This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Universität Rostock, Institut für Informatik, Theoretische Informatik, Albert-Einstein-Straße 22, 18059, Rostock (11email: ronny.tredup@uni-rostock.de) 22institutetext: Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
D-26111 Oldenburg, Germany (22email: evgeny.erofeev@informatik.uni-oldenburg.de)

The Complexity of Boolean State Separation (Technical Report)

Ronny Tredup(✉) 11    Evgeny Erofeev Supported by DFG through grant Be 1267/16-1ASYST.22
Abstract

For a Boolean type of nets τ\tau, a transition system AA is synthesizeable into a τ\tau-net NN if and only if distinct states of AA correspond to distinct markings of NN, and NN prevents a transition firing if there is no related transition in AA. The former property is called τ\tau-state separation property (τ\tau-SSP) while the latter – τ\tau-event/state separation property (τ\tau-ESSP). AA is embeddable into the reachability graph of a τ\tau-net NN if and only if AA has the τ\tau-SSP. This paper presents a complete characterization of the computational complexity of τ\tau-SSP for all Boolean Petri net types.

Keywords:
Boolean Petri nets, Boolean state separation, complexity characterization

1 Introduction

Providing a powerful mechanism for the modeling of conflicts, dependencies and parallelism, Petri nets are widely used for studying and simulating concurrent and distributed systems. In system analysis, one aims to check behavioral properties of system models, and many of these properties are decidable [7] for Petri nets and their reachability graphs, which represent systems’ behaviors. The task of system synthesis is opposite: a (formal) specification of the system’s behavior is given, and the goal is then to decide whether this behavior can be implemented by a Petri net. In case of a positive decision, such a net should be constructed.

Boolean Petri nets form a simple yet rich and powerful family of Petri nets [3, 4, 8, 10, 12, 13, 16], applied in asynchronous circuits design [24, 26], concurrent constraint programs [9] and analysis of biological systems models [6]. In Boolean nets, each place contains at most one token, for any reachable marking. Hence, a place can be interpreted as a Boolean condition that is true if marked and false otherwise. A place pp and a transition tt of such a net are related by one of the Boolean interactions that define in which way pp and tt influence each other. The interaction inp (out) defines that pp must be true (false) before and false (true) after tt’s firing; free (used) implies that tt’s firing proves that pp is false (true); nop means that pp and tt do not affect each other at all; res (set) implies that pp may initially be both false or true but after tt’s firing it is false (true); swap means that tt inverts pp’s current Boolean value. Boolean Petri nets are classified by the sets of interactions that can be applied. A set τ\tau of Boolean interactions is called a type of net, and a net NN is of type τ\tau (a τ\tau-net) if it applies at most the interactions of τ\tau. For a type τ\tau, the τ\tau-synthesis problem consists in deciding whether a specification given in the form of a labeled transition system (TS) is isomorphic to the reachability graph of some τ\tau-net NN, and in constructing NN if it exists. The complexity of τ\tau-synthesis has been studied in different settings [17, 20, 22], and varies substantially from polynomial [16] to NP-complete [2].

In order to perform synthesis, that is, to implement the behavior specified by the given TS with a τ\tau-net, two general problems have to be resolved: The τ\tau-net has to distinguish the global states of the TS, and the τ\tau-net has to prevent actions at states where they are not permitted by the TS. In the literature [3], the former requirement is usually referred to as τ\tau-state separation property (τ\tau-SSP), while the latter – τ\tau-event/state separation property (τ\tau-ESSP). Both τ\tau-SSP and τ\tau-ESSP define decision problems that ask whether a given TS fulfills the respective property. The present work focuses exclusively on the computational complexity of τ\tau-SSP. The interest to state separation is motivated in several ways. First, many synthesis approaches are very sensitive to the size of the input’s state space. This raises the question if some initial, so-called pre-synthesis procedures [5, 25] can be employed as a quick-fail mechanism, i.e., techniques with a small computational overhead that would gain some helpful information for the main synthesis, or reject the input if exact (up to isomorphism) synthesis is not possible. Since τ\tau-synthesis allows a positive decision if and only if τ\tau-SSP and τ\tau-ESSP do [3], an efficient decision procedure for τ\tau-SSP could serve as a quick-fail pre-process check. Second, if exact synthesis is not possible for the given TS, one may want to have a simulating model, i.e., a τ\tau-net that over-approximates [14, 15] the specified behavior with some possible supplement. Formally, the TS then has to be injectively embeddable into the reachability graph of a τ\tau-net. It is well known from the literature [3] that a TS can be embedded into the reachability graph of a τ\tau-net if and only if it has the τ\tau-SSP. Finally, in comparison to τ\tau-ESSP, so far the complexity of τ\tau-SSP is known to be as hard [1, 16, 22, 23] or actually less hard [18, 19]. On the contrary, in this paper, for some types of nets, deciding the τ\tau-SSP is proven harder (NP-complete) than deciding the τ\tau-ESSP (polynomial), e.g., for τ={nop,res,set}\tau=\{\textsf{nop},\textsf{res},\textsf{set}\}. From the contribution perspective, the τ\tau-SSP has been previously considered only in the broader context of τ\tau-synthesis, and only for selected types [16, 19, 21, 22]. In this paper, we completely characterize the complexity of τ\tau-SSP for all 256 Boolean types of nets and discover 150 new hard types, cf. §1 - §3, §6, §9 of  Figure 1, and 4 new tractable types, cf. Figure 1 §10, and comprise the known results for the other 102 types as well, cf. Figure 1 §4, §5, §7, §8. In particular, our characterization categorizes Boolean types with regard to their behavioral capabilities, resulting from the Boolean interactions involved. This reveals the internal organization of the entire class of Boolean nets, suggesting a general approach for reasoning about its subclasses.

This paper is organized as follows. In Section 2, all the necessary notions and definitions will be given. Section 3 presents NP-completeness results for the types with nop-interaction. τ\tau-SSP for types without nop is investigated in Section 4. Concluding remarks are given in Section 5. One proof is shifted to the appendix.

§\S Type of net τ\tau Complexity Quantity
1 {nop,res,set,swap}ω\{\textsf{nop},\textsf{res},\textsf{set},\textsf{swap}\}\cup\omega with ω{inp,out,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\} NP-complete 16
2 {nop,res,swap}ω\{\textsf{nop},\textsf{res},\textsf{swap}\}\cup\omega with ω{inp,out,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\},
{nop,set,swap}ω\{\textsf{nop},\textsf{set},\textsf{swap}\}\cup\omega with ω{inp,out,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\}
NP-complete 32
3 {nop,res,set}ω\{\textsf{nop},\textsf{res},\textsf{set}\}\cup\omega with ω{inp,out,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\},
{nop,out,res}ω\{\textsf{nop},\textsf{out},\textsf{res}\}\cup\omega with ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\},
{nop,inp,set}ω\{\textsf{nop},\textsf{inp},\textsf{set}\}\cup\omega with ω{out,used,free}\omega\subseteq\{\textsf{out},\textsf{used},\textsf{free}\}
NP-complete 32
4 {nop,res}ω\{\textsf{nop},\textsf{res}\}\cup\omega with ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\},
{nop,set}ω\{\textsf{nop},\textsf{set}\}\cup\omega with ω{out,used,free}\omega\subseteq\{\textsf{out},\textsf{used},\textsf{free}\}
polynomial 16
5 {nop,inp,out}\{\textsf{nop},\textsf{inp},\textsf{out}\} and {nop,inp,out,used}\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{used}\} NP-complete 2
6 {nop,inp,out,free}\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{free}\} and {nop,inp,out,used,free}\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\},
{nop,inp}ω\{\textsf{nop},\textsf{inp}\}\cup\omega and {nop,out}ω\{\textsf{nop},\textsf{out}\}\cup\omega with ω{used,free}\omega\subseteq\{\textsf{used},\textsf{free}\}
NP-complete 10
7 {nop,swap}ω\{\textsf{nop},\textsf{swap}\}\cup\omega with ω{inp,out,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{used},\textsf{free}\},
{nop}ω\{\textsf{nop}\}\cup\omega with ω{used,free}\omega\subseteq\{\textsf{used},\textsf{free}\}
polynomial 20
8 ω{inp,out,res,set,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{res},\textsf{set},\textsf{used},\textsf{free}\} polynomial 64
9 {swap}ω\{\textsf{swap}\}\cup\omega with ω{inp,out,res,set,used,free}\omega\subseteq\{\textsf{inp},\textsf{out},\textsf{res},\textsf{set},\textsf{used},\textsf{free}\} and ω{res,set,used,free}\omega\cap\{\textsf{res},\textsf{set},\textsf{used},\textsf{free}\}\not=\emptyset NP-complete 60
10 {swap}ω\{\textsf{swap}\}\cup\omega with ω{inp,out}\omega\subseteq\{\textsf{inp},\textsf{out}\} polynomial 4
Figure 1: Overview of the computational complexity of τ\tau-SSP for Boolean types of nets τ\tau. The gray area highlights the new results that this paper provides.

2 Preliminaries

In this section, we introduce necessary notions and definitions, supported by illustrations and examples, and some basic results that are used throughout the paper.

Transition Systems. A (finite, deterministic) transition system (TS, for short) A=(S,E,δ)A=(S,E,\delta) is a directed labeled graph with the set of nodes SS (called states), the set of labels EE (called events) and partial transition function δ:S×ES\delta:S\times E\longrightarrow S. If δ(s,e)\delta(s,e) is defined, we say that ee occurs at state ss, denoted by s e s\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope\pgfsys@setlinewidth{0.24pt}\pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-1.10999pt}{1.47998pt}\pgfsys@curveto{-1.01749pt}{0.92499pt}{0.0pt}{0.0925pt}{0.2775pt}{0.0pt}\pgfsys@curveto{0.0pt}{-0.0925pt}{-1.01749pt}{-0.92499pt}{-1.10999pt}{-1.47998pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}. By s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A, we denote δ(s,e)=s\delta(s,e)=s^{\prime}. This notation extends to paths, i.e., q0 e1 en qnAq_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.49608pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{n}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{n}\in A denotes qi1 ei qiAq_{i-1}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.34169pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{i}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{i}\in A for all i{1,,n}i\in\{1,\dots,n\}. A TS AA is loop-free, if s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A implies sss\not=s^{\prime}. A loop-free TS AA is bi-directed if s e sAs^{\prime}\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s\in A implies s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A. We say s0 e1 en snAs_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.49608pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{n}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{n}\in A is a simple bi-directed path if sisjs_{i}\not=s_{j} for all iji\not=j with i,j{0,,n}i,j\in\{0,\dots,n\}. An initialized TS A=(S,E,δ,ι)A=(S,E,\delta,\iota) is a TS with a distinct initial state ιS\iota\in S, where every state sSs\in S is reachable from ι\iota by a directed labeled path.

xx nop(x)\textsf{nop}(x) inp(x)\textsf{inp}(x) out(x)\textsf{out}(x) res(x)\textsf{res}(x) set(x)\textsf{set}(x) swap(x)\textsf{swap}(x) used(x)\textsf{used}(x) free(x)\textsf{free}(x)
0 0 11 0 11 11 0
11 11 0 0 11 0 11
Figure 2: All interactions ii of II. If a cell is empty, then ii is undefined on the respective xx.
0 11 \pgfmathresultpt nop \pgfmathresultpt nop inp τ\tau s0s_{0} s1s_{1} aaaa A1A_{1} r0r_{0} r1r_{1} bbcc A2A_{2} 0 11 \pgfmathresultpt nop \pgfmathresultpt nop used set swap   set,swap\textsf{set},\textsf{swap} τ~\tilde{\tau}
Figure 3: Left: τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\}. Right: τ~={nop,set,swap,used}\tilde{\tau}=\{\textsf{nop},\textsf{set},\textsf{swap},\textsf{used}\}. The red colored area emphasizes the inside. The only SSP atom of A1A_{1} is (s0,s1)(s_{0},s_{1}). It is τ~\tilde{\tau}-solvable by R1=(sup1,sig1)R_{1}=(sup_{1},sig_{1}) with sup1(s0)=0sup_{1}(s_{0})=0, sup1(s1)=1sup_{1}(s_{1})=1, sig1(a)=swapsig_{1}(a)=\textsf{swap}. Thus, A1A_{1} has the τ~\tilde{\tau}-separative set ={R1}\mathcal{R}=\{R_{1}\}. The SSP atom (s0,s1)(s_{0},s_{1}) is not τ\tau-solvable. The only SSP atom (r0,r1)(r_{0},r_{1}) in A2A_{2} can be solved by τ~\tilde{\tau}-region R2=(sup2,sig2)R_{2}=(sup_{2},sig_{2}) with sup2(r0)=0sup_{2}(r_{0})=0, sup2(r1)=1sup_{2}(r_{1})=1, sig2(b)=setsig_{2}(b)=\textsf{set}, sig2(c)=swapsig_{2}(c)=\textsf{swap}. Thus, A2A_{2} has the τ~\tilde{\tau}-SSP. The same atom can also be solved by τ\tau-region R3=(sup3,sig3)R_{3}=(sup_{3},sig_{3}) with sup3(r0)=1sup_{3}(r_{0})=1, sup3(r1)=0sup_{3}(r_{1})=0, sig3(b)=sig3(c)=inpsig_{3}(b)=sig_{3}(c)=\textsf{inp}. Hence, A2A_{2} has the τ\tau-SSP, as well.
s0s_{0} s1s_{1} s2s_{2} s3s_{3} aa bb cc A3A_{3} 11 11 11 0 used swap set A3RA_{3}^{R} 11 11 11 0 nop swap set A3RA_{3}^{R^{\prime}}
Figure 4: Left: TS A3A_{3}, a simple directed path. If τ~\tilde{\tau} is defined as in Figure 4, then sup(ι)=1sup(\iota)=1, sig(a)=usedsig(a)=\textsf{used}, sig(b)=swapsig(b)=\textsf{swap} and sig(c)=setsig(c)=\textsf{set} implicitly defines the τ~\tilde{\tau}-region R=(sup,sig)R=(sup,sig) of A3A_{3} as follows: sup(s1)=δτ~(1,used)=1sup(s_{1})=\delta_{\tilde{\tau}}(1,\textsf{used})=1, sup(s2)=δτ~(1,swap)=0sup(s_{2})=\delta_{\tilde{\tau}}(1,\textsf{swap})=0 and sup(s3)=δτ~(0,set)=1sup(s_{3})=\delta_{\tilde{\tau}}(0,\textsf{set})=1. Middle: The image A3RA_{3}^{R} of A3A_{3} (under R). One easily verifies that δA3(s,e)=s\delta_{A_{3}}(s,e)=s^{\prime} implies δτ~(sup(s),sig(e))=sup(s)\delta_{\tilde{\tau}}(sup(s),sig(e))=sup(s^{\prime}), cf. Figure 4. In particular, RR is sound. For event bb, the edge defined by δA3(s1,b)=s2\delta_{A_{3}}(s_{1},b)=s_{2} is mapped into δτ~(1,swap)=0\delta_{\tilde{\tau}}(1,\textsf{swap})=0 under RR, i.e., bb makes a state change on the path; similar for sig(c)=setsig(c)=\textsf{set}. RR is not normalized, since sup(s0)=sup(s1)sup(s_{0})=sup(s_{1}), but sig(a)=usednopsig(a)=\textsf{used}\neq\textsf{nop}. Right: The image A3RA_{3}^{R^{\prime}} of A3A_{3} under the normalized τ~\tilde{\tau}-region RR^{\prime} that is similar to RR but replaces used by nop.

