This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The cohomology of the classifying space of PU(4)PU(4)

Feifei Fan Feifei Fan, School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China. fanfeifei@mail.nankai.edu.cn
Abstract.

Let BPU(n)BPU(n) be the classifying space of the projective unitary group PU(n)PU(n). We determine the integral cohomology ring of BPU(4)BPU(4), and the Steenrod algebra structure of its mod 22 cohomology.

2020 Mathematics Subject Classification:
55R35, 55R40, 55S10, 55T10
The author is supported by the National Natural Science Foundation of China (Grant no. 12271183) and by the GuangDong Basic and Applied Basic Research Foundation (Grant no. 2023A1515012217).

1. Introduction

Let GG be a topological group. The classifying space BGBG of GG is characterized as the base space of a universal GG-bundle GEGBGG\to EG\to BG. The cohomology of BGBG is the main tool in the theory of classifying principal GG-bundles.

Let U(n)U(n) be the group of n×nn\times n unitary matrices. The projective unitary group PU(n)PU(n) is the quotient group U(n)/S1U(n)/S^{1} of U(n)U(n) by its center subgroup S1={eiθIn:θ[0,2π]}S^{1}=\{e^{i\theta}I_{n}:\theta\in[0,2\pi]\}, where InI_{n} denotes the identity matrix. PU(n)PU(n) is homotopy equivalent to PGL(n,)PGL(n,\mathbb{C}), the projective general linear group GL(n,)/GL(n,\mathbb{C})/\mathbb{C}^{*}, which is the automorphism group of the algebra of n×nn\times n complex matrices. Therefore, for a pointed space XX, the set of pointed homotopy classes of maps [X,BPU(n)][X,BPU(n)] also classifies bundles of n×nn\times n complex matrix algebras over XX, known as the topological Azumaya algebras of degree nn over XX. (See [9].)

The cohomology ring of BPU(n)BPU(n) also plays a significant role in the study of the topological period-index problem, which was introduced by Antieau and Williams [1, 2] as an analogue of period-index problems in algebraic geometry (cf. [3, 7, 19]). Gu [10, 11], Crowley and Grant [6] also investigated this problem for certain topological spaces.

Since PU(n)PU(n) can also be viewed as the quotient group of the special unitary group SU(n)SU(n) by its center subgroup /n\mathbb{Z}/n generated by e2πi/nIne^{2\pi i/n}I_{n}, there is an induced fibration of classifying spaces:

B(/n)BSU(n)BPU(n).B(\mathbb{Z}/n)\to BSU(n)\to BPU(n).

Hence, for a commutative ring RR, if 1/nR1/n\in R, then

H(BPU(n);R)H(BSU(n);R)R[c2,c3,cn],deg(ci)=2i.H^{*}(BPU(n);R)\cong H^{*}(BSU(n);R)\cong R[c_{2},c_{3}\dots,c_{n}],\ \ \deg(c_{i})=2i.

It follows that if xH(BPU(n);)x\in H^{*}(BPU(n);\mathbb{Z}) is a torsion element, then there exists k0k\geq 0 such that nkx=0n^{k}x=0. (In the case of Chow rings, Vezzosi [23] proved the stronger result that all torsion classes in the Chow ring of BPGL(n,)BPGL(n,\mathbb{C}) are nn-torsion.)

However, if nn is not invertible in the coefficient ring RR, the ring structure of H(BPU(n);R)H^{*}(BPU(n);R) is very complicated for general nn. Here we list some of the known results on the cohomology of BPU(n)BPU(n) for special values of nn.

Since PU(2)=SO(3)PU(2)=SO(3), the ring H(BPU(2);)H^{*}(BPU(2);\mathbb{Z}) is well understood as a special case of the result of Brown [4].

The ring H(BPU(3);/3)H^{*}(BPU(3);\mathbb{Z}/3) is computed in Kono-Mimura-Shimada [16]. The Steenrod algebra structure of H(BPU(3);/3)H^{*}(BPU(3);\mathbb{Z}/3) and the Brown-Peterson cohomology of BPU(3)BPU(3) are determined in Kono-Yagita [17].

The ring H(BPU(n);/2)H^{*}(BPU(n);\mathbb{Z}/2) is known if n2n\equiv 2 mod 44 (Kono-Mimura [15] and Toda [21]). In [21], Toda also computed the ring H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2).

In [24], Vistoli provided a description of H(BPU(p);)H^{*}(BPU(p);\mathbb{Z}), as well as the Chow ring of BPGL(p,)BPGL(p,\mathbb{C}), for any odd prime pp. In particular, the ring structure of H(BPU(3);)H^{*}(BPU(3);\mathbb{Z}) is given in terms of generators and relations there. We will explicitly explain Vistoli’s result in the next Section.

More interesting results on the ordinary cohomology ring H(BPU(p);/p)H^{*}(BPU(p);\mathbb{Z}/p) (resp. on the Brown-Peterson cohomology of BPU(p)BPU(p)) for an arbitrary prime pp can be found in Vavpetič-Viruel [22] (resp. in Masaki-Yagita [20]).

For an arbitrary integer n>3n>3, the cohomology of BPU(n)BPU(n) is only known in certain finite range of dimensions. For instance, Gu [12] determined the ring structure of H(BPU(n);)H^{*}(BPU(n);\mathbb{Z}) in dimensions less than or equal to 1010. Other partial results on the pp-local cohomology groups of BPU(n)BPU(n) for an odd prime pp, pnp\mid n, can be found in Gu-Zhang-Zhang-Zhong [14] and Zhang-Zhang-Zhong [25].

Summarizing these results, the only examples of BPU(n)BPU(n), whose integral cohomology rings can be described via generators and relations, are the cases n=2,3n=2,3. Also, these are the only cases for which the Steenrod algebra structure of H(BPU(n);/p)H^{*}(BPU(n);\mathbb{Z}/p), pp a prime such that pnp\mid n, are known. The main goal of this paper is to determine the integral cohomology ring of BPU(4)BPU(4) and the Steenrod algebra structure of its mod 22 cohomology.

2. Main results

Notations.

For an integer n>0n>0, let Λn\Lambda_{n} be the ring of symmetric polynomials over \mathbb{Z} in nn variables. It is known that Λn=[σ1,,σn]\Lambda_{n}=\mathbb{Z}[\sigma_{1},\dots,\sigma_{n}], where σi\sigma_{i} is the iith elementary symmetric polynomial in nn variables. Let ΛndΛn\Lambda_{n}^{d}\subset\Lambda_{n} be the \mathbb{Z}-submodule of symmetric polynomials of degree dd.

Let =i=1n/vi\nabla=\sum_{i=1}^{n}\partial/\partial v_{i} be the linear differential operator acting on the polynomial algebra [v1,,vn]\mathbb{Z}[v_{1},\dots,v_{n}]. It is easy to see that \nabla on [v1,,vn]\mathbb{Z}[v_{1},\dots,v_{n}] preserves symmetric polynomials, so \nabla can be restricted to Λn\Lambda_{n}. Let KnK_{n} be the kernel of \nabla on Λn\Lambda_{n}. Generally, for a commutative ring RR with unit, we use the notation R\nabla_{R} to denote the map R\nabla\otimes R.

For the graded polynomial ring [v1,,vn]\mathbb{Z}[v_{1},\dots,v_{n}] with deg(vi)=2\deg(v_{i})=2, define a graded algebraic homomorphism Θn:[v1,,vn][η]/(nη)\Theta_{n}:\mathbb{Z}[v_{1},\dots,v_{n}]\to\mathbb{Z}[\eta]/(n\eta), deg(η)=2\deg(\eta)=2, by Θ(vi)=iη\Theta(v_{i})=i\eta. In fact, this is the ring homomorphism H(BTn;)H(B(/n);)H^{*}(BT^{n};\mathbb{Z})\to H^{*}(B(\mathbb{Z}/n);\mathbb{Z}) induced by the embedding /nTn\mathbb{Z}/n\hookrightarrow T^{n}, ω(ω,ω2,,ωn1,1)\omega\mapsto(\omega,\omega^{2},\dots,\omega^{n-1},1), ω=e2πi/n\omega=e^{2\pi i/n}, Tn=(S1)nT^{n}=(S^{1})^{n}. Let Θn\Theta^{\prime}_{n} be the restriction of Θn\Theta_{n} to KnK_{n}, and let Kn=kerΘnK^{\prime}_{n}=\ker\Theta^{\prime}_{n}. The result of Vistoli [24] can be described as follows.

Theorem 2.1 (Vistoli [24, Theorem 3.4]).

For any prime p>2p>2, the integral cohomology ring of BPU(p)BPU(p) is given by

H(BPU(p);)Kp[x3,x2p+2](x32,px3,px2p+2,x3Kp,x2p+2Kp),deg(xi)=i.H^{*}(BPU(p);\mathbb{Z})\cong\frac{K_{p}\otimes\mathbb{Z}[x_{3},x_{2p+2}]}{(x_{3}^{2},\,px_{3},\,px_{2p+2},\,x_{3}K_{p}^{\prime},\,x_{2p+2}K^{\prime}_{p})},\ \deg(x_{i})=i.

For the element δ=ij(vivj)Kp\delta=\prod_{i\neq j}(v_{i}-v_{j})\in K_{p}, one easily checks that

Θp(δ)ηp2p0mod(pη).\Theta^{\prime}_{p}(\delta)\equiv-\eta^{p^{2}-p}\neq 0\mod(p\eta).

It is shown in [24, Proposition 3.1] that the image of Θp\Theta^{\prime}_{p} is generated by Θp(δ)\Theta^{\prime}_{p}(\delta), so for p>2p>2, as \mathbb{Z}-module,

H(BPU(p);)Kp((E/p[x3]/p[x2p+2])+[δ]),H^{*}(BPU(p);\mathbb{Z})\cong K_{p}\oplus\big{(}(E_{\mathbb{Z}/p}[x_{3}]\otimes\mathbb{Z}/p[x_{2p+2}])^{+}\otimes\mathbb{Z}[\delta]\big{)},

where E/p[x3]E_{\mathbb{Z}/p}[x_{3}] means the exterior algebra over /p\mathbb{Z}/p with the generator x3x_{3}. Since the rank of KpK_{p} is the same as the rank of H(BSU(n);)[c2,,cn]H^{*}(BSU(n);\mathbb{Z})\cong\mathbb{Z}[c_{2},\dots,c_{n}], the additive structure of H(BPU(p);)H^{*}(BPU(p);\mathbb{Z}) are determined completely.

One reason for the difficulty of describing H(BPU(n);)H^{*}(BPU(n);\mathbb{Z}) is that the ring KnK_{n} is hard to compute for large nn. For small values of nn, here are some results. K2[α2]K_{2}\cong\mathbb{Z}[\alpha_{2}], α2=σ124σ2Λ22\alpha_{2}=\sigma_{1}^{2}-4\sigma_{2}\in\Lambda_{2}^{2}, is obvious. Vezzosi [23, Lemma 3.2] (see also [24, Theorem 14.2]) proved that

K3[α2,α3,α6]/(27α64α23α32),αiΛ3i.K_{3}\cong\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{6}]/(27\alpha_{6}-4\alpha_{2}^{3}-\alpha_{3}^{2}),\ \ \alpha_{i}\in\Lambda_{3}^{i}.

Here we give the description of K4K_{4}.

Theorem 2.2.

There is a ring isomorphism

K4[α2,α3,α4,α6]/(64α697α2327α32+144α2α4),αiΛ4i.K_{4}\cong\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}]/(64\alpha_{6}-97\alpha_{2}^{3}-27\alpha_{3}^{2}+144\alpha_{2}\alpha_{4}),\ \ \alpha_{i}\in\Lambda_{4}^{i}.

For n5n\geq 5, the complexity of KnK_{n} grows very quickly as nn grows. To the author’s knowledge, there is no one computed KnK_{n} for n5n\geq 5 by writing down the generators and relations explicitly so far.

As in the case of KpK_{p} for pp a prime, K4K_{4} can be viewed as the quotient ring of H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) by torsion elements.

Theorem 2.3.

The cohomology ring H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) is isomorphic to the graded ring

K4[x3,x10,x15]/I,deg(αi)=2i,deg(xi)=i,K_{4}\otimes\mathbb{Z}[x_{3},x_{10},x_{15}]/I,\ \ \deg(\alpha_{i})=2i,\ \deg(x_{i})=i,

where II is the ideal generated by

4x3, 2x32,α2x3,α3x3, 2x10,α2x10,α3x10, 2x15,α2x15,α3x15,\displaystyle 4x_{3},\ 2x_{3}^{2},\ \alpha_{2}x_{3},\ \alpha_{3}x_{3},\ 2x_{10},\ \alpha_{2}x_{10},\ \alpha_{3}x_{10},\ 2x_{15},\ \alpha_{2}x_{15},\ \alpha_{3}x_{15},
x36α6+x34x10α4+x35x15+x103+x152.\displaystyle x_{3}^{6}\alpha_{6}+x_{3}^{4}x_{10}\alpha_{4}+x_{3}^{5}x_{15}+x_{10}^{3}+x_{15}^{2}.

One of the results in Toda [21] gives H(BPSO(4m+2);/2)H^{*}(BPSO(4m+2);\mathbb{Z}/2), m1m\geq 1. In particular, this gives the mod 22 cohomology of BPU(4)BPU(4), since it is known that PU(4)PU(4) is homeomorphic to PSO(6)PSO(6).

Theorem 2.4 (Toda [21, (4.10)]).

The mod 22 cohomology of BPU(4)BPU(4) is given by

H(BPU(4);/2)/2[y2,y3,y5,y8,y9,y12]/J,deg(yi)=i,H^{*}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2[y_{2},y_{3},y_{5},y_{8},y_{9},y_{12}]/J,\ \ \deg(y_{i})=i,

where JJ is the ideal generated by

y2y3,y2y5,y2y9,y92+y32y12+y52y8.y_{2}y_{3},\ y_{2}y_{5},\ y_{2}y_{9},\ y_{9}^{2}+y_{3}^{2}y_{12}+y_{5}^{2}y_{8}.

In the notation of Theorem 2.4, we determine the Steenrod algebra structure of H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) as follows.

Theorem 2.5.

Sq1(y2)=Sq1(y3)=0Sq^{1}(y_{2})=Sq^{1}(y_{3})=0, Sq1(y5)=y32Sq^{1}(y_{5})=y_{3}^{2}, Sq1(y8)=y33Sq^{1}(y_{8})=y_{3}^{3}, Sq1(y9)=y52Sq^{1}(y_{9})=y_{5}^{2}, Sq1(y12)=y3y52Sq^{1}(y_{12})=y_{3}y_{5}^{2}; Sq2(y3)=y5Sq^{2}(y_{3})=y_{5}, Sq2(y5)=0Sq^{2}(y_{5})=0, Sq2(y8)=y52Sq^{2}(y_{8})=y_{5}^{2}, Sq2(y9)=y32y5Sq^{2}(y_{9})=y_{3}^{2}y_{5}, Sq2(y12)=y2y12+y32y8Sq^{2}(y_{12})=y_{2}y_{12}+y_{3}^{2}y_{8}; Sq4(y5)=y33+y9Sq^{4}(y_{5})=y_{3}^{3}+y_{9}, Sq4(y8)=y22y8+y12+y34Sq^{4}(y_{8})=y_{2}^{2}y_{8}+y_{12}+y_{3}^{4}, Sq4(y9)=y3y52Sq^{4}(y_{9})=y_{3}y_{5}^{2}, Sq4(y12)=y22y12+y32y52Sq^{4}(y_{12})=y_{2}^{2}y_{12}+y_{3}^{2}y_{5}^{2}; Sq8(y9)=y3y5y9+y5y12+y8y9Sq^{8}(y_{9})=y_{3}y_{5}y_{9}+y_{5}y_{12}+y_{8}y_{9}, Sq8(y12)=y34y8+y8y12Sq^{8}(y_{12})=y_{3}^{4}y_{8}+y_{8}y_{12}.

In the next two sections, we review Gu’s work in [12], where he constructs a fibration with BPU(n)BPU(n) as the total space, and provides an approach to calculate the Serre spectral sequence associated to this fibration.

3. Serre spectral sequences in the computation of H(BPU(n))H^{*}(BPU(n))

3.1. The spectral sequence EU{}^{U}E

The short exact sequence of Lie groups

1S1U(n)PU(n)11\to S^{1}\to U(n)\to PU(n)\to 1

induces a fibration of their classifying spaces

BS1BU(n)𝜋BPU(n).BS^{1}\to BU(n)\xrightarrow{\pi}BPU(n). (3.1)

Since BS1BS^{1} is of the homotopy type of the Eilenberg-Mac Lane space K(,2)K(\mathbb{Z},2), we obtain another induced fibration:

U:BU(n)𝜋BPU(n)𝜒K(,3).U:BU(n)\xrightarrow{\pi}BPU(n)\xrightarrow{\chi}K(\mathbb{Z},3). (3.2)

(Cf. [8].) Let EU{}^{U}E be the cohomological Serre spectral sequence associated to this fibration. The E2E_{2} page of this spectral sequence has the form

E2s,tU=Hs(K(,3);Ht(BU(n)))Hs+t(BPU(n)).{}^{U}E_{2}^{s,t}=H^{s}(K(\mathbb{Z},3);H^{t}(BU(n)))\Longrightarrow H^{s+t}(BPU(n)).

Notice that E2,U{}^{U}E_{2}^{*,*} is concentrated in even rows, so all d2d_{2} differentials are trivial, and we have E2,U=E3,U{}^{U}E_{2}^{*,*}={{}^{U}E}^{*,*}_{3}.

3.2. The spectral sequences EK{}^{K}E and ET{}^{T}E

Let TnT^{n} and PTn=Tn/S1Tn1PT^{n}=T^{n}/S^{1}\cong T^{n-1} be the maximal tori of U(n)U(n) and PU(n)PU(n) respectively, and let ψ:TnU(n)\psi:T^{n}\to U(n) and ψ:PTnPU(n)\psi^{\prime}:PT^{n}\to PU(n) be the inclusions. Then there is an exact sequence of Lie groups

1S1TnPTn1,1\to S^{1}\to T^{n}\to PT^{n}\to 1,

which as above induces a fibration

T:BTnBPTnK(,3).T:BT^{n}\to BPT^{n}\to K(\mathbb{Z},3).

We also consider the path fibration

K:BS1K(,2)K(,3),K:BS^{1}\simeq K(\mathbb{Z},2)\to*\to K(\mathbb{Z},3),

where * denotes a contractible space. Let ET{}^{T}E and EK{}^{K}E denote the cohomological Serre spectral sequences associated to TT and KK respectively.

