This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\contribID

Arias_Paola

\confID

16884 \desyprocDESY-PROC-2017-02 \acronymPatras 2017

Testing a new WISP Model with Laboratory Experiments

Pedro Alvarez1, Paola Arias2, Carlos Maldonado2
1Departamento de Fisica, Universidad de Antofagasta, Aptdo 02800, Chile.
2Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile.
Abstract

We explore the phenomenological consequences of a model with axion-like particles and hidden photons mixing with photons. In this model, the hidden photon is directly coupled to the photon, while the axion coupling is induced by an external electromagnetic field. We consider vacuum effects on a polarised photon beam, like changes in the ellipticity and rotation angles.

1 Introduction

In this work we would like to go beyond the straightforward extension of the Standard Model, namely the one-missing-particle paradigm. On the one hand, seems timely, due to the extraordinary refinement in sensitivity of latest years of experiments looking for WISPs (Weakly Interactive Slim Particles). On the other hand, there are some proposals of more complex models with rich phenomenology, such as [1], where they consider a model with a hidden photon (HP) coupled to an axion-like field (ALP), and the kinetic mixing term. Also in [2] a model with axion-like particle + hidden photon was invoked to explain the 3.55 keV line in the spectra of galaxy clusters. More recently a similar model was considered [3], where the pseudo-scalar boson is the QCD axion, which is coupled to the hidden photon. We have chosen to follow the construct in [2], therefore the hidden photon is the mediator between visible and hidden sector. In this work we are interested in observables effects of this model, focusing on vacuum effects, like dichroism and birefringence.

2 The model and equations of motion

We consider the following effective Lagrangian:

=14fμνfμν14xμνxμν+12μϕμϕ+12sinχfμνxμν+14gϕxμνx~μνmϕ22ϕ2+mγ2cos2χ2xμxμ.\mathcal{L}=-\frac{1}{4}f_{\mu\nu}f^{\mu\nu}-\frac{1}{4}x_{\mu\nu}x^{\mu\nu}+\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi+\frac{1}{2}\sin\chi f_{\mu\nu}x^{\mu\nu}+\frac{1}{4}g\phi x_{\mu\nu}\tilde{x}^{\mu\nu}-\frac{m_{\phi}^{2}}{2}\phi^{2}+\frac{m^{2}_{\gamma^{\prime}}\cos^{2}\chi}{2}x_{\mu}x^{\mu}.

Here aμa_{\mu} is the photon field, (xμν)(x_{\mu\nu}) the HP field and ϕ\phi is the ALP. The HP is directly coupled to photons via the kinetic mixing term, parametrised by sinχ\sin\chi. As it is well known, defining Xμ=xμaμsinχX_{\mu}=x_{\mu}-a_{\mu}\sin\chi and Aμ=aμcosχA_{\mu}=a_{\mu}\cos\chi, removes the kinetic mixing, but at the price to inherit a coupling in the mass sector between photons and HPs, and also a term of the form gtan2χϕFμνF~μνg\tan^{2}\chi\phi F_{\mu\nu}\tilde{F}^{\mu\nu}, meaning an explicit coupling between photons and ALPs.

We start assuming a photon beam source of frequency ω\omega, propagating in zz direction, and the plane wave approximation, i.e, A(z,t)=eiωtA(z)\vec{A}(z,t)=e^{i\omega t}\vec{A}(z), ϕ(z,t)=eiωtϕ(z)\phi(z,t)=e^{i\omega t}\phi(z) and X(z,t)=eiωtX(z)\vec{X}(z,t)=e^{i\omega t}\vec{X}(z). We also include an homogeneous magnetic field B\vec{B}, oriented in the x^\hat{x} direction. Additionally, we assume no external hidden fields are present. Secondly, we linearise the equations of motion assuming the external electromagnetic field is much stronger than the photon source |Aext||A||\vec{A}_{\rm ext}|\gg|\vec{A}|, and terms of the form ϕ|A|\phi|\vec{A}|, |A||X||\vec{A}||\vec{X}|, ϕ|X|\phi|\vec{X}| can be neglected. Finally, considering a relativistic approximation, i.e, (ω2+z2)2ω(ωiz)(\omega^{2}+{\partial_{z}}^{2})\approx{2\omega(\omega-i\partial_{z})}, we find the following equations111We work in the gauge iAi=0\partial_{i}A_{i}=0 and A0=X0=0A_{0}=X_{0}=0.:

