This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization

Bastian Harrach222Institute for Mathematics, Goethe-University Frankfurt, Frankfurt am Main, Germany (harrach@math.uni-frankfurt.de)
Abstract

We consider the inverse boundary value problem of determining a coefficient function in an elliptic partial differential equation from knowledge of the associated Neumann-Dirichlet-operator. The unknown coefficient function is assumed to be piecewise constant with respect to a given pixel partition, and upper and lower bounds are assumed to be known a-priori.

We will show that this Calderón problem with finitely many unknowns can be equivalently formulated as a minimization problem for a linear cost functional with a convex non-linear semidefinite constraint. We also prove error estimates for noisy data, and extend the result to the practically relevant case of finitely many measurements, where the coefficient is to be reconstructed from a finite-dimensional Galerkin projection of the Neumann-Dirichlet-operator.

Our result is based on previous works on Loewner monotonicity and convexity of the Neumann-Dirichlet-operator, and the technique of localized potentials. It connects the emerging fields of inverse coefficient problems and semidefinite optimization.

keywords:
Inverse coefficient problem, Calderón problem, finite resolution, semidefinite optimization, Loewner monotonicity and convexity
AMS:
35R30, 90C22

1 Introduction

We consider the Calderón problem of determining the spatially dependent coefficient function σ\sigma in the elliptic partial differential equation

(σu)=0\nabla\cdot(\sigma\nabla u)=0

from knowledge of the associated (partial data) Neumann-Dirichlet-operator Λ(σ)\Lambda(\sigma), cf. section 3.1 for the precise mathematical setting. The coefficient function σ\sigma is assumed to be piecewise constant with respect to a given pixel partition of the underlying imaging domain, so that only finitely many unknowns have to be reconstructed. We also assume that upper and lower bounds b>a>0b>a>0 are known a-priori, so that the pixel-wise values of the unknown coefficient function can be identified with a vector in [a,b]nn[a,b]^{n}\subset\mathbb{R}^{n}, where nn\in\mathbb{N} is the number of pixels.

In this paper, we prove that the problem can be equivalently reformulated as a convex optimization problem where a linear cost function is to be minimized under a non-linear convex semi-definiteness constraint. Given Y^=Λ(σ^)\hat{Y}=\Lambda(\hat{\sigma}), the vector of pixel-wise values of σ^\hat{\sigma} is shown to be the unique minimizer of

cTσmin!s.t.σ[a,b]n,Λ(σ)Y^,c^{T}\sigma\to\text{min!}\quad\text{s.t.}\quad\sigma\in[a,b]^{n},\ \Lambda(\sigma)\preceq\hat{Y},

where cnc\in\mathbb{R}^{n} only depends on the pixel partition, and on the upper and lower bounds a,b>0a,b>0. The symbol “\preceq” denotes the semidefinite (or Loewner) order, and Λ\Lambda is shown to be convex with respect to this order, so that the admissable set of this optimization problem is convex.

We also prove an error estimate for the case of noisy measurements YδΛ(σ^)Y^{\delta}\approx\Lambda(\hat{\sigma}), and show that our results still hold for the case of finitely many (but sufficiently many) measurements.

Let us give some more remarks on the origins and relevance of this result. The Calderón problem [4, 5] has received immense attention in the last decades due to its relevance for non-destructive testing and medical imaging applications, and its theoretical importance in studying inverse coeffient problems. We refer to [22, 6] for recent theoretical breakthroughs, and the books [25, 26, 1] for the prominent application of electrical impedance tomography.

In practical applications, only a finite number of measurements can be taken and the unknown coefficient function can only be reconstructed up to a certain resolution. For the resulting finite-dimensional non-linear inverse problems, uniqueness results have been obtained only recently in [2, 11].

Numerical reconstruction algorithms for the Calderón problem and related inverse coefficient problems are typically based on Newton-type iterations or on minimizing a non-convex regularized data fitting functional. Both approaches highly suffer from the problem of local convergence, resp., local minima, and therefore require a good initial guess close to the unknown solution which is usually not available in practice. We refer to the above mentioned books [25, 26, 1] for an overview on this topic, and point out the result in [23] that shows a local convergence result for the Newton method for EIT with finitely many measurements and unknowns. For a specific infinite-dimensional setting, a convexification idea was developed in [19]. Moreover, knowing Y^=Λ(σ^)\hat{Y}=\Lambda(\hat{\sigma}) (i.e., infinitely many measurements) and the pixel partition, the values in σ^\hat{\sigma} can also be recovered one by one with globally convergent one-dimensional monotonicity tests, and these tests can be implemented as in [7, 8] without knowing the upper and lower conductivity bounds. But, to the knowledge of the author, these ideas do not carry over to the case of finitely many measurements, and, for this practically important case, the problem of local convergence, resp., local minima, remained unsolved.

The new equivalent convex reformulation of the Calderón problem with finitely many unknowns presented in this work connects the emerging fields of inverse problems in PDEs and semidefinite optimization. It is based on previous works on Loewner monotonicity and convexity, and the technique of localized potentials [10, 17], and extends the recent work [14] to the Calderón problem. The origins of these ideas go back to inclusion detection algorithms such as the factorization and monotonicity method [18, 3, 27], and the idea of overcoming non-linearity in such problems [16].

The structure of this article is as follows. In section 2, we demonstrate on a simple, yet illustrative example how non-linear inverse coefficient problems such as the Calderón problem suffer from local minima. In section 3 we then formulate our main results on reformulating the Calderón problem as a convex minimization problem. In section 4 the results are proven, and section 5 contains some conclusions and an outlook.

2 Motivation: The problem of local minima

To motivate the importance of finding convex reformulations, we first give a simple example on how drastically inverse coefficent problems such as the Calderón problem can suffer from local minima. We consider

(σu)=0\nabla\cdot(\sigma\nabla u)=0 (1)

in the two-dimensional unit ball Ω=B1(0)2\Omega=B_{1}(0)\subset\mathbb{R}^{2}. The coefficient σ\sigma is assumed to be the radially-symmetric piecewise-constant function

σ(x)={1 for 1>xr1,σ1 for r1>xr2,σ2 for r2>x,\sigma(x)=\left\{\begin{array}[]{l c r@{\,} l}1&\text{ for }&1&>\hskip 0.86108pt\|x\|\hskip 0.86108pt\geq r_{1},\\ \sigma_{1}&\text{ for }&r_{1}&>\hskip 0.86108pt\|x\|\hskip 0.86108pt\geq r_{2},\\ \sigma_{2}&\text{ for }&r_{2}&>\hskip 0.86108pt\|x\|\hskip 0.86108pt,\end{array}\right.

with known radii 1>r1>r2>01>r_{1}>r_{2}>0, but unknown values σ1,σ2>0\sigma_{1},\sigma_{2}>0, cf. figure 1 for a sketch of the setting with r1:=0.5r_{1}:=0.5 and r2:=0.25r_{2}:=0.25.

Refer to caption

Fig. 1: A simple example with two unknown values.

We aim to reconstruct the two unknown values σ=(σ1,σ2)\sigma=(\sigma_{1},\sigma_{2}) from the Neumann-Dirichlet-operator (NtD)

Λ(σ):gu|Ω,where u solves (1) with σνu|Ω=g.\Lambda(\sigma):\ g\mapsto u|_{\partial\Omega},\quad\text{where $u$ solves \eqref{eq:Motivation_EIT} with $\sigma\partial_{\nu}u|_{\partial\Omega}=g$.}

For this simple geometry, the NtD can be calculated analytically. Using polar coordinates (r,φ)(r,\varphi), it is easily checked that, for each jj\in\mathbb{N}, the function

u(r,φ):={rjsin(jφ) for r2>r,12(ajrj+bjrj)sin(jφ) for r1>rr2,14(cjrj+djrj)sin(jφ) for 1>rr1.u(r,\varphi):=\left\{\begin{array}[]{r c r@{\,} l}r^{j}\sin(j\varphi)&\text{ for }&r_{2}&>r,\\[1.07639pt] \frac{1}{2}(a_{j}r^{j}+b_{j}r^{-j})\sin(j\varphi)&\text{ for }&r_{1}&>r\geq r_{2},\\[2.15277pt] \frac{1}{4}(c_{j}r^{j}+d_{j}r^{-j})\sin(j\varphi)&\text{ for }&1&>r\geq r_{1}.\end{array}\right.

solves (1) (in the weak sense) if aj,bj,cj,dja_{j},b_{j},c_{j},d_{j}\in\mathbb{R} fulfill the following four interface conditions

u|Br2\displaystyle u|_{\partial B_{r_{2}}^{-}} =u|Br2+,\displaystyle=u|_{\partial B_{r_{2}}^{+}}, u|Br1\displaystyle\qquad u|_{\partial B_{r_{1}}^{-}} =u|Br1+,\displaystyle=u|_{\partial B_{r_{1}}^{+}},
σνu|Br2\displaystyle\sigma\partial_{\nu}u|_{\partial B_{r_{2}}^{-}} =σνu|Br2+,\displaystyle=\sigma\partial_{\nu}u|_{\partial B_{r_{2}}^{+}}, σνu|Br1\displaystyle\qquad\sigma\partial_{\nu}u|_{\partial B_{r_{1}}^{-}} =σνu|Br1+.\displaystyle=\sigma\partial_{\nu}u|_{\partial B_{r_{1}}^{+}}.

