-ik_{x}a_{0}}(1+2e^{i3k_{x}a_{0}/2}{\rm cos}(\sqrt{3}k_{y}a_{0}/2))\,,
ξ2𝐤=\displaystyle\xi_{2\bf k}= 𝝆ei𝐤𝝆=\displaystyle\sum_{\bm{\rho}}e^{i\bf k\bm{\rho}}= 4cos(3kxa0/2)cos(3kya0/2)+2cos(3kya0).\displaystyle 4{\rm cos}(3k_{x}a_{0}/2){\rm cos}(\sqrt{3}k_{y}a_{0}/2)+2{\rm cos}(\sqrt{3}k_{y}a_{0})\,. (12)

2.2 Green’s functions

The temperature and field dependence of the magnon spectra is obtained from the poles of the imaginary time Green’s function (GF) as carried out in Ref. [9]. The Green’s function basing on the spin fluctuation operators δsνjα\delta s^{\alpha}_{\nu j} (α=x,z\alpha=x,z; ν=a,b\nu=a,b) given in the crystallographic spin-lattice coordinates and in the Heisenberg picture is written as

Gνναα(𝐣𝐣,τ1τ2)=<T^δs~𝐣να(τ1)δs~𝐣να(τ2)>,\displaystyle G^{\alpha\alpha^{\prime}}_{\nu\nu}({\bf j-j^{\prime}},\tau_{1}-\tau_{2})=<\hat{T}\delta\tilde{s}^{\alpha}_{\bf j\nu}(\tau_{1})\delta\tilde{s}^{\alpha^{\prime}}_{\bf j^{\prime}\nu^{\prime}}(\tau_{2})>\,, (13)

where

δs~𝐣να(τ)=eτHδsν𝐣αeτH.\displaystyle\delta\tilde{s}^{\alpha}_{\bf j\nu}(\tau)=e^{\tau H}\delta s^{\alpha}_{\bf\nu j}e^{-\tau H}. (14)

Taking Fourier transformation of the GF, we have

Gνναα(𝐣𝐣,τ)=1N𝐤ωGνναα(𝐤,ω)ei𝐤(𝐣𝐣)iωτ,\displaystyle G^{\alpha\alpha^{\prime}}_{\nu\nu^{\prime}}({\bf j-j^{\prime}},\tau)={1\over N}\sum_{{\bf k}\omega}G^{\alpha\alpha^{\prime}}_{\nu\nu^{\prime}}({\bf k},\omega)e^{-i{\bf k}({\bf j-j^{\prime}})-i\omega\tau}\,, (15)

where ω=2πn/β\omega=2\pi n/\beta; n=0,±1,±2,n=0,\pm 1,\pm 2,.... Denoting (𝐤,ω)(\bf k,\omega) as the three-component wave vector 𝐪\bf q and putting 𝐑=𝐣𝐣\bf R=j-j^{\prime}, the Fourier image of the GF writes

Gνναα(𝐪)=\displaystyle G^{\alpha\alpha^{\prime}}_{\nu\nu^{\prime}}({\bf q})= <T^δs~να(𝐪)δs~να(𝐪)>\displaystyle<\hat{T}\delta\tilde{s}^{\alpha}_{\bf\nu}({\bf q})\delta\tilde{s}^{\alpha^{\prime}}_{\bf\nu^{\prime}}({\bf q})>
=\displaystyle= 1β𝐑0β𝑑τGνναα(𝐑,τ)ei𝐤𝐑+iωτ,\displaystyle{1\over\beta}\sum_{\bf R}\int_{0}^{\beta}d\tau G^{\alpha\alpha^{\prime}}_{\nu\nu^{\prime}}({\bf R},\tau)e^{i{\bf kR}+i\omega\tau}\,, (16)

where

δs~α(𝐪)=1βN𝐣0βδs~𝐣α(τ)ei𝐤𝐣+iωτ𝑑τ,\displaystyle\delta\tilde{s}^{\alpha}({\bf q})={1\over\beta\sqrt{N}}\sum_{\bf j}\int_{0}^{\beta}\delta\tilde{s}^{\alpha}_{\bf j}({\tau})e^{i{\bf kj}+i\omega\tau}d\tau\,, (17)
δs~𝐣α(τ)=1Nω,𝐤δs~𝐣α(𝐤,ω)ei𝐤𝐣iωτdτ.\displaystyle\delta\tilde{s}_{\bf j}^{\alpha}(\tau)={1\over\sqrt{N}}\sum_{\omega,\bf k}\delta\tilde{s}^{\alpha}_{\bf j}({\bf k},\omega)e^{-i{\bf kj}-i\omega\tau}d\tau\,. (18)

The unitary transformation (6) produces the connection between the Fourier images of the GF in the crystallographic and local XZ coordinates,

