This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tempered Fractional Brownian Motion with Variable Index and Variable Tempering Parameter

S.C. Lim 50 Holland Road, #02-01 Botanika, Singapore 258853 sclim47@gmail.com Chai Hok Eab 7/9 Rongmuang 5, Pathumwan, Bangkok 10330,Thailand Chaihok.E@gmail.com
Abstract

Generalizations of tempered fractional Brownian from single index to two indices and variable index or tempered multifractional Brownian motion are studied. Tempered fractional Brownian motion and tempered multifractional Brownian motion with variable tempering parameter are considered.

keywords:
Fractional Ornstein-Uhlenbeck process, reduced fractional Ornstein-Uhlenbeck process, tempered fractional Brownian motion, variable tempering parameter, tempered multifractional Brownian motion
journal: Xxxxx

1 Introduction

Tempered fractional Brownian motion (TFBM) has been introduced recently by modifying the moving average representation of fractional Brownian motion (FBM) with the inclusion of an exponential tempering factor to the power-law kernel [1, 2] TFBM has found applications in in many phenomena, from transient anomalous diffusion [3] wind speed and geophysical flow [4, 5].

TFBM can be treated from the view point of fractional Ornstein-Uhlenbeck process (FOU). Recall that in their definition of FBM, denoted by BH(t)B_{H}(t), Mandelbrot and van Ness [6] introduced the reduced form of FBM BH(t)=XH(t)XH(0)B_{H}(t)=X_{H}(t)-X_{H}(0) to get rid of divergence in the original definition of FBM XH(t)X_{H}(t) based on Weyl fractional integration of white noise. Although the FOU is well-defined using Weyl fractional integral, its covariance diverges when the damping constant λ\lambda goes to 0. The λ0\lambda\to 0 limit of the reduced process of FOU is well-defined, and it can be shown [7] to be the FBM of Mandelbrot and van Ness.

The main aim of this paper is to study some generalizations of TFBM in terms of the RFOU. The advantages of adopting such an approach are two folds. First, the known properties of FOU allow one to verify various properties of TFBM directly or with some modifications. Another advantage of treating TFBM as reduced process of FOU is that it allows extension of TFBM to two indices in a more direct way. Other generalisations, which include TFBM with time-dependent tempering, and variable index TFBM or tempered multifractional Brownian motion (TMBM), and TMBM with variable tempering parameter, can be carried out based on their corresponding reduced processes. To the best of authors’ knowledge, these generalisations have not been studied before. Some of the nice properties of these processes allow more realistic and flexible modelling of various natural and man-made phenomena.

The plan of this paper is as follows. Section 2 consider TFBM as the reduced FOU process. Extension of TFBM to two indices is studied in section 3. The subsequent sections discuss the generalization of TFBM to tempered multifractional Brownian motion (TMBM) with variable index, and the extension of TFBM and TMBM with variable tempering parameer. Concluding remarks are given in the final section.

2 Tempered Fractional Brownian Motion as Reduced Fractional Ornstein-Uhlenbeck Process

Recall that FOU can be obtained as the solution of the following fractional Langevin equation:

(Dta+λ)αXα,λ(t)\displaystyle\bigl{(}{}_{a}D_{t}+\lambda\bigr{)}^{\alpha}X_{\alpha,\lambda}(t) =η(t),\displaystyle=\eta(t), α\displaystyle\alpha >0,\displaystyle>0, (1)

where λ>0\lambda>0 is a positive constant, and η(t)\eta(t) is the Gaussian white noise with zero mean and delta-correlated covariance. The fractional derivative Dta{}_{a}D_{t} is defined by [8, 9]

Dtαaf(t)\displaystyle{{}_{a}D_{t}^{\alpha}}f(t) =1Γ(nα)(ddt)natf(u)(tu)αn+1𝑑u,\displaystyle=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{dt}\right)^{n}\int_{a}^{t}\frac{f(u)}{(t-u)^{\alpha-n+1}}du, n1<α<n.\displaystyle n-1<\alpha<n. (2)

For a=0a=0, the fractional derivative is known as the Riemann-Liouville fractional derivative; when a=a=-\infty, Dtα{{}_{\infty}D_{t}^{\alpha}} is called the Weyl fractional derivative.

The following operator identity holds for both the Riemann-Liouville and Weyl fractional derivatives [10]

(Dta+λ)α\displaystyle\bigl{(}{{}_{a}D_{t}}+\lambda\bigr{)}^{\alpha} =eλtDtαaeλt.\displaystyle=e^{-\lambda{t}}{{}_{a}D_{t}^{\alpha}}e^{\lambda{t}}. (3)

The shifted fractional derivative (3) is also known as tempered fractional derivative in subsequent work [see for examples, 11, 12, 13].

In this paper only FOU of Weyl type would be considered. One has for α>1/2\alpha>1/2,

Xα,λ(t)\displaystyle X_{\alpha,\lambda}(t) =1Γ(α)teλ(tu)(tu)α1η(t)𝑑u,\displaystyle=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{t}e^{-\lambda(t-u)}(t-u)^{\alpha-1}\eta(t)du, (4a)
=1Γ(α)eλ(tu)+(tu)+α1η(t)𝑑u,\displaystyle=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{\infty}e^{-\lambda(t-u)_{+}}(t-u)_{+}^{\alpha-1}\eta(t)du, (4b)

where (x)+μ=(max(x,0))μ(x)_{+}^{\mu}=\bigl{(}\max(x,0)\bigr{)}^{\mu} with 00=00^{0}=0. Note that the condition α>1/2\alpha>1/2 is to ensure the above integral exists. (4) is known as the moving average representation FOU of Weyl type.

Xα,λ(t)X_{\alpha,\lambda}(t) is a centred Gaussian stationary process with the following covariance and variance

Cα,λ(ts)\displaystyle C_{\alpha,\lambda}(t-s) =<Xα,λ(t)Xα,λ(s)>=1πΓ(α)(|ts|2λ)α1/2Kα1/2(λ|ts|),\displaystyle=\Bigl{<}X_{\alpha,\lambda}(t)X_{\alpha,\lambda}(s)\Bigr{>}=\frac{1}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{|t-s|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda|t-s|\bigr{)}, (5)
σα,λ2(t)\displaystyle\sigma_{\alpha,\lambda}^{2}(t) =<(Xα,λ(t))2>=Γ(2α1)(Γ(α))2(2λ)2α1.\displaystyle=\Bigl{<}\bigl{(}X_{\alpha,\lambda}(t)\bigr{)}^{2}\Bigr{>}=\frac{\Gamma(2\alpha-1)}{\bigl{(}\Gamma(\alpha)\bigr{)}^{2}(2\lambda)^{2\alpha-1}}. (6)

Kν(z)K_{\nu}(z) is the modified Bessel function of second kind [14]. The spectral density of Xα,λ(t)X_{\alpha,\lambda}(t) is

Sα,λ(k)\displaystyle S_{\alpha,\lambda}(k) =12πCα,λ(τ)eikτ𝑑τ=12π1(k2+λ2)α.\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}C_{\alpha,\lambda}(\tau)e^{ik\tau}d\tau=\frac{1}{2\pi}\frac{1}{\bigl{(}k^{2}+\lambda^{2}\bigr{)}^{\alpha}}. (7)

FOU has the following spectral representation

Xα,λ(t)\displaystyle X_{\alpha,\lambda}(t) =12πeiktη~(k)dk(ik+λ)α.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{-ikt}\widetilde{\eta}(k)dk}{(-ik+\lambda)^{\alpha}}. (8)

Xα,λ(t)X_{\alpha,\lambda}(t) is a stationary process with short-range dependent [10, 15, 16].

In contrast to FBM, (4) provides a well-defined FOU based on the Weyl-fractional integral. However, the covariance and variance of FOU of Weyl type are divergent in the λ0\lambda\to 0 limit [7]. The divergence disappears if one considers the reduced version of FOU, analogous to the reduced process introduced for FBM [1].

TFBM is defined as the reduced process of FOU for α>1/2\alpha>1/2:

Bα,λ(t)\displaystyle B_{\alpha,\lambda}(t) =Xα,λ(t)Xα,λ(0)\displaystyle=X_{\alpha,\lambda}(t)-X_{\alpha,\lambda}(0)
=1Γ(α)teλ(tu)(tu)α1η(t)𝑑u1Γ(α)0eλ(u)(u)α1η(t)𝑑u\displaystyle=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{t}e^{-\lambda(t-u)}(t-u)^{\alpha-1}\eta(t)du-\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{0}e^{-\lambda(-u)}(-u)^{\alpha-1}\eta(t)du
=1Γ(α)[eλ(tu)+(tu)+α1eλ(u)+(u)+α1]η(t)𝑑u.\displaystyle=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{\infty}\Bigl{[}e^{-\lambda(t-u)_{+}}(t-u)_{+}^{\alpha-1}-e^{-\lambda(-u)_{+}}(-u)_{+}^{\alpha-1}\Bigr{]}\eta(t)du. (9)

From (7) and (8) one gets the following spectral representation for TFBM:

Bα,λ(t)\displaystyle B_{\alpha,\lambda}(t) =12π(eikt1)η~(k)dk(ik+λ)α.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{\Bigl{(}e^{-ikt}-1\Bigr{)}\widetilde{\eta}(k)dk}{(-ik+\lambda)^{\alpha}}. (10)

The covariance of Bα,λ(t)B_{\alpha,\lambda}(t) can be calculated using (5) and (6):

\wideparenCα,λ(t,s)\displaystyle\wideparen{C}_{\alpha,\lambda}(t,s) =<Bα,λ(t)Bα,λ(s)>\displaystyle=\bigl{<}B_{\alpha,\lambda}(t)B_{\alpha,\lambda}(s)\bigr{>}
=1πΓ(α)[(|ts|2λ)α1/2Kα1/2(λ|ts|)(|t|2λ)α1/2Kα1/2(λ|t|)\displaystyle={\frac{1}{\sqrt{\pi}\Gamma(\alpha)}}\Biggl{[}\left(\frac{|t-s|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}(\lambda|t-s|)-\left(\frac{|t|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}(\lambda|t|)
(|s|2λ)α1/2Kα1/2(λ|s|)]+Γ(2α1)(Γ(α))2(2λ)2α1.\displaystyle\qquad\qquad\qquad\qquad-\left(\frac{|s|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}(\lambda|s|)\Biggr{]}+\frac{\Gamma(2\alpha-1)}{\bigl{(}\Gamma(\alpha)\bigr{)}^{2}(2\lambda)^{2\alpha-1}}. (11)

The variance of Bα,λ(t)B_{\alpha,\lambda}(t) is

\wideparenσα,λ2(t)\displaystyle\wideparen{\sigma}_{\alpha,\lambda}^{2}(t) =<(Bα,λ(t))2>=2Γ(2α1)(Γ(α))2(2λ)2H21πΓ(α)(|t|2λ)α1/2Kα1/2(λ|t|).\displaystyle=\Bigl{<}\bigl{(}B_{\alpha,\lambda}(t)\bigr{)}^{2}\Bigr{>}=\frac{2\Gamma(2\alpha-1)}{\bigl{(}\Gamma(\alpha)\bigr{)}^{2}(2\lambda)^{2H}}-2\frac{1}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{|t|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}(\lambda|t|). (12)

By letting H=α1/2H=\alpha-1/2,

ct\displaystyle c_{t} =2Γ(2H)(Γ(H+1/2))2(2λ|t|)2H2πΓ(H+1/2)(12λ|t|)HKH(λ|t|),\displaystyle=\frac{2\Gamma(2H)}{\bigl{(}\Gamma(H+1/2)\bigr{)}^{2}(2\lambda|t|)^{2H}}-\frac{2}{\sqrt{\pi}\Gamma(H+1/2)}\left(\frac{1}{2\lambda|t|}\right)^{H}K_{H}(\lambda|t|), (13)

the covariance of the TFBM can be expressed as

\wideparenCα,λ(t,s)\displaystyle\wideparen{C}_{\alpha,\lambda}(t,s) =12[ct|t|2H+cs|s|2Hcts|ts|2H],\displaystyle=\frac{1}{2}\Bigl{[}c_{t}|t|^{2H}+c_{s}|s|^{2H}-c_{t-s}|t-s|^{2H}\Bigr{]}, (14)

which has the same form as the covariance of TFBM up to a multiplicative constant Γ(H+1/2)2\Gamma(H+1/2)^{-2} as given in [1, 2]. Figure 1 shows the plots of covariance functions of FOU and its reduced process for H=0.75H=0.75 or α=1.25\alpha=1.25, and λ=0.5\lambda=0.5.

Refer to caption

Figure 1: covaraince of FOU and RFOU: s=0.5s=0.5, λ=0.5,H=0.75\lambda=0.5,H=0.75

The following are the properties of TFBM can be obtained as direct consequences or some modifications of the properties of FOU.

Stationarity property

In contrast to FOU which is a stationary process, TFBM is non-stationary. Bα,λ(t)B_{\alpha,\lambda}(t) is asymptotically stationary. The covariance of Bα,λ(t)B_{\alpha,\lambda}(t) can be expressed in the following form,

\wideparenCα,λ(t,t+τ)\displaystyle\wideparen{C}_{\alpha,\lambda}(t,t+\tau) =Cα,λ(τ)Cα,λ(t+τ)Cα,λ(t)+Cα,λ(0),\displaystyle=C_{\alpha,\lambda}(\tau)-C_{\alpha,\lambda}(t+\tau)-C_{\alpha,\lambda}(t)+C_{\alpha,\lambda}(0), (15)

where Cα,λ(t)C_{\alpha,\lambda}(t) is the covariance of the FOU. As τ\tau\to\infty, Cα,λ(τ)Cα,λ(t+τ)0C_{\alpha,\lambda}(\tau)-C_{\alpha,\lambda}(t+\tau)\to 0 so \wideparenCα,λ(t,t+τ)Cα,λ(0)Cα,λ(t)\wideparen{C}_{\alpha,\lambda}(t,t+\tau)\sim C_{\alpha,\lambda}(0)-C_{\alpha,\lambda}(t). Thus, TFBM becomes a stationary process in the large time limit.

