This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The effect of accretion on scalar superradiant instability

Yin-Da Guo yinda.guo@mail.sdu.edu.cn    Shou-Shan Bao ssbao@sdu.edu.cn Institute of Frontier and Interdisciplinary Science, Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China    Tianjun Li tli@itp.ac.cn CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China School of Physics, Henan Normal University, Xinxiang 453007, China    Hong Zhang hong.zhang@sdu.edu.cn Institute of Frontier and Interdisciplinary Science, Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
Abstract

Superradiance can lead to the formation of a black hole (BH) condensate system. We thoroughly investigate the accretion effect on the evolution of this system, and the gravitational wave signals it emits in the presence of multiple superradiance modes. Assuming the multiplication of the BH mass and scalar mass as a small number, we obtain the analytical approximations of all important quantities, which can be directly applied to phenomenological studies. In addition, we confirm that accretion could significantly enhance the gravitational wave (GW) emission and reduce its duration, and show that the GW beat signature is similarly modified.

I Introduction

Superradiance allows ultra-light bosons to extract energy and angular momentum from rotating black holes (BHs). This mechanism exists when the condition ω<mΩH\omega<m\Omega_{\mathrm{H}} is satisfied, where ω\omega is the frequency of the boson field, mm is the magnetic number, and ΩH\Omega_{\mathrm{H}} is the angular velocity of the event horizon. This process leads to a significant accumulation of bosons in bound states surrounding a Kerr BH, forming a BH-condensate system analogous to a hydrogen atom. For a comprehensive review on superradiance, we refer the readers to Ref. Brito:2015oca . In this work, we study the superradiance of ultra-light scalars, such as the QCD axion Weinberg:1977ma ; Wilczek:1977pj , and axion-like particles suggested by string theory Arvanitaki:2009fg .

Many observables are proposed to observe such BH-condensate systems Chen:2019fsq ; Chen:2021lvo ; Blas:2020nbs . In this article, we focus on the gravitational effects of the scalars, independent of how the scalar field couples to the Standard Model particles. Both direct and indirect detection methods have been proposed in the literature. One could directly observe the gravitational wave (GW) signals from the BH-condensate system, including quasi-monochromatic GWs Arvanitaki:2010sy ; Yoshino:2013ofa ; Yoshino:2014wwa ; Arvanitaki:2014wva ; Arvanitaki:2016qwi ; Brito:2017wnc ; Brito:2017zvb ; Baryakhtar:2017ngi ; Guo:2022mpr , stochastic GWs Brito:2017wnc ; Brito:2017zvb and GW beats Guo:2022mpr . The consequence of the BH superradiance could also be indirectly studied via the mass-spin distribution of numerous BHs, which would align along Regge trajectories if superradiance occurs Arvanitaki:2010sy ; Cardoso:2018tly ; Fernandez:2019qbj ; Ng:2019jsx ; Ng:2020ruv ; Cheng:2022jsw .

Both indirect and direct searches require a thorough understanding of the evolution process of the BH-condensate system. In previous studies, accretion is often overlooked for simplicity. The obtained results are then qualified only for isolated BHs, without gas and stars in the neighborhood. Nonetheless, accretion is important in the evolution of most BHs, even crucial for those BHs in active galactic nuclei or X-ray binaries. To our best knowledge, the impact of gas accretion on the superradiant evolution was first pointed out in Ref. Brito:2014wla and further studied in Refs. Fukuda:2019ewf ; Hui:2022sri ; Unal:2023yxt .

In this work, we carefully investigate the effect of accretion on the evolution of BH-condensate systems. We numerically solve the evolution equations with both the dominant and the subdominant modes. Analytical approximations of important quantities and time scales are also provided and compared with the numerical results. We then discuss the effects of accretion on the GW signals, including GW beat, which was proposed to distinguish the GW from superradiance and other monochromatic sources Guo:2022mpr . These numerical and analytical results provide baselines for more complicated cases, such as those with nonzero couplings between the ultralight scalar and the SM particles.

This paper is organized as follows. Sec. II begins with a brief review of scalar superradiance, followed by discussions on the evolution of BHs without the scalar field or accretion. Then in Sec. III, we study the effect of accretion on evolution with solely the dominant mode and provide analytic estimates of the essential quantities. This approach is then generalized to the scenario with multiple modes in Sec. IV, with a brief discussion of the impact of accretion on GW signals. Finally, we summarize our findings in Sec. V.

Throughout the paper, we adopt the Planck units in which G==c=1G=\hbar=c=1, and use the {+,,,}\{+,-,-,-\} signature.

II Setup

II.1 Scalar superradiance

The Kerr spacetime metric with mass MM and angular momentum JJ is expressed in the Boyer-Lindquist coordinates as Boyer:1966qh

ds2=\displaystyle ds^{2}= (12MrΣ)dt2+4aMrΣsin2θdtdφΣΔdr2\displaystyle\left(1-\frac{2Mr}{\Sigma}\right)dt^{2}+\frac{4aMr}{\Sigma}\sin^{2}\theta dtd\varphi-\frac{\Sigma}{\Delta}dr^{2} (1)
Σdθ2[(r2+a2)sin2θ+2MrΣa2sin4θ]dφ2,\displaystyle-\Sigma d\theta^{2}-\left[\left(r^{2}+a^{2}\right)\sin^{2}\theta+2\frac{Mr}{\Sigma}a^{2}\sin^{4}\theta\right]d\varphi^{2},

where

a\displaystyle a J/M,\displaystyle\equiv J/M, (2a)
Δ\displaystyle\Delta r22Mr+a2,\displaystyle\equiv r^{2}-2Mr+a^{2}, (2b)
Σ\displaystyle\Sigma r2+a2cos2θ.\displaystyle\equiv r^{2}+a^{2}\cos^{2}\theta. (2c)

The inner horizon rr_{-} and the outer horizon r+r_{+} are respectively defined as

r±=M±M2a2.r_{\pm}=M\pm\sqrt{M^{2}-a^{2}}. (3)

The variable aa is the angular momentum of unit BH mass. Throughout this paper, we use the dimensionless variable aa/Ma_{*}\equiv a/M and refer to it as the BH spin for brevity.

In this work, we consider a real scalar field surrounding a Kerr BH. Due to the small energy density of the condensate, its backreaction to the metric and self-interaction of the scalar field can be safely ignored Brito:2014wla . They can be included systematically as perturbations if high precision is required, which is beyond the scope of this work. Below we study a free real scalar field on the Kerr metric

(ρρ+μ2)Φ=0,\left(\nabla^{\rho}\nabla_{\rho}+\mu^{2}\right)\Phi=0, (4)

where μ\mu is the scalar mass. Generally, the energy eigenvalues are complex numbers depending on three indices, which are the overtone number nn, azimuthal number ll, and magnetic number mm. The principal number n¯=n+l+1\bar{n}=n+l+1 is also widely used instead of nn. For eigenstate with indices {n,l,m}\{n,l,m\}, we use ωnlm\omega_{nlm} and Γnlm\Gamma_{nlm} to denote the real and imaginary parts of the eigenvalue, respectively. For bounded scalar fields, the ωnlm\omega_{nlm} can be expressed as a series of α=Mμ\alpha=M\mu Baumann:2019eav

ωnlm\displaystyle\omega_{nlm} =μ(1α22n¯2α48n¯2+fn¯ln¯3α4+hlamn¯3α5+),\displaystyle=\mu\Big{(}1-\frac{\alpha^{2}}{2\bar{n}^{2}}-\frac{\alpha^{4}}{8\bar{n}^{2}}+\frac{f_{\bar{n}l}}{\bar{n}^{3}}\alpha^{4}+\frac{h_{l}a_{*}m}{\bar{n}^{3}}\alpha^{5}+\cdots\Big{)}, (5)

with

fn¯l\displaystyle f_{\bar{n}l} 62l+1+2n¯,\displaystyle\equiv-\frac{6}{2l+1}+\frac{2}{\bar{n}}, (6)
hl\displaystyle h_{l} 162l(2l+1)(2l+2).\displaystyle\equiv\frac{16}{2l(2l+1)(2l+2)}. (7)

The imaginary part Γnlm\Gamma_{nlm}, which is also called the superradiance rate, has been calculated at the leading order in Ref. Detweiler:1980uk and has been recently improved to next-to-leading order (NLO) in Ref. Bao:2022hew . Both the expressions have compact forms while the latter is much more accurate compared with the numerical calculation in Ref. Dolan:2007mj . In this work, we use the NLO expression, which gives111This expression is rewritten from the result in Ref. Bao:2022hew .

Γnlm=ω1(4κM2a2)2l+1Γ(n+2l+2)n!sinh(2πp)2π×|Γ(l+1ip+qp2)Γ(l+1+ip+qp2)|2[Γ(2l+1)Γ(2l+2)]2,\displaystyle\begin{split}&\Gamma_{nlm}=\\ &\hskip 18.49411pt-\omega_{1}\left(4\kappa\sqrt{M^{2}-a^{2}}\right)^{2l^{\prime}+1}\frac{\Gamma(n+2l^{\prime}+2)}{n!}\frac{\sinh(2\pi p)}{2\pi}\\ &\times\frac{\left|\Gamma\left(l^{\prime}+1-ip+\sqrt{q-p^{2}}\right)\Gamma\left(l^{\prime}+1+ip+\sqrt{q-p^{2}}\right)\right|^{2}}{\left[\Gamma(2l^{\prime}+1)\Gamma(2l^{\prime}+2)\right]^{2}},\end{split} (8)

where ll+ϵl^{\prime}\equiv l+\epsilon, pMr+(ωnlmmΩH)/M2a2p\equiv Mr_{+}(\omega_{nlm}-m\Omega_{\text{H}})/\sqrt{M^{2}-a^{2}}, κμ2ω02\kappa\equiv\sqrt{\mu^{2}-\omega_{0}^{2}}, ΩHa/(2Mr+)\Omega_{\mathrm{H}}\equiv a/(2Mr_{+}), and

ϵ\displaystyle\epsilon 8α22l+1,\displaystyle\equiv-\frac{8\alpha^{2}}{2l+1}, (9a)
q8Mr+ω0(r+ω0mMΩH)r+rμ2(r+2+a2)+4M2(μ23ω02),\displaystyle\begin{split}q&\equiv\frac{8Mr_{+}\omega_{0}(r_{+}\omega_{0}-mM\Omega_{\text{H}})}{r_{+}-r_{-}}\\ &\hskip 56.9055pt-\mu^{2}(r_{+}^{2}+a^{2})+4M^{2}(\mu^{2}-3\omega^{2}_{0}),\end{split} (9b)
ω0\displaystyle\omega_{0} μ12α2n¯2+4α2+n¯n¯2+8α2,\displaystyle\equiv\mu\sqrt{1-\frac{2\alpha^{2}}{\bar{n}^{2}+4\alpha^{2}+\bar{n}\sqrt{\bar{n}^{2}+8\alpha^{2}}}}, (9c)
ω1\displaystyle\omega_{1} μ2ω02n¯ω0(1+4M2(ω02μ2)/n¯).\displaystyle\equiv\frac{\mu^{2}-\omega_{0}^{2}}{\bar{n}\omega_{0}(1+4M^{2}(\omega_{0}^{2}-\mu^{2})/\bar{n})}. (9d)

Eq. (8) indicates that the superradiance condition Γnlm>0\Gamma_{nlm}>0 is equivalent to ω<mΩH\omega<m\Omega_{\text{H}}, from which one could derive the critical BH spin for each mode labeled by {n,l,m}\{n,l,m\}

ac(nlm)=4mMωnlmm2+(2Mωnlm)2, for Mωnlmm2.\displaystyle a^{(nlm)}_{\mathrm{*c}}=\frac{4mM\omega_{nlm}}{m^{2}+\left(2M\omega_{nlm}\right)^{2}}\text{, for $M\omega_{nlm}\leq\frac{m}{2}$}. (10)

The superradiance of {n,l,m}\{n,l,m\} mode occurs only when the BH spin aa_{*} is greater than ac(nlm)a^{(nlm)}_{\mathrm{*c}}.

The superradiance rate could be very different for different {n,l,m}\{n,l,m\} modes. In general, the most important modes are those with l=ml=m which is the smallest integer greater than ωnlm/ΩH\omega_{nlm}/\Omega_{H}. Among these modes, the superradiance rate is usually smaller with a larger value of nn. This hierarchy is strict for l=1l=1 and 2. For modes with l3l\geq 3, mode with larger nn may have a larger superradiance rate at some ranges of MμM\mu and aa_{*}, which is named “overtone mixing” in the literature Siemonsen:2019ebd . In this work, we first focus on the case in which modes with larger nn have smaller superradiance rates, obtaining analytical approximations of all important quantities. Then in the last section, we argue that these approximations also work in the presence of “overtone mixing”.

II.2 Evolution equations

The evolution of the BH-condensate system includes the exchange of energy and angular momentum between the BH and the scalar field. The latter emits GW while rotating around the host BH. With accretion, the BH also absorbs energy from the accretion disk. In a more realistic scenario, the photons radiated by the accretion disk are important when the BH spin is very close to identity Thorne:1974ve . The evolution equations with all these effects are

M˙\displaystyle\dot{M} =M˙acc(1+EradEms)nlmE˙SR(nlm),\displaystyle=\dot{M}_{\mathrm{acc}}\left(1+\frac{E_{\mathrm{rad}}^{\dagger}}{E_{\mathrm{ms}}^{\dagger}}\right)-\sum_{nlm}\dot{E}_{\mathrm{SR}}^{(nlm)}, (11a)
J˙\displaystyle\dot{J} =M˙accEms(Jms+Jrad)nlmmωnlmE˙SR(nlm),\displaystyle=\frac{\dot{M}_{\mathrm{acc}}}{E_{\mathrm{ms}}^{\dagger}}\left(J_{\mathrm{ms}}^{\dagger}+J_{\mathrm{rad}}^{\dagger}\right)-\sum_{nlm}\frac{m}{\omega_{nlm}}\dot{E}_{\mathrm{SR}}^{(nlm)}, (11b)
M˙s(nlm)\displaystyle\dot{M}_{\mathrm{s}}^{(nlm)} =E˙SR(nlm)E˙GW(nlm),\displaystyle=\dot{E}_{\mathrm{SR}}^{(nlm)}-\dot{E}_{\mathrm{GW}}^{(nlm)}, (11c)
J˙s(nlm)\displaystyle\dot{J}_{\mathrm{s}}^{(nlm)} =mωnlm(E˙SR(nlm)E˙GW(nlm)),\displaystyle=\frac{m}{\omega_{nlm}}\left(\dot{E}_{\mathrm{SR}}^{(nlm)}-\dot{E}_{\mathrm{GW}}^{(nlm)}\right), (11d)

where Ms(nlm)M_{s}^{(nlm)}, Js(nlm)J_{s}^{(nlm)}, E˙SR(nlm)\dot{E}_{\mathrm{SR}}^{(nlm)} and E˙GW(nlm)\dot{E}_{\mathrm{GW}}^{(nlm)} are the mass, angular momentum, superradiance rate and the GW emission rate of the {n,l,m}\{n,l,m\} mode, respectively. The E˙SR(nlm)\dot{E}_{\mathrm{SR}}^{(nlm)} is related to the imaginary part of the eigenfrequency by E˙SR(nlm)2Ms(nlm)Γnlm\dot{E}_{\mathrm{SR}}^{(nlm)}\equiv 2{M}_{\mathrm{s}}^{(nlm)}\Gamma_{nlm}. The M˙acc\dot{M}_{\mathrm{acc}} is the mass absorption rate of the BH from the accretion disk. The EmsE_{\mathrm{ms}}^{\dagger} and JmsJ_{\mathrm{ms}}^{\dagger} are the energy and angular momentum of unit mass in the last stable circular orbit, respectively. The accretion disk radiates photons, some of which are later captured by the BH. Its contribution to the BH mass and angular momentum are described by EradE_{\mathrm{rad}}^{\dagger} and JradJ_{\mathrm{rad}}^{\dagger} for unit accreted mass, respectively, which are calculated in Refs. Page:1974he ; Thorne:1974ve . The expressions for EmsE_{\mathrm{ms}}^{\dagger}, JmsJ_{\mathrm{ms}}^{\dagger} and E˙GW(nlm)\dot{E}_{\mathrm{GW}}^{(nlm)} are listed in App. A for convenience.

In obtaining Eqs. (11), we have made the following assumptions:

  • The backreactions of the condensate and the accretion disk on the metric, as well as the scalar self-interaction are ignored due to the low energy densities of the condensate and the disk Brito:2014wla .

  • The quasi-adiabatic approximation is employed, which assumes that the dynamical timescale of the BH is much shorter than the timescales of both the accretion and superradiant instability Brito:2014wla ; Brito:2017zvb .

  • The gravitational effect from other celestial bodies is neglected. The BH-condensate system with the accretion disk is effectively isolated.

These contributions can be added perturbatively which are beyond the scope of this work. In the rest of this section, we study the evolutions without either the superradiance or accretion. Then we move on to the case with all these effects from the next section.

II.2.1 The evolution without the scalar field

In this part, we study the scenario in the absence of the scalar field. If the photon radiation can be further ignored, i.e. Erad=Jrad=0E_{\mathrm{rad}}^{\dagger}=J_{\mathrm{rad}}^{\dagger}=0, the evolution of the BH mass and angular momentum only depends on the accretion rate M˙acc\dot{M}_{\text{acc}}. Useful results can be obtained even without any knowledge of M˙acc\dot{M}_{\text{acc}}. From Eqs. (11a) and (11b), one could derive

dadlnM\displaystyle\frac{\mathrm{d}a_{*}}{\mathrm{d}\ln M} =JmsMEms2a.\displaystyle=\frac{J_{\mathrm{ms}}^{\dagger}}{ME_{\mathrm{ms}}^{\dagger}}-2a_{*}. (12)

BHs with constant spin a=1a_{*}=1 and any value of MM is a trivial solution. For BH with initial spin a0<1a_{*0}<1 and mass M0M_{0}, a non-trivial solution also exist Thorne:1974ve

a={23kM0M(418k2M02M22),if 1MM06k,1,if MM06k,\displaystyle a_{*}=\begin{cases}\sqrt{\frac{2}{3}}\frac{kM_{0}}{M}\left(4-\sqrt{\frac{18k^{2}M_{0}^{2}}{M^{2}}-2}\right),&\text{if\ }1\leq\frac{M}{M_{0}}\leq{\sqrt{6}\,k},\\ 1,&\text{if\ }\frac{M}{M_{0}}\geq{\sqrt{6}\,k},\end{cases} (13)

with

k\displaystyle k =3a01223β4(1+a0)1+3β2+2+18γ2+26γ,\displaystyle=\frac{3a_{*0}}{\sqrt{\frac{12\sqrt{2}}{\sqrt{{3\beta^{4}}(1+a_{*0})^{-1}+3\beta^{2}+2}}+18-\gamma^{2}}+2\sqrt{6}-\gamma}, (14a)
γ\displaystyle\gamma =β19(1a02+β4)+6β2,\displaystyle=\beta^{-1}\sqrt{9(1-a_{*0}^{2}+\beta^{4})+6\beta^{2}}, (14b)
β\displaystyle\beta =(1+a0)2(1a0)6.\displaystyle=\sqrt[6]{(1+a_{*0})^{2}(1-a_{*0})}. (14c)

For the special case with a0=0a_{*0}=0, one obtains k=1k=1 and the BH spin reaches its maximum value at M=6M0M=\sqrt{6}M_{0}. For other values of a0a_{*0}, there is 0<k<10<k<1. The BH with a0<1a_{*0}<1 evolves along the nontrivial solution, with both mass and spin increasing with time, until the spin reaches identity. Then the spin is fixed at 1 with mass increasing monotonically.

To derive a specific form of M˙acc\dot{M}_{\text{acc}}, we first study the accretion with the maximum luminosity, i.e. the Eddington luminosity LEddL_{\mathrm{Edd}}. Ignoring the BH capture of photons radiated from the accretion disk, the BH mass evolves as

M˙accη1η=LEdd4πMμpσT,\displaystyle\frac{\dot{M}_{\mathrm{acc}}\eta}{1-\eta}=L_{\mathrm{Edd}}\equiv\frac{4\pi M\mu_{\mathrm{p}}}{\sigma_{\mathrm{T}}}, (15)

where η\eta is the efficiency of photon radiation from the accretion disk, σT\sigma_{\mathrm{T}} is the Thompson cross-section, and μp\mu_{\mathrm{p}} is the proton mass. For a thin accretion disk, the efficiency has a simple form η=1Ems\eta=1-E_{\mathrm{ms}}^{\dagger} Thorne:1974ve . For a Schwarzschild BH, η\eta is approximately 0.060.06, while for an extreme Kerr BH with a=1a_{*}=1, the value of η\eta can reach the value of 0.40.4. Due to the small variation of η\eta, it is usually assumed to be a constant for simplicity. According to Eq. (15), the BH mass then increases exponentially with a time scale

τSσT4πμpη1η4.5×108yrη1η,\displaystyle\tau_{\mathrm{S}}\equiv\frac{\sigma_{\mathrm{T}}}{4\pi\mu_{\mathrm{p}}}\cdot\frac{\eta}{1-\eta}\approx 4.5\times 10^{8}\,\mathrm{yr}\cdot\frac{\eta}{1-\eta}, (16)

which is also known as the Salpeter timescale Salpeter:1964kb .

In this work, we choose η=0.1\eta=0.1 and further assume the actual accretion rate is smaller than the extreme case by a factor of fEddf_{\mathrm{Edd}}. Then the mass absorption rate is

M˙acc=fEdd1ηηLEddM(t)/τacc,\displaystyle\dot{M}_{\mathrm{acc}}=f_{\mathrm{Edd}}\frac{1-\eta}{\eta}L_{\mathrm{Edd}}\equiv M(t)/{\tau}_{\mathrm{acc}}, (17)

where the accretion timescale τacc{\tau}_{\mathrm{acc}} is

τaccτS/fEdd=5×107yr/fEdd.\displaystyle\tau_{\mathrm{acc}}\equiv\tau_{\mathrm{S}}/f_{\mathrm{Edd}}=5\times 10^{7}\mathrm{yr}/{f}_{\mathrm{Edd}}. (18)

Inserting Eq. (17) into Eq. (11a), one obtains a BH mass increasing exponentially with time

M(t)=M0exp(t/τacc).\displaystyle M(t)=M_{0}\exp(t/{\tau}_{\mathrm{acc}}). (19)
Refer to caption
Figure 1: The evolution of BH spin aa_{*} as a function of the mass ratio M/M0M/M_{0} without the scalar field. Two initial BH spins a0=0a_{*0}=0 and a0=0.7a_{*0}=0.7 are considered. The red dashed curves are solved from Eq. (20). The black curves further assumes the absence of the photon captured by the BH, which gives Eq. (13)

.

Next, we add the contribution of photon capture by the BH. It has been shown that the photon-capturing rate of the BH is greater for photons with negative angular momentum, i.e. angular momentum opposite to the BH spin, than for photons with positive angular momentum Godfrey:1970am . As a result, capturing photons emitted by the accretion disk slows down the increase of the BH spin. Mathematically, Eq. (12) should be modified as follows Thorne:1974ve :

dadlnM\displaystyle\frac{\mathrm{d}a_{*}}{\mathrm{d}\ln M} =1MJms+J˙radEms+M˙rad2a.\displaystyle=\frac{1}{M}\frac{J_{\mathrm{ms}}^{\dagger}+\dot{J}_{\mathrm{rad}}}{E_{\mathrm{ms}}^{\dagger}+\dot{M}_{\mathrm{rad}}}-2a_{*}. (20)

Using the expressions of M˙rad\dot{M}_{\mathrm{rad}} and J˙rad\dot{J}_{\mathrm{rad}} calculated in Refs. Page:1974he ; Thorne:1974ve , we solve the equation numerically and present the solutions in Fig. 1. The effect of photon-capturing is visible only when a0.97a_{*}\gtrsim 0.97. We also obtain a limiting value for the BH spin, alim0.998189{a}_{\mathrm{*lim}}\approx 0.998189, which is consistent with Ref. Thorne:1974ve . Since the photon capture’s contribution to BH spin is smaller than 0.3%0.3\%, its effect is always ignored in the analytic approximation throughout this work.

II.2.2 The evolution without accretion

In the rest of this section, we study the scenario in the absence of accretion. Mathematically, the terms with MaccM_{\text{acc}} in Eqs. (11) are taken to be zero. In this part, we consider a BH with initial mass M0M_{0} and spin a0a_{*0}. The initial mass of the {n,l,m}\{n,l,m\} mode is set as Ms,0(nlm)M_{\text{s},0}^{(nlm)}. The a0a_{*0} is assumed to be larger than ac(111)a_{*\text{c}}^{(111)} such that the dominant {0,1,1}\{0,1,1\} mode and the subdominant {1,1,1}\{1,1,1\} mode grow due to superradiant instability. We focus on these two modes, with all other modes ignored. The evolution of this system can be separated into the spin-down phase, attractor phase of the subdominant mode, and attractor phase of the dominant mode. There has been extensive research on such isolated BH-condensate systems in the literature. Below, we summarize the findings in Ref. Guo:2022mpr .