Let φ:S1Tn\varphi:S^{1}\to T^{n} be the diagonal map. Then there is the following homotopy commutative diagram of fibrations

K:ΦBS1BφK(,3)=T:ΨBTnBψBPTnBψK(,3)=U:BU(n)BPU(n)K(,3)\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 10.38191pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-10.38191pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K:\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.41914pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.00499pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 40.47684pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BS^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 110.4639pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.2744pt\raise-20.41914pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.71112pt\hbox{$\scriptstyle{B\varphi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 52.2744pt\raise-29.79944pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 110.4639pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\ast\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 161.76091pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 115.9639pt\raise-29.79944pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 161.76091pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K(\mathbb{Z},3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 181.03174pt\raise-20.41914pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 181.03174pt\raise-30.3383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-9.39407pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T:\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-60.973pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Psi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-71.27441pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.93402pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BT^{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 99.719pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 52.2744pt\raise-60.973pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{B\psi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 52.2744pt\raise-70.60773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 99.719pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BPT^{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 161.76091pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 115.9639pt\raise-60.973pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.30556pt\hbox{$\scriptstyle{B\psi^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 115.9639pt\raise-70.60773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 161.76091pt\raise-40.8383pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K(\mathbb{Z},3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 181.03174pt\raise-60.973pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 181.03174pt\raise-70.60773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-9.73676pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{U:}$}}}}}}}{\hbox{\kern 34.38191pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BU(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 94.16689pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 94.16689pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BPU(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 161.76091pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 161.76091pt\raise-81.10773pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K(\mathbb{Z},3)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} (3.10)

We write d,U{}^{U}d_{*}^{*,*}, d,T{}^{T}d_{*}^{*,*}, d,K{}^{K}d_{*}^{*,*} for the differentials of EU{}^{U}E, ET{}^{T}E, and EK{}^{K}E, respectively. We also use the simplified notation d,d^{*,*}_{*} if there is no ambiguity.

3.3. Spectral sequence maps on E2E_{2} pages

Recall that the cohomology rings of the fibers BS1BS^{1}, BTnBT^{n} and BU(n)BU(n) in (3.10) are

H(BS1;)\displaystyle H^{*}(BS^{1};\mathbb{Z}) =[v],deg(v)=2,\displaystyle=\mathbb{Z}[v],\ \deg(v)=2,
H(BTn;)\displaystyle H^{*}(BT^{n};\mathbb{Z}) =[v1,,vn],deg(vi)=2,\displaystyle=\mathbb{Z}[v_{1},\dots,v_{n}],\ \deg(v_{i})=2,
H(BU(n);)\displaystyle H^{*}(BU(n);\mathbb{Z}) =[c1,,cn],deg(ci)=2i.\displaystyle=\mathbb{Z}[c_{1},\dots,c_{n}],\ \deg(c_{i})=2i.

Here cic_{i} is the iith universal Chern class of the classifying space BU(n)BU(n) for nn-dimensional complex bundles. The induced homomorphisms between these cohomology rings are given by

Bφ(vi)=v,Bψ(ci)=σi(v1,,vn),B\varphi^{*}(v_{i})=v,\quad B\psi^{*}(c_{i})=\sigma_{i}(v_{1},\dots,v_{n}),

where σi(v1,,vn)\sigma_{i}(v_{1},\dots,v_{n}) is the iith elementary symmetric polynomial in the variables v1,,vnv_{1},\dots,v_{n}. Hence, from (3.10) we obtain the maps Φ:E2,TE2,K\Phi^{*}:{{}^{T}}E_{2}^{*,*}\to{{}^{K}}E_{2}^{*,*} and Ψ:E2,UE2,T\Psi^{*}:{{}^{U}}E_{2}^{*,*}\to{{}^{T}}E_{2}^{*,*} of spectral sequences on E2E_{2} pages.

The strategy in [12] for computing EU{}^{U}E is to compare its differentials with the differentials in ET{}^{T}E and EK{}^{K}E, which we will explain in the next section.

4. The cohomology of K(,3)K(\mathbb{Z},3) and differentials of EK{}^{K}E and ET{}^{T}E

Throughout this section, we write R[x;k]R[x;k], ER[y;k]E_{R}[y;k] for the polynomial algebra and exterior algebra respectively, with coefficients in a commutative ring RR, and with one generator of degree kk. We also use the simplified notation E[y;k]E[y;k] for R=R=\mathbb{Z}.

Let C(3)C(3) be the (differential graded) \mathbb{Z}-algebra

C(3)=p2 prime(k0[yp,k;2pk+1+2]E[xp,k;2pk+1+1])k0[x2,k;2k+2+1][x1;3].\begin{split}C(3)&=\bigotimes_{p\neq 2\text{ prime}}\big{(}\bigotimes_{k\geq 0}\mathbb{Z}[y_{p,k};2p^{k+1}+2]\otimes E[x_{p,k};2p^{k+1}+1]\big{)}\\ &\otimes\bigotimes_{k\geq 0}\mathbb{Z}[x_{2,k};2^{k+2}+1]\otimes\mathbb{Z}[x_{1};3].\end{split}

For notational convenience, we set y2,0=x12y_{2,0}=x_{1}^{2} and y2,k=x2,k12y_{2,k}=x_{2,k-1}^{2} for k1k\geq 1. The differential of C(3)C(3) is given by

d(xp,k)=pyp,k,d(yp,k)=d(x1)=0, for p a prime and k0.d(x_{p,k})=py_{p,k},\ d(y_{p,k})=d(x_{1})=0,\text{ for }p\text{ a prime and }k\geq 0.

Gu [12] showed that the integral cohomology ring of K(,3)K(\mathbb{Z},3) is isomorphic to the cohomology of C(3)C(3), which is dual to the DGA construction of Cartan in [5].

Let Ap{}_{p}A denote the pp-primary component of a commutative ring AA, pp a prime. For R=i>0RiR=\bigoplus_{i>0}R^{i} a graded commutative ring without unit, let R^=RR0\hat{R}=R\oplus R^{0} be the (graded commutative) unital ring, where the degree zero summand R0=R^{0}=\mathbb{Z} has a generator acting as the unit of the ring.

Theorem 4.1 ([12, Proposition 2.14]).

The cohomology ring of K(,3)K(\mathbb{Z},3) is given by

H(K(,3);)pRp^[x1]/(x12y2,0),H^{*}(K(\mathbb{Z},3);\mathbb{Z})\cong\bigotimes_{p}\widehat{R_{p}}\otimes\mathbb{Z}[x_{1}]/(x_{1}^{2}-y_{2,0}),

where pp ranges over all prime numbers, and Rp=Hp(K(,3);)R_{p}={{}_{p}H}^{*}(K(\mathbb{Z},3);\mathbb{Z}) is the /p\mathbb{Z}/p-subalgebra (without unit) of C(3)/pC(3)\otimes\mathbb{Z}/p generated by the elements of the form

yp,I:=1pd(xp,i1xp,im)=j=1m(1)j1xp,i1yp,ijxp,im,y_{p,I}:=\frac{1}{p}d(x_{p,i_{1}}\cdots x_{p,i_{m}})=\sum_{j=1}^{m}(-1)^{j-1}x_{p,i_{1}}\cdots y_{p,i_{j}}\cdots x_{p,i_{m}},

for any ordered sequence I=(i1,,im)I=(i_{1},\dots,i_{m}) of nonnegative integers i1>>imi_{1}>\cdots>i_{m}. For I=(i)I=(i), we simply write yp,iy_{p,i} for yp,Iy_{p,I}.

Remark 4.2.

In [5, Exposé 11] a differential graded algebra A(π,n)A(\pi,n), which is dual to C(3)C(3) for n=3n=3 and π=\pi=\mathbb{Z}, is constructed to calculate the integral homology of K(π,n)K(\pi,n) for any positive integer nn and a finitely generated abelian group π\pi. [12] first gives an explicit formula for H(K(,3);)H^{*}(K(\mathbb{Z},3);\mathbb{Z}) in terms of generators and relations.

For pp a prime, the mod pp cohomology ring of K(,3)K(\mathbb{Z},3) is also given by the cohomology of the differential graded /p\mathbb{Z}/p-algebra (C(3)/p,d)(C(3)\otimes\mathbb{Z}/p,d), which has an easier description (see [12, (2.13)]). Furthermore, the Steenrod algebra structure of H(K(,3);/p)H^{*}(K(\mathbb{Z},3);\mathbb{Z}/p) can be determined from the fact that x1x_{1} (resp. xp,kx_{p,k}) is the the transgression image of vv (resp. vpk+1v^{p^{k+1}}) H(BS1;/p)/p[v]\in H^{*}(BS^{1};\mathbb{Z}/p)\cong\mathbb{Z}/p[v] in the mod pp Serre spectral sequence EK{}^{K}E, using Kudo’s transgression theorem [18]. In particular, for p=2p=2, we have the following analogue of [13, Proposition 2.4].

Proposition 4.3.

H(K(,3);/2)k0/2[x2,k;2k+2+1]/2[x1;3]H^{*}(K(\mathbb{Z},3);\mathbb{Z}/2)\cong\bigotimes_{k\geq 0}\mathbb{Z}/2[x_{2,k};2^{k+2}+1]\otimes\mathbb{Z}/2[x_{1};3]. Moreover, Sq1(x1)=0Sq^{1}(x_{1})=0, Sq1(x2,k+1)=x2,k2Sq^{1}(x_{2,k+1})=x_{2,k}^{2}, x2,k=Sq2k+1Sq2kSq2(x1)x_{2,k}=Sq^{2^{k+1}}Sq^{2^{k}}\cdots Sq^{2}(x_{1}), k0k\geq 0.

The differentials of the integral spectral sequence EK{}^{K}E are described in [12] as follows. Here we only list a part of the results in [12, Corollary 2.16], which will be sufficient for our purposes.

Proposition 4.4 ([12, Corollary 2.16]).

The higher differentials of E,K{}^{K}E^{*,*}_{*} satisfy

d3(v)=x1,d2pk+11(pkx1vlpe1)=vlpe1(pk+11)yp,k,e>k0,gcd(l,p)=1,dr(x1)=dr(yp,k)=0 for all r2,k0,\begin{split}&d_{3}(v)=x_{1},\\ &d_{2p^{k+1}-1}(p^{k}x_{1}v^{lp^{e}-1})=v^{lp^{e}-1-(p^{k+1}-1)}y_{p,k},\ e>k\geq 0,\ \gcd(l,p)=1,\\ &d_{r}(x_{1})=d_{r}(y_{p,k})=0\text{ for all }r\geq 2,\,k\geq 0,\end{split}

and the Leibniz rule. Here E2pk+113,2(lpe1)KE23,2(lpe1)K{}^{K}E^{3,2(lp^{e}-1)}_{2p^{k+1}-1}\subset{{}^{K}E}^{3,2(lp^{e}-1)}_{2} is generated by pkx1vlpe1p^{k}x_{1}v^{lp^{e}-1}.

To describe the differential of E,T{}^{T}E^{*,*}_{*}, we first rewrite H(BTn;)=[v1,,vn]H^{*}(BT^{n};\mathbb{Z})=\mathbb{Z}[v_{1},\dots,v_{n}] as [v1vn,,vn1vn,vn]\mathbb{Z}[v_{1}-v_{n},\dots,v_{n-1}-v_{n},v_{n}]. Then E,T{}^{T}E^{*,*}_{*} is generated by elements of the form ξf(vn)\xi\cdot f(v_{n}), where ξH(K(,3);)\xi\in H^{*}(K(\mathbb{Z},3);\mathbb{Z}) and f(vn)=iaivnif(v_{n})=\sum_{i}a_{i}v_{n}^{i} is a polynomial in vnv_{n} with coefficients ai[v1vn,,vn1vn]a_{i}\in\mathbb{Z}[v_{1}-v_{n},\dots,v_{n-1}-v_{n}]. Let vj=vjvnv_{j}^{\prime}=v_{j}-v_{n} for 1jn11\leq j\leq n-1, and write ai=t1,,tn1ki,t1,,tn1(v1)t1(vn1)tn1a_{i}=\sum_{t_{1},\dots,t_{n-1}}k_{i,t_{1},\dots,t_{n-1}}(v^{\prime}_{1})^{t_{1}}\cdots(v_{n-1}^{\prime})^{t_{n-1}}, ki,t1,,tn1k_{i,t_{1},\dots,t_{n-1}}\in\mathbb{Z}.

Proposition 4.5 ([12, Propositions 3.2-3.6]).

In the above notation, the differential drT{}^{T}d_{r} is given by

drT(ξf(vn))=it1,,tn1drK(ki,t1,,tn1ξvni)(v1)t1(vn1)tn1,{}^{T}d_{r}(\xi\cdot f(v_{n}))=\sum_{i}\sum_{t_{1},\dots,t_{n-1}}{{}^{K}}d_{r}(k_{i,t_{1},\dots,t_{n-1}}\xi v_{n}^{i})\cdot(v^{\prime}_{1})^{t_{1}}\cdots(v_{n-1}^{\prime})^{t_{n-1}},

where drK(ki,t1,,tn1ξvni){{}^{K}}d_{r}(k_{i,t_{1},\dots,t_{n-1}}\xi v_{n}^{i}) is simply drK(ki,t1,,tn1ξvi){{}^{K}}d_{r}(k_{i,t_{1},\dots,t_{n-1}}\xi v^{i}) with vv replaced by vnv_{n}. In particular, the differential d30,T{}^{T}d_{3}^{0,*} is given by the “formal devergence”

=i=1n(/vi):H(BTn;)H2(BTn;)\nabla=\sum_{i=1}^{n}(\partial/\partial v_{i}):H^{*}(BT^{n};\mathbb{Z})\to H^{*-2}(BT^{n};\mathbb{Z})

in such a way that d30,T=()x1{}^{T}d^{0,*}_{3}=\nabla(-)\cdot x_{1}. Moreover, the spectral sequence E,T{}^{T}E^{*,*}_{*} degenerates at E40,T{}^{T}E^{0,*}_{4}, i.e.,

E0,T=E40,T=kerd30,T=[v1,,vn1].{{}^{T}E}^{0,*}_{\infty}={{}^{T}}E^{0,*}_{4}=\ker{{}^{T}d_{3}^{0,*}}=\mathbb{Z}[v_{1}^{\prime},\dots,v_{n-1}^{\prime}].

Since the operator \nabla preserves symmetric polynomials, for fH(BU(n);)Λnf\in H^{*}(BU(n);\mathbb{Z})\cong\Lambda_{n} and ξH(K(,3);)\xi\in H^{*}(K(\mathbb{Z},3);\mathbb{Z}), we have the following corollary of Proposition 4.5 by the Leibniz rule.

Corollary 4.6 ([12, Corollary 3.10]).

d3U(fξ)=(f)x1ξ{}^{U}d_{3}(f\xi)=\nabla(f)x_{1}\xi.

In particular, the fact that (σk)=i=1nσkvi=(nk+1)σk1\nabla(\sigma_{k})=\sum_{i=1}^{n}\frac{\partial\sigma_{k}}{\partial v_{i}}=(n-k+1)\sigma_{k-1} shows that for ckH(BU(n);)E30,Uc_{k}\in H^{*}(BU(n);\mathbb{Z})\cong{{}^{U}}E_{3}^{0,*}, 1kn1\leq k\leq n, we have ([12, Corollary 3.4])

Ud3(ck)=(nk+1)ck1x1.^{U}d_{3}(c_{k})=(n-k+1)c_{k-1}x_{1}. (4.1)
Corollary 4.7.

E40,UKn{}^{U}E_{4}^{0,*}\cong K_{n}.

Proof.

This comes from the fact that E30,U=E20,U=H(BU(n);)Λn{{}^{U}}E^{0,*}_{3}={{}^{U}}E^{0,*}_{2}=H^{*}(BU(n);\mathbb{Z})\cong\Lambda_{n}, E40,U=kerd30,U{{}^{U}}E^{0,*}_{4}=\ker{{}^{U}}d_{3}^{0,*}, where d30,U=()x1{}^{U}d_{3}^{0,*}=\nabla(-)\cdot x_{1} by Corollary 4.6. ∎

5. Proof of Theorem 2.2

The proof of Theorem 2.2 is essentially a K4K_{4} analogue of the proof of Lemma 3.2 for K3K_{3} in [23] (also Theorem 14.2 in [24]).

Firstly, we give the explicit expression of αi\alpha_{i} in Λ4i\Lambda_{4}^{i}. Let

α2=8σ23σ12,α3=8σ34σ1σ2+σ13,α4=4σ4σ1σ3+43σ2232σ12σ2+6σ14,α6=27σ12σ4+27σ329σ1σ2σ372σ2σ4+2σ23.\begin{split}\alpha_{2}&=8\sigma_{2}-3\sigma_{1}^{2},\\ \alpha_{3}&=8\sigma_{3}-4\sigma_{1}\sigma_{2}+\sigma_{1}^{3},\\ \alpha_{4}&=4\sigma_{4}-\sigma_{1}\sigma_{3}+43\sigma_{2}^{2}-32\sigma_{1}^{2}\sigma_{2}+6\sigma_{1}^{4},\\ \alpha_{6}&=27\sigma_{1}^{2}\sigma_{4}+27\sigma_{3}^{2}-9\sigma_{1}\sigma_{2}\sigma_{3}-72\sigma_{2}\sigma_{4}+2\sigma_{2}^{3}.\end{split} (5.1)

A direct calculation shows that (αi)=0\nabla(\alpha_{i})=0 for all αi\alpha_{i} above, and

64α6=97α23+27α32144α2α4.64\alpha_{6}=97\alpha_{2}^{3}+27\alpha_{3}^{2}-144\alpha_{2}\alpha_{4}.

Consider the ring homomorphism

ker[v1v4,v2v4,v3v4][v1,,v4][v1,,v4]/(σ1).\ker\nabla\cong\mathbb{Z}[v_{1}-v_{4},v_{2}-v_{4},v_{3}-v_{4}]\hookrightarrow\mathbb{Z}[v_{1},\dots,v_{4}]\to\mathbb{Z}[v_{1},\dots,v_{4}]/(\sigma_{1}).

It is easy to see that this map is injective. After tensoring with [12]\mathbb{Z}[\frac{1}{2}], this map becomes an isomorphism, and the inverse is obtained by sending viv_{i} to viσ14v_{i}-\frac{\sigma_{1}}{4}. The commutative diagram below shows that K4[12][12][σ2,σ3,σ4]K_{4}\otimes\mathbb{Z}[\frac{1}{2}]\hookrightarrow\mathbb{Z}[\frac{1}{2}][\sigma_{2},\sigma_{3},\sigma_{4}].