The increment ΔτBα,λ(t)=Bα,λ(t+τ)Bα,λ(t)=Xα,λ(t+τ)Xα,λ(t)\Delta_{\tau}B_{\alpha,\lambda}(t)=B_{\alpha,\lambda}(t+\tau)-B_{\alpha,\lambda}(t)=X_{\alpha,\lambda}(t+\tau)-X_{\alpha,\lambda}(t) is a stationary process. This follows from the stationarity of Xα,λ(t)X_{\alpha,\lambda}(t). The spectral representation of the increment process is

ΔτBα,λ(t)\displaystyle\Delta_{\tau}B_{\alpha,\lambda}(t) =12π(eik(t+τ)eikt)η~(k)dk(ik+λ)α,\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{\Bigl{(}e^{-ik(t+\tau)}-e^{-ikt}\Bigr{)}\widetilde{\eta}(k)dk}{(-ik+\lambda)^{\alpha}}, (16)

with covariance

\wideparenCΔτBα,λ(t,s;τ)\displaystyle\wideparen{C}_{\Delta_{\tau}B_{\alpha,\lambda}}(t,s;\tau) =12π(eik(t+τ)eikt)(eik(s+τ)eiks)η~(k)dk(k2+λ2)α\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\Bigl{(}e^{-ik(t+\tau)}-e^{-ikt}\Bigr{)}\Bigl{(}e^{ik(s+\tau)}-e^{iks}\Bigr{)}\widetilde{\eta}(k)dk}{\bigl{(}k^{2}+\lambda^{2}\bigr{)}^{\alpha}}
=1πΓ(α)[2(|ts|2λ)α1/2Kα1/2(λ|ts|)(|ts+τ|2λ)α1/2Kα1/2(λ|ts+τ|)\displaystyle=\frac{1}{\sqrt{\pi}\Gamma(\alpha)}\Biggl{[}2\left(\frac{|t-s|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda|t-s|\bigr{)}-\left(\frac{|t-s+\tau|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda|t-s+\tau|\bigr{)}
(|tsτ|2λ)α1/2Kα1/2(λ|tsτ|)].\displaystyle\qquad\qquad-\left(\frac{|t-s-\tau|}{2\lambda}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda|t-s-\tau|\bigr{)}\Biggr{]}. (17)

Scaling property

In contrast to FBM, Bα,λ(t)B_{\alpha,\lambda}(t) is not self-similar. However, it satisfies the following modified global scaling property:

Bα,λ(rt)\displaystyle B_{\alpha,\lambda}(rt) =^rα=1/2Bα,rλ(t),\displaystyle\hat{=}r^{\alpha=1/2}B_{\alpha,r\lambda}(t), (18)

where rr is a positive constant, and Bα,rλ(rt)B_{\alpha,r\lambda}(rt) is the same process as Bα,λ(rt)B_{\alpha,\lambda}(rt) with λ\lambda replaced by rλr\lambda. Here =^\hat{=} denotes equality in the sense of finite dimensional distributions. (18) can be easily verified by showing

<Bα,λ(rt)Bα,λ(rs)>=r2α1<Bα,rλ(t)Bα,rλ(s)>.\displaystyle\bigl{<}B_{\alpha,\lambda}(rt)B_{\alpha,\lambda}(rs)\bigr{>}=r^{2\alpha-1}\bigl{<}B_{\alpha,r\lambda}(t)B_{\alpha,r\lambda}(s)\bigr{>}. (19)

Note that the additional scaling is due to the presence of the tempering term λ\lambda, self-similarity is recovered when λ=0\lambda=0.

The above scaling property can loosely be regarded as a generalization of self-similarity property. One can easily show that such a scaling property also holds for stationary process FOU. Some examples of stationary processes which satisfy this scaling property include processes with the stretched exponential covariance [17]

Cν,λSE(t)\displaystyle C_{\nu,\lambda}^{SE}(t) =λνe(λ|t|)ν,\displaystyle=\lambda^{-\nu}e^{-(\lambda|t|)^{\nu}}, ν\displaystyle\nu (0,2],\displaystyle\in(0,2], λ\displaystyle\lambda >0.\displaystyle>0. (20)

and processes with the generalized Cauchy-type covariance [18]

Cβ,λC(t)\displaystyle C_{\beta,\lambda}^{C}(t) =λβ(1+λβ|t|β)1\displaystyle=\lambda^{-\beta}\bigl{(}1+\lambda^{\beta}|t|^{\beta}\bigr{)}^{-1} β\displaystyle\beta (0,2],\displaystyle\in(0,2], λ\displaystyle\lambda >0.\displaystyle>0. (21)

Note that the non-stationary reduced processes associated to these processes also obey the same scaling behaviour. Thus, one may say that the scaling property (18) is not unique to processes of Ornstein-Uhlenbeck type, which include FOU and RFOU or TFBM. It is satisfied by a wider class of stationary and non-stationary Gaussian processes. One common property for these processes is that the λ0\lambda\to 0 limit of the covariance diverges, and for the reduced process its covariance becomes the covariance of FBM when λ0\lambda\to 0 (up to a multiplicative constant). A process having such scaling property also satisfies locally self-similar property of order κ=α1/2\kappa=\alpha-1/2, and its tangent process at a point tt_{\circ} given by FBM BH(t)B_{H}(t_{\circ}) with Hurst index H=α1/2H=\alpha-1/2 in the case of TFBM [19]. In other words, such a process behaves locally like FBM.

Fractal dimension

Since the variance of the increment process of Bα,λ(t)B_{\alpha,\lambda}(t) satisfies

\wideparenσα,Δτ2(t)\displaystyle\wideparen{\sigma}^{2}_{\alpha,\Delta\tau}(t) =<(Bα,λ(t+τ)Bα,λ(t))2>A|τ|2α1,\displaystyle=\Bigl{<}\bigl{(}B_{\alpha,\lambda}(t+\tau)-B_{\alpha,\lambda}(t)\bigr{)}^{2}\Bigr{>}\leq A|\tau|^{2\alpha-1}, (22)

thus, almost surely the sample path of Bα,λ(t)B_{\alpha,\lambda}(t) is Hölderian of order (α1/2)ϵ(\alpha-1/2)-\epsilon for all α>0\alpha>0. A process which is locally self-similar of order κ>0\kappa>0 and its sample paths are a.s. κϵ\kappa-\epsilon. Hölderian for all ϵ>0\epsilon>0, then the fractal dimension of its graph is a.s. equals to 2κ2-\kappa [20, 21, 22, 23] Applying this result to Bα,λ(t)B_{\alpha,\lambda}(t) gives the fractal dimension 5/2α5/2-\alpha or 2H2-H if α=H+1/2\alpha=H+1/2. Thus, both the TFBM and FBM have the same fractal dimension.

Long range dependence

In contrast to FOU which is a short memory process, its reduced process or TFBM is long-range dependent. Consider the correlation function of a non-stationary Gaussian process Z(t)Z(t) with correlation function

R(t+τ,t)\displaystyle R(t+\tau,t) =C(t+τ,t)σ2(t+τ)σ2(t),\displaystyle=\frac{C(t+\tau,t)}{\sqrt{\sigma^{2}(t+\tau)\sigma^{2}(t)}}, (23)

where C(t+τ,t)C(t+\tau,t) and σ2(t)\sigma^{2}(t) are respectively the covariance and variance of Z(t)Z(t). The process is long range dependent if

0|R(t,t+τ)|dτ\displaystyle\int_{0}^{\infty}\bigl{|}R(t,t+\tau)\bigr{|}d\tau =,\displaystyle=\infty, (24)

otherwise it is short range dependent [24, 25, 26]. Alternatively, Z(t)Z(t) is said to have long range dependence if R(t+τ,t)τγR(t+\tau,t)\sim\tau^{\gamma}, <γ<0-<\gamma<0 as τ\tau\to\infty, for all t>0t>0.

From (15) one has for one has for τ\tau\to\infty, \wideparenCα,λ(t+τ,t)Cα,λ(0)Cα,λ(t)=\wideparenσα,λ(t)/2\wideparen{C}_{\alpha,\lambda}(t+\tau,t)\sim C_{\alpha,\lambda}(0)-C_{\alpha,\lambda}(t)=\wideparen{\sigma}_{\alpha,\lambda}(t)/2, and Kν(τ)π/2τeτ0K_{\nu}(\tau)\sim\sqrt{\pi/2\tau}e^{-\tau}\to 0, one get \wideparenσα,λ2(t+τ)σα,λ2(t)\wideparen{\sigma}_{\alpha,\lambda}^{2}(t+\tau)\to\sigma_{\alpha,\lambda}^{2}(t). Thus

\wideparenRα,λ(t+τ,t)\displaystyle\wideparen{R}_{\alpha,\lambda}(t+\tau,t) =\wideparenCα,λ(t+τ,t)[\wideparenσα,λ2(t)\wideparenσα,λ2(t+τ)]1/212\wideparenσα,λ2(t)σα,λ2(t)>0,\displaystyle=\frac{\wideparen{C}_{\alpha,\lambda}(t+\tau,t)}{\bigl{[}\wideparen{\sigma}_{\alpha,\lambda}^{2}(t)\wideparen{\sigma}_{\alpha,\lambda}^{2}(t+\tau)\bigr{]}^{1/2}}\sim\frac{1}{2}\sqrt{\frac{\wideparen{\sigma}_{\alpha,\lambda}^{2}(t)}{\sigma_{\alpha,\lambda}^{2}(t)}}>0, τ\displaystyle\tau ,\displaystyle\to\infty, (25)

which implies TFBM is a long memory process.

3 Tempered Fractional Brownian Motion with Two Indices

The fractal dimension of the graph of the sample path of a stochastic process is a measure of its roughness. Long memory dependence of a stochastic process is associated with a heavy tail behaviour of the covariance function, which is also known as Hurst effect. For TFBM, just like FBM, both these two properties are characterised by Hurst index HH. From theoretical point of view, fractal dimension and Hurst effect are independent of each other as fractal dimension is a local property, whereas long-memory dependence is a global characteristic. It is therefore useful to decouple the characterisation of these properties.

There are not many models of stochastic processes with covariance parametrized by two indices that allow independent estimation of fractal dimension and long memory dependence associated with the model. The few that have been studied include FOU with two indices [27, 28] generalized Whittle-Matern [29] and generalized Cauchy models [18]. In this section one more example, namely TFBM with two indices, is introduced based on the reduced process of FOU indexed by two parameters.

Fractional Langevin equation (1) can be extended to two indices [27, 28]

(Dtβ+λβ)Xαβ,λ(t)\displaystyle\bigl{(}{}_{-\infty}D_{t}^{\beta}+\lambda^{\beta}\bigr{)}X_{\alpha\beta,\lambda}(t) =η(t),\displaystyle=\eta(t), αβ\displaystyle\alpha\beta >1/2.\displaystyle>1/2. (26)

Here, λ\lambda is replace by λβ\lambda^{\beta} to preserve the scaling property (18). By using Fourier transform method, the solution of (26) is found to be a stationary Gaussian process

Xαβ,λ(t)\displaystyle X_{\alpha\beta,\lambda}(t) =12πeiktη~((ik)β+λβ)α.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\frac{e^{ikt}\widetilde{\eta}}{\bigl{(}(ik)^{\beta}+\lambda^{\beta}\bigr{)}^{\alpha}}. (27)

Again, the condition αβ>1/2\alpha\beta>1/2 is necessary to ensure the above integral is finite. Xαβ,λ(t)X_{\alpha\beta,\lambda}(t) has a more complicated spectral density,

Sαβ,λ(k)\displaystyle S_{\alpha\beta,\lambda}(k) =12π|(ik)β+λβ|2α=12π||k|2β+2λβ|k|βcos(απ/2)+λ2β)α,\displaystyle=\frac{1}{2\pi\Bigl{|}(ik)^{\beta}+\lambda^{\beta}\bigr{|}^{2\alpha}}=\frac{1}{2\pi\Bigl{|}|k|^{2\beta}+2\lambda^{\beta}|k|^{\beta}\cos(\alpha\pi/2)+\lambda^{2\beta}\bigr{)}^{\alpha}}, (28)

which in general cannot be evaluated to give a closed analytic expression. Despite this, many of the basic properties of Xαβ,λ(t)X_{\alpha\beta,\lambda}(t) can still be obtained and studied [27]. Hence, one can consider the reduced process associated with it

Bαβ,λ(t)\displaystyle B_{\alpha\beta,\lambda}(t) =Xαβ,λ(t)Xαβ,λ(0)=12π(eikt1)ν~dk((ik)β+λβ)α,\displaystyle=X_{\alpha\beta,\lambda}(t)-X_{\alpha\beta,\lambda}(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{\bigl{(}e^{-ikt}-1\bigr{)}\widetilde{\nu}dk}{\bigl{(}(-ik)^{\beta}+\lambda^{\beta}\bigr{)}^{\alpha}}, (29)

and examine its properties just like the case of single index. However, instead of (29), a different RFOU with two indices will be considered.

FOU with a simpler spectral density is given by the solution of the fractional Langevin equation of Riesz type with two indices

(𝐃t2β+λ2β)αYαβ,λ(t)\displaystyle\bigl{(}\mathbf{D}_{t}^{2\beta}+{\lambda}^{2\beta}\bigr{)}^{\alpha}Y_{\alpha\beta,\lambda}(t) =η(t),\displaystyle=\eta(t), (30)

where 𝐃tα\mathbf{D}_{t}^{\alpha}, α>0\alpha>0 is the one-dimensional Riesz derivative defined by [8, 9]

𝐃tαf\displaystyle\mathbf{D}_{t}^{\alpha}f =(d2dt2)α/2f=1(|k|αf~(k)),\displaystyle=\left(-\frac{d^{2}}{dt^{2}}\right)^{\alpha/2}f=\mathcal{F}^{-1}\bigl{(}|k|^{\alpha}\widetilde{f}(k)\bigr{)}, (31)

where f~(k)\widetilde{f}(k) is the Fourier transform of f(t)f(t). For αβ>1/2\alpha\beta>1/2, the solution of (30) is given by

Yαβ,λ(t)\displaystyle Y_{\alpha\beta,\lambda}(t) =12πeiktη~(k)(|k|2β+λ2β)α/2𝑑k.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\frac{e^{ikt}\widetilde{\eta}(k)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha/2}}dk. (32)

The spectral density of the process has a simpler form as compared with (28):

Sαβ,λ(k)\displaystyle S_{\alpha\beta,\lambda}(k) =12π1(|k|2β+λ2β)α.\displaystyle=\frac{1}{2\pi}\frac{1}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}. (33)

The covariance function Cαβ,λ(t)C_{\alpha\beta,\lambda}(t) can be obtained by taking the inverse Fourier transform of Sαβ,λ(k)S_{\alpha\beta,\lambda}(k). However, it does not in general has a closed analytic form. The variance is

Cαβ,λ(0)\displaystyle C_{\alpha\beta,\lambda}(0) =1π01(|k|2β+λ2β)α𝑑k=Γ(1/2β)Γ(α1/2β)2πβΓ(α)λ12αβ.\displaystyle=\frac{1}{\pi}\int_{0}^{\infty}\frac{1}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk=\frac{\Gamma(1/2\beta)\Gamma(\alpha-1/2\beta)}{2\pi\beta\Gamma(\alpha)}\lambda^{1-2\alpha\beta}. (34)

Note that both Xαβ,λ(t)X_{\alpha\beta,\lambda}(t) and Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t) can be regarded as two different generalisations of FOU of single index to two indices. These two processes have similar long and short time asymptotic properties [27, 28]. However, only the reduced process associated with Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t) will be considered here.