Gννxx(zz)(𝐪)=\displaystyle G^{xx(zz)}_{\nu\nu}({\bf q})= 1γν2{Ων2ΓννXX(𝐪)+hν2ΓννZZ(𝐪)\displaystyle{1\over\gamma^{2}_{\nu}}\{\Omega^{2}_{\nu}\Gamma^{XX}_{\nu\nu}({\bf q})+h^{2}_{\nu}\Gamma^{ZZ}_{\nu\nu}({\bf q})\,\,\,\,
±\displaystyle\pm hνΩν[ΓννZX(𝐪)+ΓννXZ(𝐪)]},\displaystyle h_{\nu}\Omega_{\nu}[\Gamma^{ZX}_{\nu\nu}({\bf q})+\Gamma^{XZ}_{\nu\nu}({\bf q})]\}, (19)
Gabxx(zz)(𝐪)=\displaystyle G^{xx(zz)}_{ab}({\bf q})= 1γaγb{ΩaΩbΓabXX(𝐪)+hahbΓabZZ(𝐪)\displaystyle{1\over\gamma_{a}\gamma_{b}}\{\Omega_{a}\Omega_{b}\Gamma^{XX}_{ab}({\bf q})+h_{a}h_{b}\Gamma^{ZZ}_{ab}({\bf q})\,\,\,\,
±\displaystyle\pm [haΩbΓabZX(𝐪)+hbΩaΓabXZ(𝐪)]},\displaystyle[h_{a}\Omega_{b}\Gamma^{ZX}_{ab}({\bf q})+h_{b}\Omega_{a}\Gamma^{XZ}_{ab}({\bf q})]\}, (20)
Gabxz(𝐪)=\displaystyle G^{xz}_{ab}({\bf q})= 1γaγb{haΩbΓabXX(𝐪)+ΩahbΓabZZ(𝐪)\displaystyle{1\over\gamma_{a}\gamma_{b}}\{-h_{a}\Omega_{b}\Gamma^{XX}_{ab}({\bf q})+\Omega_{a}h_{b}\Gamma^{ZZ}_{ab}({\bf q})\,\,\,\,
+\displaystyle+ [hahbΓabXZ(𝐪)ΩaΩbΓabZX(𝐪)]},\displaystyle[h_{a}h_{b}\Gamma^{XZ}_{ab}({\bf q})-\Omega_{a}\Omega_{b}\Gamma^{ZX}_{ab}({\bf q})]\}, (21)
Gabzx(𝐪)=\displaystyle G^{zx}_{ab}({\bf q})= 1γaγb{hbΩaΓabXX(𝐪)+ΩbhaΓabZZ(𝐪)\displaystyle\rm{1\over\gamma_{a}\gamma_{b}}\{-h_{b}\Omega_{a}\Gamma^{XX}_{ab}({\bf q})+\Omega_{b}h_{a}\Gamma^{ZZ}_{ab}({\bf q})\,\,\,\,
+\displaystyle+ [hahbΓabZX(𝐪)ΩaΩbΓabXZ(𝐪)]}.\displaystyle[h_{a}h_{b}\Gamma^{ZX}_{ab}({\bf q})-\Omega_{a}\Omega_{b}\Gamma^{XZ}_{ab}({\bf q})]\}. (22)

The Fourier transform of Green’s function in the local XZ coordinate presented in Eqs. (19)-(22) are obtained analogously to Eqs. (15)-(16) using indexes λ\lambda, λ\lambda^{\prime},

Γλλ(𝐣𝐣,ττ)=\displaystyle\rm\Gamma^{\lambda\lambda^{\prime}}({\bf j-j^{\prime}},\tau-\tau^{\prime})= <T^δS~𝐣λ(τ)δS~𝐣λ(τ)>,\displaystyle\rm<\hat{T}\delta\tilde{S}^{\lambda}_{\bf j}(\tau)\delta\tilde{S}^{\lambda^{\prime}}_{\bf j^{\prime}}(\tau^{\prime})>\,, (23)
Γλλ(𝐪)=\displaystyle\rm\Gamma^{\lambda\lambda^{\prime}}({\bf q})= <T^δS~λ(𝐪)δS~λ(𝐪)>,\displaystyle\rm<\hat{T}\delta\tilde{S}^{\lambda}({\bf q})\delta\tilde{S}^{\lambda^{\prime}}({-\bf q})>\,,
=\displaystyle= 1β𝐑0βdτΓ(𝐑,τ)ei𝐤𝐑+iωτ.\displaystyle\rm{1\over\beta}\sum_{\bf R}\int_{0}^{\beta}d\tau\Gamma({\bf R},\tau)e^{i{\bf kR}+i\omega\tau}.\quad (24)

The GF in Eq. (24) is defined by

Γλλ(𝐪)=<T^δS~λ(𝐪)δS~λ(𝐪)σ(β)>0<σ(β)>0,\displaystyle\Gamma^{\lambda\lambda^{\prime}}({\bf q})={<\hat{T}\delta\tilde{S}^{\lambda}({\bf q})\delta\tilde{S}^{\lambda^{\prime}}({-\bf q})\sigma(\beta)>_{0}\over<\sigma(\beta)>_{0}}\,, (25)

where <>0=Tr(eβH0)/Tr(eβH0)<...>_{0}={\rm Tr}(e^{-\beta H_{0}}...)/{\rm Tr}(e^{-\beta H_{0}}) implies the thermodynamic average with the mean-field Hamiltonian in Eq. (7) and σ(β)=T^exp[0βH1(τ)𝑑τ]\sigma(\beta)=\hat{T}{\rm exp}[-\int_{0}^{\beta}H_{1}(\tau)d\tau] is the scattering matrix. The Green’s function matrix Γ^(𝐪)\hat{\Gamma}({\bf q}) is presented by,

Γ^(𝐪)=\displaystyle\hat{\Gamma}({\bf q})= (Γ^aa(𝐪)Γ^ab(𝐪)Γ^ba(𝐪)Γ^bb(𝐪))\displaystyle\begin{pmatrix}\hat{\Gamma}_{aa}({\bf q})&\hat{\Gamma}_{ab}({\bf q})\\ \hat{\Gamma}_{ba}({\bf q})&\hat{\Gamma}_{bb}({\bf q})\end{pmatrix}
=\displaystyle= (ΓaaXX(𝐪)ΓaaXZ(𝐪)ΓabXX(𝐪)ΓabXZ(𝐪)ΓaaZX(𝐪)ΓaaZZ(𝐪)ΓabZX(𝐪)ΓabZZ(𝐪)ΓbaXX(𝐪)ΓbaXZ(𝐪)ΓbbXX(𝐪)ΓbbXZ(𝐪)ΓbaZX(𝐪)ΓbaZZ(𝐪)ΓbbZX(𝐪)ΓbbZZ(𝐪)).\displaystyle\begin{pmatrix}\Gamma^{XX}_{aa}({\bf q})&\Gamma^{XZ}_{aa}({\bf q})&\Gamma^{XX}_{ab}({\bf q})&\Gamma^{XZ}_{ab}({\bf q})\\ \Gamma^{ZX}_{aa}({\bf q})&\Gamma^{ZZ}_{aa}({\bf q})&\Gamma^{ZX}_{ab}({\bf q})&\Gamma^{ZZ}_{ab}({\bf q})\\ \Gamma^{XX}_{ba}({\bf q})&\Gamma^{XZ}_{ba}({\bf q})&\Gamma^{XX}_{bb}({\bf q})&\Gamma^{XZ}_{bb}({\bf q})\\ \Gamma^{ZX}_{ba}({\bf q})&\Gamma^{ZZ}_{ba}({\bf q})&\Gamma^{ZX}_{bb}({\bf q})&\Gamma^{ZZ}_{bb}({\bf q})\end{pmatrix}. (26)

