This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle II Collaboration

Test of lepton flavor universality with measurements of R(D+)R(D^{+}) and R(D+)R(D^{*+}) using semileptonic BB tagging at the Belle II experiment

I. Adachi  0000-0003-2287-0173    K. Adamczyk 0000-0001-6208-0876    L. Aggarwal 0000-0002-0909-7537    H. Ahmed  0000-0003-3976-7498    H. Aihara  0000-0002-1907-5964    N. Akopov 0000-0002-4425-2096    S. Alghamdi 0000-0001-7609-112X    M. Alhakami 0000-0002-2234-8628    A. Aloisio 0000-0002-3883-6693    N. Althubiti 0000-0003-1513-0409    K. Amos 0000-0003-1757-5620    M. Angelsmark  0000-0003-4745-1020    N. Anh Ky 0000-0003-0471-197X    C. Antonioli 0009-0003-9088-3811    D. M. Asner 0000-0002-1586-5790    H. Atmacan  0000-0003-2435-501X    T. Aushev  0000-0002-6347-7055    V. Aushev 0000-0002-8588-5308    M. Aversano 0000-0001-9980-0953    R. Ayad 0000-0003-3466-9290    V. Babu  0000-0003-0419-6912    H. Bae  0000-0003-1393-8631    N. K. Baghel 0009-0008-7806-4422    S. Bahinipati 0000-0002-3744-5332    P. Bambade  0000-0001-7378-4852    Sw. Banerjee 0000-0001-8852-2409    S. Bansal 0000-0003-1992-0336    M. Barrett 0000-0002-2095-603X    M. Bartl 0009-0002-7835-0855    J. Baudot  0000-0001-5585-0991    A. Beaubien  0000-0001-9438-089X    F. Becherer 0000-0003-0562-4616    J. Becker 0000-0002-5082-5487    J. V. Bennett  0000-0002-5440-2668    F. U. Bernlochner  0000-0001-8153-2719    V. Bertacchi 0000-0001-9971-1176    M. Bertemes 0000-0001-5038-360X    E. Bertholet 0000-0002-3792-2450    M. Bessner 0000-0003-1776-0439    S. Bettarini  0000-0001-7742-2998    V. Bhardwaj 0000-0001-8857-8621    B. Bhuyan 0000-0001-6254-3594    F. Bianchi 0000-0002-1524-6236    T. Bilka  0000-0003-1449-6986    D. Biswas  0000-0002-7543-3471    A. Bobrov  0000-0001-5735-8386    D. Bodrov 0000-0001-5279-4787    A. Bolz 0000-0002-4033-9223    A. Bondar 0000-0002-5089-5338    J. Borah  0000-0003-2990-1913    A. Boschetti 0000-0001-6030-3087    A. Bozek  0000-0002-5915-1319    M. Bračko 0000-0002-2495-0524    P. Branchini 0000-0002-2270-9673    R. A. Briere  0000-0001-5229-1039    T. E. Browder 0000-0001-7357-9007    A. Budano  0000-0002-0856-1131    S. Bussino 0000-0002-3829-9592    Q. Campagna  0000-0002-3109-2046    M. Campajola 0000-0003-2518-7134    L. Cao 0000-0001-8332-5668    G. Casarosa 0000-0003-4137-938X    C. Cecchi 0000-0002-2192-8233    J. Cerasoli 0000-0001-9777-881X    M.-C. Chang 0000-0002-8650-6058    P. Chang 0000-0003-4064-388X    R. Cheaib 0000-0001-5729-8926    P. Cheema 0000-0001-8472-5727    B. G. Cheon  0000-0002-8803-4429    K. Chilikin 0000-0001-7620-2053    J. Chin 0009-0005-9210-8872    K. Chirapatpimol 0000-0003-2099-7760    H.-E. Cho 0000-0002-7008-3759    K. Cho 0000-0003-1705-7399    S.-J. Cho 0000-0002-1673-5664    S.-K. Choi 0000-0003-2747-8277    S. Choudhury 0000-0001-9841-0216    J. Cochran  0000-0002-1492-914X    I. Consigny 0009-0009-8755-6290    L. Corona 0000-0002-2577-9909    J. X. Cui  0000-0002-2398-3754    E. De La Cruz-Burelo  0000-0002-7469-6974    S. A. De La Motte 0000-0003-3905-6805    G. De Nardo  0000-0002-2047-9675    G. De Pietro  0000-0001-8442-107X    R. de Sangro  0000-0002-3808-5455    M. Destefanis  0000-0003-1997-6751    S. Dey 0000-0003-2997-3829    R. Dhamija  0000-0001-7052-3163    F. Di Capua  0000-0001-9076-5936    J. Dingfelder 0000-0001-5767-2121    Z. Doležal 0000-0002-5662-3675    I. Domínguez Jiménez 0000-0001-6831-3159    T. V. Dong 0000-0003-3043-1939    M. Dorigo  0000-0002-0681-6946    D. Dossett  0000-0002-5670-5582    S. Dubey  0000-0002-1345-0970    K. Dugic  0009-0006-6056-546X    G. Dujany 0000-0002-1345-8163    P. Ecker 0000-0002-6817-6868    D. Epifanov  0000-0001-8656-2693    P. Feichtinger  0000-0003-3966-7497    T. Ferber 0000-0002-6849-0427    T. Fillinger  0000-0001-9795-7412    C. Finck 0000-0002-5068-5453    G. Finocchiaro 0000-0002-3936-2151    A. Fodor  0000-0002-2821-759X    F. Forti 0000-0001-6535-7965    B. G. Fulsom  0000-0002-5862-9739    A. Gabrielli 0000-0001-7695-0537    A. Gale  0009-0005-2634-7189    E. Ganiev 0000-0001-8346-8597    M. Garcia-Hernandez 0000-0003-2393-3367    R. Garg 0000-0002-7406-4707    G. Gaudino  0000-0001-5983-1552    V. Gaur  0000-0002-8880-6134    V. Gautam 0009-0001-9817-8637    A. Gaz 0000-0001-6754-3315    A. Gellrich  0000-0003-0974-6231    G. Ghevondyan 0000-0003-0096-3555    D. Ghosh 0000-0002-3458-9824    H. Ghumaryan 0000-0001-6775-8893    G. Giakoustidis 0000-0001-5982-1784    R. Giordano 0000-0002-5496-7247    A. Giri 0000-0002-8895-0128    P. Gironella Gironell 0000-0001-5603-4750    A. Glazov 0000-0002-8553-7338    B. Gobbo 0000-0002-3147-4562    R. Godang 0000-0002-8317-0579    O. Gogota 0000-0003-4108-7256    P. Goldenzweig 0000-0001-8785-847X    W. Gradl  0000-0002-9974-8320    S. Granderath  0000-0002-9945-463X    E. Graziani 0000-0001-8602-5652    D. Greenwald  0000-0001-6964-8399    Z. Gruberová 0000-0002-5691-1044    Y. Guan  0000-0002-5541-2278    K. Gudkova 0000-0002-5858-3187    I. Haide 0000-0003-0962-6344    Y. Han  0000-0001-6775-5932    K. Hara 0000-0002-5361-1871    T. Hara 0000-0002-4321-0417    C. Harris 0000-0003-0448-4244    K. Hayasaka  0000-0002-6347-433X    H. Hayashii 0000-0002-5138-5903    S. Hazra 0000-0001-6954-9593    C. Hearty 0000-0001-6568-0252    M. T. Hedges 0000-0001-6504-1872    I. Heredia de la Cruz  0000-0002-8133-6467    M. Hernández Villanueva 0000-0002-6322-5587    T. Higuchi 0000-0002-7761-3505    M. Hoek  0000-0002-1893-8764    M. Hohmann 0000-0001-5147-4781    R. Hoppe  0009-0005-8881-8935    P. Horak 0000-0001-9979-6501    C.-L. Hsu  0000-0002-1641-430X    A. Huang 0000-0003-1748-7348    T. Humair  0000-0002-2922-9779    T. Iijima 0000-0002-4271-711X    K. Inami 0000-0003-2765-7072    G. Inguglia 0000-0003-0331-8279    N. Ipsita 0000-0002-2927-3366    A. Ishikawa  0000-0002-3561-5633    R. Itoh  0000-0003-1590-0266    M. Iwasaki 0000-0002-9402-7559    P. Jackson  0000-0002-0847-402X    D. Jacobi 0000-0003-2399-9796    W. W. Jacobs 0000-0002-9996-6336    D. E. Jaffe 0000-0003-3122-4384    E.-J. Jang 0000-0002-1935-9887    Q. P. Ji 0000-0003-2963-2565    S. Jia  0000-0001-8176-8545    Y. Jin 0000-0002-7323-0830    A. Johnson 0000-0002-8366-1749    K. K. Joo 0000-0002-5515-0087    H. Junkerkalefeld 0000-0003-3987-9895    A. B. Kaliyar  0000-0002-2211-619X    J. Kandra 0000-0001-5635-1000    K. H. Kang 0000-0002-6816-0751    S. Kang 0000-0002-5320-7043    G. Karyan  0000-0001-5365-3716    T. Kawasaki  0000-0002-4089-5238    F. Keil 0000-0002-7278-2860    C. Ketter 0000-0002-5161-9722    M. Khan 0000-0002-2168-0872    C. Kiesling 0000-0002-2209-535X    C.-H. Kim  0000-0002-5743-7698    D. Y. Kim 0000-0001-8125-9070    J.-Y. Kim  0000-0001-7593-843X    K.-H. Kim 0000-0002-4659-1112    Y.-K. Kim  0000-0002-9695-8103    H. Kindo 0000-0002-6756-3591    K. Kinoshita 0000-0001-7175-4182    P. Kodyš  0000-0002-8644-2349    T. Koga 0000-0002-1644-2001    S. Kohani 0000-0003-3869-6552    K. Kojima 0000-0002-3638-0266    A. Korobov  0000-0001-5959-8172    S. Korpar 0000-0003-0971-0968    R. Kowalewski  0000-0002-7314-0990    P. Križan  0000-0002-4967-7675    P. Krokovny  0000-0002-1236-4667    T. Kuhr  0000-0001-6251-8049    Y. Kulii  0000-0001-6217-5162    D. Kumar 0000-0001-6585-7767    J. Kumar 0000-0002-8465-433X    K. Kumara  0000-0003-1572-5365    T. Kunigo  0000-0001-9613-2849    A. Kuzmin  0000-0002-7011-5044    Y.-J. Kwon  0000-0001-9448-5691    S. Lacaprara 0000-0002-0551-7696    Y.-T. Lai 0000-0001-9553-3421    K. Lalwani 0000-0002-7294-396X    T. Lam 0000-0001-9128-6806    J. S. Lange  0000-0003-0234-0474    T. S. Lau 0000-0001-7110-7823    M. Laurenza 0000-0002-7400-6013    R. Leboucher  0000-0003-3097-6613    F. R. Le Diberder 0000-0002-9073-5689    M. J. Lee  0000-0003-4528-4601    C. Lemettais  0009-0008-5394-5100    P. Leo 0000-0003-3833-2900    P. M. Lewis  0000-0002-5991-622X    C. Li 0000-0002-3240-4523    H.-J. Li 0000-0001-9275-4739    L. K. Li 0000-0002-7366-1307    Q. M. Li 0009-0004-9425-2678    W. Z. Li  0009-0002-8040-2546    Y. B. Li  0000-0002-9909-2851    Y. P. Liao 0009-0000-1981-0044    J. Libby 0000-0002-1219-3247    J. Lin  0000-0002-3653-2899    S. Lin 0000-0001-5922-9561    M. H. Liu  0000-0002-9376-1487    Q. Y. Liu 0000-0002-7684-0415    Y. Liu 0000-0002-8374-3947    Z. Q. Liu  0000-0002-0290-3022    D. Liventsev 0000-0003-3416-0056    S. Longo 0000-0002-8124-8969    T. Lueck  0000-0003-3915-2506    C. Lyu  0000-0002-2275-0473    Y. Ma 0000-0001-8412-8308    C. Madaan 0009-0004-1205-5700    M. Maggiora  0000-0003-4143-9127    S. P. Maharana 0000-0002-1746-4683    R. Maiti  0000-0001-5534-7149    G. Mancinelli  0000-0003-1144-3678    R. Manfredi 0000-0002-8552-6276    E. Manoni 0000-0002-9826-7947    A. C. Manthei 0000-0002-6900-5729    M. Mantovano 0000-0002-5979-5050    D. Marcantonio 0000-0002-1315-8646    S. Marcello 0000-0003-4144-863X    C. Marinas 0000-0003-1903-3251    C. Martellini  0000-0002-7189-8343    A. Martens 0000-0003-1544-4053    A. Martini 0000-0003-1161-4983    T. Martinov 0000-0001-7846-1913    L. Massaccesi 0000-0003-1762-4699    M. Masuda 0000-0002-7109-5583    D. Matvienko  0000-0002-2698-5448    S. K. Maurya 0000-0002-7764-5777    M. Maushart 0009-0004-1020-7299    J. A. McKenna  0000-0001-9871-9002    R. Mehta  0000-0001-8670-3409    F. Meier 0000-0002-6088-0412    D. Meleshko 0000-0002-0872-4623    M. Merola 0000-0002-7082-8108    F. Metzner 0000-0002-0128-264X    C. Miller  0000-0003-2631-1790    M. Mirra 0000-0002-1190-2961    S. Mitra 0000-0002-1118-6344    K. Miyabayashi 0000-0003-4352-734X    H. Miyake  0000-0002-7079-8236    R. Mizuk 0000-0002-2209-6969    G. B. Mohanty 0000-0001-6850-7666    S. Mondal  0000-0002-3054-8400    S. Moneta 0000-0003-2184-7510    A. L. Moreira de Carvalho  0000-0002-1986-5720    H.-G. Moser 0000-0003-3579-9951    I. Nakamura  0000-0002-7640-5456    K. R. Nakamura 0000-0001-7012-7355    M. Nakao  0000-0001-8424-7075    Y. Nakazawa  0000-0002-6271-5808    M. Naruki  0000-0003-1773-2999    Z. Natkaniec 0000-0003-0486-9291    A. Natochii 0000-0002-1076-814X    M. Nayak  0000-0002-2572-4692    G. Nazaryan 0000-0002-9434-6197    M. Neu 0000-0002-4564-8009    S. Nishida  0000-0001-6373-2346    A. Novosel  0000-0002-7308-8950    S. Ogawa 0000-0002-7310-5079    R. Okubo 0009-0009-0912-0678    H. Ono  0000-0003-4486-0064    Y. Onuki 0000-0002-1646-6847    F. Otani  0000-0001-6016-219X    G. Pakhlova  0000-0001-7518-3022    E. Paoloni  0000-0001-5969-8712    S. Pardi 0000-0001-7994-0537    K. Parham 0000-0001-9556-2433    H. Park 0000-0001-6087-2052    J. Park 0000-0001-6520-0028    K. Park 0000-0003-0567-3493    S.-H. Park 0000-0001-6019-6218    B. Paschen 0000-0003-1546-4548    A. Passeri 0000-0003-4864-3411    S. Patra 0000-0002-4114-1091    T. K. Pedlar  0000-0001-9839-7373    I. Peruzzi 0000-0001-6729-8436    R. Peschke 0000-0002-2529-8515    R. Pestotnik 0000-0003-1804-9470    M. Piccolo  0000-0001-9750-0551    L. E. Piilonen 0000-0001-6836-0748    P. L. M. Podesta-Lerma  0000-0002-8152-9605    T. Podobnik 0000-0002-6131-819X    S. Pokharel 0000-0002-3367-738X    A. Prakash  0000-0002-6462-8142    C. Praz  0000-0002-6154-885X    S. Prell 0000-0002-0195-8005    E. Prencipe 0000-0002-9465-2493    M. T. Prim 0000-0002-1407-7450    S. Privalov 0009-0004-1681-3919    I. Prudiiev 0000-0002-0819-284X    H. Purwar  0000-0002-3876-7069    P. Rados  0000-0003-0690-8100    G. Raeuber 0000-0003-2948-5155    S. Raiz 0000-0001-7010-8066    V. Raj 0009-0003-2433-8065    N. Rauls 0000-0002-6583-4888    K. Ravindran 0000-0002-5584-2614    J. U. Rehman 0000-0002-2673-1982    M. Reif 0000-0002-0706-0247    S. Reiter 0000-0002-6542-9954    M. Remnev 0000-0001-6975-1724    L. Reuter 0000-0002-5930-6237    D. Ricalde Herrmann 0000-0001-9772-9989    I. Ripp-Baudot 0000-0002-1897-8272    G. Rizzo  0000-0003-1788-2866    S. H. Robertson  0000-0003-4096-8393    M. Roehrken  0000-0003-0654-2866    J. M. Roney 0000-0001-7802-4617    A. Rostomyan  0000-0003-1839-8152    N. Rout 0000-0002-4310-3638    L. Salutari  0009-0001-2822-6939    D. A. Sanders  0000-0002-4902-966X    S. Sandilya 0000-0002-4199-4369    L. Santelj  0000-0003-3904-2956    C. Santos 0009-0005-2430-1670    V. Savinov  0000-0002-9184-2830    B. Scavino 0000-0003-1771-9161    C. Schmitt 0000-0002-3787-687X    J. Schmitz 0000-0001-8274-8124    S. Schneider  0009-0002-5899-0353    C. Schwanda  0000-0003-4844-5028    A. J. Schwartz 0000-0002-7310-1983    Y. Seino  0000-0002-8378-4255    A. Selce 0000-0001-8228-9781    K. Senyo 0000-0002-1615-9118    J. Serrano 0000-0003-2489-7812    M. E. Sevior 0000-0002-4824-101X    C. Sfienti 0000-0002-5921-8819    W. Shan 0000-0003-2811-2218    C. Sharma 0000-0002-1312-0429    G. Sharma 0000-0002-5620-5334    X. D. Shi  0000-0002-7006-6107    T. Shillington  0000-0003-3862-4380    T. Shimasaki 0000-0003-3291-9532    J.-G. Shiu  0000-0002-8478-5639    D. Shtol  0000-0002-0622-6065    A. Sibidanov  0000-0001-8805-4895    F. Simon 0000-0002-5978-0289    J. B. Singh 0000-0001-9029-2462    J. Skorupa 0000-0002-8566-621X    R. J. Sobie  0000-0001-7430-7599    M. Sobotzik 0000-0002-1773-5455    A. Soffer 0000-0002-0749-2146    A. Sokolov 0000-0002-9420-0091    E. Solovieva  0000-0002-5735-4059    W. Song 0000-0003-1376-2293    S. Spataro 0000-0001-9601-405X    B. Spruck 0000-0002-3060-2729    M. Starič  0000-0001-8751-5944    P. Stavroulakis 0000-0001-9914-7261    S. Stefkova 0000-0003-2628-530X    R. Stroili  0000-0002-3453-142X    J. Strube 0000-0001-7470-9301    Y. Sue  0000-0003-2430-8707    M. Sumihama  0000-0002-8954-0585    K. Sumisawa 0000-0001-7003-7210    W. Sutcliffe 0000-0002-9795-3582    N. Suwonjandee 0009-0000-2819-5020    H. Svidras  0000-0003-4198-2517    M. Takahashi 0000-0003-1171-5960    M. Takizawa 0000-0001-8225-3973    U. Tamponi 0000-0001-6651-0706    K. Tanida  0000-0002-8255-3746    F. Tenchini  0000-0003-3469-9377    A. Thaller  0000-0003-4171-6219    O. Tittel 0000-0001-9128-6240    R. Tiwary 0000-0002-5887-1883    E. Torassa  0000-0003-2321-0599    K. Trabelsi  0000-0001-6567-3036    I. Tsaklidis 0000-0003-3584-4484    M. Uchida  0000-0003-4904-6168    I. Ueda 0000-0002-6833-4344    T. Uglov  0000-0002-4944-1830    K. Unger 0000-0001-7378-6671    Y. Unno 0000-0003-3355-765X    K. Uno 0000-0002-2209-8198    S. Uno 0000-0002-3401-0480    P. Urquijo 0000-0002-0887-7953    Y. Ushiroda 0000-0003-3174-403X    S. E. Vahsen  0000-0003-1685-9824    R. van Tonder 0000-0002-7448-4816    K. E. Varvell 0000-0003-1017-1295    M. Veronesi 0000-0002-1916-3884    A. Vinokurova 0000-0003-4220-8056    V. S. Vismaya 0000-0002-1606-5349    L. Vitale 0000-0003-3354-2300    V. Vobbilisetti 0000-0002-4399-5082    R. Volpe 0000-0003-1782-2978    A. Vossen  0000-0003-0983-4936    M. Wakai  0000-0003-2818-3155    S. Wallner  0000-0002-9105-1625    M.-Z. Wang  0000-0002-0979-8341    X. L. Wang 0000-0001-5805-1255    Z. Wang 0000-0002-3536-4950    A. Warburton 0000-0002-2298-7315    M. Watanabe 0000-0001-6917-6694    S. Watanuki 0000-0002-5241-6628    C. Wessel  0000-0003-0959-4784    E. Won  0000-0002-4245-7442    X. P. Xu  0000-0001-5096-1182    B. D. Yabsley  0000-0002-2680-0474    S. Yamada 0000-0002-8858-9336    W. Yan 0000-0003-0713-0871    W. C. Yan 0000-0001-6721-9435    J. Yelton  0000-0001-8840-3346    J. H. Yin 0000-0002-1479-9349    K. Yoshihara  0000-0002-3656-2326    C. Z. Yuan  0000-0002-1652-6686    J. Yuan 0009-0005-0799-1630    L. Zani  0000-0003-4957-805X    F. Zeng 0009-0003-6474-3508    M. Zeyrek 0000-0002-9270-7403    B. Zhang 0000-0002-5065-8762    J. S. Zhou  0000-0002-6413-4687    Q. D. Zhou  0000-0001-5968-6359    L. Zhu  0009-0007-1127-5818    V. I. Zhukova 0000-0002-8253-641X    R. Žlebčík  0000-0003-1644-8523
Abstract