Let Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) denotes the reduced process associated with Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t):

Bαβ,λ(t)\displaystyle B_{\alpha\beta,\lambda}(t) =Yαβ,λ(t)Yαβ,λ(0).\displaystyle=Y_{\alpha\beta,\lambda}(t)-Y_{\alpha\beta,\lambda}(0). (35)

The spectral representation for Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) is

Bαβ,λ(t)\displaystyle B_{\alpha\beta,\lambda}(t) =12π(eikt1)η~(k)(|k|2β+λ2β)α/2𝑑k,\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\frac{\bigl{(}e^{ikt}-1\bigr{)}\widetilde{\eta}(k)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha/2}}dk, (36)

Its covariance and variance are respectively

\wideparenCαβ,λ(t+τ,t)\displaystyle\wideparen{C}_{\alpha\beta,\lambda}(t+\tau,t) =<Bαβ,λ(t+τ)Bαβ,λ(t)>=12π(eik|τ|eik|t+τ|eik|t|+1)(|k|2β+λ2β)α𝑑k,\displaystyle=\bigl{<}B_{\alpha\beta,\lambda}(t+\tau)B_{\alpha\beta,\lambda}(t)\bigr{>}=\frac{1}{2\pi}\int_{\mathbb{R}}\frac{\bigl{(}e^{ik|\tau|}-e^{ik|t+\tau|}-e^{ik|t|}+1\bigr{)}}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk, (37)

and

\wideparenσαβ,λ2(t)\displaystyle\wideparen{\sigma}_{\alpha\beta,\lambda}^{2}(t) =1π1eik|t|(|k|2β+λ2β)αdk,=2(Cαβ,λ(0)Cαβ,λ(t))\displaystyle=\frac{1}{\pi}\int_{\mathbb{R}}\frac{1-e^{ik|t|}}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk,=2\bigl{(}C_{\alpha\beta,\lambda}(0)-C_{\alpha\beta,\lambda}(t)\bigr{)}
=Γ(1/2β)Γ(α1/2β)2πβΓ(α)λ12αβ+1π0eik|t|(|k|2β+λ2β)α𝑑k.\displaystyle=\frac{\Gamma(1/2\beta)\Gamma(\alpha-1/2\beta)}{2\pi\beta\Gamma(\alpha)}\lambda^{1-2\alpha\beta}+\frac{1}{\pi}\int_{0}^{\infty}\frac{e^{ik|t|}}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk. (38)

The covariance of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) can again be expressed in the same form (14) for TFBM with single index, namely

\wideparenCαβ,λ(t,s)\displaystyle\wideparen{C}_{\alpha\beta,\lambda}(t,s) =12[ct|t|2H+cs|s|2Hcts|ts|2H],\displaystyle=\frac{1}{2}\Bigl{[}c_{t}|t|^{2H}+c_{s}|s|^{2H}-c_{t-s}|t-s|^{2H}\Bigr{]}, (39)

with

ct\displaystyle c_{t} =Γ(1/2β)Γ(α1/2β)2πβΓ(α)(λ|t|)2H12π|t|2Heik|t|(|k|2β+λ2β)α𝑑k,\displaystyle=\frac{\Gamma(1/2\beta)\Gamma(\alpha-1/2\beta)}{2\pi\beta\Gamma(\alpha)(\lambda|t|)^{2H}}-\frac{1}{2\pi|t|^{2H}}\int_{\mathbb{R}}\frac{e^{ik|t|}}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk, (40)

and H=αβ1/2H=\alpha\beta-1/2. Note that the second term in the coefficient ctc_{t} does not have a closed form, one can obtain its asymptotic properties.

For β(0,1)\beta\in(0,1), one has for tt\to\infty,

eik|τ|(k2β+λ2β)α𝑑k\displaystyle\int_{\mathbb{R}}\frac{e^{ik|\tau|}}{\bigl{(}k^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk =2Im[1τ0eudu(eiβτ(u/τ)2β+λ2β)α]\displaystyle=2Im\Bigg{[}\frac{1}{\tau}\int_{0}^{\infty}\frac{e^{-u}du}{\bigl{(}e^{i\beta\tau}(u/\tau)^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}\Biggr{]}
=2Im[1τ0euj=0(1)jΓ(α+j)j!Γ(α)eiβjπλ2β(α+j)(uτ)2βjdu]\displaystyle=2Im\Bigg{[}\frac{1}{\tau}\int_{0}^{\infty}e^{-u}\sum_{j=0}^{\infty}\frac{(-1)^{j}\Gamma(\alpha+j)}{j!\Gamma(\alpha)}e^{-i\beta{j}\pi}\lambda^{-2\beta(\alpha+j)}\biggl{(}\frac{u}{\tau}\biggr{)}^{2\beta{j}}du\Biggr{]}
2j=1(1)jΓ(α+j)Γ(2βj+1)j!Γ(α)sin(βjπ)λ2β(α+j)τ(2βj+1),\displaystyle\sim 2\sum_{j=1}^{\infty}\frac{(-1)^{j}\Gamma(\alpha+j)\Gamma(2\beta{j}+1)}{j!\Gamma(\alpha)}\sin(\beta{j}\pi)\lambda^{-2\beta(\alpha+j)}\tau^{-(2\beta{j}+1)}, (41)

with the leading term 2αΓ(1+2β)sin(βπ)λ2β(α+1)τ(2β+1)2\alpha\Gamma(1+2\beta)\sin(\beta\pi)\lambda^{-2\beta(\alpha+1)}\tau^{-(2\beta+1)}. The long-time asymptotic depends only on β\beta. On the other hand, the small time asymptotic behaviour of Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t), hence Bαβ,λ(t)B_{\alpha\beta,\lambda}(t), depends on the arithmetic nature of both the parameters α\alpha and β\beta with rather complicated conditions [30, 31, 32].

For most practical purposes, it is sufficient to consider small time asymptotic behaviour of the covariance function for values of α\alpha and β\beta confined to 1/2<αβ<3/21/2<\alpha\beta<3/2, or 0<H<10<H<1 if αβ=H+1/2\alpha\beta=H+1/2. For the short-time asymptotic behaviour consider first the variance of the increment process of Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t). One gets for t0t\to 0,

\wideparenσαβ,λ2(t)\displaystyle\wideparen{\sigma}_{\alpha\beta,\lambda}^{2}(t) =1π1cos(k|t|)(|k|2β+λ2β)α𝑑k\displaystyle=\frac{1}{\pi}\int_{\mathbb{R}}\frac{1-\cos(k|t|)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk
=4πsin2(k|t|/2)(|k|2β+λ2β)α𝑑k=4|t|2αβ1π0sin2(k/2)(|k|2β+λ2β|t|2β)α𝑑k\displaystyle=\frac{4}{\pi}\int_{\mathbb{R}}\frac{\sin^{2}(k|t|/2)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk=\frac{4|t|^{2\alpha\beta-1}}{\pi}\int_{0}^{\infty}\frac{\sin^{2}(k/2)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}|t|^{2\beta}\bigr{)}^{\alpha}}dk
=4|t|2αβ1π0k2αβsin2(k/2)𝑑k+o(|t|2αβ1)\displaystyle=\frac{4|t|^{2\alpha\beta-1}}{\pi}\int_{0}^{\infty}k^{-2\alpha\beta}\sin^{2}(k/2)dk+o\bigl{(}|t|^{2\alpha\beta-1}\bigr{)}
=|t|2αβ1Γ(αβ)cos(αβπ)+o(|t|2αβ1),\displaystyle=-\frac{|t|^{2\alpha\beta-1}}{\Gamma(\alpha\beta)\cos(\alpha\beta\pi)}+o\bigl{(}|t|^{2\alpha\beta-1}\bigr{)}, ast\displaystyle\text{as}\ t 0.\displaystyle\to 0. (42)

Using (38), one gets for t0t\to 0,

eik|t|(|k|2β+λ2β)α𝑑k\displaystyle\int_{\mathbb{R}}\frac{e^{ik|t|}}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk =Γ(1/2β)Γ(α1/2β)βΓ(α)λ12αβ+π|t|2αβ12Γ(αβ)cos(αβπ)+o(|t|2αβ1).\displaystyle=\frac{\Gamma(1/2\beta)\Gamma(\alpha-1/2\beta)}{\beta\Gamma(\alpha)}\lambda^{1-2\alpha\beta}+\frac{\pi|t|^{2\alpha\beta-1}}{2\Gamma(\alpha\beta)\cos(\alpha\beta\pi)}+o\bigl{(}|t|^{2\alpha\beta-1}\bigr{)}. (43)

Note that the small-time asymptotic behaviour depends on α\alpha and β\beta through the product αβ\alpha\beta. By replacing α\alpha by α/β\alpha/\beta, the variance of the increment process of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) varies as t2α1t^{-2\alpha-1} as t0t\to 0. On the other hand, the long-time asymptotic behaviour of the covariance varies as t(1+2β)t^{-(1+2\beta)}, which is independent of α\alpha. In contrast to FBM and TFBM, it is possible to separately characterize the short-time property such as fractal dimension, and the long-time behaviour like long-range dependence of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) by using two different parameters. Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) satisfies the same properties as TFBM Bα,λ(t)B_{\alpha,\lambda}(t) with single index. First, we verify the scaling property for Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t). Consider the covariance of Yαβ,λ(rt)Y_{\alpha\beta,\lambda}(rt), r>0r>0,

Cαβ,λ(rτ)\displaystyle C_{\alpha\beta,\lambda}(r\tau) =<Yαβ,λ(r(t+τ))Yαβ,λ(rt)>\displaystyle=\bigl{<}Y_{\alpha\beta,\lambda}(r(t+\tau))Y_{\alpha\beta,\lambda}(rt)\bigr{>}
=1π0cos(k|rτ|)(|k|2β+λ2β)α𝑑k=|rτ|2αβ1π0cos(k)(k2β+(λ|rτ|)2β)α𝑑k\displaystyle=\frac{1}{\pi}\int_{0}^{\infty}\frac{\cos(k|r\tau|)}{\bigl{(}|k|^{2\beta}+\lambda^{2\beta}\bigr{)}^{\alpha}}dk=\frac{|r\tau|^{2\alpha\beta-1}}{\pi}\int_{0}^{\infty}\frac{\cos(k)}{\bigl{(}k^{2\beta}+(\lambda|r\tau|)^{2\beta}\bigr{)}^{\alpha}}dk
=r2αβ1|τ|2αβ1π0cos(k)(k2β+(λ|rτ|)2β)α𝑑k=r2αβ1<Yαβ,rλ(t+τ)Yαβ,rλ(t)>,\displaystyle=\frac{r^{2\alpha\beta-1}|\tau|^{2\alpha\beta-1}}{\pi}\int_{0}^{\infty}\frac{\cos(k)}{\bigl{(}k^{2\beta}+(\lambda|r\tau|)^{2\beta}\bigr{)}^{\alpha}}dk=r^{2\alpha\beta-1}\bigl{<}Y_{\alpha\beta,r\lambda}(t+\tau)Y_{\alpha\beta,r\lambda}(t)\bigr{>}, (44)

where Yαβ,rλ(t)Y_{\alpha\beta,r\lambda}(t) is the same process as Yαβ,λ(rt)Y_{\alpha\beta,\lambda}(rt) with λ\lambda replaced by rλr\lambda. Using (37) and (44),

\wideparenCαβ,λ(t,t+τ)\displaystyle\wideparen{C}_{\alpha\beta,\lambda}(t,t+\tau) =<Bαβ,λ(t)Bαβ,λ(t+τ)>=Cαβ,λ(τ)Cαβ,λ(t+τ)Cαβ,λ(t)+Cαβ,λ(0),\displaystyle=\bigl{<}B_{\alpha\beta,\lambda}(t)B_{\alpha\beta,\lambda}(t+\tau)\bigr{>}=C_{\alpha\beta,\lambda}(\tau){\color[rgb]{1,0,0}-}C_{\alpha\beta,\lambda}(t+\tau){\color[rgb]{1,0,0}-}C_{\alpha\beta,\lambda}(t)+C_{\alpha\beta,\lambda}(0),

one obtains the scaling property for Bαβ,λ(t)B_{\alpha\beta,\lambda}(t):

Bαβ,λ(r(t))\displaystyle B_{\alpha\beta,\lambda}\bigl{(}r(t)\bigr{)} =rαβ1/2Bαβ,λ(t).\displaystyle=r^{\alpha\beta-1/2}B_{\alpha\beta,\lambda}(t). (45)

By using the long-time asymptotic property of the covariance of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t), one can show that the process is asymptotically stationary. Its increment process is stationary, which follows from the stationary property of Yαβ,λ(t)Y_{\alpha\beta,\lambda}(t).

Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) is a long memory process just like Bα,λ(t)B_{\alpha,\lambda}(t). One can use the same argument as for Bα,λ(t)B_{\alpha,\lambda}(t). For τ\tau\to\infty.