Boolean Types of Nets [3]. The following notion of Boolean types of nets allows to capture all Boolean Petri nets in a uniform way. A Boolean type of net τ=({0,1},Eτ,δτ)\tau=(\{0,1\},E_{\tau},\delta_{\tau}) is a TS such that EτE_{\tau} is a subset of the Boolean interactions: EτI={nop,inp,out,res,set,swap,used,free}E_{\tau}\subseteq I=\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{res},\textsf{set},\textsf{swap},\textsf{used},\textsf{free}\}. Each interaction iIi\in I is a binary partial function i:{0,1}{0,1}i:\{0,1\}\rightarrow\{0,1\} as defined in Figure 4. For all x{0,1}x\in\{0,1\} and all iEτi\in E_{\tau}, the transition function of τ\tau is defined by δτ(x,i)=i(x)\delta_{\tau}(x,i)=i(x). Notice that a type τ\tau is completely determined by EτE_{\tau}. Hence we often identify τ\tau with EτE_{\tau}, cf. Figure 1. Moreover, since II captures all meaningful Boolean interactions [22, p. 617] and τ\tau is defined by EτIE_{\tau}\subseteq I, there are 256 Boolean types of nets at all. For a Boolean type of net τ\tau, we say that its state 11 is inside and 0 is outside. An interaction iEτi\in E_{\tau} exits if 1 i 01\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}0, enters if 0 i 10\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}1, saves 1 if 1 i 11\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}1 and saves 0 if 0 i 00\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}0. Accordingly, we group interactions together by 𝔢𝔵𝔦𝔱={inp,res,swap}\mathfrak{exit}=\{\textsf{inp},\textsf{res},\textsf{swap}\}, 𝔢𝔫𝔱𝔢𝔯={out,set,swap}\mathfrak{enter}=\{\textsf{out},\textsf{set},\textsf{swap}\}, 𝔰𝔞𝔳𝔢1={nop,set,used}\mathfrak{save}_{1}=\{\textsf{nop},\textsf{set},\textsf{used}\}, 𝔰𝔞𝔳𝔢0={nop,res,free}\mathfrak{save}_{0}=\{\textsf{nop},\textsf{res},\textsf{free}\} and 𝔰𝔞𝔳𝔢=𝔰𝔞𝔳𝔢1𝔰𝔞𝔳𝔢0\mathfrak{save}=\mathfrak{save}_{1}\cup\mathfrak{save}_{0}.

For a net of type τ\tau (τ\tau-net), the interactions of τ\tau determine relations between places and transitions of the net. For instance, if a place pp and a transition tt are related via inp, then pp has to be marked (true) to allow tt to fire, and becomes unmarked (false) after the firing (cf. Figure 4). Since we are only concerned with state separation, we omit the formal definition of τ\tau-nets and rather refer to, e.g., [3] for a comprehensive introduction to the topic.

τ\tau-Regions. The following notion of τ\tau-regions is the key concept for state separation. A τ\tau-region R=(sup,sig)R=(sup,sig) of TS A=(S,E,δ,ι)A=(S,E,\delta,\iota) consists of the mappings support sup:S{0,1}sup:S\rightarrow\{0,1\} and signature sig:EEτsig:E\rightarrow E_{\tau}, such that for every edge s e ss\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime} of AA, the edge sup(s) sig(e) sup(s)sup(s)\leavevmode\hbox to27.22pt{\vbox to14.67pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{23.7875pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.7875pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.81444pt}{4.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$sig(e)$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}sup(s^{\prime}) belongs to the type τ\tau; we also say supsup allows (sigsig and thus the region) RR. If P=q0 e1 en qnP=q_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.49608pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{n}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{n} is a path in AA, then PR=sup(q0) sig(e1) sig(en) sup(qn)P^{R}=sup(q_{0})\leavevmode\hbox to30.81pt{\vbox to14.67pt{\pgfpicture\makeatletter\hbox{\;\lower-1.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{23.7875pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.7875pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.01999pt}{4.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$sig(e_{1})$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to31.58pt{\vbox to14.67pt{\pgfpicture\makeatletter\hbox{\enspace\lower-1.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{23.7875pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.7875pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.36288pt}{4.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$sig(e_{n})$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}sup(q_{n}) is a path in τ\tau. We say PRP^{R} is the image of PP (under RR). For region RR and path PP, event eie_{i} with 1in1\leq i\leq n is called state changing on the path PRP^{R}, if sup(qi1)sup(qi)sup(q_{i-1})\neq sup(q_{i}) for qi1 ei qiq_{i-1}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.34169pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{i}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{i} in PP. Notice that RR is implicitly defined by sup(ι)sup(\iota) and sigsig: Since AA is reachable, for every state sSs\in S, there is a path ι e1 en sn\iota\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.49608pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{n}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{n} such that s=sns=s_{n}. Thus, since τ\tau is deterministic, we inductively obtain sup(si+1)sup(s_{i+1}) by sup(si) sig(ei+1) sup(si+1)sup(s_{i})\leavevmode\hbox to37.99pt{\vbox to14.67pt{\pgfpicture\makeatletter\hbox{\enspace\lower-1.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.05525pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.05525pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.43341pt}{4.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$sig(e_{i+1})$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}sup(s_{i+1}) for all i{0,,n1}i\in\{0,\dots,n-1\} and s0=ιs_{0}=\iota. Hence, we can compute supsup and thus RR purely from sup(ι)sup(\iota) and sigsig, cf. Figure 4. If nopτ\textsf{nop}\in\tau, then a τ\tau-region R=(sup,sig)R=(sup,sig) of a TS AA is called normalized if sig(e)=nopsig(e)=\textsf{nop} for as many events ee as supsup allows: for all eEe\in E, sig(e){used,free}sig(e)\not\in\{\textsf{used},\textsf{free}\} and if sig(e)𝔢𝔵𝔦𝔱𝔢𝔫𝔱𝔢𝔯sig(e)\in\mathfrak{exit}\cup\mathfrak{enter} then there is s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A such that sup(s)sup(s)sup(s)\not=sup(s^{\prime}).

τ\tau-State Separation Property. A pair (s,s)(s,s^{\prime}) of distinct states of AA defines a state separation atom (SSP atom). A τ\tau-region R=(sup,sig)R=(sup,sig) solves (s,s)(s,s^{\prime}) if sup(s)sup(s)sup(s)\not=sup(s^{\prime}). If RR exists, then (s,s)(s,s^{\prime}) is called τ\tau-solvable. If sSAs\in S_{A} and, for all sSA{s}s^{\prime}\in S_{A}\setminus\{s\}, the atom (s,s)(s,s^{\prime}) is τ\tau-solvable, then ss is called τ\tau-solvable. A TS has the τ\tau-state separation property (τ\tau-SSP) if all of its SSP atoms are τ\tau-solvable. A set \mathcal{R} of τ\tau-regions of AA is called τ\tau-separative if for each SSP atom of AA there is a τ\tau-region RR in \mathcal{R} that solves it. By the next lemma, if nopτ\textsf{nop}\in\tau, then AA has the τ\tau-SSP if and only if it has a τ\tau-separative set of normalized τ\tau-regions:

Lemma 1.

Let AA be a TS and τ\tau be a nop-equipped Boolean type of nets. There is a τ\tau-separative set \mathcal{R} of AA if and only if there is a τ\tau-separative set of normalized τ\tau-regions of AA.

Proof.

The if-direction is trivial. Only-if: Let R=(sup,sig)R=(sup,sig) be a non-normalized τ\tau-region, i.e., there is eEAe\in E_{A} such that s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A implies sup(s)=sup(s)sup(s)=sup(s^{\prime}). Since τ\tau is nop-equipped, sup(s) nop sup(s)τsup(s)\leavevmode\hbox to20.04pt{\vbox to11.89pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.88855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.847pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{nop}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}sup(s^{\prime})\in\tau for all s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A. Thus, a τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) can be constructed from RR, where sigsig^{\prime} is equal to sigsig except for sig(e)=nopsig^{\prime}(e)=\textsf{nop}. Since EAE_{A} is finite, a normalized region can be obtained from RR by inductive application of this procedure. ∎

By the following lemma, τ\tau-SSP and τ~\tilde{\tau}-SSP are equivalent if τ\tau and τ~\tilde{\tau} are isomorphic:

Lemma 2 (Without proof).

If τ\tau and τ~\tilde{\tau} are isomorphic types of nets then a TS AA has the τ\tau-SSP if and only if AA has the τ~\tilde{\tau}-SSP.

In this paper, we consider the τ\tau-SSP also as decision problem that asks whether a given TS AA has the τ\tau-SSP. The decision problem τ\tau-SSP is in NP: By definition, AA has at most |S|2\lvert S\rvert^{2} SSP atoms. Hence, a Turing-machine can (non-deterministically) guess a τ\tau-separative set \mathcal{R} such that |||S|2|\mathcal{R}|\leq|S|^{2} and (deterministically) check in polynomial time its validity if it exists.

In what follows, some of our NP-completeness results base on polynomial-time reductions of the following decision problem, which is known to be NP-complete [11]:

Cubic Monotone 1-in-3 3Sat. (CM 1-in-3 3Sat) The input is a Boolean formula φ={ζ0,,ζm1}\varphi=\{\zeta_{0},\dots,\zeta_{m-1}\} of negation-free three-clauses ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\}, where i{0,,m1}i\in\{0,\dots,m-1\}, with set of variables X=i=0m1ζiX=\bigcup_{i=0}^{m-1}\zeta_{i}; every variable vXv\in X occurs in exactly three clauses, implying |X|=m|X|=m. The question to decide is whether there is a (one-in-three model) MXM\subseteq X satisfying |Mζi|=1|M\cap\zeta_{i}|=1 for all i{0,,m1}i\in\{0,\dots,m-1\}.

Example 1 (CM 1-in-3 3Sat).

The instance φ={ζ0,,ζ5}\varphi=\{\zeta_{0},\dots,\zeta_{5}\} of CM 1-in-3 3Sat with set of variables X={X0,,X5}X=\{X_{0},\dots,X_{5}\} and clauses ζ0={X0,X1,X2}\zeta_{0}=\{X_{0},X_{1},X_{2}\}, ζ1={X0,X2,X3}\zeta_{1}=\{X_{0},X_{2},X_{3}\}, ζ2={X0,X1,X3}\zeta_{2}=\{X_{0},X_{1},X_{3}\}, ζ3={X2,X4,X5}\zeta_{3}=\{X_{2},X_{4},X_{5}\}, ζ4={X1,X4,X5}\zeta_{4}=\{X_{1},X_{4},X_{5}\} and ζ5={X3,X4,X5}\zeta_{5}=\{X_{3},X_{4},X_{5}\} has the one-in-three model M={X0,X4}M=\{X_{0},X_{4}\}.

3 Deciding the State Separation Property for nop-equipped Types

In this section, we investigate the computational complexity of nop-equipped Boolean types of nets. For technical reasons, we separately consider the types that include neither res nor set (§5 - §7 in Figure 1) and the ones that have at least one of them (§1 - §4 in Figure 1).

First of all, the fact that τ\tau-SSP is polynomial for the types of §7 in Figure 1 is implied by the results of [16][22, p. 619]. Moreover, for the types of Figure 1 §5 the NP-completeness of τ\tau-SSP has been shown in [23] (τ={nop,inp,out}\tau=\{\textsf{nop},\textsf{inp},\textsf{out}\}), and in [19] (τ={nop,inp,out,used}\tau=\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{used}\}, there referred to as 11-bounded P/T-nets). Thus, in order to complete the complexity characterization for the nop-equipped types that neither contain res nor set, it only remains to ascertain the complexity of τ\tau-SSP for the types Figure 1 §6. The following Subsection 3.1 proves that τ\tau-SSP is NP-complete for these types.

Then, we proceed with the types of §1 - §4 in Figure 1. The fact that τ\tau-SSP is polynomial for the types of §4 follows from [22, p. 619]. The NP-completeness of τ\tau-SSP for the remaining types (§1 - §3) will be demonstrated in Subsection 3.2.

3.1 Complexity of τ\tau-SSP for nop-equipped Types without res and set

The following theorem summarizes the complexity for the types of §5 - §7 in Figure 1.

Theorem 3.1.

Let τ\tau be a nop-equipped Boolean type of nets such that τ{res,set}=\tau\cap\{\textsf{res},\textsf{set}\}=\emptyset. The τ\tau-SSP is NP-complete if τ{inp,out}\tau\cap\{\textsf{inp},\textsf{out}\}\not=\emptyset and swapτ\textsf{swap}\not\in\tau, otherwise it is polynomial.

As just discussed in Section 3, to complete the proof of Theorem 3.1 it remains to characterize the complexity of τ\tau-SSP for the types of Figure 1 §6. Since τ\tau-SSP is NP-complete if τ={nop,inp,out}\tau=\{\textsf{nop},\textsf{inp},\textsf{out}\} [23], by Lemma 1, the τ\tau-SSP is also NP-complete if τ={nop,inp,out,free}\tau=\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{free}\} and τ={nop,inp,out,free,used}\tau=\{\textsf{nop},\textsf{inp},\textsf{out},\textsf{free},\textsf{used}\}.

Thus, in what follows, we restrict ourselves to the types τ={nop,inp}ω\tau=\{\textsf{nop},\textsf{inp}\}\cup\omega and τ={nop,out}ω\tau=\{\textsf{nop},\textsf{out}\}\cup\omega, where ω{used,free}\omega\subseteq\{\textsf{used},\textsf{free}\}, and argue that their τ\tau-SSP are NP-complete. To do so, we let τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\} and show the hardness of τ\tau-SSP by a reduction of CM 1-in-3 3Sat. By Lemma 1, this also implies the hardness of τω\tau\cup\omega-SSP, where ω{used,free}\omega\subseteq\{\textsf{used},\textsf{free}\}. Furthermore, by Lemma 2, the latter shows the NP-completeness of τ\tau-SSP if τ={nop,out}ω\tau=\{\textsf{nop},\textsf{out}\}\cup\omega and ω{used,free}\omega\subseteq\{\textsf{used},\textsf{free}\}. The following paragraph introduces the intuition of our reduction approach.