The spin-down phase starts at t=0t=0 and ends at t1t_{1}, when the BH spin drops to ac(111)a_{*\text{c}}^{(111)}. The BH mass decreases by a few percent during this time, with the mass deficiency transferred to the condensate. Both the {0,1,1}\{0,1,1\} and {1,1,1}\{1,1,1\} modes grow almost exponentially. At time t1t_{1}, the {1,1,1}\{1,1,1\} mode reaches its maximum mass. The masses of these two modes at t1t_{1} could be estimated quite accurately with

Ms,1(011)Ms,0(011)M0M0μ[a04M0μ+7.89a0(M0μ)2+(16.55+6.45a02)(M0μ)3],\displaystyle\begin{split}\frac{{M}_{\mathrm{s,1}}^{(011)}-{M}_{\mathrm{s,0}}^{(011)}}{M_{0}}&\approx M_{0}\mu\Big{[}a_{*0}-4M_{0}\mu+7.89a_{*0}(M_{0}\mu)^{2}\\ &\hskip 14.22636pt+(-16.55+6.45a_{*0}^{2})(M_{0}\mu)^{3}\Big{]},\end{split} (21)
Ms,1(111)M0\displaystyle\frac{{M}_{\mathrm{s,1}}^{(111)}}{M_{0}} Ms,0(111)M0[Ms,1(011)Ms,0(011)]0.35,\displaystyle\approx\frac{{M}_{\mathrm{s,0}}^{(111)}}{M_{0}}\left[\frac{{M}_{\mathrm{s,1}}^{(011)}}{{M}_{\mathrm{s,0}}^{(011)}}\right]^{0.35}, (22)

where Ms,1(nlm)Ms(nlm)(t1){M}_{\mathrm{s,1}}^{(nlm)}\equiv{M}_{\mathrm{s}}^{(nlm)}(t_{1}). The numbers in Eq. (21) are obtained by fitting the numerical result from solving the angular momentum and energy conservation equations

ac(011)M12a0M02\displaystyle{a}_{\mathrm{*c}}^{(011)}M_{1}^{2}-a_{*0}M_{0}^{2} =Ms,1(011)ω011(t1)Ms,0(011)ω011(t0),\displaystyle=\frac{{M}_{\mathrm{s,1}}^{(011)}}{\omega_{011}(t_{1})}-\frac{{M}_{\mathrm{s,0}}^{(011)}}{\omega_{011}(t_{0})}, (23a)
M0+Ms,0(011)\displaystyle M_{0}+{M}_{\mathrm{s,0}}^{(011)} =M1+Ms,1(011),\displaystyle=M_{1}+{M}_{\mathrm{s,1}}^{(011)}, (23b)

where M1M(t1)M_{1}\equiv M(t_{1}) is the BH mass at time t1t_{1}.

With Ms,1(011){M}_{\mathrm{s,1}}^{(011)} obtained in Eq. (21), the t1t_{1} could be estimated as

t1τSR(011)logMs,1(011)Ms,0(011),\displaystyle t_{1}\approx\tau_{\text{SR}}^{(011)}\log\frac{M_{\mathrm{s,1}}^{(011)}}{M_{\mathrm{s,0}}^{(011)}}, (24)

where τSR(011)=1/(2Γ011)\tau_{\text{SR}}^{(011)}=1/(2\Gamma_{011}) is the superradiance time scale. The superradiance rate Γ011\Gamma_{011} has a simple form in the Mμ1M\mu\ll 1 limit

MΓ011148(a4Mμ)(Mμ)9.\displaystyle M\Gamma_{011}\approx\frac{1}{48}\left(a_{*}-4M\mu\right)(M\mu)^{9}. (25)

If satisfied with an order of magnitude estimate, one could further take the logarithm of the mass ratio in Eq. (24) to be roughly 10, and obtain t1t_{1} in the SI units

t15.09yr(10MM0)8(1012eVμ)9(1a0).\displaystyle t_{1}\approx 5.09\,\mathrm{yr}\left(\frac{10M_{\odot}}{M_{0}}\right)^{8}\left(\frac{10^{-12}\,\mathrm{eV}}{\mu}\right)^{9}\left(\frac{1}{a_{*0}}\right). (26)

The attractor phase of the subdominant mode starts at t1t_{1} and ends at t2t_{2} when the {0,1,1}\{0,1,1\} mode reaches its maximum mass. It is an attractor of the BH since its mass is almost a constant M1M_{1} and its spin decreases slightly from ac(111)a_{*\text{c}}^{(111)} to ac(011)a_{*\text{c}}^{(011)}. In this time range, the {1,1,1}\{1,1,1\} mode quickly shrinks, with most of its energy falling into the horizon. In contrast, the {0,1,1}\{0,1,1\} mode continues to grow, but at a much slower rate. The masses of these two modes approximately satisfy

Ms(011)Γ011+Ms(111)Γ111=0.\displaystyle{M}_{\mathrm{s}}^{(011)}\Gamma_{011}+{M}_{\mathrm{s}}^{(111)}\Gamma_{111}=0. (27)

During this period, the superradiant flux of the {1,1,1}\{1,1,1\} mode can be estimated by

E˙SR(111)=2Ms(111)Γ1118019683Ms(111)M1(M1μ)12,\displaystyle\dot{E}_{\mathrm{SR}}^{(111)}=2{M}_{\mathrm{s}}^{(111)}\Gamma_{111}\approx-\frac{80}{19683}\frac{{M}_{\mathrm{s}}^{(111)}}{M_{1}}(M_{1}\mu)^{12}, (28)

while the GW emission flux of the {1,1,1}\{1,1,1\} mode is

E˙GW(111)\displaystyle\dot{E}_{\mathrm{GW}}^{(111)} 2(484+9π2)32805Ms(111)M1a0(M1μ)15,\displaystyle\approx\frac{2\left(484+9\pi^{2}\right)}{32805}\frac{{M}_{\mathrm{s}}^{(111)}}{M_{1}}a_{*0}(M_{1}\mu)^{15}, (29)

which is suppressed by (Mμ)3(M\mu)^{3} compared to E˙SR\dot{E}_{\text{SR}}. Thus one could safely ignore the GW emission and use Eq. (28) to solve Eq. (11c). This observation applies to all l>1l>1 modes. Then the scale of the {1,1,1}\{1,1,1\} mode lifetime could be derived as

τlife(111)\displaystyle{{\tau}_{\mathrm{life}}^{(111)}} =1968380M1(M1μ)12.\displaystyle=\frac{19683}{80}M_{1}(M_{1}\mu)^{-12}. (30)

The t2t_{2} can then be estimated with t1+τlife(111)t_{1}+\tau_{\text{life}}^{(111)}. In this phase, the {0,1,1}\{0,1,1\} mode mass increases gradually from Ms,1(011){M}_{\mathrm{s,1}}^{(011)} to Ms(011)(t2)Ms,1(011)+Ms,1(111)M_{\text{s}}^{(011)}(t_{2})\approx{M}_{\mathrm{s,1}}^{(011)}+{M}_{\mathrm{s,1}}^{(111)}.

The attractor phase of the dominant mode starts from t2t_{2}. In this phase, the BH has constant mass M1M_{1} and spin ac(011)a_{*\text{c}}^{(011)}. The GW emission dominates the evolution of the {0,1,1}\{0,1,1\} mode. One could then solve Eq. (11c) directly and obtain

Ms(011)(t)=Ms,2(011)1+(tt2)/τGW(011),\displaystyle{M}_{\mathrm{s}}^{(011)}(t)=\frac{{M}_{\mathrm{s,2}}^{(011)}}{1+(t-t_{2})/{\tau}_{\mathrm{GW}}^{(011)}}, (31)

where the GW emission timescale is given by

τGW(011)=40.22M12Ms,2(011)(M1μ)14.\displaystyle\begin{split}{{\tau}_{\mathrm{GW}}^{(011)}}&=40.22\cdot\frac{M_{1}^{2}}{{M}_{\mathrm{s,2}}^{(011)}}(M_{1}\mu)^{-14}.\end{split} (32)

In the SI units, this time scale can be estimated with

τGW(011)4.85×106yr(10MM0)14(1012eVμ)15(1a0).\displaystyle\tau_{\mathrm{GW}}^{(011)}\approx 4.85\times 10^{6}\mathrm{yr}\left(\frac{10M_{\odot}}{M_{0}}\right)^{14}\left(\frac{10^{-12}\mathrm{eV}}{\mu}\right)^{15}\left(\frac{1}{a_{*0}}\right). (33)

In a realistic case, the l=m=2l=m=2 modes become important when the {0,1,1}\{0,1,1\} mode is almost depleted via GW emission. The latter evolution is very similar to the process with l=m=1l=m=1 modes described above. The analytic estimates are still valid for the l=m=2l=m=2 modes, with the initial BH spin and mass now replaced by ac(011){a}_{\mathrm{*c}}^{(011)} and M1M_{1}, respectively. More details can be found in Ref. Guo:2022mpr .

III Effect of accretion on single mode evolution

In this section, we study the effect of accretion on the mode {0,1,1}\{0,1,1\}, which has the largest superradiance rate. Other modes are ignored at the moment. The important time scales are analyzed in Sec. III.1. If the superradiance could happen initially without accretion, the evolution further depends on the relative size of these time scales, which are explained below in Sec. III.2-III.4. If the superradiance is forbidden initially, the evolution is a little different, which is studied in Sec. III.5. Finally, we summarize this section and point out the universal behavior of the BH evolution in Sec. III.6.

III.1 Time Scales

If superradiance could happen without accretion, there are two widely separated scales: the superradiance time scale τSR\tau_{\text{SR}} and the GW emission time scale τGW\tau_{\text{GW}}, with the latter much larger than the former. With accretion, there is a new time scale τacc\tau_{\text{acc}}. Another time scale can be found by requiring the critical BH spin in Eq. (10) to be less than the limiting value 0.998, which gives a critical value of the BH mass

Mde(nlm)0.47mμ,\displaystyle M_{\text{de}}^{(nlm)}\approx\frac{0.47m}{\mu}, (34)

where the subscript stands for “decaying”. Once the BH mass surpasses this critical value, the superradiant mode turns to a decaying mode. In this section, we consider the case with M0<Mde(011)M_{0}<M_{\text{de}}^{(011)}. We refer to the time cost as the decaying time scale τde\tau_{\text{de}}. Using Eq. (19), one could estimate this decaying time scale as

τde=τacclog0.47mα0,\displaystyle\tau_{\text{de}}=\tau_{\text{acc}}\log\frac{0.47m}{\alpha_{0}}, (35)

where α0=M0μ\alpha_{0}=M_{0}\mu. For the phenomenologically important cases, the value of α0\alpha_{0} is roughly 0.010.01 and the τde\tau_{\text{de}} is in the same order as τacc\tau_{\text{acc}}. Thus it is not considered as a separate time scale below.

The value of τacc\tau_{\text{acc}} can be adjusted by changing the accretion rate fEddf_{\text{Edd}} as in Eq. (18). There are five scenarios with this new scale, i,e, τaccτSR(011){\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{SR}}^{(011)}, τaccτSR(011){\tau}_{\mathrm{acc}}\sim{\tau}_{\mathrm{SR}}^{(011)}, τSR(011)τaccτGW(011){\tau}_{\mathrm{SR}}^{(011)}\ll{\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{GW}}^{(011)}, τaccτGW(011){\tau}_{\mathrm{acc}}\sim{\tau}_{\mathrm{GW}}^{(011)} and τaccτGW(011){\tau}_{\mathrm{acc}}\gg{\tau}_{\mathrm{GW}}^{(011)}. In Fig. 2, we numerically solve Eqs. (11) for these five scenarios. The initial BH mass and spin are chosen as M0=103MM_{0}=10^{3}M_{\odot} and a0=0.7a_{*0}=0.7, respectively. The initial mass coupling is set as M0μ=0.01M_{0}\mu=0.01, which then gives the scalar mass μ1.34×1015eV\mu\approx 1.34\times 10^{-15}\,\mathrm{eV}. The superradiance and the GW emission time scales without accretion are τSR(011)6.01×109yr{\tau}_{\mathrm{SR}}^{(011)}\approx 6.01\times 10^{9}\,\mathrm{yr} and τGW(011)1.03×1022yr{\tau}_{\mathrm{GW}}^{(011)}\approx 1.03\times 10^{22}\,\mathrm{yr}. Their values are plotted in Fig. 2 as vertical lines. The case without accretion (fEdd=0f_{\text{Edd}}=0) is plotted in dashed curves for comparison. One can see that the BH-condensate system evolution is dramatically affected by a large accretion rate. Specifically, both the superradiance and the GW emission proceed much faster than the case with fEdd=0f_{\text{Edd}}=0. By observing the curves in Fig. 2, we further categorize the above five scenarios into three groups, which are studied in the next three subsections respectively.

On the other hand, if the superradiance could not happen initially, neither the superradiance nor the GW emission time scales exist. The BH evolution is controlled by the accretion until the extraction of the angular momentum is faster than the inwards flow due to the accretion. This case is studied in Sec. III.5.

Refer to caption
Figure 2: The time evolution of scalar condensate masses (panel a), GW emission fluxes (panel b), BH spins (panel c), and BH mass (panel d). Initial parameters are a0=0.7a_{*0}=0.7, M0=103MM_{0}=10^{3}M_{\odot}, Ms,0(011)=105M0{M}_{\mathrm{s,0}}^{(011)}=10^{-5}M_{0} and M0μ=0.01M_{0}\mu=0.01. Different colors represent different accretion rates indicated by the legends. The vertical lines are the superradiant timescale τSR\tau_{\text{SR}} and the GW emission timescale τGW\tau_{\text{GW}}.

III.2 a0>ac(001)a_{*0}>a_{*\text{c}}^{(001)} and τaccτSR(011){\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{SR}}^{(011)}

The case of τaccτSR(011){\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{SR}}^{(011)} corresponds to the curves with fEdd=1{f}_{\mathrm{Edd}}=1 in Fig. 2. They are re-plotted with more details in Fig. 3. The evolution was split into four distinct phases in Ref. Guo:2022mpr . Below we briefly review these phases:222Here we rename the phases of those in Ref. Guo:2022mpr .

Refer to caption
Figure 3: The time evolution of the scalar condensate mass (panel a), the GW emission (panel b), the BH spin (panel c), and the BH mass (panel d). The black and orange dotted curves are the evolution with and without the GW emission, respectively. The green curve in panel (c) is calculated with Eq. (10). The blue line in panel (d) is the exponential increase of the BH mass given in Eq. (19).
  • Spin-up phase. This phase corresponds to the interval 0<t<t00<t<t_{0}^{\prime}, where t0t_{0}^{\prime} represents the time at which the BH spin reaches its first local maximum. During this phase, the BH evolves following the process described in Sec. II.2.1, while the scalar condensate is too small in mass to be important.

  • Spin-down phase. This phase spans t0<t<t1t_{0}^{\prime}<t<t_{1}, where t1t_{1} marks the time at which the BH spin reaches its minimum. As the BH mass and the condensate mass increase with time, the angular momentum extraction rate grows faster than exponentially. At some point, the extraction surpasses the accretion, resulting in a decrease of aa_{*} until it approaches the {0,1,1}\{0,1,1\} Regge trajectory determined by Eq. (10). This Regge trajectory is plotted as the green curve in Fig. 3(c).

  • Attractor phase. This phase extends from t1t_{1} to t3t_{3}, where t3t_{3} denotes the moment when the BH mass reaches Mde(011)M_{\text{de}}^{(011)} given in Eq. (34). Throughout this phase, the BH evolves along the Regge trajectory of the {0,1,1}\{0,1,1\} mode, which acts as an attractor mathematically. Concurrently, as the condensate accumulates mass, its GW emission intensifies, and Ms(011)/M{M}_{\mathrm{s}}^{(011)}/M reaches its maximum at t2t_{2}. Note that it does not coincide with the peak of the GW emission flux in panel (b), since the latter depends on both the mass ratio and the mass coupling, illustrated in Eq. (82).

  • Decaying phase. This phase lasts from t3t_{3} until the condensate depletes. At t3t_{3}, the superradiance rate equals zero and the condensate becomes a decaying mode beyond t3t_{3}. Consequently, the scalar condensate quickly shrinks, returning its mass and angular momentum to the BH. For the single-mode example, t3t_{3} is the time when the BH mass reaches its critical value Mde(011)M_{\text{de}}^{(011)}.

The important quantities in the numerical evolution can be estimated with simple analytic expressions at α1\alpha\ll 1 limit. To facilitate the analysis, we also solve the evolution equations without GW emission. The results are shown with orange dashed curves in Fig. 3. The exponential rise of the BH mass in Eq. (19) is also displayed as a thin blue line in Fig. 3 (d). For compactness, the quantities at a specific time are labeled with the corresponding subscripts, with subscript 0 reserved for the initial time, e.g. α0M0μ\alpha_{0}\equiv M_{0}\mu, M1M(t1)M_{1}\equiv M(t_{1}) and Ms,0Ms(t0)M_{\text{s,0}^{\prime}}\equiv M_{\text{s}}(t_{0}^{\prime}).

The spin-up phase spans from t=0t=0 to t0t_{0}^{\prime}, when the BH spin reaches the local maximum. In the case of τaccτSR(011){\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{SR}}^{(011)}, this phase can be further divided into two segments, separated by the time t0′′t_{0}^{\prime\prime} when the BH mass reaches 6kM0\sqrt{6}kM_{0}. This time can be readily calculated

t0′′=τacclog(6k).\displaystyle t_{0}^{\prime\prime}=\tau_{\mathrm{acc}}\log\left(\sqrt{6}k\right). (36)

In the range from t=0t=0 to t0′′t_{0}^{\prime\prime}, the BH mass grows according to Eq. (19) until M=6kM0M=\sqrt{6}kM_{0}, and the BH spin follows Eq. (13) up to aalima_{*}\approx a_{*\lim}. Ignoring GW emission and inserting Eq. (25) and Eq. (13) into Eq. (11c), one could calculate the condensate mass

Ms(011)=Ms0(011)exp{α08μτacc[g(MM0)g(1)]},for 1MM06k,\displaystyle\begin{split}M^{(011)}_{\text{s}}=M^{(011)}_{\text{s0}}\exp\left\{{\alpha_{0}^{8}\mu\tau_{\text{acc}}}\left[g\left(\frac{M}{M_{0}}\right)-g\left(1\right)\right]\right\},\hskip 14.22636pt&\\ \text{for }1\leq\frac{M}{M_{0}}\leq{\sqrt{6}\,k},&\end{split} (37)

with

g(x)136[2α0x93+276kx7+3k35(216k4+36k2x2+5x4)(9k2x2)3/2].\displaystyle\begin{split}g(x)\equiv&\ \frac{1}{36}\bigg{[}-\frac{2\alpha_{0}x^{9}}{3}+\frac{2}{7}\sqrt{6}kx^{7}\\ &+\frac{\sqrt{3}k}{35}\left(216k^{4}+36k^{2}x^{2}+5x^{4}\right)(9k^{2}-x^{2})^{3/2}\bigg{]}.\end{split} (38)

This estimate also applies to the case when a0<ac(001)a_{*0}<a_{*\text{c}}^{(001)}.

Subsequently, the BH spin remains at approximately alima_{*\lim} from t0′′t_{0}^{\prime\prime} to t0t_{0}^{\prime}. As the condensate mass increases, the BH spin evolution is increasingly affected by superradiance, which results in a˙=0\dot{a}_{*}=0 at t0t_{0^{\prime}}. In this time range, one could simplify Γ011\Gamma_{011} in Eq. (25) by taking the leading order (LO) of the α\alpha and setting a=1a_{*}=1. Then Eq. (11c) can be solved by ignoring the GW emission, arriving at

Ms(011)=Ms,0′′exp[μτacc192(α8α0′′8)],\displaystyle\begin{split}M^{(011)}_{\text{s}}&=M_{\text{s,0}^{\prime\prime}}\exp\left[\frac{\mu\,\tau_{\text{acc}}}{192}\left(\alpha^{8}-\alpha_{0^{\prime\prime}}^{8}\right)\right],\end{split} (39)

where α0′′=6kα0\alpha_{0^{\prime\prime}}=\sqrt{6}k\alpha_{0} and Ms,0′′M_{\text{s,0}^{\prime\prime}} is determined by Eq. (37).

The spin-down phase starts at t0t_{0}^{\prime} and ends at t1t_{1}, when the BH spin reaches the local minimum. In this time range, the accretion with photon capture first keeps the BH spin close to alima_{*\text{lim}} while both the BH mass and the scalar condensate mass increase with time. Eventually, close to t1t_{1}, the condensate is dense enough to quickly extract the energy and angular momentum from the BH, causing a rapid drop of the BH spin to ac(011)a_{*\text{c}}^{(011)}. The GW is still irrelevant in this time range, as shown in Fig. 3 (a).

The evolution of the BH spin aa_{*} can be derived from Eqs. (11a) and (11b)

a˙=1τacc(JmsMEms2a)2MsM(1Mω0112a)Γ011,\displaystyle\dot{a}_{*}=\frac{1}{\tau_{\text{acc}}}\left(\frac{J_{\mathrm{ms}}^{\dagger}}{ME_{\mathrm{ms}}^{\dagger}}-2a_{*}\right)-\frac{2M_{\text{s}}}{M}\left(\frac{1}{M\omega_{011}}-2a_{*}\right)\Gamma_{011}, (40)

where the photon capture is ignored. From t0′′t_{0}^{\prime\prime} to t0t_{0}^{\prime}, both terms on the right side are small, resulting in an almost constant aa_{*}. From t0t_{0}^{\prime} to t1t_{1}, the accretion term is still small, while the superradiance term grows quickly, leading to the fast drop of the BH spin. Thus one could ignore the accretion term in the time range between t0′′t_{0}^{\prime\prime} and t1t_{1}. The BH mass MM can be estimated with Eq. (19) and the condensate mass continues to evolve according to the form given by Eq. (39). Then, using Γ011\Gamma_{011} at the LO of the α\alpha and setting a=1a_{*}=1, one rewrites Eq. (40) as

a˙=Ms,0′′(011)24M6μ8exp[τacc192(M8M0′′8)μ9].\displaystyle\begin{split}\dot{a}_{*}=-&\frac{M_{\mathrm{s,0^{\prime\prime}}}^{(011)}}{24}M^{6}\mu^{8}\exp\left[\frac{\tau_{\text{acc}}}{192}(M^{8}-M^{8}_{0^{\prime\prime}})\mu^{9}\right].\end{split} (41)

Integrating both sides of Eq. (41) from t0′′t_{0^{\prime\prime}}, one obtains the following solution

a(α)=a0′′1192Ms0′′(011)τaccμ2eα0′′8τaccμ192×[α0′′6E14(α0′′8τaccμ192)α6E14(α8τaccμ192)],\displaystyle\begin{split}a_{*}(\alpha)&=a_{*0^{\prime\prime}}-\frac{1}{192}M^{(011)}_{\mathrm{s0^{\prime\prime}}}\tau_{\mathrm{acc}}\mu^{2}e^{-\frac{\alpha_{0^{\prime\prime}}^{8}\tau_{\mathrm{acc}}\mu}{192}}\\ &\,\times\left[\alpha_{0^{\prime\prime}}^{6}E_{\frac{1}{4}}\left(\frac{-\alpha_{0^{\prime\prime}}^{8}\tau_{\mathrm{acc}}\mu}{192}\right)-\alpha^{6}E_{\frac{1}{4}}\left(\frac{-\alpha^{8}\tau_{\mathrm{acc}}\mu}{192}\right)\right],\end{split} (42)

where E14(x)E_{\frac{1}{4}}(x) denotes the exponential integral function. At t1t_{1}, the BH spin decreases to a value close to ac(011)4α1alima_{\mathrm{*c}}^{(011)}\sim 4\alpha_{1}\ll a_{*\lim}. Thus, one can approximate a1a0′′a_{*1}-a_{*0^{\prime\prime}} by alim-a_{*\lim}, and perform the following expansion

E14(α18τaccμ192)=eα18τaccμ192{192α18τaccμ+𝒪[(1α18τaccμ)2]}.\displaystyle\begin{split}E_{\frac{1}{4}}\left(\frac{-\alpha_{1}^{8}\tau_{\mathrm{acc}}\mu}{192}\right)&=\\ e^{\frac{\alpha_{1}^{8}\tau_{\mathrm{acc}}\mu}{192}}&\left\{-\frac{192}{\alpha_{1}^{8}\tau_{\mathrm{acc}}\mu}+\mathcal{O}\left[\left(\frac{1}{\alpha_{1}^{8}\tau_{\mathrm{acc}}\mu}\right)^{2}\right]\right\}.\end{split} (43)

Finally, we arrive at an estimate for α1\alpha_{1}

α1={48τaccμW1[(3233/4μMs,0′′(011)(τaccμ)1/4α0′′6Ms,0′′(011)τaccμ2E14(α0′′8τaccμ192)192a0′′eα0′′8τaccμ192)4]}1/8,\displaystyle\alpha_{1}=\left\{\frac{-48}{\tau_{\text{acc}}\mu}W_{-1}\left[-\left(\frac{32\cdot 3^{3/4}\mu M_{\mathrm{s,0^{\prime\prime}}}^{(011)}\left(\tau_{\mathrm{acc}}\mu\right)^{1/4}}{\alpha_{0^{\prime\prime}}^{6}M_{\mathrm{s,0^{\prime\prime}}}^{(011)}\tau_{\mathrm{acc}}\mu^{2}E_{\frac{1}{4}}\left(\frac{-\alpha_{0^{\prime\prime}}^{8}\tau_{\mathrm{acc}}\mu}{192}\right)-192a_{*0^{\prime\prime}}e^{\frac{\alpha_{0^{\prime\prime}}^{8}\tau_{\mathrm{acc}}\mu}{192}}}\right)^{4}\right]\right\}^{1/8}, (44)

where W1(x)W_{-1}(x) is the Lambert WW function. If Ms,0′′(011)μα0′′2M_{\text{s},0^{\prime\prime}}^{(011)}\mu\ll\alpha_{0^{\prime\prime}}^{2}, the term with the Exponential integral function is a small contribution and can be dropped. With the value of α1\alpha_{1}, the time t1t_{1} can be obtained using Eq. (19) and the condensate mass is estimated with Eq. (39).