We report measurements of the ratios of branching fractions (D()+)=(B¯0D()+τν¯τ)/(B¯0D()+ν¯)\mathcal{R}(D^{(*)+})=\mathcal{B}(\overline{B}{}^{0}\to D^{(*)+}\,\tau^{-}\,\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}{}^{0}\to D^{(*)+}\,\ell^{-}\,\overline{\nu}_{\ell}), where \ell denotes either an electron or a muon. These ratios test the universality of the charged-current weak interaction. The results are based on a 365fb1365\,\mathrm{fb}^{-1}  data sample collected with the Belle II detector at the SuperKEKB e+ee^{+}e^{-} collider, which operates at a center-of-mass energy corresponding to the Υ(4S)\Upsilon(4S) resonance, just above the threshold for BB¯B\overline{B}{} production. Signal candidates are reconstructed by selecting events in which the companion BB meson from the Υ(4S)BB¯\Upsilon(4S)\to B\overline{B}{} decay is identified in semileptonic modes. The τ\tau lepton is reconstructed via its leptonic decays. We obtain (D+)=0.418±0.074(stat)±0.051(syst)\mathcal{R}(D^{+})=0.418\pm 0.074~({\mathrm{stat}})\pm 0.051~({\mathrm{syst}}) and (D+)=0.306±0.034(stat)±0.018(syst)\mathcal{R}(D^{*+})=0.306\pm 0.034~({\mathrm{stat}})\pm 0.018~({\mathrm{syst}}), which are consistent with world average values. Accounting for the correlation between them, these values differ from the Standard Model expectation by a collective significance of 1.71.7 standard deviations.