The Roadmap of Reduction. Let τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\} and φ={ζ0,,ζm1}\varphi=\{\zeta_{0},\dots,\zeta_{m-1}\} be an input of CM 1-in-3 3Sat with variables X={X0,,Xm1}X=\{X_{0},\dots,X_{m-1}\} and clauses ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\} for all i{0,,m1}i\in\{0,\dots,m-1\}. To show the NP-completeness of τ\tau-SSP, we reduce a given input φ\varphi to a TS AφA_{\varphi} (i.e., an input of τ\tau-SSP) as follows: For every clause ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\}, the TS AφA_{\varphi} has a directed labeled path PiP_{i} that represents ζi\zeta_{i} by using its variables as events:

ti,0t_{i,0} ti,1t_{i,1} ti,2t_{i,2} ti,3t_{i,3} Pi=P_{i}= Xi0X_{i_{0}} Xi1X_{i_{1}} Xi2X_{i_{2}}

We ensure by construction that AφA_{\varphi} has an SSP atom α\alpha such that if R=(sup,sig)R=(sup,sig) is a τ\tau-region solving α\alpha, then sup(ti,0)=1sup(t_{i,0})=1 and sup(ti,3)=0sup(t_{i,3})=0 for all i{0,,m1}i\in\{0,\dots,m-1\}. Thus, for all i{0,,m1}i\in\{0,\dots,m-1\}, the path PiRP_{i}^{R} is a path from 11 to 0 in τ\tau. First, this obviously implies that there is an event e{Xi0,Xi1,Xi2}e\in\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\} such that sig(e)=inpsig(e)=\textsf{inp}. Second, it is easy to see that there is no path in τ\tau on which inp occurs twice, cf. Figure 4. The following figure sketches all possibilities of PiRP_{i}^{R}, i.e., sig(Xi0)=inpsig(X_{i_{0}})=\textsf{inp} and sig(Xi1)=sig(Xi2)=nopsig(X_{i_{1}})=sig(X_{i_{2}})=\textsf{nop}, sig(Xi1)=inpsig(X_{i_{1}})=\textsf{inp} and sig(Xi0)=sig(Xi2)=nopsig(X_{i_{0}})=sig(X_{i_{2}})=\textsf{nop}, and sig(Xi2)=inpsig(X_{i_{2}})=\textsf{inp} and sig(Xi0)=sig(Xi1)=nopsig(X_{i_{0}})=sig(X_{i_{1}})=\textsf{nop}, respectively:

11 0 0 0 inp nop nop 11 11 0 0 nop inp nop 11 11 11 0 nop nop inp

Hence, the event ee is unique. Since this is simultaneously true for all paths P0,,Pm1P_{0},\dots,P_{m-1}, the set M={eXsig(e)=inp}M=\{e\in X\mid sig(e)=\textsf{inp}\} selects exactly one variable per clause and thus defines a one-in-three model of φ\varphi. Altogether, this approach shows that if AφA_{\varphi} has the τ\tau-SSP, which implies that α\alpha is τ\tau-solvable, then φ\varphi has a one-in-three model.

Conversely, our construction ensures that if φ\varphi has a one-in-three model, then α\alpha and the other separation atoms of AφA_{\varphi} are τ\tau-solvable, that is, AφA_{\varphi} has the τ\tau-SSP.

The Reduction of AφA_{\varphi} for τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\}. In the following, we introduce the announced TS AφA_{\varphi}, cf. Figure 5. The initial state of AφA_{\varphi} is t0,0t_{0,0}. First of all, the TS AφA_{\varphi} has the following path PP that provides the announced SSP atom α=(tm,0,tm+1,0)\alpha=(t_{m,0},t_{m+1,0}):

t0,0t_{0,0} \dots ti,0t_{i,0} \dots tm1,0t_{m-1,0} tm,0t_{m,0} tm+1,0t_{m+1,0} \top w0w_{0} wi1w_{i-1} wiw_{i} wm2w_{m-2} wm1w_{m-1} kk vv

Moreover, for every i{0,,m1}i\in\{0,\dots,m-1\}, the TS AφA_{\varphi} has the following path TiT_{i} that uses the variables of ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\} as events and provides the subpath Pi=ti,0 Xi0 Xi2 ti,3P_{i}=t_{i,0}\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{2}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t_{i,3}:

ti,0t_{i,0} ti,1t_{i,1} ti,2t_{i,2} ti,3t_{i,3} \top Xi0X_{i_{0}} Xi1X_{i_{1}} Xi2X_{i_{2}} uiu_{i}

Finally, the TS AφA_{\varphi} has, for all i{0,,m1}i\in\{0,\dots,m-1\}, the following path GiG_{i}:

gi,0g_{i,0} gi,1g_{i,1} gi,2g_{i,2} t0,0t_{0,0} yiy_{i} uiu_{i} kk
t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 5: The TS AφA_{\varphi} originating from the input φ\varphi of Example 1, which has the one-in-three model M={X0,X4}M=\{X_{0},X_{4}\}. The colored area sketches the region RMR_{M} of Lemma 4 that solves α=(t6,0,t7,0)\alpha=(t_{6,0},t_{7,0}).

Notice that the paths PP and T0,,Tm1T_{0},\dots,T_{m-1} have the same “final”-state \bot. Obviously, the size of AφA_{\varphi} is polynomial in the size of φ\varphi. The following Lemma 3 and Lemma 4 prove the validity of our reduction and thus complete the proof of Theorem 3.1.

Lemma 3.

Let τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\}. If AφA_{\varphi} has the τ\tau-SSP, then φ\varphi has a one-in-three model.

Proof.

Let R=(sup,sig)R=(sup,sig) be a τ\tau-region that solves α\alpha, that is, sup(tm,0)sup(tm+1,0)sup(t_{m,0})\not=sup(t_{m+1,0}). By tm,0 k tm+1,0t_{m,0}\leavevmode\hbox to17.37pt{\vbox to12.22pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.32758pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$k$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t_{m+1,0} and τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\}, this implies sig(k)=inpsig(k)=\textsf{inp}, sup(tm,0)=1sup(t_{m,0})=1 and sup(tm+1,0)=0sup(t_{m+1,0})=0. If s0 e0 ei si k si+1 ei+2 en sns_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{0}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.34169pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{i}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{i}\leavevmode\hbox to17.37pt{\vbox to12.22pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.32758pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$k$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{i+1}\leavevmode\hbox to21.15pt{\vbox to11.98pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.19968pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.29167pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{i+2}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.49608pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{n}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{n} is a path in AφA_{\varphi}, then, by sig(k)=inpsig(k)=\textsf{inp}, we get sup(sj)=1sup(s_{j})=1 for all j{0,,i}j\in\{0,\dots,i\}, sup(sj)=0sup(s_{j})=0 for all j{i+1,,n}j\in\{i+1,\dots,n\} and sig(ej)=nopsig(e_{j})=\textsf{nop} for all j{1,,i,i+2,,n}j\in\{1,\dots,i,i+2,\dots,n\}. This implies sup()=0sup(\top)=0, sig(v)=nopsig(v)=\textsf{nop} as well as sig(ui)=nopsig(u_{i})=\textsf{nop} and sup(ti,0)=1sup(t_{i,0})=1 for all i{0,,m1}i\in\{0,\dots,m-1\}. Furthermore, by sup()=0sup(\top)=0 and sig(ui)=nopsig(u_{i})=\textsf{nop}, we get sup(ti,3)=0sup(t_{i,3})=0 for all i{0,,m1}i\in\{0,\dots,m-1\}. Hence, for all i{0,,m1}i\in\{0,\dots,m-1\}, the image PiRP_{i}^{R} of PiP_{i} is a path from 11 to 0 in τ\tau. Hence, as just discussed above, M={eXsig(e)=inp}M=\{e\in X\mid sig(e)=\textsf{inp}\} selects exactly one variable per clause and defines a one-in-three model of φ\varphi. ∎

Lemma 4.

Let τ={nop,inp}\tau=\{\textsf{nop},\textsf{inp}\}. If φ\varphi has a one-in-three model, then AφA_{\varphi} has the τ\tau-SSP.

Proof.

Let MM be a one-in-three model of φ\varphi.

The following region R1=(sup,sig)R_{1}=(sup,sig) solves (s,s)(s,s^{\prime}) for all si=0m1S(Pi)s\in\bigcup_{i=0}^{m-1}S(P_{i}) and all si=0m1S(Gi)s^{\prime}\in\bigcup_{i=0}^{m-1}S(G_{i}), where st0,0s^{\prime}\not=t_{0,0}: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{y0,,ym1}e\in\{y_{0},\dots,y_{m-1}\}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Section 0.A, Figure 10 for an example of R1R_{1}.

Let i{0,,m1}i\in\{0,\dots,m-1\} be arbitrary but fixed. The following region RiT=(sup,sig)R^{T}_{i}=(sup,sig) solves (s,s)(s,s^{\prime}) for all s{ti,0,,ti,3}s\in\{t_{i,0},\dots,t_{i,3}\} and all sj=i+1m1S(Tj){tm,0,tm+1,0}s^{\prime}\in\bigcup_{j=i+1}^{m-1}S(T_{j})\cup\{t_{m,0},t_{m+1,0}\}: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{wi}{u0,,ui}{yi+1,,ym1}e\in\{w_{i}\}\cup\{u_{0},\dots,u_{i}\}\cup\{y_{i+1},\dots,y_{m-1}\}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Section 0.A, Figure 10 for an example of R1TR^{T}_{1}.

The following region R2=(sup,sig)R_{2}=(sup,sig) solves (tm+1,)(t_{m+1},\top) and (gi,0,gi,1)(g_{i,0},g_{i,1}) and (gi,0,gi,2)(g_{i,0},g_{i,2}) for all i{0,,m1}i\in\{0,\dots,m-1\}: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{v}{u0,,um1}e\in\{v\}\cup\{u_{0},\dots,u_{m-1}\}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Section 0.A, Figure 12 for an example of R2R_{2}.

The following region RM=(sup,sig)R_{M}=(sup,sig) uses the one-in-three model MM of φ\varphi and solves α\alpha as well as (gi,1,gi,2)(g_{i,1},g_{i,2}) for all i{0,,m1}i\in\{0,\dots,m-1\}: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{k}Me\in\{k\}\cup M, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Figure 5 for an example of RMR_{M}.

Let i{0,,m2}i\in\{0,\dots,m-2\} be arbitrary but fixed. The following region RiG=(sup,sig)R^{G}_{i}=(sup,sig) solves (s,s)(s,s^{\prime}) for all s{gi,0,gi,1,gi,2}s\in\{g_{i,0},g_{i,1},g_{i,2}\} and all sj=i+1m1S(Gj)s^{\prime}\in\bigcup_{j=i+1}^{m-1}S(G_{j}), where st0,0s^{\prime}\not=t_{0,0}: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{yi+1,,ym1}e\in\{y_{i+1},\dots,y_{m-1}\}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Section 0.A, Figure 12 for an example of R1GR^{G}_{1}.

By the arbitrariness of ii for RiTR^{T}_{i} and RiGR^{G}_{i}, it remains to show that ti,0,,ti,3t_{i,0},\dots,t_{i,3} are pairwise separable for all i{0,,m1}i\in\{0,\dots,m-1\}. Let i{0,,m1}i\in\{0,\dots,m-1\} be arbitrary but fixed. We present only a region Ri0X=(sup,sig)R^{X}_{i_{0}}=(sup,sig) that solves (ti,0,s)(t_{i,0},s) for all s{ti,1,ti,2,ti,3}s\in\{t_{i,1},t_{i,2},t_{i,3}\}. It is then easy to see that the remaining atoms are similarly solvable. Let j{0,,m1}{i}j\not=\ell\in\{0,\dots,m-1\}\setminus\{i\} select the other two clauses of φ\varphi that contain Xi0X_{i_{0}}, that is, Xi0ζjζX_{i_{0}}\in\zeta_{j}\cap\zeta_{\ell}. Ri0X=(sup,sig)R^{X}_{i_{0}}=(sup,sig) is defined as follows: sup(t0,0)=1sup(t_{0,0})=1; for all eEAφe\in E_{A_{\varphi}}, if e{Xi0}{v}{u0,,um1}{ui,uj,u}e\in\{X_{i_{0}}\}\cup\{v\}\cup\{u_{0},\dots,u_{m-1}\}\setminus\{u_{i},u_{j},u_{\ell}\}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. Note Section 0.A, Figure 13 for an example of R4,0XR^{X}_{4,0}.

Similarly, one gets regions where Xi1X_{i_{1}} or Xi2X_{i_{2}} has inp-signature. These regions solve the remaining atoms of S(Ti){}S(T_{i})\setminus\{\top\}. Since ii was arbitrary, this completes the proof. ∎

3.2 Complexity of τ\tau-SSP for nop-equipped Types with res or set.

The next theorem states that τ\tau-SSP is NP-complete for the nop-equipped types that have not yet been considered, cf Figure 1 §1 - §3. Moreover, it summarizes the complexity of τ\tau-SSP for all types of Figure 1 §1 - §4:

Theorem 3.2.

Let τ\tau and τ~\tilde{\tau} be Boolean type of nets and {nop,res}τ\{\textsf{nop},\textsf{res}\}\subseteq\tau and {nop,set}τ~\{\textsf{nop},\textsf{set}\}\subseteq\tilde{\tau}.

  1. 1.

    The τ\tau-SSP is NP-complete if τ𝔢𝔫𝔱𝔢𝔯\tau\cap\mathfrak{enter}\not=\emptyset, otherwise it is polynomial.

  2. 2.

    The τ~\tilde{\tau}-SSP is NP-complete if τ~𝔢𝔵𝔦𝔱\tilde{\tau}\cap\mathfrak{exit}\not=\emptyset, otherwise it is polynomial.

In this section we complete the proof of Theorem 3.2 as follows. Firstly, we let τ0={nop,inp,out}\tau_{0}=\{\textsf{nop},\textsf{inp},\textsf{out}\} and, by a reduction of τ0\tau_{0}-SSP, we show that the τ\tau-SSP is NP-complete if τ={nop,out,res}ω\tau=\{\textsf{nop},\textsf{out},\textsf{res}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\} or if {nop,res,set}τ\{\textsf{nop},\textsf{res},\textsf{set}\}\subseteq\tau. By Lemma 2, the former also implies the NP-completeness of τ\tau-SSP if τ={nop,inp,set}ω\tau=\{\textsf{nop},\textsf{inp},\textsf{set}\}\cup\omega and ω{out,used,free}\omega\subseteq\{\textsf{out},\textsf{used},\textsf{free}\}. Altogether, this proves the claim for all the types listed in §1 and §3 of Figure 1.

Secondly, we let τ1={nop,inp}\tau_{1}=\{\textsf{nop},\textsf{inp}\} and reduce τ1\tau_{1}-SSP to τ\tau-SSP, where τ={nop,res,swap}ω\tau=\{\textsf{nop},\textsf{res},\textsf{swap}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\}. Again by Lemma 2, this also implies the NP-completeness of τ\tau-SSP if τ={nop,set,swap}ω\tau=\{\textsf{nop},\textsf{set},\textsf{swap}\}\cup\omega and ω{out,used,free}\omega\subseteq\{\textsf{out},\textsf{used},\textsf{free}\}. Hence, this proves the claim for all the types listed in §2 of Figure 1 and thus completes the proof of Theorem 3.2.