The attractor phase spans from t1t_{1} to t3t_{3}, when the BH mass reaches the critical value Mde(011)M_{\text{de}}^{(011)} defined in Eq. (34). In this time range, the BH follows the Regge trajectory closely. We further separate this phase into two ranges with t2t_{2}. The condensate mass to BH mass ratio first increases with time, reaches the maximum at t2t_{2}, and then drops gradually due to the GW emission.

From t1t_{1} to t2t_{2}, the photon absorption from the accretion disk is unimportant since the BH spin is smaller than 0.970.97. The GW radiation has a small effect on Ms/MM_{s}/M at t2t_{2}, which can be seen from the difference of the black and red dashed curves at t2t_{2} in Fig. 3. Below we treat this effect as perturbation. At the zeroth order, the GW radiation is ignored and the BH spin evolves along the Regge trajectory given by Eq. (10). Inserting Eqs. (11a) and (11b) into the derivative of ac(011)a_{*\text{c}}^{(011)} with respect to tt, one could then solve the superradiance flux order by order in α=Mμ\alpha=M\mu

E˙SR(011)=αMτacc(33231α2+787α28620305α3216+1564549α434566+𝒪(α5)).\displaystyle\begin{split}\dot{E}_{\mathrm{SR}}^{(011)}=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\Bigg{(}3\sqrt{\frac{3}{2}}-\frac{31\alpha}{2}+\frac{787\alpha^{2}}{8\sqrt{6}}-\frac{20305\alpha^{3}}{216}&\\ +\frac{1564549\alpha^{4}}{3456\sqrt{6}}+\mathcal{O}(\alpha^{5})&\Bigg{)}.\end{split} (45)

Ignoring GW emission and using Eq. (11a), one could integrate this equation directly

Ms,Regge(011)(α)α2μ(32322α3473α2326223α3270+999421α4207366+𝒪(α5)).\displaystyle\begin{split}{{M}_{\mathrm{s,Regge}}^{(011)}(\alpha)}\equiv\frac{\alpha^{2}}{\mu}\Bigg{(}\frac{3}{2}\sqrt{\frac{3}{2}}-\frac{2\alpha}{3}-\frac{473\alpha^{2}}{32\sqrt{6}}-\frac{223\alpha^{3}}{270}&\\ +\frac{999421\alpha^{4}}{20736\sqrt{6}}+\mathcal{O}(\alpha^{5})&\Bigg{)}.\end{split} (46)

With this expression, the LO condensate mass at time t2t_{2} is

Ms,2(011),LO=Ms,1(011)+Ms,Regge(011)(α2)Ms,Regge(011)(α1).\displaystyle{{M}_{\mathrm{s,2}}^{(011),\text{LO}}}={M}_{\mathrm{s,1}}^{(011)}+{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{2})-{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{1}). (47)

To obtain a more precise value of Ms,2(011){M}_{\mathrm{s,2}}^{(011)}, we next add the GW emission effect perturbatively. Assuming that the BH mass increases exponentially, the mass correction can be estimated by

δMs,2(011)\displaystyle\delta{{M}_{\mathrm{s,2}}^{(011)}} =t1t2E˙GW(011)(t)𝑑t5.24×103τaccα216,\displaystyle=-\int^{t_{2}}_{t_{1}}\dot{E}_{\mathrm{GW}}^{(011)}(t)dt\approx-5.24\times 10^{-3}{{\tau}_{\mathrm{acc}}}\alpha_{2}^{16}, (48)

where Eqs. (19) and (46) have been used. Then the condensate mass at t2t_{2} is

Ms,2(011)=Ms,2(011),LO+δMs,2(011).\displaystyle\begin{split}{{M}_{\mathrm{s,2}}^{(011)}}&={{M}_{\mathrm{s,2}}^{(011),\text{LO}}}+\delta{{M}_{\mathrm{s,2}}^{(011)}}.\end{split} (49)

To determine the value of α2\alpha_{2}, we make use of d(Ms(011)/M)/dt=0d\left({M}_{\mathrm{s}}^{(011)}/M\right)/dt=0 at t2t_{2}, which gives

(1+Ms,Regge(011)(α2)M2)E˙SR(011)E˙GW(011)=Ms,Regge(011)(α2)τacc.\displaystyle\left(1+\frac{{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{2})}{M_{2}}\right)\dot{E}_{\mathrm{SR}}^{(011)}-\dot{E}_{\mathrm{GW}}^{(011)}=\frac{{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{2})}{{\tau}_{\mathrm{acc}}}. (50)

Here we have assumed the condensate obtains most of its mass in the attractor phase, i.e., Ms(011)(α2)Ms,Regge(011)(α2)M_{\text{s}}^{(011)}(\alpha_{2})\approx M_{\text{s,Regge}}^{(011)}(\alpha_{2}). Inserting the expressions in Eqs. (45), (46) and (82) and assuming α2α1\alpha_{2}\gg\alpha_{1}, one finds the perturbation is invalid unless μτaccα214\mu\tau_{\text{acc}}\sim\alpha_{2}^{14}. Then the LO value of α2\alpha_{2} is

α21.25×1μτacc14.\displaystyle\alpha_{2}\approx 1.25\times\sqrt[14]{\frac{1}{\mu{\tau}_{\mathrm{acc}}}}. (51)

The value of t2t_{2} can be estimated with Eq. (11a). Ignoring the photon-capturing and using the expression in Eq. (45), one arrives at

M˙MτaccE˙SR(011)Mτacc332M2μτacc,\displaystyle\dot{M}\approx\frac{M}{{\tau}_{\mathrm{acc}}}-\dot{E}_{\mathrm{SR}}^{(011)}\approx\frac{M}{{\tau}_{\mathrm{acc}}}-3\sqrt{\frac{3}{2}}\frac{M^{2}\mu}{{\tau}_{\mathrm{acc}}}, (52)

at the LO. This differential equation can be integrated directly, which gives

M2M1e(tt1)/τ2+36M1μ[e(tt1)/τ1].\displaystyle M\approx\frac{2M_{1}e^{(t-t_{1})/\tau}}{2+3\sqrt{6}M_{1}\mu\left[e^{(t-t_{1})/\tau}-1\right]}. (53)

Then t2t_{2} could be obtained as

t2t1+τacclog[α2(236α1)α1(236α2)].\displaystyle t_{2}\approx t_{1}+{\tau}_{\mathrm{acc}}\log\left[\frac{\alpha_{2}(2-3\sqrt{6}\,\alpha_{1})}{\alpha_{1}(2-3\sqrt{6}\,\alpha_{2})}\right]. (54)

With the initial parameters used in Fig. 3, the estimates of Ms,2(011)/M2{M}_{\mathrm{s,2}}^{(011)}/M_{2}, α2\alpha_{2} and t2t_{2} are compared to the numerical results in Tab. 1.

The second part of the attractor phase starts at t2t_{2} and ends at t3t_{3}. In this time range, GW emission begins to dominate the evolution of the condensate. According to Eq. (82), the GW emission flux is determined by both the condensate mass Ms(011){M}_{\mathrm{s}}^{(011)} and the BH mass MM. From t2t_{2} to t3t_{3}, the former decreases over time while the latter grows almost exponentially. The resulting GW flux could increase, decrease or even be a constant, depending on the initial parameters. For the parameters used in Fig. 3, the GW emission flux is slightly enhanced in this time range. By definition, the corresponding BH mass M3Mde(011)M_{3}\approx M_{\text{de}}^{(011)}. The LO expression of Mde(011)M_{\text{de}}^{(011)} is given in Eq. (34). Higher-order contributions of Mde(011)M_{\text{de}}^{(011)} could be solved from

alim=4M3ω0111+4M32ω0112,\displaystyle{a}_{\mathrm{*lim}}=\frac{4M_{3}\omega_{011}}{1+4M_{3}^{2}\omega_{011}^{2}}, (55)

where ω011\omega_{011} can be found in Eq. (5) with α\alpha replaced by α3\alpha_{3}. The obtained mass coupling is α3=M3μ0.469\alpha_{3}=M_{3}\mu\approx 0.469. At t3t_{3}, Eq. (52) is not a good estimate due to the ignorance of the higher order terms. According to Eqs. (11a) and (11c), if GW emission and photon capturing are ignored, the sum of the BH mass and the condensate mass increases almost exponentially. Then t3t_{3} can be estimated by

t3\displaystyle t_{3} =t2+τacclog[M3+Ms,Regge(011)(α3)M2+Ms,Regge(011)(α2)].\displaystyle=t_{2}+{\tau}_{\mathrm{acc}}\log\left[\frac{M_{3}+{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{3})}{M_{2}+{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{2})}\right]. (56)

Finally, in the decaying phase beyond t3t_{3}, the condensate is quickly absorbed into the BH.

fEdd{f}_{\mathrm{Edd}} Ms,1(011)/M1{M}_{\mathrm{s,1}}^{(011)}/M_{1} α1\alpha_{1} t1t_{1} / yr Ms,2(011)/M2{M}_{\mathrm{s,2}}^{(011)}/M_{2} α2\alpha_{2} t2t_{2} / yr t3t_{3} / yr
1 Est. 2.93×1022.93\times 10^{-2} 2.93×1022.93\times 10^{-2} 5.38×1075.38\times 10^{7} 1.49×1011.49\times 10^{-1} 9.73×1029.73\times 10^{-2} 1.30×1081.30\times 10^{8} 2.21×1082.21\times 10^{8}
Num. 3.78×1023.78\times 10^{-2} 3.35×1023.35\times 10^{-2} 6.16×1076.16\times 10^{7} 1.49×1011.49\times 10^{-1} 9.75×1029.75\times 10^{-2} 1.26×1081.26\times 10^{8} 2.41×1082.41\times 10^{8}
10310^{-3} Est. 7.43×1037.43\times 10^{-3} 1.25×1021.25\times 10^{-2} 1.12×10101.12\times 10^{10} 9.55×1029.55\times 10^{-2} 5.94×1025.94\times 10^{-2} 9.91×10109.91\times 10^{10} 2.18×10112.18\times 10^{11}
Num. 1.87×1021.87\times 10^{-2} 1.54×1021.54\times 10^{-2} 2.28×10102.28\times 10^{10} 9.63×1029.63\times 10^{-2} 5.97×1025.97\times 10^{-2} 9.83×10109.83\times 10^{10} 2.33×10112.33\times 10^{11}
10910^{-9} Est. 6.66×1036.66\times 10^{-3} 9.93×1029.93\times 10^{-2} 3.90×10103.90\times 10^{10} 3.26×1023.26\times 10^{-2} 2.21×1022.21\times 10^{-2} 4.25×10164.25\times 10^{16} 2.13×10172.13\times 10^{17}
Num. 6.66×1036.66\times 10^{-3} 9.93×1039.93\times 10^{-3} 2.23×10112.23\times 10^{11} 3.36×1023.36\times 10^{-2} 2.30×1022.30\times 10^{-2} 4.43×10164.43\times 10^{16} 2.39×10172.39\times 10^{17}
101510^{-15} Est. 6.66×1036.66\times 10^{-3} 9.93×1029.93\times 10^{-2} 3.90×10103.90\times 10^{10} N/A N/A N/A 2.12×10232.12\times 10^{23}
Num. 6.66×1036.66\times 10^{-3} 9.93×1039.93\times 10^{-3} 2.23×10112.23\times 10^{11} N/A N/A N/A 2.45×10232.45\times 10^{23}
101710^{-17} Est. 6.66×1036.66\times 10^{-3} 9.93×1029.93\times 10^{-2} 3.90×10103.90\times 10^{10} N/A N/A N/A 2.12×10252.12\times 10^{25}
Num. 6.66×1036.66\times 10^{-3} 9.93×1039.93\times 10^{-3} 2.23×10112.23\times 10^{11} N/A N/A N/A 2.49×10252.49\times 10^{25}
0 Est. 6.66×1036.66\times 10^{-3} 9.93×1029.93\times 10^{-2} 3.90×10103.90\times 10^{10} N/A N/A N/A N/A
Num. 6.66×1036.66\times 10^{-3} 9.93×1039.93\times 10^{-3} 2.23×10112.23\times 10^{11} N/A N/A N/A N/A
Table 1: Comparison of the analytical estimates to the numerical results obtained from solving Eqs. (11) for essential quantities. Initial parameters are identical to those used in Fig. 2. Since the condensate mass does not present a maximum in the attractor phase for fEdd=0{f}_{\mathrm{Edd}}=0, 101710^{-17} and 101510^{-15}, the corresponding quantities at t2t_{2} are labeled with “N/A” in the table. Moreover, t3t_{3} of fEdd=0{f}_{\mathrm{Edd}}=0 case is not applicable, which is also labeled with “N/A”.

III.3 a0>ac(001)a_{*0}>a_{*\text{c}}^{(001)} and τaccτSR(011){\tau}_{\mathrm{acc}}\sim{\tau}_{\mathrm{SR}}^{(011)}

The case of τaccτSR(011){\tau}_{\mathrm{acc}}\sim{\tau}_{\mathrm{SR}}^{(011)} is represented by the curves with fEdd=103{f}_{\mathrm{Edd}}=10^{-3} in Fig. 2. This case behaves similarly to the case of fEdd=1{f}_{\mathrm{Edd}}=1, except that the spin does not reach alima_{*\lim} in the spin-up phase, as shown in Fig. 2(c). Since the spin-down phase, attractor phase and decaying phase are the same as in the previous case, below we focus on the spin-up phase.

The spin-up phase ends at t0t_{0}^{\prime}, when the BH spin reaches the local maximum for the first time. Expanding the first term on the right side of Eq. (40) at a=1a_{*}=1 and combining it with Eq. (41), Eq. (40) reduces to

a˙=321/3τacc(1a)2/3Ms,024M6μ8exp[τacc192(M8M08)μ9].\displaystyle\begin{split}\dot{a}_{*}=&\frac{3\cdot 2^{1/3}}{\tau_{\text{acc}}}\left(1-a_{*}\right)^{2/3}\\ &-\frac{M_{\text{s,0}}}{24}M^{6}\mu^{8}\exp\left[\frac{\tau_{\text{acc}}}{192}(M^{8}-M^{8}_{0})\mu^{9}\right].\end{split} (57)

At t0t_{0}^{\prime}, the two terms on the right side cancel. Making approximation 1a11-a_{*}\sim 1, one could solve

α0=(144τaccμ)1/8×[W0(24/932/3Ms,04/3τacc1/3μ5/3eα08τaccμ144)]1/8,\displaystyle\begin{split}\alpha_{0^{\prime}}=&\left(\frac{144}{\tau_{\mathrm{acc}}\mu}\right)^{{1}/{8}}\\ &\times\left[W_{0}\left(2^{{4}/{9}}3^{{2}/{3}}M_{\text{s,0}}^{-{4}/{3}}\tau_{\text{acc}}^{-{1}/{3}}\mu^{-{5}/{3}}e^{\frac{\alpha_{0}^{8}\tau_{\mathrm{acc}}\mu}{144}}\right)\right]^{{1}/{8}},\end{split} (58)

The time t0t_{0}^{\prime} can then be calculated with Eq. (19), and the BH spin and condensate mass at t0t_{0}^{\prime} can be derived by Eqs. (13) and (37), respectively. The subsequent evolution is the same as the scenario described in Sec. III.2, with the subscript 0′′0^{\prime\prime} in Eq. (44) replaced by 00^{\prime}.

Actually, Eq. (58) could be used to judge which one of the three groups the evolution should be attributed to. If the obtained α0\alpha_{0^{\prime}} is larger than 6kα0\sqrt{6}k\alpha_{0}, one should instead use the analysis in Sec. III.2. On the other hand, if α0\alpha_{0^{\prime}} is smaller than α0\alpha_{0}, the evolution does not follow the accretion trajectory at all, which case is discussed in Sec. III.4 below.

III.4 a0>ac(001)a_{*0}>a_{*\text{c}}^{(001)} and τaccτSR(011){\tau}_{\mathrm{acc}}\gg{\tau}_{\mathrm{SR}}^{(011)}

This group includes three different scenarios τSR(011)τaccτGW(011){\tau}_{\mathrm{SR}}^{(011)}\ll{\tau}_{\mathrm{acc}}\ll{\tau}_{\mathrm{GW}}^{(011)}, τaccτGW(011){\tau}_{\mathrm{acc}}\sim{\tau}_{\mathrm{GW}}^{(011)} and τaccτGW(011){\tau}_{\mathrm{acc}}\gg{\tau}_{\mathrm{GW}}^{(011)}, corresponding to fEdd=109{f}_{\mathrm{Edd}}=10^{-9}, 101510^{-15} and 101710^{-17} in Fig. 2, respectively. The curves with τaccτSR(011)\tau_{\text{acc}}\gg\tau_{\text{SR}}^{(011)} deviate from the fEdd=0f_{\text{Edd}}=0 case only from tτacct\sim\tau_{\text{acc}}. The whole evolution can also be split into different phases. Specially, compared to the two cases analysed in Sections III.2 and III.3, the spin-up phase vanishes when τaccτSR(011)\tau_{\text{acc}}\gg\tau_{\text{SR}}^{(011)} and a0>ac(011)a_{*0}>a_{*\text{c}}^{(011)}.

The BH spin drops from t=0t=0 and reaches the minimum at time t1t_{1}. The BH mass M1M_{1} and the condensate mass Ms,1M_{\text{s,1}} can be calculated in the same way as in Sec. II.2.2. After t1t_{1}, the BH follows the Regge trajectory. The condensate mass may either increase or decrease, depending on the relative size of the superradiance rate and the GW emission rate at t1t_{1}. No matter which case, Eq. (51) can be used to estimate α2\alpha_{2}. If α2>α1\alpha_{2}>\alpha_{1}, the condensate continues to grow after t1t_{1} and Ms(011)/MM_{\mathrm{s}}^{(011)}/M reaches its maximum value at t2t_{2}. Otherwise, the condensate shrinks since t1t_{1}. In the case of α2>α1\alpha_{2}>\alpha_{1}, the time t2t_{2} can be further calculated using Eq. (54), and the condensate mass at t2t_{2} can be estimated with Eq. (49).

III.5 a0<ac(011)a_{*0}<a_{*\text{c}}^{(011)}

When a0a_{*0} is smaller than the critical value ac(011)a_{\text{c}}^{(011)}, the superradiance condition is not satisfied initially. Nonetheless, the evolution of the BH-condensate system can still be split into the four phases explained above, as shown in Fig. 4. The angular momentum and energy flow from the condensate to the BH at first. Since the initial condensate mass is much smaller than the BH mass, this contribution is unimportant and the BH mass evolution is dominated by accretion. As a result, the growth of the BH mass can be estimated with Eq. (19). The BH spin also increases, following the relation in Eq. (13). Eventually, the BH spin is above the critical value and the superradiance is turned on. When superradiance balances accretion, the BH spin reaches its local maximum, which is the end of the spin-up phase. After the local maximum of the BH spin, the BH spin drops quickly to the Regge trajectory and then evolves along it afterward. The condensate mass first drops before the BH spin grows to its critical value ac(011)a_{*\text{c}}^{(011)}. It can be estimated using Eq. (37) during this time interval. Since then, the system evolves as in the a0>ac(011)a_{*0}>a_{\mathrm{*c}}^{(011)} cases, which are explained in previous subsections.

In Fig. 4, we also compared the curves with a0=0a_{*0}=0 to those with a0=0.7a_{*0}=0.7. Because the condensate initial mass is small, the evolutions of BH mass are indistinguishable between these two cases, confirming our argument that the BH mass growth is dominated by accretion. In contrast, the BH spin and condensate mass evolution have different behavior with different values of a0a_{*0}. Especially, the spin-up and spin-down phases are largely affected by the initial BH spin. The corresponding estimates are similar to those in Sec. III.3, with a revision to the calculation of α0(011)\alpha_{0^{\prime}}^{(011)}. When a0<ac(011)a_{*0}<a_{\mathrm{*c}}^{(011)}, the spin-up phase can be divided into two segments, separated by the time tintt_{\mathrm{int}} when the BH spin reaches ac(011)a_{*\text{c}}^{(011)}. The BH mass at this time can be obtained by solving Eq. (10) together with Eq. (13). The mass coupling at this time, defined as αint\alpha_{\text{int}}, can be accomplished either numerically or analytically in powers of α0\alpha_{0}

αintα0=k+kn=1+cn(kα0m)n,\displaystyle\frac{\alpha_{\text{int}}}{\alpha_{0}}=k+k\sum_{n=1}^{+\infty}c_{n}\left(\frac{k\alpha_{0}}{m}\right)^{n}, (59)

where

c1\displaystyle c_{1} =25/233/2,\displaystyle=2^{5/2}3^{-3/2}, (60a)
c2\displaystyle c_{2} =94/27,\displaystyle=94/27, (60b)
c3\displaystyle c_{3} =23/237/2(1729m2n¯2),\displaystyle=\frac{2^{3/2}}{3^{7/2}}\left(172-9\frac{m^{2}}{\bar{n}^{2}}\right), (60c)
c4\displaystyle c_{4} =2729(124511701m2n¯2).\displaystyle=\frac{2}{729}\left(12451-1701\frac{m^{2}}{\bar{n}^{2}}\right). (60d)

With the obtained αint\alpha_{\text{int}}, the condensate mass at tintt_{\text{int}} can be estimated with Eq. (37). Beyond tintt_{\text{int}}, the formulas obtained above for the a0>a*c(011)a_{*0}>a_{\text{*c}}^{(011)} scenario can be applied. One could simply replace the α0\alpha_{0}, a0a_{*0} and Ms,0M_{\text{s,0}} by αint\alpha_{\text{int}}, ac(011)a_{*\text{c}}^{(011)} and Ms(tint)M_{\text{s}}(t_{\text{int}}), respectively.

It is noteworthy that if the initial condensate mass is sufficiently large, the BH spin reaches ac(011){a}_{\mathrm{*c}}^{(011)} at a faster rate with the additional contribution from the scalar field. Although this scenario can be easily adapted from Sec. III.4, it is beyond the scope of this work. If modes with higher ll are considered, the BH spin may not reach ac(011)a_{*\text{c}}^{(011)}. This scenario will be discussed in the next section.

Refer to caption
Figure 4: The time evolution of scalar condensate masses (panel a), GW emission fluxes (panel b), BH spins (panel c), and BH masses (panel d). Initial parameters are M0=103MM_{0}=10^{3}M_{\odot}, Ms,0(011)=105M0{M}_{\mathrm{s,0}}^{(011)}=10^{-5}M_{0}, and M0μ=0.01M_{0}\mu=0.01. The solid and dashed curves are for initial BH spins a0=0.7a_{*0}=0.7 and a0=0a_{*0}=0, respectively. Different colors represent different accretion rates, indicated by the legends.

III.6 Evolution on the Regge plot

Refer to caption
Figure 5: The evolution of the BH spin as a function of the BH mass. The initial parameters for panels (a) and (b) are identical to those used in Fig. 2 and Fig. 4, respectively. The {0,1,1}\{0,1,1\} Regge trajectory defined in Eq. (10) is represented by the upper boundary of the shaded region.

Despite the complications in the evolution of the BH-condensate systems with different accretion rates, the evolution presents a rather simple and universal behavior on the Regge plot. In Fig. 5(a), we show the evolutions of the system with three typical values of fEddf_{\text{Edd}}, corresponding to the three scenarios detailed in Sec. III.2, Sec. III.3 and Sec. III.4, respectively. The initial BH spin and mass are a0=0.7a_{*0}=0.7 and M0=103MM_{0}=10^{3}M_{\odot}, respectively. The initial condensate mass is Ms,0=105M0M_{\text{s},0}=10^{-5}M_{0} and the initial mass coupling is α0=0.01\alpha_{0}=0.01. In the evolution, only the {0,1,1}\{0,1,1\} mode is considered. The GW emission of the spinning condensate is also included. In Fig. 5(b), the initial BH spin is a0=0a_{*0}=0, corresponding to the scenario detailed in Sec. III.5.