(ωizmγ22ω(sin2χsinχcosχsinχcosχcos2χ))(AX)=0,\begin{pmatrix}\omega-i\partial_{z}-\frac{m_{\gamma^{\prime}}^{2}}{2\omega}\begin{pmatrix}\sin^{2}\chi&\sin\chi\cos\chi\\ \sin\chi\cos\chi&\cos^{2}\chi\end{pmatrix}\end{pmatrix}\begin{pmatrix}A_{\perp}\\ X_{\bot}\end{pmatrix}=0, (1)
(ωiz12ω(mγ2sin2χmγ2sinχcosχgBωtan2χmγ2sinχcosχmγ2cos2χgBωtanχgBωtan2χgBωtanχmϕ2))(AXϕ)=0.\begin{pmatrix}\omega-i\partial_{z}-\frac{1}{2\omega}\begin{pmatrix}{m_{\gamma^{\prime}}^{2}}\sin^{2}\chi&{m_{\gamma^{\prime}}^{2}}\sin\chi\cos\chi&{gB\omega\,\tan^{2}\chi}\\ {m_{\gamma^{\prime}}^{2}\sin\chi\cos\chi}&{m_{\gamma^{\prime}}^{2}}\cos^{2}\chi&{gB\omega}\,\tan\chi\\ {gB\omega\,\tan^{2}\chi}&{gB\omega\,\tan\chi}&{m_{\phi}^{2}}\end{pmatrix}\end{pmatrix}\begin{pmatrix}A_{\parallel}\\ X_{\parallel}\\ \phi\end{pmatrix}=0. (2)

Where \parallel and \perp are the parallel and perpendicular components of the photon field to the external magnetic field, respectively. Equations (1) and (2) are of the Schroedinger-type, izΨ(z)=HΨ(z)i\partial_{z}\Psi\left(z\right)=H\Psi\left(z\right), where Eq. (1) is the usual one for a model of HP-photon oscillation. To solve Eq. (2) we introduce a rotation matrix that diagonalises the Hamiltonian, i.e, RTHR=diag(ω1,ω2,ω3)R^{T}HR={\mbox{d}iag}\left(\omega_{1},\omega_{2},\omega_{3}\right), where the eigenvalues are given by: ω1=ω=k\omega_{1}=\omega=k, ω2=ωΩΔ\omega_{2}=\omega-\Omega-\Delta and ω3=ωΩ+Δ\omega_{3}=\omega-\Omega+\Delta, with:

Ωmγ2+mϕ24ω,ΔgB2cos2χsin2χ+x2cos4χ,xmγ2mϕ22gBω.\Omega\equiv\frac{m_{\gamma^{\prime}}^{2}+m_{\phi}^{2}}{4\omega},\,\,\,\,\,\,\,\,\,\Delta\equiv\frac{gB}{2\cos^{2}\chi}\sqrt{\sin^{2}\chi+x^{2}\cos^{4}\chi},\,\,\,\,\,\,\,\,\,x\equiv\frac{m_{\gamma^{\prime}}^{2}-m_{\phi}^{2}}{2gB\omega}. (3)

The rotation matrix can be conveniently written in terms of two angles, θ\theta and χ\chi:

R=(cosχcosθsinχsinθsinχsinχcosθcosχcosχsinθ0sinθcosθ),sinθ=sinχ2+sin2χ,=(x+2ΔBg).R=\begin{pmatrix}\cos\chi&\cos\theta\sin\chi&-\sin\theta\sin\chi\\ -\sin\chi&\cos\theta\cos\chi&-\cos\chi\sin\theta\\ 0&\sin\theta&\cos\theta\end{pmatrix},\,\,\sin\theta=\frac{\sin\chi}{\sqrt{\mathcal{F}^{2}+\sin^{2}\chi}},\,\,\,\,\,\,\,\mathcal{F}=\left(x+\frac{2\Delta}{Bg}\right).