I Introduction

A fundamental property of the Standard Model (SM) of particle physics is the universality of the electroweak gauge couplings to the three fermion generations. In the lepton sector, this universality results in an accidental symmetry of the lepton flavors that is only broken by the Higgs-Yukawa interaction. One key consequence is that physical processes involving charged leptons feature lepton flavor universality (LFU), an approximate symmetry of lepton flavor among physical observables, only broken by charged lepton mass terms emerging from the non-zero vacuum expectation value of the Higgs field. An observation of lepton flavor universality violation would therefore be a clear signature of physics beyond the SM [1].

In this paper, we test LFU using semitauonic bcτν¯τb\to c\tau\bar{\nu}_{\tau} decays by measuring the ratios,111Charge conjugation is implied throughout this paper.

(D())=(D()+)\displaystyle\mathcal{R}(D^{(*)})=\mathcal{R}(D^{(*)+}) (B¯0D()+τν¯τ)(B¯0D()+ν¯),\displaystyle\equiv\frac{\mathcal{B}(\overline{B}{}^{0}\to D^{(*)+}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\overline{B}{}^{0}\to D^{(*)+}\ell^{-}\bar{\nu}_{\ell})}\,, (1)

with =e,μ\ell=e,\mu and D()D^{(*)} denoting either D()+D^{(*)+} or D()0D^{(*)0}. The first equality follows from the assumption of isospin symmetry. Predictions of these ratios are independent of the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element VcbV_{cb} and, to some extent, of the parameterization of hadronic matrix elements, reaching a precision of 1–2%  [2, 3, 4, 5, 6, 7, 8, 9, 10]. Experimentally, measurements of the ratios in Eq. 1 are preferred to measurements of absolute branching fractions, as efficiency-related systematic uncertainties largely cancel. Furthermore, the simultaneous measurement of both (D)\mathcal{R}(D) and (D)\mathcal{R}(D^{*}) is useful, as B¯Dτν¯τ\overline{B}{}\to D^{*}\tau^{-}\bar{\nu}_{\tau} decays are an important background in the reconstruction of B¯Dτν¯τ\overline{B}{}\to D\tau^{-}\bar{\nu}_{\tau} decays.

Several experiments previously reported measurements of these or similar ratios [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Belle II reported (D)=0.2620.039+0.041(stat)0.032+0.035(syst)\mathcal{R}(D^{*})=0.262^{+0.041}_{-0.039}(\mathrm{stat})^{+0.035}_{-0.032}(\mathrm{syst}) [23] and the inclusive ratio (Xτ/)=0.228±0.016(stat)±0.036(syst)\mathcal{R}(X_{\tau/\ell})=0.228\pm 0.016\mathrm{(stat)}\pm 0.036\mathrm{(syst)} [24]. A combination of these measurements is reported in Ref. [25] and achieves a precision of 8% for (D)\mathcal{R}(D) and 4% for (D)\mathcal{R}(D^{*}), with values of (D)=0.342±0.026\mathcal{R}(D)=0.342\pm 0.026 and (D)=0.286±0.012\mathcal{R}(D^{*})=0.286\pm 0.012. Both exceed the SM expectations of (D)=0.296±0.004\mathcal{R}(D)=0.296\pm 0.004 and (D)=0.254±0.005\mathcal{R}(D^{*})=0.254\pm 0.005 [2, 3, 4, 5, 6, 7, 8, 9, 10] with a significance of 3.1 standard deviations.

In this analysis, we study B0B¯0B^{0}\overline{B}{}^{0} pairs produced in Υ(4S)\Upsilon(4S) decays. One B0B^{0} or B¯0\overline{B}{}^{0} meson is reconstructed in a semileptonic decay using the hierarchical reconstruction algorithm from Ref. [26], referred to as BtagB_{\mathrm{tag}}. This BtagB_{\mathrm{tag}} is then combined with an oppositely flavored semitauonic or semileptonic decay candidate, which we define as BsigB_{\mathrm{sig}}. The selected events are independent of those analyzed in Refs. [24, 23], as the latter relied on the reconstruction of hadronically decaying BtagB_{\mathrm{tag}} mesons. The analysis of B+BB^{+}B^{-} pairs is deferred to future work, as the reconstruction of the isospin-conjugate BB^{-} signal decays necessitates the efficient identification of D0D0π0D^{*0}\to D^{0}\pi^{0} decays, which suffer from an increased combinatorial background.

We reconstruct signal candidates from the D+D^{+}\ell^{-} and D+D^{*+}\ell^{-} final states (with =e,μ\ell=e,\,\mu), which can originate from either semitauonic decays (B¯0D()+τν¯τ\overline{B}{}^{0}\to D^{(*)+}\tau^{-}\bar{\nu}_{\tau} with τν¯ντ\tau^{-}\to\ell^{-}\overline{\nu}_{\ell}\nu_{\tau}) or semileptonic decays (B¯0D()+ν¯\overline{B}{}^{0}\to D^{(*)+}\ell^{-}\bar{\nu}_{\ell}). These processes differ in the number of neutrinos and are thus distinguishable through kinematic properties. Since both processes produce the same visible final state in the detector, several experimental systematic uncertainties cancel in the measurement of their ratio.

We distinguish BsigB_{\mathrm{sig}} candidates originating from semitauonic, semileptonic, and background sources using multivariate classifiers trained on the kinematic properties of both the BsigB_{\mathrm{sig}} and BtagB_{\mathrm{tag}} candidates. A binned maximum likelihood fit is then performed to measure the relative contribution from each source, allowing a direct determination of (D())\mathcal{R}(D^{(*)}).

The remainder of this paper is structured as follows: Sections II and III provide an overview of the Belle II detector, the analyzed data set, and the simulated samples. Section IV summarizes the tag and signal reconstruction, while Section V describes the employed multivariate selection. Section VI details the fitting procedure, and Section VII discusses the systematic uncertainties affecting the measurement. Section VIII presents our findings and consisitency checks, and Section IX provides our conclusions.

II Belle II detector and data set

The analysis uses Belle II data collected at SuperKEKB [27] from 2019 to 2022 at a center-of-mass energy of 10.58 GeV,222Natural units (c==1c=\hbar=1) are used throughout this paper. corresponding to the Υ(4S)\Upsilon(4S) resonance, having an integrated luminosity of 365 fb1\text{fb}^{-1}. The sample contains an estimated (387±6)×106(387\pm 6)\times 10^{6} BB¯B\overline{B}{} events. Additionally, 42.3 fb-1 of off-resonance data at 10.52 GeV is used to study qq¯q\bar{q} (q=u,d,s,cq=u,d,s,c) background.

The Belle II detector [28] is an upgraded version of Belle [29] with enhanced particle reconstruction and identification. Its subdetectors are arranged cylindrically around the interaction point (IP), which is enclosed by a 1 cm1\text{\,}\mathrm{cm} beryllium beam pipe. The pixel detector (PXD) consists of two layers, with the first fully instrumented and the second partially completed. The PXD is surrounded by a four-layer double-sided silicon-strip detector (SVD), and both detectors are used to reconstruct decay vertices with high precision. Surrounding these detectors is the central drift chamber (CDC), which provides three-dimensional tracking and specific ionization (dE/dx\mathrm{d}{E}/\mathrm{d}{x}) measurements.

Outside the CDC, the time-of-propagation (TOP) and aerogel ring-imaging Cherenkov (ARICH) detectors provide particle identification in the barrel and forward endcap regions, respectively.

The electromagnetic calorimeter (ECL), consisting of a 3 m3\text{\,}\mathrm{m} barrel and annular endcaps, is located outside the TOP and within a 1.5 T1.5\text{\,}\mathrm{T} superconducting solenoid. The KL0K^{0}_{L} and muon detector (KLM), situated outside the solenoid, is composed of iron plates interleaved with active detector elements.

Particle candidates are constructed and identified using the information from various detector systems.

Charged particle candidates (tracks) are reconstructed by the vertex and tracking systems, and identified based on information from the outer detectors. In particular, muons with sufficiently high momentum will traverse the KLM, while other charged particles are absorbed. In contrast, electrons deposit nearly all of their energy in the ECL.

Photon candidates consist of ECL clusters that are not consistent with extrapolations of charged tracks. Minimum energy selections are necessary to reject clusters from beam-induced background photons.

III Simulation

Monte Carlo (MC) samples are used to determine reconstruction efficiencies and acceptance effects as well as to estimate background contamination and to train multivariate classifiers. The BB decays are simulated using the EvtGen generator [30]. The simulation of e+eqq¯e^{+}e^{-}\to q\bar{q} continuum processes is carried out with KKMC [31] and PYTHIA8 [32]. Electromagnetic final-state radiation is simulated using PHOTOS [33] for all charged final-state particles. Interactions of particles with the detector are simulated using GEANT4 [34]. The simulated samples contain the equivalent of 2.8 ab-1 of BB¯B\overline{B}{} and continuum processes. The BB¯B\overline{B}{} events are simulated with equal fractions of neutral and charged BB mesons. An additional sample of 176×106176\times 10^{6} B¯0D()+τν¯τ\overline{B}{}^{0}\to D^{(*)+}\tau^{-}\bar{\nu}_{\tau} decays with τν¯ντ\tau^{-}\to\ell^{-}\overline{\nu}_{\ell}\nu_{\tau} is used, corresponding to an effective sample size of 8.58.5 ab-1.

The signal decays B¯0D()+τντ¯\overline{B}{}^{0}\to D^{(*)+}\tau^{-}\bar{\nu_{\tau}} and B¯0D()+ν¯\overline{B}{}^{0}\to D^{(*)+}\ell^{-}\bar{\nu_{\ell}} are modeled using the form factors from Ref. [6], with parameter values obtained from a fit to the measurements in Refs. [35, 36]. To incorporate this form factor model into the Monte Carlo simulation, the HAMMER software package [37] is used to compute and apply event-by-event weights. For the branching fractions isospin-averaged values of Ref. [38] are used.