This is equivalent to aj,bj,cj,dja_{j},b_{j},c_{j},d_{j}\in\mathbb{R} solving the linear system

1\displaystyle 1 =12(aj+bjr22j),\displaystyle=\frac{1}{2}(a_{j}+b_{j}r_{2}^{-2j}), aj+bjr12j\displaystyle\qquad a_{j}+b_{j}r_{1}^{-2j} =12(cj+djr12j),\displaystyle=\frac{1}{2}(c_{j}+d_{j}r_{1}^{-2j}),
σ2σ1\displaystyle\frac{\sigma_{2}}{\sigma_{1}} =12(ajbjr22j),\displaystyle=\frac{1}{2}(a_{j}-b_{j}r_{2}^{-2j}), σ1(ajbjr12j)\displaystyle\qquad\sigma_{1}(a_{j}-b_{j}r_{1}^{-2j}) =12(cjdjr12j),\displaystyle=\frac{1}{2}(c_{j}-d_{j}r_{1}^{-2j}),

and from this we easily obtain that

aj\displaystyle a_{j} =1+σ2σ1,\displaystyle=1+\frac{\sigma_{2}}{\sigma_{1}},
bj\displaystyle b_{j} =(1σ2σ1)r22j,\displaystyle=\left(1-\frac{\sigma_{2}}{\sigma_{1}}\right)r_{2}^{2j},
cj\displaystyle c_{j} =aj+bjr12j+σ1(ajbjr12j)\displaystyle=a_{j}+b_{j}r_{1}^{-2j}+\sigma_{1}(a_{j}-b_{j}r_{1}^{-2j})
=(1σ1+1)(σ1+σ2)+(1σ11)(σ1σ2)r22jr12j,\displaystyle=\left(\frac{1}{\sigma_{1}}+1\right)(\sigma_{1}+\sigma_{2})+\left(\frac{1}{\sigma_{1}}-1\right)(\sigma_{1}-\sigma_{2})\frac{r_{2}^{2j}}{r_{1}^{2j}},
dj\displaystyle d_{j} =ajr12j+bjσ1(ajr12jbj)\displaystyle=a_{j}r_{1}^{2j}+b_{j}-\sigma_{1}(a_{j}r_{1}^{2j}-b_{j})
=(1σ11)(σ1+σ2)r12j+(1σ1+1)(σ1σ2)r22j.\displaystyle=\left(\frac{1}{\sigma_{1}}-1\right)\left(\sigma_{1}+\sigma_{2}\right)r_{1}^{2j}+\left(\frac{1}{\sigma_{1}}+1\right)\left(\sigma_{1}-\sigma_{2}\right)r_{2}^{2j}.

The Dirichlet- and Neumann boundary values of uu are

u|B1(0)\displaystyle u|_{\partial B_{1}(0)} =14(cj+dj)sin(jφ), and σνu|B1(0)=j4(cjdj)sin(jφ),\displaystyle=\frac{1}{4}(c_{j}+d_{j})\sin(j\varphi),\quad\text{ and }\quad\sigma\partial_{\nu}u|_{\partial B_{1}(0)}=\frac{j}{4}(c_{j}-d_{j})\sin(j\varphi),

so that

Λ(σ)sin(jφ)=λjsin(jφ) with λj:=cj+djj(cjdj).\Lambda(\sigma)\sin(j\varphi)=\lambda_{j}\sin(j\varphi)\quad\text{ with }\quad\lambda_{j}:=\frac{c_{j}+d_{j}}{j(c_{j}-d_{j})}.

By rotational symmetry, the same holds with sin()\sin(\cdot) replaced by cos()\cos(\cdot). Hence, with respect to the standard L2L^{2}-orthonormal basis of trigonometric functions

{g1,g2,g3,}={1πsin(φ),1πcos(φ),1πsin(2φ),}L2(Ω),\left\{g_{1},g_{2},g_{3},\ldots\right\}=\left\{\frac{1}{\pi}\sin(\varphi),\frac{1}{\pi}\cos(\varphi),\frac{1}{\pi}\sin(2\varphi),\ \ldots\right\}\subseteq L_{\diamond}^{2}(\partial\Omega),

the Neumann-Dirichlet-operator Λ(σ)(L2(Ω))\Lambda(\sigma)\in\mathcal{L}(L_{\diamond}^{2}(\partial\Omega)) can be written as the infinite-dimensional diagonal matrix

Λ(σ)=(λ1λ1λ2),\Lambda(\sigma)=\begin{pmatrix}\lambda_{1}\\ &\lambda_{1}\\ &&\lambda_{2}\\ &&&\ddots\end{pmatrix},

with λj\lambda_{j} depending on σ=(σ1,σ2)2\sigma=(\sigma_{1},\sigma_{2})\in\mathbb{R}^{2} as given above, and L2(Ω)L_{\diamond}^{2}(\partial\Omega) denoting the space of L2L^{2}-functions with vanishing integral mean on Ω\partial\Omega.

We assume that we can only take finitely many measurements of Λ(σ)\Lambda(\sigma). For this example, we choose the measurements to be the upper left 6×66\times 6-part of this matrix, i.e., the Galerkin projektion of Λ(σ)\Lambda(\sigma) to span{g1,,g6}\operatorname{span}\{g_{1},\ldots,g_{6}\},

F(σ):=(ΩgjΛ(σ)gkds)j,k=1,,66×6,F(\sigma):=\left(\int_{\partial\Omega}g_{j}\Lambda(\sigma)g_{k}\,{\rm{d}}s\right)_{j,k=1,\ldots,6}\in\mathbb{R}^{6\times 6},

and try to reconstruct σ2\sigma\in\mathbb{R}^{2} from F(σ)6×6F(\sigma)\in\mathbb{R}^{6\times 6}. Note that, effectively, we thus aim to reconstruct two unknowns σ=(σ1,σ2)\sigma=(\sigma_{1},\sigma_{2}) from three independent measurements λ1\lambda_{1}, λ2\lambda_{2}, and λ3\lambda_{3}.

Refer to caption Refer to caption
Fig. 2: Residuum functional for a least-squares data-fitting approach.

We now demonstrate how standard least-squares data-fitting approaches for this inverse problem may suffer from local minima. We set σ^:=(1,1)\hat{\sigma}:=(1,1) and Y^:=F(σ^)\hat{Y}:=F(\hat{\sigma}) to be the true noiseless measurements of the associated NtD. The natural approach is to find an approximation σσ^\sigma\approx\hat{\sigma} by minimizing the least-squares residuum functional

F(σ)Y^F2min!\hskip 0.86108pt\|F(\sigma)-\hat{Y}\|\hskip 0.86108pt_{F}^{2}\to\text{min!} (2)

where F\hskip 0.86108pt\|\cdot\|\hskip 0.86108pt_{F} denotes the Frobenius norm. Figure 2 shows the values of this residuum functional as a function of σ=(σ1,σ2)\sigma=(\sigma_{1},\sigma_{2}). It clearly shows a global minimum at the correct value σ=(1,1)\sigma=(1,1) but also a drastic amount of local minimizers.

Hence, without a good initial guess, local optimization approaches are prone to end up in local minimizers that may lie far away from the correct coefficient values, and global optimization approaches for such highly non-convex residuum functionals quickly become computationally infeasible for raising numbers of unknowns.

We demonstrate this problem of local convergence by applying the generic MATLAB solver lsqnonlin to the least-squares minimization problem (2) (with all options of lsqnonlin left on their default values). Figure 3 shows the Euklidian norm of the error of the final iterate σ(N)\sigma^{(N)} returned by lsqnonlin as a function of the initial value σ(0)=(σ1(0),σ2(0))\sigma^{(0)}=(\sigma^{(0)}_{1},\sigma^{(0)}_{2}). It shows how some regions of starting values lead to inaccurate or even completely wrong results. Note that the values are plotted in logarithmic scale and cropped above and below certain thresholds to improve presentation. Also, in our example, increasing the number of measurements mm did not alleviate these problems, and the performance of lsqnonlin did not change when providing the symbolically calculated Jacobian of FF.

Refer to caption
Fig. 3: Error of the final iterate of a standard minimization algorithm when started with different initial values σ(0)=(σ1(0),σ2(0))\sigma^{(0)}=(\sigma^{(0)}_{1},\sigma^{(0)}_{2}).

Our example illustrates how standard approaches to non-linear inverse coefficient problems (such as the Calderón problem) may lead to non-convex residuum functionals that are highly affected by the problem of local minimizers. Overcoming the problem of non-linearity requires overcoming this problem of non-convexity. In the next sections we will show that this is indeed possible. The Calderón problem with finitely many unknowns and measurements can be equivalently reformulated as a convex minimization problem.

3 Setting and main results

3.1 The partial data Calderón problem

Let Ωd\Omega\subset\mathbb{R}^{d}, d2d\geq 2 be a Lipschitz bounded domain, let ν\nu denote the outer normal on Ω\partial\Omega, and let ΣΩ\Sigma\subseteq\partial\Omega be a relatively open boundary part. L+(Ω)L^{\infty}_{+}(\Omega) denotes the subset of LL^{\infty}-functions with positive essential infima, H1(Ω)H_{\diamond}^{1}(\Omega) and L2(Σ)L_{\diamond}^{2}(\Sigma) denote the spaces of H1H^{1}- and L2L^{2}-functions with vanishing integral mean on Σ\Sigma.

For σL+(Ω)\sigma\in L^{\infty}_{+}(\Omega), the partial data (or local) Neumann-Dirichlet-operator

Λ(σ):L2(Σ)L2(Σ)\Lambda(\sigma):\ L_{\diamond}^{2}(\Sigma)\to L_{\diamond}^{2}(\Sigma)

is defined by Λ(σ)g:=u|Σ\Lambda(\sigma)g:=u|_{\Sigma} where uH1(Ω)u\in H_{\diamond}^{1}(\Omega) solves

(σu)=0 in Ω, and σνu|Ω={g on Σ,0 else.\nabla\cdot(\sigma\nabla u)=0\quad\text{ in $\Omega$,}\quad\text{ and }\quad\sigma\partial_{\nu}u|_{\partial\Omega}=\left\{\begin{array}[]{l l}g&\text{ on $\Sigma$,}\\ 0&\text{ else.}\end{array}\right. (3)

Occasionally, we will also write uσgu_{\sigma}^{g} for the solution of (3) in the following to highlight the dependence on the conductivity coefficient σ\sigma and the Neumann boundary data gg.