K4[12]\textstyle{K_{4}\otimes\mathbb{Z}[\frac{1}{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[12][σ2,σ3,σ4]\textstyle{\mathbb{Z}[\frac{1}{2}][\sigma_{2},\sigma_{3},\sigma_{4}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ker[12]\textstyle{\ker\nabla\otimes\mathbb{Z}[\frac{1}{2}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[12][v1,,v4]/(σ1)\textstyle{\mathbb{Z}[\frac{1}{2}][v_{1},\dots,v_{4}]/(\sigma_{1})}

On the other hand, the inclusion [12][α2,α3,α4][12][σ2,σ3,σ4]\mathbb{Z}[\frac{1}{2}][\alpha_{2},\alpha_{3},\alpha_{4}]\hookrightarrow\mathbb{Z}[\frac{1}{2}][\sigma_{2},\sigma_{3},\sigma_{4}] is an isomorphism, so in fact we have

[12][α2,α3,α4]K4[12][12][σ2,σ3,σ4].\mathbb{Z}[\frac{1}{2}][\alpha_{2},\alpha_{3},\alpha_{4}]\cong K_{4}\otimes\mathbb{Z}[\frac{1}{2}]\cong\mathbb{Z}[\frac{1}{2}][\sigma_{2},\sigma_{3},\sigma_{4}].

Hence if fK4f\in K_{4} then 2sf[α2,α3,α4]2^{s}f\in\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{4}] for sufficient large ss, and the following lemma shows that α2\alpha_{2}, α3\alpha_{3}, α4\alpha_{4}, α6\alpha_{6} generate K4K_{4} by descending induction on ss.

Lemma 5.1.

For fK4f\in K_{4}, if 2f[α2,α3,α4,α6]2f\in\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}], then f[α2,α3,α4,α6]f\in\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}] too.

Proof.

The images of α2\alpha_{2}, α3\alpha_{3}, α4\alpha_{4}, α6\alpha_{6} in /2[σ1,,σ4]\mathbb{Z}/2[\sigma_{1},\dots,\sigma_{4}] is σ12\sigma_{1}^{2}, σ13\sigma_{1}^{3}, σ1σ3+σ22\sigma_{1}\sigma_{3}+\sigma_{2}^{2}, σ12σ4+σ32+σ1σ2σ3\sigma_{1}^{2}\sigma_{4}+\sigma_{3}^{2}+\sigma_{1}\sigma_{2}\sigma_{3} respectively. The ideal of relations between these four polynomials is generated by (σ12)3+(σ13)2(\sigma_{1}^{2})^{3}+(\sigma_{1}^{3})^{2}, which is the image of 97α23+27α32144α2α4=64α697\alpha_{2}^{3}+27\alpha_{3}^{2}-144\alpha_{2}\alpha_{4}=64\alpha_{6}. Hence if we write 2f=p(α2,α3,α4,α6)2f=p(\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}) for some integral polynomial pp, then there are two integral polynomials qq and rr such that

p(α2,α3,α4,α6)=2q(α2,α3,α4,α6)+64α6r(α2,α3,α4,α6).p(\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6})=2q(\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6})+64\alpha_{6}\cdot r(\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}).

Dividing by 22 we get f[α2,α3,α4,α6]f\in\mathbb{Z}[\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{6}]. ∎

Consider the surjective ring homomorphism [y2,y3,y4,y6]K4\mathbb{Z}[y_{2},y_{3},y_{4},y_{6}]\to K_{4} that sends yiy_{i} to αi\alpha_{i}. Let II be its kernel. Then the following lemma is an equivalent statement of Theorem 2.2.

Lemma 5.2.

In the above notation, I=(64y697y2327y32+144y2y4)I=(64y_{6}-97y_{2}^{3}-27y_{3}^{2}+144y_{2}y_{4}).

Proof.

Let 𝐲=64y697y2327y32+144y2y4\mathbf{y}=64y_{6}-97y_{2}^{3}-27y_{3}^{2}+144y_{2}y_{4}. We know that 𝐲I\mathbf{y}\in I. Note that

[12][y2,y3,y4,y6]/(𝐲)=[12][y2,y3,y4],\mathbb{Z}[\frac{1}{2}][y_{2},y_{3},y_{4},y_{6}]/(\mathbf{y})=\mathbb{Z}[\frac{1}{2}][y_{2},y_{3},y_{4}],

which is isomorphic to K4[12]K_{4}\otimes\mathbb{Z}[\frac{1}{2}] as we saw above. This implies that if fIf\in I, then some multiple 2rf2^{r}f is in (𝐲)(\mathbf{y}). However, since 22 dose not divide 𝐲\mathbf{y} in the UFD [y2,y3,y4,y6]\mathbb{Z}[y_{2},y_{3},y_{4},y_{6}], ff is actually in (𝐲)(\mathbf{y}), and we get the desired equality in the lemma. ∎

We end this section with an algebraic result, which will be used in Section 7.

Proposition 5.3.

/4[α4,α6]\mathbb{Z}/4[\alpha_{4},\alpha_{6}] is a subring of coker\mathrm{coker\,}\nabla, where \nabla acts on Λ4\Lambda_{4}.

Proof.

Since α4\alpha_{4}, α6K4\alpha_{6}\in K_{4} and (σ1)=4\nabla(\sigma_{1})=4, (σ1f)=4f\nabla(\sigma_{1}f)=4f for any f[α4,α6]f\in\mathbb{Z}[\alpha_{4},\alpha_{6}]. So the order of ff in coker\mathrm{coker\,}\nabla divides 44. If its order is not 44, there would exist gΛ4g\in\Lambda_{4} such that (g)=2f\nabla(g)=2f, and then σ1f2gK4\sigma_{1}f-2g\in K_{4}. Let ρ:Λ4Λ4/2\rho:\Lambda_{4}\to\Lambda_{4}\otimes\mathbb{Z}/2 be the mod 22 map, and write h~=ρ(h)\widetilde{h}=\rho(h) for an element hΛ4h\in\Lambda_{4}. Then ρ(σ1f2g)=σ1f~K4/2=/2[α~2,α~3,α~4,α~6]\rho(\sigma_{1}f-2g)=\sigma_{1}\widetilde{f}\in K_{4}\otimes\mathbb{Z}/2=\mathbb{Z}/2[\widetilde{\alpha}_{2},\widetilde{\alpha}_{3},\widetilde{\alpha}_{4},\widetilde{\alpha}_{6}], where α~2=σ12\widetilde{\alpha}_{2}=\sigma_{1}^{2}, α~3=σ13\widetilde{\alpha}_{3}=\sigma_{1}^{3}, α~4=σ1σ3+σ22\widetilde{\alpha}_{4}=\sigma_{1}\sigma_{3}+\sigma_{2}^{2}, α~6=σ12σ4+σ32+σ1σ2σ3\widetilde{\alpha}_{6}=\sigma_{1}^{2}\sigma_{4}+\sigma_{3}^{2}+\sigma_{1}\sigma_{2}\sigma_{3}. This means that there is a polynomial pp over /2\mathbb{Z}/2 such that σ1f~=p(α~2,α~3,α~4,α~6)\sigma_{1}\widetilde{f}=p(\widetilde{\alpha}_{2},\widetilde{\alpha}_{3},\widetilde{\alpha}_{4},\widetilde{\alpha}_{6}) in /2[σ1,,σ4]\mathbb{Z}/2[\sigma_{1},\dots,\sigma_{4}]. We may assume that f~\widetilde{f} and pp are homogeneous polynomials in /2[σ1,,σ4]\mathbb{Z}/2[\sigma_{1},\dots,\sigma_{4}], so that deg(p)=deg(f~)+1\deg(p)=\deg(\widetilde{f})+1, an odd number, which implies that α~3\widetilde{\alpha}_{3} divides pp. However, since /2[σ1,,σ4]\mathbb{Z}/2[\sigma_{1},\dots,\sigma_{4}] is a UFD and σ1\sigma_{1} dose not divide α~4\widetilde{\alpha}_{4} and α~6\widetilde{\alpha}_{6}, α~3=σ13\widetilde{\alpha}_{3}=\sigma_{1}^{3} can not divide σ1f~\sigma_{1}\widetilde{f}. This gives a contradiciton. So the order of ff must be 44, and the proposition follows immediately. ∎

6. On the homomorphism from H(K(,3))H^{*}(K(\mathbb{Z},3)) to H(BPU(2))H^{*}(BPU(2))

In this section, we study the homomorphism χ:H(K(,3))H(BPU(2))\chi^{*}:H^{*}(K(\mathbb{Z},3))\to H^{*}(BPU(2)) induced by the fibration map χ:BPU(2)K(,3)\chi:BPU(2)\to K(\mathbb{Z},3) defined in (3.2). Throughout this section, let ρ:H(;)H(;/2)\rho:H^{*}(-;\mathbb{Z})\to H^{*}(-;\mathbb{Z}/2) denote the mod 22 reduction map on cohomology.

Since PU(2)=SO(3)PU(2)=SO(3), the following result is a special case of [4].

Theorem 6.1.

Let wiHi(BSO(3);/2)w_{i}\in H^{i}(BSO(3);\mathbb{Z}/2) be the iith universal Stiefel-Whitney class of BSO(3)BSO(3), and p1H4(BSO(3);)p_{1}\in H^{4}(BSO(3);\mathbb{Z}) the first Pontryagin class. Then

H(BSO(3);/2)=/2[w2,w3],w3=Sq1(w2), and H(BSO(3);)=[p1,W3]/(2W3),ρ(p1)=w22,ρ(W3)=w3.\begin{split}&H^{*}(BSO(3);\mathbb{Z}/2)=\mathbb{Z}/2[w_{2},w_{3}],\ w_{3}=Sq^{1}(w_{2}),\text{ and }\\ &H^{*}(BSO(3);\mathbb{Z})=\mathbb{Z}[p_{1},W_{3}]/(2W_{3}),\ \rho(p_{1})=w_{2}^{2},\ \rho(W_{3})=w_{3}.\end{split}

Here W3W_{3} is the degree-33 integral Stiefel-Whitney class.

Theorem 6.2.

In the notation of Proposition 4.3, the mod 22 cohomology homomorphism χ:H(K(,3);/2)H(BPU(2);/2)\chi^{*}:H^{*}(K(\mathbb{Z},3);\mathbb{Z}/2)\to H^{*}(BPU(2);\mathbb{Z}/2) satisfies

χ(x1)=w3,χ(x2,0)=w2w3,\displaystyle\chi^{*}(x_{1})=w_{3},\quad\chi^{*}(x_{2,0})=w_{2}w_{3},
χ(x2,k)w22k+11w3mod(w33), for k1.\displaystyle\chi^{*}(x_{2,k})\equiv w_{2}^{2^{k+1}-1}w_{3}\mod\,(w_{3}^{3}),\ \text{ for }k\geq 1.
Proof.

First we show that χ(x1)=w3\chi^{*}(x_{1})=w_{3}. This follows from the computation in [12] that H3(BPU(n);)=/nH^{3}(BPU(n);\mathbb{Z})=\mathbb{Z}/n is generated by χ(x1)\chi^{*}(x_{1}). Here we give a short explanation to this. Since E20,U=E30,U=H(BU(n);)[c1,,cn]{}^{U}E_{2}^{0,*}={{}^{U}E}_{3}^{0,*}=H^{*}(BU(n);\mathbb{Z})\cong\mathbb{Z}[c_{1},\dots,c_{n}] and d30,U{}^{U}d_{3}^{0,*} is ()x1\nabla(-)\cdot x_{1}, it follows that d30,2U(c1)=nx1E33,0U{}^{U}d_{3}^{0,2}(c_{1})=nx_{1}\in{{}^{U}E}_{3}^{3,0}. Therefore, for degree reasons

E43,0U=E3,0U=H3(BPU(n);)=/n{χ(x1)}.{}^{U}E_{4}^{3,0}={{}^{U}E}_{\infty}^{3,0}=H^{3}(BPU(n);\mathbb{Z})=\mathbb{Z}/n\{\chi^{*}(x_{1})\}.

Now we give the formula for χ(x2,k)\chi^{*}(x_{2,k}) by induction on kk, starting with χ(x2,0)\chi^{*}(x_{2,0}). Since Sq1(x2,0)=x12Sq^{1}(x_{2,0})=x_{1}^{2} by Proposition 4.3, we have Sq1χ(x2,0)=χSq1(x2,0)=w32Sq^{1}\chi^{*}(x_{2,0})=\chi^{*}Sq^{1}(x_{2,0})=w_{3}^{2}. Hence χ(x2,0)=w2w3\chi^{*}(x_{2,0})=w_{2}w_{3}, the only nonzero element of degree 55. Inductively, suppose that χ(x2,k1)\chi^{*}(x_{2,k-1}) is congruent to w22k1w3w_{2}^{2^{k}-1}w_{3} modulo the ideal generated by w33w_{3}^{3}. Then since Sq1(x2,k)=x2,k12Sq^{1}(x_{2,k})=x_{2,k-1}^{2} by Proposition 4.3, we have

Sq1χ(x2,k)=χSq1(x2,k)w22k+12w32mod(w33).Sq^{1}\chi^{*}(x_{2,k})=\chi^{*}Sq^{1}(x_{2,k})\equiv w_{2}^{2^{k+1}-2}w_{3}^{2}\mod(w_{3}^{3}).

Since Sq1Sq^{1} preserves (w33)(w_{3}^{3}) and in H(BSO(3);/2)/(w33)H^{*}(BSO(3);\mathbb{Z}/2)/(w_{3}^{3}), w22k+11w3w_{2}^{2^{k+1}-1}w_{3} is the only degree-(2k+2+1)(2^{k+2}+1) element mapped by Sq1Sq^{1} to w22k+12w32w_{2}^{2^{k+1}-2}w_{3}^{2}, it follows that χ(x2,k)w22k+11w3\chi^{*}(x_{2,k})\equiv w_{2}^{2^{k+1}-1}w_{3} mod (w33)(w_{3}^{3}), and the induction step is finished. ∎

Corollary 6.3.

In the notation of Theorem 4.1 and Theorem 6.1, the homomorphism χ:H(K(,3);)H(BPU(2);)\chi^{*}:H^{*}(K(\mathbb{Z},3);\mathbb{Z})\to H^{*}(BPU(2);\mathbb{Z}) satisfies χ(x1)=W3\chi^{*}(x_{1})=W_{3}, and χ(y2,k)p12k1W32mod(W36)\chi^{*}(y_{2,k})\equiv p_{1}^{2^{k}-1}W_{3}^{2}\mod(W_{3}^{6}) for k0k\geq 0.

Proof.

The formula for χ(x1)\chi^{*}(x_{1}) is obvious. From Section 4, we know that ρ(y2,0)=x12\rho(y_{2,0})=x_{1}^{2} and ρ(y2,k)=x2,k12\rho(y_{2,k})=x_{2,k-1}^{2} for k1k\geq 1. Then, by Theorem 6.2 we have ρχ(y2,k)=χρ(y2,k)w22k+12w32mod(w36)\rho\chi^{*}(y_{2,k})=\chi^{*}\rho(y_{2,k})\equiv w_{2}^{2^{k+1}-2}w_{3}^{2}\mod(w_{3}^{6}) for k0k\geq 0. This implies that χ(y2,k)p12k1W32mod(W36)\chi^{*}(y_{2,k})\equiv p_{1}^{2^{k}-1}W_{3}^{2}\mod(W_{3}^{6}) since p12k1W32p_{1}^{2^{k}-1}W_{3}^{2} is the only torsion element in H(BPU(2);)/(W36)H^{*}(BPU(2);\mathbb{Z})/(W_{3}^{6}) mapped by ρ\rho to w22k+12w32mod(w36)w_{2}^{2^{k+1}-2}w_{3}^{2}\mod(w_{3}^{6}). ∎

Proposition 6.4.

Let n>0n>0 be an interger such that 2n2\mid n. Then for any i,j,k0i,j,k\geq 0,

(a) x1ix2,kj0x_{1}^{i}x_{2,k}^{j}\neq 0 in H(BPU(n);/2)H^{*}(BPU(n);\mathbb{Z}/2).

(b) x1iy2,kj0x_{1}^{i}y_{2,k}^{j}\neq 0 in H(BPU(n);)H^{*}(BPU(n);\mathbb{Z}).

Here we abuse the notations x1x_{1}, x2,kx_{2,k}, y2,ky_{2,k}, to denote their images under the cohomology ring homomorphism induced by the fibration map BPU(n)K(,3)BPU(n)\to K(\mathbb{Z},3).

Proof.

Since 2n2\mid n, there is a diagonal map of matrices

U(2)U(n),A[A000A00A],U(2)\to U(n),\quad A\mapsto\begin{bmatrix}A&0&\cdots&0\\ 0&A&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&\cdots&\cdots&A\end{bmatrix},

which passes to PU(2)PU(n)PU(2)\to PU(n). These diagonal maps induce maps Δ:BU(2)BU(n)\Delta:BU(2)\to BU(n) and Δ¯:BPU(2)BPU(n)\bar{\Delta}:BPU(2)\to BPU(n), and a commutative diagram of fibrations

BU(2)ΔBPU(2)Δ¯K(,3)=BU(n)BPU(n)K(,3)\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 17.89249pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-17.39133pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BU(2)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 42.39366pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Delta}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 42.39366pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BPU(2)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 109.48651pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 63.6895pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.83888pt\hbox{$\scriptstyle{\bar{\Delta}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 63.6895pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 109.48651pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K(\mathbb{Z},3)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 128.75734pt\raise-20.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.28406pt\hbox{$\scriptstyle{=}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 128.75734pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-17.89249pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BU(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 41.89249pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 41.89249pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{BPU(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 109.48651pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 109.48651pt\raise-40.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K(\mathbb{Z},3)}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} (6.1)

Since the map Δ¯\bar{\Delta}^{*} takes the elements x1x_{1}, x2,kx_{2,k}, y2,ky_{2,k}, to themself, the corollary follows from Theorem 6.2 and Corollary 6.3. ∎

7. On the spectral sequence EU{}^{U}E

Proposition 7.1.

In the integral spectral sequence EU{}^{U}E associated to BU(4)𝜋BPU(4)𝜒K(,3)BU(4)\xrightarrow{\pi}BPU(4)\xrightarrow{\chi}K(\mathbb{Z},3), we have K4E40,U=E0,UK_{4}\cong{{}^{U}}E^{0,*}_{4}={{}^{U}}E^{0,*}_{\infty}. Moreover, /4[α4,α6]\mathbb{Z}/4[\alpha_{4},\alpha_{6}] is a submodule of E3,U{{}^{U}}E^{3,*}_{\infty}.

Proof.

By Corollary 4.7, K4E40,UK_{4}\cong{{}^{U}}E^{0,*}_{4}. Since the differentials in the spectral sequence EU{}^{U}E satisfy the Leibniz rule and K4K_{4} is generated by α2\alpha_{2}, α3\alpha_{3}, α4\alpha_{4}, α6\alpha_{6}, it suffices to show that these generators survive to EU{}^{U}E_{\infty}. For α2\alpha_{2}, α3\alpha_{3}, α4\alpha_{4}, this was proved in [12], so we only consider α6E40,12U\alpha_{6}\in{{}^{U}}E^{0,12}_{4}.