The decays B¯0Dτν¯τ\overline{B}{}^{0}\to D^{**}\tau^{-}\overline{\nu}_{\tau} and B¯0Dν¯\overline{B}{}^{0}\to D^{**}\ell\overline{\nu}_{\ell}, where D={D0+,D1+,D1+,D2+}D^{**}=\{D_{0}^{*+},D_{1}^{\prime+},D_{1}^{+},D_{2}^{*+}\}, are modeled using the heavy-quark-symmetry-based form factors proposed in Refs. [39, 40], with DD^{**} masses and widths taken from Ref. [41]. For the B¯Dν¯\overline{B}{}\to D^{**}\ell\overline{\nu}_{\ell} branching fractions, we adopt the values from Ref. [38] to account for missing isospin-conjugated and other established decay modes observed in studies of BB decays into fully hadronic final states, following the approach outlined in Ref. [39].

The difference between the inclusive semileptonic branching fraction and the sum of exclusive semileptonic BB decays (the so-called “gap”) is accounted for by using a dedicated sample of B¯D()(ππ/η)ν¯\overline{B}{}\to D^{(*)}(\pi\pi/\eta)\ell\overline{\nu}_{\ell} decays. These are simulated using broad DD^{**} contributions that do not form distinct resonance peaks in their invariant mass distributions, resulting in a smooth continuum across phase space. The heavy-quark-symmetry-based form factors of Refs. [39, 40] are used to simulate the decay dynamics. We refer to these as “non-resonant” DD^{**} decays, in contrast to “resonant” DD^{**} decays, which proceed via well-defined intermediate states with Breit-Wigner resonance shapes characterized by specific mass and width parameters. Non-resonant DD^{**} decays account for approximately 0.7%0.7\% of all semileptonic and semitauonic events in our reconstructed sample. We also use simulated samples of the isospin-conjugate modes to understand the contamination from B+B^{+} decays.

The simulation is corrected using data-driven weights to account for differences in identification and reconstruction efficiencies. Lepton identification (LID) efficiency and fake rate corrections for electrons are applied as functions of the laboratory-frame momentum, angle relative to the electron beam, and charge of the electron candidate. These corrections are derived from samples of e+ee+e(γ)e^{+}e^{-}\to e^{+}e^{-}(\gamma), e+ee+ee+ee^{+}e^{-}\to e^{+}e^{-}e^{+}e^{-}, and events with J/ψe+eJ/\psi\to e^{+}e^{-} decays. Muon LID corrections are obtained using samples of e+eμ+μγe^{+}e^{-}\to\mu^{+}\mu^{-}\gamma, e+ee+eμ+μe^{+}e^{-}\to e^{+}e^{-}\mu^{+}\mu^{-}, and events with J/ψμ+μJ/\psi\to\mu^{+}\mu^{-} decays. The rates of misidentifying charged hadrons as leptons are corrected using samples of KS0π+πK_{S}^{0}\to\pi^{+}\pi^{-}, D+D0π+D^{*+}\to D^{0}\pi^{+}, and e+eτ+τe^{+}e^{-}\to\tau^{+}\tau^{-}. The efficiency for identifying slow pions from D+D0π+D^{*+}\to D^{0}\pi^{+} decays is corrected using studies of B¯0D+π\overline{B}{}^{0}\to D^{*+}\pi^{-}. All data and simulated events are reconstructed and analyzed with the open-source basf2 framework [42].

IV Tag and Signal-Side Reconstruction

To select events likely to contain Υ(4S)B0B¯0\Upsilon(4S)\to B^{0}\overline{B}{}^{0} decays, we require at least three tracks and three ECL clusters in the event. Tracks must have transverse momenta greater than 0.10.1 GeV and originate within |d0|<0.5|d_{0}|<0.5 cm and |z0|<2.0|z_{0}|<2.0 cm. Here, |d0||d_{0}| and |z0||z_{0}| denote the distance of closest approach between the nominal interaction point (IP) and the track in the plane perpendicular to and along the beam axis, respectively. At this stage, all tracks are assigned a pion mass hypothesis. We reconstruct ECL clusters with energy deposits above 0.10.1 GeV that are not associated with any track. Finally, the sum of the selected track and cluster energies must exceed 44 GeV.

We reconstruct BtagB_{\mathrm{tag}} candidates using the Full Event Interpretation (FEI) algorithm [26]. The algorithm constructs BtagB_{\mathrm{tag}} candidates from tracks and clusters, using multivariate classifiers and by using a hierarchical approach. The algorithm is trained to identify semileptonic decays and we use it to reconstruct B0DνB^{0}\to D\ell\nu and B0DνB^{0}\to D^{*}\ell\nu decay candidates, where the DD and DD^{*} undergo subsequent hadronic decays. A complete list of decay modes and selection criteria is given in Ref. [43]. Each BtagB_{\mathrm{tag}} candidate is assigned a confidence score by the algorithm, ranging from zero to one. Candidates with a confidence score above 0.10.1 are selected. To suppress signal-side semitauonic decays in the BtagB_{\mathrm{tag}} candidates, the lepton momentum in the center-of-mass (c.m.) frame must exceed 11 GeV. The cosine of the angle between the BB meson’s momentum and its visible decay products in the c.m. frame is defined as

cosθBY=2EbeamEYmB2mY22|p|B|p|Y,\displaystyle\cos\theta_{BY}=\frac{2E_{\mathrm{beam}}E_{\mathrm{Y}}-m^{2}_{B}-m^{2}_{\mathrm{Y}}}{2\left|\vec{p}{}_{B}\right|\left|\vec{p}{}_{\mathrm{Y}}\right|}\,, (2)

where EbeamE_{\mathrm{beam}} is the beam energy, mBm_{B} is the BB meson mass, and |p|B|\vec{p}{}_{B}| is its momentum, computed from mBm_{B} and EbeamE_{\mathrm{beam}}. Here Y=D()Y=D^{(*)}\ell represents the system of visible decay products. For correctly reconstructed semileptonic BB decays with a single undetected neutrino, cosθBY\cos\theta_{BY} lies within [1,1][-1,1], but resolution effects and final-state radiation shift it beyond this range. Semitauonic decays with multiple missing neutrinos have on average large negative values of cosθBY\cos\theta_{BY}. All BtagB_{\mathrm{tag}} candidates are required to have cosθBY\cos\theta_{BY} in the range [1.75,1.1][-1.75,1.1], reducing the fraction of semitauonic decays among selected candidates to below 0.4%0.4\%.

Background from qq¯q\bar{q} production is suppressed using Fox-Wolfram moments [44], which are constructed from a superposition of spherical harmonics using tracks and clusters. The tracks used in the calculation of Fox–Wolfram moments must lie within the CDC acceptance region, have transverse momenta above 0.10.1 GeV, and satisfy |z0|<3.0|z_{0}|<3.0 cm and |d0|<0.5|d_{0}|<0.5 cm. The less stringent |z0||z_{0}| requirement enhances discrimination against qq¯q\bar{q} backgrounds by including tracks with larger longitudinal displacements, which are more characteristic of signal decays and improve event shape information. We apply a cut on the ratio of the second-order to the zeroth-order Fox–Wolfram moments, with the second-order moment quantifying deviations of the energy flow from isotropy and the zeroth-order moment reflecting the event’s spherical geometry. Higher ratios indicate a more collimated structure typical of qq¯q\bar{q} events. Therefore, we require this ratio to be less than 0.4 to reduce the qq¯q\bar{q} background.

On average, approximately 2.02 BtagB_{\mathrm{tag}} candidates per event are reconstructed in the events that passed the selection criteria. From these, we select the candidate with the highest classifier value.

We reconstruct BsigB_{\mathrm{sig}} candidates in two final states: D+D^{+}\ell^{-} and D+D^{*\,+}\ell^{-} candidates are formed from tracks and clusters not associated with the BtagB_{\mathrm{tag}} candidate. Exactly one charged lepton candidate is required. The signal-side lepton is required to have a charge opposite to the BtagB_{\mathrm{tag}} lepton and is identified using a likelihood-based score that incorporates information from several subdetectors. Electron identification relies on information from the ECL, CDC, TOP, and ARICH, with the most important discriminant being the ratio of reconstructed ECL energy to the estimated track momentum, which is expected to be close to unity for electrons. Electron candidates must have momenta above 0.20.2 GeV, with a loose LID score selection. We correct the electron energy for bremsstrahlung losses by adding back ECL clusters that are near the tracks, following the methodology of Ref. [24]. Muons are identified by extrapolating tracks to the KLM, where the likelihood is primarily constructed from the longitudinal penetration depth and transverse scattering of the extrapolated track. Muon candidates must have momenta above 0.40.4 GeV, with a stringent LID score requirement. The efficiency for correctly identifying electrons is 98.7% (99.7%) in semitauonic (semileptonic) events, with a misidentification rate such that only 1% of pions or kaons pass this requirement. The efficiency for correctly identifying muons is 79.3% (86.3%) in semitauonic (semileptonic) events, with only 5% of pions or kaons satisfying the selection.

Neutral pion (π0\pi^{0}) candidates are reconstructed from pairs of ECL clusters not associated with any tracks with an invariant mass between 120120 and 145145 MeV. To suppress background, clusters must have energies above 0.080.08, 0.030.03, or 0.060.06 GeV in the forward, barrel, and backward regions, respectively. Each cluster must consist of multiple crystals, lie within the CDC angular acceptance, and have a measured time within 200200 ns of the expected event time. A multivariate classifier is constructed from electromagnetic cluster shape quantities and combined with the photon’s distance to the nearest track to distinguish real photons from clusters originating from hadronic showers. More details can be found in Ref. [23].

Neutral kaon (KS0K_{S}^{0}) candidates are reconstructed from pairs of charged particles, each of which is assigned a pion mass hypothesis, whose combined invariant mass lies between 450450 and 550550 MeV and which can be fit to a common vertex. The flight distance must be positive, the significance of the displacement between the point of closest approach and the IP must exceed 0.50.5, and the cosine of the angle between the momentum and vertex position vector must be greater than 0.80.8. The displacement significance, defined as the separation divided by its uncertainty, distinguishes true KS0K_{S}^{0} candidates from random combinations of tracks.

The decays of DD mesons are reconstructed in modes with large branching fractions and high purities. For the D+D^{+}\ell^{-} final state, we include D+Kπ+π+D^{+}\to K^{-}\pi^{+}\pi^{+}, KS0π+π0K^{0}_{S}\pi^{+}\pi^{0}, KS0π+π+πK^{0}_{S}\pi^{+}\pi^{+}\pi^{-}, KS0π+K^{0}_{S}\pi^{+}, KK+π+K^{-}K^{+}\pi^{+}, and KS0K+K^{0}_{S}K^{+}. For the D+D^{*+}\ell^{-} final state, where only the D+D0π+D^{*+}\to D^{0}\pi^{+} decay is used, we include D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0}, Kπ+π+πK^{-}\pi^{+}\pi^{+}\pi^{-}, KS0K+KK^{0}_{S}K^{+}K^{-}, K+KK^{+}K^{-}, Kπ+K^{-}\pi^{+}, KS0π+πK^{0}_{S}\pi^{+}\pi^{-}, and ππ+\pi^{-}\pi^{+}. All DD candidates must have a reconstructed invariant mass within 2.5σ2.5\sigma of the nominal DD mass [41], where σ\sigma refers to the resolution of the mass peak.

For the reconstruction of D+D^{*+} candidates, each D0D^{0} candidate is combined with a single charged track, assumed to be a pion. Candidates are required to have a mass difference Δm=m(D+)m(D0)\Delta m=m(D^{*+})-m(D^{0}) between 130 and 160 MeV, corresponding to 2.8 times the Δm\Delta m resolution. An additional vertex fit is performed on each D+D^{*+} candidate to update its momentum. Using MC simulation, we estimate that for true D+D^{*+} candidates, the slow pion is correctly identified in 71% of cases.