It is well-known (and easily follows from standard elliptic PDE theory) that Λ(σ)\Lambda(\sigma) is a compact self-adjoint operator from L2(Σ)L_{\diamond}^{2}(\Sigma) to L2(Σ)L_{\diamond}^{2}(\Sigma). The question, whether Λ(σ)\Lambda(\sigma) uniquely determines σ\sigma, is known as the (partial data) Calderón problem.

3.2 The Calderón problem with finitely many unknowns

We will now introduce the Calderón problem with finitely many unknowns, and formulate our first main result on its equivalent convex reformulation.

The setting with finitely many unknowns

We assume that Ω\Omega is decomposed into nn\in\mathbb{N} pixels, i.e.,

Ω¯=j=1nPj¯.\overline{\Omega}=\bigcup_{j=1}^{n}\overline{P_{j}}.

where P1,,PnΩP_{1},\ldots,P_{n}\subseteq\Omega are non-empty, pairwise disjoint subdomains with Lipschitz boundaries. We furthermore assume that the pixels are numbered according to their distance from the boundary part Σ\Sigma, so that the following holds: For any j{1,,n}j\in\{1,\ldots,n\} we define

Qj:=i>jPi¯Q_{j}:=\bigcup_{i>j}\overline{P_{i}}

and assume that, for all j=1,,nj=1,\ldots,n, the complement of QjQ_{j} in Ω¯\overline{\Omega} is connected and contains a non-empty relatively open subset of Σ\Sigma.

We will consider conductivity coefficients σL+(Ω)\sigma\in L^{\infty}_{+}(\Omega) that are piecewise constant with respect to this pixel partition, and assume that we know upper and lower bounds, b>a>0b>a>0. Hence,

σ(x)=j=1nσjχPj(x) with σ1,,σn[a,b]+,\sigma(x)=\sum_{j=1}^{n}\sigma_{j}\chi_{P_{j}}(x)\quad\text{ with }\sigma_{1},\ldots,\sigma_{n}\in[a,b]\subset\mathbb{R}_{+},

and χPj:Ω\chi_{P_{j}}:\ \Omega\to\mathbb{R} denoting the characteristic functions on PjP_{j}. In the following, with a slight abuse of notation, we identify such a piecewise constant function σ:Ω\sigma:\ \Omega\to\mathbb{R} with its coefficient vector σ=(σ1,,σn)Tn\sigma=(\sigma_{1},\ldots,\sigma_{n})^{T}\in\mathbb{R}^{n}. Accordingly, we consider Λ\Lambda as a non-linear operator

Λ:+n(L2(Σ)),\Lambda:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(L^{2}_{\diamond}(\Sigma)),

and consider the problem to

reconstruct σ[a,b]n+n from Λ(σ)(L2(Σ)).\text{reconstruct }\quad\sigma\in[a,b]^{n}\subset\mathbb{R}^{n}_{+}\quad\text{ from }\quad\Lambda(\sigma)\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)).

Here, and in the following, +n:=(0,)n\mathbb{R}^{n}_{+}:=(0,\infty)^{n} denotes the space of all vectors in n\mathbb{R}^{n} containing only positive entries. Also, throughout this work, we write “\leq” for the componentwise order on n\mathbb{R}^{n}.

Convex reformulation of the Calderón problem

Let “\preceq” denote the semidefinite (or Loewner) order on the space of self-adjoint operators in (L2(Σ))\mathcal{L}(L^{2}_{\diamond}(\Sigma)), i.e., for all A=A(L2(Σ))A=A^{*}\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)), and B=B(L2(Σ))B=B^{*}\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)),

AB denotes that Σg(BA)gds0 for all gL2(Σ).A\preceq B\quad\text{ denotes that }\quad\int_{\Sigma}g(B-A)g\,{\rm{d}}s\geq 0\quad\text{ for all }g\in L^{2}_{\diamond}(\Sigma).

Note that, for a compact selfadjoint operator A(L2(Σ))A\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)), the eigenvalues can only accumulate in zero by the spectral theorem. Hence, AA either possesses a maximal eigenvalue λmax(A)0\lambda_{\max}(A)\geq 0, or zero is the supremum (though not necessarily the maximum) of the eigenvalues. In the latter case we still write λmax(A)=0\lambda_{\max}(A)=0 for the ease of notation. Thus, for compact selfadjoint A(L2(Σ))A\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)),

A0 if and only if λmax(A)>0.A\not\preceq 0\quad\text{ if and only if }\quad\lambda_{\max}(A)>0. (4)

Our first main result is that the Calderón problem with infinitely many measurements can be equivalently formulated as a uniquely solvable convex non-linear semidefinite program, and to give an error estimate for noisy measurements. Our arguments also yield unique solvability of the Calderón problem and its linearized version in our setting with finitely many unknowns. We include this as part of our theorem for the sake of completeness. It should be stressed though that uniqueness is known to hold for general piecewise analytic coefficients, cf. [20, 21] for the non-linear Calderón problem, and [16] for the linearized version. For more general results on the question of uniqueness we refer to the recent uniqueness results cited in the introduction, and the references therein.

Theorem 1.

There exists c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, so that for all σ^[a,b]n\hat{\sigma}\in[a,b]^{n}, and Y^:=Λ(σ^)\hat{Y}:=\Lambda(\hat{\sigma}), the following holds:

  1. (a)

    The convex semi-definite optimization problem

    minimize cTσ subject to σ[a,b]n,Λ(σ)Y^,\verb|minimize |\ c^{T}\sigma\ \verb| subject to |\ \sigma\in[a,b]^{n},\ \Lambda(\sigma)\preceq\hat{Y}, (5)

    possesses a unique minimizer and this minimizer is σ^\hat{\sigma}.

  2. (b)

    Given δ>0\delta>0, and a self-adjoint operator

    Yδ(L2(Σ)), with YδY^(L2(Σ))δ,Y^{\delta}\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)),\quad\text{ with }\quad\hskip 0.86108pt\|Y^{\delta}-\hat{Y}\|\hskip 0.86108pt_{\mathcal{L}(L^{2}_{\diamond}(\Sigma))}\leq\delta,

    the convex semi-definite optimization problem

    minimize cTσ subject to σ[a,b]n,Λ(σ)Yδ+δI,\verb|minimize |\ c^{T}\sigma\ \verb| subject to |\ \sigma\in[a,b]^{n},\ \Lambda(\sigma)\preceq Y^{\delta}+\delta I, (6)

    possesses a minimizer σδ\sigma^{\delta}. Every such minimizer σδ\sigma^{\delta} fulfills

    σδσ^c,2(n1)λδ,\hskip 0.86108pt\|\sigma^{\delta}-\hat{\sigma}\|\hskip 0.86108pt_{c,\infty}\leq\frac{2(n-1)}{\lambda}\delta,

    where c,\hskip 0.86108pt\|\cdot\|\hskip 0.86108pt_{c,\infty} denotes the weighted maximum norm

    σc,:=maxj=1,,ncj|σj| for all σn.\hskip 0.86108pt\|\sigma\|\hskip 0.86108pt_{c,\infty}:=\max_{j=1,\ldots,n}c_{j}|\sigma_{j}|\quad\text{ for all }\sigma\in\mathbb{R}^{n}.

Moreover, the non-linear mapping

Λ:+n(L2(Σ))\Lambda:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(L^{2}_{\diamond}(\Sigma))

is injective, and its Fréchet derivative Λ(σ)(n,(L2(Σ)))\Lambda^{\prime}(\sigma)\in\mathcal{L}(\mathbb{R}^{n},\mathcal{L}(L^{2}_{\diamond}(\Sigma))) is injective for all σ+n\sigma\in\mathbb{R}^{n}_{+}.

Let us stress that the constants c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, in Theorem 1 only depend on the domain Ωd\Omega\subset\mathbb{R}^{d}, the pixel partition P1,,PnP_{1},\ldots,P_{n} and the a-priori known bounds b>a>0b>a>0. Moreover, note that (5), and (6), are indeed convex optimization problems since Λ\Lambda is convex with respect to the Loewner order so that the admissible sets in (5), and (6) are closed convex sets (cf. Corollary 5). The admissible sets in (5), and (6) are also non-empty since, in both cases, they contain σ^\hat{\sigma}.

Remark 2.

Our arguments also yield the Lipschitz stability result

σ1σ2c,(n1)λΛ(σ1)Λ(σ2)(L2(Σ)) for all σ1,σ2[a,b]n.\hskip 0.86108pt\|\sigma_{1}-\sigma_{2}\|\hskip 0.86108pt_{c,\infty}\leq\frac{(n-1)}{\lambda}\hskip 0.86108pt\|\Lambda(\sigma_{1})-\Lambda(\sigma_{2})\|\hskip 0.86108pt_{\mathcal{L}(L^{2}_{\diamond}(\Sigma))}\quad\text{ for all }\sigma_{1},\sigma_{2}\in[a,b]^{n}.

3.3 The case of finitely many measurements

The equivalent convex reformulation is also possible for the case of finitely many measurements. Let g1,g2,L2(Σ)g_{1},g_{2},\ldots\subseteq L^{2}_{\diamond}(\Sigma) be given with dense span in L2(Σ)L^{2}_{\diamond}(\Sigma). For some number of measurements mm\in\mathbb{N}, we assume that we can measure the Galerkin projection of Λ(σ)\Lambda(\sigma) to the span of {g1,,gm}\{g_{1},\ldots,g_{m}\}, i.e., that we can measure ΣgjΛ(σ)gkds\int_{\Sigma}g_{j}\Lambda(\sigma)g_{k}\,{\rm{d}}s, for all j,k=1,,mj,k=1,\ldots,m. Accordingly, we define the matrix-valued forward operator

Fm:+n𝕊mm×m,F(σ):=(ΣgjΛ(σ)gkds)j,k=1,,m,F_{m}:\ \mathbb{R}^{n}_{+}\to\mathbb{S}_{m}\subset\mathbb{R}^{m\times m},\quad F(\sigma):=\left(\int_{\Sigma}g_{j}\Lambda(\sigma)g_{k}\,{\rm{d}}s\right)_{j,k=1,\ldots,m}, (7)

where 𝕊mm×m\mathbb{S}_{m}\subset\mathbb{R}^{m\times m} denotes the space of symmetric matrices.

