This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The excluded minors for GF(5)\mathrm{GF}(5)-representable matroids on ten elements

Nick Brettell School of Mathematics and Statistics
Victoria University of Wellington
New Zealand
nick.brettell@vuw.ac.nz
Abstract.

Mayhew and Royle (2008) showed that there are 564564 excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids having at most 99 elements. We enumerate the excluded minors for GF(5)\mathrm{GF}(5)-representable matroids having 1010 elements: there are precisely 2128 such excluded minors. In the process we find, for each i{2,3,4}i\in\{2,3,4\}, the excluded minors for the class of i\mathbb{H}_{i}-representable matroids having at most 1010 elements, and the excluded minors for the class of 5\mathbb{H}_{5}-representable matroids having at most 1313 elements.

Supported by the ERC consolidator grant 617951, and the New Zealand Marsden Fund.

1. Introduction

The excluded-minor characterisations for binary, ternary, and quaternary matroids are seminal results in matroid theory: there are 1, 4, and 7 excluded minors for these classes, respectively [25, 24, 3, 14]. For the class of matroids representable over GF(5)\mathrm{GF}(5), the excluded-minor characterisation is not known. However, in 2008 Mayhew and Royle enumerated all matroids on at most nine elements, and thereby found that there are precisely 564 excluded minors on at most nine elements [16].

These days, one can easily enumerate all 383172 matroids on at most nine elements on their home computer should they wish111For example, see the MatroidUnion blog post here: http://matroidunion.org/?p=301., but enumerating all 1010-element matroids still appears well out of reach (Mayhew and Royle estimate there are at least 2.5×10122.5\times 10^{12} sparse paving matroids with rank 5 and 1010 elements [16]). However, here we enumerate all those that are excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids.

Theorem 1.1.

There are 21282128 excluded minors for GF(5)\mathrm{GF}(5)-representability on 1010 elements.

Our approach to find these excluded minors uses the theory of Hydra-ii partial fields developed by Pendavingh and van Zwam [21]. A 33-connected matroid representable over GF(5)\mathrm{GF}(5) has at most six inequivalent representations [20]. Let MM be a 33-connected matroid with a U2,5U_{2,5}- or U3,5U_{3,5}-minor. Pendavingh and van Zwam showed that, for each i{1,2,3,4,5,6}i\in\{1,2,3,4,5,6\}, there is a partial field i\mathbb{H}_{i} such that MM is i\mathbb{H}_{i}-representable if and only if MM has at least ii inequivalent representations over GF(5)\mathrm{GF}(5). In particular, 1=GF(5)\mathbb{H}_{1}=\mathrm{GF}(5). Moreover, 5=6\mathbb{H}_{5}=\mathbb{H}_{6}; that is, if MM has at least five inequivalent representations over GF(5)\mathrm{GF}(5), then it has precisely six. For i{1,2,3,4}i\in\{1,2,3,4\}, let 𝒩i\mathcal{N}_{i} be the set of excluded minors for the class of i+1\mathbb{H}_{i+1}-representable matroids that are i\mathbb{H}_{i}-representable. Then, the matroids in 𝒩i\mathcal{N}_{i} are strong stabilizers for the class of i\mathbb{H}_{i}-representable matroids [26]; loosely speaking, this means that when considering a 33-connected matroid MM in this class with some matroid NN in 𝒩i\mathcal{N}_{i} as a minor, then a representation of NN uniquely extends to a representation of MM. Thus, using this theory, one can first find the excluded minors for 5\mathbb{H}_{5}-representability on at most 1010 elements, then let 𝒩4\mathcal{N}_{4} be those that are 4\mathbb{H}_{4}-representable, and then use these as seeds in order to find the excluded minors for 4\mathbb{H}_{4}-representability on at most 1010 elements. This process can then be repeated to find the excluded minors for 3\mathbb{H}_{3}-representability on at most 1010 elements. After two further iterations, one obtains the excluded minors for 1\mathbb{H}_{1}-representability on at most 1010 elements, and these are the excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids, just under another name.