The differentials in EU{}^{U}E have the form dr:Ers,tUErs+r,tr+1Ud_{r}:{{}^{U}E}^{s,t}_{r}\to{{}^{U}E}^{s+r,t-r+1}_{r}. Hence from Theorem 4.1 we see that the only possible nontrivial differentials drd_{r}, r4r\geq 4, originating at E0,12U{{}^{U}}E^{0,12}_{*}, are d9:E90,12UE99,4Ud_{9}:{{}^{U}}E^{0,12}_{9}\to{{}^{U}}E^{9,4}_{9}, d11:E110,12UE1111,2Ud_{11}:{{}^{U}}E^{0,12}_{11}\to{{}^{U}}E^{11,2}_{11} and d13:E130,12UE1313,0Ud_{13}:{{}^{U}}E^{0,12}_{13}\to{{}^{U}}E^{13,0}_{13}. Note that E29,4Ux13H4(BU(4);){{}^{U}}E^{9,4}_{2}\cong x_{1}^{3}\cdot H^{4}(BU(4);\mathbb{Z}), E211,2U/3{x1x3,0c1}{{}^{U}}E^{11,2}_{2}\cong\mathbb{Z}/3\{x_{1}x_{3,0}c_{1}\} and E213,0U/2{x1y2,1}{{}^{U}}E^{13,0}_{2}\cong\mathbb{Z}/2\{x_{1}y_{2,1}\} by Theorem 4.1.

From Proposition 6.4 we know that x1y2,1x_{1}y_{2,1} is a permanent cycle, so it can not be hitten by any differential in EU{}^{U}E. Furthermore, from (4.1) we see that d3(x3,0c12)x1x3,0c1d_{3}(x_{3,0}c_{1}^{2})\equiv-x_{1}x_{3,0}c_{1} mod 33, so E411,2U=0{{}^{U}}E^{11,2}_{4}=0. Hence the proposition will follow once we prove that E49,4U=0{}^{U}E_{4}^{9,4}=0. This is an easy calculation using the following commutative diagram

Λ43/2\textstyle{\Lambda_{4}^{3}\otimes\mathbb{Z}/2\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}/2\scriptstyle{\nabla_{\mathbb{Z}/2}}\scriptstyle{\cong}Λ42/2\textstyle{\Lambda_{4}^{2}\otimes\mathbb{Z}/2\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}/2\scriptstyle{\nabla_{\mathbb{Z}/2}}\scriptstyle{\cong}Λ41/2\textstyle{\Lambda_{4}^{1}\otimes\mathbb{Z}/2\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E36,6U\textstyle{{{}^{U}E}_{3}^{6,6}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d36,6\scriptstyle{d_{3}^{6,6}}E39,4U\textstyle{{{}^{U}E}_{3}^{9,4}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d39,4\scriptstyle{d_{3}^{9,4}}E312,2U\textstyle{{{}^{U}E}_{3}^{12,2}}

The right vertival map is only an injection since besides x14H2(BU(4);)x_{1}^{4}\cdot H^{2}(BU(4);\mathbb{Z}), y5,0H2(BU(4);)y_{5,0}\cdot H^{2}(BU(4);\mathbb{Z}) also contributes to E312,2U{{}^{U}E}_{3}^{12,2}, but this does not effect our computation. It can be shown that kerd39,4=/2{x13c12}\ker d_{3}^{9,4}=\mathbb{Z}/2\{x_{1}^{3}c_{1}^{2}\} and d36,6(x12c2c1)=x13c12d_{3}^{6,6}(x_{1}^{2}c_{2}c_{1})=x_{1}^{3}c_{1}^{2}. Then we have E49,4U=kerd39,4/Imd36,6=0{}^{U}E_{4}^{9,4}=\ker d_{3}^{9,4}/\mathrm{Im\,}d_{3}^{6,6}=0.

Using Proposition 5.3, we see that x1fx_{1}f in E43,U{}^{U}E_{4}^{3,*} has order 44 for any f[α4,α6]H(BU(4);)f\in\mathbb{Z}[\alpha_{4},\alpha_{6}]\subset H^{*}(BU(4);\mathbb{Z}). Since α4\alpha_{4}, α6\alpha_{6} and x1x_{1} are all permanent cycles, so is x1fx_{1}f, and the second statement follows. ∎

Proposition 7.1 says that there exist elements α¯iH2i(BPU(4);)\bar{\alpha}_{i}\in H^{2i}(BPU(4);\mathbb{Z}), i=2,3,4,6i=2,3,4,6, such that π(α¯i)=αiH2i(BU(4);)\pi^{*}(\bar{\alpha}_{i})=\alpha_{i}\in H^{2i}(BU(4);\mathbb{Z}). Let Δ:BU(2)BU(4)\Delta:BU(2)\to BU(4), Δ¯:BPU(2)BPU(4)\bar{\Delta}:BPU(2)\to BPU(4) be the maps defined in the proof of Proposition 6.4. We consider the images of αi\alpha_{i} and α¯i\bar{\alpha}_{i} under the maps Δ\Delta^{*} and Δ¯\bar{\Delta}^{*} respectively.

Let cic_{i} and cic_{i}^{\prime} be the iith universal Chern classes of BU(4)BU(4) and BU(2)BU(2) respectively. Since the map Δ\Delta factors through the diagonal map BU(2)BU(2)×BU(2)BU(2)\to BU(2)\times BU(2), using the Whitney sum formula and the functorial property of total Chern classes we immediately get

Δ(1+c1+c2+c3+c4)=(1+c1+c2)2.\Delta^{*}(1+c_{1}+c_{2}+c_{3}+c_{4})=(1+c_{1}^{\prime}+c_{2}^{\prime})^{2}.

In other words,

Δ(c1)=2c1,Δ(c2)=c12+2c2,Δ(c3)=2c1c2,Δ(c4)=c22.\begin{gathered}\Delta^{*}(c_{1})=2c_{1}^{\prime},\quad\Delta^{*}(c_{2})=c_{1}^{\prime 2}+2c_{2}^{\prime},\\ \Delta^{*}(c_{3})=2c_{1}^{\prime}c_{2}^{\prime},\quad\Delta^{*}(c_{4})=c_{2}^{\prime 2}.\end{gathered} (7.1)
Proposition 7.2.

The elements α¯iH2i(BPU(4);)\bar{\alpha}_{i}\in H^{2i}(BPU(4);\mathbb{Z}), i=2,3,4,6i=2,3,4,6, can be chosen such that Δ¯(α¯4)=11p12\bar{\Delta}^{*}(\bar{\alpha}_{4})=11p_{1}^{2}, and Δ¯(α¯i)0mod2\bar{\Delta}^{*}(\bar{\alpha}_{i})\equiv 0\mod 2 for i=2,3,6i=2,3,6.

Proof.

It follows from (5.1) and (7.1) that Δ(αi)0\Delta^{*}(\alpha_{i})\equiv 0 mod 22 for i=2,3,6i=2,3,6, and Δ(α4)=11(c124c2)2\Delta^{*}(\alpha_{4})=11(c_{1}^{\prime 2}-4c_{2}^{\prime})^{2}. On the other hand, for the spectral sequence EU{}^{U}E associated to BU(2)𝜋BPU(2)𝜒K(,3)BU(2)\xrightarrow{\pi}BPU(2)\xrightarrow{\chi}K(\mathbb{Z},3), an easy calculation shows that E0,4U=E40,4UK2=[σ124σ2]Λ2{{}^{U}E_{\infty}^{0,4}}={{}^{U}E_{4}^{0,4}}\cong K_{2}=\mathbb{Z}[\sigma_{1}^{2}-4\sigma_{2}]\subset\Lambda_{2}. This means that for p1H4(BSO(3);)=H4(BPU(2);)p_{1}\in H^{4}(BSO(3);\mathbb{Z})=H^{4}(BPU(2);\mathbb{Z}), π(p1)=±(c124c2)\pi^{*}(p_{1})=\pm(c_{1}^{\prime 2}-4c_{2}^{\prime}).

Recall from Theorem 6.1 that

H4(BPU(2);){p1},H6(BPU(2);)/2{W32},\displaystyle H^{4}(BPU(2);\mathbb{Z})\cong\mathbb{Z}\{p_{1}\},\ \ H^{6}(BPU(2);\mathbb{Z})\cong\mathbb{Z}/2\{W_{3}^{2}\},
H8(BPU(2);){p12},H12(BPU(2);){p13}/2{W34}.\displaystyle H^{8}(BPU(2);\mathbb{Z})\cong\mathbb{Z}\{p_{1}^{2}\},\ \ H^{12}(BPU(2);\mathbb{Z})\cong\mathbb{Z}\{p_{1}^{3}\}\oplus\mathbb{Z}/2\{W_{3}^{4}\}.

Since πΔ¯=Δπ\pi^{*}\bar{\Delta}^{*}=\Delta^{*}\pi^{*}, combining the above computations, we obtain Δ¯(α¯4)=11p12\bar{\Delta}^{*}(\bar{\alpha}_{4})=11p_{1}^{2} and Δ¯(α¯2)0\bar{\Delta}^{*}(\bar{\alpha}_{2})\equiv 0 mod 22. We have seen that Δ¯(x1)=W3\bar{\Delta}^{*}(x_{1})=W_{3}, hence by adding x12x_{1}^{2} to α¯3\bar{\alpha}_{3} or x14x_{1}^{4} to α¯6\bar{\alpha}_{6} if necessary, we can also obtain Δ¯(α¯3),Δ¯(α¯6)0\bar{\Delta}^{*}(\bar{\alpha}_{3}),\,\bar{\Delta}^{*}(\bar{\alpha}_{6})\equiv 0 mod 22. ∎

8. On H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2)

In this section we prove some facts about the generators yiy_{i} of H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) in Theorem 2.4.

Proposition 8.1.

In the notation of Proposition 4.3, χ(x1)=y3\chi^{*}(x_{1})=y_{3}, χ(x2,0)=y5\chi^{*}(x_{2,0})=y_{5}, χ(x2,1)=y9\chi^{*}(x_{2,1})=y_{9} or y33+y9y_{3}^{3}+y_{9}.

Proof.

From Proposition 6.4 we know that χ(x1)\chi^{*}(x_{1}), χ(x2,0)\chi^{*}(x_{2,0}), χ(x2,1)0\chi^{*}(x_{2,1})\neq 0. Since deg(x1)=3\deg(x_{1})=3 and y3y_{3} is the only nonzero element in H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2), χ(x1)=y3\chi^{*}(x_{1})=y_{3}. Similarly, χ(x2,0)=y5\chi^{*}(x_{2,0})=y_{5}.

From Theorem 2.4 one easily sees that H9(BPU(4);/2)=/2{y33,y9}H^{9}(BPU(4);\mathbb{Z}/2)=\mathbb{Z}/2\{y_{3}^{3},y_{9}\}. Since Sq1(x2,1)=x2,02Sq^{1}(x_{2,1})=x_{2,0}^{2} by Proposition 4.3, it follows that Sq1χ(x2,1)=χ(x2,02)=y52Sq^{1}\chi^{*}(x_{2,1})=\chi^{*}(x_{2,0}^{2})=y_{5}^{2}. Hence χ(x2,1)\chi^{*}(x_{2,1}) takes one of the forms in the proposition since Sq1(y3)=Sq1χ(x1)=χSq1(x1)=0Sq^{1}(y_{3})=Sq^{1}\chi^{*}(x_{1})=\chi^{*}Sq^{1}(x_{1})=0. ∎

Recall from Proposition 4.3 that Sq1(x1)=0Sq^{1}(x_{1})=0, Sq1(x2,0)=x12Sq^{1}(x_{2,0})=x_{1}^{2}, Sq1(x2,1)=x2,02Sq^{1}(x_{2,1})=x_{2,0}^{2}, Sq2(x1)=x2,0Sq^{2}(x_{1})=x_{2,0}, and Sq4(x2,0)=x2,1Sq^{4}(x_{2,0})=x_{2,1}. Then we have the following corollary of Proposition 8.1.

Corollary 8.2.

In H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2), Sq1(y3)=0Sq^{1}(y_{3})=0, Sq1(y5)=y32Sq^{1}(y_{5})=y_{3}^{2}, Sq1(y9)=y52Sq^{1}(y_{9})=y_{5}^{2}, Sq2(y3)=y5Sq^{2}(y_{3})=y_{5}, Sq4(y5)=y9Sq^{4}(y_{5})=y_{9} or y33+y9y_{3}^{3}+y_{9}.

Before proceeding further, let us review a result in [21]. Let PSO(2n)PSO(2n) be the quotient group of SO(2n)SO(2n) by the center /2={±1}\mathbb{Z}/2=\{\pm 1\}, and let ϕ:BSO(2n)BPSO(2n)\phi:BSO(2n)\to BPSO(2n) be the induced map of classifying spaces. It is known that PU(4)PU(4) is homeomorphic to PSO(6)PSO(6), so there is an induced homomorphism

ϕ:H(BPU(4);/2)H(BSO(6);/2)[w2,,w6],\phi^{*}:H^{*}(BPU(4);\mathbb{Z}/2)\to H^{*}(BSO(6);\mathbb{Z}/2)\cong\mathbb{Z}[w_{2},\dots,w_{6}],

where wiw_{i} is the iith universal Stiefel-Whitney class of BSO(2n)BSO(2n).

Proposition 8.3 ([21, Proposition 3.7 and 4.5]).

ϕ(y2)=0\phi^{*}(y_{2})=0, ϕ(y3)=w3\phi^{*}(y_{3})=w_{3}, ϕ(y5)=w¯5\phi^{*}(y_{5})=\bar{w}_{5}, ϕ(y8)=w¯42+w32w2\phi^{*}(y_{8})=\bar{w}_{4}^{2}+w_{3}^{2}w_{2}, ϕ(y12)=w¯62+w¯52w2\phi^{*}(y_{12})=\bar{w}_{6}^{2}+\bar{w}_{5}^{2}w_{2}, where w¯4=w4+w22\bar{w}_{4}=w_{4}+w_{2}^{2}, w¯5=w5+w2w3\bar{w}_{5}=w_{5}+w_{2}w_{3}, w¯6=w6+w2w4\bar{w}_{6}=w_{6}+w_{2}w_{4}, and ϕ(y9)w3w6+w4w5mod(w2)\phi^{*}(y_{9})\equiv w_{3}w_{6}+w_{4}w_{5}\mod(w_{2}).

(See [21, p. 91] for the formulas of w¯i\bar{w}_{i}, i=4,5,6i=4,5,6.)

Proposition 8.4.

In Proposition 8.3, ϕ(y9)=w3w6+w4w5+w22w5+w23w3\phi^{*}(y_{9})=w_{3}w_{6}+w_{4}w_{5}+w_{2}^{2}w_{5}+w_{2}^{3}w_{3}. Moreover, Sq4(y5)Sq^{4}(y_{5}), i.e. χ(x2,1)\chi^{*}(x_{2,1}), is actually y33+y9y_{3}^{3}+y_{9} in Corollary 8.2.

Proof.

Applying the Wu formula for Stiefel-Whitney classes:

Sqi(wk)=j=0i(kj1ij)wk+ijwj,Sq^{i}(w_{k})=\sum_{j=0}^{i}\binom{k-j-1}{i-j}w_{k+i-j}w_{j},

and the Cartan formula for Steenrod squares we get

Sq4(w¯5)=Sq4(w5)+Sq4(w2w3)=w3w6+w4w5+Sq1(w2)Sq3(w3)+Sq2(w2)Sq2(w3)=w3w6+w4w5+w33+w22w5+w23w3.\begin{split}Sq^{4}(\bar{w}_{5})&=Sq^{4}(w_{5})+Sq^{4}(w_{2}w_{3})\\ &=w_{3}w_{6}+w_{4}w_{5}+Sq^{1}(w_{2})Sq^{3}(w_{3})+Sq^{2}(w_{2})Sq^{2}(w_{3})\\ &=w_{3}w_{6}+w_{4}w_{5}+w_{3}^{3}+w_{2}^{2}w_{5}+w_{2}^{3}w_{3}.\end{split}

By Corollary 8.2 and Proposition 8.3, Sq4(w¯5)=Sq4ϕ(y5)=ϕSq4(y5)=ϕ(y9)Sq^{4}(\bar{w}_{5})=Sq^{4}\phi^{*}(y_{5})=\phi^{*}Sq^{4}(y_{5})=\phi^{*}(y_{9}) or ϕ(y9)+w33\phi^{*}(y_{9})+w_{3}^{3}, where ϕ(y9)w3w6+w4w5\phi^{*}(y_{9})\equiv w_{3}w_{6}+w_{4}w_{5} mod (w2)(w_{2}). Combining this with the above expression for Sq4(w¯5)Sq^{4}(\bar{w}_{5}), we obtain ϕ(y9)=w3w6+w4w5+w22w5+w23w3\phi^{*}(y_{9})=w_{3}w_{6}+w_{4}w_{5}+w_{2}^{2}w_{5}+w_{2}^{3}w_{3}. This computation also shows that Sq4(y5)=y33+y9Sq^{4}(y_{5})=y_{3}^{3}+y_{9}, which is the second statement. ∎

Let π:BU(4)BPU(4)\pi:BU(4)\to BPU(4) be the map in (3.1). The following result in [21] gives the induced mod 22 cohomology ring homomorphism π\pi^{*}.

Proposition 8.5 ([21, (4.11)]).

In H(BU(4);/2)H^{*}(BU(4);\mathbb{Z}/2), π(y2)=c1\pi^{*}(y_{2})=c_{1}, π(y8)=c1c3+c22\pi^{*}(y_{8})=c_{1}c_{3}+c_{2}^{2}, π(y12)=c12c4+c32+c1c2c3\pi^{*}(y_{12})=c_{1}^{2}c_{4}+c_{3}^{2}+c_{1}c_{2}c_{3}.

Let Δ:BU(2)BU(4)\Delta:BU(2)\to BU(4) and Δ¯:BSO(3)BPU(2)BPU(4)\bar{\Delta}:BSO(3)\cong BPU(2)\to BPU(4) be the maps defined in the proof of Proposition 6.4, and to avoid ambiguity of notations, let wiw_{i}^{\prime} denote the iith universal Stiefel-Whitney class of BSO(3)BSO(3).

Proposition 8.6.