Then, the problem of reconstructing an unknown conductivity on a fixed partition with known bounds from finitely many measurements can be formulated as the problem to

reconstruct σ[a,b]n+n from Fm(σ)𝕊m.\text{reconstruct }\quad\sigma\in[a,b]^{n}\subset\mathbb{R}^{n}_{+}\quad\text{ from }\quad F_{m}(\sigma)\in\mathbb{S}_{m}.

As in the infinite-dimensional case, we write “\preceq” for the Loewner order on the space of symmetric matrices 𝕊m\mathbb{S}_{m}, i.e., for all A,B𝕊mA,B\in\mathbb{S}_{m},

AB denotes that xT(BA)x0 for all xm.A\preceq B\quad\text{ denotes that }\quad x^{T}(B-A)x\geq 0\quad\text{ for all }x\in\mathbb{R}^{m}.

Also, for A𝕊mA\in\mathbb{S}_{m}, the largest eigenvalue is denoted by λmax(A)\lambda_{\max}(A), and we have that

A0 if and only if λmax(A)>0.A\not\preceq 0\quad\text{ if and only if }\quad\lambda_{\max}(A)>0.

Our second main result is that also the Calderón problem with finitely many measurements can be equivalently reformulated as a uniquely solvable convex non-linear semi-definite program, provided that sufficiently many measurements are being taken. Again, our arguments also yield unique solvability of the Calderón problem and its linearized version, and we include this as part of our theorem for the sake of completeness. Note that this uniqueness result has already been shown in [11] by arguments closely related to those in this work.

Theorem 3.

If the number of measurements mm\in\mathbb{N} is sufficiently large, then:

  1. (a)

    The non-linear mapping

    Fm:[a,b]n𝕊mm×mF_{m}:\ [a,b]^{n}\to\mathbb{S}_{m}\subseteq\mathbb{R}^{m\times m}

    is injective on [a,b]n[a,b]^{n}, and its Fréchet derivative F(σ)(+n,𝕊m)F^{\prime}(\sigma)\in\mathcal{L}(\mathbb{R}^{n}_{+},\mathbb{S}_{m}) is injective for all σ[a,b]n\sigma\in[a,b]^{n}.

  2. (b)

    There exists c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, so that for all σ^[a,b]n\hat{\sigma}\in[a,b]^{n}, and Y^:=Fm(σ^)\hat{Y}:=F_{m}(\hat{\sigma}), the following holds:

    1. (i)

      The convex semi-definite optimization problem

      minimize cTσ subject to σ[a,b]n,Fm(σ)Y^,\verb|minimize |\ c^{T}\sigma\ \verb| subject to |\ \sigma\in[a,b]^{n},\ F_{m}(\sigma)\preceq\hat{Y}, (8)

      possesses a unique minimizer and this minimizer is σ^\hat{\sigma}.

    2. (ii)

      Given δ>0\delta>0, and Yδ𝕊mY^{\delta}\in\mathbb{S}_{m} with YδY^2δ\hskip 0.86108pt\|Y^{\delta}-\hat{Y}\|\hskip 0.86108pt_{2}\leq\delta, the convex semi-definite optimization problem

      minimize cTσ subject to σ[a,b]n,Fm(σ)Yδ+δI,\verb|minimize |\ c^{T}\sigma\ \verb| subject to |\ \sigma\in[a,b]^{n},\ F_{m}(\sigma)\preceq Y^{\delta}+\delta I, (9)

      possesses a minimizer σδ\sigma^{\delta}. Every such minimizer σδ\sigma^{\delta} fulfills

      σδσ^c,2(n1)λδ.\hskip 0.86108pt\|\sigma^{\delta}-\hat{\sigma}\|\hskip 0.86108pt_{c,\infty}\leq\frac{2(n-1)}{\lambda}\delta.

      where the weighted maximum norm c,\hskip 0.86108pt\|\cdot\|\hskip 0.86108pt_{c,\infty} is defined as in Theorem 1.

The constants c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, and also the number of measurements in Theorem 3 only depend on the domain Ωd\Omega\subset\mathbb{R}^{d}, the pixel partition P1,,PnP_{1},\ldots,P_{n} and the a-priori known bounds b>a>0b>a>0. Also, as in the case of infinitely many measurements, (8) and (9) are linear optimization problems over non-empty, closed, and convex, feasibility sets, and our arguments also yield the Lipschitz stability result

σ1σ2c,(n1)λFm(σ1)Fm(σ2)2σ1,σ2[a,b]n.\hskip 0.86108pt\|\sigma_{1}-\sigma_{2}\|\hskip 0.86108pt_{c,\infty}\leq\frac{(n-1)}{\lambda}\hskip 0.86108pt\|F_{m}(\sigma_{1})-F_{m}(\sigma_{2})\|\hskip 0.86108pt_{2}\quad\forall\sigma_{1},\sigma_{2}\in[a,b]^{n}. (10)

4 Proof of the main results

In the following, the jj-th unit vector is denoted by ejne_{j}\in\mathbb{R}^{n}. We write 𝟙:=(1,1,,1)Tn\mathbbm{1}:=(1,1,\ldots,1)^{T}\in\mathbb{R}^{n} for the vector containing only ones, and we write ej:=𝟙eje_{j}^{\prime}:=\mathbbm{1}-e_{j} for the vector containing ones in all entries except the jj-th. We furthermore split ej=ej++eje_{j}^{\prime}=e_{j}^{+}+e_{j}^{-}, where

ej+:=i=j+1,,nei, and ej:=i=1,,j1ei.e_{j}^{+}:=\sum_{i=j+1,\ldots,n}e_{i},\quad\text{ and }\quad e_{j}^{-}:=\sum_{i=1,\ldots,j-1}e_{i}.

Note that we use the usual convention of empty sums being zero, so that en+=0ne_{n}^{+}=0\in\mathbb{R}^{n}, and e1=0ne_{1}^{-}=0\in\mathbb{R}^{n}.

4.1 The case of infinitely many measurements

In this subsection, we will prove Theorem 1, where the measurements are given by the infinite-dimensional Neumann-Dirichlet operator Λ(σ)(L2(Σ))\Lambda(\sigma)\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)).

Let us sketch the main ideas and outline the proof first. We will start by summarizing some known results on the monotonicity and convexity of the forward mapping

Λ:+n(L2(Σ)).\Lambda:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(L^{2}_{\diamond}(\Sigma)).

This will show that the admissible sets of the optimization problems (5) and (6) are indeed convex sets. It also yields the monotonicity property that, for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+},

τσ implies Λ(τ)Λ(σ).\tau\geq\sigma\quad\text{ implies }\quad\Lambda(\tau)\preceq\Lambda(\sigma).

Using localized potentials arguments in the form of directional derivatives, we then derive a converse monotonicity result showing that

c+n:Λ(τ)Λ(σ) implies cTτcTσ,\exists c\in\mathbb{R}^{n}_{+}:\quad\Lambda(\tau)\preceq\Lambda(\sigma)\quad\text{ implies }\quad c^{T}\tau\geq c^{T}\sigma, (11)

for all σ,τ[a,b]n\sigma,\tau\in[a,b]^{n}. Clearly, this implies that σ^\hat{\sigma} is a minimizer of the optimization problem (5). By proving a slightly stronger variant of (11), we also obtain uniqueness of the minimizer and the error estimate in Theorem 1(b).

Monotonicity, convexity, and localized potentials

We collect several known properties of the forward mapping in the following lemma. We also rewrite the localized potentials arguments from [10, 17] as a definiteness property of the directional derivatives of Λ\Lambda. The latter will be the basis for proving a converse monotonicity result in the next subsection.

Lemma 4.
  1. (a)

    Λ\Lambda is Fréchet differentiable with continuous derivative

    Λ:+n(n,(L2(Σ))).\Lambda^{\prime}:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(\mathbb{R}^{n},\mathcal{L}(L^{2}_{\diamond}(\Sigma))).

    Λ(σ)d(L2(Σ))\Lambda^{\prime}(\sigma)d\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)) is compact and selfadjoint for all σ+n\sigma\in\mathbb{R}^{n}_{+}, and dnd\in\mathbb{R}^{n}. Moreover,

    Λ(σ)d\displaystyle\Lambda^{\prime}(\sigma)d 0\displaystyle\preceq 0\quad for all σ+n\sigma\in\mathbb{R}^{n}_{+}, 0dn0\leq d\in\mathbb{R}^{n}, (12)
    Λ(τ)Λ(σ)\displaystyle\Lambda(\tau)-\Lambda(\sigma) Λ(σ)(τσ)\displaystyle\succeq\Lambda^{\prime}(\sigma)(\tau-\sigma)\quad for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}. (13)
  2. (b)

    Λ\Lambda is monotonically decreasing, i.e. for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}

    στ implies Λ(σ)Λ(τ).\displaystyle\sigma\geq\tau\quad\text{ implies }\quad\Lambda(\sigma)\preceq\Lambda(\tau). (14)

    Also, for all σ+n\sigma\in\mathbb{R}^{n}_{+}, and d,d~nd,\tilde{d}\in\mathbb{R}^{n},

    dd~ implies Λ(σ)dΛ(σ)d~.\displaystyle d\geq\tilde{d}\quad\text{ implies }\quad\Lambda^{\prime}(\sigma)d\preceq\Lambda^{\prime}(\sigma)\tilde{d}. (15)
  3. (c)

    Λ\Lambda is convex, i.e. for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}, and t[0,1]t\in[0,1],

    Λ(tσ+(1t)τ)tΛ(σ)+(1t)Λ(τ).\displaystyle\Lambda(t\sigma+(1-t)\tau)\preceq t\Lambda(\sigma)+(1-t)\Lambda(\tau). (16)
  4. (d)

    For all C>0C>0, j{1,,n}j\in\{1,\ldots,n\}, and σ+n\sigma\in\mathbb{R}^{n}_{+}, it holds that

    Λ(σ)(ejCej+)0.\displaystyle\Lambda^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})\not\succeq 0. (17)
Proof.