\wideparenRαβ,λ(t,t+τ)\displaystyle\wideparen{R}_{\alpha\beta,\lambda}(t,t+\tau) \wideparenααβ,λ2(t)2\wideparenσαβ,λ2(t)\wideparenσαβ,λ2(t+τ)=12\wideparenσαβ,λ(t)σαβ,λ(t),\displaystyle\sim\frac{\wideparen{\alpha}_{\alpha\beta,\lambda}^{2}(t)}{2\sqrt{\wideparen{\sigma}_{\alpha\beta,\lambda}^{2}(t)\wideparen{\sigma}_{\alpha\beta,\lambda}^{2}(t+\tau)}}=\frac{1}{2}\sqrt{\frac{\wideparen{\sigma}_{\alpha\beta,\lambda}(t)}{\sigma_{\alpha\beta,\lambda}(t)}}, (46)

By noting that one has \wideparenRαβ,λ(t,t+τ)>0\wideparen{R}_{\alpha\beta,\lambda}(t,t+\tau)>0, hence 0\wideparenRαβ,λ(t,t+τ)𝑑τ=\int_{0}^{\infty}\wideparen{R}_{\alpha\beta,\lambda}(t,t+\tau)d\tau=\infty. Thus, the process Bα,λ(t)B_{\alpha,\lambda}(t) is a long memory process.

The fractal dimension of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) can be determined in a similar way as for Bα,λ(t)B_{\alpha,\lambda}(t). By noting that the variance of the increment process of Bαβ,λ(t+τ)Bαβ,λ(t)B_{\alpha\beta,\lambda}(t+\tau)-B_{\alpha\beta,\lambda}(t) varies as τ2αβ1\tau^{2\alpha\beta-1} as τ0\tau\to 0, and using the same argument as for Bα,λ(t)B_{\alpha,\lambda}(t), it can be verified that the fractal dimension of the graph of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) is a.e. equal to 52αβ\frac{5}{2}-\alpha\beta or 2H2-H if αβ=H+1/2\alpha\beta=H+1/2.

On the other hand, the long-time asymptotic behaviour of the covariance varies as t(1+2β)t^{-(1+2\beta)}, which is independent of α\alpha. In contrast to FBM and TFBM Bα,λ(t)B_{\alpha,\lambda}(t) it is possible to separately characterize the short-time property such as fractal dimension, and the long-time behaviour like long-range dependence of Bαβ,λ(t)B_{\alpha\beta,\lambda}(t) by using two different parameters.

4 Tempered Fractional Brownian Motion with Variable Tempering Parameter

From the point of view of applications of TFBM, it will be useful to allow the tempering parameter to vary with time (or position). This section deals with TFBM with time-dependent tempering parameter λ(t)\lambda(t). There exist several candidates, only one such generalization which appears to be most promising is considered here in details, and the rest are briefly discussed in the Appendix.

Recall that for TFBM, an exponential tempering with constant damping parameter is added to the moving average representation of FBM. Since in applications of modelling real data, the tempering parameter often depends on the sample size, time intervals, or the particle concentration of the heterogenous medium, etc. [33, 34, 4]. Thus, instead of constant tempering, TFBM with a time (or position) dependent tempering parameter will provide a more flexible and realistic model. In some diffusive transport of some complex systems there exists a crossover from anomalous to normal diffusion which is modelled by two separate power-laws. Tempered anomalous diffusion model [33, 35] with the incorporation of variable tempering parameter can provide a better description of systems with multi-scale heterogeneities.

Consider the generalization of the fractional Langevin equation (1) to variable tempering parameter:

[D+λ(t)]αXα,λ(t)(t)\displaystyle\bigl{[}D+\lambda(t)\bigr{]}^{\alpha}X_{\alpha,\lambda(t)}(t) =η(t).\displaystyle=\eta(t). (47)

The case with α=1\alpha=1 and random fluctuating damping λ(t)\lambda(t) has been studied [36]. The fractional case is more complicated. For simplicity, assume λ(t)\lambda(t) to be a bounded deterministic function of tt. Note that the operator identity (3) does not hold for time-dependent tempering, that is (Dta+λ(t))αeλ(t)tDtαaeλ(t)t\bigl{(}{{}_{a}D_{t}}+\lambda(t)\bigr{)}^{\alpha}\neq e^{-\lambda(t)t}{{}_{a}D_{t}^{\alpha}}e^{\lambda(t)t}. Furthermore, (Dta+λ(t))α\bigl{(}{{}_{a}D_{t}}+\lambda(t)\bigr{)}^{\alpha} is not well-defined for fractional α\alpha, since its binomial expansion is ambiguous (see Appendix). It is possible to regard (47) as a pseudo-differential equation analogous to the treatment for the case of generalised fractional random field with variable order [37].

One can define FOU with time-dependent tempering directly without associating it to fractional Langevin equation. Consider the Weyl FOU given by (4) with variable tempering parameter λ(t)\lambda(t) for α>1/2\alpha>1/2.

Xα,λ(t)(t)\displaystyle X_{\alpha,\lambda(t)}(t) =1Γ(α)teλ(t)(tu)(tu)α1η(u)𝑑u.\displaystyle=\frac{1}{\Gamma(\alpha)}\int_{-\infty}^{t}e^{-\lambda(t)(t-u)}(t-u)^{\alpha-1}\eta(u)du. (48)

For t>s>0t>s>0, its covariance can be computed as

<Xα,λ(t)(t)Xα,λ(s)(s)>\displaystyle\bigl{<}X_{\alpha,\lambda(t)}(t)X_{\alpha,\lambda(s)}(s)\bigr{>} =1Γ(α)2min(t,s)𝑑ueλ(t)(tu)λ(s)(su)(tu)α1(su)α1\displaystyle=\frac{1}{\Gamma(\alpha)^{2}}\int_{-\infty}^{\min(t,s)}due^{-\lambda(t)(t-u)-\lambda(s)(s-u)}(t-u)^{\alpha-1}(s-u)^{\alpha-1}
=eλ(t,s)(ts)(ts)α1/2Γ(α)π(2λ+(t,s))α1/2Kα1/2(λ+(t,s)(ts)).\displaystyle=\frac{e^{-\lambda_{-}(t,s)(t-s)}(t-s)^{\alpha-1/2}}{\Gamma(\alpha)\sqrt{\pi}\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{\alpha-1/2}}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)(t-s)\bigr{)}. (49)

where λ+(t,s)=λ(t)+λ(s)2\lambda_{+}(t,s)=\frac{\lambda(t)+\lambda(s)}{2} and λ(t,s)=λ(t)λ(s)2\lambda_{-}(t,s)=\frac{\lambda(t)-\lambda(s)}{2}. The variance is

<Xα,λ(t)(t)2>\displaystyle\bigl{<}X_{\alpha,\lambda(t)}(t)^{2}\bigr{>} =Γ(2α1)(Γ(α))2(2λ(t))2α1.\displaystyle=\frac{\Gamma(2\alpha-1)}{\bigl{(}\Gamma(\alpha)\bigr{)}^{2}\bigl{(}2\lambda(t)\bigr{)}^{2\alpha-1}}. (50)

Note that when λ(t)=λ\lambda(t)=\lambda, and (49), (50) reduces respectively to (5), (6), the covariance and variance of Weyl FOU.

For t<st<s, the results can be obtained by simply interchanging tt and ss. Let

λ(t,s)\displaystyle\lambda_{-}^{*}(t,s) ={λ(t,s)fort>sλ(s,t)fort<s,\displaystyle=\begin{cases}\lambda_{-}(t,s)&\text{for}\ t>s\\ \lambda_{-}(s,t)&\text{for}\ t<s\end{cases}, (51)

then for t<st<s,

Cα,λ(t),λ(s)(t,s)\displaystyle C_{\alpha,\lambda(t),\lambda(s)}(t,s) =eλ(t,s)|ts|πΓ(α)(|ts|2λ+(t,s))α1/2Kα1/2(λ+(t,s)|ts|).\displaystyle=\frac{e^{-\lambda_{-}^{*}(t,s)|t-s|}}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{|t-s|}{2\lambda_{+}(t,s)}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)|t-s|\bigr{)}. (52)

The reduced process Bα,λ(t)(t)=Xα,λ(t)(t)Xα,λ(t)(0)B_{\alpha,\lambda(t)}(t)=X_{\alpha,\lambda(t)}(t)-X_{\alpha,\lambda(t)}(0) has the following covariance

<Bα,λ(t)(t)Bα,λ(s)(s)>=eλ(t,s)|ts||ts|α1/2πΓ(α)(2λ+(t,s))α1/2Kα1/2(λ+(t,s)(ts))+Γ(2α1)(2λ+(t,s))12αΓ(α)2\displaystyle\bigl{<}B_{\alpha,\lambda(t)}(t)B_{\alpha,\lambda(s)}(s)\bigr{>}=\frac{e^{-\lambda_{-}(t,s)|t-s|}|t-s|^{\alpha-1/2}}{\sqrt{\pi}\Gamma(\alpha)\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{\alpha-1/2}}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)(t-s)\bigr{)}+\frac{\Gamma(2\alpha-1)\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{1-2\alpha}}{\Gamma(\alpha)^{2}}
eλ(t,s)ttα1/2Γ(α)π(2λ+(t,s))α1/2Kα1/2(λ+(t,s)t)eλ(t,s)ssα1/2Γ(α)π(2λ+(t,s))α1/2Kα1/2(λ+(t,s)s).\displaystyle-\frac{e^{-\lambda_{-}(t,s)t}t^{\alpha-1/2}}{\Gamma(\alpha)\sqrt{\pi}\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{\alpha-1/2}}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)t\bigr{)}-\frac{e^{-\lambda_{-}(t,s)s}s^{\alpha-1/2}}{\Gamma(\alpha)\sqrt{\pi}\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{\alpha-1/2}}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)s\bigr{)}. (53)

(53) can be expressed in the form (14) analogous to TFBM Bα,λ(t)B_{\alpha,\lambda}(t):

<Bα,λ(t)(t)Bα,λ(s)(s)>\displaystyle\bigl{<}B_{\alpha,\lambda(t)}(t)B_{\alpha,\lambda(s)}(s)\bigr{>} =12[ct|t|2H+cs|s|2Hcts|ts|2H],\displaystyle=\frac{1}{2}\Bigl{[}c_{t}|t|^{2H}+c_{s}|s|^{2H}-c_{t-s}|t-s|^{2H}\Bigr{]}, (54)

with the difference that the coefficients ct(t,s)c_{t}(t,s), cs(t,s)c_{s}(t,s) and cts(t,s)c_{t-s}(t,s) depend on both ss and tt,

ct(t,s)\displaystyle c_{t}(t,s) =2Γ(2α1)Γ(α)2(2λ+(t,s)|t|)2α1eλ(t,s)|t|Γ(α)π(2λ+(t,s)|t|)α1/2Kα1/2(λ+(t,s)|t|),\displaystyle=\frac{2\Gamma(2\alpha-1)}{\Gamma(\alpha)^{2}\bigl{(}2\lambda_{+}(t,s)|t|\bigr{)}^{2\alpha-1}}-\frac{e^{-\lambda^{*}_{-}(t,s)|t|}}{\Gamma(\alpha)\sqrt{\pi}\bigl{(}2\lambda_{+}(t,s)|t|\bigr{)}^{\alpha-1/2}}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)|t|\bigr{)}, (55)

and H=α12H=\alpha-\frac{1}{2}.

In contrast TFBM Bα,λ(t)B_{\alpha,\lambda}(t), the presence of the terms λ+(t,s)\lambda_{+}(t,s) and λ(t,s)\lambda_{-}(t,s) in its covariance results in non-stationarity in the increment process of Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t), and it does not satisfy the scaling property (18). However, it can be shown that both Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) and Bα,λ(t)B_{\alpha,\lambda}(t) have similar short-time and long-time properties.

Denote by Cα,λ(t),λ(s)(t,s)C_{\alpha,\lambda(t),\lambda(s)}(t,s) the covariance (49) of Xα,λ(t)(t)X_{\alpha,\lambda(t)}(t). Using [14]

Kν(z)\displaystyle K_{\nu}(z) =2ν1Γ(ν)zν+2ν1Γ(ν)zν+zν11νΓ(ν)z2ν+\displaystyle=2^{\nu-1}\Gamma(\nu)z^{-\nu}+2^{-\nu-1}\Gamma(-\nu)z^{\nu}+\frac{z^{\nu-1}}{1-\nu}\Gamma(\nu)z^{2-\nu}+\cdots z\displaystyle z 0,\displaystyle\to 0, (56)

one gets

Cα,λ(t+τ),λ(t)(t+τ,t)\displaystyle C_{\alpha,\lambda(t+\tau),\lambda(t)}(t+\tau,t) eλ(+τ,t)[A(λ+(t+τ,t))12α+Bτ2α1+o(τ2)],\displaystyle\sim e^{-\lambda_{-}(+\tau,t)}\Bigl{[}A\bigl{(}\lambda_{+}(t+\tau,t)\bigr{)}^{1-2\alpha}+B\tau^{2\alpha-1}+o\bigl{(}\tau^{2}\bigr{)}\Bigr{]}, (57)

where AA and BB are constants. For τ0\tau\to 0, eλ(t+τ,t)1e^{-\lambda_{-}(t+\tau,t)}\sim 1, the first term is finite and dependent on λ+(t,s)\lambda_{+}(t,s) or λ(t)\lambda(t) and λ(s)\lambda(s). The second term τ2α1\sim\tau^{2\alpha-1} is similar to that for TFBM with constant tempering parameter.

For the long-time behavior, using

Kν(z)\displaystyle K_{\nu}(z) =(π2)1/2ezz[1+O(1/z)],\displaystyle=\Bigl{(}\frac{\pi}{2}\Bigr{)}^{1/2}\frac{e^{-z}}{\sqrt{z}}\bigl{[}1+O(1/z)\bigr{]}, z\displaystyle z ,\displaystyle\to\infty, (58)

one gets exponential decay for the covariance functions of both Xα,λ(t)X_{\alpha,\lambda}(t) and Xα,λ(t)(t)X_{\alpha,\lambda(t)}(t). Apply the same argument to Bα,λ(t)B_{\alpha,\lambda}(t) and Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t), gives similar short- and long-time behaviour for the covariance functions for these two processes.

Since the short-time properties of for both Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) and Bα,λ(t)B_{\alpha,\lambda}(t) are similar, both these processes have the same fractal dimension, which is a local property. In addition, Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) satisfies the locally self-similarity property just like Bα,λ(t)B_{\alpha,\lambda}(t) [19].

Since the two TFBM processes Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) and Bα,λ(t)B_{\alpha,\lambda}(t) have similar long time behavior, Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) is a long memory process, just like Bα,λ(t)B_{\alpha,\lambda}(t). This is expected since any finite variation in the tempering strength does not alter the overall memory characteristic of the process.