For the announced reductions, we use the following extensions of a TS AA, cf. Figure 6. Let A=(SA,EA,δA,ιA)A=(S_{A},E_{A},\delta_{A},\iota_{A}) be a loop-free TS, and let EA¯={e¯eEA}\overline{E_{A}}=\{\overline{e}\mid e\in E_{A}\} be the set containing for every event eEAe\in E_{A} the unambiguous and fresh event e¯\overline{e} that is associated with ee. The backward-extension B=(SA,EAEA¯,δB,ιA)B=(S_{A},E_{A}\cup\overline{E_{A}},\delta_{B},\iota_{A}) of AA extends AA by EA¯\overline{E_{A}} and additional backward edges: for all eEAe\in E_{A} and all s,sSAs,s^{\prime}\in S_{A}, if δA(s,e)=s\delta_{A}(s,e)=s^{\prime}, then δB(s,e)=s\delta_{B}(s,e)=s^{\prime} and δB(s,e¯)=s\delta_{B}(s^{\prime},\overline{e})=s. The oneway loop-extension C=(SA,EAEA¯,δC,ιA)C=(S_{A},E_{A}\cup\overline{E_{A}},\delta_{C},\iota_{A}) of a TS AA extends BB by some additional loops: for all xEAEA¯x\in E_{A}\cup\overline{E_{A}} and all sSAs\in S_{A}, we define δC(s,e)=δB(s,e)\delta_{C}(s,e)=\delta_{B}(s,e) and, for all eEAe\in E_{A} and all s,sSAs,s^{\prime}\in S_{A}, if δA(s,e)=s\delta_{A}(s,e)=s^{\prime}, then δC(s,e)=s\delta_{C}(s^{\prime},e)=s^{\prime}. Finally, the loop-extension D=(SA,EAEA¯,δD,ιA)D=(S_{A},E_{A}\cup\overline{E_{A}},\delta_{D},\iota_{A}) of AA is an extension of CC, where for all xEAEA¯x\in E_{A}\cup\overline{E_{A}} and all sSAs\in S_{A}, we define δD(s,x)=δC(s,x)\delta_{D}(s,x)=\delta_{C}(s,x) and, for all eEAe\in E_{A} and all s,sSAs,s^{\prime}\in S_{A}, if δA(s,e)=s\delta_{A}(s,e)=s^{\prime}, then δD(s,e¯)=s\delta_{D}(s,\overline{e})=s.

q0q_{0} q1q_{1} aa q0q_{0} q1q_{1} aa a¯\overline{a} q0q_{0} q1q_{1} aa aa a¯\overline{a} q0q_{0} q1q_{1} aa a¯\overline{a} aa a¯\overline{a} 11 0 inp 11 0 res out 11 0 res res swap 11 0 res set res set
Figure 6: Top, left to right: A TS AA consisting of a single edge; backward-extension BB of AA; oneway loop-extension CC of AA; loop-extension DD of AA. Bottom, left to right: images of AA and its extensions B,C,DB,C,D under regions corresponding to the types of Lemma 5 solving (q0,q1)(q_{0},q_{1}): a {nop,inp}\{\textsf{nop},\textsf{inp}\}- ({nop,inp,out}\{\textsf{nop},\textsf{inp},\textsf{out}\}-) region of AA; a {nop,res,out}\{\textsf{nop},\textsf{res},\textsf{out}\}-region of BB; a {nop,res,swap}\{\textsf{nop},\textsf{res},\textsf{swap}\}-region of CC; a {nop,res,set}\{\textsf{nop},\textsf{res},\textsf{set}\}-region of DD.

Depending on the considered type τ\tau, we let τ~=τ0\tilde{\tau}=\tau_{0} or τ~=τ1\tilde{\tau}=\tau_{1} and reduce a loop-free TS A=(SA,EA,δA,ιA)A=(S_{A},E_{A},\delta_{A},\iota_{A}) either to its backward-, oneway loop- or loop-extension and show that sup:SA{0,1}sup:S_{A}\rightarrow\{0,1\} allows a τ~\tilde{\tau}-region of AA if and only if it allows a τ\tau-region of the extension:

Lemma 5.

Let τ0={nop,inp,out}\tau_{0}=\{\textsf{nop},\textsf{inp},\textsf{out}\}, τ1={nop,inp}\tau_{1}=\{\textsf{nop},\textsf{inp}\}, AA a loop-free TS, sup:SA{0,1}sup:S_{A}\rightarrow\{0,1\} and BB, CC and DD the backward-, oneway loop- and loop-extension of AA, respectively.

  1. 1.

    If τ={nop,out,res}ω\tau=\{\textsf{nop},\textsf{out},\textsf{res}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\}, then supsup allows a τ0\tau_{0}-region R=(sup,sig)R=(sup,sig) of AA if and only if it allows a normalized τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) of BB.

  2. 2.

    If τ{nop,res,set}\tau\supseteq\{\textsf{nop},\textsf{res},\textsf{set}\}, then supsup allows a τ0\tau_{0}-region R=(sup,sig)R=(sup,sig) of AA if and only if it allows a normalized τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) of DD.

  3. 3.

    If τ={nop,res,swap}ω\tau=\{\textsf{nop},\textsf{res},\textsf{swap}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\}, then supsup allows a τ1\tau_{1}-region R=(sup,sig)R=(sup,sig) of AA if and only if it allows a normalized τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) of CC.

Proof.

(1): Only-if: Let R=(sup,sig)R=(sup,sig) be a τ0\tau_{0}-region of AA. Recall that sig(e)=nopsig(e)=\textsf{nop}, sig(e)=inpsig(e)=\textsf{inp}, sig(e)=outsig(e)=\textsf{out} imply sup(s)=sup(t)sup(s)=sup(t), sup(s)=1sup(s)=1 and sup(t)=0sup(t)=0, sup(s)=0sup(s)=0 and sup(t)=1sup(t)=1 for all edges s e ts\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t of AA, respectively. Thus, it is easy to see that RR induces a normalized τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) of BB as follows, cf. Figure 6: For all eEAe\in E_{A} and its associated event e¯EA¯\overline{e}\in\overline{E_{A}}, if sig(e)=nopsig(e)=\textsf{nop}, then sig(e)=sig(e¯)=nopsig^{\prime}(e)=sig^{\prime}(\overline{e})=\textsf{nop}; if sig(e)=inpsig(e)=\textsf{inp}, then sig(e)=ressig^{\prime}(e)=\textsf{res} and sig(e¯)=outsig^{\prime}(\overline{e})=\textsf{out}; if sig(e)=outsig(e)=\textsf{out}, then sig(e)=outsig^{\prime}(e)=\textsf{out} and sig(e¯)=ressig^{\prime}(\overline{e})=\textsf{res}.

If: Let R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) be a normalized τ\tau-region of BB, and let eEAe\in E_{A} and s e tBs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t\in B and s e tBs^{\prime}\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t^{\prime}\in B be arbitrary but fixed. First of all, we argue that if sup(s)sup(t)sup(s)\not=sup(t), then sup(s)=sup(s)sup(s)=sup(s^{\prime}) and sup(t)=sup(t)sup(t)=sup(t^{\prime}): By definition of BB, we have that t e¯ st\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s and t e¯ st^{\prime}\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime} are present. If sup(s)=1sup(s)=1 and sup(t)=0sup(t)=0, then s e ts\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t and t e¯ st\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s imply sig(e){inp,res}sig^{\prime}(e)\in\{\textsf{inp},\textsf{res}\} and sig(e¯)=outsig^{\prime}(\overline{e})=\textsf{out}. By e t\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t^{\prime} and e¯ s\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}, this immediately implies sup(s)=1sup(s^{\prime})=1 and sup(t)=0sup(t^{\prime})=0. Similarly, if sup(s)=0sup(s)=0 and sup(t)=1sup(t)=1, then sig(e)=outsig^{\prime}(e)=\textsf{out} and sig(e¯){inp,res}sig^{\prime}(\overline{e})\in\{\textsf{inp},\textsf{res}\}, which implies sup(s)=0sup(s^{\prime})=0 and sup(t)=1sup(t^{\prime})=1. Consequently, since s e ts^{\prime}\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t^{\prime} was arbitrary, the claim follows. Note that this implies in return that if sup(s)=sup(t)sup(s)=sup(t), then sup(s)=sup(t)sup(s^{\prime})=sup(t^{\prime}). Since both edges were arbitrary, it is easy to see that the following τ0\tau_{0}-region R=(sup,sig)R=(sup,sig) of AA is well defined: for all eEAe\in E_{A}, if there is s e tBs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t\in B such that sup(s)sup(t)sup(s)\not=sup(t), then sig(e)=inpsig(e)=\textsf{inp} if sup(s)=1sup(s)=1 and sup(t)=0sup(t)=0, else sig(e)=outsig(e)=\textsf{out}; otherwise, sig(e)=nopsig(e)=\textsf{nop}.

(2): Only-if: Recall that 0 res 00\leavevmode\hbox to17.37pt{\vbox to10.33pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.31589pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{res}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}0 and 1 set 11\leavevmode\hbox to17.37pt{\vbox to11.38pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.18811pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{set}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}1 are present in τ\tau. Consequently, if R=(sup,sig)R=(sup,sig) is a τ0\tau_{0}-region of AA, then the region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}), similarly defined to the one for the Only-if-direction of (1), but replacing out by set, is a τ\tau-region of DD, cf. Figure 6.

If: If R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) is a normalized τ\tau-region of DD, then it holds sig(e){nop,res,set}sig^{\prime}(e)\in\{\textsf{nop},\textsf{res},\textsf{set}\} for all eEDe\in E_{D}. This is due to the fact that if s x sDs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.2498pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$x$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in D, then s x sDs^{\prime}\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.2498pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$x$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in D for all xEDx\in E_{D} and all s,tSDs,t\in S_{D}. Thus, R=(sup,sig)R=(sup,sig) is obtained from RR^{\prime} by the same arguments as the ones presented for the If-direction of (1).

(3): Only-if: Let R=(sup,sig)R=(sup,sig) be a τ1\tau_{1}-region of AA. Recall that sig(e)=nopsig(e)=\textsf{nop} and sig(e)=inpsig(e)=\textsf{inp} imply sup(s)=sup(t)sup(s)=sup(t) and sup(s)=1,sup(t)=0sup(s)=1,sup(t)=0 for all edges s e ts\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t of AA, respectively. Moreover, 1 res 01\leavevmode\hbox to17.37pt{\vbox to10.33pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.31589pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{res}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}0, 0 res 00\leavevmode\hbox to17.37pt{\vbox to10.33pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.31589pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{res}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}0 and 0 swap 10\leavevmode\hbox to24.44pt{\vbox to11.89pt{\pgfpicture\makeatletter\hbox{\enspace\lower-1.88855pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.3508pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\textsf{swap}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}1 are present in τ\tau. Thus, we get a normalized τ\tau-region R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) of CC as follows, cf. Figure 6: For all eEAe\in E_{A} and its associated event e¯EA¯\overline{e}\in\overline{E_{A}}, if sig(e)=nopsig(e)=\textsf{nop}, then sig(e)=sig(e¯)=nopsig^{\prime}(e)=sig^{\prime}(\overline{e})=\textsf{nop}; if sig(e)=inpsig(e)=\textsf{inp}, then sig(e)=ressig^{\prime}(e)=\textsf{res} and sig(e¯)=swapsig^{\prime}(\overline{e})=\textsf{swap}.

If: Let R=(sup,sig)R^{\prime}=(sup,sig^{\prime}) be a normalized τ\tau-region of CC, and let eEAe\in E_{A} and s e tCs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t\in C and s e tCs^{\prime}\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t^{\prime}\in C be arbitrary but fixed. We argue that sup(s)sup(t)sup(s)\not=sup(t) implies sup(s)=sup(s)=1sup(s)=sup(s^{\prime})=1 and sup(t)=sup(t)=0sup(t)=sup(t^{\prime})=0: By definition of CC and s e tCs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t\in C, we get t e tCt\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t\in C. Thus, sig(e){nop,res}sig^{\prime}(e)\in\{\textsf{nop},\textsf{res}\}. Thus, if sup(s)sup(t)sup(s)\not=sup(t), then sig(e)=ressig^{\prime}(e)=\textsf{res}, which implies sup(s)=1sup(s)=1 and sup(t)=0sup(t)=0. Moreover, by t e¯ sCt\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s\in C, this also implies sig(e¯)=swapsig^{\prime}(\overline{e})=\textsf{swap}. Finally, by sig(e)=ressig^{\prime}(e)=\textsf{res}, e t\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t^{\prime}, sig(e¯)=swapsig^{\prime}(\overline{e})=\textsf{swap} and t e¯ st^{\prime}\leavevmode\hbox to17.37pt{\vbox to11.21pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.5359pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$\overline{e}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}, we get sup(t)=0sup(t^{\prime})=0 and sup(s)=1sup(s^{\prime})=1. Consequently, the following definition of sigsig yields a well-defined τ1\tau_{1}-region R=(sup,sig)R=(sup,sig) of AA: for all eEAe\in E_{A}, if sig(e)=ressig^{\prime}(e)=\textsf{res}, then sig(e)=inpsig(e)=\textsf{inp}, otherwise sig(e)=nopsig(e)=\textsf{nop}. ∎

Notice that the TS AφA_{\varphi} of Section 3.1 is loop-free. Furthermore, in [23], it has been shown that {nop,inp,out}\{\textsf{nop},\textsf{inp},\textsf{out}\}-SSP is NP-complete even if AA is a simple directed path. Moreover, the introduced extensions of AA are constructible in polynomial time. Thus, by Lemma 1 and Lemma 2, the following corollary, which is easily implied by Lemma 5, completes the proof of Theorem 3.2.

Corollary 1 (Without Proof).

Let τ0={nop,inp,out}\tau_{0}=\{\textsf{nop},\textsf{inp},\textsf{out}\} and τ1={nop,inp}\tau_{1}=\{\textsf{nop},\textsf{inp}\}, and let AA be a loop-free TS and BB, CC and DD its backward-, oneway loop- and loop-extension, respectively.

  1. 1.

    If τ={nop,out,res}ω\tau=\{\textsf{nop},\textsf{out},\textsf{res}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\}, then AA has the τ0\tau_{0}-SSP if and only if BB has the τ\tau-SSP.

  2. 2.

    If τ{nop,res,set}\tau\supseteq\{\textsf{nop},\textsf{res},\textsf{set}\}, then AA has the τ0\tau_{0}-SSP if and only if DD has the τ\tau-SSP.

  3. 3.

    If τ={nop,res,swap}ω\tau=\{\textsf{nop},\textsf{res},\textsf{swap}\}\cup\omega and ω{inp,used,free}\omega\subseteq\{\textsf{inp},\textsf{used},\textsf{free}\}, then AA has the τ1\tau_{1}-SSP if and only if CC has the τ\tau-SSP.

4 Deciding the State Separation Property for nop-free Types

The following theorem summarizes the complexity of τ\tau-SSP for nop-free Boolean types:

Theorem 4.1.

Let τ\tau be a nop-free type of nets and AA a TS.

  1. 1.

    If swapτ\textsf{swap}\not\in\tau or swapτ\textsf{swap}\in\tau and τ𝔰𝔞𝔳𝔢=\tau\cap\mathfrak{save}=\emptyset, then deciding if AA has the τ\tau-SSP is polynomial.