We first examine the case of very slow accretion with a0>ac(011)a_{*0}>a_{*\mathrm{c}}^{(011)}, corresponding to fEdd=109f_{\text{Edd}}=10^{-9} in Fig. 5(a). The superradiance dominates the evolution, leading to a fast drop of the BH spin to the {0,1,1}\{0,1,1\} Regge trajectory. The BH mass decreases slightly, with the discrepancy transferred to the condensate. Then the system evolves along the Regge trajectory.

We then turn to the case with the fastest accretion, regardless of whether a0>ac(011)a_{*0}>a_{*\mathrm{c}}^{(011)}, corresponding to fEdd=1f_{\text{Edd}}=1 in Fig. 5. The accretion dominates the evolution of the BH and the superradiance can be safely ignored initially. The BH first follows the trajectory determined by Eq. (20), referred to as accretion trajectory below. The BH spin approaches alima_{*\text{lim}} and the BH mass grows almost exponentially. During this time, the condensate grows in mass and angular momentum. At some time, the condensate is dense enough such that the superradiance surpasses the accretion, leading to the fast drop to the Regge trajectory. The evolution follows the Regge trajectory afterward.

When the accretion rate is neither large nor small, the BH follows the accretion trajectory for a while and quickly drops to the Regge trajectory.

From the Regge plot, it is clear that the entire evolution has a universal behavior. It consists of the parts following the two trajectories and the transition between them. They correspond to the spin-up, spin-down, and attractor phases in Sec. III.2. The decaying phase could not be observed in the BH Regge plot. It is clear by looking at the evolution of the condensate mass.

Due to this universal behavior, one only needs to identify the BH masse MM or spin aa_{*} at these critical points at which the system leaves the accretion trajectory and merges to the Regge trajectory. To determine these key points and the evolution between them, the following procedure can be applied. If M0ω0111/2M_{0}\omega_{011}\geq 1/2, superradiance does not occur and the system follows the accretion trajectory. If M0ω011<1/2M_{0}\omega_{011}<1/2, α0\alpha_{0^{\prime}} can be calculated using Eq. (58), as in Sec. III and Sec. III.5. Based on the obtained α0\alpha_{0^{\prime}}, there are three possible cases:

  • α0>6kα0\alpha_{0^{\prime}}>\sqrt{6}k\alpha_{0}: This case corresponds to the scenario in Sec. III.2 and the curves with fEdd=1f_{\text{Edd}}=1 in Fig. 5. The system initially follows the accretion trajectory approximately described by Eq. (13). Then it rapidly transits to the Regge trajectory in Eq. (10) at α1\alpha_{1} given in Eq. (44). After that, the system follows the {0,1,1}\{0,1,1\} Regge trajectory until M=Mde(011)M=M_{\mathrm{de}}^{(011)}.

  • α0<α0<6kα0\alpha_{0}<\alpha_{0^{\prime}}<\sqrt{6}k\alpha_{0}: This case corresponds to the scenario in Sec. III.3 and the curves with fEdd=103f_{\text{Edd}}=10^{-3} in Fig. 5. The system first follows the accretion trajectory and leaves this trajectory at α0\alpha_{0^{\prime}}. It then merges onto the Regge trajectories at α1\alpha_{1} given in Eq. (44). Then it follows this trajectory until M=Mde(011)M=M_{\mathrm{de}}^{(011)}.

  • α0<α0\alpha_{0^{\prime}}<\alpha_{0}: This case corresponds to the scenario in Sec. III.4 and the curves with fEdd=109f_{\text{Edd}}=10^{-9} in Fig. 5. The system is dominated by superradiance initially and quickly merges to the Regge trajectories at M=M1M=M_{1}. Here M1M_{1} is estimated using Eqs. (21) and (23b). The system then follows the {0,1,1}\{0,1,1\} Regge trajectory until M=Mde(011)M=M_{\mathrm{de}}^{(011)}.

Finally, we turn to what is not reflected in the Regge plots. The BH mass grows almost exponentially before merging onto the Regge trajectory, from which one could obtain the corresponding time cost. This can then be applied to calculate the condensate mass and GW emission rate. When the BH evolves along the Regge trajectory, the Eqs. (45) to (56) can be directly applied for estimating the important quantities in this phase.

With these equations, one could understand why the condensate mass evolution and GW emission flux are dramatically affected when τaccτSR\tau_{\text{acc}}\lesssim\tau_{\text{SR}}, which is shown in Fig. 2. Without accretion, the BH mass MM is roughly constant, resulting in an exponential increase of the condensate mass. The time duration of the GW is controlled by τGW\tau_{\text{GW}}. Comparably, the condensate mass with accretion is a double exponential function and the termination of the GW emission is controlled by τdeτGW\tau_{\text{de}}\ll\tau_{\text{GW}}. The maximum condensate mass is also larger with accretion, which reaches as much as 0.15 in Fig. 3, while this number never exceeds 0.1 if accretion is absent. Consequently, the GW emission in Eq. (82) is stronger in magnitude but shorter in time.

IV Multi-mode evolution with accretion

In this section, we study the evolution in the presence of multiple modes. The evolution can be separated into stages with different ll. In each ll-stage, the modes with the same azimuthal number ll grow the fastest via superradiance. We keep only the dominant ({0,l,l}\{0,l,l\}) and the subdominant ({1,l,l}\{1,l,l\}) modes in each ll-stage for illustration, while the generalization to more modes is straightforward. The superradiance rates of modes with azimuthal numbers larger than ll are orders of magnitude smaller and thus can be safely ignored in the ll-stage. From the experience learned in the previous section, we start with the BH evolution on the Regge plot in Sec. IV.1. Readers not interested in technical details can only read this subsection. Analytical approximations for the important quantities are given in Sec. IV.2. Then the subdominant modes and GW emission flux are discussed in Sec. IV.3 and Sec. IV.4, respectively.

IV.1 Evolution on the Regge plot

Refer to caption
Figure 6: The dependence of BH spins on the BH masses for different initial parameters and accretion rates. The initial condensate masses are Ms,0(nll)=105M0{M}_{\mathrm{s,0}}^{(nll)}=10^{-5}M_{0} with n=0,1n=0,1 and 1l71\leq l\leq 7. The accretion rate and the initial mass coupling are shown in the legends of each panel. The initial BH mass and mass coupling for panels (a-f) are M0=103MM_{0}=10^{3}M_{\odot} and α0=0.01\alpha_{0}=0.01, respectively. For panels (g-l), the initial BH mass is 104M10^{4}M_{\odot} and the initial mass coupling is α0=0.1\alpha_{0}=0.1. The initial BH spin is a0=0.7a_{*0}=0.7 for panels (a-c,g-i) and a0=0a_{*0}=0 for panels (d-f,j-l). The upper boundaries of the shaded areas from the top to bottom are the Regge trajectories of the {0,l,l}\{0,l,l\} modes with ll increasing from 1 to 7.

The multi-mode evolution with different initial conditions and accretion rates are shown in Fig. 6. Compared to the single mode case in Fig. 5, the BH evolution with multiple modes is a little more complicated but still has a quite simple pattern. The BH may follow the accretion trajectory for a while then transits quickly to a Regge trajectory. The time spent on the accretion trajectory depends on the initial BH mass and spin, as well as the accretion rate. If the accretion rate is small, the BH spin may drop since t=0t=0. Nonetheless, with multiple modes, the BH does not follow a single Regge trajectory all the way to the critical mass. Instead, it steps down to the Regge curves with an increasing value of ll. To have a good understanding of the evolution, we need to have satisfactory estimates of the critical points where the BH leaves or merges into a trajectory. These critical points split the whole evolution into different time segments. In each segment, the unimportant effects could be ignored and the picture is much simpler to analyse.

It is important to figure out which Regge trajectories may be activated in the evolution, i.e., the corresponding modes grow via superradiance for some time. This is not a simple task and requires several steps in the presence of multiple modes. First of all, it is simple to identify those Regge trajectories for which the superradiance condition ω0ll<lΩH\omega_{0ll}<l\Omega_{H} are never met. This gives a critical value of ll, referred as lcl_{\text{c}} below, defined as the minimum integer satisfying

M0ω0ll<l/2.\displaystyle M_{0}\omega_{0ll}<l/2. (61)

The modes with l<lcl<l_{\text{c}} are in their decaying phase since t=0t=0 and do not affect the evolution of the BH-condensate system.

We first analyze the case when the initial BH spin a0a_{*0} is greater than the ac(0lclc)a_{*\text{c}}^{(0l_{\mathrm{c}}l_{\mathrm{c}})} given in Eq. (10). If the accretion rate is much larger than the superradiance rate of the lcl_{c} mode, the BH first follows the accretion trajectory to alim\sim a_{*\text{lim}} before transiting to the Regge curve with l=lcl=l_{\text{c}}, see Fig. 6(a). With a decreasing value of the accretion rate, the time cost on the accretion trajectory is shorter, see Fig. 6(b). At some point, the BH spin converges to the lcl_{\text{c}} Regge curve since t=0t=0, see Fig. 6(c). Further decreasing the accretion rate and/or increasing the superradiance rate, the time cost along the lcl_{c} Regge trajectory is shorter, see Fig. 6(g,h). Until at some point, the accretion effect is negligible during the time when the BH is on the lcl_{\text{c}} Regge curve. Then the BH does not evolve along the lcl_{\text{c}} Regge curve before stepping down to the lc+1l_{\text{c}}+1 Regge trajectory, see Fig. 6(i).

Given the initial conditions, we need to judge which pattern the later evolution has. To separate these cases, one first calculates α0(0lclc)\alpha_{0^{\prime}}^{(0l_{\text{c}}l_{\text{c}})}, which is proportional to the BH mass at the point when its spin reaches the local maximum close to the trajectory curve. The formula for lc=1l_{\text{c}}=1 is given in Eq. (58), and those for larger values of lcl_{\text{c}} are listed in Eqs. (90). When μτacc\mu\tau_{\text{acc}} is large, the asymptotic expression of the Lambert W0W_{0} function could be useful

limx+W0(x)=logxlog(logx).\displaystyle\lim_{x\to+\infty}W_{0}(x)=\log x-\log\left(\log x\right). (62)

When μτacc\mu\tau_{\text{acc}} is small, the α0\alpha_{0^{\prime}} is significantly larger than α0\alpha_{0}. With an increasing value of μτacc\mu\tau_{\text{acc}}, it first decreases to below α0\alpha_{0}, then approaches α0\alpha_{0} from below. So there are three possibilities

  • α06kα0\alpha_{0^{\prime}}\geq\sqrt{6}\,k\alpha_{0}: The BH spin can reach the plateau region as in Fig. 6(a).

  • α0<α0<6kα0\alpha_{0}<\alpha_{0^{\prime}}<\sqrt{6}\,k\alpha_{0}: The BH spin follows the accretion trajectory for a while and then drops before reaching alima_{*\text{lim}}, as in Fig. 6(b).

  • α0<α0\alpha_{0^{\prime}}<\alpha_{0}: The BH spin decreases since t=0t=0 as in Fig. 6(c,g-i).

In any of the above three cases, the evolution merges onto the {0,lc,lc}\{0,l_{\text{c}},l_{\text{c}}\} Regge curve. With only a single mode as explained in Sec. III, the BH spin reaches a local minimum close to the Regge curve. There the time of the local minimum is defined as t1t_{1}, and we also define the quantities at this time using the subscript, such as α1\alpha_{1}. In the presence of multiple modes, there is a local minimum of the BH spin at each Regge curve. We similarly define this time at the {0,l,l}\{0,l,l\} Regge curve as t1(0ll)t_{1}^{(0ll)} and the corresponding quantities using an additional superscript (0ll)(0ll), such as α1(0ll)\alpha_{1}^{(0ll)}. To avoid confusion, the mass of a superradiant mode at a certain time is written explicitly. For example Ms(022)(t1(011))M_{\text{s}}^{(022)}(t_{1}^{(011)}) denotes the mass of the {0,2,2}\{0,2,2\} mode at time t1(011)t_{1}^{(011)}.

The value of α1(0lclc)\alpha_{1}^{(0l_{\text{c}}l_{\text{c}})} can be obtained using Eqs. (91). One could then calculate the value of α1(0ll)\alpha_{1}^{(0ll)} with l>lcl>l_{\text{c}} using Eqs. (103). Then the evolution on the Regge plot can be approximately fixed with the values of α0\alpha_{0^{\prime}} and α1(0ll)\alpha_{1}^{(0ll)}. When μτacc\mu\tau_{\text{acc}} is large, the following asymptotic expression for the Lambert W1W_{-1} function is useful

limx0W1(x)=log(x)log(log(x)).\displaystyle\lim_{x\to 0^{-}}W_{-1}(x)=\log(-x)-\log\left(-\log(-x)\right). (63)

In the limit of μτacc+\mu\tau_{\text{acc}}\to+\infty, the obtained α1(0,l+1,l+1)\alpha_{1}^{(0,l+1,l+1)} approaches α1(0ll)\alpha_{1}^{(0ll)} from above. Then the evolution does not follow the {0,l,l}\{0,l,l\} Regge curve. This may happen at the first several Regge curves, causing an approximate vertical drop of the evolution curve on the Regge plot since t=0t=0. In this time range, a better treatment is to ignore the accretion compared to the superradiance. One could then use the energy and angular momentum conservation for the transition between two consecutive Regge curves

ac(0,l+1,l+1)(α1(0,l+1,l+1))2+(l+1)μMs(0,l+1,l+1)(t1(0ll))=ac(0ll)(α1(0ll))2+lμMs(0ll)(t1(0ll)),\displaystyle\begin{split}&{a}_{\mathrm{*c}}^{(0,l+1,l+1)}\left(\alpha^{(0,l+1,l+1)}_{1}\right)^{2}+(l+1)\mu{M}_{\mathrm{s}}^{(0,l+1,l+1)}(t_{1}^{(0ll)})\\ &\hskip 28.45274pt={a}_{\mathrm{*c}}^{(0ll)}\left(\alpha^{(0ll)}_{1}\right)^{2}+l\mu{M}_{\mathrm{s}}^{(0ll)}(t_{1}^{(0ll)}),\end{split} (64a)
α1(0,l+1,l+1)+μMs(0,1+1,1+1)(t1(0ll))=α1(0ll)+μMs(0ll)(t1(0ll)).\displaystyle\alpha_{1}^{(0,l+1,l+1)}+\mu{M}_{\mathrm{s}}^{(0,1+1,1+1)}(t_{1}^{(0ll)})=\alpha_{1}^{(0ll)}+\mu{M}_{\mathrm{s}}^{(0ll)}(t_{1}^{(0ll)}). (64b)

The α1(0ll)\alpha_{1}^{(0ll)} obtained from these conservation equations agrees better with the numerical results, which can be observed in Fig. 6(c,g-i). Since the conservations give α1(0,l+1,l+1)0.9α1(0ll)\alpha_{1}^{(0,l+1,l+1)}\approx 0.9\,\alpha_{1}^{(0ll)} Guo:2022mpr , we claim Eqs. (64) give a more accurate description when α1(0,l+1,l+1)α1(0ll)0.1α1(0ll)\alpha_{1}^{(0,l+1,l+1)}-\alpha_{1}^{(0ll)}\ll 0.1\,\alpha_{1}^{(0ll)}.

If a0<ac(0lclc)a_{*0}<a_{*\text{c}}^{(0l_{\mathrm{c}}l_{\mathrm{c}})}, the situation is a little more complicated. One first find the value of l>lcl^{\prime}>l_{\text{c}} which satisfies

ac(0,l+1,l+1)<a0<ac(0,l,l).\displaystyle a_{*\text{c}}^{(0,l^{\prime}+1,l^{\prime}+1)}<a_{*0}<a_{*\text{c}}^{(0,l^{\prime},l^{\prime})}. (65)

Then the modes with l[lc,l]l\in[l_{\text{c}},l^{\prime}] do not satisfy the superradiance condition initially. These modes shrink in size at first, transferring the energy and angular momentum to the BH. If accretion is strong, the BH spin could climb along the accretion trajectory to above the {0,lc,lc}\{0,l_{\text{c}},l_{\text{c}}\} Regge curve, see Fig. 6(d,e). With a smaller accretion rate and/or larger superradiance rate, the BH spin can just reach the {0,lc,lc}\{0,l_{\text{c}},l_{\text{c}}\} Regge curve, see Fig. 6 (f,j). If we further decrease the accretion rate compared to the superradiance rate, the BH spin can only reach some Regge curve with l>lcl>l_{\text{c}}, see Fig. 6 (k,l).

We define laccl_{\text{acc}} as the first Regge curve which the evolution follows along. Its value could be larger, smaller, or equal to ll^{\prime}, depending on the relative size of the accretion rate and the superradiance rates of different modes. We first judge whether laccl_{\text{acc}} is larger than ll^{\prime}. After many tests, the best scheme we could find to calculate laccl_{\text{acc}} is by comparing the α0(0ll)\alpha_{0^{\prime}}^{(0ll)} with different ll. Here α0(0ll)\alpha_{0^{\prime}}^{(0ll)} is the mass coupling at the time when the BH spin reaches its local maximum if only accretion and the {0,l,l}\{0,l,l\} mode are present, which is given by Eqs. (90). Specifically, one calculate the α0(0ll)\alpha_{0^{\prime}}^{(0ll)} with increasing value of ll from lcl_{\text{c}} to ll^{\prime}. If a minimum of α0(0ll)\alpha_{0^{\prime}}^{(0ll)} is observed for l<ll<l^{\prime}, then the BH spin reaches the local maximum between the {0,l1,l1}\{0,l-1,l-1\} and {0,l,l}\{0,l,l\} Regge curves. In this case, we set lacc=ll_{\text{acc}}=l. After identifying laccl_{\text{acc}}, one could reset t=0t=0 as the time when the BH reaches the intersection of the accretion trajectory and the {0,lacc,lacc}\{0,l_{\text{acc}},l_{\text{acc}}\} Regge curve. Then the later evolution can be described in the same way as the a0>ac(0lclc)a_{*0}>a_{*\text{c}}^{(0l_{\text{c}}l_{\text{c}})} case with lcl_{\text{c}} replaced by laccl_{\text{acc}}.

On the other hand, if the minimum value of α0(0ll)\alpha_{0^{\prime}}^{(0ll)} is observed at l=ll=l^{\prime}, one could ignore all the Regge curves with l<ll<l^{\prime}. Then the evolution is the same as the a0>ac(0lclc)a_{*0}>a_{*\text{c}}^{(0l_{\text{c}}l_{\text{c}})} case with lcl_{\text{c}} replaced by ll^{\prime}.

The evolutions with a0=0a_{*0}=0 are presented in Fig. 6, panels (d-f) and panels (j-l), where other initial parameters are the same as panels (a-c) and panels (g-i), respectively. In this case, the ll^{\prime} is infinity. Analytical estimates of the points where the evolution leaves a trajectory and merges into the next are given in Sec. IV.2. For various initial conditions and accretion rates, the analytical approximations agree quite well with the numerical results.

IV.2 Evolution of the BH and dominate modes

The BH evolution is mainly determined by the dominant mode and/or the accretion in each ll-stage. In this part, we focus on the dominant modes, while leaving the discussion about the subdominant modes in Sec. IV.3. To help the analysis, we present the numerical results for a specific multi-mode scenario in Fig. 7. The initial parameters are M0=104MM_{0}=10^{4}M_{\odot}, α0=0.1\alpha_{0}=0.1, Ms,0(nll)=105M0M_{\text{s,0}}^{(nll)}=10^{-5}M_{0} and fEdd=103f_{\text{Edd}}=10^{-3}. The value of fEddf_{\text{Edd}} is chosen such that the accretion time scale τacc{\tau}_{\text{acc}} is at the same order of τSR(022)\tau_{\text{SR}}^{(022)}, which is the the superradiance time scale of (0,2,2)(0,2,2) mode. This time scale is much larger than τSR(011)\tau_{\text{SR}}^{(011)} but much smaller than τSR(033)\tau_{\text{SR}}^{(033)}.

Two initial BH spins a0=0.7a_{*0}=0.7 and a0=0a_{*0}=0 are considered. From Eq. (61), it is easy to see lc=1l_{\text{c}}=1. Then ac(011)0.384a_{*\text{c}}^{(011)}\approx 0.384 is calculated from Eq. (10) using the value of α0\alpha_{0}.

IV.2.1 a0=0.7a_{*0}=0.7

This case corresponds to a0>ac(0lclc)a_{*0}>a_{*\text{c}}^{(0l_{\mathrm{c}}l_{\mathrm{c}})}. We first identify the evolution of the BH on the Regge plot. From Eq. (18), one could obtain τaccμ=3.2×1018\tau_{\text{acc}}\mu=3.2\times 10^{18}. We then apply Eq. (58) and get α0=α08×1010\alpha_{0^{\prime}}=\alpha_{0}-8\times 10^{-10}, which is less than α0\alpha_{0}. Thus the BH does not evolve along the accretion trajectory at all, corresponding to the third scenario in the discussion below Eq. (62).

The α1(011)\alpha_{1}^{(011)} can be calculated using Eq. (44). Since the BH does not evolve along the accretion trajectory, the Ms,0′′M_{\text{s},0^{\prime\prime}} a0′′a_{*0^{\prime\prime}}, and α0′′\alpha_{0^{\prime\prime}} should be replaced by Ms,0M_{\text{s,0}}, a0a_{*0}, and α0\alpha_{0}, respectively. Using the above parameters, one obtains α1(011)=α0+7×1010\alpha_{1}^{(011)}=\alpha_{0}+7\times 10^{-10}. The small values of α0α0\alpha_{0^{\prime}}-\alpha_{0} and α1(011)α0\alpha_{1}^{(011)}-\alpha_{0} indicate the evolution merges onto the {0,1,1}\{0,1,1\} Regge curve almost at t=0t=0.

We continue to calculate α1(022)\alpha_{1}^{(022)}. The steps are quite similar to those from Eq. (40) to Eq. (44). The time derivative of the BH spin in the presence of multiple modes is

a˙=1τacc(JmsMEms2a)l=lc2Ms(0ll)M(lMω0ll2a)Γ0ll,\displaystyle\begin{split}\dot{a}_{*}&=\frac{1}{\tau_{\text{acc}}}\left(\frac{J_{\mathrm{ms}}^{\dagger}}{ME_{\mathrm{ms}}^{\dagger}}-2a_{*}\right)\\ &\hskip 28.45274pt-\sum_{l=l_{\text{c}}}^{\infty}\frac{2M_{\text{s}}^{(0ll)}}{M}\left(\frac{l}{M\omega_{0ll}}-2a_{*}\right)\Gamma_{0ll},\end{split} (66)

where we have only kept the {0,l,l}\{0,l,l\} modes. Other terms have much smaller effect on the BH evolution and could be safely ignored. In the time range from t1(011)t_{1}^{(011)} to t1(022)t_{1}^{(022)}, only the accretion and the l=1,2l=1,2 modes are important. When the BH follows the {0,1,1}\{0,1,1\} Regge curve, the accretion almost balances the superradiance of the {0,1,1}\{0,1,1\} mode, resulting in a rather slow change of aa_{*}. During this time, the {0,2,2}\{0,2,2\} mode is unimportant due to its small mass. When the {0,2,2}\{0,2,2\} mode is dense enough, it dominates the evolution, causing the rapid drop of aa_{*} to the {0,2,2}\{0,2,2\} curve close to t1(022)t_{1}^{(022)}. Thus as a LO estimate, one could only consider the contribution of the {0,2,2}\{0,2,2\} mode on the right side of Eq. (66)

a˙=2Ms(022)M2μΓ022.\displaystyle\dot{a}_{*}=-\frac{2M_{\text{s}}^{(022)}}{M^{2}\mu}\Gamma_{022}. (67)

One could take the LO of Γ022\Gamma_{022} in α\alpha expansion with a=ac(011)a_{*}=a_{*\text{c}}^{(011)}, which is

MΓ022=64α14885735.\displaystyle M\Gamma_{022}=\frac{64\alpha^{14}}{885735}. (68)

The Ms(022)M_{\text{s}}^{(022)} can be calculated by inserting Eqs. (68) and (19) into Eq. (11c) with the GW radiation ignored

Ms(022)Ms(022)(t1(011))=exp{128τaccμ11514555[α13(α1(011))13]},\displaystyle\frac{M_{\text{s}}^{(022)}}{M_{\text{s}}^{(022)}(t_{1}^{(011)})}=\exp\left\{\frac{128{\tau}_{\mathrm{acc}}\mu}{11514555}\left[\alpha^{13}-\left(\alpha_{1}^{(011)}\right)^{13}\right]\right\}, (69)

which is valid for t[t1(011),t1(022)]t\in[t_{1}^{(011)},t_{1}^{(022)}]. For the current example, there is Ms(022)(t1(011))Ms,0(022)M_{\text{s}}^{(022)}(t_{1}^{(011)})\approx M_{\text{s,0}}^{(022)}. Then Eq. (67) can be integrated directly from t1(011)t_{1}^{(011)} to t1(022)t_{1}^{(022)}. Inserting the values of ac(0ll)a_{*\text{c}}^{(0ll)} in Eq. (10), one gets

α1(022){531227τaccμ×W1[128τaccμ2657205(Ms0(022)μe128(α1(011))13τaccμ11514555)133]}113,\displaystyle\begin{split}&\alpha_{1}^{(022)}\approx\Bigg{\{}-\frac{5\cdot 3^{12}}{2^{7}\tau_{\mathrm{acc}}\mu}\times\\ &\left.W_{-1}\left[-\frac{128\tau_{\mathrm{acc}}\mu}{2657205}\left(M_{\mathrm{s0}}^{(022)}\mu e^{-\frac{128\left(\alpha_{1}^{(011)}\right)^{13}\tau_{\mathrm{acc}}\mu}{11514555}}\right)^{\frac{13}{3}}\right]\right\}^{\frac{1}{13}},\end{split} (70)

where the term with the exponential integral function is ignored for the same reason discussed below Eq. (44).