Sq1(y2)=0Sq^{1}(y_{2})=0, Sq1(y8)=y33Sq^{1}(y_{8})=y_{3}^{3}, Sq1(y12)=y3y52Sq^{1}(y_{12})=y_{3}y_{5}^{2}, and Δ¯(y2)=0\bar{\Delta}^{*}(y_{2})=0, Δ¯(y3)=w3\bar{\Delta}^{*}(y_{3})=w_{3}^{\prime}, Δ¯(y5)=w2w3\bar{\Delta}^{*}(y_{5})=w_{2}^{\prime}w_{3}^{\prime}, Δ¯(y8)=w24+w2w32\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2}, Δ¯(y9)=w23w3\bar{\Delta}^{*}(y_{9})=w_{2}^{\prime 3}w_{3}^{\prime}, Δ¯(y12)=w23w32\bar{\Delta}^{*}(y_{12})=w_{2}^{\prime 3}w_{3}^{\prime 2}.

Proof.

Since H3(BPU(4);/2)/2{y3}H^{3}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{3}\}, the equation Sq1(y2)=0Sq^{1}(y_{2})=0 follows from the fact that ϕSq1(y2)=Sq1ϕ(y2)=0w3=ϕ(y3)\phi^{*}Sq^{1}(y_{2})=Sq^{1}\phi^{*}(y_{2})=0\neq w_{3}=\phi^{*}(y_{3}). Let π\pi also denote the map BU(2)BPU(2)BU(2)\to BPU(2). Then πΔ¯(y2)=Δπ(y2)=Δ(c1)=0\pi^{*}\bar{\Delta}^{*}(y_{2})=\Delta^{*}\pi^{*}(y_{2})=\Delta^{*}(c_{1})=0 by Proposition 8.5 and (7.1). This gives Δ¯(y2)=0\bar{\Delta}^{*}(y_{2})=0 since H2(BPU(2);/2)/2{w2}H^{2}(BPU(2);\mathbb{Z}/2)\cong\mathbb{Z}/2\{w_{2}^{\prime}\} and π(w2)=c10\pi^{*}(w_{2}^{\prime})=c_{1}^{\prime}\neq 0.

By Theorem 6.2, Δ¯(y3)=Δ¯χ(x1)=w3\bar{\Delta}^{*}(y_{3})=\bar{\Delta}^{*}\chi^{*}(x_{1})=w_{3}^{\prime}, and Δ¯(y5)=Δ¯χ(x2,0)=w2w3\bar{\Delta}^{*}(y_{5})=\bar{\Delta}^{*}\chi^{*}(x_{2,0})=w_{2}^{\prime}w_{3}^{\prime}. Δ¯(y9)=Δ¯(Sq4(y5)+y33)=w23w3\bar{\Delta}^{*}(y_{9})=\bar{\Delta}^{*}(Sq^{4}(y_{5})+y_{3}^{3})=w_{2}^{\prime 3}w_{3}^{\prime} comes from the the second statement of Proposition 8.4 and the fact that Δ¯Sq4(y5)=Sq4Δ¯(y5)=Sq4(w2w3)=w23w3+w33\bar{\Delta}^{*}Sq^{4}(y_{5})=Sq^{4}\bar{\Delta}^{*}(y_{5})=Sq^{4}(w_{2}^{\prime}w_{3}^{\prime})=w_{2}^{\prime 3}w_{3}^{\prime}+w_{3}^{\prime 3}.

We see from Proposition 8.3 that Sq1ϕ(y8)=w33=ϕ(y33)Sq^{1}\phi^{*}(y_{8})=w_{3}^{3}=\phi^{*}(y_{3}^{3}). Hence Sq1(y8)=y33Sq^{1}(y_{8})=y_{3}^{3} since H9(BPU(4);/2)=/2{y33,y9}H^{9}(BPU(4);\mathbb{Z}/2)=\mathbb{Z}/2\{y_{3}^{3},y_{9}\} and ϕ(y9)0\phi^{*}(y_{9})\neq 0. Recall from Theorem 6.1 that H8(BPU(2);/2)/2{w24,w2w32}H^{8}(BPU(2);\mathbb{Z}/2)\cong\mathbb{Z}/2\{w_{2}^{\prime 4},w_{2}^{\prime}w_{3}^{\prime 2}\}. Hence Δ¯(y8)=w2w32+aw24\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime}w_{3}^{\prime 2}+aw_{2}^{\prime 4}, a/2a\in\mathbb{Z}/2, since Sq1Δ¯(y8)=Δ¯Sq1(y8)=w33Sq^{1}\bar{\Delta}^{*}(y_{8})=\bar{\Delta}^{*}Sq^{1}(y_{8})=w_{3}^{\prime 3}. Furthermore, by Proposition 8.5, π(y8)=c1c3+c22H(BU(4);/2)\pi^{*}(y_{8})=c_{1}c_{3}+c_{2}^{2}\in H^{*}(BU(4);\mathbb{Z}/2), and then πΔ¯(y8)=Δπ(y8)=c14\pi^{*}\bar{\Delta}^{*}(y_{8})=\Delta^{*}\pi^{*}(y_{8})=c_{1}^{\prime 4} by (7.1), which implies that the coefficient aa is 11 since π(w3)=0\pi^{*}(w_{3}^{\prime})=0.

Similarly, we have Sq1(y12)=ay3y52+by5y80Sq^{1}(y_{12})=ay_{3}y_{5}^{2}+by_{5}y_{8}\neq 0 in H13(BPU(4);/2)/2{y3y52,y5y8}H^{13}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{3}y_{5}^{2},\,y_{5}y_{8}\}. Since Sq1(y3y52)=0Sq^{1}(y_{3}y_{5}^{2})=0 and Sq1(y5y8)=y32y8+y5y330Sq^{1}(y_{5}y_{8})=y_{3}^{2}y_{8}+y_{5}y_{3}^{3}\neq 0, it follows that Sq1(y12)=y3y52Sq^{1}(y_{12})=y_{3}y_{5}^{2}. The relation y92+y32y12+y52y8=0y_{9}^{2}+y_{3}^{2}y_{12}+y_{5}^{2}y_{8}=0 in H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) shows that

Δ¯(y92+y32y12+y52y8)=(w23w3)2+w32Δ¯(y12)+(w2w3)2(w24+w2w32)=0.\begin{split}&\bar{\Delta}^{*}(y_{9}^{2}+y_{3}^{2}y_{12}+y_{5}^{2}y_{8})\\ =&(w_{2}^{\prime 3}w_{3}^{\prime})^{2}+w_{3}^{\prime 2}\bar{\Delta}^{*}(y_{12})+(w_{2}^{\prime}w_{3}^{\prime})^{2}(w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2})=0.\end{split}

Solving this equation we obtain Δ¯(y12)=w23w32\bar{\Delta}^{*}(y_{12})=w_{2}^{\prime 3}w_{3}^{\prime 2}. ∎

Let αiH(BU(4);)\alpha_{i}\in H^{*}(BU(4);\mathbb{Z}) and α¯iH(BPU(4);)\bar{\alpha}_{i}\in H^{*}(BPU(4);\mathbb{Z}), i=2,3,4,6i=2,3,4,6, be as in Section 7, and let ρ:H(;)H(;/2)\rho:H^{*}(-;\mathbb{Z})\to H^{*}(-;\mathbb{Z}/2) denote the mod 22 reduction map.

Proposition 8.7.

ρ(α¯2)=y22\rho(\bar{\alpha}_{2})=y_{2}^{2}, ρ(α¯3)=y23\rho(\bar{\alpha}_{3})=y_{2}^{3}, ρ(α¯4)=y8+y3y5\rho(\bar{\alpha}_{4})=y_{8}+y_{3}y_{5}, ρ(α¯6)=y12+y3y9\rho(\bar{\alpha}_{6})=y_{12}+y_{3}y_{9}.

Proof.

By (5.1), α2c12\alpha_{2}\equiv c_{1}^{2}, α3c13\alpha_{3}\equiv c_{1}^{3}, α4c1c3+c22\alpha_{4}\equiv c_{1}c_{3}+c_{2}^{2}, α6c12c4+c32+c1c2c3\alpha_{6}\equiv c_{1}^{2}c_{4}+c_{3}^{2}+c_{1}c_{2}c_{3} mod 22. By Proposition 8.5, this means that πρ(α¯2)=ρ(α2)=π(y22)\pi^{*}\rho(\bar{\alpha}_{2})=\rho(\alpha_{2})=\pi^{*}(y_{2}^{2}), πρ(α¯3)=ρ(α3)=π(y23)\pi^{*}\rho(\bar{\alpha}_{3})=\rho(\alpha_{3})=\pi^{*}(y_{2}^{3}), πρ(α¯4)=ρ(α4)=π(y8)\pi^{*}\rho(\bar{\alpha}_{4})=\rho(\alpha_{4})=\pi^{*}(y_{8}), πρ(α¯6)=ρ(α6)=π(y12)\pi^{*}\rho(\bar{\alpha}_{6})=\rho(\alpha_{6})=\pi^{*}(y_{12}) in H(BU(4);/2)H^{*}(BU(4);\mathbb{Z}/2).

ρ(α¯2)=y22\rho(\bar{\alpha}_{2})=y_{2}^{2} is obvious since y22y_{2}^{2} is the only nonzero element of H4(BPU(4);/2)H^{4}(BPU(4);\mathbb{Z}/2). ρ(α¯3)=y23\rho(\bar{\alpha}_{3})=y_{2}^{3} follows from the facts that Δ¯ρ(α¯3)=0\bar{\Delta}^{*}\rho(\bar{\alpha}_{3})=0 by Proposition 7.2 and that H6(BPU(4);/2)/2{y23,y32}H^{6}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{3},y_{3}^{2}\}, Δ¯(y2)=0\bar{\Delta}^{*}(y_{2})=0, Δ¯(y32)=w320\bar{\Delta}^{*}(y_{3}^{2})=w_{3}^{\prime 2}\neq 0 by Proposition 8.6.

Proposition 7.2 also gives Δ¯ρ(α¯4)=w24\bar{\Delta}^{*}\rho(\bar{\alpha}_{4})=w_{2}^{\prime 4} because ρ(p1)=w22\rho(p_{1})=w_{2}^{\prime 2}. Notice that H8(BPU(4);/2)/2{y24,y3y5,y8}H^{8}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{4},y_{3}y_{5},y_{8}\}. Hence from π(y24)=c14\pi^{*}(y_{2}^{4})=c_{1}^{4}, πρ(α¯4)=π(y8)\pi^{*}\rho(\bar{\alpha}_{4})=\pi^{*}(y_{8}), and Δ¯(y3y5)=w2w32\bar{\Delta}^{*}(y_{3}y_{5})=w_{2}^{\prime}w_{3}^{\prime 2}, Δ¯(y8)=w24+w2w32\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2} by Proposition 8.6, it follows that ρ(α¯4)=y8+y3y5\rho(\bar{\alpha}_{4})=y_{8}+y_{3}y_{5}.

The fact that πρ(α¯6)=π(y12)=c12c4+c32+c1c2c3\pi^{*}\rho(\bar{\alpha}_{6})=\pi^{*}(y_{12})=c_{1}^{2}c_{4}+c_{3}^{2}+c_{1}c_{2}c_{3} shows that ρ(α¯6)=y12+ay3y9+by34\rho(\bar{\alpha}_{6})=y_{12}+ay_{3}y_{9}+by_{3}^{4}, a,b/2a,b\in\mathbb{Z}/2, since H12(BPU(4);/2)/2{y26,y34,y3y9,y12}H^{12}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{6},y_{3}^{4},y_{3}y_{9},y_{12}\} and π(y26)=c16\pi^{*}(y_{2}^{6})=c_{1}^{6}. Also, we have Δ¯ρ(α¯6)=0\bar{\Delta}^{*}\rho(\bar{\alpha}_{6})=0 by Proposition 7.2, and Δ¯(y34)=w34\bar{\Delta}^{*}(y_{3}^{4})=w_{3}^{\prime 4}, Δ¯(y3y9)=w23w32\bar{\Delta}^{*}(y_{3}y_{9})=w_{2}^{\prime 3}w_{3}^{\prime 2}, Δ¯(y12)=w23w32\bar{\Delta}^{*}(y_{12})=w_{2}^{\prime 3}w_{3}^{\prime 2} by Proposition 8.6. These together give the coefficients a=1a=1 and b=0b=0. The proof is completed. ∎

9. Proof of Theorem 2.5

The strategy of the proof is to compute the action of steenrod squares on the images of the generators yiy_{i} under the map πϕΔ¯:\pi^{*}\oplus\phi^{*}\oplus\bar{\Delta}^{*}:

H(BPU(4);/2)H(BU(4);/2)H(BSO(6);/2)H(BPU(2);/2).H^{*}(BPU(4);\mathbb{Z}/2)\to H^{*}(BU(4);\mathbb{Z}/2)\oplus H^{*}(BSO(6);\mathbb{Z}/2)\oplus H^{*}(BPU(2);\mathbb{Z}/2).

As in Section 8, we use wiw_{i}^{\prime} and wiw_{i} to denote the iith universal Stiefel-Whitney class of BSO(3)BSO(3) and BSO(6)BSO(6) respectively.

First we consider SqiSq^{i} on Imπ\mathrm{Im\,}\pi^{*}.

Proposition 9.1.

Sq2π(y8)=0Sq^{2}\pi^{*}(y_{8})=0, Sq2π(y12)=π(y2y12)Sq^{2}\pi^{*}(y_{12})=\pi^{*}(y_{2}y_{12}), Sq4π(y8)=π(y22y8+y12)Sq^{4}\pi^{*}(y_{8})=\pi^{*}(y_{2}^{2}y_{8}+y_{12}), Sq4π(y12)=π(y22y12)Sq^{4}\pi^{*}(y_{12})=\pi^{*}(y_{2}^{2}y_{12}), Sq8π(y12)=π(y8y12)Sq^{8}\pi^{*}(y_{12})=\pi^{*}(y_{8}y_{12}).

Proof.

Recall that π(y2)=c1\pi^{*}(y_{2})=c_{1}, π(y8)=c1c3+c22\pi^{*}(y_{8})=c_{1}c_{3}+c_{2}^{2} and π(y12)=c12c4+c32+c1c2c3\pi^{*}(y_{12})=c_{1}^{2}c_{4}+c_{3}^{2}+c_{1}c_{2}c_{3}. Then the calculation can be carried out by using the Cartan formula for Steenrod squares and the Wu formula for the mod 22 Chern classes:

Sq2i(ck)=j=0i(kj1ij)ck+ijcj.Sq^{2i}(c_{k})=\sum_{j=0}^{i}\binom{k-j-1}{i-j}c_{k+i-j}c_{j}.

For H(BU(4);/2)/2[c1,,c4]H^{*}(BU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2[c_{1},\dots,c_{4}], we have Sq2(c1)=c12Sq^{2}(c_{1})=c_{1}^{2}, Sq2(c2)=c1c2+c3Sq^{2}(c_{2})=c_{1}c_{2}+c_{3}, Sq2(c3)=c1c3Sq^{2}(c_{3})=c_{1}c_{3}, Sq2(c4)=c1c4Sq^{2}(c_{4})=c_{1}c_{4}, Sq4(c2)=c22Sq^{4}(c_{2})=c_{2}^{2}, Sq4(c3)=c1c4+c2c3Sq^{4}(c_{3})=c_{1}c_{4}+c_{2}c_{3}, Sq4(c4)=c2c4Sq^{4}(c_{4})=c_{2}c_{4}, Sq8(c4)=c42Sq^{8}(c_{4})=c_{4}^{2}. Thus,

Sq2π(y8)=Sq2(c1)c3+c1Sq2(c3)=c12c3+c12c3=0,Sq^{2}\pi^{*}(y_{8})=Sq^{2}(c_{1})c_{3}+c_{1}Sq^{2}(c_{3})=c_{1}^{2}c_{3}+c_{1}^{2}c_{3}=0,
Sq2π(y12)=c12Sq2(c4)+Sq2(c1)c2c3+c1Sq2(c2)c3+c1c2Sq2(c3)\displaystyle Sq^{2}\pi^{*}(y_{12})=c_{1}^{2}Sq^{2}(c_{4})+Sq^{2}(c_{1})c_{2}c_{3}+c_{1}Sq^{2}(c_{2})c_{3}+c_{1}c_{2}Sq^{2}(c_{3})
=c13c4+c12c2c3+c1(c1c2+c3)c3+c12c2c3=π(y2y12),\displaystyle=c_{1}^{3}c_{4}+c_{1}^{2}c_{2}c_{3}+c_{1}(c_{1}c_{2}+c_{3})c_{3}+c_{1}^{2}c_{2}c_{3}=\pi^{*}(y_{2}y_{12}),
Sq4π(y8)=Sq2(c1)Sq2(c3)+c1Sq4(c3)+[Sq2(c2)]2\displaystyle Sq^{4}\pi^{*}(y_{8})=Sq^{2}(c_{1})Sq^{2}(c_{3})+c_{1}Sq^{4}(c_{3})+[Sq^{2}(c_{2})]^{2}
=c13c3+c1(c1c4+c2c3)+(c1c2+c3)2=π(y22y8+y12),\displaystyle=c_{1}^{3}c_{3}+c_{1}(c_{1}c_{4}+c_{2}c_{3})+(c_{1}c_{2}+c_{3})^{2}=\pi^{*}(y_{2}^{2}y_{8}+y_{12}),
Sq4π(y12)=Sq4(c12)c4+c12Sq4(c4)+[Sq2(c3)]2+Sq4(c1c2c3)\displaystyle Sq^{4}\pi^{*}(y_{12})=Sq^{4}(c_{1}^{2})c_{4}+c_{1}^{2}Sq^{4}(c_{4})+[Sq^{2}(c_{3})]^{2}+Sq^{4}(c_{1}\cdot c_{2}c_{3})
=c14c4+c12c2c4+c12c32+[Sq2(c1)Sq2(c2c3)+c1Sq4(c2c3)]\displaystyle=c_{1}^{4}c_{4}+c_{1}^{2}c_{2}c_{4}+c_{1}^{2}c_{3}^{2}+[Sq^{2}(c_{1})Sq^{2}(c_{2}c_{3})+c_{1}Sq^{4}(c_{2}c_{3})]
=c14c4+c12c2c4+c12c32+[c12c32+c1(c12c2c3+c1c32+c1c2c4)]\displaystyle=c_{1}^{4}c_{4}+c_{1}^{2}c_{2}c_{4}+c_{1}^{2}c_{3}^{2}+[c_{1}^{2}c_{3}^{2}+c_{1}(c_{1}^{2}c_{2}c_{3}+c_{1}c_{3}^{2}+c_{1}c_{2}c_{4})]
=c14c4+c12c32+c13c2c3=π(y22y12),\displaystyle=c_{1}^{4}c_{4}+c_{1}^{2}c_{3}^{2}+c_{1}^{3}c_{2}c_{3}=\pi^{*}(y_{2}^{2}y_{12}),
Sq8π(y12)=c12Sq8(c4)+Sq4(c12)Sq4(c4)+[Sq4(c3)]2+Sq8(c1c2c3)\displaystyle Sq^{8}\pi^{*}(y_{12})=c_{1}^{2}Sq^{8}(c_{4})+Sq^{4}(c_{1}^{2})Sq^{4}(c_{4})+[Sq^{4}(c_{3})]^{2}+Sq^{8}(c_{1}c_{2}\cdot c_{3})
=c12c42+c14c2c4+(c1c4+c2c3)2+Sq8(c1c2c3)=π(y8y12).\displaystyle=c_{1}^{2}c_{4}^{2}+c_{1}^{4}c_{2}c_{4}+(c_{1}c_{4}+c_{2}c_{3})^{2}+Sq^{8}(c_{1}c_{2}\cdot c_{3})=\pi^{*}(y_{8}y_{12}).