The states XX_{\parallel} and ϕ\phi are sterile to matter currents. Note that the limit B0B\rightarrow 0 can be obtained by taking θ={0,nπ}\theta=\{0,n\pi\} when mγ>mϕm_{\gamma^{\prime}}>m_{\phi} and θ=(2n+1)π/2\theta=(2n+1)\pi/2 when mϕ>mγm_{\phi}>m_{\gamma^{\prime}}.

The evolution of the interaction states can be obtained from the evolution of mass eigenstates, related by Ψ(z)=RΨ(z)\Psi(z)=R\Psi^{\prime}(z), prime fields being mass eigenstates. Solving for both amplitudes of the photon after transversing a region of length LL we find:

A(L)\displaystyle A_{\parallel}(L) =\displaystyle= eiωL(cos2χ+sin2χ(ei(Ω+Δ)Lcos2θ+ei(ΩΔ)Lsin2θ)),\displaystyle e^{-i\omega L}\left(\cos^{2}\chi+\sin^{2}\chi\left(e^{i(\Omega+\Delta)L}\cos^{2}\theta+e^{i(\Omega-\Delta)L}\sin^{2}\theta\right)\right), (4)
A(L)\displaystyle A_{\perp}(L) =\displaystyle= e2iLωcos2χsin2χ(1eiLmγ2/(2ω))2.\displaystyle e^{-2iL\omega}\cos^{2}\chi\sin^{2}\chi\left(1-e^{iLm_{\gamma^{\prime}}^{2}/(2\omega)}\right)^{2}. (5)

3 Ellipticity and rotation effects

After transversing the magnetic region LL, the beam has changed its amplitude and phase as we see in Eqs. (4)-(5), meaning that the beam develops a small ellipticity component and a rotation of the polarisation plane. Thus, the amplitudes evolve according to A,(z)(1ϵ,(z))eiωz+iφ,(z)A_{\parallel,\perp}(z)\propto(1-\epsilon_{\parallel,\perp}(z))e^{-i\omega z+i\varphi_{\parallel,\perp}(z)}, the constant of proportionality being the initial polarisation angle, α0\alpha_{0}, with respect to the direction of the magnetic field B\vec{B}. The change in the ellipticity and rotation angles it is given, respectively, by ψ=sin(2α0)(φφ)/2\psi=\sin(2\alpha_{0})\left(\varphi_{\parallel}-\varphi_{\perp}\right)/2 and δα=sin(2α0)(ϵϵ)/2\delta\alpha=\sin(2\alpha_{0})\left(\epsilon_{\parallel}-\epsilon_{\perp}\right)/2 . After some manipulation of A(z)A_{\parallel}(z) we find:

φ\displaystyle\varphi_{\parallel} =\displaystyle= sin2χ[sin(Ωz)cos(Δz)+cos(2θ)sin(Δz)cos(Ωz)],\displaystyle\sin^{2}\chi\left[\sin(\Omega z)\cos(\Delta z)+\cos(2\theta)\sin(\Delta z)\cos(\Omega z)\right], (6)
ϵ\displaystyle\epsilon_{\parallel} =\displaystyle= sin2χ[1cos(Ωz)cos(Δz)+cos(2θ)sin(Ωz)sin(Δz)].\displaystyle\sin^{2}\chi\left[1-\cos(\Omega z)\cos(\Delta z)+\cos(2\theta)\sin(\Omega z)\sin(\Delta z)\right]. (7)

A similar analysis for AA_{\perp} gives φ=sin2χsin(mγ2z/2ω)\varphi_{\perp}=\sin^{2}\chi\sin\left(m_{\gamma^{\prime}}^{2}z/2\omega\right) and ϵ=2sin2χsin2(mγ2z/4ω)\epsilon_{\perp}=2\sin^{2}\chi\sin^{2}\left(m_{\gamma^{\prime}}^{2}z/4\omega\right).