  2. 2.

    If swapτ\textsf{swap}\in\tau and τ𝔰𝔞𝔳𝔢\tau\cap\mathfrak{save}\not=\emptyset, then deciding if AA has the τ\tau-SSP is NP-complete.

The tractability of τ\tau-SSP for nop-free types that are also swap-free has been shown in the broader context of τ\tau-synthesis in [21]. Thus, restricted to Theorem 4.1.1, it remains to argue that τ\tau-SSP is polynomial if τ={swap}ω\tau=\{\textsf{swap}\}\cup\omega and ω{inp,out}\omega\subseteq\{\textsf{inp},\textsf{out}\}. The following lemma states that separable inputs of τ\tau-SSP are trivial for these types and thus proves its tractability:

Lemma 6.

Let τ={swap}ω\tau=\{\textsf{swap}\}\cup\omega, where ω{inp,out}\omega\subseteq\{\textsf{inp},\textsf{out}\}, and A=(S,E,δ,ι)A=(S,E,\delta,\iota) be a TS. If AA has the τ\tau-SSP, then it has at most two states.

Proof.

If there is s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s\in A, then AA has no τ\tau-regions. Hence, if such AA has more than one state, then it does not have the τ\tau-SSP.

Let’s consider the case when AA is loop-free, that is, s e sAs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A implies sss\not=s^{\prime}. First of all, note that there is at most one outgoing edge ι e s\iota\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s at ι\iota, since if ι e s\iota\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s, ι e s\iota\leavevmode\hbox to17.37pt{\vbox to12.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.55118pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime} and sss\not=s^{\prime}, then ss and ss^{\prime} are not separable. This can be seen as follows: If R=(sup,sig)R=(sup,sig) is a τ\tau-region that solves (s,s)(s,s^{\prime}), then sup(s)=0sup(s)=0 and sup(s)=1sup(s^{\prime})=1 or sup(s)=1sup(s)=1 and sup(s)=0sup(s^{\prime})=0. If sup(s)=0sup(s)=0 and sup(s)=1sup(s^{\prime})=1, then sup(ι)=0sup(\iota)=0 contradicts sig(e)τsig(e)\in\tau, and sup(ι)=1sup(\iota)=1 contradicts sig(e)τsig(e^{\prime})\in\tau. Similarly, sup(s)=1sup(s)=1 and sup(s)=0sup(s^{\prime})=0 yields a contradiction. Thus, a separating region RR does not exist, which proves the claim. Secondly, if ι e s e s′′A\iota\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s\leavevmode\hbox to17.37pt{\vbox to12.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.55118pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime\prime}\in A, then ι=s′′\iota=s^{\prime\prime}, since otherwise, ι\iota and s′′s^{\prime\prime} are not separable. This can be seen as follows: If R=(sup,sig)R=(sup,sig) is a τ\tau-region that solves (ι,s′′)(\iota,s^{\prime\prime}), then sup(ι)=0sup(\iota)=0 and sup(s′′)=1sup(s^{\prime\prime})=1 or sup(ι)=1sup(\iota)=1 and sup(s′′)=0sup(s^{\prime\prime})=0. If sup(ι)=0sup(\iota)=0 and sup(s′′)=1sup(s^{\prime\prime})=1, then sup(s)=0sup(s^{\prime})=0 contradicts sig(e)τsig(e)\in\tau, and sup(s)=1sup(s^{\prime})=1 contradicts sig(e)τsig(e^{\prime})\in\tau. Similarly, sup(ι)=1sup(\iota)=1 and sup(s′′)=0sup(s^{\prime\prime})=0 yields a contradiction. This implies again that a separating region does not exist, which proves the claim and, moreover, proves the lemma. ∎

To complete the proof of Theorem 4.1, it remains to prove the NP-completeness of τ\tau-SSP for the types listed in §9 of Figure 1, which are exactly covered by Theorem 4.1.2. Thus, in the remainder of this section, if not stated explicitly otherwise, we let τ\tau be a nop-free type such that swapτ\textsf{swap}\in\tau and τ𝔰𝔞𝔳𝔢\tau\cap\mathfrak{save}\not=\emptyset. Moreover, we reduce CM 1-in-3 3Sat to τ\tau-SSP again.

Basic Ideas of the Reduction. Similar to our previous approach we build a TS AφA_{\varphi} that has for every clause ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\}, where i{0,,m1}i\in\{0,\dots,m-1\}, a (bi-directed) path Pi= Xi0 Xi1 Xi2 P_{i}=\dots\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{1}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{2}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots on which the elements of ζi\zeta_{i} occur as events. Together, the corresponding paths P0,,Pm1P_{0},\dots,P_{m-1} are meant to represent φ\varphi. However, the current types are more diverse than {nop,inp}\{\textsf{nop},\textsf{inp}\}, since they also allow swap and other interactions. Simultaneously, they are more restricted than {nop,inp}\{\textsf{nop},\textsf{inp}\}, since they lack of nop. One of the main obstacles that occur is that if s e sAφs\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A_{\varphi}, then the current types basically allow sup(s)=1sup(s)=1 and sup(s)=0sup(s^{\prime})=0 as well as sup(s)=0sup(s)=0 and sup(s)=1sup(s^{\prime})=1 for a τ\tau-region R=(sup,sig)R=(sup,sig) that solves (s,s)(s,s^{\prime}). It turns out that this requires a second representation of φ\varphi. To do so, we use a copy φ\varphi^{\prime} that originates from φ\varphi by simply renaming its variables. That is, φ\varphi^{\prime} originates from φ\varphi by replacing every variable vXv\in X of φ\varphi by a unique and fresh variable vv^{\prime}.

Example 2 (Renaming of φ\varphi).

The instance φ={ζ0,,ζ5}\varphi^{\prime}=\{\zeta_{0}^{\prime},\dots,\zeta_{5}^{\prime}\} that originates from φ\varphi of Example 1 is defined by X={X0,,X5}X^{\prime}=\{X_{0}^{\prime},\dots,X_{5}^{\prime}\} and ζ0={X0,X1,X2}\zeta_{0}^{\prime}=\{X_{0}^{\prime},X_{1}^{\prime},X_{2}^{\prime}\}, ζ1={X0,X2,X3}\zeta_{1}^{\prime}=\{X_{0}^{\prime},X_{2}^{\prime},X_{3}^{\prime}\}, ζ2={X0,X1,X3}\zeta_{2}^{\prime}=\{X_{0}^{\prime},X_{1}^{\prime},X_{3}^{\prime}\}, ζ3={X2,X4,X5}\zeta_{3}^{\prime}=\{X_{2}^{\prime},X_{4}^{\prime},X_{5}^{\prime}\}, ζ4={X1,X4,X5}\zeta_{4}^{\prime}=\{X_{1}^{\prime},X_{4}^{\prime},X_{5}^{\prime}\} and ζ5={X3,X4,X5}\zeta_{5}^{\prime}=\{X_{3}^{\prime},X_{4}^{\prime},X_{5}^{\prime}\}.

It is immediately clear that φ\varphi is one-in-three satisfiable if and only if φ\varphi^{\prime} is one-in-three satisfiable. The TS AφA_{\varphi} additionally has for every clause ζi={Xi0,Xi1,Xi2}\zeta_{i}^{\prime}=\{X_{i_{0}}^{\prime},X_{i_{1}}^{\prime},X_{i_{2}}^{\prime}\}, where i{0,,m1}i\in\{0,\dots,m-1\}, of φ\varphi^{\prime} also a (bi-directed) path Pi= Xi0 Xi1 Xi2 P_{i}^{\prime}=\dots\leavevmode\hbox to19.71pt{\vbox to14.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{5.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to19.71pt{\vbox to14.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{5.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{1}}^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to19.71pt{\vbox to14.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{5.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{2}}^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots on which the elements of ζi\zeta_{i}^{\prime} occur as events. Moreover, by the construction, the TS AφA_{\varphi} has a SSP atom α=(s,s)\alpha=(s,s^{\prime}) such that if a τ\tau-region solves α\alpha, then either the signatures of the variable events XX of φ\varphi define a one-in-three model of φ\varphi or the signatures of the variable events XX^{\prime} of φ\varphi^{\prime} define a one-in-three model of φ\varphi^{\prime}. Obviously, both cases imply the one-in-three satisfiability of φ\varphi.

Conversely, the construction ensures, if φ\varphi has a one-in-three model then AφA_{\varphi} has the τ\tau-SSP.

Similar to our approach for Theorem 3.1, the TS AφA_{\varphi} is a composition of several gadgets. The next Lemma 7 introduces some basic properties of τ\tau-regions in bi-directed TS for nop-free types that we use to prove the functionailty of AφA_{\varphi}’s gadgets. After that, Lemma 8 introduces TS that are the (isomorphic) prototypes of the gadgets of AφA_{\varphi} and additionally proves the essential parts of their intended functionality.

Lemma 7.

Let τ\tau be a nop-free Boolean type of nets and AA a bi-directed TS; let s e ss\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime} be an edge of AA, P0=s0 e1 em smP_{0}=s_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.63496pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{m}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{m} and P1=q0 e1 em qmP_{1}=q_{0}\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.87895pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{1}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\dots\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.63496pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{m}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{m} be two simple paths of AA that both apply the same sequence e1eme_{1}\dots e_{m} of events, and R=(sup,sig)R=(sup,sig) be a τ\tau-region of AA.

  1. 1.

    If sig(e)𝔰𝔞𝔳𝔢sig(e)\in\mathfrak{save}, then sup(s)=sup(s)=sup(q)=sup(q)sup(s)=sup(s^{\prime})=sup(q)=sup(q^{\prime}) for every edge q e qAq\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q^{\prime}\in A.

  2. 2.

    If sup(sm)sup(qm)sup(s_{m})\not=sup(q_{m}), then sig(ei)=swapsig(e_{i})=\textsf{swap} for all i{1,,m}i\in\{1,\dots,m\}.

  3. 3.

    If sup(s0)=sup(sm)sup(s_{0})=sup(s_{m}), then |{e{e1,,em}sig(e)=swap}||\{e\in\{e_{1},\dots,e_{m}\}\mid sig(e)=\textsf{swap}\}| is even.

Proof.

(1): AA is bi-directed and i pτ\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}p\in\tau and i pτ\leavevmode\hbox to17.37pt{\vbox to11.94pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{7.15785pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$i$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}p^{\prime}\in\tau imply p=pp=p^{\prime} for all i𝔰𝔞𝔳𝔢i\in\mathfrak{save}.

(2): By definition of τ\tau, if sup(sm)sup(qm)sup(s_{m})\not=sup(q_{m}), then, by em sm\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.63496pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{m}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s_{m} and em qm\leavevmode\hbox to17.37pt{\vbox to11.31pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-1.53299pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.63496pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e_{m}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q_{m}, we get sig(em)=swapsig(e_{m})=\textsf{swap}. Clearly, by sup(sm)sup(qm)sup(s_{m})\not=sup(q_{m}), this implies sup(sm1)sup(qm1)sup(s_{m-1})\not=sup(q_{m-1}). Thus, the claim follows easily by induction on mm.

(3): Since sup(s0)=sup(sm)sup(s_{0})=sup(s_{m}), the image P0RP_{0}^{R} of P0P_{0} is a path of τ\tau that starts and terminates at the same state. Consequently, the number of changes between 0 and 11 on P0RP_{0}^{R} is even. Since AA is bi-directed, sup(s)sup(s)sup(s)\not=sup(s^{\prime}) if and only if sig(e)=swapsig(e)=\textsf{swap} for all s e sP0s\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.6734pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$e$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in P_{0}. Thus, the number of events of P0P_{0} with a swap-signature must be even. Hence, the claim. ∎

Lemma 8 (Basic Components of AφA_{\varphi}).

Let τ\tau be a nop-free Boolean type and AA a bi-directed TS with the following paths GG, FF, TT and QQ, and let R=(sup,sig)R=(sup,sig) be a τ\tau-region of AA:

G=G= g0g_{0} g1g_{1} g2g_{2} g3g_{3} g4g_{4} vv ww k0k_{0} k1k_{1} F=F= f0f_{0} f1f_{1} f2f_{2} f3f_{3} f4f_{4} vv ww k1k_{1} k0k_{0} T=T= t0t_{0} t1t_{1} t2t_{2} t3t_{3} t4t_{4} t5t_{5} t6t_{6} t7t_{7} t8t_{8} t9t_{9} t10t_{10} t11t_{11} k0k_{0} v0v_{0} v1v_{1} X0X_{0} v2v_{2} X1X_{1} v3v_{3} X2X_{2} v4v_{4} v5v_{5} k0k_{0} Q=Q= q0q_{0} q1q_{1} q2q_{2} q3q_{3} X0X_{0} v6v_{6} X2X_{2}
  1. 1.

    If RR solves α=(g2,g4)\alpha=(g_{2},g_{4}), then either sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap} or sig(k0)=swapsig(k_{0})=\textsf{swap} and sig(k1)𝔰𝔞𝔳𝔢sig(k_{1})\in\mathfrak{save};

  2. 2.

    If sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap} or sig(k0)=swapsig(k_{0})=\textsf{swap} and sig(k1)𝔰𝔞𝔳𝔢sig(k_{1})\in\mathfrak{save}, then sig(v)=sig(w)=swapsig(v)=sig(w)=\textsf{swap};

  3. 3.

    If sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(vi)=swapsig(v_{i})=\textsf{swap} for all i{0,,6}i\in\{0,\dots,6\}, then there is exactly one X{X0,X1,X2}X\in\{X_{0},X_{1},X_{2}\} such that sig(X)swapsig(X)\not=\textsf{swap}.

Proof.

Since AA is bi-directed, we have sig(e){inp,out}sig(e)\not\in\{\textsf{inp},\textsf{out}\} for all eEAe\in E_{A}.

(1): RR solves α\alpha, thus sup(g2)sup(g4)sup(g_{2})\not=sup(g_{4}). If sig(k0)swapsig(k1)sig(k_{0})\not=\textsf{swap}\not=sig(k_{1}) or sig(k0)=sig(k1)=swapsig(k_{0})=sig(k_{1})=\textsf{swap}, then sup(g2)=sup(g4)sup(g_{2})=sup(g_{4}), a contradiction. Hence the claim, cf. Figure 8.

(2): If sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap}, then we have sup(g2)=sup(f3)sup(f2)sup(g_{2})=sup(f_{3})\not=sup(f_{2}), cf. Figure 8. By symmetry, the latter is also true if sig(k0)=swapsig(k_{0})=\textsf{swap} and sig(k1)𝔰𝔞𝔳𝔢sig(k_{1})\in\mathfrak{save}. Hence, the claim follows from Lemma 7.2.