The construction of BsigB_{\mathrm{sig}} candidates is achieved by combining D()+D^{(*)+} and \ell^{-} candidates. The requirement 15<cosθBY<1.1-15<\cos\theta_{BY}<1.1 selects semitauonic and semileptonic final states, with approximately 5% of semitauonic signal events falling outside this range on the negative end.

Finally, BtagB_{\mathrm{tag}} and BsigB_{\mathrm{sig}} candidates are combined to form Υ(4S)\Upsilon(4S) candidates, requiring no additional charged tracks in the event. We demand that BtagB_{\mathrm{tag}} and BsigB_{\mathrm{sig}} are of opposite flavor and reject events in which one BB mixed, as such events possess lower purity. On average, fewer than 1.081.08 Υ(4S)\Upsilon(4S) candidates remain per event after applying the selection criteria, and we select a single candidate per event based on the highest signal-side D()+D^{(*)+} vertex fit pp-value. The unassigned energy in the calorimeter of the selected Υ(4S)\Upsilon(4S) candidate, EextraE_{\mathrm{extra}}, is calculated by summing clusters not associated with any particles used in the reconstruction. Two multivariate algorithms, described in Ref. [45] and based on the FastBDT classifier [46], remove contributions from beam background and hadronic split-offs, by utilizing features based on timing, energy spread, scintillation pulse shape, and cluster localization in the ECL. Clusters added as bremsstrahlung corrections to tracks are excluded. From correctly reconstructed events we expect values of EextraE_{\mathrm{extra}} near zero, while background events typically exhibit higher values. We only retain events with Eextra<1.2E_{\mathrm{extra}}<1.2 GeV.

Appendix A provides more details on the differences of the signal and tag-side selection and reconstruction.

V Multivariate Classification

Signal extraction is performed using a multiclass classification algorithm that differentiates semitauonic signal, semileptonic signal, and background events. The model employs gradient-boosted decision trees (BDTs), where each tree corrects the errors of the previous ones to improve classification. Further details can be found in Ref. [47].

The BDT is trained on five input variables. The most discriminating variable is cosθBY\cos\theta_{BY} of the BsigB_{\mathrm{sig}} candidate, followed by the unassigned energy in the calorimeter, EextraE_{\mathrm{extra}}. The third most important variable, cos2ΦB\cos^{2}\Phi_{B}, is defined as

cos2ΦB=cos2θBYsig+cos2θBYtag+2cosθBYsigcosθBYtagcosγsin2γ.\displaystyle\cos^{2}\Phi_{B}=\frac{\cos^{2}\theta_{BY}^{\mathrm{sig}}+\cos^{2}\theta_{BY}^{\mathrm{tag}}+2\cos\theta_{BY}^{\mathrm{sig}}\cos\theta_{BY}^{\mathrm{tag}}\cos\gamma}{\sin^{2}\gamma}\,. (3)

It combines cosθBY\cos\theta_{BY} from both the BsigB_{\mathrm{sig}} and BtagB_{\mathrm{tag}} candidates with the angle γ\gamma between their YY momenta. For correctly reconstructed semileptonic BsigB_{\mathrm{sig}} and BtagB_{\mathrm{tag}} candidates, each with a single missing neutrino, cos2ΦB\cos^{2}\Phi_{B} is expected to take values between zero and one. Events with multiple missing neutrinos, such as semitauonic decays or misreconstructed events, tend to have larger values. The fourth and fifth most important input variables are the center-of-mass momenta of the DD (pDp_{D}^{*}) and lepton (pp_{\ell}^{*}) candidates, respectively. These variables help distinguish semitauonic, semileptonic, and background events based on the different phase space available in each case. Figure 1 shows the five input variables for DD and DD^{*} candidates with electrons and muons combined. A good separation of all three event types can be obtained between semileptonic and semitauonic signal decays in cosθBY\cos\theta_{BY}, cos2ΦB\cos^{2}\Phi_{B}, pp_{\ell}^{*}, and pDp_{D}^{*}, whereas EextraE_{\mathrm{extra}} is very powerful at separating semileptonic and semitauonic signal from other semileptonic processes or backgrounds. The three resulting classification scores are denoted as zτz_{\tau}, zz_{\ell}, and zbkgz_{\mathrm{bkg}} for semitauonic, semileptonic, and background events, respectively.

Refer to caption
Refer to caption

Refer to captionRefer to caption
Refer to captionRefer to caption
Refer to caption

Figure 1: The five input variables for the multiclassification BDT are shown for electrons and muons, and the D+D^{+}\ell and D+D^{*+}\ell categories combined.

VI Fitting Procedure

We extract the signal using a binned two-dimensional log-likelihood fit to the variables zτz_{\tau} and zdiff=zzbkgz_{\mathrm{diff}}=z_{\ell}-z_{\mathrm{bkg}}. We consider four categories of events: D+eD^{+}e^{-}, D+eD^{*+}e^{-}, D+μD^{+}\mu^{-}, and D+μD^{*+}\mu^{-} candidates. The likelihood is implemented using the pyhf package [48, 49]. The total likelihood function has the form

=cc×l𝒢l,\mathcal{L}=\prod_{c}\,\mathcal{L}_{c}\,\times\prod_{l}\,\mathcal{G}_{l}\,, (4)

with the individual category likelihoods c\mathcal{L}_{c} and nuisance-parameter (NP) constraints 𝒢l\mathcal{G}_{l}. The product in Eq. 4 runs over all categories cc and independent uncertainty sources ll, respectively. The role of the NP constraints is detailed in Section VII. Each category likelihood c\mathcal{L}_{c} is defined as the product of individual Poisson distributions 𝒫\mathcal{P},

c=ibins𝒫(ni;νi)\displaystyle\mathcal{L}_{c}=\prod_{i}^{\rm bins}\,\mathcal{P}\left(n_{i};\nu_{i}\right)\, (5)

with nin_{i} denoting the number of observed data events and νi\nu_{i} the total number of expected events in a given bin ii. The number of expected events in a given bin, νi\nu_{i}, is estimated using simulated events. It is given by

νi=kprocessesηkfik,\nu_{i}=\sum_{k}^{\rm processes}\,\eta_{k}\,f_{ik}\,, (6)

where ηk\eta_{k} is the total number of events from a given process kk with a fraction fikf_{ik} of such events being reconstructed in the bin ii. The values of (𝒟+)\cal{R}(D^{+}) and (𝒟+)\cal{R}(D^{*+}) and the sum of semileptonic signal decays ηD()\eta_{D^{(*)}\ell} from electrons and muons are used to determine the number of semitauonic decays ηD()τ\eta_{D^{(*)}\tau} via

ηD()τ=12(𝒟()+)×η𝒟()×(ϵ𝒟()τϵ𝒟()),\displaystyle\eta_{D^{(*)}\tau}=\frac{1}{2}\cal{R}(D^{(*)+})\times\eta_{D^{(*)}\ell}\times\left(\frac{\epsilon_{D^{(*)}\tau}}{\epsilon_{D^{(*)}\ell}}\right)\,, (7)

where ϵD()τ\epsilon_{D^{(*)}\tau} and ϵD()\epsilon_{D^{(*)}\ell} denote the efficiencies of semitauonic and semileptonic signal decays from electrons and muons.

The factor of 12\frac{1}{2} in Eq. 6 accounts for the definition of the semileptonic signal, which includes both electron and muon final states. We implement a non-uniform binning scheme in both dimensions, increasing granularity in regions where the classifier is most sensitive to semitauonic events and B¯Dν¯\overline{B}{}\to D^{**}\ell\bar{\nu}_{\ell} as well as other semileptonic gap backgrounds. In contrast, the region dominated by semileptonic B¯D()ν¯\overline{B}{}\to D^{(*)}\ell\bar{\nu}_{\ell} events is binned more coarsely, as these events are readily identifiable. Figure 2 shows the binning structure for semitauonic and semileptonic events, for the background category from B¯Dν¯\overline{B}{}\to D^{**}\ell\bar{\nu}_{\ell} and gap modes, and for other backgrounds.

Refer to caption
Figure 2: The densities of the four fit categories in the zdiff=zzbkgz_{\mathrm{diff}}=z_{\ell}-z_{\mathrm{bkg}} vs. zτz_{\tau} plane and the chosen binning are shown. The four components, shown from top left to bottom right, are semitauonic, semileptonic, DD^{**} and gap-mode backgrounds, and other backgrounds. The binned histogram shows the density of data events.

The likelihood (Eq.4) is numerically maximized to fit the values of the different components, ηk\eta_{k}, using the observed events. This maximization is performed with the iMinuit package[50]. The ten parameters of interest we determine are:

  • (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) (2 parameters, shared between ee and μ\mu channels);

  • Normalizations ηD()\eta_{D^{(*)}\ell} of B¯0D+ν¯\overline{B}{}^{0}\to D^{+}\ell^{-}\bar{\nu}_{\ell} and B¯0D+ν¯\overline{B}{}^{0}\to D^{*+}\ell^{-}\bar{\nu}_{\ell} events (2 parameters, shared between ee and μ\mu channels);

  • Background from BDν¯B\to D^{**}\ell\bar{\nu}_{\ell} and semileptonic gap events (2 parameters; shared between ee and μ\mu channels);

  • Number of other BB¯B\overline{B}{} or continuum background events (4 parameters; one for each fit category).

We also test LFU between electrons and muons for the semileptonic signal modes. For this we modify the fit setup by introducing four normalization parameters for each of the four decays of interest and modify Eq. 7 accordingly.

To validate the fit procedure, we generated ensembles of pseudoexperiments for different input (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) values. Fits to these ensembles show no biases in central values and no under- or overcoverage of determined confidence intervals. Assuming SM values for (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}), we expect significances of 3.9 and 7.0 standard deviations, respectively.

VII Systematic Uncertainties

Several systematic uncertainties affect the measured ratios of (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}), and Table 1 provides a summary. The effect of systematic uncertainties is directly incorporated into the likelihood function. We distinguish between additive and multiplicative uncertainties: Additive uncertainties affect the signal and background template shapes, whereas multiplicative uncertainties affect efficiencies or branching fractions of semitauonic and semileptonic signal events. A vector of NPs, 𝜽\bm{\theta}, is introduced and each NP is constrained in the likelihood Eq. 4 using a standard normal distribution 𝒢l=𝒢(θl)\mathcal{G}_{l}=\mathcal{G}(\theta_{l}) with ll denoting an independent uncertainty source or if applicable Poisson constraints.

A brief summary of each significant uncertainty source follows, ordered by their importance:

The dominant uncertainty arises due to the finite size of the simulated data samples and is estimated using the “Barlow-Beeston Lite” method [49], introducing Poisson constraints to correctly treat sparsely populated bins.

The next largest uncertainty stems from the limited knowledge on the composition and modeling of the semileptonic gap processes. To account for the former, we assign a 100% uncertainty to their branching fractions. The latter is addressed by varying the heavy-quark-symmetry-based form factors independently for each assumed gap process, using the uncertainties and correlations provided in Refs. [39, 40] for the broad states. Due to the larger contamination, their impact is more pronounced in the DD channel than in the DD^{*} channel, translating into a larger systematic uncertainty for (D+)\mathcal{R}(D^{+}).