In Ref. [9], we developed a procedure to calculate Γ^(𝐪)\hat{\Gamma}({\bf q}) in the Gaussian approximation using the functional integral representation for the scattering matrix, which is

σ(β)=Dψexp{12β𝐪λλIλλ1(𝐤)ψλ(𝐪)ψλ(𝐪)}T^exp{λ𝐪ψλ(𝐪)δSλ(𝐪)}.\displaystyle\sigma(\beta)=\int D\psi{\rm exp}\Big{\{}-{1\over 2\beta}\sum_{\bf q\lambda\lambda^{\prime}}I^{-1}_{\lambda\lambda^{\prime}}({\bf k})\psi_{\lambda}({\bf q})\psi_{\lambda^{\prime}}({-\bf q})\Big{\}}\hat{T}{\rm exp}\Big{\{}\sum_{\lambda{\bf q}}\psi_{\lambda}({\bf q})\delta S^{\lambda}({\bf q})\Big{\}}. (27)

Here Iλλ1(𝐤)I^{-1}_{\lambda\lambda^{\prime}}({\bf k}) denotes the inverse matrix elements of I^(𝐤)\hat{I}({\bf k}) indicated in Eq. (9). The functional integration over the complex field variable ψλ(𝐪)=ψλc(𝐪)+iψλs(𝐪)\psi_{\lambda}({\bf q})=\psi^{c}_{\lambda}({\bf q})+i\psi^{s}_{\lambda}({\bf q}) takes the following form,

Dψ=Πλdψλ(0)2πdet[βI^(0)]Π𝐪0\displaystyle\int D\psi...=\Pi_{\lambda}\int_{-\infty}^{\infty}{d\psi_{\lambda}(0)\over\sqrt{2\pi{\rm det}[\beta\hat{I}(0)]}}\Pi_{{\bf q}\neq 0}
×dψλc(𝐪)πdet[βI^(𝐤)]dψλs(𝐪)πdet[βI^(𝐤)]\displaystyle\times\int_{-\infty}^{\infty}{d\psi^{c}_{\lambda}({\bf q})\over\sqrt{\pi{\rm det}[\beta\hat{I}({\bf k})]}}\int_{-\infty}^{\infty}{d\psi^{s}_{\lambda}({\bf q})\over\sqrt{\pi{\rm det}[\beta\hat{I}({\bf k})]}}... (28)

Here ψλc(𝐪)\psi^{c}_{\lambda}({\bf q}) and ψλs(𝐪)\psi^{s}_{\lambda}({\bf q}) are the real and imaginary parts of ψλ(𝐪)\psi_{\lambda}({\bf q}), respectively and ψλc(𝐪)=ψλc(𝐪)\psi^{c}_{\lambda}({-\bf q})=\psi^{c}_{\lambda}({\bf q}), ψλs(𝐪)=ψλs(𝐪)\psi^{s}_{\lambda}({-\bf q})=-\psi^{s}_{\lambda}({\bf q}).

In the Gaussian approximation, Green’s function Γ^(𝐪)\hat{\Gamma}({\bf q}) satisfies the matrix equation:

Γ^(𝐪)=M^(ω)[1^βI^(𝐤)M^(ω)]1,\displaystyle\hat{\Gamma}({\bf q})=\hat{M}(\omega)[\hat{1}-\beta\hat{I}({\bf k})\hat{M}(\omega)]^{-1}\,\,, (29)

where

M^(ω)=\displaystyle\hat{M}(\omega)= (M^a(ω)O^O^M^b(ω)),\displaystyle\begin{pmatrix}\hat{M}_{a}(\omega)&\hat{O}\\ \hat{O}&\hat{M}_{b}(\omega)\end{pmatrix},
=\displaystyle= (MaX(ω)0000MaZ(ω)0000MbX(ω)0000MbZ(ω)),\displaystyle\begin{pmatrix}M_{aX}(\omega)&0&0&0\\ \rm 0&M_{aZ}(\omega)&0&0\\ \rm 0&0&M_{bX}(\omega)&0\\ \rm 0&0&0&M_{bZ}(\omega)\\ \end{pmatrix}, (30)

and

MνX(ω)=\displaystyle M_{\nu X}(\omega)= bs(yν)yνiωβ,\displaystyle{b_{s}(y_{\nu})\over y_{\nu}-i\omega\beta}, (31)
MνZ(ω)=\displaystyle M_{\nu Z}(\omega)= bs(yν)δ(ω).\displaystyle b^{\prime}_{s}(y_{\nu})\delta(\omega). (32)

Here, the Brillouin function bs(yν)\rm b_{s}(y_{\nu}) and its derivative bs(yν)b^{\prime}_{s}(y_{\nu}) are given in Ref. [15].

Using Eqs.(9)-(12), (29)-(32), we evaluate the GFs Γλλ(𝐪)\Gamma^{\lambda\lambda^{\prime}}({\bf q}) and insert them into Eqs. (19)-(22) to obtain the explicit expressions for the GFs in the original spin-lattice coordinate. Performing an analytic continuation, the transverse GF is written by

Gaaxx(𝐪)=ha2bs(ya)γa2(γbJξ2𝐤bs(yb)ω)(ωϵ𝐤+)(ωϵ𝐤),\displaystyle G^{xx}_{aa}({\bf q})={h^{2}_{a}b_{s}(y_{a})\over\gamma_{a}^{2}}\frac{(\gamma_{b}-J^{\prime}\xi_{2{\bf k}}b_{s}(y_{b})-\omega)}{(\omega-\epsilon^{+}_{\bf k})(\omega-\epsilon^{-}_{\bf k})}\,, (33)

with the k-dependent poles ϵ𝐤±\epsilon^{\pm}_{\bf k} of the GF known as elementary excitation energies or magnons,