(3): Since sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save}, we get sup(t1)=sup(t10)sup(t_{1})=sup(t_{10}). By Lemma 7.3, this implies that |{eE(T)sig(e)=swap}||\{e\in E(T)\mid sig(e)=\textsf{swap}\}| is even. Moreover, since sig(v0)=sig(v5)=swapsig(v_{0})=\dots sig(v_{5})=\textsf{swap}, this implies |{e{X0,X1,X2}sig(e)=swap}|{0,2}|\{e\in\{X_{0},X_{1},X_{2}\}\mid sig(e)=\textsf{swap}\}|\in\{0,2\}. If |{e{X0,X1,X2}sig(e)=swap}|=0|\{e\in\{X_{0},X_{1},X_{2}\}\mid sig(e)=\textsf{swap}\}|=0 then, we get sup(t3)=sup(t4)sup(t5)=sup(t6)sup(t7)=sup(t8)sup(t_{3})=sup(t_{4})\not=sup(t_{5})=sup(t_{6})\not=sup(t_{7})=sup(t_{8}) by Lemma 7.1. This particularly implies sup(t4)=sup(t7)sup(t_{4})=sup(t_{7}) and, again by Lemma 7.1, also sup(t4)=sup(q1)=sup(q2)sup(t_{4})=sup(q_{1})=sup(q_{2}) and contradicts sig(v6)=swapsig(v_{6})=\textsf{swap}, cf. Figure 8. Thus, we have |{e{X0,X1,X2}sig(e)=swap}|=2|\{e\in\{X_{0},X_{1},X_{2}\}\mid sig(e)=\textsf{swap}\}|=2, which proves the claim, cf. Figure 8. ∎

GR=G^{R}= 0 0 0 11 11 swap swap free swap FR=F^{R}= 0 0 0 11 11 swap swap swap free TR=T^{R}= 0 0 0 0 0 0 0 0 11 11 11 11 free swap swap free swap swap swap swap swap swap free QR=Q^{R}= 0 0 0 11 free swap swap
Figure 7: Illustrations for Lemma 8. The images GRG^{R}, FRF^{R}, TRT^{R} and QRQ^{R}, where R=(sup,sig)R=(sup,sig) is a {swap,free}\{\textsf{swap},\textsf{free}\}-region that solves (g2,g4)(g_{2},g_{4}) and satisfies sig(k0)=sig(X0)=freesig(k_{0})=sig(X_{0})=\textsf{free} and sig(k1)=sig(v)=sig(w)=sig(X1)=sig(X2)=sig(vi)=swapsig(k_{1})=sig(v)=sig(w)=sig(X_{1})=sig(X_{2})=sig(v_{i})=\textsf{swap} for all i{0,,6}i\in\{0,\dots,6\}.
TR=T^{R}= 0 0 0 0 0 0 0 0 11 11 11 11 free swap swap free swap used swap free swap swap free
Figure 8: Illustration for Lemma 8. A {swap,used,free}\{\textsf{swap},\textsf{used},\textsf{free}\}-region R=(sup,sig)R=(sup,sig), restricted to TT, where sig(k0)=sig(X0)=sig(X2)=freesig(k_{0})=sig(X_{0})=sig(X_{2})=\textsf{free}, sig(X1)=usedsig(X_{1})=\textsf{used} and sig(vi)=swapsig(v_{i})=\textsf{swap} for all i{0,,5}i\in\{0,\dots,5\} and, hence, |{e{X0,X1,X2}sig(e)=swap}|=0|\{e\in\{X_{0},X_{1},X_{2}\}\mid sig(e)=\textsf{swap}\}|=0. RR is not extendable to a region of a TS that has TT and QQ such that sig(v6)=swapsig(v_{6})=\textsf{swap}, since sig(v6)=swapsig(v_{6})=\textsf{swap} would contradict sup(q0)==sup(q3)=0sup(q_{0})=\dots=sup(q_{3})=0, which would be required by sig(X0)=sig(X2)=freesig(X_{0})=sig(X_{2})=\textsf{free}.

Let φ\varphi be an instance of CM 1-in-3 3Sat with the set of variables X={X0,,Xm1}X=\{X_{0},\dots,X_{m-1}\} and φ\varphi^{\prime} its renamed copy with event set X={X0,,Xm1}X^{\prime}=\{X_{0}^{\prime},\dots,X_{m-1}^{\prime}\}. In the following, we introduce the construction of AφA_{\varphi}.

Firstly, for every i{0,,7m1}i\in\{0,\dots,7m-1\}, the TS AiA_{i} has the following gadgets GiG_{i}, FiF_{i}, GiG_{i}^{\prime} and FiF_{i}^{\prime} with starting states gi,0g_{i,0}, fi,0f_{i,0}, gi,0g_{i,0}^{\prime} and fi,0f_{i,0}^{\prime}, respectively, providing the atom α=(g0,2,g0,4)\alpha=(g_{0,2},g_{0,4}):

Gi=G_{i}= gi,0g_{i,0} gi,1g_{i,1} gi,2g_{i,2} gi,3g_{i,3} gi,4g_{i,4} viv_{i} wiw_{i} k0k_{0} k1k_{1} Fi=F_{i}= fi,0f_{i,0} fi,1f_{i,1} fi,2f_{i,2} fi,3f_{i,3} fi,4f_{i,4} viv_{i} wiw_{i} k1k_{1} k0k_{0} Gi=G_{i}^{\prime}= gi,0g_{i,0}^{\prime} gi,1g_{i,1}^{\prime} gi,2g_{i,2}^{\prime} gi,3g_{i,3}^{\prime} gi,4g_{i,4}^{\prime} viv_{i}^{\prime} wiw_{i}^{\prime} k1k_{1} k0k_{0} Fi=F_{i}^{\prime}= fi,0f_{i,0}^{\prime} fi,1f_{i,1}^{\prime} fi,2f_{i,2}^{\prime} fi,3f_{i,3}^{\prime} fi,4f_{i,4}^{\prime} viv_{i}^{\prime} wiw_{i}^{\prime} k0k_{0} k1k_{1}

Secondly, for every i{0,,m1}i\in\{0,\dots,m-1\}, the TS AφA_{\varphi} has the following gadgets Ti,0,Ti,1T_{i,0},T_{i,1} and Ti,0,Ti,1T_{i,0}^{\prime},T_{i,1}^{\prime} that use the elements of ζi={Xi0,Xi1,Xi2}\zeta_{i}=\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\} and ζi={Xi0,Xi1,Xi2}\zeta_{i}^{\prime}=\{X_{i_{0}}^{\prime},X_{i_{1}}^{\prime},X_{i_{2}}^{\prime}\} as events, respectively; their starting states are ti,0,0t_{i,0,0}, ti,1,0t_{i,1,0}, ti,0,0t_{i,0,0}^{\prime} and ti,1,0t_{i,1,0}^{\prime}:

Ti,0=T_{i,0}= ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} Ti,1=T_{i,1}= ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} Ti,0=T_{i,0}^{\prime}= ti,0,0t_{i,0,0}^{\prime} ti,0,1t_{i,0,1}^{\prime} ti,0,2t_{i,0,2}^{\prime} ti,0,3t_{i,0,3}^{\prime} ti,0,4t_{i,0,4}^{\prime} ti,0,5t_{i,0,5}^{\prime} ti,0,6t_{i,0,6}^{\prime} ti,0,7t_{i,0,7}^{\prime} ti,0,8t_{i,0,8}^{\prime} ti,0,9t_{i,0,9}^{\prime} ti,0,10t_{i,0,10}^{\prime} ti,0,11t_{i,0,11}^{\prime} k1k_{1} v7iv_{7i}^{\prime} v7i+1v_{7i+1}^{\prime} Xi0X_{i_{0}}^{\prime} v7i+2v_{7i+2}^{\prime} Xi1X_{i_{1}}^{\prime} v7i+3v_{7i+3}^{\prime} Xi2X_{i_{2}}^{\prime} v7i+4v_{7i+4}^{\prime} v7i+5v_{7i+5}^{\prime} k1k_{1} Ti,1=T_{i,1}^{\prime}= ti,1,0t_{i,1,0}^{\prime} ti,1,1t_{i,1,1}^{\prime} ti,1,2t_{i,1,2}^{\prime} ti,1,3t_{i,1,3}^{\prime} Xi0X_{i_{0}}^{\prime} v7i+6v_{7i+6}^{\prime} Xi2X_{i_{2}}^{\prime}

Finally, the gadgets are connected via their starting states to finally build AφA_{\varphi} as follows:

ι\iota 0\top_{0} 1\top_{1} \dots 14m2\top_{14m-2} 14m1\top_{14m-1} G0G_{0} F0F_{0} \dots G7m1G_{7m-1} F7m1F_{7m-1} G0G_{0}^{\prime} F0F_{0}^{\prime} \dots G7m1G_{7m-1}^{\prime} F7m1F_{7m-1}^{\prime} 0\bot_{0} 1\bot_{1} \dots 2m2\bot_{2m-2} 2m1\bot_{2m-1} T0,0T_{0,0} T0,1T_{0,1} \dots Tm1,0T_{m-1,0} Tm1,1T_{m-1,1} T0,0T_{0,0}^{\prime} T0,1T_{0,1}^{\prime} \dots Tm1,0T_{m-1,0}^{\prime} Tm1,1T_{m-1,1}^{\prime} 0\otimes_{0} 1\otimes_{1} 14m1\otimes_{14m-1} 0\oplus_{0} 1\oplus_{1} 2m1\oplus_{2m-1} 0\odot_{0} 1\odot_{1} 14m2\odot_{14m-2} 14m1\odot_{14m-1} 0\odot_{0}^{\prime} 1\odot_{1}^{\prime} 14m2\odot_{14m-2}^{\prime} 14m1\odot_{14m-1}^{\prime} 0\ominus_{0} 1\ominus_{1} 2m2\ominus_{2m-2} 2m1\ominus_{2m-1} 0\ominus_{0}^{\prime} 1\ominus_{1}^{\prime} 2m2\ominus_{2m-2}^{\prime} 2m1\ominus_{2m-1}^{\prime}

The following Lemma 9 and Lemma 10 prove the validity of our polynomial-time reduction and, hence, complete the proof of Theorem 4.1.

Lemma 9.

If AφA_{\varphi} has the τ\tau-SSP, then φ\varphi is one-in-three satisfiable.

Proof.

Let GG, FF, TT and QQ be the paths defined in Lemma 8. First of all, we observe that GG7i+jG7i+jG\cong G_{7i+j}\cong G_{7i+j}^{\prime} and FF7i+jF7i+jF\cong F_{7i+j}\cong F_{7i+j}^{\prime} and TTi,0Ti,0T\cong T_{i,0}\cong T_{i,0}^{\prime} and QTi,1Ti,1Q\cong T_{i,1}\cong T_{i,1}^{\prime} for all i{0,,m1}i\in\{0,\dots,m-1\} and j{0,,6}j\in\{0,\dots,6\}. Let R=(sup,sig)R=(sup,sig) be a τ\tau-region that solves α=(g0,2,g0,4)\alpha=(g_{0,2},g_{0,4}) (which exists, since AφA_{\varphi} has the τ\tau-SSP) and let i{0,,m1}i\in\{0,\dots,m-1\} be arbitrary but fixed. By Lemma 8.1, we have either sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap} or sig(k0)=swapsig(k_{0})=\textsf{swap} and sig(k1)𝔰𝔞𝔳𝔢sig(k_{1})\in\mathfrak{save}. This implies sig(u7i)==sig(u7i+6)=sig(u7i)==sig(u7i+6)=swapsig(u_{7i})=\dots=sig(u_{7i+6})=sig(u_{7i}^{\prime})=\dots=sig(u_{7i+6}^{\prime})=\textsf{swap} by Lemma 8.2. If sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap}, then by Lemma 8.3, this implies that there is exactly one event e{Xi0,Xi1,Xi2}e\in\{X_{i_{0}},X_{i_{1}},X_{i_{2}}\} such that sig(e)swapsig(e)\not=\textsf{swap}. Consequently, since ii was arbitrary, if sig(k0)𝔰𝔞𝔳𝔢sig(k_{0})\in\mathfrak{save} and sig(k1)=swapsig(k_{1})=\textsf{swap}, then M={eXsig(e)swap}M=\{e\in X\mid sig(e)\not=\textsf{swap}\} selects exactly one variable of every clause ζi\zeta_{i} for all i{0,,m1}i\in\{0,\dots,m-1\}. Thus, MM is a one in three-model of φ\varphi. Otherwise, if sig(k0)=swapsig(k_{0})=\textsf{swap} and sig(k1)𝔰𝔞𝔳𝔢sig(k_{1})\in\mathfrak{save}, then we similarly obtain that M={eXsig(e)swap}M^{\prime}=\{e\in X^{\prime}\mid sig(e)\not=\textsf{swap}\} defines a one-in-three-model of φ\varphi^{\prime}, which also implies the one-in-three satisfiability of φ\varphi. ∎

Lemma 10.

If φ\varphi is one-in-three satisfiable, then AφA_{\varphi} has the τ\tau-SSP.

The proof of Lemma 10 is shifted to the appendix, Section 0.B.

5 Conclusion

In this paper, we present the overall characterization of the computational complexity of the problem τ\tau-SSP for all 256 Boolean types of nets τ\tau. Our presentation includes 154 new complexity results (Figure 1: §1 - §3, §6, §9, §10) and 102 known results (Figure 1: §4 [22], §5 [19, 23], §7 [16, 22], §8 [21]) and classifies them in the overall context of boolean state separation. Besides the new 150 hardness- and 4 tractability-results, this classification is one of the main contributions of this paper. First of all, it becomes apparent that the distinction between nop-free and nop-equipped types is meaningful: Within the class of nop-free types, τ\tau-SSP turns out to be NP-complete if and only if swapτ\textsf{swap}\in\tau and τ𝔰𝔞𝔳𝔢\tau\cap\mathfrak{save}\not=\emptyset. Within the class of nop-equipped types, a differentiation between types τ\tau that satisfy τ{res,set}=\tau\cap\{\textsf{res},\textsf{set}\}=\emptyset and the ones with τ{res,set}\tau\cap\{\textsf{res},\textsf{set}\}\not=\emptyset is useful: τ\tau-SSP for the former ones is NP-complete if and only if τ{inp,out}\tau\cap\{\textsf{inp},\textsf{out}\}\not=\emptyset and swapτ\textsf{swap}\not\in\tau. In particular, {swap}τ\{\textsf{swap}\}\cup\tau-SSP becomes polynomial for all these types. On the other hand, for the latter ones, which include i{res,set}i\in\{\textsf{res},\textsf{set}\} such that iτi\in\tau, τ\tau-SSP is NP-complete as long as there is also an interaction in τ\tau that opposes ii, that is, τ𝔢𝔵𝔦𝔱\tau\cap\mathfrak{exit}\not=\emptyset if i=seti=\textsf{set} and τ𝔢𝔫𝔱𝔢𝔯\tau\cap\mathfrak{enter}\not=\emptyset if i=resi=\textsf{res}.