5 Tempered Multifractional Brownian Motion

TFBM provides a useful model for describing geophysical flows phenomena such as wind speed modeling [12, 4] and diffusive transport processes [33, 35]. The main attractiveness of this model is its simplicity with its properties described by a single index. However, situation in the real world is more complicated to be characterized by a single parameter. For example, in heterogenous medium with scaling that may vary with time or position, and the system may have variable time-dependent memory. Therefore, a more realistic model requires a time-dependent or position-dependent scaling exponent. This can be achieved by generalising TFBM to a variable index or tempered multifractional Brownian motion (TMBM). The extension of TMBM to include variable tempering parameter will also be discussed.

Consider first the extension of FOU to variable index or multifractional Ornsttein-Uhlenbeck process (MOU). TMBM can then be defined as the reduced process of MOU. Analogous to the generalisation of FBM to multifractional Brownian motion [38, 39] one gets MOU of Weyl type by replacing the constant index α\alpha of Weyl FOU in (4) by a variable index α(t)\alpha(t):

Xα(t),λ(t)\displaystyle X_{\alpha(t),\lambda}(t) =1Γ(α(t))teλ(tu)(tu)α(t)1η(u)𝑑u.\displaystyle=\frac{1}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\int_{-\infty}^{t}e^{\lambda(t-u)}(t-u)^{\alpha(t)-1}\eta(u)du. (59)

It is assumed that α(t)>1/2\alpha(t)>1/2, and the Hölder continuous with |α(t)α(s)|K|ts|κ\bigl{|}\alpha(t)-\alpha(s)\bigr{|}\leq K|t-s|^{\kappa}, K>0K>0, κ>0\kappa>0.

For s<ts<t. the covariance of Xα(t),λ(t)X_{\alpha(t),\lambda}(t) is given by
<Xα(t),λ(t)Xα(s),λ(s)>\displaystyle\Bigl{<}X_{\alpha(t),\lambda}(t)X_{\alpha(s),\lambda}(s)\Bigr{>} =eλ(t+s)Γ(α(t))Γ(α(s))min(t,s)(tu)α(t)1(su)α(s)1e2λu𝑑u\displaystyle=\frac{e^{-\lambda(t+s)}}{\Gamma\bigl{(}\alpha(t)\bigr{)}\Gamma\bigl{(}\alpha(s)\bigr{)}}\int_{-\infty}^{\min(t,s)}(t-u)^{\alpha(t)-1}(s-u)^{\alpha(s)-1}e^{2\lambda{u}}du
=eλ(ts)Γ(α(t))Γ(α(s))s(u)α(s)1(u+ts)α(t)1e2λu𝑑u\displaystyle=\frac{e^{-\lambda(t-s)}}{\Gamma\bigl{(}\alpha(t)\bigr{)}\Gamma\bigl{(}\alpha(s)\bigr{)}}\int_{-\infty}^{s}(u)^{\alpha(s)-1}(u+t-s)^{\alpha(t)-1}e^{-2\lambda{u}}du
=eλ(ts)(ts)2α+(t,s)1Γ(α(t))Ψ(α(s),2α+(t,s),2λ(ts)),\displaystyle=\frac{e^{-\lambda(t-s)}(t-s)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\Psi\bigl{(}\alpha(s),2\alpha_{+}(t,s),2\lambda(t-s)\bigr{)}, (60a)
where Ψ(α,γ;z)\Psi(\alpha,\gamma;z) is the confluent hypergeometric function, which is also known as Kummer function (3.383 of [40]) and α+(t,s)=(α(t)+α(s))/2\alpha_{+}(t,s)=\bigl{(}\alpha(t)+\alpha(s)\bigr{)}/2.

For s>ts>t, the covariance of Xα(t),λ(t)X_{\alpha(t),\lambda}(t) is given by

<Xα(t),λ(t)Xα(s),λ(s)>\displaystyle\Bigl{<}X_{\alpha(t),\lambda}(t)X_{\alpha(s),\lambda}(s)\Bigr{>} =eλ(st)(st)2α+(t,s)1Γ(α(s))Ψ(α(t),2α+(t,s),2λ(st)).\displaystyle=\frac{e^{-\lambda(s-t)}(s-t)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(s)\bigr{)}}\Psi\bigl{(}\alpha(t),2\alpha_{+}(t,s),2\lambda(s-t)\bigr{)}. (60b)

The two cases (60a) and (60b) can be combined into a single expression

<Xα(t),λ(t)Xα(s),λ(s)>\displaystyle\Bigl{<}X_{\alpha(t),\lambda}(t)X_{\alpha(s),\lambda}(s)\Bigr{>} =eλ|ts||ts|2α+(t,s)1Γ(α(ts))Ψ(α(ts),2α+(t,s),2λ|ts|),\displaystyle=\frac{e^{-\lambda|t-s|}|t-s|^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t\vee{s})\bigr{)}}\Psi\bigl{(}\alpha(t\wedge{s}),2\alpha_{+}(t,s),2\lambda|t-s|\bigr{)}, (61)

where f(ts)=f(max(t,s))f(t\vee{s})=f\bigl{(}\max(t,s)\bigr{)} and f(ts)=f(min(t,s))f(t\wedge{s})=f\bigl{(}\min(t,s)\bigr{)}.

There exists another possible way of defining MOU is based on the spectral representation (8) of FOU

Xα(t),λ(t)\displaystyle X_{\alpha(t),\lambda}(t) =12πeiktη~(k)dk(ik+λ)α(t).\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{-ikt}\widetilde{\eta}(k)dk}{\bigl{(}-ik+\lambda\bigr{)}^{\alpha(t)}}. (62)

The covariance is given by

<Xα(t),λ(t)Xα(s),λ(s)>\displaystyle\Bigl{<}X_{\alpha(t),\lambda}(t)X_{\alpha(s),\lambda}(s)\Bigr{>} =12πeik(ts)dk(ik+λ)α(t)(ik+λ)α(s)\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{-ik(t-s)}dk}{\bigl{(}-ik+\lambda\bigr{)}^{\alpha(t)}\bigl{(}ik+\lambda\bigr{)}^{\alpha(s)}}
=(ts)α+(t,s)1Γ(α(t))(2λ)α+(t,s)Wα(t,s),1/2α+(t,s)(2λ(ts)),\displaystyle=\frac{(t-s)^{\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t)\bigr{)}(2\lambda)^{\alpha_{+}(t,s)}}W_{\alpha_{-}(t,s),1/2-\alpha_{+}(t,s)}\bigl{(}2\lambda(t-s)\bigr{)}, (63)

where W()W(\cdot) is the Whittaker function, and α(t,s)=(α(t)α(s))/2\alpha_{-}(t,s)=\bigl{(}\alpha(t)-\alpha(s)\bigr{)}/2 (see 3.384.9 of [40]). It can be shown that the two representations (60a) and (63) of MOU are equivalent [19].

Note that just like the case of FOU, the λ0\lambda\to 0 limit of the covariance and variance of the Weyl multifractional Ornsttein-Uhlenbeck process (MOU) diverges. However, the λ0\lambda\to 0 limit of the reduced process of Weyl MOU is multifractional Brownian motion [7].

In order to obtain a TMBM which has a close semblance of TFBM, especially its covariance, one uses MOU of Riesz type. Recall that in Section 3, Riesz type FOU with two indices is introduced. By letting β=1\beta=1 and replacing α\alpha by α(t)\alpha(t) in (32) results in

Yα(t),λ(t)\displaystyle Y_{\alpha(t),\lambda}(t) =12πeiktη~(k)dk(|k|2+λ2)α(t)/2,\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{ikt}\widetilde{\eta}(k)dk}{\bigl{(}|k|^{2}+\lambda^{2}\bigr{)}^{\alpha(t)/2}}, (64)

which is the Riesz MOU. Its covariance and variance can be calculated for α(t)>1/2\alpha(t)>1/2:

<Yα(t),λ(t)Yα(s),λ(s)>\displaystyle\Bigl{<}Y_{\alpha(t),\lambda}(t)Y_{\alpha(s),\lambda}(s)\Bigr{>} =1πΓ(α+(t,s))(|ts|2λ)α+(t,s)1/2Kα+(t,s)1/2(λ|ts|),\displaystyle=\frac{1}{\sqrt{\pi}\Gamma\bigl{(}\alpha_{+}(t,s)\bigr{)}}\left(\frac{|t-s|}{2\lambda}\right)^{\alpha_{+}(t,s)-1/2}K_{\alpha_{+}(t,s)-1/2}\bigl{(}\lambda|t-s|\bigr{)}, (65)

and

<(Yα(t),λ(t))2>\displaystyle\Bigl{<}\bigl{(}Y_{\alpha(t),\lambda}(t)\bigr{)}^{2}\Bigr{>} =Γ(2α(t)1)(Γ(α(t)))2(2λ)2α(t)1.\displaystyle=\frac{\Gamma\bigl{(}2\alpha(t)-1\bigr{)}}{\Bigl{(}\Gamma\bigl{(}\alpha(t)\bigr{)}\Bigr{)}^{2}\bigl{(}2\lambda\bigr{)}^{2\alpha(t)-1}}. (66)

Note that (64) is a special case of the multifractional Riesz-Bessel process [41].

One can define TMBM as the reduced process of Reisz MOU:

Bα(t),λ(t)\displaystyle B_{\alpha(t),\lambda}(t) =Yα(t),λ(t)Yα(t),λ(0),\displaystyle=Y_{\alpha(t),\lambda}(t)-Y_{\alpha(t),\lambda}(0), (67)

It is a centred Gaussian process with the following covariance and variance:

\wideparenCα(t),λ(ts)\displaystyle\wideparen{C}_{\alpha(t),\lambda}(t-s) =<Bα(t),λ(t)Bα(s),λ(s)>\displaystyle=\Bigl{<}B_{\alpha(t),\lambda}(t)B_{\alpha(s),\lambda}(s)\Bigr{>}
=1πα+(t,s)[(|ts|2λ)α+(t,s)1/2Kα+(t,s)1/2(λ|ts|)\displaystyle=\frac{1}{\sqrt{\pi}\alpha_{+}(t,s)}\Biggl{[}\left(\frac{|t-s|}{2\lambda}\right)^{\alpha_{+}(t,s)-1/2}K_{\alpha_{+}(t,s)-1/2}\bigl{(}\lambda|t-s|\bigr{)}
(|t|2λ)α+(t,s)1/2Kα+(t,s)1/2(λ|t|)\displaystyle\qquad\qquad-\left(\frac{|t|}{2\lambda}\right)^{\alpha_{+}(t,s)-1/2}K_{\alpha_{+}(t,s)-1/2}\bigl{(}\lambda|t|\bigr{)}
(|s|2λ)α+(t,s)1/2Kα+(t,s)1/2(λ|s|)]\displaystyle\qquad\qquad\qquad-\left(\frac{|s|}{2\lambda}\right)^{\alpha_{+}(t,s)-1/2}K_{\alpha_{+}(t,s)-1/2}\bigl{(}\lambda|s|\bigr{)}\Biggr{]}
+Γ(2α+(t,s)1)(Γ(α+(t,s)))2(2λ)2α+(t,s)1.\displaystyle\qquad\qquad\qquad\qquad+\frac{\Gamma(2\alpha_{+}(t,s)-1)}{\bigl{(}\Gamma(\alpha_{+}(t,s))\bigr{)}^{2}(2\lambda)^{2\alpha_{+}(t,s)-1}}. (68)

and

\wideparenσα(t),λ(t)\displaystyle\wideparen{\sigma}_{\alpha(t),\lambda}(t) =<(Bα(t),λ)2>\displaystyle=\Bigl{<}\bigl{(}B_{\alpha(t),\lambda}\bigr{)}^{2}\Bigl{>}
=2πΓ(α(t))[Γ(2α(t)1)(Γ(α(t)))2(2λ)2α(t)1(|t|2λ)α(t)1/2Kα(t)1/2(λ|t|)],\displaystyle=\frac{2}{\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}\left[\frac{\Gamma\bigl{(}2\alpha(t)-1\bigr{)}}{\Bigl{(}\Gamma\bigl{(}\alpha(t)\bigr{)}\Bigr{)}^{2}(2\lambda)^{2\alpha(t)-1}}-\left(\frac{|t|}{2\lambda}\right)^{\alpha(t)-1/2}K_{\alpha(t)-1/2}\bigl{(}\lambda|t|\bigr{)}\right], (69)

using α+(t,s)1/2=H+(t,s)=(H(s)+H(t))/2\alpha_{+}(t,s)-1/2=H_{+}(t,s)=\bigl{(}H(s)+H(t)\bigr{)}/2, the covariance of TMFM can be expressed in the form similar to that for TFBM:

\wideparenCα+(t,s),λ(ts)\displaystyle\wideparen{C}_{\alpha_{+}(t,s),\lambda}(t-s) =12[ct(H+(t,s))|t|2H+(t,s)+cs(H+(t,s))|s|2H+(t,s)\displaystyle=\frac{1}{2}\Bigl{[}c_{t}\bigl{(}H_{+}(t,s)\bigr{)}|t|^{2H_{+}(t,s)}+c_{s}\bigl{(}H_{+}(t,s)\bigr{)}|s|^{2H_{+}(t,s)}
cts(H+(t,s))|ts|2H+(t,s)],\displaystyle\qquad\qquad\qquad\qquad\qquad-c_{t-s}\bigl{(}H_{+}(t,s)\bigr{)}|t-s|^{2H_{+}(t,s)}\Bigr{]}, (70)

with

ct(H+(t,s))\displaystyle c_{t}\bigl{(}H_{+}(t,s)\bigr{)} =2Γ(2H+(t,s))Γ(2H+(t,s)+1/2)(2λ|t|)2H+(t,s)\displaystyle=\frac{2\Gamma\bigl{(}2H_{+}(t,s)\bigr{)}}{\Gamma\bigl{(}2H_{+}(t,s)+1/2\bigr{)}(2\lambda|t|)^{2H_{+}(t,s)}}
2πΓ(H+(t,s)+1/2)(12λ|t|)H+(t,s)KH+(t,s)(λ|t|).\displaystyle\qquad\qquad\qquad-\frac{2}{\sqrt{\pi}\Gamma\bigl{(}H_{+}(t,s)+1/2\bigr{)}}\left(\frac{1}{2\lambda|t|}\right)^{H_{+}(t,s)}K_{H_{+}(t,s)}\bigl{(}\lambda|t|\bigr{)}. (71)

Due to its variable index, TMBM Bα(t),λ(t)B_{\alpha(t),\lambda}(t) does not satisfy the scaling property (18). Similarly, the increment process of Bα(t),λ(t)B_{\alpha(t),\lambda}(t) is non-stationary. Despite the difference in the global properties between TFBM and TMBM, their short- and long-time properties are similar.