In the last equation, we use

Sq8(c1c2c3)=Sq6(c1c2)Sq2(c3)+Sq2(c1c2)Sq6(c3)+Sq4(c1c2)Sq4(c3)\displaystyle Sq^{8}(c_{1}c_{2}\cdot c_{3})=Sq^{6}(c_{1}c_{2})Sq^{2}(c_{3})+Sq^{2}(c_{1}c_{2})Sq^{6}(c_{3})+Sq^{4}(c_{1}c_{2})Sq^{4}(c_{3})
=c13c22c3+c1c33+(c13c2+c12c3+c1c22)(c1c4+c2c3).\displaystyle=c_{1}^{3}c_{2}^{2}c_{3}+c_{1}c_{3}^{3}+(c_{1}^{3}c_{2}+c_{1}^{2}c_{3}+c_{1}c_{2}^{2})(c_{1}c_{4}+c_{2}c_{3}).

Next we consider SqiSq^{i} on ImΔ¯\mathrm{Im\,}\bar{\Delta}^{*}. The following proposition contains all we need.

Proposition 9.2.

Sq2Δ¯(y8)=w22w32Sq^{2}\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime 2}w_{3}^{\prime 2}, Sq2Δ¯(y9)=w2w33Sq^{2}\bar{\Delta}^{*}(y_{9})=w_{2}^{\prime}w_{3}^{\prime 3}, Sq4Δ¯(y8)=w34+w23w32Sq^{4}\bar{\Delta}^{*}(y_{8})=w_{3}^{\prime 4}+w_{2}^{\prime 3}w_{3}^{\prime 2}, Sq4Δ¯(y9)=w22w33Sq^{4}\bar{\Delta}^{*}(y_{9})=w_{2}^{\prime 2}w_{3}^{\prime 3}, Sq4Δ¯(y12)=w22w34Sq^{4}\bar{\Delta}^{*}(y_{12})=w_{2}^{\prime 2}w_{3}^{\prime 4},

Proof.

By Proposition 8.6, Δ¯(y8)=w24+w2w32\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2}, Δ¯(y9)=w23w3\bar{\Delta}^{*}(y_{9})=w_{2}^{\prime 3}w_{3}^{\prime} and Δ¯(y12)=w23w32\bar{\Delta}^{*}(y_{12})=w_{2}^{\prime 3}w_{3}^{\prime 2}. Using the Wu formula and the Cartan formula, it is straightforward to verify the formulas in the proposition. Sq2Δ¯(y8)=w22w32Sq^{2}\bar{\Delta}^{*}(y_{8})=w_{2}^{\prime 2}w_{3}^{\prime 2} is obvious.

Sq2Δ¯(y9)=Sq2(w2w22)w3+w23Sq2(w3)\displaystyle Sq^{2}\bar{\Delta}^{*}(y_{9})=Sq^{2}(w_{2}^{\prime}\cdot w_{2}^{\prime 2})w_{3}^{\prime}+w_{2}^{3}Sq^{2}(w_{3}^{\prime})
=(w24+w2w32)w3+w24w3=w2w33,\displaystyle=(w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2})w_{3}^{\prime}+w_{2}^{\prime 4}w_{3}^{\prime}=w_{2}^{\prime}w_{3}^{\prime 3},
Sq4Δ¯(y8)=[Sq1(w2)]4+w2[Sq4(w32)]=w34+w23w32,Sq^{4}\bar{\Delta}^{*}(y_{8})=[Sq^{1}(w_{2}^{\prime})]^{4}+w_{2}^{\prime}[Sq^{4}(w_{3}^{\prime 2})]=w_{3}^{\prime 4}+w_{2}^{\prime 3}w_{3}^{\prime 2},
Sq4Δ¯(y9)=Sq4(w2w22)w3+Sq2(w2w22)Sq2(w3)+Sq1(w23)w32\displaystyle Sq^{4}\bar{\Delta}^{*}(y_{9})=Sq^{4}(w_{2}^{\prime}\cdot w_{2}^{\prime 2})w_{3}^{\prime}+Sq^{2}(w_{2}^{\prime}\cdot w_{2}^{\prime 2})Sq^{2}(w_{3}^{\prime})+Sq^{1}(w_{2}^{\prime 3})w_{3}^{\prime 2}
=(w25+w22w32)w3+(w24+w2w32)w2w3+w22w33=w22w33,\displaystyle=(w_{2}^{\prime 5}+w_{2}^{\prime 2}w_{3}^{\prime 2})w_{3}^{\prime}+(w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2})w_{2}^{\prime}w_{3}^{\prime}+w_{2}^{\prime 2}w_{3}^{\prime 3}=w_{2}^{\prime 2}w_{3}^{\prime 3},
Sq4Δ¯(y12)=Sq4(w2w22)w32+w23Sq4(w32)\displaystyle Sq^{4}\bar{\Delta}^{*}(y_{12})=Sq^{4}(w_{2}^{\prime}\cdot w_{2}^{\prime 2})w_{3}^{\prime 2}+w_{2}^{\prime 3}Sq^{4}(w_{3}^{\prime 2})
=(w25+w22w32)w32+w25w32=w22w34.\displaystyle=(w_{2}^{\prime 5}+w_{2}^{\prime 2}w_{3}^{\prime 2})w_{3}^{\prime 2}+w_{2}^{\prime 5}w_{3}^{\prime 2}=w_{2}^{\prime 2}w_{3}^{\prime 4}.

For SqiSq^{i} on Imϕ\mathrm{Im\,}\phi^{*}, we only need a partial result.

Proposition 9.3.

Sq2ϕ(y12)=w24w32+w2w34+w32w42Sq^{2}\phi^{*}(y_{12})=w_{2}^{4}w_{3}^{2}+w_{2}w_{3}^{4}+w_{3}^{2}w_{4}^{2}, and

Sq8ϕ(y12)ϕ(y8)ϕ(y12)+w34w42mod(w2).Sq^{8}\phi^{*}(y_{12})\equiv\phi^{*}(y_{8})\phi^{*}(y_{12})+w_{3}^{4}w_{4}^{2}\mod(w_{2}).
Proof.

Recall from Proposition 8.3 that ϕ(y12)=w62+w22w42+w2w52+w23w32\phi^{*}(y_{12})=w_{6}^{2}+w_{2}^{2}w_{4}^{2}+w_{2}w_{5}^{2}+w_{2}^{3}w_{3}^{2}. One easily computes that Sq2(w62)=0Sq^{2}(w_{6}^{2})=0, Sq2(w22w42)=w22w52+w32w42Sq^{2}(w_{2}^{2}w_{4}^{2})=w_{2}^{2}w_{5}^{2}+w_{3}^{2}w_{4}^{2}, Sq2(w2w52)=w22w52Sq^{2}(w_{2}w_{5}^{2})=w_{2}^{2}w_{5}^{2}, Sq2(w23w32)=w24w32+w2w34Sq^{2}(w_{2}^{3}w_{3}^{2})=w_{2}^{4}w_{3}^{2}+w_{2}w_{3}^{4}, hence the formula for Sq2ϕ(y12)Sq^{2}\phi^{*}(y_{12}) holds.

Now we compute the action of Sq8Sq^{8} on each terms in the expression of ϕ(y12)\phi^{*}(y_{12}), modulo the ideal (w2)(w_{2}). Sq8(w2w52)0Sq^{8}(w_{2}w_{5}^{2})\equiv 0 mod (w2)(w_{2}) is obvious.

Sq8(w62)=[Sq4(w6)]2=w42w62ϕ(y8)ϕ(y12)mod(w2).Sq^{8}(w_{6}^{2})=[Sq^{4}(w_{6})]^{2}=w_{4}^{2}w_{6}^{2}\equiv\phi^{*}(y_{8})\phi^{*}(y_{12})\mod(w_{2}).
Sq8(w23w32)=Sq2(w23)Sq6(w32)+Sq4(w23)Sq4(w32)+Sq6(w23)Sq2(w32)0mod(w2),\begin{split}Sq^{8}(w_{2}^{3}w_{3}^{2})&=Sq^{2}(w_{2}^{3})Sq^{6}(w_{3}^{2})+Sq^{4}(w_{2}^{3})Sq^{4}(w_{3}^{2})+Sq^{6}(w_{2}^{3})Sq^{2}(w_{3}^{2})\\ &\equiv 0\mod(w_{2}),\end{split}

since Sq2(w23)=w24+w2w32Sq^{2}(w_{2}^{3})=w_{2}^{4}+w_{2}w_{3}^{2}, Sq4(w23)=w25+w22w32Sq^{4}(w_{2}^{3})=w_{2}^{5}+w_{2}^{2}w_{3}^{2} and Sq6(w23)=w26Sq^{6}(w_{2}^{3})=w_{2}^{6}.

Sq8(w22w42)=[Sq4(w2w4)]2=[w2w42+w3Sq3(w4)+w22Sq2(w4)]2[w3Sq3(w4)]2w34w42mod(w2).\begin{split}Sq^{8}(w_{2}^{2}w_{4}^{2})&=[Sq^{4}(w_{2}w_{4})]^{2}=[w_{2}w_{4}^{2}+w_{3}Sq^{3}(w_{4})+w_{2}^{2}Sq^{2}(w_{4})]^{2}\\ &\equiv[w_{3}Sq^{3}(w_{4})]^{2}\equiv w_{3}^{4}w_{4}^{2}\mod(w_{2}).\end{split}

Then the formula for Sq8ϕ(y12)Sq^{8}\phi^{*}(y_{12}) follows. ∎

Now we are ready to prove Theorem 2.5. The action of Sq1Sq^{1} on all generators yiy_{i}, and Sq2(y3)Sq^{2}(y_{3}), Sq4(y5)Sq^{4}(y_{5}) were given in Section 8. Sq2(y5)=0Sq^{2}(y_{5})=0 since H7(BPU(4);/2)=0H^{7}(BPU(4);\mathbb{Z}/2)=0.

Since H10(BPU(4);/2)/2{y25,y2y8,y52}H^{10}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{5},y_{2}y_{8},y_{5}^{2}\}, Proposition 9.1, 9.2 and 8.6 give Sq2(y8)=y52Sq^{2}(y_{8})=y_{5}^{2}. Similarly, we have Sq4(y8)=y22y8+y12+y34Sq^{4}(y_{8})=y_{2}^{2}y_{8}+y_{12}+y_{3}^{4}, using the fact that H12(BPU(4);/2)/2{y26,y22y8,y12,y3y9,y34}H^{12}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{6},y_{2}^{2}y_{8},y_{12},y_{3}y_{9},y_{3}^{4}\}.

Since H11(BPU(4);/2)/2{y32y5,y3y8}H^{11}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{3}^{2}y_{5},y_{3}y_{8}\} and Δ¯(y32y5)=w2w33\bar{\Delta}^{*}(y_{3}^{2}y_{5})=w_{2}^{\prime}w_{3}^{\prime 3}, Δ¯(y3y8)=w3(w24+w2w32)\bar{\Delta}^{*}(y_{3}y_{8})=w_{3}^{\prime}(w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2}) by Proposition 8.6, it follows from Proposition 9.2 that Sq2(y9)=y32y5Sq^{2}(y_{9})=y_{3}^{2}y_{5}. Similarly, the formula Sq4(y9)=y3y52Sq^{4}(y_{9})=y_{3}y_{5}^{2} follows from Proposition 9.2, and the fact that H13(BPU(4);/2)/2{y3y52,y5y8}H^{13}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{3}y_{5}^{2},y_{5}y_{8}\}, using Δ¯(y3y52)=w22w33\bar{\Delta}^{*}(y_{3}y_{5}^{2})=w_{2}^{\prime 2}w_{3}^{\prime 3} and Δ¯(y5y8)=w2w3(w24+w2w32)\bar{\Delta}^{*}(y_{5}y_{8})=w_{2}^{\prime}w_{3}^{\prime}(w_{2}^{\prime 4}+w_{2}^{\prime}w_{3}^{\prime 2}).

Since H17(BPU(4);/2)/2{y34y5,y33y8,y3y5y9,y5y12,y8y9}H^{17}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{3}^{4}y_{5},y_{3}^{3}y_{8},y_{3}y_{5}y_{9},y_{5}y_{12},y_{8}y_{9}\}, we may assume that Sq8(y9)=ay34y5+by33y8+cy3y5y9+dy5y12+ey8y9Sq^{8}(y_{9})=ay_{3}^{4}y_{5}+by_{3}^{3}y_{8}+cy_{3}y_{5}y_{9}+dy_{5}y_{12}+ey_{8}y_{9}. Then

Sq1Sq8(y9)=ay36+by36+c(y33y9+y3y53)+d(y32y12+y3y53)+e(y33y9+y52y8).Sq^{1}Sq^{8}(y_{9})=ay_{3}^{6}+by_{3}^{6}+c(y_{3}^{3}y_{9}+y_{3}y_{5}^{3})+d(y_{3}^{2}y_{12}+y_{3}y_{5}^{3})+e(y_{3}^{3}y_{9}+y_{5}^{2}y_{8}).

Hence, the relation Sq1Sq8(y9)=Sq9(y9)=y92=y32y12+y52y8Sq^{1}Sq^{8}(y_{9})=Sq^{9}(y_{9})=y_{9}^{2}=y_{3}^{2}y_{12}+y_{5}^{2}y_{8} gives a=ba=b and c=d=e=1c=d=e=1. On the other hand, if a=b=1a=b=1, then w24w33w_{2}^{\prime 4}w_{3}^{\prime 3} would not appear in the expression of Sq8Δ¯(y9)=Sq8(w23w3)Sq^{8}\bar{\Delta}^{*}(y_{9})=Sq^{8}(w_{2}^{\prime 3}w_{3}^{\prime}), but this is not true by an easy computation, so Sq8(y9)=y3y5y9+y5y12+y8y9Sq^{8}(y_{9})=y_{3}y_{5}y_{9}+y_{5}y_{12}+y_{8}y_{9}.

Notice that H14(BPU(4);/2)H^{14}(BPU(4);\mathbb{Z}/2) is spanned by y27y_{2}^{7}, y23y8y_{2}^{3}y_{8}, y2y12y_{2}y_{12}, y33y5y_{3}^{3}y_{5}, y32y8y_{3}^{2}y_{8}, y5y9y_{5}y_{9}. Then in the expression Sq2(y12)=ay27+by23y8+cy2y12+dy33y5+ey32y8+fy5y9Sq^{2}(y_{12})=ay_{2}^{7}+by_{2}^{3}y_{8}+cy_{2}y_{12}+dy_{3}^{3}y_{5}+ey_{3}^{2}y_{8}+fy_{5}y_{9}, a=b=0a=b=0, c=1c=1 by Proposition 9.1, and d=f=0d=f=0, e=1e=1 by Proposition 9.3 and the fact that ϕ(y33y5)w33w5\phi^{*}(y_{3}^{3}y_{5})\equiv w_{3}^{3}w_{5}, ϕ(y32y8)w32w42\phi^{*}(y_{3}^{2}y_{8})\equiv w_{3}^{2}w_{4}^{2}, ϕ(y5y9)w5(w3w6+w4w5)\phi^{*}(y_{5}y_{9})\equiv w_{5}(w_{3}w_{6}+w_{4}w_{5}) mod (w2)(w_{2}) from Proposition 8.3, which proves Sq2(y12)=y2y12+y32y8Sq^{2}(y_{12})=y_{2}y_{12}+y_{3}^{2}y_{8}.

Since H16(BPU(4);/2)/2{y28,y24y8,y22y12,y82,y32y52,y3y5y8}H^{16}(BPU(4);\mathbb{Z}/2)\cong\mathbb{Z}/2\{y_{2}^{8},y_{2}^{4}y_{8},y_{2}^{2}y_{12},y_{8}^{2},y_{3}^{2}y_{5}^{2},y_{3}y_{5}y_{8}\}, Proposition 9.1, 9.2 and 8.6 give Sq4(y12)=y22y12+y32y52Sq^{4}(y_{12})=y_{2}^{2}y_{12}+y_{3}^{2}y_{5}^{2}.

An easy calculation shows that H20(BPU(4);/2)H^{20}(BPU(4);\mathbb{Z}/2) is spanned by y35y5y_{3}^{5}y_{5}, y34y8y_{3}^{4}y_{8}, y32y5y9y_{3}^{2}y_{5}y_{9}, y3y5y12y_{3}y_{5}y_{12}, y3y8y9y_{3}y_{8}y_{9}, y54y_{5}^{4} and monomials in y2y_{2}, y8y_{8}, y12y_{12} of degree 2020. Proposition 9.1 says that among monomials in y2y_{2}, y8y_{8}, y12y_{12} of degree 2020, only y8y12y_{8}y_{12} appears in the expression of Sq8(y12)Sq^{8}(y_{12}). Furthermore, since ϕ(y35y5)w35w5\phi^{*}(y_{3}^{5}y_{5})\equiv w_{3}^{5}w_{5}, ϕ(y34y8)w34w42\phi^{*}(y_{3}^{4}y_{8})\equiv w_{3}^{4}w_{4}^{2}, ϕ(y32y5y9)w32w5(w3w6+w4w5)\phi^{*}(y_{3}^{2}y_{5}y_{9})\equiv w_{3}^{2}w_{5}(w_{3}w_{6}+w_{4}w_{5}), ϕ(y3y5y12)w3w5w62\phi^{*}(y_{3}y_{5}y_{12})\equiv w_{3}w_{5}w_{6}^{2}, ϕ(y3y8y9)w3w42(w3w6+w4w5)\phi^{*}(y_{3}y_{8}y_{9})\equiv w_{3}w_{4}^{2}(w_{3}w_{6}+w_{4}w_{5}), ϕ(y54)w54\phi^{*}(y_{5}^{4})\equiv w_{5}^{4} mod (w2)(w_{2}) by Proposition 8.3, we obtain from Proposition 9.3 that Sq8(y12)=y34y8+y8y12Sq^{8}(y_{12})=y_{3}^{4}y_{8}+y_{8}y_{12}.

The proof of Theorem 2.5 is completed.