Let us point out that the dimensionless parameter xx, defined in Eq. (3), can be used to define two different regimes: |x|χ|x|\ll\chi, which translates into θπ/4\theta\rightarrow\pi/4 and |x|χ|x|\gg\chi, which translates into θ0\theta\rightarrow 0, if mγ>mϕm_{\gamma^{\prime}}>m_{\phi}, or θπ/2\theta\rightarrow\pi/2, if mγ<mϕm_{\gamma^{\prime}}<m_{\phi}. In Fig. (1) we present exclusion plots to the ALP parameters using both ellipticity and rotation measurements.

Ellipticity effects: Let us first focus on the small mass region, where |x|1|x|\ll 1 and thus, θπ/4\theta\sim\pi/4: this parameter space can remain uncovered if: i) there is a cancellation between the parallel and perpendicular contributions φφ0\varphi_{\parallel}-\varphi_{\perp}\sim 0, which happens if both ΔL\Delta L and ΩL1\Omega L\ll 1. ii) ΔL1\Delta L\gg 1 and ΩL1\Omega L\ll 1 and ψ=3χ2mγ2L/(8ω)<|ψexp|\psi=3\chi^{2}{m_{\gamma^{\prime}}^{2}}L/({8\omega})<|\psi_{exp}|, where we take |ψexp|9×1011|\psi_{exp}|\sim 9\times 10^{-11} as benchmark measured value of the ellipticity angle, as suggested by [4]. For instance, for χ=101\chi=10^{-1}, the opposite holds, meaning 3χ2mγ2L/(8ω)>|ψexp|3\chi^{2}{m_{\gamma^{\prime}}^{2}}L/({8\omega})>|\psi_{exp}|, and therefore the small mass region can be constrained up to g109g\approx 10^{-9} eV-1, see Fig. (1). Going below those values of gg it is not possible due to the cancellation explained in i). On the other hand, for χ=102\chi=10^{-2} the opposite aforementioned condition also holds, but we see some stripes or gaps in sensitivity in the low mass region. They appear because when the condition g=4πn/(BχL)g=4\pi n/(B\chi L), where nZn\in Z is fulfilled, the ellipticity angle drops below |ψexp||\psi_{exp}|. These gaps in sensitivity can be covered either by changing slightly any of the parameters: B,L,ωB,L,\omega. Finally, for masses mγ105m_{\gamma^{\prime}}\gtrsim 10^{-5} eV, the condition |x|χ|x|\ll\chi is no longer fulfilled and the angle θ\theta starts slowly to approach to π/2\pi/2 as mϕm_{\phi} grows over mγm_{\gamma^{\prime}}. When χ|x|\chi\ll|x|, the expression for the ellipticity angle is well approximated by

ψχ2g2B2ω2mϕ4(mϕ2L2ω+sin(mϕ2L2ω)),\psi\propto\chi^{2}\frac{g^{2}B^{2}\omega^{2}}{m_{\phi}^{4}}\left(-\frac{m_{\phi}^{2}L}{2\omega}+\sin(\frac{m_{\phi}^{2}L}{2\omega})\right), (8)

This is almost the same expression of the ellipticity angle for the photon-ALP model (see e.g. [5]), but with the replacement of gχ2g\chi^{2} by the ALP to photon coupling gϕγγg_{\phi\gamma\gamma}. If mγ>mϕm_{\gamma^{\prime}}>m_{\phi}, then the above equation changes, replacing mϕmγm_{\phi}\rightarrow m_{\gamma^{\prime}} and an overall minus sign. Eq. (8) explains the already familiar V shape in the mass region mϕ104m_{\phi}\gtrsim 10^{-4} eV.