In contrast, the branching fractions and modeling of resonant B¯Dν¯\overline{B}{}\to D^{**}\ell\bar{\nu}_{\ell} decays are better constrained experimentally [51] and we vary the form factors of the broad and narrow states using the uncertainties and correlations provided in Refs. [39, 40].

Lepton identification impacts the precision of (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) due to the limited size and systematic uncertainties of the calibration samples used to correct discrepancies between data and Monte Carlo simulations. These effects influence both correctly identified leptons and misidentified leptons (“fakes”). The contribution of misidentified background events is larger in the signal-enriched regions of the D(e/μ)D(e/\mu) channels compared to the D(e/μ)D^{*}(e/\mu) channels, resulting in a higher uncertainty in (D+)\mathcal{R}(D^{+}).

We assign a track reconstruction efficiency uncertainty of 0.3% per track for kaon, pion, and lepton tracks, reflecting the imperfect knowledge of the track-reconstruction efficiency. This uncertainty is estimated using a control sample of e+eτ+τe^{+}e^{-}\to\tau^{+}\tau^{-} events and is assumed to be fully correlated across all tracks. The slow-pion efficiency for momenta less than 0.2 GeV is corrected relative to the tracking efficiency at momenta larger than 0.2 GeV in the laboratory frame. We study B¯0D+π\overline{B}{}^{0}\to D^{*+}\pi^{-} decays to determine corrections for three momentum bins spanning [0.05,0.12,0.16,0.20][0.05,0.12,0.16,0.20] GeV. The associated statistical and systematic uncertainties of the correction weights affect the (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) and are evaluated using variations of the correction weights, taking into account their correlations.

A systematic uncertainty also arises from the modeling of the BDT input variables. The most significant mis-modeling is observed in the negative region of the cosθBY\cos\theta_{BY} distribution of the BsigB_{\mathrm{sig}} candidate. To estimate the impact of this mis-modeling, MC samples are reweighted to data, with event weights derived from a linear spline fit to the data-to-MC ratio as a function of cosθBY\cos\theta_{BY}. This reweighting is done separately for each of the four categories, yielding distinct spline fits. The event weights are then used to construct a fit, with each template normalized to the nominal fit event count to isolate shape effects. Two approaches were investigated: first, reweighting data while fitting with nominal templates, and second, reweighting the fit templates while fitting to nominal data. We use the larger shift to assess the uncertainty.

The uncertainty on the form factors of semitauonic and semileptonic signal are evaluated by using the eigenvariations provided in Ref. [6]. In addition, we assign the difference in central value between the parametrization of Ref. [6] and Refs. [52, 53] for semileptonic signal and Ref. [54] for semitauonic signal events, using the information from Refs. [55, 56].

Finally, we assign a 10% uncertainty to the fraction of continuum events in the background, based on the observed difference in efficiency between off-resonance data and the expected continuum contribution.

Table 1: Systematic uncertainties on (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) ranked by the magnitude of the uncertainty on (D+)\mathcal{R}(D^{+}). The percentage values in brackets indicate the relative uncertainty.
Systematic Uncertainty Δ(D+)\Delta\mathcal{R}(D^{+}) Δ(D+)\Delta\mathcal{R}(D^{*+})
Additive
MC sample size 0.033 (8.0%) 0.014 (4.7%)
Gap \cal B 0.027 (6.4%) 0.001 (0.1%)
LID efficiency (μ\mu) 0.022 (5.1%) 0.001 (0.1%)
Fake rates (ee) 0.012 (2.9%) 0.003 (0.9%)
π±\pi^{\pm} from DDπD^{*}\to D\pi 0.003 (0.7%) 0.001 (0.1%)
Continuum fraction 0.002 (0.6%) 0.001 (0.2%)
B¯D()ν¯\overline{B}{}\to D^{(*)}\ell\bar{\nu}_{\ell} / τν¯τ\tau\bar{\nu}_{\tau} FFs 0.002 (0.5%) 0.002 (0.7%)
Gap FFs 0.002 (0.5%) 0.001 (0.2%)
(B¯Dν¯)\mathcal{B}(\overline{B}{}\to D^{**}\ell\bar{\nu}_{\ell}) 0.002 (0.5%) 0.001 (0.1%)
B¯Dν¯\overline{B}{}\to D^{**}\ell\bar{\nu}_{\ell} FFs 0.001 (0.3%) 0.001 (0.2%)
BDT modeling 0.001 (0.3%) 0.001 (0.2%)
LID efficiency (ee) 0.001 (0.1%) 0.001 (0.2%)
Fake rates (μ\mu) 0.001 (0.1%) 0.001 (0.1%)
Total Additive Uncertainty 0.050 (12%) 0.015 (4.8%)
Multiplicative
B¯D()ν¯\overline{B}{}\to D^{(*)}\ell\bar{\nu}_{\ell} / τν¯τ\tau\bar{\nu}_{\tau} FFs 0.009 (2.1%) 0.011 (3.5%)
MC sample size 0.007 (1.7%) 0.004 (1.2%)
LID efficiency (ee) 0.001 (0.2%) 0.001 (0.2%)
(τν¯ντ)\mathcal{B}(\tau^{-}\to\ell^{-}\overline{\nu}_{\ell}\nu_{\tau}) 0.001 (0.2%) 0.001 (0.2%)
LID efficiency (μ\mu) 0.001 (0.1%) 0.001 (0.1%)
Tracking efficiency 0.001 (0.1%) 0.001 (0.1%)
π±\pi^{\pm} from DDπD^{*}\to D\pi –     (–) 0.001 (0.2%)
Total Multiplicative Uncertainty 0.012 (2.8%) 0.011 (3.7%)
Total Syst. Uncertainty 0.051 (12%) 0.018 (6.2%)
Total Stat. Uncertainty 0.074 (18%) 0.034 (11%)
Total Uncertainty 0.090 (22%) 0.039 (13%)

VIII Results

VIII.1 (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{+*})

Refer to caption
Refer to caption
Refer to caption

Refer to caption
Refer to captionRefer to caption

Figure 3: The fitted classifier distributions for the D+eD^{+}e^{-}, D+μD^{+}\mu^{-}, D+eD^{*+}e^{-}, and D+μD^{*+}\mu^{-} categories are shown. The hatched regions of the histograms correspond to the systematic uncertainties. The black lines demarcate the first two bins from the remaining bins, which contain significantly fewer events, and are thus displayed with two different yy-axis scales on the left and right sides.

Figure 3 shows the fitted classifier bins for the D()+eD^{(*)+}e^{-} and D()+μD^{(*)+}\mu^{-} categories. We measure

(D+)=0.418±0.074(stat)±0.051(syst),\displaystyle\mbox{$\mathcal{R}(D^{+})=0.418\pm 0.074~({\mathrm{stat}})\pm 0.051~({\mathrm{syst}})$}\,, (8)
(D+)=0.306±0.034(stat)±0.018(syst),\displaystyle\mbox{$\mathcal{R}(D^{*+})=0.306\pm 0.034~({\mathrm{stat}})\pm 0.018~({\mathrm{syst}})$}\,, (9)

with a correlation of ρ=0.24\rho=-0.24. These values are compatible with the SM predictions of (D)=0.296±0.004\mathcal{R}(D)=0.296\pm 0.004 and (D)=0.254±0.005\mathcal{R}(D^{*})=0.254\pm 0.005 [2, 3, 4, 5, 6, 7, 8, 9, 10] within 1.7 standard deviations. The p-value of the fit is 8.3% and evaluated using the saturated likelihood method [57]. Figures 45 show the distributions of EextraE_{\mathrm{extra}} and pp_{\ell}^{*} for the signal enriched bins of the two-dimensional classifier with the post-fit scaling applied. More details can be found in Appendix B.

Refer to caption

Refer to caption

Figure 4: Distributions of the signal enriched bins (5,6,10–20) for EextraE_{\mathrm{extra}} with the results of the fit superimposed.
Refer to caption

Refer to caption

Figure 5: Distributions of the signal enriched bins (5,6,10–20) for pp_{\ell}^{*} with the results of the fit superimposed.

VIII.2 LFU tests of electrons versus muons

For the ratio of the semileptonic signal branching fractions of electrons to muons we find,

(De/μ+)\displaystyle\mathcal{R}(D^{+}_{e/\mu}) =1.07±0.05(stat)±0.02(syst),\displaystyle=1.07\pm 0.05\text{(stat)}\pm 0.02\text{(syst)}\,, (10)
(De/μ+)\displaystyle\mathcal{R}(D^{+*}_{e/\mu}) =1.08±0.04(stat)±0.02(syst),\displaystyle=1.08\pm 0.04\text{(stat)}\pm 0.02\text{(syst)}\,, (11)

consistent with the expectation of LFU within 1.2 and 1.6 standard deviations, respectively.

VIII.3 Consistency Checks

Refer to caption
Figure 6: Summary of the various consisitency checks. The central values of each sample split fit (blue and orange error bars), along with the sizes of the statistical and total uncertainties are shown (inner and outer ticks). The nominal results Eqs. 8 and 9 are also shown (dashed black line) with statistical and total uncertainty (inner and outer gray line). The left column shows (D)\mathcal{R}(D), and the right column (D)\mathcal{R}(D^{*}).

To assess the stability of the result, we determine (D()+)\mathcal{R}(D^{(*)+}) for various subsamples, fitting them simultaneously to account for correlations in common systematic uncertainties. The tests are summarized in Figure 6. We consider several sample divisions: First, we split by the lepton flavor of the semitauonic and semileptonic signal, fitting (D())\mathcal{R}(D^{(*)}) separately in the reconstructed electron and muon channels. We also decouple the D+D^{+} and D+D^{*+} fit channels, allowing for an independent extraction of (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) in the D+D^{+} sample, while fitting only (D+)\mathcal{R}(D^{*+}) in the D+D^{*+} sample.

The limited number of DD^{*} feed-down signal events results in a large anti-correlation. The obtained (D+)\mathcal{R}(D^{+}) ((D+)\mathcal{R}(D^{+*})) values in the split datasets are consistent with the nominal result with p-values ranging from 10%–78% (20%–88%).

Additional cross-checks involve splitting the data by the charge of the signal lepton and by its polar angle, where the latter is divided at cosθ=0.22\cos\theta_{\ell}=0.22 to approximately halve the dataset. We also consider a separation based on the number of reconstructed tracks on the signal side (excluding the lepton). Here, we choose a threshold of four tracks to ensure a balanced division of the dataset.

Beyond that, the dataset is split according to different DD meson reconstruction modes, selecting alternating modes based on their branching fractions. Furthermore, we divide the dataset based on the decay modes of the tag-side B0B^{0}: We partition the dataset by choosing only tag-side semileptonic decays with electrons and with muons, respectively. Second, we further categorize events by distinguishing between tag-side decays with DD mesons and those with DD^{*} mesons. We also test the stability using a more stringent LID selection and find good agreement between the results.

The ratio of branching fractions of B¯0D+ν¯\overline{B}{}^{0}\to D^{+}\ell^{-}\overline{\nu}_{\ell} over B¯0D+ν¯\overline{B}{}^{0}\to D^{*+}\ell^{-}\overline{\nu}_{\ell} is 0.40±0.010.40\pm 0.01, which is consistent with the prediction from Ref. [6] of 0.417±0.0120.417\pm 0.012 within 1.1 standard deviations and the world average of Ref. [25] of 0.431±0.0140.431\pm 0.014 within 1.8 standard deviations.