TMBM satisfies the locally asymptotically self-similar property. Assume α(t)\alpha(t) is Hölder continuous with |α(t)α(s)|K|ts|κ|\alpha(t)-\alpha(s)|\leq K|t-s|^{\kappa} , and 12<α(t)<κ+12\frac{1}{2}<\alpha(t)<\kappa+\frac{1}{2} for all tt.

Consider the increment

Bα(t),λ(t)Bα(s),λ(s)\displaystyle B_{\alpha(t),\lambda}(t)-B_{\alpha(s),\lambda}(s) =(Yα(t),λ(t)Yα(s),λ(s))(Yα(t),λ(0)Yα(s),λ(0)).\displaystyle=\bigl{(}Y_{\alpha(t),\lambda}(t)-Y_{\alpha(s),\lambda}(s)\bigr{)}-\bigl{(}Y_{\alpha(t),\lambda}(0)-Y_{\alpha(s),\lambda}(0)\bigr{)}. (72)

Using a similar argument as for multifractional Riesz-Bessel process [41], one has for |ts|0|t-s|\to 0

(Yα(t),λ(0)Yα(s),λ(0))\displaystyle\bigl{(}Y_{\alpha(t),\lambda}(0)-Y_{\alpha(s),\lambda}(0)\bigr{)} =O(|ts|2κ),\displaystyle=O\bigl{(}|t-s|^{2\kappa}\bigr{)}, (73)

and

<(Yα(t),λ(t)Yα(s),λ(s))2>\displaystyle\Bigl{<}\bigl{(}Y_{\alpha(t),\lambda}(t)-Y_{\alpha(s),\lambda}(s)\bigr{)}^{2}\Bigr{>} =Γ(12α(t))22α(t)1πΓ(α(t))|st|2α(t)1+O(|st|2α(t)1/2).\displaystyle=\frac{\Gamma\Bigl{(}\frac{1}{2}-\alpha(t)\Bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}|s-t|^{2\alpha(t)-1}+O\bigl{(}|s-t|^{2\alpha(t)-1/2}\bigr{)}. (74)

Consider

Cα(t)(ϵ;u,v)\displaystyle C_{\alpha(t)}(\epsilon;u,v) =<(Yα(t),λ(t+ϵu)Yα(t),λ(t)ϵα(t)1/2)(Yα(t),λ(t+ϵv)Yα(t),λ(t)ϵα(t)1/2)>\displaystyle=\Biggl{<}\left(\frac{Y_{\alpha(t),\lambda}(t+\epsilon{u})-Y_{\alpha(t),\lambda}(t)}{\epsilon^{\alpha(t)-1/2}}\right)\left(\frac{Y_{\alpha(t),\lambda}(t+\epsilon{v})-Y_{\alpha(t),\lambda}(t)}{\epsilon^{\alpha(t)-1/2}}\right)\Biggr{>}
=12ϵ2α(t)1[<(Yα(t),λ(t+ϵu)Yα(t),λ(t))2>\displaystyle=\frac{1}{2\epsilon^{2\alpha(t)-1}}\biggl{[}\Bigl{<}\bigl{(}Y_{\alpha(t),\lambda}(t+\epsilon{u})-Y_{\alpha(t),\lambda}(t)\bigr{)}^{2}\Bigr{>}
+<(Yα(t),λ(t+ϵv)Yα(t),λ(t))2>\displaystyle\qquad\qquad\qquad+\Bigl{<}\bigl{(}Y_{\alpha(t),\lambda}(t+\epsilon{v})-Y_{\alpha(t),\lambda}(t)\bigr{)}^{2}\Bigr{>}
<(Yα(t),λ(t+ϵv)Yα(t),λ(t+ϵv))2>].\displaystyle\qquad\qquad\qquad\qquad-\Bigl{<}\bigl{(}Y_{\alpha(t),\lambda}(t+\epsilon{v})-Y_{\alpha(t),\lambda}(t+\epsilon{v})\bigr{)}^{2}\Bigr{>}\biggr{]}. (75)

For ϵ0\epsilon\to 0 one has from (74)

<(Bα(t),λ(t+ϵu)Bα(t),λ(t)))2>\displaystyle\Bigl{<}\bigl{(}B_{\alpha(t),\lambda}(t+\epsilon{u})-B_{\alpha(t),\lambda}(t))\bigr{)}^{2}\bigr{>} =Γ(1/2α(t))22α(t)1πΓ(α(t))(ϵ|u|)2α(t)1+O(ϵκ+α(t)1/2).\displaystyle=\frac{\Gamma\bigl{(}1/2-\alpha(t)\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}\bigl{(}\epsilon|u|\bigl{)}^{2\alpha(t)-1}+O\bigl{(}\epsilon^{\kappa+\alpha(t)-1/2}\bigr{)}. (76)

Therefore,

limϵ0Cα(t)(ϵ;u,v)\displaystyle\lim_{\epsilon\to 0}C_{\alpha(t)}(\epsilon;u,v) =limϵ012ϵ2α(t)1[Γ(1/2α(t))22α(t)1πΓ(α(t))((ϵ|u|)2α(t)1+(ϵ|v|)2α(t)1)\displaystyle=\lim_{\epsilon\to 0}\frac{1}{2\epsilon^{2\alpha(t)-1}}\Biggl{[}\frac{\Gamma\bigl{(}1/2-\alpha(t)\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}\Bigl{(}\bigl{(}\epsilon|u|\bigr{)}^{2\alpha(t)-1}+\bigl{(}\epsilon|v|\bigr{)}^{2\alpha(t)-1}\Bigr{)}
Γ(1/2α(t+ϵv))22α(t)1πΓ(α(t+ϵv))(ϵ|uv|)2α(t+ϵv)1+O(ϵκ+min(α(t),α(t+ϵv))1/2)]\displaystyle-\frac{\Gamma\bigl{(}1/2-\alpha(t+\epsilon{v})\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t+\epsilon{v})\bigr{)}}\bigl{(}\epsilon|u-v|\bigr{)}^{2\alpha(t+\epsilon{v})-1}+O\bigl{(}\epsilon^{\kappa+\min\bigl{(}\alpha(t),\alpha(t+\epsilon{v})\bigr{)}-1/2}\bigr{)}\Biggr{]}
=Γ(1/2α(t))22α(t)1πΓ(α(t))(|u|2α(t)1+|v|2α(t)1|uv|2α(t)1),\displaystyle=\frac{\Gamma\bigl{(}1/2-\alpha(t)\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}\Bigl{(}|u|^{2\alpha(t)-1}+|v|^{2\alpha(t)-1}-|u-v|^{2\alpha(t)-1}\Bigr{)}, (77)

where Hölder continuity of α(t)\alpha(t) implies

Γ(1/2α(t+ϵv))22α(t)1πΓ(α(t+ϵv))(ϵ|uv|)2α(t+ϵv)1\displaystyle\frac{\Gamma\bigl{(}1/2-\alpha(t+\epsilon{v})\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t+\epsilon{v})\bigr{)}}\bigl{(}\epsilon|u-v|\bigr{)}^{2\alpha(t+\epsilon{v})-1} Γ(1/2α(t))22α(t)1πΓ(α(t))(ϵ|uv|)2α(t)1.\displaystyle\rightarrow\frac{\Gamma\bigl{(}1/2-\alpha(t)\bigr{)}}{2^{2\alpha(t)-1}\sqrt{\pi}\Gamma\bigl{(}\alpha(t)\bigr{)}}\bigl{(}\epsilon|u-v|\bigr{)}^{2\alpha(t)-1}. (78)

Note that (77) is the covariance of multifractional Brownian motion. Thus, TMBM is locally asymptotically self-similar, and its tangent process at a point tt_{\circ} is the multifractional Brownian motion with Hurst index H(t)=α(t)1/2H(t_{\circ})=\alpha(t_{\circ})-1/2.

Another local property is the fractal dimension of the graph of TMBM. With probability one, the Hausdorff dimension of the graph of the TMBM Yα(t),λ(t)Y_{\alpha(t),\lambda}(t) indexed by α(t)\alpha(t) over the intercal II\in\mathbb{R} is 52mI[α(t)]\frac{5}{2}-m_{I}\bigl{[}\alpha(t)\bigr{]}, where mI[α(t)]=min{α(t);tI}m_{I}\bigl{[}\alpha(t)\bigr{]}=\min\{\alpha(t);t\in I\}. First note that the leading local behaviours of the variance of increments of multifractional Brownian motion and TMBM are the same. Since only this leading behavior is used to arrive at the local properties of the TMBM, one can easily infer that all these properties of the TMBM holds verbatim for the MBM if we identify H(t)H(t) with α(t)1/2\alpha(t)-1/2 [22].

Finally, one would like to consider TMBM with a time-dependent tempered parameter λ(t)\lambda(t). Such a process Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) can provide a more flexible model for systems which require both the variable scaling index and tempered parameter, for example turbulence flow in a heterogenous medium.

In previous section, TFBM with variable tempering Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) is formulated in terms of reduced process of Weyl type FOU Xα,λ(t)(t)X_{\alpha,\lambda(t)}(t). It is also known that Yα,λ(t)(t)Y_{\alpha,\lambda(t)}(t) based on FOU of Riesz type does not lead to a viable TFBM. Therefore, one would expect the reduced process of Weyl MOU given by (59) as a suitable candidate for TMBM with variable tempering parameter.

Let Xα(t),λ(t)(t)X_{\alpha(t),\lambda(t)}(t) be the Weyl MOU with variable tempering parameter defined by

Xα(t),λ(t)(t)\displaystyle X_{\alpha(t),\lambda(t)}(t) =1Γ(α(t))teλ(t)(tu)(tu)α(t)1η(u)𝑑u.\displaystyle=\frac{1}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\int_{-\infty}^{t}e^{-\lambda(t)(t-u)}(t-u)^{\alpha(t)-1}\eta(u)du. (79)

Its covariance can be calculated for t>st>s and α(t)>1/2\alpha(t)>1/2,

<Xα(t),λ(t)(t)Xα(s),λ(s)(s)>\displaystyle\bigl{<}X_{\alpha(t),\lambda(t)}(t)X_{\alpha(s),\lambda(s)}(s)\bigr{>} =eλ(t)(ts)(ts)2α+(t,s)1Γ(α(t))Ψ(α(s),2α+(t,s),2λ+(t,s)(ts)).\displaystyle=\frac{e^{\lambda(t)(t-s)}(t-s)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\Psi\bigl{(}\alpha(s),2\alpha_{+}(t,s),2\lambda_{+}(t,s)(t-s)\bigr{)}. (80a)
Note that this covariance is symmetric with respect to tt and ss. In the case s>t>0s>t>0,
<Xα(t),λ(t)(t)Xα(s),λ(s)(s)>\displaystyle\bigl{<}X_{\alpha(t),\lambda(t)}(t)X_{\alpha(s),\lambda(s)}(s)\bigr{>} =eλ(t)(st)(st)2α+(t,s)1Γ(α(s))Ψ(α(t),2α+(t,s),2λ+(t,s)(st)).\displaystyle=\frac{e^{\lambda(t)(s-t)}(s-t)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(s)\bigr{)}}\Psi\bigl{(}\alpha(t),2\alpha_{+}(t,s),2\lambda_{+}(t,s)(s-t)\bigr{)}. (80b)

These two cases can be combined into single expression

<Xα(t),λ(t)(t)Xα(s),λ(s)(s)>\displaystyle\bigl{<}X_{\alpha(t),\lambda(t)}(t)X_{\alpha(s),\lambda(s)}(s)\bigr{>} =eλ(ts)(ts)(ts)2α+(t,s)1Γ(α(ts))Ψ(α(ts),2α+(t,s),2λ+(t,s)(ts)).\displaystyle=\frac{e^{\lambda(t\vee{s})(t-s)}(t-s)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t\vee{s})\bigr{)}}\Psi\bigl{(}\alpha(t\wedge{s}),2\alpha_{+}(t,s),2\lambda_{+}(t,s)(t-s)\bigr{)}. (81)

for t,s>0t,s>0, and ts=min(t,s)t\wedge{s}=\min(t,s), ts=max(t,s)t\vee{s}=max(t,s).

The variance is

<Xα(t),λ(t)(t)Xα(t),λ(t)(t)>\displaystyle\bigl{<}X_{\alpha(t),\lambda(t)}(t)X_{\alpha(t),\lambda(t)}(t)\bigr{>} =Γ(2α(t)1)Γ(α(t))2(2λ(t))2α(t)1,\displaystyle=\frac{\Gamma\bigl{(}2\alpha(t)-1\bigr{)}}{\Gamma\bigl{(}\alpha(t)\bigr{)}^{2}\bigl{(}2\lambda(t)\bigr{)}^{2\alpha(t)-1}}, forα(t)>12.\displaystyle\text{for}\ \alpha(t)>\frac{1}{2}. (82)

Just like in the case of constant tempering, the λ(t)0\lambda(t)\to 0 limits for both the covariance and variance diverge.