It is well known that Λ\Lambda is continuously Fréchet differentiable (cf., e.g., [24, Section 2], or [9, Appendix B]). Given some direction dnd\in\mathbb{R}^{n} the derivative

Λ(σ)d:L2(Ω)L2(Ω)\Lambda^{\prime}(\sigma)d:\ L_{\diamond}^{2}(\partial\Omega)\to L_{\diamond}^{2}(\partial\Omega)

is the selfadjoint compact linear operator associated to the bilinear form

Σg(Λ(σ)d)hds=Ωd(x)uσg(x)uσh(x)dx,\int_{\Sigma}g\left(\Lambda^{\prime}(\sigma)d\right)h\,{\rm{d}}s=-\int_{\Omega}d(x)\,\nabla u^{g}_{\sigma}(x)\cdot\nabla u^{h}_{\sigma}(x)\,{\rm{d}}x,

where, again, we identify dnd\in\mathbb{R}^{n} with the piecewise constant function

d(x)=j=1ndjχPj(x):Ω.d(x)=\sum_{j=1}^{n}d_{j}\chi_{P_{j}}(x):\ \Omega\to\mathbb{R}.

uσgu^{g}_{\sigma}, resp., uσhu^{h}_{\sigma} denote the solutions of (3) with Neumann boundary data gg, resp., hh. Clearly, this implies (12). Assertion (13) is shown in [16, Lemma 2.1], so that (a) is proven.

The monotonicity results (14) and (15) in (b) immediately follow from (13) and (12).

The convexity result in (c) follows from (13) by a standard argument, cf., e.g., [12, Lemma 2].

To prove (d), let j{1,,n}j\in\{1,\ldots,n\}. Then, for all gL2(Ω)g\in L_{\diamond}^{2}(\partial\Omega),

ΣgΛ(σ)(ejCej+)gds=Pj|uσg|2dxCQj|uσg|2dx,\displaystyle-\int_{\Sigma}g\Lambda^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})g\,{\rm{d}}s=\int_{P_{j}}|\nabla u^{g}_{\sigma}|^{2}\,{\rm{d}}x-C\int_{Q_{j}}|\nabla u^{g}_{\sigma}|^{2}\,{\rm{d}}x,

where Qj=i>jPi¯Q_{j}=\bigcup_{i>j}\overline{P_{i}}. Since PjP_{j} is open and disjoint to QjQ_{j}, and the complement of QjQ_{j} is connected to Σ\Sigma, we can apply the localized potentials result in [17, Thm. 3.6, and Section 4.3] to obtain a sequence of boundary currents (gk)k(g_{k})_{k\in\mathbb{N}} with

Pj|uσgk|2dx, and Qj|uσgk|2dx0.\int_{P_{j}}|\nabla u^{g_{k}}_{\sigma}|^{2}\,{\rm{d}}x\to\infty,\quad\text{ and }\quad\int_{Q_{j}}|\nabla u^{g_{k}}_{\sigma}|^{2}\,{\rm{d}}x\to 0.

Hence, for sufficiently large kk\in\mathbb{N},

ΣgkΛ(σ)(ejCej+)gkds>0,\displaystyle-\int_{\Sigma}g_{k}\Lambda^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})g_{k}\,{\rm{d}}s>0,

which proves (d). ∎

Corollary 5.

For every self-adjoint operator Y(L2(Σ))Y\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)), the set

𝒞:={σ[a,b]n:Λ(σ)Y}\mathcal{C}:=\{\sigma\in[a,b]^{n}:\ \Lambda(\sigma)\preceq Y\}

is a closed convex set in n\mathbb{R}^{n}.

Proof.

This follows immediately from the continuity and convexity of Λ\Lambda, which was shown in part (a) and (c) of Lemma 4. ∎

A converse monotonicity result

We will now utilize the properties of the directional derivatives (17) in order to derive the converse monotonicity result (11) (or, more precisely, a slightly stronger version of it). The following arguments stem on the ideas of [13, 14], where (11) is proven with c:=𝟙c:=\mathbbm{1}. The main technical difficulty compared to these previous works, is that the localized potentials results for the Calderón problem are weaker than those known for the Robin problem considered in [13, 14]. This corresponds to the fact that (17) does not contain the term eje_{j}^{-}. We overcome this difficulty by a compactness and scaling approach.

Lemma 6.

For all constants C>0C>0, and j{1,,n}j\in\{1,\ldots,n\}, there exists δ>0\delta>0, so that

Λ(σ)(ejδejCej+)0 for all σ[a,b]n.\displaystyle-\Lambda^{\prime}(\sigma)(e_{j}-\delta e_{j}^{-}-Ce_{j}^{+})\not\preceq 0\quad\text{ for all }\sigma\in[a,b]^{n}. (18)
Proof.

Let C>0C>0, and j{1,,n}j\in\{1,\ldots,n\}. We define the functions

φ:L2(Σ)×+n\displaystyle\varphi:\ L_{\diamond}^{2}(\Sigma)\times\mathbb{R}^{n}_{+} ,\displaystyle\to\mathbb{R},\quad φ(g,σ)\displaystyle\varphi(g,\sigma) :=ΣgΛ(σ)(ejCej+)gds,\displaystyle:=-\int_{\Sigma}g\Lambda^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})g\,{\rm{d}}s,
ψ:+n\displaystyle\psi:\ \mathbb{R}^{n}_{+} ,\displaystyle\to\mathbb{R},\quad ψ(σ)\displaystyle\psi(\sigma) :=supgL2(Σ),g=1φ(g,σ).\displaystyle:=\sup_{g\in L_{\diamond}^{2}(\Sigma),\ \hskip 0.60275pt\|g\|\hskip 0.60275pt=1}\varphi(g,\sigma).

Then (17) implies that ψ(σ)>0\psi(\sigma)>0 for all σ+n\sigma\in\mathbb{R}^{n}_{+}.

Moreover, φ\varphi is continuous by lemma 4, so that ψ\psi is lower semicontinuous. Hence, ψ\psi attains its minimum over the compact set [a,b]n[a,b]^{n}, and it follows that there exists ϵ>0\epsilon>0, so that

ψ(σ)ϵ>0 for all σ[a,b]n.\psi(\sigma)\geq\epsilon>0\quad\text{ for all }\sigma\in[a,b]^{n}.

By continuity and compactness, we also have that

S:=supσ[a,b]nΛ(σ)ej(L2(Σ))<.S:=\sup_{\sigma\in[a,b]^{n}}\hskip 0.86108pt\|\Lambda^{\prime}(\sigma)e_{j}^{-}\|\hskip 0.86108pt_{\mathcal{L}(L^{2}_{\diamond}(\Sigma))}<\infty.

Setting δ:=ϵ2S>0\delta:=\frac{\epsilon}{2S}>0, we now obtain, for all σ[a,b]n\sigma\in[a,b]^{n},

supgL2(Σ),g=1(ΣgΛ(σ)(ejδejCej+)gds)\displaystyle\sup_{g\in L_{\diamond}^{2}(\Sigma),\ \hskip 0.60275pt\|g\|\hskip 0.60275pt=1}\left(-\int_{\Sigma}g\Lambda^{\prime}(\sigma)(e_{j}-\delta e_{j}^{-}-Ce_{j}^{+})g\,{\rm{d}}s\right)
supgL2(Σ),g=1φ(g,σ)δsupgL2(Σ),g=1|Σg(Λ(σ)ej)gds|\displaystyle\geq\sup_{g\in L_{\diamond}^{2}(\Sigma),\ \hskip 0.60275pt\|g\|\hskip 0.60275pt=1}\varphi(g,\sigma)-\delta\sup_{g\in L_{\diamond}^{2}(\Sigma),\ \hskip 0.60275pt\|g\|\hskip 0.60275pt=1}\left|\int_{\Sigma}g\left(\Lambda^{\prime}(\sigma)e_{j}^{-}\right)g\,{\rm{d}}s\right|
ψ(σ)δΛ(σ)ej(L2(Σ)ϵδS=ϵ2>0.\displaystyle\geq\psi(\sigma)-\delta\hskip 0.86108pt\|\Lambda^{\prime}(\sigma)e_{j}^{-}\|\hskip 0.86108pt_{\mathcal{L}(L^{2}_{\diamond}(\Sigma)}\geq\epsilon-\delta S=\frac{\epsilon}{2}>0.

This proves (18). ∎

Lemma 7.

There exist

0<δ1δ2δn1δn:=1,0<\delta_{1}\leq\delta_{2}\leq\dots\leq\delta_{n-1}\leq\delta_{n}:=1, (19)

so that for all σ[a,b]n\sigma\in[a,b]^{n}, and all j{1,,n}j\in\{1,\ldots,n\},

Λ(σ)D(ej(n1)ej)0.-\Lambda^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime})\not\preceq 0. (20)

where Dn×nD\in\mathbb{R}^{n\times n} is the diagonal matrix with diagonal elements δ1,,δn>0\delta_{1},\ldots,\delta_{n}>0.

Proof.
  1. (a)

    Set C:=n1C:=n-1. We will first prove that there exist δj\delta_{j}, j=0,,nj=0,\ldots,n, that fulfill (19), and

    Λ(σ)(δjejδj1CejCej+)0j{1,,n}.-\Lambda^{\prime}(\sigma)\left(\delta_{j}e_{j}-\delta_{j-1}Ce_{j}^{-}-Ce_{j}^{+}\right)\not\preceq 0\quad\forall j\in\{1,\ldots,n\}. (21)

    To prove this, we start with j=nj=n and proceed backwards. By Lemma 6 there exists 0<δ0<\delta with

    Λ(σ)(enδenCen+)0 for all σ[a,b]n,-\Lambda^{\prime}(\sigma)\left(e_{n}-\delta e_{n}^{-}-Ce_{n}^{+}\right)\not\preceq 0\quad\text{ for all }\sigma\in[a,b]^{n},

    and clearly we can choose δC\delta\leq C. Setting δn:=1\delta_{n}:=1 and δn1:=δC1\delta_{n-1}:=\frac{\delta}{C}\leq 1 this yields that

    Λ(σ)(δnenδn1CenCen+)0 for all σ[a,b]n,-\Lambda^{\prime}(\sigma)\left(\delta_{n}e_{n}-\delta_{n-1}Ce_{n}^{-}-Ce_{n}^{+}\right)\not\preceq 0\quad\text{ for all }\sigma\in[a,b]^{n},

    so that (21) is proven for j=nj=n.