IX Conclusions

We report measurements of the ratios (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{*+}) and test the predictions of lepton-flavor-universality of the SM. For this we analyzed a 365fb1365\,\mathrm{fb}^{-1}  data sample, recorded by the Belle II experiment from 2019–2022. Signal events are selected by first reconstructing the companion BB meson in semileptonic modes using a hierarchical approach. The signal side is analyzed using a multi-class multivariate approach, combining the discriminating power of five variables. The selected events are analyzed using a likelihood fit and we determine

(D+)=0.418±0.074(stat)±0.051(syst),\displaystyle\mbox{$\mathcal{R}(D^{+})=0.418\pm 0.074~({\mathrm{stat}})\pm 0.051~({\mathrm{syst}})$}\,,
(D+)=0.306±0.034(stat)±0.018(syst),\displaystyle\mbox{$\mathcal{R}(D^{*+})=0.306\pm 0.034~({\mathrm{stat}})\pm 0.018~({\mathrm{syst}})$}\,,

consistent with the SM expectation within 1.7 standard deviations. Figure 7 shows the 2D confidence intervals (CI) and compares this result with the SM expectation and the Belle II measurements Refs. [23, 24], which analyzed an orthogonal data set. Further we present the world average from Ref. [25] and find our results to be consistent with it within 0.6 standard deviations. The uncertainties on the measurements of the ratios are dominated by statistical uncertainties and the largest systematic uncertainty is the limited simulated sample size used to determine efficiencies, train the multi-class classification algorithm, and determine template shapes.

Refer to caption
Figure 7: The measured (D+)\mathcal{R}(D^{+}) and (D+)\mathcal{R}(D^{+*}) ratios (red marker) with their corresponding 68.3% CI (red solid contour) as well as 39.3% CI (red dashed contour), are compared to the Standard Model prediction (black marker) and the world average from Ref. [25] (green ellipse). Also displayed are the Belle II (D)\mathcal{R}(D^{*}) measurement using hadronic modes to reconstruct BtagB_{\mathrm{tag}} candidates (dark violet band) and the constraint on (D)\mathcal{R}(D) and (D)\mathcal{R}(D^{*}) from the inclusive (Xτ/){\cal R}(X_{\tau/\ell}) analysis (blue band). The grey band indicates the SM expectation from (Xτ/)\mathcal{R}(X_{\tau/\ell}), obtained by subtracting the non-B¯D()(/τ)ν¯(/τ)\overline{B}{}\to D^{(*)}(\ell^{-}/\tau^{-})\,\overline{\nu}_{(\ell/\tau)} components [24].
Acknowledgements.
This work, based on data collected using the Belle II detector, which was built and commissioned prior to March 2019, was supported by Higher Education and Science Committee of the Republic of Armenia Grant No. 23LCG-1C011; Australian Research Council and Research Grants No. DP200101792, No. DP210101900, No. DP210102831, No. DE220100462, No. LE210100098, and No. LE230100085; Austrian Federal Ministry of Education, Science and Research, Austrian Science Fund (FWF) Grants DOI: 10.55776/P34529, DOI: 10.55776/J4731, DOI: 10.55776/J4625, DOI: 10.55776/M3153, and DOI: 10.55776/PAT1836324, and Horizon 2020 ERC Starting Grant No. 947006 “InterLeptons”; Natural Sciences and Engineering Research Council of Canada, Compute Canada and CANARIE; National Key R&D Program of China under Contract No. 2024YFA1610503, and No. 2024YFA1610504 National Natural Science Foundation of China and Research Grants No. 11575017, No. 11761141009, No. 11705209, No. 11975076, No. 12135005, No. 12150004, No. 12161141008, No. 12475093, and No. 12175041, and Shandong Provincial Natural Science Foundation Project ZR2022JQ02; the Czech Science Foundation Grant No. 22-18469S and Charles University Grant Agency project No. 246122; European Research Council, Seventh Framework PIEF-GA-2013-622527, Horizon 2020 ERC-Advanced Grants No. 267104 and No. 884719, Horizon 2020 ERC-Consolidator Grant No. 819127, Horizon 2020 Marie Sklodowska-Curie Grant Agreement No. 700525 “NIOBE” and No. 101026516, and Horizon 2020 Marie Sklodowska-Curie RISE project JENNIFER2 Grant Agreement No. 822070 (European grants); L’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) du CNRS and L’Agence Nationale de la Recherche (ANR) under Grant No. ANR-21-CE31-0009 (France); BMBF, DFG, HGF, MPG, and AvH Foundation (Germany); Department of Atomic Energy under Project Identification No. RTI 4002, Department of Science and Technology, and UPES SEED funding programs No. UPES/R&D-SEED-INFRA/17052023/01 and No. UPES/R&D-SOE/20062022/06 (India); Israel Science Foundation Grant No. 2476/17, U.S.-Israel Binational Science Foundation Grant No. 2016113, and Israel Ministry of Science Grant No. 3-16543; Istituto Nazionale di Fisica Nucleare and the Research Grants BELLE2, and the ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU; Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research Grants No. 16H03968, No. 16H03993, No. 16H06492, No. 16K05323, No. 17H01133, No. 17H05405, No. 18K03621, No. 18H03710, No. 18H05226, No. 19H00682, No. 20H05850, No. 20H05858, No. 22H00144, No. 22K14056, No. 22K21347, No. 23H05433, No. 26220706, and No. 26400255, and the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; National Research Foundation (NRF) of Korea Grants No. 2016R1-D1A1B-02012900, No. 2018R1-A6A1A-06024970, No. 2021R1-A6A1A-03043957, No. 2021R1-F1A-1060423, No. 2021R1-F1A-1064008, No. 2022R1-A2C-1003993, No. 2022R1-A2C-1092335, No. RS-2023-00208693, No. RS-2024-00354342 and No. RS-2022-00197659, Radiation Science Research Institute, Foreign Large-Size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center, the Korea Institute of Science and Technology Information (K24L2M1C4) and KREONET/GLORIAD; Universiti Malaya RU grant, Akademi Sains Malaysia, and Ministry of Education Malaysia; Frontiers of Science Program Contracts No. FOINS-296, No. CB-221329, No. CB-236394, No. CB-254409, and No. CB-180023, and SEP-CINVESTAV Research Grant No. 237 (Mexico); the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation and the HSE University Basic Research Program, Moscow; University of Tabuk Research Grants No. S-0256-1438 and No. S-0280-1439 (Saudi Arabia), and Researchers Supporting Project number (RSPD2025R873), King Saud University, Riyadh, Saudi Arabia; Slovenian Research Agency and Research Grants No. J1-9124 and No. P1-0135; Ikerbasque, Basque Foundation for Science, State Agency for Research of the Spanish Ministry of Science and Innovation through Grant No. PID2022-136510NB-C33, Spain, Agencia Estatal de Investigacion, Spain Grant No. RYC2020-029875-I and Generalitat Valenciana, Spain Grant No. CIDEGENT/2018/020; The Knut and Alice Wallenberg Foundation (Sweden), Contracts No. 2021.0174 and No. 2021.0299; National Science and Technology Council, and Ministry of Education (Taiwan); Thailand Center of Excellence in Physics; TUBITAK ULAKBIM (Turkey); National Research Foundation of Ukraine, Project No. 2020.02/0257, and Ministry of Education and Science of Ukraine; the U.S. National Science Foundation and Research Grants No. PHY-1913789 and No. PHY-2111604, and the U.S. Department of Energy and Research Awards No. DE-AC06-76RLO1830, No. DE-SC0007983, No. DE-SC0009824, No. DE-SC0009973, No. DE-SC0010007, No. DE-SC0010073, No. DE-SC0010118, No. DE-SC0010504, No. DE-SC0011784, No. DE-SC0012704, No. DE-SC0019230, No. DE-SC0021274, No. DE-SC0021616, No. DE-SC0022350, No. DE-SC0023470; and the Vietnam Academy of Science and Technology (VAST) under Grants No. NVCC.05.12/22-23 and No. DL0000.02/24-25. These acknowledgements are not to be interpreted as an endorsement of any statement made by any of our institutes, funding agencies, governments, or their representatives. We thank the SuperKEKB team for delivering high-luminosity collisions; the KEK cryogenics group for the efficient operation of the detector solenoid magnet and IBBelle on site; the KEK Computer Research Center for on-site computing support; the NII for SINET6 network support; and the raw-data centers hosted by BNL, DESY, GridKa, IN2P3, INFN, and the University of Victoria.

References

Appendix A Selections

Tables 2 and  3 summarize the differences in the tag-side and signal-side B0B^{0} reconstruction and the reconstructed DD decay modes. In the table, pp_{\ell} refers to the lepton momentum in the laboratory frame; LID refers to the likelihood-based variables used for lepton identification; EE denotes the energy of the ECL clusters of the photon (γ\gamma) candidate; cosθp,v\cos\theta_{\vec{p},\vec{v}} denotes the cosine of the angle between the momentum vector and the vector defined by the reconstructed vertex. In addition, mπ0m_{\pi^{0}}, mKS0m_{K_{S}^{0}}, mDm_{D}, and mDm_{D^{*}} are the invariant masses of the reconstructed neutral pion, KS0K_{S}^{0}, DD, and DD^{*} mesons, respectively, while mPDGm^{\mathrm{PDG}} refers to their masses determined in [41]. The parameter σ\sigma is the width of the DD mass peak as determined from a Gaussian fit and QQ represents the energy release in the particle decay. The classifier output from the tag-side reconstruction algorithm is denoted by 𝒫\mathcal{P}.

Table 4 lists the ratios of efficiencies of semitauonic and semileptonic events for the four categories.