As a slightly more subtle point, note that when an excluded minor NN for the class of i\mathbb{H}_{i}-representable matroids is GF(5)\mathrm{GF}(5)-representable, for some i{2,3,4,5}i\in\{2,3,4,5\}, it need not be i1\mathbb{H}_{i-1}-representable. For example, F7F_{7}^{-} is an excluded minor for 5\mathbb{H}_{5}-representable matroids that is 2\mathbb{H}_{2}-representable, but not 3\mathbb{H}_{3}- or 4\mathbb{H}_{4}-representable. In this case, where NN is j\mathbb{H}_{j}-representable, for some j<i1j<i-1, but is not j+1\mathbb{H}_{j+1}-representable, NN is an excluded minor for the class of \mathbb{H}_{\ell}-representable matroids for each {j+1,j+2,,i}\ell\in\{j+1,j+2,\dotsc,i\}, and, in particular, it is a member of 𝒩j\mathcal{N}_{j}, so will be used as a seed to find excluded minors for the class of j\mathbb{H}_{j}-representable matroids.

The resolution of Rota’s conjecture [12] guarantees that there is a finite number of excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids. There are certainly excluded minors for this class on more than 10 elements; in particular, there is an excluded minor on 12 elements, on 14 elements, and on 16 elements [8]. It is natural to ask the value of finding an incomplete list of excluded minors. For the excluded-minor characterisations of representable matroids that are currently known exactly, the excluded minors have at most 8 elements [14, 15, 7], and there are at most 17 of them in total [7], so there is little that can be gleaned regarding how one might expect the excluded minors of increasing sizes to be distributed. However, in light of Theorem 1.1, it seems likely that so far we have only discovered the tip of the iceberg (whereas one could have been a little bit more optimistic if only aware of those on at most 9 elements). With effort, or more computing power, one might be able to extend the search beyond 10 elements, but reaching (or exceeding) 16 elements appears a long way off. Nonetheless, in the author’s opinion, it is worthwhile to explore how bad things might be, and there is precedent for doing this for minor-closed classes of graphs having similarly unwieldy excluded-minor characterisations [28, 17].

More concretely, a component of this work, when combined with [7], gets us tantalisingly close to a complete list of the excluded-minors for the class of 5\mathbb{H}_{5}-representable matroids. It turns out that the class of 5\mathbb{H}_{5}-representable matroids is closely related to another well-studied class. For an integer k2k\geq 2, the class of kk-regular matroids is an algebraic generalisation of the class of regular and near-regular matroids, where regular matroids correspond to 0-regular matroids, and near-regular matroids correspond to 11-regular matroids (a formal definition of these classes is given in Section 2). Although the class of near-regular matroids coincides with the class of matroids representable over all fields of size at least three [27], the class of 22-regular matroids is a proper subclass of matroids representable over all fields of size at least four [23]. However, the class of 33-regular matroids coincides with the class of 5\mathbb{H}_{5}-representable matroids [7]. Thus, attempts to discover the excluded minors for 5\mathbb{H}_{5}-representable matroids can equivalently be viewed as attempts to discover the excluded minors for 33-regular matroids.

Brettell, Oxley, Semple, and Whittle showed that an excluded minor for the class of 22-regular matroids, or for the class of 33-regular matroids, has at most 1515 elements [7]. Brettell and Pendavingh computed the excluded minors for the class of 22-regular matroids of size at most 1515 [8]. Thus, an excluded-minor characterisation for the class of 22-regular matroids is now known, and this is an important step towards understanding matroids representable over all fields of size at least four.

To find the excluded minors for GF(5)\mathrm{GF}(5)-representability of size at most 1010, using the approach described earlier, the first step is to find the excluded minors for the class of 5\mathbb{H}_{5}-representable matroids of size at most 1010. However, to complement the aforementioned known bound on an excluded minor for the class of 5\mathbb{H}_{5}-representable matroids, we extend our search beyond matroids of size 1010. We do not quite match the bound of 1515, however; we find all excluded minors for the class having at most 1313 elements.

Theorem 1.2.

There are exactly 3333 matroids that are excluded minors for the class of 5\mathbb{H}_{5}-representable matroids and have at most 1313 elements.

Descriptions of these 3333 matroids appear in Section 4 (see Theorem 4.5).

For Theorem 1.1, we borrow from the approach taken in [8]; however, to find the excluded minors for GF(5)\mathrm{GF}(5)-representability of size at most 1010, the computational techniques we require are less advanced, since we are only dealing with matroids of size at most 1010. On the other hand, as we are dealing with much larger sets of excluded minors and stabilizers, careful book-keeping is required. For Theorem 1.2, the more advanced techniques employed in [8] become useful; in particular, when considering matroids of size n11n\geq 11, we can dramatically speed up the computations by only considering compatible pairs of extensions of matroids of size n2n-2 (rather than all extensions of matroids of size n1n-1). For this approach to be exhaustive while only keeping track of 33-connected matroids with a certain NN-minor, we require a splitter theorem for NN-detachable pairs [9]. Moreover, there are particular 1212-element matroids for which we cannot guarantee the existence of NN-detachable pairs; we study these further, to show they are not excluded minors for the class of 5\mathbb{H}_{5}-representable matroids.