10. Proof of Theorem 2.3

Let α¯iH2i(BPU(4);)\bar{\alpha}_{i}\in H^{2i}(BPU(4);\mathbb{Z}), i=2,3,4,6i=2,3,4,6, be the elements constructed in Section 7, and for simplicity let x1x_{1}, y2,Iy_{2,I} denote χ(x1)\chi^{*}(x_{1}), χ(y2,I)H(BPU(4);)\chi^{*}(y_{2,I})\in H^{*}(BPU(4);\mathbb{Z}) for χ:BPU(4)K(,3)\chi:BPU(4)\to K(\mathbb{Z},3).

Proposition 10.1.

The cohomology ring H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) is generated by α¯i\bar{\alpha}_{i}, i=2,3,4,6i=2,3,4,6, and x1x_{1}, y2,1y_{2,1}, y2,(1,0)y_{2,(1,0)}.

Before proving Proposition 10.1, we need a result on the image of H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) under the mod 22 reduction.

Lemma 10.2.

The image of ρ:H(BPU(4);)H(BPU(4);/2)\rho:H^{*}(BPU(4);\mathbb{Z})\to H^{*}(BPU(4);\mathbb{Z}/2) is the subalgebra generated by y22y_{2}^{2}, y23y_{2}^{3}, y3y_{3}, y52y_{5}^{2}, y8+y3y5y_{8}+y_{3}y_{5}, y12+y3y9y_{12}+y_{3}y_{9}, y32y9+y53y_{3}^{2}y_{9}+y_{5}^{3}.

Proof.

Let SH(BPU(4);/2)S\subset H^{*}(BPU(4);\mathbb{Z}/2) be the subring generated by the elements in the Lemma. First we prove that SImρS\subset\mathrm{Im\,}\rho. By Proposition 8.7, ρ(α¯2)=y22\rho(\bar{\alpha}_{2})=y_{2}^{2}, ρ(α¯3)=y23\rho(\bar{\alpha}_{3})=y_{2}^{3}, ρ(α¯4)=y8+y3y5\rho(\bar{\alpha}_{4})=y_{8}+y_{3}y_{5}, ρ(α¯6)=y12+y3y9\rho(\bar{\alpha}_{6})=y_{12}+y_{3}y_{9}. Recall from Section 4 that in H(K(,3);/2)H^{*}(K(\mathbb{Z},3);\mathbb{Z}/2) we have y2,0=x12y_{2,0}=x_{1}^{2}, y2,1=x2,02y_{2,1}=x_{2,0}^{2} and y2,(1,0)=y2,0x2,1+x2,0y2,1=x12x2,1+x2,03y_{2,(1,0)}=y_{2,0}x_{2,1}+x_{2,0}y_{2,1}=x_{1}^{2}x_{2,1}+x_{2,0}^{3}. Hence from Proposition 8.1 and the second part of Proposition 8.4 we have ρ(x1)=y3\rho(x_{1})=y_{3}, ρ(y2,1)=y52\rho(y_{2,1})=y_{5}^{2}, ρ(y2,(1,0))=y35+y32y9+y53\rho(y_{2,(1,0)})=y_{3}^{5}+y_{3}^{2}y_{9}+y_{5}^{3}. It follows immediately that SImρS\subset\mathrm{Im\,}\rho.

For the reverse inclusion ImρS\mathrm{Im\,}\rho\subset S, we use the fact that Imρ=kerβkerSq1\mathrm{Im\,}\rho=\ker\beta\subset\ker Sq^{1}, where β\beta is the Bockstein homomorphism in the long exact sequence

Hi(;)2Hi(;)𝜌Hi(;/2)𝛽Hi+1(;)\cdots\to H^{i}(-;\mathbb{Z})\xrightarrow{\cdot 2}H^{i}(-;\mathbb{Z})\xrightarrow{\rho}H^{i}(-;\mathbb{Z}/2)\xrightarrow{\beta}H^{i+1}(-;\mathbb{Z})\to\cdots

induce by the sequence 02/200\to\mathbb{Z}\xrightarrow{\cdot 2}\mathbb{Z}\to\mathbb{Z}/2\to 0, noting that Sq1=ρβSq^{1}=\rho\beta. We claim that the kernel of Sq1Sq^{1} on H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) is the subalgebra generated by y2y_{2}, y3y_{3}, y52y_{5}^{2}, y8+y3y5y_{8}+y_{3}y_{5}, y12+y3y9y_{12}+y_{3}y_{9}, y32y9+y53y_{3}^{2}y_{9}+y_{5}^{3}, whose proof is defered to the last Section for reader’s convenience. Then from the ring structure of H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) it is easy to see that there is a /2\mathbb{Z}/2-module isomorphism

kerSq1Sy2/2[y8,y12].\ker Sq^{1}\cong S\oplus y_{2}\cdot\mathbb{Z}/2[y_{8},y_{12}].

Furthermore, we know that H2(BPU(n);)=0H^{2}(BPU(n);\mathbb{Z})=0 and H3(BPU(n);)=/n{x1}H^{3}(BPU(n);\mathbb{Z})=\mathbb{Z}/n\{x_{1}\} for any nn. Hence the universal coefficient theorem shows that H2(BPU(4);/4)/4H^{2}(BPU(4);\mathbb{Z}/4)\cong\mathbb{Z}/4. The sequence 04/400\to\mathbb{Z}\xrightarrow{\cdot 4}\mathbb{Z}\to\mathbb{Z}/4\to 0 also induces a long exact sequence of cohomology, and there is a commutative diagram

Hi(;)\textstyle{H^{i}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}4\scriptstyle{\cdot 4}2\scriptstyle{\cdot 2}Hi(;)\textstyle{H^{i}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho^{\prime}}Hi(;/4)\textstyle{H^{i}(-;\mathbb{Z}/4)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta^{\prime}}θ=mod 2\scriptstyle{\theta=\mathrm{mod}\ 2}Hi+1(;)\textstyle{H^{i+1}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\scriptstyle{\cdot 2}Hi(;)\textstyle{H^{i}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\scriptstyle{\cdot 2}Hi(;)\textstyle{H^{i}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho}Hi(;/2)\textstyle{H^{i}(-;\mathbb{Z}/2)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}Hi+1(;)\textstyle{H^{i+1}(-;\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

Suppose that y2y_{2}^{\prime} generates H2(BPU(4);/4)H^{2}(BPU(4);\mathbb{Z}/4). Then β(y2)=x1\beta^{\prime}(y_{2}^{\prime})=x_{1}, and θ(y2)=y2\theta(y_{2}^{\prime})=y_{2}. Hence, the above diagram shows that β(y2)=2x1\beta(y_{2})=2x_{1}, and then

β(y2y8iy12j)=β(y2(y8+y3y5)i(y12+y3y9)j)=β(y2ρ(α¯4iα¯6j))=2x1α¯4iα¯6j.\displaystyle\beta(y_{2}y_{8}^{i}y_{12}^{j})=\beta(y_{2}(y_{8}+y_{3}y_{5})^{i}(y_{12}+y_{3}y_{9})^{j})=\beta(y_{2}\rho(\bar{\alpha}_{4}^{i}\bar{\alpha}_{6}^{j}))=2x_{1}\bar{\alpha}_{4}^{i}\bar{\alpha}_{6}^{j}.

This implies that for any f/2[y8,y12]f\in\mathbb{Z}/2[y_{8},y_{12}], β(y2f)0\beta(y_{2}f)\neq 0 by the second part of Proposition 7.1. Since βρ=0\beta\rho=0, it follows that (y2/2[y8,y12])Imρ=0(y_{2}\cdot\mathbb{Z}/2[y_{8},y_{12}])\cap\mathrm{Im\,}\rho=0, and then ImρS\mathrm{Im\,}\rho\subset S. ∎

Proof of Proposition 10.1.

Let RR be the subring generated by the elements in the proposition, and let N=H(BPU(4);)/RN=H^{*}(BPU(4);\mathbb{Z})/R be the quotient \mathbb{Z}-module. Then lemma 10.2 and the first paragraph of its proof show that ρ(R)=ρ(H(BPU(4);))\rho(R)=\rho(H^{*}(BPU(4);\mathbb{Z})), i.e. ρ(N)=0\rho(N)=0. We need to show that NN itself is zero.

Let 𝐭\mathbf{t} be the ideal consisting of torsion elements of H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}), and let F=H(BPU(4);)/𝐭F=H^{*}(BPU(4);\mathbb{Z})/\mathbf{t}. Since π(α¯i)=αi\pi^{*}(\bar{\alpha}_{i})=\alpha_{i}, using Proposition 7.1 and the fact that torsion free elements in EU{}^{U}E concentrated in E0,U{}^{U}E_{*}^{0,*}, we see that

π(R)K4E0,UF.\pi^{*}(R)\cong K_{4}\cong{{}^{U}}E_{\infty}^{0,*}\cong F.

Hence we get a commutative diagram of short exact sequences

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐭R\textstyle{\mathbf{t}\cap R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R\textstyle{R\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐭\textstyle{\mathbf{t}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H(BPU(4);)\textstyle{H^{*}(BPU(4);\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

This implies that N𝐭/(𝐭R)N\cong\mathbf{t}/(\mathbf{t}\cap R) as \mathbb{Z}-modules. Recall that the torsion elements of H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) are all 22-primary. So if N0N\neq 0, then N/20N\otimes\mathbb{Z}/2\neq 0. However, since 0=ρ(N)N/20=\rho(N)\cong N\otimes\mathbb{Z}/2, we must have N=0N=0. Hence R=H(BPU(4);)R=H^{*}(BPU(4);\mathbb{Z}). ∎

Let A=K4[x3,x10,x12]/IA=K_{4}\otimes\mathbb{Z}[x_{3},x_{10},x_{12}]/I be the ring defined in Theorem 2.3.

Proposition 10.3.

There is a surjective homomorphism of graded rings:

AH(BPU(4);),x3x1,x10y2,1,x15y2,(1,0),αiα¯i.A\to H^{*}(BPU(4);\mathbb{Z}),\ \ x_{3}\mapsto x_{1},\ x_{10}\mapsto y_{2,1},\ x_{15}\mapsto y_{2,(1,0)},\ \alpha_{i}\mapsto\bar{\alpha}_{i}.
Proof.

By Proposition 10.1, we only need to show that this map is well-defiend, in other words, the element α=64α697α2327α32+144α2α4\alpha=64\alpha_{6}-97\alpha_{2}^{3}-27\alpha_{3}^{2}+144\alpha_{2}\alpha_{4} and all generators of the ideal II map to zero.

We already know that in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}), x1x_{1} has order 44 by [12, Theorem 1.1], and x12x_{1}^{2}, y2,1y_{2,1}, y2,(1,0)y_{2,(1,0)} are all of order 22 by Theorem 4.1 and the fact that ρ(x12)\rho(x_{1}^{2}), ρ(y2,1)\rho(y_{2,1}), ρ(y2,(1,0))0\rho(y_{2,(1,0)})\neq 0 in H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2). From this one can see that the order of a torsion element of even degree in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) is at most 22.

Let α¯=64α¯697α¯2327α¯32+144α¯2α¯4\bar{\alpha}=64\bar{\alpha}_{6}-97\bar{\alpha}_{2}^{3}-27\bar{\alpha}_{3}^{2}+144\bar{\alpha}_{2}\bar{\alpha}_{4}. Then π(α¯)=α=0\pi^{*}(\bar{\alpha})=\alpha=0 for π:BU(4)BPU(4)\pi:BU(4)\to BPU(4), since ImπK4\mathrm{Im\,}\pi^{*}\cong K_{4} by Proposition 7.1. Hence α¯\bar{\alpha} is a torsion element. From Proposition 8.7 we know that ρ(α¯)=0\rho(\bar{\alpha})=0, and so α¯2H(BPU(4);)\bar{\alpha}\in 2H^{*}(BPU(4);\mathbb{Z}). Then we get α¯=0\bar{\alpha}=0 since α¯\bar{\alpha} is of even degree.

Since y2y5=0y_{2}y_{5}=0 and ρ(y2,1)=χ(x2,02)=y52\rho(y_{2,1})=\chi^{*}(x_{2,0}^{2})=y_{5}^{2}, we have ρ(α¯2y2,1)=ρ(α¯3y2,1)=0\rho(\bar{\alpha}_{2}y_{2,1})=\rho(\bar{\alpha}_{3}y_{2,1})=0. Hence α¯2y2,1\bar{\alpha}_{2}y_{2,1}, α¯3y2,12H(BPU(4);)\bar{\alpha}_{3}y_{2,1}\in 2H^{*}(BPU(4);\mathbb{Z}), and then α¯2y2,1=α¯3y2,1=0\bar{\alpha}_{2}y_{2,1}=\bar{\alpha}_{3}y_{2,1}=0, since α¯2y2,1\bar{\alpha}_{2}y_{2,1}, α¯3y2,1\bar{\alpha}_{3}y_{2,1} are of even degree.

It is easy to see that H7(BPU(4);)=0H^{7}(BPU(4);\mathbb{Z})=0 since H7(BPU(4);/2)=0H^{7}(BPU(4);\mathbb{Z}/2)=0, so α¯2x1=0\bar{\alpha}_{2}x_{1}=0. Since ρ(α¯3x1)=y23y3=0\rho(\bar{\alpha}_{3}x_{1})=y_{2}^{3}y_{3}=0, α¯3x12H9(BPU(4);)\bar{\alpha}_{3}x_{1}\in 2H^{9}(BPU(4);\mathbb{Z}). Then the fact that H9(BPU(4);)/2{x13}H^{9}(BPU(4);\mathbb{Z})\cong\mathbb{Z}/2\{x_{1}^{3}\} gives α¯3x1=0\bar{\alpha}_{3}x_{1}=0.

Since ρ(y2,(1,0))=χ(x12x2,1+x2,03)=y35+y32y9+y53\rho(y_{2,(1,0)})=\chi^{*}(x_{1}^{2}x_{2,1}+x_{2,0}^{3})=y_{3}^{5}+y_{3}^{2}y_{9}+y_{5}^{3}, we have ρ(α¯2y2,(1,0))=0\rho(\bar{\alpha}_{2}y_{2,(1,0)})=0, then α¯2y2,(1,0)2H19(BPU(4);)\bar{\alpha}_{2}y_{2,(1,0)}\in 2H^{19}(BPU(4);\mathbb{Z}). Checking each element of degree 1919, one can show that α¯2y2,(1,0)=0\bar{\alpha}_{2}y_{2,(1,0)}=0 or 2α¯42x12\bar{\alpha}_{4}^{2}x_{1}. But the later is impossible, since if this is the case, it would imply that α42x1\alpha_{4}^{2}x_{1} in E3,16U{}^{U}E_{\infty}^{3,16} has order 22 because of the Serre filtration construction, which contradicts the second part of Proposition 7.1. Hence we get the relation α¯2y2,(1,0)=0\bar{\alpha}_{2}y_{2,(1,0)}=0. The proof of α¯3y2,(1,0)=0\bar{\alpha}_{3}y_{2,(1,0)}=0 is easier, using the fact that all elements of degree 2121 have order 22.

Let y=x16α¯6+x14y2,1α¯4+x15y2,(1,0)+y2,13+y2,(1,0)2y=x_{1}^{6}\bar{\alpha}_{6}+x_{1}^{4}y_{2,1}\bar{\alpha}_{4}+x_{1}^{5}y_{2,(1,0)}+y_{2,1}^{3}+y_{2,(1,0)}^{2}. Then using the computations in the first paragraph of the proof Lemma 10.2 and the relation y92=y32y12+y52y8y_{9}^{2}=y_{3}^{2}y_{12}+y_{5}^{2}y_{8} in H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2), one readily checks that ρ(y)=0\rho(y)=0. Since yy has even degree, y=0y=0 by the same reasoning.

The above calculations verify that α\alpha and all generators of II map to zero, finishing the proof. ∎

The following Proposition completes the proof of Theorem 2.3.

Proposition 10.4.

The homomorphism in Proposition 10.3 is injective.

Proof.

The proposition is equivalent to saying that if a polynomial ff in the variables αi\alpha_{i}, i=2,3,4,6i=2,3,4,6, x3x_{3}, x10x_{10}, x15x_{15}, maps to zero in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}), then f(α)+If\in(\alpha)+I, where α=64α697α2327α32+144α2α4\alpha=64\alpha_{6}-97\alpha_{2}^{3}-27\alpha_{3}^{2}+144\alpha_{2}\alpha_{4}.

Write f=f(α¯2,α¯3,α¯4,α¯6,x1,y2,1,y2,(1,0))f=f(\bar{\alpha}_{2},\bar{\alpha}_{3},\bar{\alpha}_{4},\bar{\alpha}_{6},x_{1},y_{2,1},y_{2,(1,0)}). Since ff is zero in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}), π(f)=0\pi^{*}(f)=0, and then ff can be written as f=f0+f1f=f_{0}+f_{1}, where f0f_{0} belongs to the ideal of [α¯2,α¯3,α¯4,α¯6]\mathbb{Z}[\bar{\alpha}_{2},\bar{\alpha}_{3},\bar{\alpha}_{4},\bar{\alpha}_{6}] generated by α¯=64α¯697α¯2327α¯32+144α¯2α¯4\bar{\alpha}=64\bar{\alpha}_{6}-97\bar{\alpha}_{2}^{3}-27\bar{\alpha}_{3}^{2}+144\bar{\alpha}_{2}\bar{\alpha}_{4}, and f1(x1,y2,1,y2,(1,0))f_{1}\in(x_{1},y_{2,1},y_{2,(1,0)}). Hence it suffices to show that f1If_{1}\in I. Here we identify II with the corresponding ideal of [α¯2,α¯3,α¯4,α¯6,x1,y2,1,y2,(1,0)]\mathbb{Z}[\bar{\alpha}_{2},\bar{\alpha}_{3},\bar{\alpha}_{4},\bar{\alpha}_{6},x_{1},y_{2,1},y_{2,(1,0)}].

Let ϕ:BSO(6)BPSO(6)=BPU(4)\phi:BSO(6)\to BPSO(6)=BPU(4) be the map in Section 8, and let

g1=ϕρ(x1)=ϕ(y3),g2=ϕρ(y2,1)=ϕ(y52),\displaystyle g_{1}=\phi^{*}\rho(x_{1})=\phi^{*}(y_{3}),\ \ g_{2}=\phi^{*}\rho(y_{2,1})=\phi^{*}(y_{5}^{2}),
g3=ϕρ(α¯4)=ϕ(y8+y3y5),g4=ϕρ(α¯6)=ϕ(y12+y3y9),\displaystyle g_{3}=\phi^{*}\rho(\bar{\alpha}_{4})=\phi^{*}(y_{8}+y_{3}y_{5}),\ \ g_{4}=\phi^{*}\rho(\bar{\alpha}_{6})=\phi^{*}(y_{12}+y_{3}y_{9}),
g5=ϕρ(y2,(1,0))=ϕ(y35+y32y9+y53).\displaystyle g_{5}=\phi^{*}\rho(y_{2,(1,0)})=\phi^{*}(y_{3}^{5}+y_{3}^{2}y_{9}+y_{5}^{3}).