    Now assume that there exist 0δk1δn:=10\leq\delta_{k-1}\leq\dots\leq\delta_{n}:=1, so that (21) holds for all j=k,,nj=k,\ldots,n with 1<kn1<k\leq n. Using again Lemma 6, we then obtain 0<δC0<\delta^{\prime}\leq C, so that

    Λ(σ)(ek1δek1Cδk1ek1+)0 for all σ[a,b]n.-\Lambda^{\prime}(\sigma)\left(e_{k-1}-\delta^{\prime}e_{k-1}^{-}-\frac{C}{\delta_{k-1}}e_{k-1}^{+}\right)\not\preceq 0\quad\text{ for all }\sigma\in[a,b]^{n}.

    With δk2:=δk1δCδk1\delta_{k-2}:=\frac{\delta_{k-1}\delta^{\prime}}{C}\leq\delta_{k-1} this yields that

    Λ(σ)(δk1ek1δk2Cek1Cek1+)0,-\Lambda^{\prime}(\sigma)\left(\delta_{k-1}e_{k-1}-\delta_{k-2}Ce_{k-1}^{-}-Ce_{k-1}^{+}\right)\not\preceq 0,

    which proves (21) for j=k1j=k-1. Hence, by induction, (21) can be fulfilled for all j{1,,n}j\in\{1,\ldots,n\}.

  2. (b)

    To see that (21) also implies (20), note that for j{1,,n}j\in\{1,\ldots,n\}

    Dej=δjej,Dejδj1ej, and Dej+ej+.De_{j}=\delta_{j}e_{j},\quad De_{j}^{-}\leq\delta_{j-1}e_{j}^{-},\quad\text{ and }\quad De_{j}^{+}\leq e_{j}^{+}.

    Hence, for all σ[a,b]n\sigma\in[a,b]^{n}, we obtain from (21) and the monotonicity property (15) that

    Λ(σ)D(ej(n1)ej)\displaystyle-\Lambda^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime}) Λ(σ)(δjejδj1(n1)ej(n1)ej+)0,\displaystyle\succeq-\Lambda^{\prime}(\sigma)\left(\delta_{j}e_{j}-\delta_{j-1}(n-1)e_{j}^{-}-(n-1)e_{j}^{+}\right)\not\preceq 0,

    so that (20) is proven for j{1,,n}j\in\{1,\ldots,n\}.

Lemma 8.

Let Dn×nD\in\mathbb{R}^{n\times n} be a diagonal matrix with entries δ1,,δn>0\delta_{1},\ldots,\delta_{n}>0, and assume that, for some σ+n\sigma\in\mathbb{R}^{n}_{+},

Λ(σ)D((n1)ejej)0 for all j{1,,n}.\Lambda^{\prime}(\sigma)D((n-1)e_{j}^{\prime}-e_{j})\not\preceq 0\quad\text{ for all }\quad j\in\{1,\ldots,n\}. (22)

Then

λ:=minj=1,,nλmax(Λ(σ)D((n1)ejej))>0,\lambda:=\min_{j=1,\ldots,n}\lambda_{\max}(\Lambda^{\prime}(\sigma)D((n-1)e_{j}^{\prime}-e_{j}))>0, (23)

and, for all dnd\in\mathbb{R}^{n},

λmax(Λ(σ)d)<λD1dn1 implies minj=1,,ndjδj>1n1maxj=1,,ndjδj.\lambda_{\max}(\Lambda^{\prime}(\sigma)d)<\frac{\lambda\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}}{n-1}\quad\text{ implies }\quad\min_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}}>-\frac{1}{n-1}\max_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}}. (24)
Proof.

Clearly, (22) implies λ>0\lambda>0. We now prove (24) by contraposition and assume that there exists an index k{1,,n}k\in\{1,\ldots,n\} with

dkδk=minj=1,,ndjδj1n1maxj=1,,ndjδj.\frac{d_{k}}{\delta_{k}}=\min_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}}\leq-\frac{1}{n-1}\max_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}}.

We have that either

D1d=maxj=1,,ndjδj, or D1d=minj=1,,ndjδj=dkδk,\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}=\max_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}},\quad\text{ or }\quad\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}=-\min_{j=1,\ldots,n}\frac{d_{j}}{\delta_{j}}=-\frac{d_{k}}{\delta_{k}},

and in both cases it follows that

dkδk1n1D1d.\frac{d_{k}}{\delta_{k}}\leq-\frac{1}{n-1}\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}.

This yields

D1d1n1D1dek+D1dek=D1dn1((n1)ekek),D^{-1}d\leq-\frac{1}{n-1}\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}e_{k}+\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}e_{k}^{\prime}=\frac{\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}}{n-1}\left((n-1)e_{k}^{\prime}-e_{k}\right),

and thus

dD1dn1D((n1)ekek).d\leq\frac{\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}}{n-1}D\left((n-1)e_{k}^{\prime}-e_{k}\right).

Hence, by monotonicity,

Λ(σ)dD1dn1Λ(σ)D((n1)ekek)\Lambda^{\prime}(\sigma)d\succeq\frac{\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}}{n-1}\Lambda^{\prime}(\sigma)D\left((n-1)e_{k}^{\prime}-e_{k}\right)

and we then obtain from (23) that

λmax(Λ(σ)d)D1dn1λ,\lambda_{\max}(\Lambda^{\prime}(\sigma)d)\geq\frac{\hskip 0.86108pt\|D^{-1}d\|\hskip 0.86108pt_{\infty}}{n-1}\lambda,

so that (24) is proven. ∎

From the preceding lemmas, we can now deduce our converse montonicity result.

Corollary 9.

There exist c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, so that the following holds.

  1. (a)

    For all σ[a,b]n\sigma\in[a,b]^{n}, and dnd\in\mathbb{R}^{n},

    λmax(Λ(σ)d)<λdc,n1 implies cTd>0,\lambda_{\max}(\Lambda^{\prime}(\sigma)d)<\frac{\lambda\hskip 0.86108pt\|d\|\hskip 0.86108pt_{c,\infty}}{n-1}\quad\text{ implies }\quad c^{T}d>0,

    and thus, a fortiori, for d0d\neq 0,

    Λ(σ)d0 implies cTd>0.\Lambda^{\prime}(\sigma)d\preceq 0\quad\text{ implies }\quad c^{T}d>0.
  2. (b)

    For all σ,τ[a,b]n\sigma,\tau\in[a,b]^{n},

    λmax(Λ(τ)Λ(σ))<λτσc,n1 implies cTτ>cTσ,\lambda_{\max}(\Lambda(\tau)-\Lambda(\sigma))<\frac{\lambda\hskip 0.86108pt\|\tau-\sigma\|\hskip 0.86108pt_{c,\infty}}{n-1}\quad\text{ implies }\quad c^{T}\tau>c^{T}\sigma,

    and thus, a fortiori, for στ\sigma\neq\tau,

    Λ(τ)Λ(σ) implies cTτ>cTσ.\Lambda(\tau)\preceq\Lambda(\sigma)\quad\text{ implies }\quad c^{T}\tau>c^{T}\sigma.
  3. (c)

    The non-linear forward mapping Λ:+n(L2(Σ))\Lambda:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(L_{\diamond}^{2}(\Sigma)) is injective.

  4. (d)

    For all σ+n\sigma\in\mathbb{R}^{n}_{+}, the linearized forward mapping Λ(σ)(n,(L2(Σ)))\Lambda^{\prime}(\sigma)\in\mathcal{L}(\mathbb{R}^{n},\mathcal{L}(L_{\diamond}^{2}(\Sigma))) is injective.

Proof.

Lemma 7 yields a diagonal matrix Dn×nD\in\mathbb{R}^{n\times n} with diagonal elements δ1,,δn>0\delta_{1},\ldots,\delta_{n}>0, so that

λmax(Λ(σ)D((n1)ejej))>0 for all σ[a,b]n,j=1,,n.\lambda_{\max}(\Lambda^{\prime}(\sigma)D((n-1)e_{j}^{\prime}-e_{j}))>0\quad\text{ for all }\sigma\in[a,b]^{n},\ j=1,\ldots,n.

Since

σminj=1,,nλmax(Λ(σ)D((n1)ejej))\sigma\mapsto\min_{j=1,\ldots,n}\lambda_{\max}(\Lambda^{\prime}(\sigma)D((n-1)e_{j}^{\prime}-e_{j}))

is a continuous mapping from [a,b]n[a,b]^{n}\to\mathbb{R}, we obtain by compactness that

λ>0:minj=1,,nλmax(Λ(σ)D((n1)ejej))λ for all σ[a,b]n.\exists\lambda>0:\quad\min_{j=1,\ldots,n}\lambda_{\max}(\Lambda^{\prime}(\sigma)D((n-1)e_{j}^{\prime}-e_{j}))\geq\lambda\quad\text{ for all }\sigma\in[a,b]^{n}.

Setting cT:=(1δ11δn)c^{T}:=\begin{pmatrix}\frac{1}{\delta_{1}}&\dots&\frac{1}{\delta_{n}}\end{pmatrix}, (a) follows from Lemma 8.