Rotation effects: In the low mass region mϕ,mγ106m_{\phi},m_{\gamma^{\prime}}\lesssim 10^{-6} eV, the conditions |x|χ|x|\ll\chi and ΩL1\Omega L\ll 1 hold, thus we can approximate ϵ2χ2sin2(gBχL/4)\epsilon_{\parallel}\approx 2\chi^{2}\sin^{2}\left(gB\chi L/4\right) and ϵχ2mγ4L2/(8ω)0\epsilon_{\perp}\sim\chi^{2}m_{\gamma^{\prime}}^{4}L^{2}/(8\omega)\sim 0. Therefore, in the low mass region the rotation angle δα\delta\alpha is mass independent. This gives us the smallest gg to be constrained as

g22|δαexp|BLχ2=2.5×1012GeV1[2.5TB1mL(|δαexp|5.2×1010)1/2(101χ)2].g\leq\frac{2\sqrt{2|\delta\alpha_{\rm exp}|}}{BL\chi^{2}}=2.5\times 10^{-12}\,{\rm GeV}^{-1}\left[\frac{2.5\,\rm{T}}{B}\frac{1\,{\rm m}}{L}\left(\frac{|\delta\alpha_{\rm exp}|}{5.2\times 10^{-10}}\right)^{1/2}\left(\frac{10^{-1}}{\chi}\right)^{2}\right]. (9)

As the mass grows, we move to the weak mixing regime χ|x|\chi\lesssim|x|, where the ALP starts to decouple from the photon and HP. The change in the polarisation plane can be well approximated as (for mγ<mϕm_{\gamma^{\prime}}<m_{\phi})

δα2χ2(sin2(ΩLΔL2)sin2(mγ2L2ω)).\delta\alpha\propto 2\chi^{2}\left(\sin^{2}\left(\frac{\Omega L-\Delta L}{2}\right)-\sin^{2}\left(\frac{m_{\gamma^{\prime}}^{2}L}{2\omega}\right)\right). (10)

When |x|1|x|\gg 1 the difference ΩLΔL\Omega L-\Delta L goes to mγ2L/(2ω)m_{\gamma^{\prime}}^{2}L/(2\omega) and the right hand side of the above equation cancels. This is the limit where the ALP decouples, and therefore the rotation effect is only due to the HP.

Refer to caption Refer to caption

Figure 1: l.h.s. ellipticity constraints on the ALP and r.h.s. using rotation measurements, for different HP parameters. We have considered |δαexp|=5.2×1010|\delta\alpha_{exp}|=5.2\times 10^{-10} and |ψexp|=9×1011|\psi_{\rm exp}|=9\times 10^{-11}. Both figures assume benchmark values B=2.5B=2.5 T, L=1L=1 m, ω=1\omega=1 eV and α0=45\alpha_{0}=45^{\circ}.

4 Conclusions

In this work we have considered a model that mixes photons, ALPs and HPs, we have shown interesting features on observable effects, in this case rotation of the polarisation plane and ellipticity of the beam. The parameters of the model can still be reasonably constrained using existing results from laboratory experiments. The next step is to consider more stringent scenarios, such as stellar production and early universe.

Acknowledgments: This work has been supported by FONDECYT project 1161150.

References

  • [1] E. Masso and J. Redondo, JCAP 0509 (2005) 015
  • [2] J. Jaeckel, J. Redondo and A. Ringwald, Phys. Rev. D 89 (2014) 103511 doi:10.1103/PhysRevD.89.103511
  • [3] K. Kaneta, H. S. Lee and S. Yun, Phys. Rev. Lett.  118 (2017) no.10, 101802 doi:10.1103/PhysRevLett.118.101802
  • [4] F. Della Valle, A. Ejlli, U. Gastaldi, G. Messineo, E. Milotti, R. Pengo, G. Ruoso and G. Zavattini, Eur. Phys. J. C 76 (2016) no.1, 24.
  • [5] G. Raffelt and L. Stodolsky, Phys. Rev. D 37 (1988) 1237.