The α1(0ll)\alpha_{1}^{(0ll)} for larger ll can be calculated similarly, which are listed in Eqs. (103). For the current example, after inserting the numbers, one arrives at α1(022)=0.109\alpha_{1}^{(022)}=0.109, α1(033)=0.315\alpha_{1}^{(033)}=0.315 and α1(044)=0.639\alpha_{1}^{(044)}=0.639.

Since α1(011)α00.1α0\alpha_{1}^{(011)}-\alpha_{0}\ll 0.1\alpha_{0}, one could ignore accretion and apply the energy and angular momentum conservations in Eq. (64) for more accurate estimates. Inserting the values, one arrives at α1(011)=0.097\alpha_{1}^{(011)}=0.097. The value of α1(022)\alpha_{1}^{(022)} in Eq. (70) is adjusted accordingly to 0.1080.108, which satisfies α1(022)α1(011)>0.1α1(011)\alpha_{1}^{(022)}-\alpha_{1}^{(011)}>0.1\alpha_{1}^{(011)}. Then α1(0ll)\alpha_{1}^{(0ll)} for l3l\geq 3 could be calculated using Eqs. (103). Connecting these values on the accretion trajectory as well as the Regge curves, one could get an approximate evolution on the Regge plot, which is shown in Fig. 6(h).

We now discuss the evolution of the dominant modes. Since it is the same for all ll-stage, the presentation below works for any {0,l,l}\{0,l,l\} mode with llcl\geq l_{\text{c}}. Between t1(0ll)t_{1}^{(0ll)} and t1(0,l+1,l+1)t_{1}^{(0,l+1,l+1)}, the {0,l,l}\{0,l,l\} mode first grows, reaching the maximum mass ratio Ms(0ll)/MM_{\text{s}}^{(0ll)}/M at t2(0ll)t_{2}^{(0ll)}, then gradually shrinks due to GW emission. Finally, it enters into the decaying phase and quickly falls into the BH close to t1(0,l+1,l+1)t_{1}^{(0,l+1,l+1)}. In this time range, one could only consider the {0,l,l}\{0,l,l\} and {0,l+1,l+1}\{0,l+1,l+1\} modes. Adding the modes with the same ll but n>0n>0 has little effect on the BH evolution. These modes, especially the subdominant modes with n=1n=1, are important in the GW waveform, which will be discussed in the next subsection.

The analysis is quite similar to that from Eq. (45) to Eq. (54). Between t1(0ll)t_{1}^{(0ll)} and t1(0,l+1,l+1)t_{1}^{(0,l+1,l+1)}, the BH evolves along the {0,l,l}\{0,l,l\} Regge curve. For most of this time range, the evolution is dominated by the accretion and the {0,l,l}\{0,l,l\} mode in Eq. (66), with other terms safely neglected. On the other hand, the a˙\dot{a}_{*} can also be calculated using the Eq. (10). Combining these two expressions of a˙\dot{a}_{*}, one could solve E˙SR(0ll)\dot{E}_{\text{SR}}^{(0ll)} as a function of α\alpha. Then taking GW emission in Eq. (11c) as a perturbation and assuming α\alpha increases with time as in Eq. (19), one could further solve Ms,Regge(0ll)M_{\text{s,Regge}}^{(0ll)} and the mass of the {0,l,l}\{0,l,l\} mode in this time range

Ms(0ll)(t)=Ms(0ll)(t1(0ll))+Ms,Regge(0ll)(α)Ms,Regge(0ll)(α1(0ll))+δMs(0ll)(t).\displaystyle\begin{split}M_{\text{s}}^{(0ll)}(t)&=M_{\text{s}}^{(0ll)}(t_{1}^{(0ll)})+M_{\text{s,Regge}}^{(0ll)}(\alpha)\\ &\hskip 14.22636pt-M_{\text{s,Regge}}^{(0ll)}(\alpha_{1}^{(0ll)})+\delta M_{\text{s}}^{(0ll)}(t).\end{split} (71)

The expressions of Ms,Regge(0ll)M_{\text{s,Regge}}^{(0ll)} and δMs\delta M_{\text{s}} for l7l\leq 7 are given in Eqs. (101) and (102), respectively.

The value of α2(0ll)\alpha_{2}^{(0ll)} can be determined with d(Ms(0ll)/M)/dt=0d\left(M_{\text{s}}^{(0ll)}/M\right)/dt=0 at t2(0ll)t_{2}^{(0ll)}, which gives an equation like Eq. (50), with the superscript (011)(011) replaced by (0ll)(0ll). Then one could solve α2(0ll)\alpha_{2}^{(0ll)} from this equation. Using the value of α2(0ll)\alpha_{2}^{(0ll)}, one could estimate t2(0ll)t_{2}^{(0ll)} by assuming the BH mass grows as in Eq. (19) from t=0t=0 to t2(0ll)t_{2}^{(0ll)}. A more accurate estimate can be obtained by inserting the E˙Regge(0ll)\dot{E}_{\text{Regge}}^{(0ll)} into Eq. (11a) and solving the differential equation, in the same manner as Eqs. (52) and (53)

M2lα1(0ll)e(tt1(0ll))/τ/μ2l+36α1(0ll)[e(tt1(0ll))/τ1].\displaystyle M\approx\frac{2l\alpha_{1}^{(0ll)}e^{(t-t_{1}^{(0ll)})/\tau}/\mu}{2l+3\sqrt{6}\alpha_{1}^{(0ll)}\left[e^{(t-t_{1}^{(0ll)})/\tau}-1\right]}. (72)

Finally, one can solve out t2(0ll)t_{2}^{(0ll)} with this expression of M(t)M(t) and the value of α2(0ll)\alpha_{2}^{(0ll)}. The obtained α2(0ll)\alpha_{2}^{(0ll)} are listed in Eqs. (104) for l7l\leq 7. Inserting these values into Eq. (71), the maximum mass ratio of the {0,l,l}\{0,l,l\} mode could be calculated.

Combining the obtained expression of M(t)M(t) with the value of α1(0ll)\alpha_{1}^{(0ll)}, one could obtain a better estimate of

Δt(0ll)t1(0,l+1,l+1)t1(0ll),\displaystyle\Delta t^{(0ll)}\equiv t^{(0,l+1,l+1)}_{1}-t^{(0ll)}_{1}, (73)

which is the time duration of the ll-stage and is used to estimate the duration of the GW emission of the {0,l,l}\{0,l,l\} mode below.

For our example, the above approximations are compared to the numerical results in Table. 2. For all the quantities, these approximations work reasonably well.

IV.2.2 a0=0a_{*0}=0

In the case of a0<ac(0,lclc)a_{*0}<a_{*\text{c}}^{(0,l_{\text{c}}l_{\text{c}})}, one first identify the value of ll^{\prime} with Eq. (65), which is \infty for a0=0a_{*0}=0.

To get laccl_{\text{acc}}, we calculate α0(0ll)\alpha_{0^{\prime}}^{(0ll)} with ll increasing from lcl_{\text{c}} to ll^{\prime}. Here α0(0ll)\alpha_{0^{\prime}}^{(0ll)} is the mass coupling at the time when the BH spin reaches the local maximum before transiting to the {0,l,l}\{0,l,l\} Regge curve if only accretion and the {0,l,l}\{0,l,l\} mode are present. For l<ll<l^{\prime}, the calculation of α0(011)\alpha_{0^{\prime}}^{(011)} starts from the intersection of the accretion trajectory and the {0,l,l}\{0,l,l\} Regge curve, which is given in Eq. (59). We start from l=m=1l=m=1, the mass coupling at the intersection is αint(011)=0.116\alpha_{\text{int}}^{(011)}=0.116. The mass of the cloud can be estimated using Eq. (37). For our example, one gets Ms,int(011)=6×10259875940M_{\text{s,int}}^{(011)}=6\times 10^{-25987594}\approx 0. Then taking the intersection as the new initial time, one could eventually apply Eq. (58) and get α0(011)=0.117\alpha_{0^{\prime}}^{(011)}=0.117.

Similarlly, one could calculate the Ms(0ll)M_{\text{s}}^{(0ll)} and α0(0ll)\alpha_{0^{\prime}}^{(0ll)} for any {0,l,l}\{0,l,l\} modes. Their expressions for l7l\leq 7 are listed in Eqs. (88) and (90). For our example, we have α0(022)=0.107\alpha_{0^{\prime}}^{(022)}=0.107 and α0(033)=0.232\alpha_{0^{\prime}}^{(033)}=0.232. Therefore, we conclude lacc=2l_{\text{acc}}=2.

Then one could choose the intersection of the accretion trajectory and the {0,2,2}\{0,2,2\} Regge curve as t=0t=0, all the steps explained in Sec. IV.2.1 can be applied for the later evolution. The comparison of the analytical approximation with the numerical results is shown in Fig. 6(k).

Refer to caption
Figure 7: The time evolution of scalar condensate masses (panel a), total GW emission fluxes (panel b), BH spins (panel c), and BH masses (panel d). The initial parameters are M0=104MM_{0}=10^{4}M_{\odot}, Ms,0(nll)=105M0{M}_{\mathrm{s,0}}^{(nll)}=10^{-5}M_{0}, α0=0.1\alpha_{0}=0.1, and fEdd=103{f}_{\mathrm{Edd}}=10^{-3}. The solid and dashed curves are for initial BH spins a0=0.7a_{*0}=0.7 and a0=0a_{*0}=0, respectively. In panel (a), the darker curves represent the dominant modes, while the lighter curves represent the subdominant modes. For better presentation, the horizontal axis employs a linear scale for t<1010t<10^{10} yr and a logarithmic scale for t>1010t>10^{10} yr.
ll (Ms(0ll)/M)max({M}_{\mathrm{s}}^{(0ll)}/M)_{\mathrm{max}} α2(0ll)\alpha_{2}^{(0ll)} τGW(0ll){\tau}_{\mathrm{GW}}^{(0ll)} / yr Ms,max(1ll)/Ms(0ll){M}_{\mathrm{s,max}}^{(1ll)}/{M}_{\mathrm{s}}^{(0ll)} α21ll\alpha_{2^{\prime}}^{1ll} or α1(0ll)\alpha_{1}^{(0ll)} τlife(1ll){\tau}_{\mathrm{life}}^{(1ll)} / yr
l=1l=1 Est. 3.67×1023.67\times 10^{-2} 9.65×1029.65\times 10^{-2} 2.84×1082.84\times 10^{8} 4.98×1034.98\times 10^{-3} 9.65×1029.65\times 10^{-2} 5.71×1055.71\times 10^{5}
Num. 3.66×1023.66\times 10^{-2} 9.65×1029.65\times 10^{-2} 2.92×1082.92\times 10^{8} 5.28×1035.28\times 10^{-3} 9.65×1029.65\times 10^{-2} 1.08×1061.08\times 10^{6}
l=2l=2 Est. 1.33×1011.33\times 10^{-1} 2.18×1012.18\times 10^{-1} 8.60×10108.60\times 10^{10} 2.70×1022.70\times 10^{-2} 1.41×1011.41\times 10^{-1} 2.93×10102.93\times 10^{10}
Num. 1.41×1011.41\times 10^{-1} 2.24×1012.24\times 10^{-1} 7.13×10107.13\times 10^{10} 2.36×1022.36\times 10^{-2} 1.43×1011.43\times 10^{-1} 2.57×10102.57\times 10^{10}
l=3l=3 Est. 1.46×1011.46\times 10^{-1} 4.93×1014.93\times 10^{-1} 8.71×10108.71\times 10^{10} 2.52×1012.52\times 10^{-1} 3.46×1013.46\times 10^{-1} 1.95×10101.95\times 10^{10}
Num. 1.70×1011.70\times 10^{-1} 5.11×1015.11\times 10^{-1} 5.01×10105.01\times 10^{10} 2.86×1012.86\times 10^{-1} 3.54×1013.54\times 10^{-1} 1.52×10101.52\times 10^{10}
Table 2: Comparison of the analytical estimates to the numerical results obtained from solving (11) for essential quantities. Initial parameters are identical to those used for the solid lines in Fig. 7.

IV.3 Subdominant modes

The subdominant modes with indices {1,l,l}\{1,l,l\} are important for GW beat signature. In this part, we explain the calculation of the maximum mass and the lifetime of these modes. The critical BH spin of the subdominant mode a(1ll)a_{*}^{(1ll)} can be directly calculated with Eq. (10). It is a little larger than that of the dominant mode with the same value of ll. As a result, the {1,l,l}\{1,l,l\} Regge curve is a bit above the {0,l,l}\{0,l,l\} one. Then at the beginning of the ll-stage when the BH spin quickly decreases, the evolution first reaches the {1,l,l}\{1,l,l\} curve. It could follow along the {1,l,l}\{1,l,l\} curve for a while before stepping down to the {0,l,l}\{0,l,l\} curve. It is also likely that the evolution quickly crosses the {1,l,l}\{1,l,l\} curve and merges to the {0,l,l}\{0,l,l\} curve. In both cases, the growth time of the subdominant mode is shorter than the dominant one. In this work, we assume the initial mass of the subdominant mode is not unnaturally large. Then one could conclude that the mass of the subdominant mode is always much smaller than the corresponding dominant mode for l2l\leq 2 since the superradiance rate of the former is always smaller than the latter. For l3l\geq 3, there exists a “overtone mixing” phenomenon where the superradiance rate of the subdominant mode is comparable to, or even larger than, the dominant mode Siemonsen:2019ebd . Interestingly, the above analytical approximations still work for the correct order of magnitude. We will discuss this scenario in Sec.V. In the rest of this section, we assume the subdominant mode always has a smaller mass than the corresponding dominant mode.

Because of the small mass, the subdominant modes do not play an important role in the BH evolution, qualifying the above analysis with only the dominant modes. Nonetheless, the subdominant modes are important for the GW beat signature. Below we take l=1l=1 stage as an example. Stages with other values of ll could be analyzed in the same way and we simply present the results in the appendix.

We first study the maximum mass of the subdominant mode. To be consistent in the notation with the derivation of the dominant mode, we define this time as t2(111)t_{2}^{(111)}. Since it must be smaller than t2(011)t_{2}^{(011)}, the GW emission can be safely ignored before t2(111)t_{2}^{(111)}. We first assume it is larger than t1(011)t_{1}^{(011)} when the BH spin reaches the local minimum. If both {0,1,1}\{0,1,1\} and {1,1,1}\{1,1,1\} modes are included, the left side of Eq. (45) should be changed to E˙SR(011)+E˙SR(111)\dot{E}_{\text{SR}}^{(011)}+\dot{E}_{\text{SR}}^{(111)}. At time t2(111)t_{2}^{(111)}, the BH spin equals to ac(111)a_{*\text{c}}^{(111)} given in Eq. (10), causing E˙SR(111)=0\dot{E}_{\text{SR}}^{(111)}=0. On the other hand, E˙SR(011)=2Ms(011)Γ011\dot{E}_{\text{SR}}^{(011)}=2M_{\text{s}}^{(011)}\Gamma_{011}, in which Γ011\Gamma_{011} is given in Eq. (25) and Ms(011)M_{\text{s}}^{(011)} can be estimated by

Ms(011)(α2(111))Ms,1(011)+Ms,Regge(011)(α2(111))Ms,Regge(011)(α1(011)),\displaystyle\begin{split}M_{\text{s}}^{(011)}(\alpha_{2}^{(111)})\approx&{M}_{\mathrm{s,1}}^{(011)}+{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{2}^{(111)})\\ &-{M}_{\mathrm{s,Regge}}^{(011)}(\alpha_{1}^{(011)}),\end{split} (74)

with Ms,Regge(011){M}_{\mathrm{s,Regge}}^{(011)} given in Eq. (46). Then one could solve for the value of α2(111)\alpha_{2}^{(111)} at the LO of α0\alpha_{0}

α2(111)\displaystyle\alpha^{(111)}_{2} (8645μτacc)1/11.\displaystyle\approx\left(\frac{864}{5\mu{\tau}_{\mathrm{acc}}}\right)^{1/11}. (75)

If the obtained α2(111)\alpha_{2}^{(111)} is greater than α1(011)\alpha_{1}^{(011)}, it is consistent with our assumption t2(111)>t1(011)t_{2}^{(111)}>t_{1}^{(011)}. It indicates the evolution follows the {1,1,1}\{1,1,1\} Regge curve between α1(011)\alpha_{1}^{(011)} and α2(111)\alpha_{2}^{(111)}. On the other hand, if t2(111)t_{2}^{(111)} is smaller than t1(011)t_{1}^{(011)}, the evolution quickly crosses the {1,1,1}\{1,1,1\} Regge curve. In this case, the maximum mass of the subdominant mode can be estimated simply by Ms(111)(t1(011))M_{\text{s}}^{(111)}(t_{1}^{(011)}).

The above analysis applies to stages with other values of ll. After identifying the time when the subdominant mode mass reaches its maximum, this maximum mass can be calculated using

Ms,max(1ll)\displaystyle{M}_{\mathrm{s,max}}^{(1ll)} Ms,0(1ll)[Ms(0ll)(t2(1ll))Ms,0(0ll)]β1l/β0l,\displaystyle\approx{M}_{\mathrm{s,0}}^{(1ll)}\left[\frac{{M}_{\mathrm{s}}^{(0ll)}(t_{\text{2}}^{(1ll)})}{{M}_{\mathrm{s,0}}^{(0ll)}}\right]^{\beta_{1l}/\beta_{0l}}, (76)

with

βnl(n+2l+1)!n!(n+l+1)2l+4,\displaystyle\beta_{nl}\equiv\frac{(n+2l+1)!}{n!(n+l+1)^{2l+4}}, (77)

where tmax(1ll)t_{\text{max}}^{(1ll)} is the greater one of t2(1ll)t_{2}^{(1ll)} and t1(0ll)t_{1}^{(0ll)}.

After reaching the maximum mass, the subdominant mode enters the decaying phase and starts to shrink in size. We define t3(1ll)t_{3}^{(1ll)} as the time when the {1,l,l}\{1,l,l\} mode mass decreases to 1/e1/e of its peak value. Two scenarios exist for estimating t3(1ll)t_{3}^{(1ll)}. If the evolution does not follow the {0,l,l}\{0,l,l\} Regge curve, the accretion can be ignored. Then t3(1ll)t1(0ll)t_{3}^{(1ll)}-t_{1}^{(0ll)} could be calculated in the same way as τlife(111)\tau_{\text{life}}^{(111)} explained in Sec. II.2.2. The results with l7l\leq 7 are listed in Eqs. (86). On the other hand, if the evolution follows the {0,l,l}\{0,l,l\} Regge curve, the growth of the BH mass is important. One starts from Eq. (11c) with GW emission ignored. Using a=ac(0ll)a_{*}=a_{*\text{c}}^{(0ll)} given in Eq. (10) and the exponential form of MM given in Eq. (19), one could then integrate Eq. (11c) from t1(0ll)t_{1}^{(0ll)} to t3(1ll)t_{3}^{(1ll)} and obtain an expression similar to Eq. (39). Then it is straightforward to calculate the mass coupling α3(111)\alpha_{3}^{(111)} at time t3(111)t_{3}^{(111)}. Finally, one could solve for t3(111)t_{3}^{(111)} from the evolution of MM on the {0,l,l}\{0,l,l\} Regge curve. The calculation of the M(t)M(t) on any {0,l,l}\{0,l,l\} Regge curve is explained in the previous subsection. For l=1l=1, one arrives at Eq. (54) with α2\alpha_{2} replaced by α3(011)\alpha_{3}^{(011)}.

IV.4 GW emission

We finally discuss the GW emission of each ll-stage and the plausibility of observation by future GW interferometers. In the example presented in Fig. 7, one could observe that the GW emission flux in the l=2l=2 and l=3l=3 stages are comparable to that in the l=1l=1 stage with accretion. It is very different from the case without accretion, in which the GW flux of the l>1l>1 stage is many decades smaller Guo:2022mpr .

To study how accretion affects the GW emission with other parameters, the GW emission fluxes of the dominant modes with l3l\leq 3 and their timescales are plotted as functions of M0μM_{0}\mu in Fig. 8 (a) and (b), with four different accretion rates fEdd{f}_{\mathrm{Edd}}. The analytical approximations of the BH mass MM, cloud mass Ms(0ll)(t)M_{\text{s}}^{(0ll)}(t), and different time scales are utilized. We set the scalar mass as μ=1017\mu=10^{-17} eV, the initial BH spin as a=0.998a_{*}=0.998, and the initial condensate masses for all dominant and subdominant modes as 105M010^{-5}M_{0}. In panel (a), the horizontal line denotes the flux at which the characteristic strain equals the noise characteristic strain of the LISA, with the source located at redshift z=0.1z=0.1, and the observation time as 4 years. The calculations are explained in Refs. Brito:2017zvb ; Guo:2022mpr .

From Fig. 8 (a) and (b), one observes that accretion greatly enhances the GW emission flux, and at the same time reduces the GW duration time for small M0μM_{0}\mu. With the BH mass MM fixed, the small-mass scalars which are undetectable via superradiance without accretion can be observed by LISA with fEddf_{\text{Edd}} as small as 0.01. This finding indicates future GW interferometers like LISA can search for a much larger range of the scalar mass than previously thought. Moreover, it is generally recognized in the literature that each BH undergoes boson annihilation only once in its cosmic history, as subsequent annihilation signals are significantly weaker Brito:2017zvb ; Brito:2017wnc . This is not generally true with accretion. On the one hand, a BH could have multiple boson annihilation in its cosmic history. For example, the lifetimes of the GW emission with fEdd=1f_{\text{Edd}}=1 and α0=0.25\alpha_{0}=0.25 are 2.18×105yr2.18\times 10^{5}\;\mathrm{yr}, 4.94×107yr4.94\times 10^{7}\;\mathrm{yr} and 3.27×107yr3.27\times 10^{7}\;\mathrm{yr} for l=1,2,3l=1,2,3, respectively. The numbers are 2.18×105yr2.18\times 10^{5}\;\mathrm{yr}, 4.89×108yr4.89\times 10^{8}\;\mathrm{yr}, and 3.41×108yr3.41\times 10^{8}\;\mathrm{yr} if fEddf_{\text{Edd}} is changed to 0.1. On the other hand, the GW emission flux with l2l\geq 2 modes could also be observed. This observation could be important in the study of stochastic GW background. We leave such phenomenological studies in future publications.

In Fig. 8 (c) and (d), we further study the GW beat signal strength and its duration. The analytical approximations for the former are listed in App. A, with more details on GW beats given in Ref. Guo:2022mpr . The horizontal line in panel (c) is the same as that in panel (a). Same as the GW flux, the accretion also enhances the beat signal and reduces its duration in each ll-stage. The beat signal without accretion has been carefully studied in Ref. Guo:2022mpr . With accretion, the enhanced beat signal could greatly facilitate the search for light scalars.

Refer to caption
Refer to caption
Figure 8: Panel (a) and (b): the GW fluxes E˙GW(0ll)\dot{E}_{\mathrm{GW}}^{(0ll)} and the time durations of the dominant modes as functions of the initial mass coupling. Panel (c) and (d): the GW beat signatures and their time durations as functions of the initial mass coupling. Curves with different colors are for different l=ml=m modes, indicated by the legends. The solid, dashed, dot-dashed, and dotted curves represent fEdd=0,0.01,0.1{f}_{\mathrm{Edd}}=0,0.01,0.1 and 1, respectively. Other parameters are the scalar mass μ=1017\mu=10^{-17} eV, the initial BH spin a=0.998a_{*}=0.998, and the initial condensate masses Ms,0(nlm)=105M0{M}_{\mathrm{s,0}}^{(nlm)}=10^{-5}M_{0}. The horizontal lines in panels (a) and (c) illustrate the flux at which the characteristic strain equals the noise characteristic strain of the LISA, with the source located at redshift z=0.1z=0.1 and the observation time as 4 years.