Table 2: Comparison of the selection criteria for BsigB_{\mathrm{sig}} and BtagB_{\mathrm{tag}} reconstruction.
Selection 𝑩𝐭𝐚𝐠B_{\mathrm{tag}} 𝑩𝐬𝐢𝐠B_{\mathrm{sig}}
tracks except for π+\pi^{+} from D+D0π+D^{*+}\to D^{0}\pi^{+}:
|d0|<2|d_{0}|<2 cm, |z0|<4|z_{0}|<4 cm |d0|<0.5|d_{0}|<0.5 cm, |z0|<2.0|z_{0}|<2.0 cm
within CDC angular acceptance with 1\geq 1 hit
ee LID>0.5>0.5
p>1p_{\ell}^{*}>1 GeV p>0.2p_{\ell}>0.2 GeV
μ\mu LID>0.9>0.9
p>1p_{\ell}^{*}>1 GeV p>0.4p_{\ell}>0.4 GeV
γ\gamma forward: E>0.10E>0.10 GeV forward: E>0.08E>0.08 GeV
barrel: E>0.09E>0.09 GeV barrel: E>0.03E>0.03 GeV
backward: E>0.16E>0.16 GeV backward: E>0.06E>0.06 GeV
>1>1 crystal
within CDC angular acceptance
measured time within <200<200 ns of exp. event time
for π0\pi^{0} candidates:
optimized requirement based on the distance to the
nearest track and a shower-shape classifier
π0\pi^{0} 0.080.08 GeV <mπ0<0.18<m_{\pi^{0}}<0.18 GeV 0.120.12 GeV <mπ0<0.145<m_{\pi^{0}}<0.145 GeV
KS0K_{S}^{0} 0.40.4 GeV<mKS0<0.6<m_{K_{S}^{0}}<0.6 GeV 0.450.45 GeV <mKS0<0.55<m_{K_{S}^{0}}<0.55 GeV
flight distance >0>0
significance of distance >0.5>0.5
cosθp,v>0.8\cos\theta_{\vec{p},\vec{v}}>0.8
DD 1.71.7 GeV <mD<1.95<m_{D}<1.95 GeV mDPDG2.5σ<mD<mDPDG+2.5σm_{D}^{\mathrm{PDG}}-2.5\sigma<m_{D}<m_{D}^{\mathrm{PDG}}+2.5\sigma
with mD0PDG=(1.86484±0.00005)m_{D^{0}}^{\mathrm{PDG}}=(1.86484\pm 0.00005) GeV
and mD+PDG=(1.86966±0.00005)m_{D^{+}}^{\mathrm{PDG}}=(1.86966\pm 0.00005) GeV
σ(modes with π+)=0.0027\sigma(\text{modes with }\pi^{+})=0.0027 GeV
σ(modes with π0)=0.005\sigma(\text{modes with }\pi^{0})=0.005 GeV
DD^{*} 0<Q<0.30<Q<0.3 GeV 0.130.13 GeV <mD+mD0<0.16<m_{D^{*+}}-m_{D^{0}}<0.16 GeV
BB 1.75<cosθBY<1.11.75<\cos\theta_{BY}<1.1 15<cosθBY<1.1-15<\cos\theta_{BY}<1.1
𝒫>0.1\mathcal{P}>0.1
cand. with largest 𝒫\mathcal{P} cand. with largest pp-value from DD vertex fit
Table 3: Reconstructed DD modes used in the reconstruction of BtagB_{\mathrm{tag}} and BsigB_{\mathrm{sig}} candidates.
Decay mode tag side signal side
D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0} \checkmark \checkmark
D0Kπ+π+πD^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-} \checkmark \checkmark
D0KK+KS0D^{0}\to K^{-}K^{+}K_{S}^{0} \checkmark \checkmark
D0KK+D^{0}\to K^{-}K^{+} \checkmark \checkmark
D0Kπ+D^{0}\to K^{-}\pi^{+} \checkmark \checkmark
D0KS0π+πD^{0}\to K_{S}^{0}\pi^{+}\pi^{-} \checkmark \checkmark
D0ππ+D^{0}\to\pi^{-}\pi^{+} \checkmark \checkmark
D0Kπ+π0π0D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0} \checkmark -
D0Kπ+π+ππ0D^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0} \checkmark -
D0ππ+π0D^{0}\to\pi^{-}\pi^{+}\pi^{0} \checkmark -
D0πππ+π0D^{0}\to\pi^{-}\pi^{-}\pi^{+}\pi^{0} \checkmark -
D0ππ+π+πD^{0}\to\pi^{-}\pi^{+}\pi^{+}\pi^{-} \checkmark -
D0KS0π0D^{0}\to K_{S}^{0}\pi^{0} \checkmark -
D0KS0π+ππ0D^{0}\to K_{S}^{0}\pi^{+}\pi^{-}\pi^{0} \checkmark -
D0KK+π0D^{0}\to K^{-}K^{+}\pi^{0} \checkmark -
D+Kπ+π+D^{+}\to K^{-}\pi^{+}\pi^{+} \checkmark \checkmark
D+KS0π+π0D^{+}\to K^{0}_{S}\pi^{+}\pi^{0} \checkmark \checkmark
D+KS0π+π+πD^{+}\to K^{0}_{S}\pi^{+}\pi^{+}\pi^{-} \checkmark \checkmark
D+KS0π+D^{+}\to K^{0}_{S}\pi^{+} \checkmark \checkmark
D+KK+π+D^{+}\to K^{-}K^{+}\pi^{+} \checkmark \checkmark
D+KS0K+D^{+}\to K^{0}_{S}K^{+} - \checkmark
D+π+π0D^{+}\to\pi^{+}\pi^{0} \checkmark -
D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} \checkmark -
D+π+π+πD^{+}\to\pi^{+}\pi^{+}\pi^{-} \checkmark -
D+π+π+ππ0D^{+}\to\pi^{+}\pi^{+}\pi^{-}\pi^{0} \checkmark -
D+K+KS0KS0D^{+}\to K^{+}K_{S}^{0}K_{S}^{0} \checkmark -
D0KK+π+π0D^{0}\to K^{-}K^{+}\pi^{+}\pi^{0} \checkmark -
Table 4: Ratios of efficiencies between semitauonic and semileptonic signal. The uncertainties correspond to the systematic uncertainties.
Category D+eD^{+}e^{-} D+μD^{+}\mu^{-} D+eD^{*+}e^{-} D+μD^{*+}\mu^{-}
ϵD()τ/ϵD()\epsilon_{D^{(*)}\tau}/\epsilon_{D^{(*)}\ell} 0.190±0.0050.190\pm 0.005 0.142±0.0040.142\pm 0.004 0.185±0.0070.185\pm 0.007 0.185±0.0070.185\pm 0.007

Appendix B Fit Details

Figure 8 shows the leading 20 systematic uncertainties on (𝒟+)\cal{R}(D^{+}) and (𝒟+)\cal{R}(D^{*+}), excluding the dominant systematic uncertainty due to the limited MC sample size. If stated, the number (#) indicates the eigendirection of the uncertainty source. The uncertainty “Choice of FF model” parametrizes the impact of changing the semitauonic and semileptonic signal form factor parameterization, cf. Section VII. Within the FF uncertainties for the DD^{**} resonances, we distinguish between DbroadD_{\mathrm{broad}}^{*} resonances (D0(2400)D_{0}^{*}(2400) and D1(2430)D_{1}(2430)) and DnarrowD_{\mathrm{narrow}}^{*} resonances (D1(2420)D_{1}(2420) and D2(2460)D_{2}^{*}(2460)) as they are described by different parametrizations due to their varying decay widths.

The pull is defined as the difference of the post-fit value (θ^\widehat{\theta}) with respect to the nominal input value of the nuisance parameter (θ0\theta_{0}), and normalized with the post-fit uncertainty (Δθ\Delta\theta). The sizes of the error bars on the pulls correspond to the asymmetric confidence intervals obtained from the likelihood profile.

Also shown are the impacts of the relative uncertainties Δ(𝒟+)/(𝒟+)\Delta\cal{R}(D^{+})/\cal{R}(D^{+}) and Δ(𝒟+)/(𝒟+)\Delta\cal{R}(D^{*+})/\cal{R}(D^{*+}) on the determined ratios. We estimate the pre-fit impact by analyzing how variations in the NP affect the POI, independent of the other fitted parameters: In order to isolate the specific contribution of the NP, we construct an Asimov dataset in which the NP under investigation is maintained at its initial value, while all other parameters are set to their best-fit values obtained from the nominal fit. This dataset is then refitted, keeping all parameters except the respective POI (Δ(𝒟+)/(𝒟+)\Delta\cal{R}(D^{+})/\cal{R}(D^{+}) or Δ(𝒟+)/(𝒟+)\Delta\cal{R}(D^{*+})/\cal{R}(D^{*+})) fixed to their best-fit values, while shifting the NP to θ0±Δθ0\theta_{0}\pm\Delta\theta_{0}, where Δθ0\Delta\theta_{0} denotes its pre-fit uncertainty. The pre-fit impact is then quantified as the relative change in the POI compared to a reference POI value, determined in the same way with the NP set at its initial value.

The post-fit impact is defined as the relative deviation of the POI from its nominal value, considering only post-fit systematic variations. To evaluate this, the best-fit value of the NP from the nominal fit, θ^\widehat{\theta}, is used and varied within its estimated uncertainties, θ^±Δ±θ^\widehat{\theta}\pm\Delta_{\pm}\widehat{\theta}, where Δ±θ^\Delta_{\pm}\widehat{\theta} represents the asymmetric uncertainty obtained from the likelihood scan. In this case, only the NP under consideration is fixed, while all other parameters are allowed to vary freely during the fit to real data.

Table 5 lists the yields within each category as calculated from the fit parameters.

Refer to caption
Refer to caption
Figure 8: Nuisance parameter ranking for (D+)\mathcal{R}(D^{+}) (left) and (D+)\mathcal{R}(D^{*+}) (right) showing the 20 leading nuisance parameters with the largest impact on the respective fitted ratio.
Table 5: Determined yields and uncertainties for all four categories.
Sample D+eD^{+}e D+μD^{+}\mu D+eD^{*+}e D+μD^{*+}\mu
B¯0D+ν¯\overline{B}{}^{0}\to D^{+}\ell\bar{\nu}_{\ell} 2519 ±\pm 68 2233 ±\pm 61
B¯0D+ν¯\overline{B}{}^{0}\to D^{*+}\ell\bar{\nu}_{\ell} 2486 ±\pm 63 2323 ±\pm 58 2344 ±\pm 51 1961 ±\pm 44
B¯0D+τν¯τ\overline{B}{}^{0}\to D^{+}\tau\bar{\nu}_{\tau} 191 ±\pm 41 155 ±\pm 65
B¯0D+τν\overline{B}{}^{0}\to D^{*+}\tau\nu 106 ±\pm 14 84 ±\pm 11 155 ±\pm 19 111 ±\pm 14
B¯Dν¯/B¯Dgapν¯\overline{B}{}\to D^{**}\ell\overline{\nu}_{\ell}/\overline{B}\to D^{**}_{\mathrm{gap}}\ell\overline{\nu}_{\ell} 653 ±\pm 112 586 ±\pm 102 87 ±\pm 55 75 ±\pm 46
BB¯B\overline{B}{} and ContinuumBkg.\mathrm{Continuum\ Bkg.} 2177 ±\pm 145 1582 ±\pm 149 611 ±\pm 95 497 ±\pm 83
Data 8219 6854 3241 2621

Appendix C Post-fit Projections of BDT Input Variables

Figures 913 show the distributions of the input variables utilized in the multivariate algorithm used in the signal classification, arranged by their importance in the classifier training.

To evaluate the agreement between simulation and data, the fit templates are scaled to their best-fit values.

Refer to caption

Refer to caption

Figure 9: Distribution of cosθBY\cos\theta_{BY} with best-fit scaling, including all systematic uncertainties for the four fit categories: D+eD^{+}e^{-}, D+μD^{+}\mu^{-}, D+eD^{*+}e^{-} and D+μD^{*+}\mu^{-}.
Refer to caption

Refer to caption

Figure 10: Distribution of EextraE_{\mathrm{extra}} with best-fit scaling, including all systematic uncertainties for the four fit categories.
Refer to caption

Refer to caption

Figure 11: Distribution of cos2ΦB\cos^{2}\Phi_{B} with best-fit scaling, including all systematic uncertainties for the four fit categories. Note the use of non-uniform binning, including a large overflow bin, which accounts for the absence of significant structure in the region of high cos2ΦB\cos^{2}\Phi_{B}.
Refer to caption

Refer to caption

Figure 12: Distribution of pDp_{D}^{*} with best-fit scaling, including all systematic uncertainties for the four fit categories.
Refer to caption

Refer to caption

Figure 13: Distribution of pp_{\ell}^{*} with best-fit scaling, including all systematic uncertainties for the four fit categories.