ϵ𝐤±=\displaystyle\epsilon^{\pm}_{\bf k}= 12{γa+γbJξ2𝐤[bs(ya)+bs(yb)]}\displaystyle{1\over 2}\{\gamma_{a}+\gamma_{b}-J^{\prime}\xi_{2\bf k}[b_{s}(y_{a})+b_{s}(y_{b})]\}
±\displaystyle\pm 12{γaγbJξ2𝐤[bs(ya)bs(yb)]}2+4C2|ξ1𝐤|2bs(ya)bs(yb).\displaystyle{1\over 2}\sqrt{\{\gamma_{a}-\gamma_{b}-J^{\prime}\xi_{2\bf k}[b_{s}(y_{a})-b_{s}(y_{b})]\}^{2}+4C^{2}|\xi_{1\bf k}|^{2}b_{s}(y_{a})b_{s}(y_{b})}\,. (34)

We note that the formula (34) better describes the temperature and field dependence of the magnon band structure compared with that obtained by Ref. [2]. To analyze the magnon spectrum in Eq. (34), we use the MFA result for magnetic moment per site derived from the unitary transformation in Eq. (6), which are

mνz=\displaystyle m_{\nu z}= hνbs(yν)γν,mνx=Ωνbs(yν)γν,\displaystyle{h_{\nu}b_{s}(y_{\nu})\over\gamma_{\nu}},m_{\nu x}={\Omega_{\nu}b_{s}(y_{\nu})\over\gamma_{\nu}}\,,
mν=\displaystyle m_{\nu}= mνx2+mνz2=bs(yν),\displaystyle\sqrt{m^{2}_{\nu x}+m^{2}_{\nu z}}=b_{s}(y_{\nu})\,,
m=\displaystyle m= (ma+mb)/2,\displaystyle(m_{a}+m_{b})/2\,,
yν=\displaystyle y_{\nu}= βγν.\displaystyle\beta\gamma_{\nu}. (35)

We can also obtain various elementary excitations (ferromagnetic, antiferromagnetic, ferromagnetic magnon) in the honeycomb spin-lattice using Eq. (34). In the following parts, we concentrate only on ferromagnetic magnon which has been experimentally observed in the typical monolayer CrI3 and the Van der Waals structures [5, 7].

3 Ferromagnetic magnon spectra in monolayer honeycomb spin-lattice

3.1 Ferromagnetic magnon in the application of transverse field at finite temperature

In this part, we examine the magnon spectra in the presence of the spin orientation (SR) effect by virtue of the TF. To emphasize the special role of the transverse field, the longitudinal field is supposedly turned off, h0=0h_{0}=0. The ferromagnetic (FM) magnon case corresponds to a homogeneous molecular field where γa=γbγ\gamma_{a}=\gamma_{b}\equiv\gamma, h=3(J+2J)mzh=3(J+2J^{\prime})m_{z}, Ω=Ω0+3(L+2J)mx\Omega=\Omega_{0}+3(L+2J^{\prime})m_{x} and C=(JΩ2+Lh2)/γ2C=(J\Omega^{2}+Lh^{2})/\gamma^{2}. Thus, the FM magnon spectrum is given by,

ϵ𝐤±=γ[Jξ2𝐤C|ξ𝟏𝐤|]bs(y).\displaystyle\epsilon^{\pm}_{\bf k}=\gamma-[J^{\prime}\xi_{2\bf k}\mp C|\xi_{\bf 1k}|]b_{s}(y)\,. (36)

Since m=bs(y)m=b_{s}(y), the positive spin-wave dispersion relation has two branches only when the net magnetic moment per site mm is finite. At a given transverse field, the SR from the out-of-plane to an in-plane direction where mz=0,mx=mm_{z}=0,\,m_{x}=m occurs at the SR temperature τR(Ω0)\tau_{R}(\Omega_{0}) derived from the solution of the equation,

bs(Ω0(J+2J)τR(JL))=Ω03(JL),\displaystyle\rm b_{s}\Big{(}{\Omega_{0}(J+2J^{\prime})\over\tau_{R}(J-L)}\Big{)}={\Omega_{0}\over 3(J-L)}\,, (37)

with β1=τ,y=γ/τ\rm\beta^{-1}=\tau,\,y=\gamma/\tau. Similarly, the Curie temperature is extracted from Eq.  (37) in the limit of zero TF,

τc=τR(Ω0=0)=s(s+1)(J+2J).\displaystyle\tau_{c}=\tau_{R}(\Omega_{0}=0)=s(s+1)(J+2J^{\prime})\,. (38)

In the presence of TF, the magnetic moment and the spin-wave energy follow different relations in certain temperature regions. Instead of Eq. (36), the energy spectrum of the FM magnon is explicitly expressed in different ranges of temperature which are

i/ Below the SR temperature (0<τ<τR(Ω0)0<\tau<\tau_{R}(\Omega_{0}))

mx=\displaystyle m_{x}= Ω03(JL),mz=bs2(y)mx2,\displaystyle{\Omega_{0}\over 3(J-L)}\,,m_{z}=\sqrt{b^{2}_{s}(y)-m_{x}^{2}},
γ=\displaystyle\gamma= 3(J+2J)bs(y),y=γ/τ.\displaystyle 3(J+2J^{\prime})b_{s}(y),\,y=\gamma/\tau. (39)

From that, the spin reorients from the out-of-plane to the in-plane direction at the SR field which is

Ω0R(τ)=3(JL)bs(y).\Omega_{0R}(\tau)=3(J-L)b_{s}(y). (40)