V Summary and Discussion

In this work, we provided a thorough analysis of how accretion affects the evolution of a BH-condensate system with scalar superradiance and GW emission. Despite the coexistence of multiple modes with different values of nn and ll, the evolution has a simple and universal pattern. With the small mass-coupling α=Mμ\alpha=M\mu, we obtained analytical approximations of all the important quantities. Compared with numerical results, these approximations agree reasonably well (see Tables 1 and 2). We found that accretion could greatly speed up the mass accumulation and the GW emission, resulting in stronger and shorter GW signal compared to the case without accretion.

In Sec. II, we reviewed the scalar superradiance rate, the evolution of the BH-condensate system without accretion, and the evolution of BHs with only accretion. The capture of photons from the accretion disk is included, resulting in a limiting value of the BH spin alim=0.998a_{*\text{lim}}=0.998. Without superradiance, the BH mass grows exponentially with time and the spin follows the accretion trajectory to alima_{*\text{lim}}. The differential evolution equations with all these effects are provided in Eqs. (11), which serves as the analysis benchmark in the rest of this manuscript.

In Sec. III, we kept only the {0,1,1}\{0,1,1\} mode and study the influence of accretion on this BH-condensate system. Without accretion, the system has two characteristic time scales, i.e., the superradiance time scale τSR\tau_{\text{SR}} and the GW emission time scale τGW\tau_{\text{GW}}. In the presence of accretion, there is an additional accretion time scale τacc\tau_{\text{acc}}, given in Eq. (18). Generally, the evolution could be split into the spin-up, spin-down, attractor, and decaying phases. In each phase, the unimportant effects could be ignored and analytical estimates of the important quantities have been obtained as a series of α\alpha. When τaccτSR\tau_{\text{acc}}\geq\tau_{\text{SR}}, the evolution is strongly affected by the accretion, especially in the parameter space with small initial mass coupling or small initial BH spin. In particular, the condensate accumulates mass as a double exponential function, leading to a much stronger GW signal than that without accretion. The lifetime of the mode and the duration of the GW emission are greatly reduced, which is in agreement with the findings of Ref. Brito:2014wla .

Then in Sec. IV, we generalized the analysis of the single-mode case to that with multiple modes. The {n,l,l}\{n,l,l\} modes with n=0,1n=0,1 and 0l70\leq l\leq 7 are included. The evolution on the Regge plot presents a quite simple and universal pattern. It consists of the parts following along the accretion trajectory or different {0,l,l}\{0,l,l\} Regge trajectories, as well as the transitions between these curves, see Fig. 6. Analytical approximations of the start and end of each transition are provided, which agree reasonably well with the numerical results. Same as the single-mode case, the accretion impact strongly on those modes with superradiance time scale τSR\tau_{\text{SR}} equal to or larger than the accretion time scale τacc\tau_{\text{acc}}. The accretion enhances the magnitude and reduces the duration of the GW emission from these modes.

In this work, we did not consider the back-reaction of the scalar condensate on the spacetime metric as well as the self-interaction of the scalar field. The self-interaction could generate much richer physics in the evolution, such as the bosonova collapse in Refs. Yoshino:2012kn ; Fukuda:2019ewf ; Omiya:2022mwv ; Omiya:2022gwu ; Unal:2023yxt ; Omiya:2024xlz . Moreover, the coexistence of an accretion disk and a scalar condensate may lead to new observational signatures if their interactions exist. It has been shown that interaction between scalar and photons could modify the cosmic microwave background Blas:2020nbs or result in a birefringent effect of the background light Chen:2019fsq ; Chen:2021lvo .

Finally, we have assumed the dominant mode is always more massive than the subdominant one with the same azimuthal number ll. Not considering the unnatural cases in which the subdominant mode has a much larger initial mass, this statement is strictly valid only for l2l\leq 2. For l3l\geq 3, there exists the “overtone mixing” phenomenon which says the superradiance rate of the subdominant mode is larger than the dominant mode in some parameter space. Consequently, the subdominant mode is more massive even when its initial mass is not very large. Next, we argue the above approximations for the BH evolution could still give reasonable results. With overtone mixing, both the dominant and subdominant modes should be kept. Since ω0llω1ll\omega_{0ll}\approx\omega_{1ll}, the second piece on the right side of Eq. (11b) is roughly lω0ll1(E˙SR(0ll)+E˙SR(1ll))-l\,\omega_{0ll}^{-1}\,(\dot{E}_{\text{SR}}^{(0ll)}+\dot{E}_{\text{SR}}^{(1ll)}). The Eq. (11c) for these two modes could also be added. The obtained differential equations are almost the same as Eqs. (11), except the Ms(0ll)M_{\text{s}}^{(0ll)} and E˙SR(0ll)\dot{E}_{\text{SR}}^{(0ll)} are replaced by Ms(0ll)+Ms(1ll)M_{\text{s}}^{(0ll)}+M_{\text{s}}^{(1ll)} and E˙SR(0ll)+E˙SR(1ll)\dot{E}_{\text{SR}}^{(0ll)}+\dot{E}_{\text{SR}}^{(1ll)}, respectively. With these two replacements, the later analysis is unchanged, which results in the same evolution of the BH on the Regge plot. For the l=4l=4 stage, the overtone mixing introduces an additional percentage error of roughly 10%10\% compared to the numerical calculation. Nonetheless, since the dominant and subdominant modes have very different GW emission rates, the GW emission flux will be largely modified with overtone mixing. We leave the related analysis in a future publication.

Acknowledgements

T. Li is supported in part by the National Key Research and Development Program of China Grant No. 2020YFC2201504, by the Projects No. 11875062, No. 11947302, No. 12047503, and No. 12275333 supported by the National Natural Science Foundation of China, by the Key Research Program of the Chinese Academy of Sciences, Grant No. XDPB15, by the Scientific Instrument Developing Project of the Chinese Academy of Sciences, Grant No. YJKYYQ20190049, and by the International Partnership Program of Chinese Academy of Sciences for Grand Challenges, Grant No. 112311KYSB20210012. S-S. Bao and Y-D. Guo and H. Zhang are supported by the National Natural Science Foundation of China (Grants Nos. 12075136 and 124B2098) and the Natural Science Foundation of Shandong Province (Grant No. ZR2020MA094).

Appendix A Some useful formulae

(1) The energy and angular momentum of particles on the innermost stable circular orbit

For particles in the innermost stable circular orbit, the energy per mass EmsE_{\mathrm{ms}}^{\dagger} and angular momentum per mass JmsJ_{\mathrm{ms}}^{\dagger} are given by Bardeen:1970zz ; Bardeen:1972fi

Ems\displaystyle E_{\mathrm{ms}}^{\dagger} =123rms/M,\displaystyle=\sqrt{1-\frac{2}{3r_{\mathrm{ms}}/M}}, (78a)
Jms\displaystyle J_{\mathrm{ms}}^{\dagger} =2M33(1+23rms/M2),\displaystyle=\frac{2M}{3\sqrt{3}}\left(1+2\sqrt{3r_{\mathrm{ms}}/M-2}\right), (78b)

where we take direct orbits, corotating with Jms>0J_{\mathrm{ms}}^{\dagger}>0, and rmsr_{\mathrm{ms}} denotes the radius of the last stable circular orbit

rms/M\displaystyle r_{\mathrm{ms}}/M =3+z2(3z1)(3+z1+2z2),\displaystyle=3+z_{2}-\sqrt{(3-z_{1})(3+z_{1}+2z_{2})}, (79)
z1\displaystyle z_{1} =1+1a23(1+a3+1a3),\displaystyle=1+\sqrt[3]{1-a_{*}^{2}}\left(\sqrt[3]{1+a_{*}}+\sqrt[3]{1-a_{*}}\right), (80)
z2\displaystyle z_{2} =3a2+z12.\displaystyle=\sqrt{3a_{*}^{2}+z_{1}^{2}}. (81)

(2) Leading-order results of GW emission fluxes from dominant modes

The general formula can be written as

E˙GW(0ll)=CGW(0ll)(Ms(0ll)M)2(Mμl)4l+10.\displaystyle\dot{E}_{\mathrm{GW}}^{(0ll)}={C}_{\mathrm{GW}}^{(0ll)}\left(\frac{{M}_{\mathrm{s}}^{(0ll)}}{M}\right)^{2}\left(\frac{M\mu}{l}\right)^{4l+10}. (82)

For l=1l=1 to 7, the corresponding coefficients are:

CGW(011)\displaystyle{C}_{\mathrm{GW}}^{(011)} 2.49×102,\displaystyle\approx 2.49\times 10^{-2}, (83a)
CGW(022)\displaystyle{C}_{\mathrm{GW}}^{(022)} 7.29×102,\displaystyle\approx 7.29\times 10^{-2}, (83b)
CGW(033)\displaystyle{C}_{\mathrm{GW}}^{(033)} 8.97×102,\displaystyle\approx 8.97\times 10^{-2}, (83c)
CGW(044)\displaystyle{C}_{\mathrm{GW}}^{(044)} 4.29,\displaystyle\approx 4.29, (83d)
CGW(055)\displaystyle{C}_{\mathrm{GW}}^{(055)} 2.24×102,\displaystyle\approx 2.24\times 10^{2}, (83e)
CGW(066)\displaystyle{C}_{\mathrm{GW}}^{(066)} 6.45×103,\displaystyle\approx 6.45\times 10^{3}, (83f)
CGW(077)\displaystyle{C}_{\mathrm{GW}}^{(077)} 1.46×105.\displaystyle\approx 1.46\times 10^{5}. (83g)

(3) Leading-order results of the GW beat amplitude

The general formula is

E˙beat(l)=Cbeat(l)(Ms(0ll))3/2(Ms(1ll))1/2M2(Mμl)4l+10,\displaystyle\dot{E}_{\mathrm{beat}}^{(l)}={C}_{\mathrm{beat}}^{(l)}\frac{\left({M}_{\mathrm{s}}^{(0ll)}\right)^{3/2}\left({M}_{\mathrm{s}}^{(1ll)}\right)^{1/2}}{M^{2}}\left(\frac{M\mu}{l}\right)^{4l+10}, (84)

which is valid only when Ms(0ll)>Ms(1ll)M_{\mathrm{s}}^{(0ll)}>M^{(1ll)}_{\mathrm{s}}. For l=1l=1 to 7, the corresponding coefficients are

Cbeat(1)\displaystyle{C}_{\mathrm{beat}}^{(1)} 5.89×102,\displaystyle\approx 5.89\times 10^{-2}, (85a)
Cbeat(2)\displaystyle{C}_{\mathrm{beat}}^{(2)} 2.26×101,\displaystyle\approx 2.26\times 10^{-1}, (85b)
Cbeat(3)\displaystyle{C}_{\mathrm{beat}}^{(3)} 3.33×101,\displaystyle\approx 3.33\times 10^{-1}, (85c)
Cbeat(4)\displaystyle{C}_{\mathrm{beat}}^{(4)} 1.82×101,\displaystyle\approx 1.82\times 10^{1}, (85d)
Cbeat(5)\displaystyle{C}_{\mathrm{beat}}^{(5)} 1.06×103,\displaystyle\approx 1.06\times 10^{3}, (85e)
Cbeat(6)\displaystyle{C}_{\mathrm{beat}}^{(6)} 3.11×104,\displaystyle\approx 3.11\times 10^{4}, (85f)
Cbeat(7)\displaystyle{C}_{\mathrm{beat}}^{(7)} 8.11×105.\displaystyle\approx 8.11\times 10^{5}. (85g)

(4) Leading-order results of subdominant mode lifetimes

The general formula is

τlife(1ll)M=Clife(1ll)(Mμl)4l8.\displaystyle\frac{{\tau}_{\mathrm{life}}^{(1ll)}}{M}={C}_{\mathrm{life}}^{(1ll)}\left(\frac{M\mu}{l}\right)^{-4l-8}. (86)

For l=1l=1 to 7, the corresponding coefficients are

Clife(111)\displaystyle{C}_{\mathrm{life}}^{(111)} 1.63×102,\displaystyle\approx 1.63\times 10^{2}, (87a)
Clife(122)\displaystyle{C}_{\mathrm{life}}^{(122)} 3.88,\displaystyle\approx 3.88, (87b)
Clife(133)\displaystyle{C}_{\mathrm{life}}^{(133)} 4.29×101,\displaystyle\approx 4.29\times 10^{-1}, (87c)
Clife(144)\displaystyle{C}_{\mathrm{life}}^{(144)} 8.26×102,\displaystyle\approx 8.26\times 10^{-2}, (87d)
Clife(155)\displaystyle{C}_{\mathrm{life}}^{(155)} 2.10×102,\displaystyle\approx 2.10\times 10^{-2}, (87e)
Clife(166)\displaystyle{C}_{\mathrm{life}}^{(166)} 6.27×103,\displaystyle\approx 6.27\times 10^{-3}, (87f)
Clife(177)\displaystyle{C}_{\mathrm{life}}^{(177)} 2.09×103.\displaystyle\approx 2.09\times 10^{-3}. (87g)

(5) The condensate mass when the system follows the accretion trajectory

The general formula is given by:

Ms(0ll)=Ms0(0ll)exp{α0(4l+4)μτacc[g0ll(MM0)g0ll(1)]},for 1MM06k.\displaystyle M^{(0ll)}_{\text{s}}=M^{(0ll)}_{\text{s0}}\exp\left\{\alpha_{0}^{(4l+4)}\mu\tau_{\text{acc}}\left[g_{0ll}\left(\frac{M}{M_{0}}\right)-g_{0ll}\left(1\right)\right]\right\},\hskip 14.22636pt\text{for }1\leq\frac{M}{M_{0}}\leq{\sqrt{6}\,k}. (88)

For l=1l=1 to 7, the corresponding expressions for g0llg_{0ll} are

g011(x)\displaystyle g_{011}(x)\equiv 136[1353k(216k4+36k2x2+5x4)z3+276kx72α0x93],\displaystyle\frac{1}{36}\left[\frac{1}{35}\sqrt{3}k\left(216k^{4}+36k^{2}x^{2}+5x^{4}\right)z^{3}+\frac{2}{7}\sqrt{6}kx^{7}-\frac{2\alpha_{0}x^{9}}{3}\right], (89a)
g022(x)1.11×105α0x13+k(2.15×1053.68×104kα0)x11+k2(2.97×104zα07.58×106)x10+k3(5.24×1045.78×104kα0)x9+k4(2.97×104zα08.45×104)x8+3.64×103k5x7+k6(7.45×1043.06×103zα0)x6+k7z(1.35×1023.3×102kα0)x4+k9z(1.61×1013.96×101kα0)x2+k11z(2.917.13kα0),\displaystyle\begin{split}g_{022}(x)\equiv&-1.11\times 10^{-5}\alpha_{0}x^{13}+k\left(2.15\times 10^{-5}-3.68\times 10^{-4}k\alpha_{0}\right)x^{11}+k^{2}\left(2.97\times 10^{-4}z\alpha_{0}-7.58\times 10^{-6}\right)x^{10}\\ &+k^{3}\left(5.24\times 10^{-4}-5.78\times 10^{-4}k\alpha_{0}\right)x^{9}+k^{4}\left(-2.97\times 10^{-4}z\alpha_{0}-8.45\times 10^{-4}\right)x^{8}+3.64\times 10^{-3}k^{5}x^{7}\\ &+k^{6}\left(7.45\times 10^{-4}-3.06\times 10^{-3}z\alpha_{0}\right)x^{6}+k^{7}z\left(1.35\times 10^{-2}-3.3\times 10^{-2}k\alpha_{0}\right)x^{4}\\ &+k^{9}z\left(1.61\times 10^{-1}-3.96\times 10^{-1}k\alpha_{0}\right)x^{2}+k^{11}z\left(2.91-7.13k\alpha_{0}\right),\end{split} (89b)
g033(x)1.82×109α0x17+k(5.06×1091.78×107kα0)x15+k2(1.44×107zα01.79×109)x14+k3(3.6×1079.85×107kα0)x13+k4(3.26×106zα05.85×107)x12+k5(9.49×1072.07×105kα0)x11+k6(1.37×106zα01.02×105)x10+k7(9.45×1054.96×106kα0)x9+k8(4.24×105zα02.16×105)x8+7.81×105k9x7+k10(2.03×1044.36×104zα0)x6+k11z(2.26×1034.71×103kα0)x4+k13z(2.72×1025.65×102kα0)x2+k15z(4.89×1011.02kα0),\displaystyle\begin{split}g_{033}(x)\equiv&-1.82\times 10^{-9}\alpha_{0}x^{17}+k\left(5.06\times 10^{-9}-1.78\times 10^{-7}k\alpha_{0}\right)x^{15}+k^{2}\left(1.44\times 10^{-7}z\alpha_{0}-1.79\times 10^{-9}\right)x^{14}\\ &+k^{3}\left(3.6\times 10^{-7}-9.85\times 10^{-7}k\alpha_{0}\right)x^{13}+k^{4}\left(3.26\times 10^{-6}z\alpha_{0}-5.85\times 10^{-7}\right)x^{12}\\ &+k^{5}\left(9.49\times 10^{-7}-2.07\times 10^{-5}k\alpha_{0}\right)x^{11}+k^{6}\left(1.37\times 10^{-6}z\alpha_{0}-1.02\times 10^{-5}\right)x^{10}\\ &+k^{7}\left(9.45\times 10^{-5}-4.96\times 10^{-6}k\alpha_{0}\right)x^{9}+k^{8}\left(-4.24\times 10^{-5}z\alpha_{0}-2.16\times 10^{-5}\right)x^{8}\\ &+7.81\times 10^{-5}k^{9}x^{7}+k^{10}\left(2.03\times 10^{-4}-4.36\times 10^{-4}z\alpha_{0}\right)x^{6}+k^{11}z\left(2.26\times 10^{-3}-4.71\times 10^{-3}k\alpha_{0}\right)x^{4}\\ &+k^{13}z\left(2.72\times 10^{-2}-5.65\times 10^{-2}k\alpha_{0}\right)x^{2}+k^{15}z\left(4.89\times 10^{-1}-1.02k\alpha_{0}\right),\end{split} (89c)
g044(x)1.15×1013α0x21+k(4.15×10132.23×1011kα0)x19+k2(1.8×1011zα01.47×1013)x18+k3(5.81×10112.85×1010kα0)x17+k4(1.17×109zα09.44×1011)x16+k5(2.6×109kα02.51×1010)x15+k6(9.61×109zα04.68×109)x14+k7(1.2×1081.02×107kα0)x13+k8(4.31×108zα03.89×108)x12+k9(4.62×1071.73×107kα0)x11+k10(1.69×107zα02.91×107)x10+k11(1.53×1061.62×108kα0)x9+k12(7.46×1071.97×106zα0)x8+4.77×107k13x7+k14(1.16×1052.03×105zα0)x6+k15z(1.26×1042.19×104kα0)x4+k17z(1.51×1032.62×103kα0)x2+k19z(2.72×1024.72×102kα0),\displaystyle\begin{split}g_{044}(x)\equiv&-1.15\times 10^{-13}\alpha_{0}x^{21}+k\left(4.15\times 10^{-13}-2.23\times 10^{-11}k\alpha_{0}\right)x^{19}+k^{2}\left(1.8\times 10^{-11}z\alpha_{0}-1.47\times 10^{-13}\right)x^{18}\\ &+k^{3}\left(5.81\times 10^{-11}-2.85\times 10^{-10}k\alpha_{0}\right)x^{17}+k^{4}\left(1.17\times 10^{-9}z\alpha_{0}-9.44\times 10^{-11}\right)x^{16}\\ &+k^{5}\left(-2.6\times 10^{-9}k\alpha_{0}-2.51\times 10^{-10}\right)x^{15}+k^{6}\left(9.61\times 10^{-9}z\alpha_{0}-4.68\times 10^{-9}\right)x^{14}\\ &+k^{7}\left(1.2\times 10^{-8}-1.02\times 10^{-7}k\alpha_{0}\right)x^{13}+k^{8}\left(4.31\times 10^{-8}z\alpha_{0}-3.89\times 10^{-8}\right)x^{12}\\ &+k^{9}\left(4.62\times 10^{-7}-1.73\times 10^{-7}k\alpha_{0}\right)x^{11}+k^{10}\left(-1.69\times 10^{-7}z\alpha_{0}-2.91\times 10^{-7}\right)x^{10}\\ &+k^{11}\left(1.53\times 10^{-6}-1.62\times 10^{-8}k\alpha_{0}\right)x^{9}+k^{12}\left(7.46\times 10^{-7}-1.97\times 10^{-6}z\alpha_{0}\right)x^{8}\\ &+4.77\times 10^{-7}k^{13}x^{7}+k^{14}\left(1.16\times 10^{-5}-2.03\times 10^{-5}z\alpha_{0}\right)x^{6}+k^{15}z\left(1.26\times 10^{-4}-2.19\times 10^{-4}k\alpha_{0}\right)x^{4}\\ &+k^{17}z\left(1.51\times 10^{-3}-2.62\times 10^{-3}k\alpha_{0}\right)x^{2}+k^{19}z\left(2.72\times 10^{-2}-4.72\times 10^{-2}k\alpha_{0}\right),\end{split} (89d)
g055(x)3.38×1018α0x25+k(1.5×10171.08×1015kα0)x23+kz(8.75×1016kα05.3×1018)x22+k3(3.46×10152.53×1014kα0)x21+k4(1.1×1013zα05.62×1015)x20+k5(4.84×1013kα04.87×1014)x19+k6(2.32×1012zα05.37×1013)x18+k7(1.31×1011kα04.27×1012)x17+k8(1.79×1011zα09.76×1012)x16+k9(6.77×10111.63×1010kα0)x15+k9z(1.32×1010kα01.04×1010)x14+k11(8.35×10108.03×1010kα0)x13+k12(1.41×1010zα08.63×1010)x12+k13(6.29×1094.9×1010kα0)x11+k14(4.01×109zα01.15×1010)x10+k15(7.07×1092.45×1011kα0)x9+k16(2.61×1084.07×108zα0)x8+1.16×109k17x7+k18(2.82×1074.18×107zα0)x6+k19z(3.04×1064.52×106kα0)x4+k21z(3.65×1055.42×105kα0)x2+k23z(6.57×1049.76×104kα0),\displaystyle\begin{split}g_{055}(x)\equiv&-3.38\times 10^{-18}\alpha_{0}x^{25}+k\left(1.5\times 10^{-17}-1.08\times 10^{-15}k\alpha_{0}\right)x^{23}+kz\left(8.75\times 10^{-16}k\alpha_{0}-5.3\times 10^{-18}\right)x^{22}\\ &+k^{3}\left(3.46\times 10^{-15}-2.53\times 10^{-14}k\alpha_{0}\right)x^{21}+k^{4}\left(1.1\times 10^{-13}z\alpha_{0}-5.62\times 10^{-15}\right)x^{20}\\ &+k^{5}\left(4.84\times 10^{-13}k\alpha_{0}-4.87\times 10^{-14}\right)x^{19}+k^{6}\left(2.32\times 10^{-12}z\alpha_{0}-5.37\times 10^{-13}\right)x^{18}\\ &+k^{7}\left(-1.31\times 10^{-11}k\alpha_{0}-4.27\times 10^{-12}\right)x^{17}+k^{8}\left(1.79\times 10^{-11}z\alpha_{0}-9.76\times 10^{-12}\right)x^{16}\\ &+k^{9}\left(6.77\times 10^{-11}-1.63\times 10^{-10}k\alpha_{0}\right)x^{15}+k^{9}z\left(1.32\times 10^{-10}k\alpha_{0}-1.04\times 10^{-10}\right)x^{14}\\ &+k^{11}\left(8.35\times 10^{-10}-8.03\times 10^{-10}k\alpha_{0}\right)x^{13}+k^{12}\left(-1.41\times 10^{-10}z\alpha_{0}-8.63\times 10^{-10}\right)x^{12}\\ &+k^{13}\left(6.29\times 10^{-9}-4.9\times 10^{-10}k\alpha_{0}\right)x^{11}+k^{14}\left(-4.01\times 10^{-9}z\alpha_{0}-1.15\times 10^{-10}\right)x^{10}\\ &+k^{15}\left(7.07\times 10^{-9}-2.45\times 10^{-11}k\alpha_{0}\right)x^{9}+k^{16}\left(2.61\times 10^{-8}-4.07\times 10^{-8}z\alpha_{0}\right)x^{8}+1.16\times 10^{-9}k^{17}x^{7}\\ &+k^{18}\left(2.82\times 10^{-7}-4.18\times 10^{-7}z\alpha_{0}\right)x^{6}+k^{19}z\left(3.04\times 10^{-6}-4.52\times 10^{-6}k\alpha_{0}\right)x^{4}\\ &+k^{21}z\left(3.65\times 10^{-5}-5.42\times 10^{-5}k\alpha_{0}\right)x^{2}+k^{23}z\left(6.57\times 10^{-4}-9.76\times 10^{-4}k\alpha_{0}\right),\end{split} (89e)
g066(x)5.24×1023α0x29+k(2.76×10222.5×1020kα0)x27+kz(2.02×1020kα09.75×1023)x26+k3(9.47×10209.3×1019kα0)x25+k4(4.16×1018zα01.54×1019)x24+k5(5.65×1017kα02.53×1018)x23+k6(1.63×1016zα02.39×1017)x22+k7(5.08×1016kα05.38×1016)x21+k8(1.93×1015zα07.64×1016)x20+k9(1.65×1014kα03.51×1015)x19+k10(2.5×1014zα09.49×1015)x18+k11(7.75×10141.57×1013kα0)x17+k12(1.56×1013zα01.69×1013)x16+k13(1.03×10121.19×1012kα0)x15+k14(1.99×1013zα01.14×1012)x14+k15(9.33×10122.×1012kα0)x13+k16(3.97×1012zα02.95×1012)x12+k17(2.36×10116.26×1013kα0)x11+k18(2.64×10114.35×1011zα0)x10+k19(1.34×10111.94×1014kα0)x9+k20(3.35×10104.36×1010zα0)x8+1.34×1012k21x7+k22(3.47×1094.48×109zα0)x6+k23z(3.74×1084.84×108kα0)x4+k25z(4.49×1075.81×107kα0)x2+k27z(8.08×1061.05×105kα0),\displaystyle\begin{split}g_{066}(x)\equiv&-5.24\times 10^{-23}\alpha_{0}x^{29}+k\left(2.76\times 10^{-22}-2.5\times 10^{-20}k\alpha_{0}\right)x^{27}+kz\left(2.02\times 10^{-20}k\alpha_{0}-9.75\times 10^{-23}\right)x^{26}\\ &+k^{3}\left(9.47\times 10^{-20}-9.3\times 10^{-19}k\alpha_{0}\right)x^{25}+k^{4}\left(4.16\times 10^{-18}z\alpha_{0}-1.54\times 10^{-19}\right)x^{24}\\ &+k^{5}\left(5.65\times 10^{-17}k\alpha_{0}-2.53\times 10^{-18}\right)x^{23}+k^{6}\left(1.63\times 10^{-16}z\alpha_{0}-2.39\times 10^{-17}\right)x^{22}\\ &+k^{7}\left(5.08\times 10^{-16}k\alpha_{0}-5.38\times 10^{-16}\right)x^{21}+k^{8}\left(1.93\times 10^{-15}z\alpha_{0}-7.64\times 10^{-16}\right)x^{20}\\ &+k^{9}\left(-1.65\times 10^{-14}k\alpha_{0}-3.51\times 10^{-15}\right)x^{19}+k^{10}\left(2.5\times 10^{-14}z\alpha_{0}-9.49\times 10^{-15}\right)x^{18}\\ &+k^{11}\left(7.75\times 10^{-14}-1.57\times 10^{-13}k\alpha_{0}\right)x^{17}+k^{12}\left(1.56\times 10^{-13}z\alpha_{0}-1.69\times 10^{-13}\right)x^{16}\\ &+k^{13}\left(1.03\times 10^{-12}-1.19\times 10^{-12}k\alpha_{0}\right)x^{15}+k^{14}\left(1.99\times 10^{-13}z\alpha_{0}-1.14\times 10^{-12}\right)x^{14}\\ &+k^{15}\left(9.33\times 10^{-12}-2.\times 10^{-12}k\alpha_{0}\right)x^{13}+k^{16}\left(-3.97\times 10^{-12}z\alpha_{0}-2.95\times 10^{-12}\right)x^{12}\\ &+k^{17}\left(2.36\times 10^{-11}-6.26\times 10^{-13}k\alpha_{0}\right)x^{11}+k^{18}\left(2.64\times 10^{-11}-4.35\times 10^{-11}z\alpha_{0}\right)x^{10}\\ &+k^{19}\left(1.34\times 10^{-11}-1.94\times 10^{-14}k\alpha_{0}\right)x^{9}+k^{20}\left(3.35\times 10^{-10}-4.36\times 10^{-10}z\alpha_{0}\right)x^{8}\\ &+1.34\times 10^{-12}k^{21}x^{7}+k^{22}\left(3.47\times 10^{-9}-4.48\times 10^{-9}z\alpha_{0}\right)x^{6}+k^{23}z\left(3.74\times 10^{-8}-4.84\times 10^{-8}k\alpha_{0}\right)x^{4}\\ &+k^{25}z\left(4.49\times 10^{-7}-5.81\times 10^{-7}k\alpha_{0}\right)x^{2}+k^{27}z\left(8.08\times 10^{-6}-1.05\times 10^{-5}k\alpha_{0}\right),\end{split} (89f)
g077(x)4.69×1028α0x33+k(2.85×10273.13×1025kα0)x31+k2(2.53×1025zα01.01×1027)x30+k3(1.36×10241.69×1023kα0)x29+k4(7.67×1023zα02.22×1024)x28+k5(1.94×1021kα05.76×1023)x27+k6(4.78×1021zα05.07×1022)x26+k7(7.37×1020kα02.09×1020)x25+k8(8.34×1020zα02.52×1020)x24+k9(2.36×1020kα05.43×1019)x23+k10(1.18×1018zα03.57×1019)x22+k11(7.24×1018kα07.36×1019)x21+k12(1.85×1017zα07.52×1018)x20+k13(2.94×10171.15×1016kα0)x19+k14(1.12×1016zα01.33×1016)x18+k15(8.8×10168.31×1016kα0)x17+k15z(3.39×1016kα09.62×1016)x16+k17(7.05×10152.63×1015kα0)x15+k18(1.84×1015zα03.78×1015)x14+k19(2.92×10142.19×1015kα0)x13+k20(1.06×10142.69×1014zα0)x12+k21(3.64×10144.18×1016kα0)x11+k21z(2.25×10132.68×1013kα0)x10+k23(1.24×10148.81×1018kα0)x9+k23z(2.34×10122.68×1012kα0)x8+8.42×1016k25x7+k26(2.4×10112.75×1011zα0)x6+k27z(2.6×10102.97×1010kα0)x4+k29z(3.11×1093.57×109kα0)x2+k31z(5.61×1086.42×108kα0),\displaystyle\begin{split}g_{077}(x)\equiv&-4.69\times 10^{-28}\alpha_{0}x^{33}+k\left(2.85\times 10^{-27}-3.13\times 10^{-25}k\alpha_{0}\right)x^{31}+k^{2}\left(2.53\times 10^{-25}z\alpha_{0}-1.01\times 10^{-27}\right)x^{30}\\ &+k^{3}\left(1.36\times 10^{-24}-1.69\times 10^{-23}k\alpha_{0}\right)x^{29}+k^{4}\left(7.67\times 10^{-23}z\alpha_{0}-2.22\times 10^{-24}\right)x^{28}\\ &+k^{5}\left(1.94\times 10^{-21}k\alpha_{0}-5.76\times 10^{-23}\right)x^{27}+k^{6}\left(4.78\times 10^{-21}z\alpha_{0}-5.07\times 10^{-22}\right)x^{26}\\ &+k^{7}\left(7.37\times 10^{-20}k\alpha_{0}-2.09\times 10^{-20}\right)x^{25}+k^{8}\left(8.34\times 10^{-20}z\alpha_{0}-2.52\times 10^{-20}\right)x^{24}\\ &+k^{9}\left(-2.36\times 10^{-20}k\alpha_{0}-5.43\times 10^{-19}\right)x^{23}+k^{10}\left(1.18\times 10^{-18}z\alpha_{0}-3.57\times 10^{-19}\right)x^{22}\\ &+k^{11}\left(-7.24\times 10^{-18}k\alpha_{0}-7.36\times 10^{-19}\right)x^{21}+k^{12}\left(1.85\times 10^{-17}z\alpha_{0}-7.52\times 10^{-18}\right)x^{20}\\ &+k^{13}\left(2.94\times 10^{-17}-1.15\times 10^{-16}k\alpha_{0}\right)x^{19}+k^{14}\left(1.12\times 10^{-16}z\alpha_{0}-1.33\times 10^{-16}\right)x^{18}\\ &+k^{15}\left(8.8\times 10^{-16}-8.31\times 10^{-16}k\alpha_{0}\right)x^{17}+k^{15}z\left(3.39\times 10^{-16}k\alpha_{0}-9.62\times 10^{-16}\right)x^{16}\\ &+k^{17}\left(7.05\times 10^{-15}-2.63\times 10^{-15}k\alpha_{0}\right)x^{15}+k^{18}\left(-1.84\times 10^{-15}z\alpha_{0}-3.78\times 10^{-15}\right)x^{14}\\ &+k^{19}\left(2.92\times 10^{-14}-2.19\times 10^{-15}k\alpha_{0}\right)x^{13}+k^{20}\left(1.06\times 10^{-14}-2.69\times 10^{-14}z\alpha_{0}\right)x^{12}\\ &+k^{21}\left(3.64\times 10^{-14}-4.18\times 10^{-16}k\alpha_{0}\right)x^{11}+k^{21}z\left(2.25\times 10^{-13}-2.68\times 10^{-13}k\alpha_{0}\right)x^{10}\\ &+k^{23}\left(1.24\times 10^{-14}-8.81\times 10^{-18}k\alpha_{0}\right)x^{9}+k^{23}z\left(2.34\times 10^{-12}-2.68\times 10^{-12}k\alpha_{0}\right)x^{8}\\ &+8.42\times 10^{-16}k^{25}x^{7}+k^{26}\left(2.4\times 10^{-11}-2.75\times 10^{-11}z\alpha_{0}\right)x^{6}+k^{27}z\left(2.6\times 10^{-10}-2.97\times 10^{-10}k\alpha_{0}\right)x^{4}\\ &+k^{29}z\left(3.11\times 10^{-9}-3.57\times 10^{-9}k\alpha_{0}\right)x^{2}+k^{31}z\left(5.61\times 10^{-8}-6.42\times 10^{-8}k\alpha_{0}\right),\end{split} (89g)