One final observation from this work is that an excluded-minor characterisation for 4\mathbb{H}_{4}-representable matroids, though extremely difficult, could perhaps also be achievable, putting it in a similar category to dyadic matroids and matroids representable over all fields of size at least four.

This paper is structured as follows. In the next section, we review partial fields, stabilizers, and other related notions that we need to describe the methodology, and argue the correctness, of our approach. In the two subsequent sections, we consider the innermost layer of the Hydra hierarchy, 5\mathbb{H}_{5}-representable matroids. First, we study 1212-element matroids that have no NN-detachable pairs, in Section 3. Then, in Section 4, we obtain the excluded minors for the class of 5\mathbb{H}_{5}-representable matroids on at most 1313 elements. In Section 5, we consider the excluded minors for the remaining layers of the Hydra hierarchy: that is, the class of i\mathbb{H}_{i}-representable matroids for i{1,2,3,4}i\in\{1,2,3,4\}. We finish with some final remarks in Section 6, including the observation that each Hydra partial field is universal.

Our notation and terminology follows Oxley [18], unless specified otherwise. We note that some of the results of this paper have also appeared, informally, on the MatroidUnion blog222See http://matroidunion.org/?p=3815..

2. Preliminaries

For a matroid MM and a set of matroids 𝒩\mathcal{N}, we say that MM has an 𝒩\mathcal{N}-minor if MM has a minor isomorphic to NN for some N𝒩N\in\mathcal{N}.

Partial fields

A partial field is a pair (R,G)(R,G), where RR is a commutative ring with unity, and GG is a subgroup of the group of units of RR such that 1G-1\in G. Note that (𝔽,𝔽)(\mathbb{F},\mathbb{F}^{*}) is a partial field for any field 𝔽\mathbb{F}.

For disjoint sets XX and YY, we refer to a matrix with rows labelled by elements of XX and columns labelled by elements of YY as an X×YX\times Y matrix. Let =(R,G)\mathbb{P}=(R,G) be a partial field, and let AA be an X×YX\times Y matrix with entries from RR. Then AA is a \mathbb{P}-matrix if every square submatrix of AA with a non-zero determinant is in GG. If XXX^{\prime}\subseteq X and YYY^{\prime}\subseteq Y, then we write A[X,Y]A[X^{\prime},Y^{\prime}] to denote the submatrix of AA with rows labelled by XX^{\prime} and columns labelled by YY^{\prime}. We also say that pp is an element of \mathbb{P}, and write pp\in\mathbb{P}, if pGp\in G or p=0p=0.

Lemma 2.1 ([21, Theorem 2.8]).

Let \mathbb{P} be a partial field, and let AA be an X×YX\times Y \mathbb{P}-matrix, where XX and YY are disjoint sets. Let

={X}{XZ:|XZ|=|YZ|,det(A[XZ,YZ])0}.\mathcal{B}=\{X\}\cup\{X\triangle Z:|X\cap Z|=|Y\cap Z|,\det(A[X\cap Z,Y\cap Z])\neq 0\}.

Then \mathcal{B} is the family of bases of a matroid on ground set XYX\cup Y.

For an X×YX\times Y \mathbb{P}-matrix AA, we let M[A]M[A] denote the matroid in Lemma 2.1, and say that AA is a \mathbb{P}-representation of M[A]M[A]. Note that this is sometimes known as a reduced \mathbb{P}-representation in the literature; here, all representations will be “reduced”, so we simply refer to them as representations. A matroid MM is \mathbb{P}-representable if there exists some \mathbb{P}-matrix AA such that MM[A]M\cong M[A].

For partial fields 1\mathbb{P}_{1} and 2\mathbb{P}_{2}, a function ϕ:12\phi:\mathbb{P}_{1}\rightarrow\mathbb{P}_{2} is a homomorphism if

  1. (i)

    ϕ(1)=1\phi(1)=1,

  2. (ii)

    ϕ(pq)=ϕ(p)ϕ(q)\phi(pq)=\phi(p)\phi(q) for all p,q1p,q\in\mathbb{P}_{1}, and

  3. (iii)

    ϕ(p)+ϕ(q)=ϕ(p+q)\phi(p)+\phi(q)=\phi(p+q) for all p,q1p,q\in\mathbb{P}_{1} such that p+q1p+q\in\mathbb{P}_{1}.