The magnon spectrum is then described by

ϵ𝐤±=bs(y){3J+J(6\displaystyle\epsilon^{\pm}_{\bf k}=b_{s}(y)\Big{\{}3J+J^{\prime}(6 \displaystyle- ξ𝟐𝐤)\displaystyle\xi_{\bf 2k}) (41)
±\displaystyle\pm |ξ𝟏𝐤|[L+Ω029(JL)bs2(y)]},\displaystyle|\xi_{\bf 1k}|\Big{[}L+{\Omega_{0}^{2}\over 9(J-L)b^{2}_{s}(y)}\Big{]}\Big{\}},\qquad

where the zero-momentum magnon mode simplifies to,

ϵ0±=3bs(y){J±[L+Ω029(JL)bs2(y)]}.\displaystyle\epsilon_{0}^{\pm}=3b_{s}(y)\Big{\{}J\pm\Big{[}L+{\Omega_{0}^{2}\over 9(J-L)b^{2}_{s}(y)}\Big{]}\Big{\}}\,. (42)

At finite temperatures, the gap of the low-energy magnon branch at the center of the BZ closes, ϵ0=0\epsilon^{-}_{0}=0, when the transverse field reaches the SR field value in Eq. (40). In this case, the low-energy magnon branch is purely acoustic, which implies ϵ𝐤0\epsilon_{\bf k}^{-}\rightarrow 0 when 𝐤0{\bf k}\rightarrow 0.

Near the Dirac point K’(2π3a0,2π33a0)\rm\Big{(}{2\pi\over 3a_{0}},-{\rm 2\pi\over 3\sqrt{3}a_{0}}\Big{)}, the magnon energy has a linear wave-vector dependence,

ϵ±(𝐤)3bs(y)(J+3J)±vm|𝐤𝐊|.\displaystyle\epsilon^{\pm}({\bf k})\approx 3b_{s}(y)(J+3J^{\prime})\pm\hbar v_{m}|{\bf k-K^{\prime}}|\,. (43)

The magnon speed vmv_{m} is a function of transverse field and temperature,

vm=3bs(y)a02[L+Ω029(JL)bs2(y)].\displaystyle v_{m}={3b_{s}(y)a_{0}\over 2\hbar}\Big{[}L+{\Omega_{0}^{2}\over 9(J-L)b^{2}_{s}(y)}\Big{]}\,. (44)

ii/ Above the SR temperature (ττR\tau\geq\tau_{R}),

The magnetization and the dispersion relation of magnon are correspondingly given by

mz=0m_{z}=0,  mx=m=bs(y)m_{x}=m=b_{s}(y^{\prime}),  y=γ/τy^{\prime}=\gamma^{\prime}/\tau;

γ=Ω0+3(L+2J)bs(y)\gamma^{\prime}=\Omega_{0}+3(L+2J^{\prime})b_{s}(y^{\prime});

ϵ𝐤±=Ω0+[3L+J(6ξ𝟐𝐤)±J|ξ𝟏𝐤|]bs(y)\epsilon^{\pm}_{\bf k}=\Omega_{0}+\Big{[}3L+J^{\prime}(6-\xi_{\bf 2k})\pm J|\xi_{\bf 1k}|\Big{]}b_{s}(y^{\prime}).

Near the Dirac point K’, ϵ𝐤±Ω0+(3L+9J)bs(y)±vm|𝐤𝐊|\epsilon^{\pm}_{\bf k}\approx\Omega_{0}+(3L+9J^{\prime})b_{s}(y^{\prime})\pm\hbar v^{\prime}_{m}|{\bf k-K^{\prime}}| where the magnon speed is non-explicitly temperature and field dependent,

vm=3Ja0b(y)2.\displaystyle v^{\prime}_{m}={3Ja_{0}b(y^{\prime})\over 2\hbar}\,. (45)

iii/ At zero temperature

The spin reorientation is then interpreted as the quantum phase transition due to the TF. At zero temperature, the SR field equals the critical field Ω0R(0)=Ω0C\rm\Omega_{0R}(0)=\Omega_{0C}. In this case, the Brillouin function reaches a saturated value, bs(y)=sb_{s}(y)=s with the spin moment per site ss. Consequently, the critical transverse field causing QPT is (see Eq. (40))

Ω0C=Ω0R(0)=3s(JL).\displaystyle\Omega_{0C}=\Omega_{0R}(0)=3s(J-L). (46)

The spin wave energy behaves differently depending on the transverse field, which is

a) Ω0Ω0C\Omega_{0}\leq\Omega_{0C},

mx=Ω03(JL),mz=s1Ω02Ω0C2,\displaystyle m_{x}={\Omega_{0}\over 3(J-L)}\,,m_{z}=s\sqrt{1-{\Omega_{0}^{2}\over\Omega^{2}_{0C}}}\,, (47)

and the FM magnon follows a dispersion relation which is

ϵ𝐤±=s{3J+(6ξ𝟐𝐤)J±[L+Ω029(JL)s2]|ξ1𝐤|},\displaystyle\epsilon^{\pm}_{\bf k}=s\Big{\{}3J+(6-\xi_{\bf 2k})J^{\prime}\pm\Big{[}L+{\Omega^{2}_{0}\over 9(J-L)s^{2}}\Big{]}|\xi_{1\bf k}|\Big{\}},\quad (48)

where the zero-momentum magnon gaps at Brillouin zone center for two branches are

ϵ0+=\displaystyle\epsilon_{0}^{+}= 3s(J+L)+Ω02Ω0C,\displaystyle 3s(J+L)+{\Omega_{0}^{2}\over\Omega_{0C}}, (49)
ϵ0=\displaystyle\epsilon_{0}^{-}= Ω0C(1Ω02Ω0C2).\displaystyle\Omega_{0C}\Big{(}1-{\Omega_{0}^{2}\over\Omega^{2}_{0C}}\Big{)}.\quad (50)

It is obviously seen from Eq. (50) that the low-energy branch magnon gap closes at the critical field Ω0C\Omega_{0C}.

b) Ω0Ω0C\Omega_{0}\geq\Omega_{0C}

The magnetization is simplified to mz=0m_{z}=0, mx=sm_{x}=s and the magnon spectrum linearly varies on the TF, which is

ϵ𝐤±=Ω0+s[3L+J(6ξ2𝐤)±J|ξ𝟏𝐤|].\epsilon^{\pm}_{\bf k}=\rm\Omega_{0}+s[3L+J^{\prime}(6-\xi_{2\bf k})\pm J|\xi_{\bf 1k}|]\,.\quad (51)

3.2 Numerical results

Refer to caption
(a)
Refer to caption
(b)
Figure 2: Temperature dependence of the magnetic moment per site m and its component mx, mz of the FM monolayer honeycomb spin-lattice in the transverse field Ω0=0\Omega_{0}=0 and 0.8 LABEL:sub@fig:2a, and change of spin reorientation temperature with increasing transverse field LABEL:sub@fig:2b. Here s=3/2, L=0.4, J’=0.1.