Moreover, our proofs discover that, up to isomorphism, there are essentially four hard kernels that indicate the NP-completeness of τ\tau-SSP, namely {nop,inp}\{\textsf{nop},\textsf{inp}\} and {nop,inp,out}\{\textsf{nop},\textsf{inp},\textsf{out}\} for the nop-equipped types and {swap,free}\{\textsf{swap},\textsf{free}\} and {swap,free,used}\{\textsf{swap},\textsf{free},\textsf{used}\} for the nop-free types. That means, for a nop-equipped type τ\tau, the hardness of τ\tau-SSP can either be shown by a reduction of {nop,inp}\{\textsf{nop},\textsf{inp}\}-SSP or {nop,inp,out}\{\textsf{nop},\textsf{inp},\textsf{out}\}-SSP (or their isomorphic types), which is basically done in the proof of Lemma 5, or τ\tau-SSP is polynomial othwerwise. Similarly, one finds out that for the nop-free types τ\tau in question, the hardness of τ\tau-SSP can be shown by a reduction of {swap,free}\{\textsf{swap},\textsf{free}\}-SSP or {swap,free,used}\{\textsf{swap},\textsf{free},\textsf{used}\}-SSP. Due to the space limitation, a reduction that covers all hard nop-free types on one blow is given instead of explicit proof.

For future work, it remains to completely characterize the computational complexity of deciding if a TS AA is isomorphic to the reachability graph of a Boolean Petri net, instead of only being embeddable by an injective simulation map.

References

  • [1] Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: TAPSOFT. Lecture Notes in Computer Science, vol. 915, pp. 364–378. Springer (1995). https://doi.org/10.1007/3-540-59293-8_207
  • [2] Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1-2), 107–134 (1997). https://doi.org/10.1016/S0304-3975(96)00219-8
  • [3] Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series, Springer (2015). https://doi.org/10.1007/978-3-662-47967-4
  • [4] Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7), 647–679 (1995). https://doi.org/10.1007/BF01186645
  • [5] Best, E., Devillers, R.R.: Pre-synthesis of Petri nets based on prime cycles and distance paths. Sci. Comput. Program. 157, 41–55 (2018). https://doi.org/10.1016/j.scico.2017.07.005, https://doi.org/10.1016/j.scico.2017.07.005
  • [6] Chatain, T., Haar, S., Kolcák, J., Paulevé, L., Thakkar, A.: Concurrency in boolean networks. Nat. Comput. 19(1), 91–109 (2020). https://doi.org/10.1007/s11047-019-09748-4, https://doi.org/10.1007/s11047-019-09748-4
  • [7] Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)
  • [8] Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of boolean nets. Acta Inf. 50(1), 15–39 (2013). https://doi.org/10.1007/s00236-012-0170-2
  • [9] Montanari, U., Rossi, F.: Contextual occurrence nets and concurrent constraint programming. In: Schneider, H.J., Ehrig, H. (eds.) Graph Transformations in Computer Science. pp. 280–295. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)
  • [10] Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995). https://doi.org/10.1007/BF01178907
  • [11] Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete & Computational Geometry 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6
  • [12] Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor arcs. In: ICATPN. Lecture Notes in Computer Science, vol. 1248, pp. 310–327. Springer (1997). https://doi.org/10.1007/3-540-63139-9_43
  • [13] Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996). https://doi.org/10.1007/3-540-65306-6_14
  • [14] Schlachter, U.: Over-approximative Petri net synthesis for restricted subclasses of nets. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) Language and Automata Theory and Applications - 12th International Conference, LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10792, pp. 296–307. Springer (2018). https://doi.org/10.1007/978-3-319-77313-1_23, https://doi.org/10.1007/978-3-319-77313-1_23
  • [15] Schlachter, U., Wimmel, H.: Optimal label splitting for embedding an LTS into an arbitrary Petri net reachability graph is NP-complete. CoRR abs/2002.04841 (2020), https://arxiv.org/abs/2002.04841
  • [16] Schmitt, V.: Flip-flop nets. In: STACS. Lecture Notes in Computer Science, vol. 1046, pp. 517–528. Springer (1996). https://doi.org/10.1007/3-540-60922-9_42
  • [17] Tredup, R.: The complexity of synthesizing nop-equipped boolean nets from g-bounded inputs (technical report) (2019)
  • [18] Tredup, R.: Fixed parameter tractability and polynomial time results for the synthesis of b-bounded petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11522, pp. 148–168. Springer (2019). https://doi.org/10.1007/978-3-030-21571-2_10, https://doi.org/10.1007/978-3-030-21571-2_10
  • [19] Tredup, R.: Hardness results for the synthesis of b-bounded Petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11522, pp. 127–147. Springer (2019). https://doi.org/10.1007/978-3-030-21571-2_9, https://doi.org/10.1007/978-3-030-21571-2_9
  • [20] Tredup, R.: Parameterized complexity of synthesizing b-bounded (m, n)-t-systems. In: Chatzigeorgiou, A., Dondi, R., Herodotou, H., Kapoutsis, C.A., Manolopoulos, Y., Papadopoulos, G.A., Sikora, F. (eds.) SOFSEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12011, pp. 223–235. Springer (2020). https://doi.org/10.1007/978-3-030-38919-2_19, https://doi.org/10.1007/978-3-030-38919-2_19
  • [21] Tredup, R., Erofeev, E.: On the complexity of synthesis of nop-free boolean petri nets. In: van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2020 Satellite event of the 41st International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2020, virtual workshop, June 24, 2020. CEUR Workshop Proceedings, vol. 2625, pp. 66–84. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2625/paper-05.pdf
  • [22] Tredup, R., Rosenke, C.: The complexity of synthesis for 43 boolean Petri net types. In: TAMC. Lecture Notes in Computer Science, vol. 11436, pp. 615–634. Springer (2019). https://doi.org/10.1007/978-3-030-14812-6
  • [23] Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete even for extremely simple inputs. In: Petri Nets. Lecture Notes in Computer Science, vol. 10877, pp. 40–59. Springer (2018). https://doi.org/10.1007/978-3-319-91268-4_3
  • [24] Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR’98 Concurrency Theory. pp. 501–516. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)
  • [25] Wimmel, H.: Presynthesis of bounded choice-free or fork-attribution nets. Inf. Comput. 271, 104482 (2020). https://doi.org/10.1016/j.ic.2019.104482, https://doi.org/10.1016/j.ic.2019.104482
  • [26] Yakovlev, A., Koelmans, A., Semenov, A.L., Kinniment, D.J.: Modelling, analysis and synthesis of asynchronous control circuits using Petri nets. Integr. 21(3), 143–170 (1996). https://doi.org/10.1016/S0167-9260(96)00010-7, https://doi.org/10.1016/S0167-9260(96)00010-7

Appendix 0.A Supporting Illustrations for the Proof of Lemma 4. The depicted TS AφA_{\varphi} originates from φ\varphi of Example 1.

t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 9: The region R1R_{1} of Lemma 4.
t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 10: The region R1TR^{T}_{1} of Lemma 4.
t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 11: The region R2R_{2} of Lemma 4.
t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 12: The region R1GR^{G}_{1} of Lemma 4.
t0,0t_{0,0} t0,1t_{0,1} t0,2t_{0,2} t0,3t_{0,3} \top X0X_{0} X1X_{1} X2X_{2} u0u_{0} t1,0t_{1,0} t1,1t_{1,1} t1,2t_{1,2} t1,3t_{1,3} X0X_{0} X2X_{2} X3X_{3} u1u_{1} t2,0t_{2,0} t2,1t_{2,1} t2,2t_{2,2} t2,3t_{2,3} X0X_{0} X1X_{1} X3X_{3} u2u_{2} t3,0t_{3,0} t3,1t_{3,1} t3,2t_{3,2} t3,3t_{3,3} X2X_{2} X4X_{4} X5X_{5} u3u_{3} t4,0t_{4,0} t4,1t_{4,1} t4,2t_{4,2} t4,3t_{4,3} X1X_{1} X4X_{4} X5X_{5} u4u_{4} t5,0t_{5,0} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} t5,1t_{5,1} t5,2t_{5,2} t5,3t_{5,3} X3X_{3} X4X_{4} X5X_{5} u5u_{5} t6,0t_{6,0} t7,0t_{7,0} kk vv w0w_{0} w1w_{1} w2w_{2} w3w_{3} w4w_{4} w5w_{5} g0,0g_{0,0} g0,1g_{0,1} g0,2g_{0,2} u0u_{0} kk g1,0g_{1,0} g1,1g_{1,1} g1,2g_{1,2} u1u_{1} kk g2,0g_{2,0} g2,1g_{2,1} g2,2g_{2,2} u2u_{2} kk g3,0g_{3,0} g3,1g_{3,1} g3,2g_{3,2} u3u_{3} kk g4,0g_{4,0} g4,1g_{4,1} g4,2g_{4,2} u4u_{4} kk g5,0g_{5,0} g5,1g_{5,1} g5,2g_{5,2} u5u_{5} kk y0y_{0} y1y_{1} y2y_{2} y3y_{3} y4y_{4} y5y_{5}
Figure 13: The region R4,0XR^{X}_{4,0} of Lemma 4, where i=4i=4, j=0j=0 and =2\ell=2.

Appendix 0.B The Proof of Lemma 10.

The Proof of Lemma 10..

Let MM be a one-in-three model of φ\varphi. In what follows, we assume freeτ\textsf{free}\in\tau and argue that AφA_{\varphi} has the τ\tau-SSP. The assumption freeτ\textsf{free}\in\tau is possible without loss of generality: In particular, every presented region is a {free,swap}\{\textsf{free},\textsf{swap}\}-region. Hence, every presented support allows a {swap,res}\{\textsf{swap},\textsf{res}\}-region by simply replacing sig(e)=freesig(e)=\textsf{free} by sig(e)=ressig(e)=\textsf{res}. Thus, by Lemma 2 and {swap,free}{swap,used}\{\textsf{swap},\textsf{free}\}\cong\{\textsf{swap},\textsf{used}\} and {res,swap}{set,swap}\{\textsf{res},\textsf{swap}\}\cong\{\textsf{set},\textsf{swap}\}, the τ\tau-SSP of AφA_{\varphi} implies the its τ~\tilde{\tau}-SSP also for the types in question where τ~𝔰𝔞𝔳𝔢0=\tilde{\tau}\cap\mathfrak{save}_{0}=\emptyset, which implies τ~𝔰𝔞𝔳𝔢1\tilde{\tau}\cap\mathfrak{save}_{1}\not=\emptyset.

For abbreviation, let ={0,,2m1}\oplus=\{\oplus_{0},\dots,\oplus_{2m-1}\}, ={0,,14m1}\otimes=\{\otimes_{0},\dots,\otimes_{14m-1}\}, ={0,,2m1}\ominus=\{\ominus_{0},\dots,\ominus_{2m-1}\}, ={0,,14m1}\odot=\{\odot_{0},\dots,\odot_{14m-1}\}, V={v0,,v7m1}V=\{v_{0},\dots,v_{7m-1}\}, W={w0,,w7m1}W=\{w_{0},\dots,w_{7m-1}\}, X={X0,,Xm1}X=\{X_{0},\dots,X_{m-1}\}, ={0,,2m1}\bot=\{\bot_{0},\dots,\bot_{2m-1}\} and ={0,,14m1}\top=\{\top_{0},\dots,\top_{14m-1}\}, and let \ominus^{\prime}, \odot^{\prime}, VV^{\prime}, WW^{\prime} and XX^{\prime} be defined accordingly.

First of all, it is easy to see that, for all ss\in\bot\cup\top, the SSP atom (s,s)(s,s^{\prime}) is τ\tau-solvable for all sSAφ{s}s^{\prime}\in S_{A_{\varphi}}\setminus\{s\}. Secondly, if AA is an arbitrary but fixed gadget of AφA_{\varphi} and sSAs\in S_{A} and sSAφSAs^{\prime}\in S_{A_{\varphi}}\setminus S_{A}, then the atom (s,s)(s,s^{\prime}) is τ\tau-solvable. This can be seen as follows: Let aa\in\ominus\cup\odot\cup\ominus^{\prime}\cup\odot^{\prime} be arbitrary but fixed. (This event connects a certain gadget, say AA, with the others.) On the one hand, there is a region R1=(sup1,sig1)R_{1}=(sup_{1},sig_{1}), such that sup1(ι)=0sup_{1}(\iota)=0 and, for all eEAφe\in E_{A_{\varphi}}, if ee\in\oplus\cup\otimes\cup\ominus\cup\odot\cup\ominus^{\prime}\cup\odot^{\prime}, then sig(e)=freesig(e)=\textsf{free}, otherwise sig(e)=swapsig(e)=\textsf{swap}.

g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} The region R1R_{1} restricted to G7i+jG_{7i+j} and F7i+jF_{7i+j}.

On the other hand, there is a region R2=(sup2,sig2)R_{2}=(sup_{2},sig_{2}), such that sup(ι)=0sup(\iota)=0 and, for all eEAφe\in E_{A_{\varphi}}, if ee\in\oplus\cup\otimes\cup\ominus\cup\odot\cup\ominus^{\prime}\cup\odot^{\prime} and eae\not=a, then sig(e)=freesig(e)=\textsf{free}, otherwise sig(e)=swapsig(e)=\textsf{swap}. Notice that for the unique gadget AA of AφA_{\varphi} whose starting state is adjacent to aa holds, for all sSAφs\in S_{A_{\varphi}}, that sup2(s)=sup1(s)sup_{2}(s)=sup_{1}(s) if sSAs\not\in S_{A}, otherwise sup2(s)=1sup1(s)sup_{2}(s)=1-sup_{1}(s). Thus, if sSAs\in S_{A} and sSAφSAs^{\prime}\in S_{A_{\varphi}}\setminus S_{A}, then (s,s)(s,s^{\prime}) is either solved by R1R_{1} or by R2R_{2}.

g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} The region R2R_{2}, where a=14i+2ja=\odot_{14i+2j}, restricted to G7i+jG_{7i+j} and F7i+jF_{7i+j}.

Justified by these observations, it only remains to consider separation atoms (s,s)(s,s^{\prime}) where ss and ss^{\prime} belong to the same gadget AA of AφA_{\varphi}.

Let i{0,,m1}i\in\{0,\dots,m-1\} and j{0,,6}j\in\{0,\dots,6\} be arbitrary but fixed and let’s argue for the solvability of ss for all sSG7i+js\in S_{G_{7i+j}}. The following τ\tau-region R7i+j,3g=(sup,sig)R^{g}_{7i+j,3}=(sup,sig) solves (g7i+j,3,s)(g_{7i+j,3},s) for all s{g7i+j,0,g7i+j,1,g7i+j,2,g7i+j,4}s\in\{g_{7i+j,0},g_{7i+j,1},g_{7i+j,2},g_{7i+j,4}\}: sup(ι)=0sup(\iota)=0; for all eEAφe\in E_{A_{\varphi}}, if e{k0,k1}{2i,2ii{0,,m1}}e\in\{k_{0},k_{1}\}\cup\{\ominus_{2i},\ominus_{2i}^{\prime}\mid i\in\{0,\dots,m-1\}\}, then sig(e)=swapsig(e)=\textsf{swap}, otherwise sig(e)=freesig(e)=\textsf{free}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} The region R7i+j,3gR^{g}_{7i+j,3} restricted to Ti,0,Ti,1,G7i+jT_{i,0},T_{i,1},G_{7i+j} and F7i+jF_{7i+j}.