(b) follows from (a) as the convexity property (13) yields that

λmax(Λ(σ)(τσ))λmax(Λ(τ)Λ(σ)) for all σ,τ[a,b]n.\lambda_{\max}(\Lambda^{\prime}(\sigma)(\tau-\sigma))\leq\lambda_{\max}(\Lambda(\tau)-\Lambda(\sigma))\quad\text{ for all }\sigma,\tau\in[a,b]^{n}.

Clearly, (b) implies injectivity of Λ:[a,b]n(L2(Σ))\Lambda:\ [a,b]^{n}\to\mathcal{L}(L_{\diamond}^{2}(\Sigma)). Since this holds for arbitrary large intervals [a,b]n[a,b]^{n}, we obtain injectivity on all of +n\mathbb{R}^{n}_{+}, so that (c) is proven. Likewise, (d) follows from (a). ∎

Proof of Theorem 1 and Remark 2

We can now prove Theorem 1 with c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0 as given by Corollary 9. First note that Corollary 5 ensures that (5) and (6) are linear optimization problems on convex sets.

Let σ^[a,b]n\hat{\sigma}\in[a,b]^{n}, and Y^:=Λ(σ^)\hat{Y}:=\Lambda(\hat{\sigma}). Then σ^\hat{\sigma} is feasible for the optimization problem (5). For every other feasible σ[a,b]n\sigma\in[a,b]^{n}, σσ^\sigma\neq\hat{\sigma}, the feasibility yields that Λ(σ)Y^=Λ(σ^)\Lambda(\sigma)\preceq\hat{Y}=\Lambda(\hat{\sigma}), so that cTσ>cTσ^c^{T}\sigma>c^{T}\hat{\sigma} by Corollary 9(b). Hence, σ^\hat{\sigma} is the unique minimizer of the convex semi-definite optimization problem (5), and thus (a) is proven.

To prove (b), let δ>0\delta>0, and Yδ(L2(Σ))Y^{\delta}\in\mathcal{L}(L^{2}_{\diamond}(\Sigma)) be self-adjoint with YδY^(L2(Σ))δ\hskip 0.86108pt\|Y^{\delta}-\hat{Y}\|\hskip 0.86108pt_{\mathcal{L}(L^{2}_{\diamond}(\Sigma))}\leq\delta. Since the constraint set of (6) is non-empty and compact, and the cost function is continuous, there exists a minimizer σδ\sigma^{\delta}. Since also σ^\hat{\sigma} is feasible for (6), it follows that cTσδcTσ^c^{T}\sigma^{\delta}\leq c^{T}\hat{\sigma}. By contraposition of Corollary 9(b) we obtain that

λσδσ^c,δn1λmax(Λ(σδ)Λ(σ^))λmax(Yδ+δIY^)2δ.\displaystyle\frac{\lambda\hskip 0.86108pt\|\sigma^{\delta}-\hat{\sigma}\|\hskip 0.86108pt_{c,\delta}}{n-1}\leq\lambda_{\max}(\Lambda(\sigma^{\delta})-\Lambda(\hat{\sigma}))\leq\lambda_{\max}(Y^{\delta}+\delta I-\hat{Y})\leq 2\delta.

Hence, (b) follows, and the same argument also yields the Lipschitz stability result in Remark 2. The injectivity results are proven in Corollary 9,(c) and (d). \Box

4.2 The case of finitely many measurements

We will now treat the case of finitely many measurements. As introduced in subsection 3.3, let g1,g2,L2(Σ)g_{1},g_{2},\ldots\in L^{2}_{\diamond}(\Sigma) have dense span in L2(Σ)L^{2}_{\diamond}(\Sigma), and consider the finite-dimensional forward operator

Fm:+n𝕊mm×m,F(σ):=(ΣgjΛ(σ)gkds)j,k=1,,m,F_{m}:\ \mathbb{R}^{n}_{+}\to\mathbb{S}_{m}\subset\mathbb{R}^{m\times m},\quad F(\sigma):=\left(\int_{\Sigma}g_{j}\Lambda(\sigma)g_{k}\,{\rm{d}}s\right)_{j,k=1,\ldots,m},

with mm\in\mathbb{N}.

Monotonicity, convexity, and localized potentials

Again, we start by summarizing the monotonicity, convexity, and localized potentials properties of the forward operator.

Lemma 10.
  1. (a)

    FmF_{m} is Fréchet differentiable with continuous derivative

    Fm:+n(n,m×m).F_{m}^{\prime}:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(\mathbb{R}^{n},\mathbb{R}^{m\times m}).

    Fm(σ)dm×mF_{m}^{\prime}(\sigma)d\in\mathbb{R}^{m\times m} is symmetric for all σ+n\sigma\in\mathbb{R}^{n}_{+}, and dnd\in\mathbb{R}^{n}. Moreover,

    Fm(σ)d\displaystyle F_{m}^{\prime}(\sigma)d 0\displaystyle\preceq 0\quad for all σ+n\sigma\in\mathbb{R}^{n}_{+}, 0dn0\leq d\in\mathbb{R}^{n}, (25)
    Fm(τ)Fm(σ)\displaystyle F_{m}(\tau)-F_{m}(\sigma) Fm(σ)(τσ)\displaystyle\succeq F_{m}^{\prime}(\sigma)(\tau-\sigma)\quad for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}. (26)
  2. (b)

    FmF_{m} is monotonically decreasing, i.e. for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}

    στ implies Fm(σ)Fm(τ),\displaystyle\sigma\geq\tau\quad\text{ implies }\quad F_{m}(\sigma)\preceq F_{m}(\tau), (27)

    Also, for all σ+n\sigma\in\mathbb{R}^{n}_{+}, and d,d~nd,\tilde{d}\in\mathbb{R}^{n},

    dd~ implies Fm(σ)dFm(σ)d~.\displaystyle d\geq\tilde{d}\quad\text{ implies }\quad F_{m}^{\prime}(\sigma)d\preceq F_{m}^{\prime}(\sigma)\tilde{d}. (28)
  3. (c)

    FmF_{m} is convex, i.e. for all σ,τ+n\sigma,\tau\in\mathbb{R}^{n}_{+}, and t[0,1]t\in[0,1],

    Fm(tσ+(1t)τ)tFm(σ)+(1t)Fm(τ).\displaystyle F_{m}(t\sigma+(1-t)\tau)\preceq tF_{m}(\sigma)+(1-t)F_{m}(\tau). (29)
  4. (d)

    For all C>0C>0, there exists MM\in\mathbb{N}, so that

    Fm(σ)(ejCej+)0 for all σ[a,b]n,j{1,,n},mM.\displaystyle F_{m}^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})\not\succeq 0\quad\text{ for all }\sigma\in[a,b]^{n},\ j\in\{1,\ldots,n\},\ m\geq M. (30)
Proof.

For all σ[a,b]n\sigma\in[a,b]^{n}, mm\in\mathbb{N}, and vmv\in\mathbb{R}^{m}, we have that

vTFm(σ)v=ΣgΛ(σ)gds, with g=j=1mvjgj.v^{T}F_{m}(\sigma)v=\int_{\Sigma}g\Lambda(\sigma)g\,{\rm{d}}s,\quad\text{ with }g=\sum_{j=1}^{m}v_{j}g_{j}.

Hence, the monotonicity and convexity properties (a), (b), and (c), immediately carry over from that of the infinite-dimensional forward operator Λ\Lambda in Lemma 4.

To prove (d), it clearly suffices to show that, for all C>0C>0,

m:Fm(σ)(ejCej+)0 for all σ[a,b]n,j{1,,n}.\displaystyle\exists m\in\mathbb{N}:\quad F_{m}^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})\not\succeq 0\quad\text{ for all }\sigma\in[a,b]^{n},\ j\in\{1,\ldots,n\}.

We argue by contradiction, and assume that there exists C>0C>0, so that

m:Fm(σm)(ejmCejm+)0 for some σm[a,b]n,jm{1,,n}.\displaystyle\forall m\in\mathbb{N}:\ F_{m}^{\prime}(\sigma_{m})(e_{j_{m}}-Ce_{j_{m}}^{+})\succeq 0\ \text{ for some }\sigma_{m}\in[a,b]^{n},\ j_{m}\in\{1,\ldots,n\}. (31)

By compactness, after passing to a subsequence, we can assume that σmσ\sigma_{m}\to\sigma, and jm=jj_{m}=j for some σ[a,b]n\sigma\in[a,b]^{n}, and j{1,,n}j\in\{1,\ldots,n\}. Since (31) also implies that

Fk(σm)(ejmCejm+)0 for all k,mk,F_{k}^{\prime}(\sigma_{m})(e_{j_{m}}-Ce_{j_{m}}^{+})\succeq 0\quad\text{ for all }k\in\mathbb{N},\ m\geq k,

it follows by continuity that

Fk(σ)(ejCej+)0 for all k.F_{k}^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})\succeq 0\quad\text{ for all }k\in\mathbb{N}.

However, since g1,g2,L2(Σ)g_{1},g_{2},\ldots\in L^{2}_{\diamond}(\Sigma) have dense span in L2(Σ)L^{2}_{\diamond}(\Sigma), this would imply that

Λ(σ)(ejCej+)0,\Lambda^{\prime}(\sigma)(e_{j}-Ce_{j}^{+})\succeq 0,

and thus contradict Lemma 4. ∎

As in the infinite-dimensional case, the continuity and convexity properties of the forward mapping yield that the admissible set of the optimization problems (8) and (9) is closed and convex.

Corollary 11.

For all mm\in\mathbb{N}, and every symmetric matrix Ym×mY\in\mathbb{R}^{m\times m}, the set

𝒞:={σ[a,b]n:Fm(σ)Y}\mathcal{C}:=\{\sigma\in[a,b]^{n}:\ F_{m}(\sigma)\preceq Y\}

is a closed convex set in n\mathbb{R}^{n}.

Proof.

This follows from Lemma 10. ∎

A converse monotonicity result

We will now show that the converse monotonicity result in Corollary 9 still holds for the case of finitely many (but sufficiently many) measurements.

Lemma 12.