For numerical calculations, energy-dependent quantities such as FM-magnon energy ϵ±(𝐤)\epsilon^{\pm}({\bf k}), temperature τ\tau; parameters L, J’; field strength γ\gamma, h, Ω\Omega are measured in terms of NN exchange J and lengths are expressed in terms of a0a_{0}.

Fig. 2LABEL:sub@fig:2a illustrates the MF thermomagnetic behaviors by using Eqs. (37)-(39), when Ω0\Omega_{0}=0 and 0.8, L=0.4L=0.4, J=0.1J’=0.1, s=3/2s=3/2. The reduction of the spin reorientation temperature τR\tau_{R} with increasing transverse field is exhibited in Fig. 2LABEL:sub@fig:2b. The Curie temperature τC=4.5\rm\tau_{C}=4.5 is obtained as the spin reorientation temperature when Ω0=0\Omega_{0}=0 according to Eq. (38). At the critical value Ω0C=2.7\Omega_{0C}=2.7, the SR temperature becomes zero.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Refer to caption
(e)
Refer to caption
(f)
Figure 3: FM magnon spectral branches over the whole Brillouin zone with different NNN interaction JJ’=0.1 LABEL:sub@fig:3a, 0.2 LABEL:sub@fig:3b, 0.5 LABEL:sub@fig:3c. Here transverse field Ω0=0.8\Omega_{0}=0.8, s=3/2s=3/2, L=0.4L=0.4, τ=1.2\tau=1.2. The magnon energy spectrum along the ΓMKΓ\rm\Gamma MK\Gamma line with the same parameters in the LABEL:sub@fig:3a-LABEL:sub@fig:3c cases are illustrated in LABEL:sub@fig:3d-LABEL:sub@fig:3f cases, correspondingly.
Refer to caption
(a)
Refer to caption
(b)
Figure 4: Wave-vector dependence of the magnon branches along the ΓMKΓ\rm\Gamma MK\Gamma line with increasing transverse field Ω0=\Omega_{0}= 0, 1.2, 1.6. Parameters are chosen as s=3/2s=3/2, τ=\tau=1.2, L=L= 0.4, and J=J’= 0.1 LABEL:sub@fig:4a, 0.5 LABEL:sub@fig:4b.

Two magnon branches ϵ±(𝐤)\epsilon^{\pm}({\bf k}) are displayed in Fig. 3LABEL:sub@fig:3a-LABEL:sub@fig:3c at temperature τ=1.2\tau=1.2 (lower than the SR temperature) over the Brillouin zone while the cross-section along the ΓKMΓ\rm\Gamma KM\Gamma line are presented in Fig. 3LABEL:sub@fig:3d-LABEL:sub@fig:3f, respectively. The magnon energy at the Dirac K point increases strongly when increasing the NNN interaction JJ’ from 0.1 to 0.5. The magnon spectra shown in Fig. 3LABEL:sub@fig:3e, LABEL:sub@fig:3f are quite similar to the DFT calculation result for the adiabatic magnon energy of CrI3 (see Fig. 8(a) in Ref. [16]).

The difference between the magnon branches along the ΓMKΓ\rm\Gamma MK\Gamma line outside the Dirac K-point increases when the transverse field Ω0\Omega_{0} increases with J=0.1J’=0.1 and 0.5 in the temperature region below τR\tau_{R} (see Fig. 4). Meanwhile, the upper FM-magnon band curvature near the M point changes from upward to downward with increasing Ω0\Omega_{0}. This implies that the sign of the effective mass of the upper FM-magnon branch is adjustable by the transverse field. As also mentioned in Ref. [17], the energy gap of the low-energy magnon branch at the Γ\Gamma point (ΔΓ\Delta_{\Gamma} or ϵ0\epsilon_{0}^{-}) has an anisotropy origin and does not depend on J’ (see Eq. (41)). This gap is proportional to the TR field as a function of Ω02\Omega_{0}^{2} and reduces with increasing TR from 0 to 1.6.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 5: FM-magnon branches over the whole Brillouin zone with increasing transverse field Ω0=\Omega_{0}= 0.8 LABEL:sub@fig:5a and 2.7 LABEL:sub@fig:5b. Here s=s=3/2, L=L=0.4, τ=\tau= 0.001, J=J’= 0.5. The magnon energy spectrum along the ΓMKΓ\rm\Gamma MK\Gamma line with the same parameters in the LABEL:sub@fig:5a and LABEL:sub@fig:5b cases are illustrated in LABEL:sub@fig:5c and LABEL:sub@fig:5d, respectively.

Fig. 5 exhibits the magnon branches along the ΓKMΓ\rm\Gamma KM\Gamma line at very low temperature τ=0.001\tau=0.001. At the center of the Brillouin zone, or the Γ\rm\Gamma point, the upper FM-magnon branch bottom shifts to the higher value with increasing the transverse field, and the gap of the low-energy FM-magnon branch closes when the transverse field approaches the spin reorientation field Ω0R=2.7\Omega_{0R}=2.7. The temperature dependence of the zero-momentum FM-magnon spectra ϵ𝐤(𝐤=𝟎)\epsilon_{\bf k}({\bf k=0}) in Fig. 6LABEL:sub@fig:6a, LABEL:sub@fig:6c indicates that two branches of these spectra change discontinuously at the SR temperature corresponding to the step-change of the incline angle of the spin direction above the single-layer spin plane as seen in Fig. 6LABEL:sub@fig:6b, LABEL:sub@fig:6d. For the case of Fig. 6LABEL:sub@fig:6a (L=0.05L=0.05, J=0.1J^{\prime}=0.1), our model is analogous to the Ising model where the zero-momentum magnon energies of two branches are weak temperature-dependent in the temperature region above τR\rm\tau_{R}. This realization was also experimentally observed in Ref. [8].