TMBM with variable tempering denoted by Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) is defined by the reduced process of Xα(t),λ(t)(t)X_{\alpha(t),\lambda(t)}(t):

Bα(t),λ(t)(t)\displaystyle B_{\alpha(t),\lambda(t)}(t) =Xα(t),λ(t)(t)Xα(t),λ(t)(0).\displaystyle=X_{\alpha(t),\lambda(t)}(t)-X_{\alpha(t),\lambda(t)}(0). (83)

This is Gaussian centred process with covariance

<Bα(t),λ(t)(t)Bα(s),λ(s)(s)>\displaystyle\bigl{<}B_{\alpha(t),\lambda(t)}(t)B_{\alpha(s),\lambda(s)}(s)\bigr{>} =eλ(t)(ts)(ts)2α+(t,s)1Γ(α(t))Ψ(α(s),2α+(t,s),2λ+(t,s)(ts))\displaystyle=\frac{e^{\lambda(t)(t-s)}(t-s)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\Psi\bigl{(}\alpha(s),2\alpha_{+}(t,s),2\lambda_{+}(t,s)(t-s)\bigr{)}
eλ(t)t(t)2α+(t,s)1Γ(α(t))Ψ(α(s),2α+(t,s),2λ+(t,s)t))\displaystyle\qquad-\frac{e^{\lambda(t)t}(t)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(t)\bigr{)}}\Psi\bigl{(}\alpha(s),2\alpha_{+}(t,s),2\lambda_{+}(t,s)t)\bigr{)}
eλ(s)s(s)2α+(t,s)1Γ(α(s))Ψ(α(t),2α+(t,s),2λ+(t,s)s))\displaystyle\qquad\qquad-\frac{e^{\lambda(s)s}(s)^{2\alpha_{+}(t,s)-1}}{\Gamma\bigl{(}\alpha(s)\bigr{)}}\Psi\bigl{(}\alpha(t),2\alpha_{+}(t,s),2\lambda_{+}(t,s)s)\bigr{)}
+Γ(α+(t,s)1)Γ(t)Γ(s)(2λ+(t,s))2α+(t,s)1.\displaystyle\qquad\qquad\qquad+\frac{\Gamma\bigl{(}\alpha_{+}(t,s)-1\bigr{)}}{\Gamma\bigl{(}t\bigr{)}\Gamma\bigl{(}s\bigr{)}\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{2\alpha_{+}(t,s)-1}}. (84)

In order to express the covariance of the TMBM with variable tempering parameter Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) in the similar form as TFBM Bα,λ(t)B_{\alpha,\lambda}(t), the following notations are introduced.

ft,s(uv)\displaystyle f_{t,s}(u\vee{v}) ={f(t)ifu>vf(s)ifu<v\displaystyle=\begin{cases}f(t)&\text{if}\ u>v\\ f(s)&\text{if}\ u<v\end{cases} (85a)
ft,s(uv)\displaystyle f_{t,s}(u\wedge{v}) ={f(s)ifu>vf(t)ifu<v\displaystyle=\begin{cases}f(s)&\text{if}\ u>v\\ f(t)&\text{if}\ u<v\end{cases} (85b)

The covariance (84) expressed in the form similar to (14) is given by

\wideparenCt,s(t,s)\displaystyle\wideparen{C}_{t,s}(t,s) =ct,s(t,0)|t|2H+(t,s)+ct,s(0,s)|s|2H+(t,s)ct,s(t,s)|ts|2H+(t,s),\displaystyle=c_{t,s}(t,0)|t|^{2H_{+}(t,s)}+c_{t,s}(0,s)|s|^{2H_{+}(t,s)}-c_{t,s}(t,s)|t-s|^{2H_{+}(t,s)}, (86)

where the coefficients c(t,s)c(t,s) are given by

ct,s(u,v)\displaystyle c_{t,s}(u,v) =Γ(2H+(t,s))Γ(α(t))Γ(α(s))|uv|2H+(t,s)(2λ+(t,s))2H+(t,s)\displaystyle=\frac{\Gamma\bigl{(}2H_{+}(t,s)\bigr{)}}{\Gamma(\alpha(t))\Gamma(\alpha(s))|u-v|^{2H_{+}(t,s)}\bigl{(}2\lambda_{+}(t,s)\bigr{)}^{2H_{+}(t,s)}}
eλt,s(uv)|uv|Γ(αt,s(uv))Ψ(αt,s(uv),2α+(t,s),2λ+(t,s)|uv|).\displaystyle\qquad-\frac{e^{-\lambda_{t,s}(u\vee{v})|u-v|}}{\Gamma(\alpha_{t,s}(u\vee{v}))}\Psi\bigl{(}\alpha_{t,s}(u\wedge{v}),2\alpha_{+}(t,s),2\lambda_{+}(t,s)|u-v|\bigr{)}. (87)

Finally, the properties of Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) are briefly considered. Just like TMBM Bα(t),λ(t)B_{\alpha(t),\lambda}(t), the scaling and stationary increment properties do not hold for Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t). Recall the short- and long-time properties of Bα,λ(t)(t)B_{\alpha,\lambda(t)}(t) are the same as Bα,λ(t)B_{\alpha,\lambda}(t); a similar situation exists for Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) and Bα,λ(t)B_{\alpha,\lambda}(t). By comparing the covariance functions of Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) and Bα(t),λ(t)B_{\alpha(t),\lambda}(t) term by term, one sees that the difference in the exponential terms eλ(t)(ts)e^{\lambda(t)(t-s)} just like eλ(ts)e^{\lambda(t-s)}, does not change the short- and long-time behaviour of the covariance function. Thus, both Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) and Bα(t),λ(t)B_{\alpha(t),\lambda}(t) have the similar short- and long-time properties. In particular, Bα(t),λ(t)(t)B_{\alpha(t),\lambda(t)}(t) has the same fractal dimension as Bα(t),λ(t)B_{\alpha(t),\lambda}(t); and it is a long-memory process.

6 Concluding Remarks

By considering TFBM and TMBM in terms of reduced processes of FOU and MOU provides some advantages. First, it allows one to use the known results of FOU and MOU to study the properties of TFBM and TMBM. They also facilitate various generalizations of TFBM in a more direct way. Note that TFBM and its various generalizations have the same local behavior as their corresponding FOU and MOU processes. In particular, TFBM and TMBM behave like FBM and MBM respectively in the small-time scales, However, their global properties are not the same. FOU with single index and two indices, and MOU are all short memory processes. On the other hand, their reduced processes (or TFBM and the corresponding generalizations) have long-memory dependence.

TFBM with two indices is a useful addition to the short list of biparametric processes. which have the nice property of separate characterization of the local property of fractal dimension, and the global property of long-range dependence. The decoupling of these two independent properties provides a useful stochastic model for many physical, geological, biological, and socio-economic systems. Similarly, TMBM permits modeling of systems with variable fractal dimension and memory. TFBM and TMBM with time-dependent tempering parameter provide models which are more realistic and flexible for turbulence in geophysical flows, transport processes in heterogenous media, etc. It is hoped that the generalisations discussed in this paper can lead to more robust and optimal models for various natural and man-made systems.

Appendix: Candidates for TFBM with Time-dependent Tempering Parameter

Consider first the fractional Langevin equation with time-dependent tempering parameter

[D+λ(t)]αXα,λ(t)(t)\displaystyle\bigl{[}D+\lambda(t)\bigr{]}^{\alpha}X_{\alpha,\lambda(t)}(t) =η(t).\displaystyle=\eta(t). (A88)

This equation is formal and not well-defined in the usaul sense, as its binomial expansion is not unique, as can be shown below. First note that

[D+λ(t)]α\displaystyle\bigl{[}D+\lambda(t)\bigr{]}^{\alpha} =Dα[1+Iλ(t)]α=Dαn=0(αn)[Iλ(t)]n,\displaystyle=D^{\alpha}\bigl{[}1+I\lambda(t)\bigr{]}^{\alpha}=D^{\alpha}\sum_{n=0}^{\infty}\binom{\alpha}{n}\bigl{[}I\lambda(t)\bigr{]}^{n}, (A89)

where

[Iλ(t)]n\displaystyle\bigl{[}I\lambda(t)\bigr{]}^{n} =t𝑑u1λ(u1)u1𝑑u2λ(u2)un1𝑑unλ(un)f(un).\displaystyle=\int_{-\infty}^{t}du_{1}\lambda(u_{1})\int_{-\infty}^{u_{1}}du_{2}\lambda(u_{2})\cdots\int_{-\infty}^{u_{n-1}}du_{n}\lambda(u_{n})f(u_{n}). (A90)

The solution of (A88) based on (A89) is

X(t)\displaystyle X(t) =[1+Iλ(t)]αIαη(t)=n=0(αn)[Iλ(t)]nIαη(t).\displaystyle=\bigl{[}1+I\lambda(t)\bigr{]}^{-\alpha}I^{\alpha}\eta(t)=\sum_{n=0}^{\infty}\binom{-\alpha}{n}\bigl{[}I\lambda(t)\bigr{]}^{n}I^{\alpha}\eta(t). (A91)

On the other hand, one has

[D+λ(t)]α\displaystyle\bigl{[}D+\lambda(t)\bigr{]}^{\alpha} =[1+λ(t)I]αDα=n=0(αn)[λ(t)I]nDα,\displaystyle=\bigl{[}1+\lambda(t)I\bigr{]}^{\alpha}D^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n}\bigl{[}\lambda(t)I\bigr{]}^{n}D^{\alpha}, (A92)

with

[λ(t)I]n\displaystyle\bigl{[}\lambda(t)I\bigr{]}^{n} =λ(t)t𝑑u1λ(u1)u1𝑑u2λ(u2)un1𝑑unf(un).\displaystyle=\lambda(t)\int_{-\infty}^{t}du_{1}\lambda(u_{1})\int_{-\infty}^{u_{1}}du_{2}\lambda(u_{2})\cdots\int_{-\infty}^{u_{n-1}}du_{n}f(u_{n}). (A93)

This gives solution of (A88) as

X(t)\displaystyle X(t) =Iα[1+λ(t)I]αη(t)=Iαn=0(αn)[λ(t)I]nη(t).\displaystyle=I^{\alpha}\bigl{[}1+\lambda(t)I\bigr{]}^{-\alpha}\eta(t)=I^{\alpha}\sum_{n=0}^{\infty}\binom{-\alpha}{n}\bigl{[}\lambda(t)I\bigr{]}^{n}\eta(t). (A94)

Thus, (A88) does not appear to be a suitable candidate for the extension of TFBM to variable tempering.

Following the approach in [37], one can consider (A88) as a pseudo-differential equation:

Dt+λ(t)αXλ(t)(t)\displaystyle\bigl{\llbracket}D_{t}+\lambda(t)\bigr{\rrbracket}^{\alpha}X_{\lambda(t)}(t) :=Kλ(t)(tu)Xλ(t)(u)𝑑u,\displaystyle:=\int_{-\infty}^{\infty}K_{\lambda(t)}(t-u)X_{\lambda(t)}(u)du, (A95)

where the derivative in \llbracket\cdot\rrbracket denotes pseudo-differential operator, and

Kλ(t)(tu)\displaystyle K_{\lambda(t)}(t-u) =12πeik(tu)(ik+λ(t))α𝑑k.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ik(t-u)}\bigl{(}ik+\lambda(t)\bigr{)}^{\alpha}dk. (A96)

The fundamental solution is given by

Gλ(t)(tu)\displaystyle G_{\lambda(t)}(t-u) =12πeik(tu)dk(ik+λ(t))α.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{ik(t-u)}dk}{\bigl{(}ik+\lambda(t)\bigr{)}^{\alpha}}. (A97)

Thus the solution of (A95) is

Xα,λ(t)(t)\displaystyle X_{\alpha,\lambda(t)}(t) =Gλ(t)(tu)η(u(du\displaystyle=\int_{-\infty}^{\infty}G_{\lambda(t)}(t-u)\eta(u(du
=12πeiktη~(k)dk(ik+λ(t))α,\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{ikt}\widetilde{\eta}(k)dk}{\bigl{(}ik+\lambda(t)\bigr{)}^{\alpha}}, (A98)

where η~(k)\widetilde{\eta}(k) is the Fourier transform of η(t)\eta(t).

For t>st>s, the covariance is given by

Cλ(t),λ(s)(t,s)\displaystyle C_{\lambda(t),\lambda(s)}(t,s) =1Γ(α)2s𝑑ueλ(t)(tu)λ(s)(su)(tu)α1(su)α1\displaystyle=\frac{1}{\Gamma(\alpha)^{2}}\int_{-\infty}^{s}due^{-\lambda(t)(t-u)-\lambda(s)(s-u)}(t-u)^{\alpha-1}(s-u)^{\alpha-1}
=eλ(t)(ts)Γ(α)20𝑑ue2λ+(t,s)u(ts+u)α1uα1.\displaystyle=\frac{e^{-\lambda(t)(t-s)}}{\Gamma(\alpha)^{2}}\int_{0}^{\infty}due^{-2\lambda_{+}(t,s)u}(t-s+u)^{\alpha-1}u^{\alpha-1}. (A99)

Form Gradshteyn and Ryzhik [40], page 348, #3.383.8:

0xν1(x+β)ν1eμx𝑑x\displaystyle\int_{0}^{\infty}x^{\nu-1}(x+\beta)^{\nu-1}e^{-\mu{x}}dx =1π(βμ)ν12eβμ2Γ(ν)K12ν(βμ2)\displaystyle=\frac{1}{\sqrt{\pi}}\left(\frac{\beta}{\mu}\right)^{\nu-\frac{1}{2}}e^{\frac{\beta\mu}{2}}\Gamma(\nu)K_{\frac{1}{2}-\nu}\left(\frac{\beta\mu}{2}\right) (A100)
[|argβ|<π,Reμ>0,Reν>0].\displaystyle\qquad\qquad\qquad\qquad\Bigl{[}|\arg{\beta}|<\pi,Re{\mu}>0,Re{\nu}>0\Bigr{]}.