The following τ\tau-region R7i+j,0g=(sup,sig)R^{g}_{7i+j,0}=(sup,sig) solves (g7i+j,0,s)(g_{7i+j,0},s) for all s{g7i+j,1,g7i+j,2,g7i+j,4}s\in\{g_{7i+j,1},g_{7i+j,2},g_{7i+j,4}\}: sup(ι)=0sup(\iota)=0; for all eEAφe\in E_{A_{\varphi}}, if e{k0,k1}VVXXe\in\{k_{0},k_{1}\}\cup\odot\cup\odot^{\prime}\cup V\cup V^{\prime}\cup X\cup X^{\prime}, then sig(e)=swapsig(e)=\textsf{swap}, otherwise sig(e)=freesig(e)=\textsf{free}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} The region R7i+j,0gR^{g}_{7i+j,0} restricted to Ti,0,Ti,1,G7i+jT_{i,0},T_{i,1},G_{7i+j} and F7i+jF_{7i+j}.

The following τ\tau-region R7i+j,1g=(sup,sig)R^{g}_{7i+j,1}=(sup,sig) solves (g7i+j,1,s)(g_{7i+j,1},s) for all s{g7i+j,2,g7i+j,4}s\in\{g_{7i+j,2},g_{7i+j,4}\}: sup(ι)=0sup(\iota)=0; for all eEAφe\in E_{A_{\varphi}}, if e{k0,k1}VVWWXXe\in\{k_{0},k_{1}\}\cup V\cup V^{\prime}\cup W\cup W^{\prime}\cup X\cup X^{\prime}, then sig(e)=swapsig(e)=\textsf{swap}, otherwise sig(e)=freesig(e)=\textsf{free}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} The region R7i+j,1gR^{g}_{7i+j,1} restricted to Ti,0,Ti,1,G7i+jT_{i,0},T_{i,1},G_{7i+j} and F7i+jF_{7i+j}.

Restricted to G7i+jG_{7i+j}, it remains to solve the atom (g7i+j,2,g7i+j,4)(g_{7i+j,2},g_{7i+j,4}). The following region R7i+j,2g=(sup,sig)R^{g}_{7i+j,2}=(sup,sig) uses the existence of the one-in-three model MM and solves this atom: sup(ι)=0sup(\iota)=0; for all eEAφe\in E_{A_{\varphi}}, if e{k1}VVWW(XM)X{2i+1,2ii{0,,7m1}}e\in\{k_{1}\}\cup V\cup V^{\prime}\cup W\cup W^{\prime}\cup(X\setminus M)\cup X^{\prime}\cup\{\odot_{2i+1},\odot_{2i}^{\prime}\mid i\in\{0,\dots,7m-1\}\}, then sig(e)=swapsig(e)=\textsf{swap}, otherwise sig(e)=freesig(e)=\textsf{free}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i+j,0g_{7i+j,0} g7i+j,1g_{7i+j,1} g7i+j,2g_{7i+j,2} g7i+j,3g_{7i+j,3} g7i+j,4g_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k0k_{0} k1k_{1} f7i+j,0f_{7i+j,0} f7i+j,1f_{7i+j,1} f7i+j,2f_{7i+j,2} f7i+j,3f_{7i+j,3} f7i+j,4f_{7i+j,4} v7i+jv_{7i+j} w7i+jw_{7i+j} k1k_{1} k0k_{0} ti,0,0t_{i,0,0}^{\prime} ti,0,1t_{i,0,1}^{\prime} ti,0,2t_{i,0,2}^{\prime} ti,0,3t_{i,0,3}^{\prime} ti,0,4t_{i,0,4}^{\prime} ti,0,5t_{i,0,5}^{\prime} ti,0,6t_{i,0,6}^{\prime} ti,0,7t_{i,0,7}^{\prime} ti,0,8t_{i,0,8}^{\prime} ti,0,9t_{i,0,9}^{\prime} ti,0,10t_{i,0,10}^{\prime} ti,0,11t_{i,0,11}^{\prime} k1k_{1} v7iv_{7i}^{\prime} v7i+1v_{7i+1}^{\prime} Xi0X_{i_{0}}^{\prime} v7i+2v_{7i+2}^{\prime} Xi1X_{i_{1}}^{\prime} v7i+3v_{7i+3}^{\prime} Xi2X_{i_{2}}^{\prime} v7i+4v_{7i+4}^{\prime} v7i+5v_{7i+5}^{\prime} k1k_{1} ti,1,0t_{i,1,0}^{\prime} ti,1,1t_{i,1,1}^{\prime} ti,1,2t_{i,1,2}^{\prime} ti,1,3t_{i,1,3}^{\prime} Xi0X_{i_{0}}^{\prime} v7i+6v_{7i+6}^{\prime} Xi2X_{i_{2}}^{\prime} g7i+j,0g_{7i+j,0}^{\prime} g7i+j,1g_{7i+j,1}^{\prime} g7i+j,2g_{7i+j,2}^{\prime} g7i+j,3g_{7i+j,3}^{\prime} g7i+j,4g_{7i+j,4}^{\prime} v7i+jv_{7i+j}^{\prime} w7i+jw_{7i+j}^{\prime} k1k_{1} k0k_{0} f7i+j,0f_{7i+j,0}^{\prime} f7i+j,1f_{7i+j,1}^{\prime} f7i+j,2f_{7i+j,2}^{\prime} f7i+j,3f_{7i+j,3}^{\prime} f7i+j,4f_{7i+j,4}^{\prime} v7i+jv_{7i+j}^{\prime} w7i+jw_{7i+j}^{\prime} k0k_{0} k1k_{1} The region R7i+j,2gR^{g}_{7i+j,2} restricted to Ti,0,Ti,1,G7i+j,F7i+jT_{i,0},T_{i,1},G_{7i+j},F_{7i+j} and Ti,0,Ti,1,G7i+j,F7i+jT_{i,0}^{\prime},T_{i,1}^{\prime},G_{7i+j}^{\prime},F_{7i+j}^{\prime}, where Xi0MX_{i_{0}}\in M.

Note that the regions R7i+j,0g,,R7i+j,0gR^{g}_{7i+j,0},\dots,R^{g}_{7i+j,0}, also show that if sSF7i+js\in S_{F_{7i+j}}, then ss is τ\tau-solvable. Altogether, by the arbitrariness of ii and jj and the symmetry of a gadget AA and its counterpart AA^{\prime}, this shows, for all {0,,7m1}\ell\in\{0,\dots,7m-1\}, that if sSGSFSGSFs\in S_{G_{\ell}}\cup S_{F_{\ell}}\cup S_{G_{\ell}^{\prime}}\cup S_{F_{\ell}^{\prime}}, then ss is τ\tau-solvable.

Next, we let i{0,,m1}i\in\{0,\dots,m-1\} be arbitrary but fixed and argue that ss is τ\tau-solvable if sSTi,0s\in S_{T_{i,0}}. The following τ\tau-region Ri,0,2t=(sup,sig)R^{t}_{i,0,2}=(sup,sig) solves (ti,0,2,s)(t_{i,0,2},s) for all relevant sSTi,0s\in S_{T_{i,0}}: sup(ι)=0sup(\iota)=0; for all eEAφe\in E_{A_{\varphi}}, if e{v7i,w7i,v7i+1,w7i+1}e\in\{v_{7i},w_{7i},v_{7i+1},w_{7i+1}\}, then sig(e)=swapsig(e)=\textsf{swap}, otherwise sig(e)=freesig(e)=\textsf{free}. Similarly, one proves that (ti,0,9,s)(t_{i,0,9},s) is τ\tau-solvable for all relevant sSTi,0s\in S_{T_{i,0}}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i,0g_{7i,0} g7i,1g_{7i,1} g7i,2g_{7i,2} g7i,3g_{7i,3} g7i,4g_{7i,4} v7iv_{7i} w7iw_{7i} k0k_{0} k1k_{1} f7i,0f_{7i,0} f7i,1f_{7i,1} f7i,2f_{7i,2} f7i,3f_{7i,3} f7i,4f_{7i,4} v7iv_{7i} w7iw_{7i} k1k_{1} k0k_{0} The region Ri,0,2tR^{t}_{i,0,2} restricted to Ti,0,Ti,1,G7iT_{i,0},T_{i,1},G_{7i} and F7iF_{7i}.

Let’s consider the τ\tau-solvability of (ti,0,3,s)(t_{i,0,3},s) for all relevant states sSTi,0s\in S_{T_{i,0}}. In the following, we argue that there is a τ\tau-region Ri,0,3t=(sup,sig)R^{t}_{i,0,3}=(sup,sig) that, for all eE(Ti,0)e\in E(T_{i,0}), maps ee to swap if e{v7i+1,Xi0}e\in\{v_{7i+1},X_{i_{0}}\} and to res otherwise, such that sup(ti,0,3)=1sup(t_{i,0,3})=1 and sup(s)=0sup(s)=0 for all sSTi,0{ti,0,3}s\in S_{T_{i,0}}\setminus\{t_{i,0,3}\}. Since sig(Xi0)=swapsig(X_{i_{0}})=\textsf{swap}, we have to deal with at most five further occurrences of Xi0X_{i_{0}} in AφA_{\varphi}: the one in Ti,1T_{i,1} and at most four further occurrences in say Tj,0,Tj,1T_{j,0},T_{j,1} and T,0,T,1T_{\ell,0},T_{\ell,1} for some j,{0,,m1}{i}j,\ell\in\{0,\dots,m-1\}\setminus\{i\}. Thus, to define Ri,0,3tR^{t}_{i,0,3} completely, we would have to do lots of tedious and mostly meaningless case analyses. To avoid the latter, in the following, we argue informally for the existence of Ri,0,3tR^{t}_{i,0,3}: The essential observation is that, by construction, if s Xi0 sAφ{ti,0,3 Xi0 ti,0,4}s\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A_{\varphi}\setminus\{t_{i,0,3}\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t_{i,0,4}\}, then there is a state q{s,s}q\in\{s,s^{\prime}\} and an event vVv\in V such that v q\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.4535pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$v$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}q. Notice that there might be events v,vVv,v^{\prime}\in V such that v s\leavevmode\hbox to17.37pt{\vbox to10.11pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.4535pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$v$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s and v s\leavevmode\hbox to17.37pt{\vbox to12.68pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{0.3975pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-1.0}{0.0}{0.0}{-1.0}{0.3975pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.33128pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$v^{\prime}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime} as to be seen for s=ti,0,3s=t_{i,0,3} and s=ti,0,4s^{\prime}=t_{i,0,4}. Anyway, to obtain Ri,0,3tR^{t}_{i,0,3}, we let sup(ι)=0sup(\iota)=0 and select exactly one arbitrary but fixed v-event and its corresponding w-event for every s Xi0 sAφ{ti,0,3 Xi0 ti,0,4}s\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}s^{\prime}\in A_{\varphi}\setminus\{t_{i,0,3}\leavevmode\hbox to19.71pt{\vbox to14.13pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-2.33301pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {}{{}}{} {{}{}}{}{}{}{{{}{}}}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.3pt}\pgfsys@invoke{ }{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{16.67432pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.67432pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.01529pt}{3.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\textbf{\scalebox{0.8}{$X_{i_{0}}$}}$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}t_{i,0,4}\} and map it to swap just like Xi0X_{i_{0}} and v7i+1v_{7i+1}. The other events get a free-signature. One finds out that the resulting region is well-defined and behaves as announced. Similarly, one proves the τ\tau-solvability for all s{ti,0,4,,ti,0,8}s\in\{t_{i,0,4},\dots,t_{i,0,8}\}.

ti,0,0t_{i,0,0} ti,0,1t_{i,0,1} ti,0,2t_{i,0,2} ti,0,3t_{i,0,3} ti,0,4t_{i,0,4} ti,0,5t_{i,0,5} ti,0,6t_{i,0,6} ti,0,7t_{i,0,7} ti,0,8t_{i,0,8} ti,0,9t_{i,0,9} ti,0,10t_{i,0,10} ti,0,11t_{i,0,11} k0k_{0} v7iv_{7i} v7i+1v_{7i+1} Xi0X_{i_{0}} v7i+2v_{7i+2} Xi1X_{i_{1}} v7i+3v_{7i+3} Xi2X_{i_{2}} v7i+4v_{7i+4} v7i+5v_{7i+5} k0k_{0} ti,1,0t_{i,1,0} ti,1,1t_{i,1,1} ti,1,2t_{i,1,2} ti,1,3t_{i,1,3} Xi0X_{i_{0}} v7i+6v_{7i+6} Xi2X_{i_{2}} g7i+1,0g_{7i+1,0} g7i+1,1g_{7i+1,1} g7i+1,2g_{7i+1,2} g7i+1,3g_{7i+1,3} g7i+1,4g_{7i+1,4} v7i+1v_{7i+1} w7i+1w_{7i+1} k0k_{0} k1k_{1} f7i+1,0f_{7i+1,0} f7i+1,1f_{7i+1,1} f7i+1,2f_{7i+1,2} f7i+1,3f_{7i+1,3} f7i+1,4f_{7i+1,4} v7i+1v_{7i+1} w7i+1w_{7i+1} k1k_{1} k0k_{0} The region Ri,0,3tR^{t}_{i,0,3} restricted to Ti,0,Ti,1,G7i+1T_{i,0},T_{i,1},G_{7i+1} and F7i+1F_{7i+1}.

Restricted to Ti,0T_{i,0}, it remains to argue that ti,0,0,ti,0,1,ti,0,10t_{i,0,0},t_{i,0,1},t_{i,0,10} and ti,0,11t_{i,0,11} are pairwise separable. Fortunately, the corresponding SSP atoms are already solved by regions defined above. More exactly, the region R7i+j,0gR^{g}_{7i+j,0} solves (ti,0,0,ti,0,1)(t_{i,0,0},t_{i,0,1}), (ti,0,0,ti,0,11)(t_{i,0,0},t_{i,0,11}), (ti,0,1,ti,0,11)(t_{i,0,1},t_{i,0,11}) and (ti,0,10,ti,0,11)(t_{i,0,10},t_{i,0,11}); moreover, the region R7i+j,3gR^{g}_{7i+j,3} solves (ti,0,0,ti,0,10)(t_{i,0,0},t_{i,0,10}) and (ti,0,1,ti,0,11)(t_{i,0,1},t_{i,0,11}). Hence, ss is τ\tau-solvable for all sSTi,0s\in S_{T_{i,0}}.

Finally, it is easy to see that, on the one hand, the SSP atoms corresponding to Ti,1T_{i,1} are similarly solvable as the ones of Ti,0T_{i,0} and, on the other hand, the SSP atoms of Ti,0T_{i,0}^{\prime} and Ti,1T_{i,1}^{\prime} are similarly solvable by symmetry. Hence, since ii was arbitrary, this proves that if sSTi,0STi,1STi,0STi,1s\in S_{T_{i,0}}\cup S_{T_{i,1}}\cup S_{T_{i,0}^{\prime}}\cup S_{T_{i,1}^{\prime}}, then ss is τ\tau-solvable for all i{0,,m1}i\in\{0,\dots,m-1\}. ∎