where z9k2x2z\equiv\sqrt{9k^{2}-x^{2}}.

(6) Approximate formulae for the mass couplings when the system leaves the accretion trajectory and merges onto the {0,l,l}\{0,l,l\} Regge trajectory

If only accretion and the {0,l,l}\{0,l,l\} mode exist, the mass couplings when the system leaves the accretion trajectory can be estimated by:

α0(011)\displaystyle\alpha_{0^{\prime}}^{(011)} =(2432τaccμ)1/8[W0(24/932/3Ms,04/3τacc1/3μ5/3eα08τaccμ2432)]1/8,\displaystyle=\left(\frac{2^{4}3^{2}}{\tau_{\mathrm{acc}}\mu}\right)^{{1}/{8}}\left[W_{0}\left(2^{{4}/{9}}3^{{2}/{3}}M_{\text{s,0}}^{-{4}/{3}}\tau_{\text{acc}}^{-{1}/{3}}\mu^{-{5}/{3}}e^{\frac{\alpha_{0}^{8}\tau_{\mathrm{acc}}\mu}{2^{4}3^{2}}}\right)\right]^{{1}/{8}}, (90a)
α0(022)\displaystyle\alpha_{0^{\prime}}^{(022)} =(3115227τaccμ)1/12[W0(217/5317/554/5Ms,06/5τacc1/5μ7/5e27α012τaccμ31152)]1/12,\displaystyle=\left(\frac{3^{11}5^{2}}{2^{7}\tau_{\mathrm{acc}}\mu}\right)^{1/12}\left[W_{0}\left(2^{-17/5}3^{17/5}5^{-4/5}M_{\mathrm{s,0}}^{-6/5}\tau_{\mathrm{acc}}^{-1/5}\mu^{-7/5}e^{\frac{2^{7}\alpha_{0}^{12}\tau_{\mathrm{acc}}\mu}{3^{11}5^{2}}}\right)\right]^{1/12}, (90b)
α0(033)\displaystyle\alpha_{0^{\prime}}^{(033)} =(217537233τaccμ)1/16[W0(25/333/753/776/7Ms,08/7τacc1/7μ9/7e33α016τaccμ2175372)]1/16,\displaystyle=\left(\frac{2^{17}5^{3}7^{2}}{3^{3}\tau_{\mathrm{acc}}\mu}\right)^{1/16}\left[W_{0}\left(2^{5/3}3^{-3/7}5^{3/7}7^{-6/7}M_{\mathrm{s,0}}^{-8/7}\tau_{\mathrm{acc}}^{-1/7}\mu^{-9/7}e^{\frac{3^{3}\alpha_{0}^{16}\tau_{\mathrm{acc}}\mu}{2^{17}5^{3}7^{2}}}\right)\right]^{1/16}, (90c)
α0(044)\displaystyle\alpha_{0^{\prime}}^{(044)} =(3851573220τaccμ)1/20[W0(2140/2732/955/371/3Ms,010/9τacc1/9μ11/9e220α020τaccμ3851573)]1/20,\displaystyle=\left(\frac{3^{8}5^{15}7^{3}}{2^{20}\tau_{\mathrm{acc}}\mu}\right)^{1/20}\left[W_{0}\left(2^{-140/27}3^{-2/9}5^{5/3}7^{1/3}M_{\mathrm{s,0}}^{-10/9}\tau_{\mathrm{acc}}^{-1/9}\mu^{-11/9}e^{\frac{2^{20}\alpha_{0}^{20}\tau_{\mathrm{acc}}\mu}{3^{8}5^{15}7^{3}}}\right)\right]^{1/20}, (90d)
α0(055)\displaystyle\alpha_{0^{\prime}}^{(055)} =(2113247311257τaccμ)1/24[W0(23/11336/11519/1173/111110/11Ms,012/11τacc1/11μ13/11e57α024τaccμ21132473112)]1/24,\displaystyle=\left(\frac{2^{11}3^{24}7^{3}11^{2}}{5^{7}\tau_{\mathrm{acc}}\mu}\right)^{1/24}\left[W_{0}\left(2^{3/11}3^{36/11}5^{-19/11}7^{3/11}11^{-10/11}M_{\mathrm{s,0}}^{-12/11}\tau_{\mathrm{acc}}^{-1/11}\mu^{-13/11}e^{\frac{5^{7}\alpha_{0}^{24}\tau_{\mathrm{acc}}\mu}{2^{11}3^{24}7^{3}11^{2}}}\right)\right]^{1/24}, (90e)
α0(066)\displaystyle\alpha_{0^{\prime}}^{(066)} =(5471911313221632τaccμ)1/28[W0(54/13719/13113/132118/3932/131312/13Ms,014/13τacc1/13μ15/13e21632α028τaccμ54719113132)]1/28,\displaystyle=\left(\frac{5^{4}7^{19}11^{3}13^{2}}{2^{16}3^{2}\tau_{\mathrm{acc}}\mu}\right)^{1/28}\left[W_{0}\left(\frac{5^{4/13}7^{19/13}11^{3/13}}{2^{118/39}3^{2/13}13^{12/13}}M_{\mathrm{s,0}}^{-14/13}\tau_{\mathrm{acc}}^{-1/13}\mu^{-15/13}e^{\frac{2^{16}3^{2}\alpha_{0}^{28}\tau_{\mathrm{acc}}\mu}{5^{4}7^{19}11^{3}13^{2}}}\right)\right]^{1/28}, (90f)
α0(077)\displaystyle\alpha_{0^{\prime}}^{(077)} =(25031356113133711τaccμ)1/32[W0(2118/45313/15111/5131/552/379/5Ms,016/15τacc1/15μ17/15e711α032τaccμ25031356113133)]1/32.\displaystyle=\left(\frac{2^{50}3^{13}5^{6}11^{3}13^{3}}{7^{11}\tau_{\mathrm{acc}}\mu}\right)^{1/32}\left[W_{0}\left(\frac{2^{118/45}3^{13/15}11^{1/5}13^{1/5}}{5^{2/3}7^{9/5}}M_{\mathrm{s,0}}^{-16/15}\tau_{\mathrm{acc}}^{-1/15}\mu^{-17/15}e^{\frac{7^{11}\alpha_{0}^{32}\tau_{\mathrm{acc}}\mu}{2^{50}3^{13}5^{6}11^{3}13^{3}}}\right)\right]^{1/32}. (90g)

The corresponding mass couplings when merges onto the {0,l,l}\{0,l,l\} Regge trajectory are given by:

α1(011)\displaystyle\alpha_{1}^{(011)} =[243τaccμW1(Ms04τaccμ5a04243eα08τaccμ243)]1/8,\displaystyle=\left[-\frac{2^{4}3}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{4}\tau_{\mathrm{acc}}\mu^{5}a_{*0^{\prime}}^{-4}}{2^{4}3}e^{-\frac{\alpha_{0^{\prime}}^{8}\tau_{\mathrm{acc}}\mu}{2^{4}3}}\right)\right]^{1/8}, (91)
α1(022)\displaystyle\alpha_{1}^{(022)} =[273115τaccμW1(Ms06τaccμ7a062133115eα012τaccμ273115)]1/12,\displaystyle=\left[-\frac{2^{-7}3^{11}5}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{6}\tau_{\mathrm{acc}}\mu^{7}a_{*0^{\prime}}^{-6}}{2^{-13}3^{11}5}e^{-\frac{\alpha_{0^{\prime}}^{12}\tau_{\mathrm{acc}}\mu}{2^{-7}3^{11}5}}\right)\right]^{1/12}, (92)
α1(033)\displaystyle\alpha_{1}^{(033)} =[21733537τaccμW1(Ms08τaccμ9a08217311537eα016τaccμ21733537)]1/16,\displaystyle=\left[-\frac{2^{17}3^{-3}5^{3}7}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{8}\tau_{\mathrm{acc}}\mu^{9}a_{*0^{\prime}}^{-8}}{2^{17}3^{-11}5^{3}7}e^{-\frac{\alpha_{0^{\prime}}^{16}\tau_{\mathrm{acc}}\mu}{2^{17}3^{-3}5^{3}7}}\right)\right]^{1/16}, (93)
α1(044)\displaystyle\alpha_{1}^{(044)} =[2203651573τaccμW1(Ms010τaccμ11a0102403651573eα020τaccμ2203651573)]1/20,\displaystyle=\left[-\frac{2^{-20}3^{6}5^{15}7^{3}}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{10}\tau_{\mathrm{acc}}\mu^{11}a_{*0^{\prime}}^{-10}}{2^{-40}3^{6}5^{15}7^{3}}e^{-\frac{\alpha_{0^{\prime}}^{20}\tau_{\mathrm{acc}}\mu}{2^{-20}3^{6}5^{15}7^{3}}}\right)\right]^{1/20}, (94)
α1(055)\displaystyle\alpha_{1}^{(055)} =[211324577311τaccμW1(Ms012τaccμ13a0122113245197311eα024τaccμ211324577311)]1/24,\displaystyle=\left[-\frac{2^{11}3^{24}5^{-7}7^{3}11}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{12}\tau_{\mathrm{acc}}\mu^{13}a_{*0^{\prime}}^{-12}}{2^{11}3^{24}5^{-19}7^{3}11}e^{-\frac{\alpha_{0^{\prime}}^{24}\tau_{\mathrm{acc}}\mu}{2^{11}3^{24}5^{-7}7^{3}11}}\right)\right]^{1/24}, (95)
α1(066)\displaystyle\alpha_{1}^{(066)} =[216325471911313τaccμW1(Ms014τaccμ15a0142303165471911313eα028τaccμ216325471911313)]1/28,\displaystyle=\left[-\frac{2^{-16}3^{-2}5^{4}7^{19}11^{3}13}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{14}\tau_{\mathrm{acc}}\mu^{15}a_{*0^{\prime}}^{-14}}{2^{-30}3^{-16}5^{4}7^{19}11^{3}13}e^{-\frac{\alpha_{0^{\prime}}^{28}\tau_{\mathrm{acc}}\mu}{2^{-16}3^{-2}5^{4}7^{19}11^{3}13}}\right)\right]^{1/28}, (96)
α1(077)\displaystyle\alpha_{1}^{(077)} =[25031255711113133τaccμW1(Ms016τaccμ17a01625031255727113133eα032τaccμ25031255711113133)]1/32.\displaystyle=\left[-\frac{2^{50}3^{12}5^{5}7^{-11}11^{3}13^{3}}{\tau_{\mathrm{acc}}\mu}W_{-1}\left(-\frac{M_{\mathrm{s0^{\prime}}}^{16}\tau_{\mathrm{acc}}\mu^{17}a_{*0^{\prime}}^{-16}}{2^{50}3^{12}5^{5}7^{-27}11^{3}13^{3}}e^{-\frac{\alpha_{0^{\prime}}^{32}\tau_{\mathrm{acc}}\mu}{2^{50}3^{12}5^{5}7^{-11}11^{3}13^{3}}}\right)\right]^{1/32}. (97)

(7) Approximate formulae for superradiant energy fluxes of dominant modes in attractor phases

The general formula for the first two orders is given by:

E˙SR(0ll)=αMτacc[3l32312l2α+𝒪(α2)].\displaystyle\dot{E}_{\mathrm{SR}}^{(0ll)}=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{3}{l}\sqrt{\frac{3}{2}}-\frac{31}{2l^{2}}\alpha+\mathcal{O}(\alpha^{2})\right]. (98)

For l=1l=1 to 7, the approximate formulae including higher order are provided:

E˙SR(011)\displaystyle\dot{E}_{\mathrm{SR}}^{(011)} =αMτacc[33231α2+787α28620305α3216+1564549α434566+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[3\sqrt{\frac{3}{2}}-\frac{31\alpha}{2}+\frac{787\alpha^{2}}{8\sqrt{6}}-\frac{20305\alpha^{3}}{216}+\frac{1564549\alpha^{4}}{3456\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99a)
E˙SR(022)\displaystyle\dot{E}_{\mathrm{SR}}^{(022)} =αMτacc[332231α8+651632α29743α31728+223999α4172806+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{3\sqrt{\frac{3}{2}}}{2}-\frac{31\alpha}{8}+\frac{65}{16}\sqrt{\frac{3}{2}}\alpha^{2}-\frac{9743\alpha^{3}}{1728}+\frac{223999\alpha^{4}}{17280\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99b)
E˙SR(033)\displaystyle\dot{E}_{\mathrm{SR}}^{(033)} =αMτacc[3231α18+3103α2864675955α369984+151571899α4940584966+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\sqrt{\frac{3}{2}}-\frac{31\alpha}{18}+\frac{3103\alpha^{2}}{864\sqrt{6}}-\frac{75955\alpha^{3}}{69984}+\frac{151571899\alpha^{4}}{94058496\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99c)
E˙SR(044)\displaystyle\dot{E}_{\mathrm{SR}}^{(044)} =αMτacc[332431α32+4831α232006233279α3691200+5079739α4138240006+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{3\sqrt{\frac{3}{2}}}{4}-\frac{31\alpha}{32}+\frac{4831\alpha^{2}}{3200\sqrt{6}}-\frac{233279\alpha^{3}}{691200}+\frac{5079739\alpha^{4}}{13824000\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99d)
E˙SR(055)\displaystyle\dot{E}_{\mathrm{SR}}^{(055)} =αMτacc[332531α50+25732α2100018433α3135000+13894871α41188000006+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{3\sqrt{\frac{3}{2}}}{5}-\frac{31\alpha}{50}+\frac{257\sqrt{\frac{3}{2}}\alpha^{2}}{1000}-\frac{18433\alpha^{3}}{135000}+\frac{13894871\alpha^{4}}{118800000\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99e)
E˙SR(066)\displaystyle\dot{E}_{\mathrm{SR}}^{(066)} =αMτacc[32231α72+9427α2211686447455α36858432+1205216951α4262129271046+𝒪(α5)],\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{\sqrt{\frac{3}{2}}}{2}-\frac{31\alpha}{72}+\frac{9427\alpha^{2}}{21168\sqrt{6}}-\frac{447455\alpha^{3}}{6858432}+\frac{1205216951\alpha^{4}}{26212927104\sqrt{6}}+\mathcal{O}(\alpha^{5})\right], (99f)
E˙SR(077)\displaystyle\dot{E}_{\mathrm{SR}}^{(077)} =αMτacc[332731α98+12295α2439046290131α38297856+1554440081α4743487897606+𝒪(α5)].\displaystyle=\frac{\alpha M}{{\tau}_{\mathrm{acc}}}\left[\frac{3\sqrt{\frac{3}{2}}}{7}-\frac{31\alpha}{98}+\frac{12295\alpha^{2}}{43904\sqrt{6}}-\frac{290131\alpha^{3}}{8297856}+\frac{1554440081\alpha^{4}}{74348789760\sqrt{6}}+\mathcal{O}(\alpha^{5})\right]. (99g)

(8) Approximate formulae for the condensate mass of dominant modes in attractor phases

The general formula for the first two orders is given by:

Ms,Regge(0ll)=α2α0[32l3223l2α+𝒪(α2)].\displaystyle{M}_{\mathrm{s,Regge}}^{(0ll)}=\frac{\alpha^{2}}{\alpha_{0}}\left[\frac{3}{2l}\sqrt{\frac{3}{2}}-\frac{2}{3l^{2}}\alpha+\mathcal{O}(\alpha^{2})\right]. (100)

For l=1l=1 to 7, the approximate formulae including higher order are provided:

Ms,Regge(011)\displaystyle{M}_{\mathrm{s,Regge}}^{(011)} =α2α0(32322α3473α2326223α3270+999421α4207366),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{3}{2}\sqrt{\frac{3}{2}}-\frac{2\alpha}{3}-\frac{473\alpha^{2}}{32\sqrt{6}}-\frac{223\alpha^{3}}{270}+\frac{999421\alpha^{4}}{20736\sqrt{6}}\right), (101a)
Ms,Regge(022)\displaystyle{M}_{\mathrm{s,Regge}}^{(022)} =α2α0(3432α65832α2α327+1313α48106),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{3}{4}\sqrt{\frac{3}{2}}-\frac{\alpha}{6}-\frac{5}{8}\sqrt{\frac{3}{2}}\alpha^{2}-\frac{\alpha^{3}}{27}+\frac{1313\alpha^{4}}{810\sqrt{6}}\right), (101b)
Ms,Regge(033)\displaystyle{M}_{\mathrm{s,Regge}}^{(033)} =α2α0(12322α271937α234566487α387480+125563483α45643509766),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{1}{2}\sqrt{\frac{3}{2}}-\frac{2\alpha}{27}-\frac{1937\alpha^{2}}{3456\sqrt{6}}-\frac{487\alpha^{3}}{87480}+\frac{125563483\alpha^{4}}{564350976\sqrt{6}}\right), (101c)
Ms,Regge(044)\displaystyle{M}_{\mathrm{s,Regge}}^{(044)} =α2α0(3832α24761α232006151α3108000+561893α4103680006),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{3}{8}\sqrt{\frac{3}{2}}-\frac{\alpha}{24}-\frac{761\alpha^{2}}{3200\sqrt{6}}-\frac{151\alpha^{3}}{108000}+\frac{561893\alpha^{4}}{10368000\sqrt{6}}\right), (101d)
Ms,Regge(055)\displaystyle{M}_{\mathrm{s,Regge}}^{(055)} =α2α0(310322α7516332α2400079α3168750+2577331α41425600006),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{3}{10}\sqrt{\frac{3}{2}}-\frac{2\alpha}{75}-\frac{163\sqrt{\frac{3}{2}}\alpha^{2}}{4000}-\frac{79\alpha^{3}}{168750}+\frac{2577331\alpha^{4}}{142560000\sqrt{6}}\right), (101e)
Ms,Regge(066)\displaystyle{M}_{\mathrm{s,Regge}}^{(066)} =α2α0(1432α54751α2105846101α3535815+9044053α412287309586),\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{1}{4}\sqrt{\frac{3}{2}}-\frac{\alpha}{54}-\frac{751\alpha^{2}}{10584\sqrt{6}}-\frac{101\alpha^{3}}{535815}+\frac{9044053\alpha^{4}}{1228730958\sqrt{6}}\right), (101f)
Ms,Regge(077)\displaystyle{M}_{\mathrm{s,Regge}}^{(077)} =α2α0(314322α1477865α21756166179α32074464+1534182161α44460927385606).\displaystyle=\frac{\alpha^{2}}{\alpha_{0}}\left(\frac{3}{14}\sqrt{\frac{3}{2}}-\frac{2\alpha}{147}-\frac{7865\alpha^{2}}{175616\sqrt{6}}-\frac{179\alpha^{3}}{2074464}+\frac{1534182161\alpha^{4}}{446092738560\sqrt{6}}\right). (101g)

(9) Approximate formulae for the mass corrections of dominant modes

δMs(011)\displaystyle\delta{M}_{\mathrm{s}}^{(011)} =3(484+9π2)α216μ τacc327680α05.24×103μτaccα0α16,\displaystyle=-\frac{3\left(484+9\pi^{2}\right)\alpha_{2}^{16}\text{$\mu$ }\tau_{\text{acc}}}{327680\alpha_{0}}\approx-5.24\times 10^{-3}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{16}, (102a)
δMs(022)\displaystyle\delta{M}_{\mathrm{s}}^{(022)} =(1024+49π2)α220μ τacc128566206720α01.17×108μτaccα0α20,\displaystyle=-\frac{\left(1024+49\pi^{2}\right)\alpha_{2}^{20}\text{$\mu$ }\tau_{\text{acc}}}{128566206720\alpha_{0}}\approx-1.17\times 10^{-8}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{20}, (102b)
δMs(033)\displaystyle\delta{M}_{\mathrm{s}}^{(033)} =11α224μ τacc246230475079680α04.47×1014μτaccα0α24,\displaystyle=-\frac{11\alpha_{2}^{24}\text{$\mu$ }\tau_{\text{acc}}}{246230475079680\alpha_{0}}\approx-4.47\times 10^{-14}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{24}, (102c)
δMs(044)\displaystyle\delta{M}_{\mathrm{s}}^{(044)} =(16777216+2029052025π2)α228μ τacc2791851562500000000000000000α07.18×1018μτaccα0α28,\displaystyle=-\frac{\left(16777216+2029052025\pi^{2}\right)\alpha_{2}^{28}\text{$\mu$ }\tau_{\text{acc}}}{2791851562500000000000000000\alpha_{0}}\approx-7.18\times 10^{-18}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{28}, (102d)
δMs(055)\displaystyle\delta{M}_{\mathrm{s}}^{(055)} =7(210453397504+480020337225π2)α232μ τacc34079635094274801587650648080384000α01.02×1021μτaccα0α32,\displaystyle=-\frac{7\left(210453397504+480020337225\pi^{2}\right)\alpha_{2}^{32}\text{$\mu$ }\tau_{\text{acc}}}{34079635094274801587650648080384000\alpha_{0}}\approx-1.02\times 10^{-21}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{32}, (102e)
δMs(066)\displaystyle\delta{M}_{\mathrm{s}}^{(066)} =(53876069761024+91415073021129π2)α236μ τacc16320026746151167744397770322620658483200α05.86×1026μτaccα0α36,\displaystyle=-\frac{\left(53876069761024+91415073021129\pi^{2}\right)\alpha_{2}^{36}\text{$\mu$ }\tau_{\text{acc}}}{16320026746151167744397770322620658483200\alpha_{0}}\approx-5.86\times 10^{-26}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{36}, (102f)
δMs(077)\displaystyle\delta{M}_{\mathrm{s}}^{(077)} =6171(17592186044416+28821275417025π2)α240μ τacc961449231303759399228736679876164935336171929600α01.94×1030μτaccα0α40.\displaystyle=-\frac{6171\left(17592186044416+28821275417025\pi^{2}\right)\alpha_{2}^{40}\text{$\mu$ }\tau_{\text{acc}}}{961449231303759399228736679876164935336171929600\alpha_{0}}\approx-1.94\times 10^{-30}\frac{\mu{\tau}_{\mathrm{acc}}}{\alpha_{0}}\alpha^{40}. (102g)

(10) Approximate formulae for the mass couplings when the BH mergers onto the l>lcl>l_{c} Regge trajectory from the the Regge trajectory of the previous stage

α1(022)\displaystyle\alpha_{1}^{(022)} {531227τaccμW1[27τaccμ3125(Ms0(022)μe27(α1(011))13τaccμ311513)13/3]}1/13,\displaystyle\approx\left\{-\frac{5\cdot 3^{12}}{2^{7}\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{2}^{7}\tau_{\mathrm{acc}}\mu}{{3}^{12}\cdot{5}}\left(M_{\mathrm{s0}}^{(022)}\mu e^{-\frac{{2}^{7}\left(\alpha_{1}^{(011)}\right)^{13}\tau_{\mathrm{acc}}\mu}{{3}^{11}\cdot{5}\cdot{13}}}\right)^{{13}/{3}}\right]\right\}^{{1}/{13}}, (103a)
α1(033)\displaystyle\alpha_{1}^{(033)} {21333537τaccμW1[325/3τaccμ256/3537(Ms0(033)μe(α1(022))17τaccμ2133253717)17/3]}1/17,\displaystyle\approx\left\{-\frac{{2}^{13}\cdot{3}^{3}\cdot{5}^{3}\cdot{7}}{\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{3}^{25/3}\tau_{\mathrm{acc}}\mu}{{2}^{56/3}\cdot{5}^{3}\cdot{7}}\left(M_{\mathrm{s0}}^{(033)}\mu e^{-\frac{\left(\alpha_{1}^{(022)}\right)^{17}\tau_{\mathrm{acc}}\mu}{{2}^{13}\cdot{3}^{2}\cdot{5}^{3}\cdot{7}\cdot{17}}}\right)^{{17}/{3}}\right]\right\}^{{1}/{17}}, (103b)
α1(044)\displaystyle\alpha_{1}^{(044)} {3651573211τaccμW1[2253τaccμ51573(Ms0(044)μe211(α1(033))21τaccμ3651574)7]}1/21,\displaystyle\approx\left\{-\frac{{3}^{6}\cdot{5}^{15}\cdot{7}^{3}}{{2}^{11}\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{2}^{25}\cdot{3}\tau_{\mathrm{acc}}\mu}{{5}^{15}\cdot{7}^{3}}\left(M_{\mathrm{s0}}^{(044)}\mu e^{-\frac{{2}^{11}\left(\alpha_{1}^{(033)}\right)^{21}\tau_{\mathrm{acc}}\mu}{{3}^{6}\cdot{5}^{15}\cdot{7}^{4}}}\right)^{7}\right]\right\}^{{1}/{21}}, (103c)
α1(055)\displaystyle\alpha_{1}^{(055)} {24323527311τaccμW1[544/3τaccμ243237311(Ms0(055)μe(α1(044))25τaccμ24322547311)25/3]}1/25,\displaystyle\approx\left\{-\frac{{2}^{4}\cdot{3}^{23}\cdot{5}^{2}\cdot{7}^{3}\cdot{11}}{\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{5}^{44/3}\tau_{\mathrm{acc}}\mu}{{2}^{4}\cdot{3}^{23}\cdot{7}^{3}\cdot{11}}\left(M_{\mathrm{s0}}^{(055)}\mu e^{-\frac{\left(\alpha_{1}^{(044)}\right)^{25}\tau_{\mathrm{acc}}\mu}{{2}^{4}\cdot{3}^{22}\cdot{5}^{4}\cdot{7}^{3}\cdot{11}}}\right)^{{25}/{3}}\right]\right\}^{{1}/{25}}, (103d)
α1(066)\displaystyle\alpha_{1}^{(066)} {385371911313214τaccμW1[214334/3520/3τaccμ71911313(Ms0(066)μe214(α1(055))29τaccμ37537191131329)29/3]}1/29,\displaystyle\approx\left\{-\frac{{3}^{8}\cdot{5}^{3}\cdot{7}^{19}\cdot{11}^{3}\cdot{13}}{{2}^{14}\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{2}^{14}\cdot{3}^{34/3}\cdot{5}^{20/3}\tau_{\mathrm{acc}}\mu}{{7}^{19}\cdot{11}^{3}\cdot{13}}\left(M_{\mathrm{s0}}^{(066)}\mu e^{-\frac{{2}^{14}\left(\alpha_{1}^{(055)}\right)^{29}\tau_{\mathrm{acc}}\mu}{{3}^{7}\cdot{5}^{3}\cdot{7}^{19}\cdot{11}^{3}\cdot{13}\cdot{29}}}\right)^{{29}/{3}}\right]\right\}^{{1}/{29}}, (103e)
α1(077)\displaystyle\alpha_{1}^{(077)} {2403105372113133τaccμW1[3720τaccμ25153113133(Ms0(077)μe(α1(066))33τaccμ2403105372113133)33/3]}1/33\displaystyle\approx\left\{-\frac{{2}^{40}\cdot{3}^{10}\cdot{5}^{3}\cdot{7}^{2}\cdot{11}^{3}\cdot{13}^{3}}{\tau_{\mathrm{acc}}\mu}W_{-1}\left[-\frac{{3}\cdot{7}^{20}\tau_{\mathrm{acc}}\mu}{{2}^{51}\cdot{5}^{3}\cdot{11}^{3}\cdot{13}^{3}}\left(M_{\mathrm{s0}}^{(077)}\mu e^{-\frac{\left(\alpha_{1}^{(066)}\right)^{33}\tau_{\mathrm{acc}}\mu}{{2}^{40}\cdot{3}^{10}\cdot{5}^{3}\cdot{7}^{2}\cdot{11}^{3}\cdot{13}^{3}}}\right)^{{33}/{3}}\right]\right\}^{{1}/{33}} (103f)

(11) Approximate formulae for the mass couplings when Ms(0ll)/M{M}_{\mathrm{s}}^{(0ll)}/M reaches its maximum

α2(011)\displaystyle\alpha_{2}^{(011)} =(512069π2μτacc+484μτacc)1/141.24×(μτacc)1/14\displaystyle=\left(\frac{5120\sqrt{6}}{9\pi^{2}\mu\tau_{\text{acc}}+484\mu\tau_{\text{acc}}}\right)^{1/14}\approx 1.24\times\left(\mu\tau_{\text{acc}}\right)^{-1/14} (104a)
α2(022)\displaystyle\alpha_{2}^{(022)} =(2410616376649π2μτacc+1024μτacc)1/182.32×(μτacc)1/18,\displaystyle=\left(\frac{2410616376\sqrt{6}}{49\pi^{2}\mu\tau_{\text{acc}}+1024\mu\tau_{\text{acc}}}\right)^{1/18}\approx 2.32\times\left(\mu\tau_{\text{acc}}\right)^{-1/18}, (104b)
α2(033)\displaystyle\alpha_{2}^{(033)} =(2564900782080611μτacc)1/223.42×(μτacc)1/22,\displaystyle=\left(\frac{2564900782080\sqrt{6}}{11\mu\tau_{\text{acc}}}\right)^{1/22}\approx 3.42\times\left(\mu\tau_{\text{acc}}\right)^{-1/22}, (104c)
α2(044)\displaystyle\alpha_{2}^{(044)} =(1869543457031250000000000062029052025π2μτacc+16777216μτacc)1/263.90×(μτacc)1/26,\displaystyle=\left(\frac{18695434570312500000000000\sqrt{6}}{2029052025\pi^{2}\mu\tau_{\text{acc}}+16777216\mu\tau_{\text{acc}}}\right)^{1/26}\approx 3.90\times\left(\mu\tau_{\text{acc}}\right)^{-1/26}, (104d)
α2(055)\displaystyle\alpha_{2}^{(055)} =(15974828950441313244211241287680063360142360575π2μτacc+1473173782528μτacc)1/304.32×(μτacc)1/30,\displaystyle=\left(\frac{159748289504413132442112412876800\sqrt{6}}{3360142360575\pi^{2}\mu\tau_{\text{acc}}+1473173782528\mu\tau_{\text{acc}}}\right)^{1/30}\approx 4.32\times\left(\mu\tau_{\text{acc}}\right)^{-1/30}, (104e)
α2(066)\displaystyle\alpha_{2}^{(066)} =(51000083581722399201243032258189557760023274245219063387π2μτacc+161628209283072μτacc)1/344.80×(μτacc)1/34,\displaystyle=\left(\frac{510000835817223992012430322581895577600\sqrt{\frac{2}{3}}}{274245219063387\pi^{2}\mu\tau_{\text{acc}}+161628209283072\mu\tau_{\text{acc}}}\right)^{1/34}\approx 4.80\times\left(\mu\tau_{\text{acc}}\right)^{-1/34}, (104f)
α2(077)\displaystyle\alpha_{2}^{(077)} =(858436813664070892168514892746575835121582080659285363532820425π2μτacc+36187126693363712μτacc)1/385.30×(μτacc)1/38.\displaystyle=\left(\frac{858436813664070892168514892746575835121582080\sqrt{6}}{59285363532820425\pi^{2}\mu\tau_{\text{acc}}+36187126693363712\mu\tau_{\text{acc}}}\right)^{1/38}\approx 5.30\times\left(\mu\tau_{\text{acc}}\right)^{-1/38}. (104g)

(12) Approximate formulae for the mass couplings when Ms(1ll){M}_{\mathrm{s}}^{(1ll)} reaches its maximum

α2(111)\displaystyle\alpha_{2}^{(111)} =(8645μτacc)1/111.60×(μτacc)1/11\displaystyle=\left(\frac{864}{5\mu\tau_{\text{acc}}}\right)^{1/11}\approx 1.60\times\left(\mu\tau_{\text{acc}}\right)^{-1/11} (105a)
α2(022)\displaystyle\alpha_{2}^{(022)} =(797161514μτacc)1/152.42×(μτacc)1/15,\displaystyle=\left(\frac{7971615}{14\mu\tau_{\text{acc}}}\right)^{1/15}\approx 2.42\times\left(\mu\tau_{\text{acc}}\right)^{-1/15}, (105b)
α2(033)\displaystyle\alpha_{2}^{(033)} =(5734400000μτacc)1/193.26×(μτacc)1/19,\displaystyle=\left(\frac{5734400000}{\mu\tau_{\text{acc}}}\right)^{1/19}\approx 3.26\times\left(\mu\tau_{\text{acc}}\right)^{-1/19}, (105c)
α2(044)\displaystyle\alpha_{2}^{(044)} =(1907707214355468751408μτacc)1/234.12×(μτacc)1/23,\displaystyle=\left(\frac{190770721435546875}{1408\mu\tau_{\text{acc}}}\right)^{1/23}\approx 4.12\times\left(\mu\tau_{\text{acc}}\right)^{-1/23}, (105d)
α2(055)\displaystyle\alpha_{2}^{(055)} =(8354356066559653920013μτacc)1/274.97×(μτacc)1/27,\displaystyle=\left(\frac{83543560665596539200}{13\mu\tau_{\text{acc}}}\right)^{1/27}\approx 4.97\times\left(\mu\tau_{\text{acc}}\right)^{-1/27}, (105e)
α2(066)\displaystyle\alpha_{2}^{(066)} =(3522717206931951526602604564μτacc)1/315.83×(μτacc)1/31,\displaystyle=\left(\frac{35227172069319515266026045}{64\mu\tau_{\text{acc}}}\right)^{1/31}\approx 5.83\times\left(\mu\tau_{\text{acc}}\right)^{-1/31}, (105f)
α2(077)\displaystyle\alpha_{2}^{(077)} =(133961208963391639163555020800017μτacc)1/356.69×(μτacc)1/35.\displaystyle=\left(\frac{1339612089633916391635550208000}{17\mu\tau_{\text{acc}}}\right)^{1/35}\approx 6.69\times\left(\mu\tau_{\text{acc}}\right)^{-1/35}. (105g)

References

  • (1) R. Brito, V. Cardoso and P. Pani, Physics,” Lect. Notes Phys. 906, pp.1-237 (2015) 2020, ISBN 978-3-319-18999-4, 978-3-319-19000-6, 978-3-030-46621-3, 978-3-030-46622-0 [arXiv:1501.06570 [gr-qc]].
  • (2) S. Weinberg, Phys. Rev. Lett. 40, 223-226 (1978)
  • (3) F. Wilczek, Phys. Rev. Lett. 40, 279-282 (1978)
  • (4) A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, Phys. Rev. D 81, 123530 (2010) [arXiv:0905.4720 [hep-th]].
  • (5) Y. Chen, J. Shu, X. Xue, Q. Yuan and Y. Zhao, Phys. Rev. Lett. 124, no.6, 061102 (2020) [arXiv:1905.02213 [hep-ph]].
  • (6) Y. Chen, Y. Liu, R. S. Lu, Y. Mizuno, J. Shu, X. Xue, Q. Yuan and Y. Zhao, Nature Astron. 6, no.5, 592-598 (2022) [arXiv:2105.04572 [hep-ph]].
  • (7) D. Blas and S. J. Witte, Phys. Rev. D 102, no.10, 103018 (2020) [arXiv:2009.10074 [astro-ph.CO]].
  • (8) A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026 (2011) [arXiv:1004.3558 [hep-th]].
  • (9) H. Yoshino and H. Kodama, PTEP 2014, 043E02 (2014) [arXiv:1312.2326 [gr-qc]].
  • (10) H. Yoshino and H. Kodama, PTEP 2015, no.6, 061E01 (2015) [arXiv:1407.2030 [gr-qc]].
  • (11) A. Arvanitaki, M. Baryakhtar and X. Huang, Phys. Rev. D 91, no.8, 084011 (2015) [arXiv:1411.2263 [hep-ph]].
  • (12) A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky and R. Lasenby, Phys. Rev. D 95, no.4, 043001 (2017) [arXiv:1604.03958 [hep-ph]].
  • (13) R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein and P. Pani, Phys. Rev. Lett. 119, no.13, 131101 (2017) [arXiv:1706.05097 [gr-qc]].
  • (14) R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein and P. Pani, Phys. Rev. D 96, no.6, 064050 (2017) [arXiv:1706.06311 [gr-qc]].
  • (15) M. Baryakhtar, R. Lasenby and M. Teo, Phys. Rev. D 96, no.3, 035019 (2017) [arXiv:1704.05081 [hep-ph]].
  • (16) Y. d. Guo, S. s. Bao and H. Zhang, Phys. Rev. D 107, no.7, 075009 (2023) [arXiv:2212.07186 [gr-qc]].
  • (17) V. Cardoso, Ó. J. C. Dias, G. S. Hartnett, M. Middleton, P. Pani and J. E. Santos, JCAP 03, 043 (2018) [arXiv:1801.01420 [gr-qc]].
  • (18) N. Fernandez, A. Ghalsasi and S. Profumo, [arXiv:1911.07862 [hep-ph]].
  • (19) K. K. Y. Ng, O. A. Hannuksela, S. Vitale and T. G. F. Li, Phys. Rev. D 103, no.6, 063010 (2021) [arXiv:1908.02312 [gr-qc]].
  • (20) K. K. Y. Ng, S. Vitale, O. A. Hannuksela and T. G. F. Li, Phys. Rev. Lett. 126, no.15, 151102 (2021) [arXiv:2011.06010 [gr-qc]].
  • (21) L. d. Cheng, H. Zhang and S. s. Bao, Phys. Rev. D 107, no.6, 063021 (2023) [arXiv:2201.11338 [gr-qc]].
  • (22) R. Brito, V. Cardoso and P. Pani, Class. Quant. Grav. 32, no.13, 134001 (2015) [arXiv:1411.0686 [gr-qc]].
  • (23) H. Fukuda and K. Nakayama, JHEP 01, 128 (2020) [arXiv:1910.06308 [hep-ph]].
  • (24) L. Hui, Y. T. A. Law, L. Santoni, G. Sun, G. M. Tomaselli and E. Trincherini, Phys. Rev. D 107, no.10, 104018 (2023) [arXiv:2208.06408 [gr-qc]].
  • (25) C. Ünal, [arXiv:2301.08267 [hep-ph]].
  • (26) R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967)
  • (27) D. Baumann, H. S. Chia, J. Stout and L. ter Haar, JCAP 12, 006 (2019) [arXiv:1908.10370 [gr-qc]].
  • (28) S. L. Detweiler, Phys. Rev. D 22, 2323-2326 (1980)
  • (29) S. Bao, Q. Xu and H. Zhang, Phys. Rev. D 106, no.6, 064016 (2022) [arXiv:2201.10941 [gr-qc]].
  • (30) S. R. Dolan, Phys. Rev. D 76, 084001 (2007) [arXiv:0705.2880 [gr-qc]].
  • (31) N. Siemonsen and W. E. East, Phys. Rev. D 101, no.2, 024019 (2020) [arXiv:1910.09476 [gr-qc]].
  • (32) K. S. Thorne, Astrophys. J. 191, 507-520 (1974)
  • (33) D. N. Page and K. S. Thorne, Astrophys. J. 191, 499-506 (1974)
  • (34) E. E. Salpeter, Astrophys. J. 140, 796-800 (1964)
  • (35) B. B. Godfrey, Phys. Rev. D 1, 2721-2725 (1970)
  • (36) H. Yoshino and H. Kodama, Prog. Theor. Phys. 128, 153-190 (2012) [arXiv:1203.5070 [gr-qc]].
  • (37) H. Omiya, T. Takahashi and T. Tanaka, PTEP 2022, no.4, 043E03 (2022) [arXiv:2201.04382 [gr-qc]].
  • (38) H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, JCAP 06, 016 (2023) [arXiv:2211.01949 [gr-qc]].
  • (39) H. Omiya, T. Takahashi, T. Tanaka and H. Yoshino, Phys. Rev. D 110, no.4, 044002 (2024) [arXiv:2404.16265 [gr-qc]].
  • (40) J. M. Bardeen, Nature 226, 64-65 (1970)
  • (41) J. M. Bardeen, W. H. Press and S. A. Teukolsky, Astrophys. J. 178, 347 (1972)