Let

β\displaystyle\beta =ts,\displaystyle=t-s, μ\displaystyle\mu =2λ+(t,s),\displaystyle=2\lambda_{+}(t,s), ν\displaystyle\nu =α.\displaystyle=\alpha. (A101)

and using the fact that K1/2α(x)=Kα1/2(x)K_{1/2-\alpha}(x)=K_{\alpha-1/2}(x), the covariance (A99) becomes:

Cλ(t),λ(s)(t,s)\displaystyle C_{\lambda(t),\lambda(s)}(t,s) =eλ(t)(ts)Γ(α)21π(ts2λ+(t,s))α1/2eλ+(t,s)(ts)Γ(α)Kα1/2(λ+(t,s)(ts)).\displaystyle=\frac{e^{-\lambda(t)(t-s)}}{\Gamma(\alpha)^{2}}\frac{1}{\sqrt{\pi}}\left(\frac{t-s}{2\lambda_{+}(t,s)}\right)^{\alpha-1/2}e^{\lambda_{+}(t,s)(t-s)}\Gamma(\alpha)K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)(t-s)\bigr{)}. (A102)

Using

λ(t)(ts)+λ+(t,s)(ts)\displaystyle-\lambda(t)(t-s)+\lambda_{+}(t,s)(t-s) =[λ(t)+12(λ(t)+λ(s))](ts)=12(λ(t)λ(s))(ts),\displaystyle=\Bigl{[}-\lambda(t)+\frac{1}{2}\bigl{(}\lambda(t)+\lambda(s)\bigr{)}\Bigr{]}(t-s)=-\frac{1}{2}\bigl{(}\lambda(t)-\lambda(s)\bigr{)}(t-s), (A103)

and let

λ(t,s)\displaystyle\lambda_{-}(t,s) =12(λ(t)λ(s)),\displaystyle=\frac{1}{2}\bigl{(}\lambda(t)-\lambda(s)\bigr{)}, (A104)

gives

Cλ(t),λ(s)(t,s)\displaystyle C_{\lambda(t),\lambda(s)}(t,s) =eλ(t,s)(ts)πΓ(α)(ts2λ+(t,s))α1/2Kα1/2(λ+(t,s)(ts))\displaystyle=\frac{e^{-\lambda_{-}(t,s)(t-s)}}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{t-s}{2\lambda_{+}(t,s)}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)(t-s)\bigr{)} (A105)

For t<st<s, one gets the result by interchanging between t and s. Using

λ(t,s)\displaystyle\lambda_{-}^{*}(t,s) ={λ(t,s)fort>sλ(s,t)fort<s\displaystyle=\begin{cases}\lambda_{-}(t,s)&\text{for}\ t>s\\ \lambda_{-}(s,t)&\text{for}\ t<s\end{cases} (A106)

one gets

Cλ(t),λ(s)++(t,s)\displaystyle C^{++}_{\lambda(t),\lambda(s)}(t,s) =eλ(t,s)|ts|πΓ(α)(|ts|2λ+(t,s))α1/2Kα1/2(λ+(t,s)|ts|)\displaystyle=\frac{e^{-\lambda_{-}^{*}(t,s)|t-s|}}{\sqrt{\pi}\Gamma(\alpha)}\left(\frac{|t-s|}{2\lambda_{+}(t,s)}\right)^{\alpha-1/2}K_{\alpha-1/2}\bigl{(}\lambda_{+}(t,s)|t-s|\bigr{)} (A107)

This is just the covariance of Weyl FOU with time-dependent tempering parameter (49).

Another possible way to define FOU process with variable tempering is

Yα,λ(t)(t)\displaystyle Y_{\alpha,\lambda(t)}(t) =12πeiktη~(k)dk[|k|2+λ(t)2]α/2.\displaystyle=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{e^{ikt}\widetilde{\eta}(k)dk}{\bigl{[}|k|^{2}+\lambda(t)^{2}\bigr{]}^{\alpha/2}}. (A108)

Again following [37] one can regard (A108) as the solution to the following pseudo-differential equation

𝐃t2+λ(t)2α/2Yα,λ(t)(t)\displaystyle\bigl{\llbracket}-\mathbf{D}_{t}^{2}+\lambda(t)^{2}\bigr{\rrbracket}^{\alpha/2}Y_{\alpha,\lambda(t)}(t) =η(t).\displaystyle=\eta(t). (A109)

𝐃t2-\mathbf{D}_{t}^{2} is the one-dimensional Riesz derivative (or one-dimensional Laplacian operator Δ-\Delta) defined by (31). (A109) can be written as

𝐃t+λ(t)α/2𝐃t+λ(t)α/2Yα,λ(t)(t)\displaystyle\bigl{\llbracket}\mathbf{D}_{t}+\lambda(t)\bigr{\rrbracket}^{\alpha/2}\bigl{\llbracket}-\mathbf{D}_{t}+\lambda(t)\bigr{\rrbracket}^{\alpha/2}Y_{\alpha,\lambda(t)}(t) =η(t).\displaystyle=\eta(t). (A110)

Its solution is

Yα,λ(t)(t)\displaystyle Y_{\alpha,\lambda(t)}(t) =1Γ(α)2𝑑vη(v)max(t,v)𝑑ue+λ(t)(t2u+v)(ut)α/2(uv)α/2\displaystyle=\frac{1}{\Gamma(\alpha)^{2}}\int_{-\infty}^{\infty}dv\eta(v)\int_{\max(t,v)}^{\infty}due^{+\lambda(t)(t-2u+v)}(u-t)^{\alpha/2}(u-v)^{\alpha/2} (A111)

The solution can be expressed as

Yα,λ(t)(t)\displaystyle Y_{\alpha,\lambda(t)}(t) =Gα/2,λ(t)+(t)Gα/2,λ(t)(t)η(t)=Gα/2,λ(t)(t)Gα/2,λ(t)+(t)η(t),\displaystyle=G^{+}_{\alpha/2,\lambda(t)}(t)\ast G^{-}_{\alpha/2,\lambda(t)}(t)\ast\eta(t)=G^{-}_{\alpha/2,\lambda(t)}(t)\ast G^{+}_{\alpha/2,\lambda(t)}(t)\ast\eta(t), (A112)

where

G~α,λ(t)±(k)\displaystyle\widetilde{G}^{\pm}_{\alpha,\lambda(t)}(k) =1(±ik+λ(t))α.\displaystyle=\frac{1}{\bigl{(}\pm{ik}+\lambda(t)\bigr{)}^{\alpha}}. (A113)

The covariance of Yα,λ(t)(t)Y_{\alpha,\lambda(t)}(t) is given by

Cλ(t),λ(s)(t,s)\displaystyle C_{\lambda(t),\lambda(s)}(t,s) =12π𝑑k𝑑keiktiks<η~(t)η~(s)>(|k|2+λ(t)2)α/2(|k|2+λ(s)2)α/2\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk\int_{-\infty}^{\infty}dk^{\prime}\frac{e^{ikt_{i}k^{\prime}{s}}\bigl{<}\widetilde{\eta}(t)\widetilde{\eta}(s)\bigr{>}}{\bigl{(}|k|^{2}+\lambda(t)^{2}\bigr{)}^{\alpha/2}\bigl{(}|k^{\prime}|^{2}+\lambda(s)^{2}\bigr{)}^{\alpha/2}}
=12π𝑑keik|ts|(|k|2+λ(t)2)α/2(|k|2+λ(s)2)α/2,\displaystyle=\frac{1}{2\pi}\int_{-\infty}^{\infty}dk\frac{e^{ik|t-s|}}{\bigl{(}|k|^{2}+\lambda(t)^{2}\bigr{)}^{\alpha/2}\bigl{(}|k|^{2}+\lambda(s)^{2}\bigr{)}^{\alpha/2}}, (A114)

which cannot be evaluated in a closed analytic form. Thus, the process Yα,λ(t)(t)Y_{\alpha,\lambda(t)}(t) given by (A108) does not lead to a simple FOU process with time-dependent tempering parameter.

References

  • Meerschaert and Sbzikar [2013] M. M. Meerschaert and F. Sbzikar. Tempered fractional Brownian motion. Statistics and Probability Letters, 83(10):2269–2275, 2013.
  • Meerschaert and Sabzikar [2014] M.M Meerschaert and F. Sabzikar. Stochastic integration for tempered fractional Brownian motion. Stoch. Process. Appl., 124:2363–2387, 2014.
  • Chen et al. [2017] Yao Chen, Xudong Wang, and Weihua Deng. Localization and ballistic diffusion for the tempered fractional Brownian–Langevin motion. J Stat Phys, 169:18–37, 2017.
  • Meerschaert et al. [2014] M. Meerschaert, F. Sabzikar, M. Phanikumar, and A. Zeleke. Tempered fractional time series model for turbulence in geophysical flows. Journal of Statistical Mechanics: Theory and Experiment,, 2014(9):P09023, 2014.
  • Zhang and Xiao [2017] Xili Zhang and Weilin Xiao. Arbitrage with fractional gaussian processes. Physica A: Statistical Mechanics and its Applications, 471:620 – 628, 2017.
  • Mandelbrot and van Ness [1968] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications,. SIAM Rev., 10:422–437, 1968.
  • Lim and Teo [2007] S. C. Lim and L. P. Teo. Weyl and Riemann–Liouville multifractional Ornstein–Uhlenbeck processes. J Phys A: Math Theor, 40:6035–60, 2007.
  • Samko et al. [1993] S. Samko, A. A. Kilbas, and D. I. Marichev. Integrals and derivatives of the fractional order and some of their applications. New York, USA, Gordon & Breach Publishers, 1993.
  • Kilbas et al. [2006] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional dfferential equations. Armsterdam, Netherlands, Elsevier, 2006.
  • Eab and Lim [2006] C. H. Eab and S. C. Lim. Path integral representation of fractional harmonic oscillator. Physica A, 371:303–316, 2006.
  • Cartea and del Castillo-Negrete [2007] Álcaro Cartea and Diego del Castillo-Negrete. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E, 76:041105, 2007.
  • Sabzikar et al. [2015] F. Sabzikar, M.M. Meerschaert, and J. Chen. Tempered fractional calculus. J. Comput. Phys., 293:14–28, July 2015.
  • Cao et al. [2014] Jianxiong Cao, Changpin Li, and YangQuan Chen. On tempered and substantial fractional calculus. In 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), pages 1–6, 10-12 Sep. 2014. Senigallia, Italy.
  • Abramowitz and Stegun [1965] M. Abramowitz and I. Stegun, editors. Handbook of mathematical functionsJ. Fourier Anal. Appl. Dover Publications, New York, 1965.
  • Lim and Eab [2006] S. C. Lim and C. H. Eab. Reimann-Liouville and Weyl fractional oscillator processes. Physics Letters A, 355:87–93, 2006.
  • Lim et al. [2007] S. C. Lim, Ming LI, and L. P. Teo. Locally self-similar fractional oscillator processes. Fluctuation and Noise Letters, 7:L169 – L179, 2007.
  • Lim and Munuandy [2003] S. C. Lim and S. V. Munuandy. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes. J. Phys. A: Math. Gen., 36:3961–3982, 2003.
  • Lim and Teo [2009a] S C. Lim and L P. Teo. Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Stoch. Proc. Appl., 119:1325–1356, 2009a.
  • Lim and Eab [2019] S. C. Lim and Chai Hok Eab. Tempered fractional brownian motion revisited via fractional Ornstein-Uhlenbeck processes. arXiv:1907.08974v1 [math.PR], 2019.
  • Kent and Wood [1997] J. T. Kent and A T. A. Wood. Estimating the fractal dimension of locally self-similar Gaussian process by using increments. J. R. Stat. Soc. B, 59:579–599, 1997.
  • Adler [1981] A . Adler. The Geometry of Random Fields. New York: Wiley, 1981.
  • Benassi et al. [2003] A. Benassi, S. Cohen, and J. Istas. Local self-similarity and the Hausdorff dimension. Comptes Rendus Mathematique, 336(3):267 –272, 2003.
  • Falconer [2003] K. J. Falconer. Fractal Geometry. Wiley, Hoboken, NJ, 2003.
  • Beran [1994] J. Beran. Statistics for Long-Memory Processes. New York: Chapman and Hall, 1994.
  • Ayache et al. [2000] Antoine Ayache, Serge Cohen, and Jacques Lévy Véhel. The covariance structure of multifractional brownian motion, with application to long range dependence. In 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing - ICASSP 2000, Istanbul, Turkey, 2000.
  • Flandrin et al. [2003] P. Flandrin, P. Borgnat P, and P.-O. Amblard. From stationarity to self-similarity, and back: variations on the Lamperti transformation. In G. Rangarajan and M. Ding, editors, Processes with Long-Range Correlations. Lecture Notes in Physics, volume 621. Springer, Berlin, Heidelberg, 2003.
  • Lim et al. [2008] S. C. Lim, M. Li, and L. P. Teo. Langevin equation with two fractional orders. Phys Lett A, 372:6309–20, 2008.
  • Lim and Teo [2009b] S. C. Lim and L. P. Teo. Fractional oscillator process with two indices. J. Phys. A: Math. Theor., 42:065208 (34pp), 2009b.
  • Lim and Teo [2009c] S. C. Lim and T.P. Teo. Generalized Whittle-Matérn random field as a model of correlated fluctuations. J. Phys. A: Math. Theor., 42:105202 (21 pages), 2009c.
  • Kotz et al. [1995] S. Kotz, I. V. Ostrovskii, and A. Hayfavi. Analytic and asymptotic properties of Linnik’s probability densities ,I, II. J. Math. Anal. App., 193:353–371, 497–521, 1995.
  • Erdogan and Ostrovskii [1998] M. B. Erdogan and I. V. Ostrovskii. Analytic and asymptotic properties of generalized Linnik probability densities. J. Math. Anal. App., 217(2):555–578, 1998.
  • Lim and Teo [2010] S. C. Lim and L. P. Teo. Analytic and asymptotic properties of multivariate generalized Linnik’s probability densities. J. Fourier Anal. Appl., 2010.
  • Kullberg and del Castillo-Negrete [2012] A Kullberg and D del Castillo-Negrete. Transport in the spatially tempered, fractional Fokker–Planck equation. J. Phys. A: Math. Theor., 45:255101 (21 pp), 2012.
  • Zhang et al. [2010] Yong Zhang, Boris Baeumer, and Donald Reeves. A tempered multiscaling stable model to simulate transport in regional-scale fractured media. Geophysical Research Letters, 37:L11405, 06 2010.
  • Molina-Garcia et al. [2018] Daniel Molina-Garcia, Trifce Sandev, Hadiseh Safdari, Gianni Pagnini, Aleksei Chechkin, and Ralf Metzler. Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayers. New J. Phys., 20:103027 (28), 2018.
  • Eab and Lim [2018] Chai Hok Eab and S.C. Lim. Ornstein–Uhlenbeck process with fluctuating damping. Physica A: Statistical Mechanics and its Applications, 492:790 – 803, 2018.
  • Ruiz-Medina et al. [2004] M. D. Ruiz-Medina, V. V. Anh, and J. M. Angulo. Fractional generalized random fields of variable order. Stochastic Analysis and Applications, 22(3):775–799, 2004.
  • Lévy-Vehel and Peltier [1996] J. Lévy-Vehel and R. F. Peltier. Multifractional Brownian motion: definition and preliminary results. Technical Report RR-2645, INRIA, 1996.
  • Benassi et al. [1997] A. Benassi, S. Jaffard, and D. Roux. Elliptic Gaussian random processes. Rev. Mat. Iberoamericana, 13:19–90, 1997.
  • Gradshteyn and Ryzhik [2000] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, Inc., New York, USA, 6th edition, 2000.
  • Lim and Teo [2008] S. C. Lim and L. P. Teo. Sample path properties of fractional Riesz–Bessel field of variable order. J Math Phys, 49:013509 (31 pages), 2008.