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 6: The zero-momentum (𝐤=0{\bf k}=0) spin-wave energy and the decline angle θ\theta of magnetic-moment vector versus temperature in the transverse field Ω0=\Omega_{0}= 0.8. Other parameters are chosen as L=L= 0.05, J=J’= 0.1 for LABEL:sub@fig:6a and LABEL:sub@fig:6c; L=L= 0.4, J=J’= 0.5 for LABEL:sub@fig:6b and LABEL:sub@fig:6d. Arrows indicate the SR temperatures. Here the spin value is taken s=s= 3/2.
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 7: The discontinuous change of the FM magnon spectrum at the SR temperature when kx=ky=0k_{x}=k_{y}=0 LABEL:sub@fig:7a; kx=ky=0.5k_{x}=k_{y}=0.5 LABEL:sub@fig:7b; kx=1.89,ky=1.01k_{x}=1.89,\,k_{y}=1.01 LABEL:sub@fig:7c. Here we choose Ω0=0.8\Omega_{0}=0.8, L=0.4L=0.4, J=0.1J’=0.1, s=3/2s=3/2.
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 8: The magnon energy modes at different points of the Brillouin zone where kx=ky=0k_{x}=k_{y}=0 LABEL:sub@fig:8a; kx=ky=0.5k_{x}=k_{y}=0.5 and kx=1.89,ky=1.01k_{x}=1.89,\,k_{y}=1.01 LABEL:sub@fig:8b, and the inclined angle of the magnetic moment versus the transverse field LABEL:sub@fig:8c. Here we choose L=0.4L=0.4, J=0.5J’=0.5, s=3/2s=3/2.

The influence of temperature on the behavior of the magnon energy is unveiled in Fig. 7 where a disrupt change of ϵ𝐤\epsilon_{\bf k} occurs at the SR temperature. At a certain transverse field, the difference between the two magnon branches depends on the intrinsic parameters LL, JJ’, ss, and the wave vector. For the same set of parameters, Ω0=0.8\Omega_{0}=0.8, L=0.4L=0.4, J=0.1J’=0.1, s=3/2s=3/2, this difference is more pronounced for the wave vector at or near the center of the Brillouin zone (kx=ky=0.5k_{x}=k_{y}=0.5 in Fig. 7LABEL:sub@fig:7b) than for the 𝐤\bf k value near the Dirac points (kx=1.89;ky=1.01k_{x}=1.89;\,k_{y}=1.01 in Fig. 7LABEL:sub@fig:7c)). Moreover, it is also indicated that a possible temperature gap opens for the non-zero-momentum low-energy magnon branch. In other words, this branch can not vanish in a wide range of temperatures.

At zero temperature τ=0\tau=0 where the SR transition is considered as the QPT with the tuning parameter Ω0\Omega_{0}, we are interested in the energy variation of several magnon modes with various transverse field Ω0\Omega_{0}. The gap between two branches of the zero-momentum FM-magnon energy shown in Fig. 8LABEL:sub@fig:8a increases proportionally to Ω02\Omega_{0}^{2} when Ω0Ω0C\Omega_{0}\leq\Omega_{0C} and reaches the maximum value of 6ss for Ω0Ω0C\Omega_{0}\geq\rm\Omega_{0C}. It is emphasized that the zero-momentum magnon branch cuts the horizontal axis in Fig. 8LABEL:sub@fig:8a at the critical transverse field Ω0C\rm\Omega_{0C}. The low-energy magnon branch mode at other points of Brillouin zone (𝐤𝟎\bf{k}\neq 0) including points near the Dirac one (kx=1.89;ky=1.01k_{x}=1.89;\,k_{y}=1.01 in Fig. 8LABEL:sub@fig:8b is always finite for any TF value. The gap between two magnon branches remains constant when the TF intensity is larger than the critical tuning parameter Ω0C\Omega_{0C} due to the linear dependence on the TF displayed in Eq. (51). We also present in Fig. 8LABEL:sub@fig:8c the change of the inclined angle of the spin direction θ\theta with different TF Ω0\Omega_{0}. Both the inclined angle and the SR temperature disappear at the critical field Ω0C=2.7\Omega_{0C}=2.7 (see also Fig. 2LABEL:sub@fig:2b).

3.3 Estimation for CrI3 monolayer

Refer to caption
(a)
Refer to caption
(b)
Figure 9: The comparison between theory and experiment [8] for the temperature dependence of the zero-momentum magnon mode M1 LABEL:sub@fig:9a and M2 LABEL:sub@fig:9b. The quantities ϵ¯𝐤\bar{\epsilon}_{\bf k}, τ¯\bar{\tau} are relative magnon energy and relative temperature (see the text). Fitted parameters and the SR temperature τR\tau_{R} are given in terms of JJ.

A ferromagnetic order with an out-of-plane spin orientation was experimentally observed in the CrI3 monolayer. The temperature dependence of the integrated intensity of the M1 and M2 magnon modes performed in Ref. [8] was carried out on 13-layer films. To apply the single layer model for this CrI3 thin film, we propose an out-of-plane magnetic moment with an initial incline angle of the film plane caused by the competition between anisotropic exchanges and TF fields. The effective anisotropy originated from the transverse strain in 2D materials plays the role of the transverse field in the model. The presence of the magnon mode intensity above SR temperature is an evidence of the transverse field.