Then ϕρ(f1)\phi^{*}\rho(f_{1}) belongs to the ideal I1I_{1} of relations between the elements g1,,g5g_{1},\dots,g_{5} in H(BSO(6);/2)/2[w2,,w6]H^{*}(BSO(6);\mathbb{Z}/2)\cong\mathbb{Z}/2[w_{2},\dots,w_{6}].

Let us compute the ideal I1/2[g1,,g5]I_{1}\subset\mathbb{Z}/2[g_{1},\dots,g_{5}]. By Proposition 8.3, modulo (w2)(w_{2}),

g1w3,g2w52,g3w42+w3w5,\displaystyle g_{1}\equiv w_{3},\ \ g_{2}\equiv w_{5}^{2},\ \ g_{3}\equiv w_{4}^{2}+w_{3}w_{5},
g4w62+w32w6+w3w4w5,g5w35+w33w6+w32w4w5+w53.\displaystyle g_{4}\equiv w_{6}^{2}+w_{3}^{2}w_{6}+w_{3}w_{4}w_{5},\ \ g_{5}\equiv w_{3}^{5}+w_{3}^{3}w_{6}+w_{3}^{2}w_{4}w_{5}+w_{5}^{3}.

It is easy to see that the four elements g1,,g4g_{1},\dots,g_{4} are algebraically independent. Hence the Krull dimension of the subalgbra of /2[w2,,w6]\mathbb{Z}/2[w_{2},\dots,w_{6}] generated by gig_{i}, i=1,,5i=1,\dots,5, is at least 44, which means that I1I_{1} is a principal ideal of /2[g1,,g5]\mathbb{Z}/2[g_{1},\dots,g_{5}]. To see this, note that I1I_{1} is the kernel of the map /2[g1,,g5]/2[w2,,w6]\mathbb{Z}/2[g_{1},\dots,g_{5}]\to\mathbb{Z}/2[w_{2},\dots,w_{6}] with target a UFD, so I1I_{1} is a prime ideal of /2[g1,,g5]\mathbb{Z}/2[g_{1},\dots,g_{5}]. Since the Krull dimension of /2[g1,,g5]/I1\mathbb{Z}/2[g_{1},\dots,g_{5}]/I_{1} is at least 44, the height of I1I_{1} is at most 11, and then I1I_{1} is principal since /2[g1,,g5]\mathbb{Z}/2[g_{1},\dots,g_{5}] is a UFD.

Suppose that h=h(g1,,g5)h=h(g_{1},\dots,g_{5}) generates I1I_{1}. Since the powers w6iw_{6}^{i} only appear in the expressions of g4g_{4} and g5g_{5}, it follows that if h0h\neq 0, then the degrees of g4g_{4} and g5g_{5} in hh are both nonzero. Furthermore, since the degree of w6w_{6} in g4g_{4} (resp. in g5g_{5}) is 22 (resp. 11), the degree of g5g_{5} in hh is at least 22 when h0h\neq 0. We have seen in the proof of Proposition 10.3 that ϕρ(y)=g16g4+g14g2g3+g15g5+g23+g52=0\phi^{*}\rho(y)=g_{1}^{6}g_{4}+g_{1}^{4}g_{2}g_{3}+g_{1}^{5}g_{5}+g_{2}^{3}+g_{5}^{2}=0 in /2[w2,,w6]\mathbb{Z}/2[w_{2},\dots,w_{6}], where y=x16α¯6+x14y2,1α¯4+x15y2,(1,0)+y2,13+y2,(1,0)2y=x_{1}^{6}\bar{\alpha}_{6}+x_{1}^{4}y_{2,1}\bar{\alpha}_{4}+x_{1}^{5}y_{2,(1,0)}+y_{2,1}^{3}+y_{2,(1,0)}^{2}, hence we must have h=g16g4+g14g2g3+g15g5+g23+g52h=g_{1}^{6}g_{4}+g_{1}^{4}g_{2}g_{3}+g_{1}^{5}g_{5}+g_{2}^{3}+g_{5}^{2}.

Since f1(x1,y2,1,y2,(1,0))f_{1}\in(x_{1},y_{2,1},y_{2,(1,0)}) and ϕρ(α¯2)=ϕρ(α¯3)=0\phi^{*}\rho(\bar{\alpha}_{2})=\phi^{*}\rho(\bar{\alpha}_{3})=0, the above analysis implies that

f1(y)+(α¯2,α¯3)(x1,y2,1,y2,(1,0))+2(x1,y2,1,y2,(1,0)).f_{1}\in(y)+(\bar{\alpha}_{2},\bar{\alpha}_{3})\cdot(x_{1},y_{2,1},y_{2,(1,0)})+2(x_{1},y_{2,1},y_{2,(1,0)}).

We know that ff and f0f_{0} are zero in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}), so f1=0f_{1}=0 in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}). Since yy, 2y2,12y_{2,1}, 2y2,(1,0)2y_{2,(1,0)} and (α¯2,α¯3)(x1,y2,1,y2,(1,0))(\bar{\alpha}_{2},\bar{\alpha}_{3})\cdot(x_{1},y_{2,1},y_{2,(1,0)}) are all zero in H(BPU(4);)H^{*}(BPU(4);\mathbb{Z}) and the order of x1ξx_{1}\xi is 44 for any ξ[α¯4,α¯6]\xi\in\mathbb{Z}[\bar{\alpha}_{4},\bar{\alpha}_{6}] by the second part of Proposition 7.1, it follows that f1f_{1} is actually in the ideal

(y)+(α¯2,α¯3)(x1,y2,1,y2,(1,0))+4(x1),(y)+(\bar{\alpha}_{2},\bar{\alpha}_{3})\cdot(x_{1},y_{2,1},y_{2,(1,0)})+4(x_{1}),

which is contained in II. The proof is completed. ∎

11. Kernel of Sq1Sq^{1} on H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2)

In this section we prove the claim in the proof of Lemma 10.2 that the kernel of the action Sq1Sq^{1} on H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2) is the subalgebra generated by y2y_{2}, y3y_{3}, y52y_{5}^{2}, y8+y3y5y_{8}+y_{3}y_{5}, y12+y3y9y_{12}+y_{3}y_{9}, y32y9+y53y_{3}^{2}y_{9}+y_{5}^{3}. To make the computation easier, we shall establish a /2\mathbb{Z}/2-algebra isomorphic to H(BPU(4);/2)H^{*}(BPU(4);\mathbb{Z}/2), and define a operation on it corresponding to Sq1Sq^{1}.

Let WW be the quotient of the polynomial algebra /2[x2,x3,x5,x8,x9,x12]\mathbb{Z}/2[x_{2},x_{3},x_{5},x_{8},x_{9},x_{12}] by the ideal generated by x2x3x_{2}x_{3}, x2x5x_{2}x_{5}, x2x9x_{2}x_{9} and x92+x32x12+x52x8+x33x9+x3x53x_{9}^{2}+x_{3}^{2}x_{12}+x_{5}^{2}x_{8}+x_{3}^{3}x_{9}+x_{3}x_{5}^{3}. Then it is easy to see that there is an algebra isomporphism WH(BPU(4);/2)W\cong H^{*}(BPU(4);\mathbb{Z}/2) given by xiyix_{i}\mapsto y_{i} for i=2,3,5,9i=2,3,5,9, x8y8+y3y5x_{8}\mapsto y_{8}+y_{3}y_{5}, x12y12+y3y9x_{12}\mapsto y_{12}+y_{3}y_{9}. Define an operation 𝒟\mathcal{D} on WW by 𝒟(xi)=0\mathcal{D}(x_{i})=0 for i=2,3,8,12i=2,3,8,12, 𝒟(x5)=x32\mathcal{D}(x_{5})=x_{3}^{2}, 𝒟(x9)=x52\mathcal{D}(x_{9})=x_{5}^{2}, and the Leibniz rule 𝒟(ab)=𝒟(a)b+a𝒟(b)\mathcal{D}(ab)=\mathcal{D}(a)b+a\mathcal{D}(b). Then using Theorem 2.5, one easily verifies that there is a commutative diagram

W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒟\scriptstyle{\mathcal{D}}\scriptstyle{\cong}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}H(BPU(4);/2)\textstyle{H^{*}(BPU(4);\mathbb{Z}/2)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Sq1\scriptstyle{Sq^{1}}H(BPU(4);/2)\textstyle{H^{*}(BPU(4);\mathbb{Z}/2)}

Thus, WW can be viewed as a DGA with differential 𝒟\mathcal{D}. We compute its cohomology as follows

Proposition 11.1.

H(W,𝒟)/2[x2,x8,x12]E/2[x3]H^{*}(W,\mathcal{D})\cong\mathbb{Z}/2[x_{2},x_{8},x_{12}]\otimes E_{\mathbb{Z}/2}[x_{3}].

Our desired result on kerSq1\ker Sq^{1} is a direct consequence of the following corollary of Proposition 11.1.

Corollary 11.2.

ker𝒟\ker\mathcal{D} is the subalgebra of WW generated by x2x_{2}, x8x_{8}, x12x_{12}, x3x_{3}, x52x_{5}^{2}, x32x9+x53x_{3}^{2}x_{9}+x_{5}^{3}.

Proof.

Since H(W,𝒟)=ker𝒟/Im𝒟H^{*}(W,\mathcal{D})=\ker\mathcal{D}/\mathrm{Im\,}\mathcal{D}, it follows from Proposition 11.1 that as /2\mathbb{Z}/2-modules

ker𝒟Im𝒟/2[x2,x8,x12]/2[x2,x8,x12]x3.\ker\mathcal{D}\cong\mathrm{Im\,}\mathcal{D}\oplus\mathbb{Z}/2[x_{2},x_{8},x_{12}]\oplus\mathbb{Z}/2[x_{2},x_{8},x_{12}]\cdot x_{3}.

Now we compute Im𝒟\mathrm{Im\,}\mathcal{D}. For a monomial 𝐦=𝐧x3ix5jx9kW\mathbf{m}=\mathbf{n}\cdot x_{3}^{i}x_{5}^{j}x_{9}^{k}\in W, 𝐧/2[x2,x8,x12]\mathbf{n}\in\mathbb{Z}/2[x_{2},x_{8},x_{12}], by the rule of 𝒟\mathcal{D} we have

𝒟(𝐦)=𝐧(j~x3i+2x5j1x9k+k~x3ix5j+2x9k1).\mathcal{D}(\mathbf{m})=\mathbf{n}\cdot(\widetilde{j}\cdot x_{3}^{i+2}x_{5}^{j-1}x_{9}^{k}+\widetilde{k}\cdot x_{3}^{i}x_{5}^{j+2}x_{9}^{k-1}).

Here ~\widetilde{*} means the mod 22 number. Hence Im𝒟\mathrm{Im\,}\mathcal{D} is a /2\mathbb{Z}/2-vector space spanned by elements of the forms:

𝐧x3rx52sx92t,𝐧x3ix52qx92t,𝐧x3ix52sx92t(x32x9+x53),\mathbf{n}\cdot x_{3}^{r}x_{5}^{2s}x_{9}^{2t},\ \ \mathbf{n}\cdot x_{3}^{i}x_{5}^{2q}x_{9}^{2t},\ \ \mathbf{n}\cdot x_{3}^{i}x_{5}^{2s}x_{9}^{2t}(x_{3}^{2}x_{9}+x_{5}^{3}),

where i,s,t0i,s,t\geq 0, q1q\geq 1, r2r\geq 2. Note that x92t=[x32x12+x52x8+x3(x32x9+x53)]tx_{9}^{2t}=[x_{3}^{2}x_{12}+x_{5}^{2}x_{8}+x_{3}(x_{3}^{2}x_{9}+x_{5}^{3})]^{t} by definition. Then an easy calculation gives the result. ∎

Proof of Proposition 11.1.

Define a /2\mathbb{Z}/2-linear map λ:WW\lambda:W\to W by λ(𝐦)=𝐦\lambda(\mathbf{m})=\mathbf{m} if 𝐦=x2ax8bx12c\mathbf{m}=x_{2}^{a}x_{8}^{b}x_{12}^{c} or x2ax8bx12cx3x_{2}^{a}x_{8}^{b}x_{12}^{c}x_{3}, a,b,c0a,b,c\geq 0, and λ(𝐦)=0\lambda(\mathbf{m})=0 for all other monomials. It is easy to show that λ\lambda is a chain map associated to the differential 𝒟\mathcal{D}. We claim that λ\lambda is chain homotopic to the identity map. Since 𝒟\mathcal{D} restricted to /2[x2,x8,x12,x3]\mathbb{Z}/2[x_{2},x_{8},x_{12},x_{3}] is zero and any element in /2[x2,x8,x12]/2{1,x3}\mathbb{Z}/2[x_{2},x_{8},x_{12}]\cdot\mathbb{Z}/2\{1,x_{3}\} is clearly not in Im𝒟\mathrm{Im\,}\mathcal{D}, the proposition follows immediately from this claim.

Now we construct the chain homotopy PP as follows. For a monomial 𝐦=𝐧x3ix5jx9kW\mathbf{m}=\mathbf{n}\cdot x_{3}^{i}x_{5}^{j}x_{9}^{k}\in W, 𝐧/2[x2,x8,x12]\mathbf{n}\in\mathbb{Z}/2[x_{2},x_{8},x_{12}], let

P(𝐦)={𝐧x3i2x5j+1x9kif i2,𝐧x3ix5j2x9k+1if i1,j,k even,j0,𝐧x3ix9k2(x5x12+x8x9+x3x5x9)if i1,j=0,k2even,0otherwise.P(\mathbf{m})=\begin{cases}\mathbf{n}\cdot x_{3}^{i-2}x_{5}^{j+1}x_{9}^{k}&\text{if }i\geq 2,\\ \mathbf{n}\cdot x_{3}^{i}x_{5}^{j-2}x_{9}^{k+1}&\text{if }i\leq 1,\ j,k\text{ even},\ j\neq 0,\\ \mathbf{n}\cdot x_{3}^{i}x_{9}^{k-2}(x_{5}x_{12}+x_{8}x_{9}+x_{3}x_{5}x_{9})&\text{if }i\leq 1,\ j=0,\ k\geq 2\ \text{even},\\ 0&\text{otherwise}.\end{cases}

It is straightforward to show that P𝒟+𝒟P=λidP\mathcal{D}+\mathcal{D}P=\lambda-\mathrm{id} on all monomials in WW case by case. ∎

References

  • [1] B. Antieau and B. Williams, The period-index problem for twisted topological KK-theory, Geom. Topol. 18 (2014), no. 2, 1115–1148.
  • [2] by same author, The topological period-index problem over 6-complexes, J. Topol. 7 (2014), no. 3, 617–640.
  • [3] M. Artin, Brauer-Severi varieties, In: Brauer groups in ring theory and algebraic geometry, Lect. Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 194–210.
  • [4] E. H. Brown Jr., The cohomology of BSOn{BSO_{n}} and BOn{BO_{n}} with integer coefficients, Proc. Amer. Math. Soc. 85 (1982), no. 2, 283–288.
  • [5] H. Cartan, Algèbres d’Eilenberg-Mac Lane et homotopie, Séminaire Henri Cartan, vol. 7, no. 1, 1954/1955, available at www.numdam.org.
  • [6] D. Crowley and M. Grant, The topological period-index conjecture for Spinc 6-manifolds, Ann. KK-Theory 5 (2020), no. 3, 605–620.
  • [7] A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), no. 1, 71–94.
  • [8] T. Ganea, Induced fibrations and cofibrations, Trans. Amer. Math. Soc. 127 (1967), no. 3, 442–459.
  • [9] A. Grothendieck, Le groupe de Brauer: I. Algèbres d’Azumaya et interprétations diverses, In: Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam,, 1968, pp. 46–66.
  • [10] X. Gu, The topological period-index problem over 88-complexes I, J. Topol. 12 (2019), no. 4, 1368–1395.
  • [11] by same author, The topological period-index problem over 88-complexes II, Proc. Am. Math. Soc. 148 (2020), no. 10, 4531–4545.
  • [12] by same author, On the cohomology of the classifying spaces of projective unitary groups, J. Topol. Anal. 13 (2021), no. 2, 535–573.
  • [13] by same author, Some torsion classes in the Chow ring and cohomology of BPGLnBPGL_{n}, J. London Math. Soc. 103 (2021), no. 1, 127–160.
  • [14] X. Gu, Y. Zhang, Z. Zhang, and L. Zhong, The pp-primary subgroups of the cohomology of BPUnBPU_{n} in dimensions less than 2p+52p+5, Proc. Am. Math. Soc. 150 (2022), no. 9, 4099–4111.
  • [15] A. Kono and M. Mimura, On the cohomology of the classifying spaces of PSU(4n+2)PSU(4n+2) and PO(4n+2)PO(4n+2), Publ. Res. Inst. Math. Sci. 10 (1975), no. 3, 691–720.
  • [16] A. Kono, M. Mimura, and N. Shimada, Cohomology of classifying spaces of certain associative H-spaces, J. Math. Kyoto Univ. 15 (1975), no. 3, 607–617.
  • [17] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), no. 2, 781–798.
  • [18] T. Kudo, A transgression theorem, Mem. Fac. Sci. Kyusyu Univ. 9 (1956), 79–81.
  • [19] M. Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), no. 1, 1–31.
  • [20] K. Masaki and N. Yagita, The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups PU(p)PU(p) and exceptional Lie groups, Trans. Am. Math. Soc. 360 (2008), no. 5, 2265–2284.
  • [21] H. Toda, Cohomology of classifying spaces, In: Homotopy theory and related topics (Kyoto, 1984), Adv. Stud. Pure Math., vol. 9, North-Holland, Amsterdam, 1987, pp. 75–108.
  • [22] A. Vavpetič and A. Viruel, On the mod pp cohomology of BPU(p)BPU(p), Trans. Am. Math. Soc. 357 (2005), no. 11, 4517–4532.
  • [23] G. Vezzosi, On the Chow ring of the classifying stack of PGL3,PGL_{3,\mathbb{C}}, J. Reine Angew. Math. 523 (2000), 1–54.
  • [24] A. Vistoli, On the cohomology and the Chow ring of the classifying space of PGLp{PGL}_{p}, J. Reine Angew. Math. 610 (2007), 181–227.
  • [25] Y. Zhang, Z. Zhang, and L. Zhong, The pp-primary subgroups of the cohomology of BPUnBPU_{n} in dimension 2p+62p+6, Topol. Appl. 3380 (2023), 108642, 12pp.