There exist c+nc\in\mathbb{R}^{n}_{+}, and λ>0\lambda>0, so that for sufficiently large mm\in\mathbb{N}, the following holds.

  1. (a)

    For all σ[a,b]n\sigma\in[a,b]^{n}, and dnd\in\mathbb{R}^{n},

    λmax(Fm(σ)d)<λdc,n1 implies cTd>0,\lambda_{\max}(F_{m}^{\prime}(\sigma)d)<\frac{\lambda\hskip 0.86108pt\|d\|\hskip 0.86108pt_{c,\infty}}{n-1}\quad\text{ implies }\quad c^{T}d>0,

    and thus, a fortiori, for d0d\neq 0,

    Fm(σ)d0 implies cTd>0.F_{m}^{\prime}(\sigma)d\preceq 0\quad\text{ implies }\quad c^{T}d>0.
  2. (b)

    For all σ,τ[a,b]n\sigma,\tau\in[a,b]^{n},

    λmax(Fm(τ)Fm(σ))<λτσc,n1 implies cTτ>cTσ,\lambda_{\max}(F_{m}(\tau)-F_{m}(\sigma))<\frac{\lambda\hskip 0.86108pt\|\tau-\sigma\|\hskip 0.86108pt_{c,\infty}}{n-1}\quad\text{ implies }\quad c^{T}\tau>c^{T}\sigma,

    and thus, a fortiori, for στ\sigma\neq\tau,

    Fm(τ)Fm(σ) implies cTτ>cTσ.F_{m}(\tau)\preceq F_{m}(\sigma)\quad\text{ implies }\quad c^{T}\tau>c^{T}\sigma.
  3. (c)

    The non-linear forward mapping Fm:+n(L2(Σ))F_{m}:\ \mathbb{R}^{n}_{+}\to\mathcal{L}(L_{\diamond}^{2}(\Sigma)) is injective.

  4. (d)

    For all σ+n\sigma\in\mathbb{R}^{n}_{+}, the linearized forward mapping Fm(σ)(n,(L2(Σ)))F_{m}^{\prime}(\sigma)\in\mathcal{L}(\mathbb{R}^{n},\mathcal{L}(L_{\diamond}^{2}(\Sigma))) is injective.

Proof.

Using Lemma 7, we obtain a diagonal matrix Dn×nD\in\mathbb{R}^{n\times n} with diagonal elements δ1,,δn>0\delta_{1},\ldots,\delta_{n}>0, so that for all σ[a,b]n\sigma\in[a,b]^{n}

Λ(σ)D(ej(n1)ej)0.-\Lambda^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime})\not\preceq 0.

By the same compactness argument as in the proof of Lemma 10(d), it follows that there exists MM\in\mathbb{N} with

Fm(σ)D(ej(n1)ej)0 for all mM.-F_{m}^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime})\not\preceq 0\quad\text{ for all }m\geq M.

Using compactness again we get that

λ:=minσ[a,b]nλmax(FM(σ)D(ej(n1)ej))>0,\lambda:=\min_{\sigma\in[a,b]^{n}}\lambda_{\max}\left(-F_{M}^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime})\right)>0,

and thus

λmax(Fm(σ)D(ej(n1)ej))λ for all σ[a,b]n,mM.\lambda_{\max}\left(-F_{m}^{\prime}(\sigma)D(e_{j}-(n-1)e_{j}^{\prime})\right)\geq\lambda\quad\text{ for all }\sigma\in[a,b]^{n},\ m\geq M.

Setting cT:=(1δ11δn)c^{T}:=\begin{pmatrix}\frac{1}{\delta_{1}}&\cdots&\frac{1}{\delta_{n}}\end{pmatrix}, and applying Lemma 8 with FmF_{m}, mMm\geq M, in place of Λ\Lambda, assertion (a) follows. Assertion (b)–(d) follow as in Corollary 9. ∎

Proof of Theorem 3

Theorem 3 and the Lipschitz stability result (10) now follow from Lemma 12 exactly as in the infinite-dimensional case. \Box

5 Conclusions and Outlook

We conclude this work with some remarks on the applicability of our results and possible extensions. The Calderón problem is infamous for its high degree of non-linearity and ill-posedness. The central point of this work is to show that the high non-linearity of the problem does not inevitably lead to the problem of local convergence (resp., local minima) demonstrated in section 2, but that convex reformulations are possible. In that sense, our result proves that it is principally possible to overcome the problem of non-linearity in the Calderón problem with finitely many unknowns.

Let us stress that this is purely a theoretical existence result and that our proofs are non-constructive in three important aspects: We show that there exists a number of measurements that uniquely determine the unknown conductivity values and allow for the convex reformulation, but we do not have a constructive method for calculating the required number of measurements. We show that the problem is equivalent to minimizing a linear functional under a convex constraint, but we do not have a constructive method for calculating the vector cnc\in\mathbb{R}^{n} defining the linear functional. Also, we derive an error bound for the case of noisy measurements, but we do not have a constructive method for determining the error bound constant λ>0\lambda>0.

For the simpler, but closely related, non-linear inverse problem of identifying a Robin coefficient [15, 13, 14], constructive answers to these three issues are known. [14] gives an explicit (and easy-to-check) criterium to identify whether the number of measurements is sufficiently high for uniqueness and convex reformulation, and to explicitly calculate the stability constant λ\lambda in the error bound. The criterion is based on checking a definiteness property of certain directional derivatives in only finitely many evaluations points. A similar approach might be possible for the Calderón problem considered in this work, but the directional derivative arguments are technically much more involved and the extension of the arguments in [14] is far from trivial. Moreover, for the Robin problem one can simply choose c:=𝟙c:=\mathbbm{1}, but this is based on stronger localized potentials results that do not hold for the Calderón problem. Finding methods to constructively characterize cc for the Calderón problem will be an important topic for further research. At that point, let us however stress again that our result shows that cc only depends on the given setting (i.e., the domain and pixel partition and the upper and lower conductivity bounds), but not on the unknown solution. Hence, for a fixed given setting, one could try to determine cc in an offline phase, e.g., by calculating Fm(σ)F_{m}(\sigma) for several samples of σ\sigma, and adapting cc to these samples.

References

  • [1] A. Adler and D. Holder. Electrical impedance tomography: methods, history and applications. CRC Press, United States, 2021.
  • [2] G. S. Alberti and M. Santacesaria. Calderón’s inverse problem with a finite number of measurements. In Forum of Mathematics, Sigma, volume 7. Cambridge University Press, 2019.
  • [3] M. Brühl and M. Hanke. Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse Problems, 16(4):1029, 2000.
  • [4] A. P. Calderón. On an inverse boundary value problem. In W. H. Meyer and M. A. Raupp, editors, Seminar on Numerical Analysis and its Application to Continuum Physics, pages 65–73. Brasil. Math. Soc., Rio de Janeiro, 1980.
  • [5] A. P. Calderón. On an inverse boundary value problem. Comput. Appl. Math., 25(2–3):133–138, 2006.
  • [6] P. Caro and K. M. Rogers. Global uniqueness for the Calderón problem with Lipschitz conductivities. In Forum of Mathematics, Pi, volume 4. Cambridge University Press, 2016.
  • [7] H. Garde. Reconstruction of piecewise constant layered conductivities in electrical impedance tomography. Communications in Partial Differential Equations, pages 1–16, 2020.
  • [8] H. Garde. Simplified reconstruction of layered materials in EIT. Applied Mathematics Letters, 126:107815, 2022.
  • [9] H. Garde and S. Staboulis. Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. Numerische Mathematik, 135(4):1221–1251, 2017.
  • [10] B. Gebauer. Localized potentials in electrical impedance tomography. Inverse Probl. Imaging, 2(2):251–269, 2008.
  • [11] B. Harrach. Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Problems, 35(2):024005, 2019.
  • [12] B. Harrach. An introduction to finite element methods for inverse coefficient problems in elliptic PDEs. Jahresber. Dtsch. Math. Ver., 123(3):183–210, 2021.
  • [13] B. Harrach. Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem. Numerische Mathematik, 147(1):29–70, 2021.
  • [14] B. Harrach. Solving an inverse elliptic coefficient problem by convex non-linear semidefinite programming. Optim. Lett., 16(5):1599–1609, 2022.
  • [15] B. Harrach and H. Meftahi. Global uniqueness and Lipschitz-stability for the inverse Robin transmission problem. SIAM Journal on Applied Mathematics, 79(2):525–550, 2019.
  • [16] B. Harrach and J. K. Seo. Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM Journal on Mathematical Analysis, 42(4):1505–1518, 2010.
  • [17] B. Harrach and M. Ullrich. Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM Journal on Mathematical Analysis, 45(6):3382–3403, 2013.
  • [18] A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse problems, 14(6):1489, 1998.
  • [19] M. V. Klibanov, J. Li, and W. Zhang. Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Problems, 2019.
  • [20] R. Kohn and M. Vogelius. Determining Conductivity by Boundary Measurements. Comm. Pure Appl. Math., 37:289–298, 1984.
  • [21] R. Kohn and M. Vogelius. Determining conductivity by boundary measurements II. Interior results. Comm. Pure Appl. Math., 38:643–667, 1985.
  • [22] K. Krupchyk and G. Uhlmann. The Calderón problem with partial data for conductivities with 3/2 derivatives. Communications in Mathematical Physics, 348(1):185–219, 2016.
  • [23] A. Lechleiter and A. Rieder. Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems, 24(6):065009, 18, 2008.
  • [24] A. Lechleiter and A. Rieder. Newton regularizations for impedance tomography: convergence by local injectivity. Inverse Problems, 24(6):065009, 2008.
  • [25] J. L. Mueller and S. Siltanen. Linear and nonlinear inverse problems with practical applications. SIAM, United States, 2012.
  • [26] J. K. Seo and E. J. Woo. Nonlinear inverse problems in imaging. John Wiley & Sons, United States, 2012.
  • [27] A. Tamburrino and G. Rubinacci. A new non-iterative inversion method for electrical resistance tomography. Inverse Problems, 18(6):1809, 2002.