Fig. 9 shows the theoretical fit with the experimental data for the temperature dependence of the zero-momentum M1 and M2 magnon modes in CrI3 [8]. Here, the ratio of zero-momentum magnon energy at finite temperatures to this at zero temperature and relative temperature are denoted as ϵ𝐤¯=ϵ𝐤(T)/ϵ𝐤(0)\bar{\epsilon_{\bf k}}=\epsilon_{\bf k}(T)/\epsilon_{\bf k}(0) and τ¯=T/TR\bar{\tau}=T/T_{R}, respectively. The fitted theoretical parameters presented in terms of the out-of-plane exchange constant JJ are J=0.1;L=0.85;Ω0=0.096;τR=4.462J’=0.1;\,L=0.85;\,\Omega_{0}=0.096;\,\tau_{R}=4.462 where the SR temperature τR\tau_{R} approximates to the Curie temperature τC=4.5\tau_{C}=4.5 estimated by Eq. 38. Using the experimental value of the SR temperature of CrI3 monolayer in Ref. [8], τR=45\tau_{R}=45 K, we obtain J=0.869J=0.869 meV, the in-plane NN exchange constant L=0.739L=0.739 meV, the isotropic NNN exchange constant J=0.087J’=0.087 meV and the transverse field Ω0=0.083\Omega_{0}=0.083 meV. We also make a comparison of these exchange parameters obtained from the DFT calculations for the CrI3 monolayer [13, 18, 16] with our present work and with the 13-layer film data using NN anisotropic Heisenberg model [8]. The data of different works are listed in Table 1.

Table 1: The magnitude of the out-of-plane NN, in-plane NN, NNN exchanges J, L, J’ exchange parameters obtained by different works, respectively.
Parameter (meV) Present work Ref. [16] Ref. [13] Ref. [18] Ref. [8]
J 0.869 1.025 1.53 0.72 5.46
L 0.739 - - - 1.36
J’ 0.087 0.549 0.38 - -

We can see that the NN exchange parameter JJ of our work is in good agreement with the DFT derivations in Ref. [18, 16] and the evaluation of the Ref. [8] is too high. Taking Ω0=gμBB0x\Omega_{0}=g\mu_{B}B_{0x} where the Bohr magneton μB=5.788×105\mu_{B}=5.788\times 10^{-5} eV/T and the g-factor of the ion Cr3+ is 1.98 [19], we estimate the transverse field for the 13-layer CrI3 film, B0x=0.73B_{0x}=0.73 T. This value is in the interval of the in-plane saturated field for the CrI3 monolayer (0.17\sim 0.17 T) and for the bulk (2\sim 2 T) [8]. Using the lattice constant a0=6.867×1010a_{0}=6.867\times 10^{-10} m extracted in Ref. [20] and the formula (44), we readily obtain the magnon velocity in the 2D CrI3 near Dirac point and at zero temperature vm=1.74v_{m}=1.74 km/s. We are looking forward to experimental data to compare with this value.

4 Conclusion

The temperature and the field dependence of the ferromagnetic magnon spectra in the honeycomb single-layer spin film are calculated using the anisotropic exchange XZ-Heisenberg model with the transverse field. The field and temperature dependence of the magnetization are examined within the mean-field approximation while the magnon energy is calculated by using the Gaussian approximation. The finite-temperature phase transition due to the TF is the spin reorientation transition in the monolayer honeycomb spin-lattice with the initial out-of-plane magnetization. The collective excitation follows the different dispersion relations below or above the SR temperature. The transverse-field dependence of the magnon spectrum at zero temperature corresponding to QPT is also illustrated and the gap of the zero-momentum low-energy magnon branch disappears at the critical QPT field. The model application for the magnon modes in the 2D-CrI3 ferromagnet reveals a suitable agreement.

Acknowledgment

We would like to thank the grant Nafosted 103.01-2019.324 for support.

References

  • [1] T. O. Wehling, A. M. Black-Schaffer and A. V. Balatsky, Adv. Phys63, 1 (2014).
  • [2] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Phys. Rev. B 94, 075401 (2016).
  • [3] S. Peshoguba, S. Banerjee, J. C. Lashley, J. Park, H. Agren, G. Aeppli, and A.V. Balatsky, Phys. Rev. X 8, 011010 (2018).
  • [4] D. Boyko, A. V. Balatsky, J. T. Haraldsen, Phys. Rev. B 97, 014433 (2018).
  • [5] B. Huang, G. Clark, E. Navarro-Moratalla et al, Nature 546, 270 (2017).
  • [6] M. Gilbertini, M. Koperski, A. F. Morpurgo and K. S. Novoselov, Nat. Nanotechnol.  14, 408 (2019).
  • [7] J. Cenker, B. Huang, N. Suri et al, Nat. Phys. 17, 20 (2021).
  • [8] W. Jin, H. H. Kim, Z. Ye, S. Li, P. Rezaie, F. Diaz, S. Siddiq, E. Wauer, B. Yang, C. Li, S. Tian, K. Sun, H. Lei, A. W. Tsen, L. Zhao, R. He, Nat. Commun. 9, 5122 (2018).
  • [9] Niem T. Nguyen, Thao H. Pham, Giang H. Bach, and Cong T. Bach, Mater. Trans. 59, 1075 (2018).
  • [10] S. Schwieger, J. Kienert, and W. Nolting, Phys. Rev. B 71, 024428 (2005).
  • [11] J. F. Scott, A. Schilling, S. E. Rowley, and J. M. Gregg, Sci. Technol. Adv.  Mater. 16, 036001 (2015).
  • [12] S. Li, Z. Ye, X. Luo, G. Ye, H. H. Kim, B. Yang, S. Tian, C. Li, H. Lei, A. W. Tsen, K. Sun, R. He, and L. Zhao, Phys. Rev. X 10, 011075 (2020).
  • [13] M. Pizzochero, O. V. Yazyev, J. Phys. Chem. C 124, 7585 (2020).
  • [14] N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
  • [15] Cong T. Bach, Niem T. Nguyen, Giang H. Bach, Jour. Magn. Magn. Mater. 483, 136 (2019).
  • [16] D. Wang and B. Sanyal, J. Phys. Chem. C 125, 18467 (2021).
  • [17] A. T. Costa, D. L. R. Santos, N. M. R. Peres and J. Fernandez-Rossier, 2D Mater. 7, 045031 (2020).
  • [18] M. Pizzochero, R. Yadav, and O.V. Yazyev, 2D Mater. 7, 035055 (2020).
  • [19] C.L. Saiz, M. A. McGuire, S.R.J. Hennadige et. al., MRS Advances 4, 2169 (2019).
  • [20] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem. Mater. 27, 612 (2015).