The existence of a homomorphism from 1\mathbb{P}_{1} to 2\mathbb{P}_{2} certifies that any 1\mathbb{P}_{1}-representable matroid is also 2\mathbb{P}_{2}-representable:

Lemma 2.2 ([21, Corollary 2.9]).

Let 1\mathbb{P}_{1} and 2\mathbb{P}_{2} be partial fields and let ϕ:12\phi:\mathbb{P}_{1}\rightarrow\mathbb{P}_{2} be a homomorphism. If a matroid is 1\mathbb{P}_{1}-representable, then it is also 2\mathbb{P}_{2}-representable. In particular, if [aij][a_{ij}] is a 1\mathbb{P}_{1}-representation of a matroid MM, then [ϕ(aij)][\phi(a_{ij})] is a 2\mathbb{P}_{2}-representation of MM.

Representability over a partial field can be used to characterise representability over each field in a set of fields. Indeed, for any finite set of fields \mathcal{F}, there exists a partial field \mathbb{P} such that a matroid is \mathcal{F}-representable if and only if it is \mathbb{P}-representable [22, Corollary 2.20].

Let MM be a matroid. Pendavingh and van Zwam described [21, Section 4.2] a canonical construction of a partial field with the property that for every partial field \mathbb{P}, the matroid MM is \mathbb{P}-representable if and only if there exists a homomorphism ϕ:M\phi:\mathbb{P}_{M}\rightarrow\mathbb{P} (see also [2]). We call the partial field M\mathbb{P}_{M} the universal partial field of MM.

Stabilizers

Let =(R,G)\mathbb{P}=(R,G) be a partial field, and let AA and AA^{\prime} be \mathbb{P}-matrices. We say that AA and AA^{\prime} are scaling equivalent if AA^{\prime} can be obtained from AA by scaling rows and columns by elements of GG. If AA^{\prime} can be obtained from AA by scaling, pivoting, and permuting rows and permuting columns (permuting labels at the same time), then we say that AA and AA^{\prime} are projectively equivalent. If AA^{\prime} can be obtained from AA by scaling, pivoting, permuting rows and permuting columns, and also applying automorphisms of \mathbb{P}, then we say that AA and AA^{\prime} are algebraically equivalent.

We say that a matroid MM is uniquely \mathbb{P}-representable if any two \mathbb{P}-representations of MM are algebraically equivalent. On the other hand, two \mathbb{P}-representations of MM are inequivalent if they are not algebraically equivalent.

Let MM and NN be \mathbb{P}-representable matroids, where MM has an NN-minor. Then NN stabilizes MM over \mathbb{P} if for any scaling-equivalent \mathbb{P}-representations A1A_{1}^{\prime} and A2A_{2}^{\prime} of NN that extend to \mathbb{P}-representations A1A_{1} and A2A_{2} of MM, respectively, A1A_{1} and A2A_{2} are scaling equivalent.

For a partial field \mathbb{P}, let ()\mathcal{M}(\mathbb{P}) be the class of matroids representable over \mathbb{P}. A matroid N()N\in\mathcal{M}(\mathbb{P}) is a \mathbb{P}-stabilizer if, for any 33-connected matroid M()M\in\mathcal{M}(\mathbb{P}) having an NN-minor, the matroid NN stabilizes MM over \mathbb{P}. Following Geelen et al. [13], we say that a matroid NN is a strong \mathbb{P}-stabilizer if, for any 33-connected matroid M()M\in\mathcal{M}(\mathbb{P}) having an NN-minor, the matroid NN stabilizes MM over \mathbb{P}, and every \mathbb{P}-representation of NN extends to a \mathbb{P}-representation of MM.

The Hydra-ii partial fields

The Hydra-55 partial field is:

5=((α,β,γ),1,α,β,γ,α1,β1,γ1,αγ,γαβ,(1γ)(1α)β)\mathbb{H}_{5}=\left(\mathbb{Q}(\alpha,\beta,\gamma),\left<-1,\alpha,\beta,\gamma,\alpha-1,\beta-1,\gamma-1,\alpha-\gamma,\gamma-\alpha\beta,(1-\gamma)-(1-\alpha)\beta\right>\right)

where α,β,γ\alpha,\beta,\gamma are indeterminates.

The Hydra-44 partial field is:

4=((α,β),1,α,β,α1,β1,αβ1,α+β2αβ)\mathbb{H}_{4}=\left(\mathbb{Q}(\alpha,\beta),\left<-1,\alpha,\beta,\alpha-1,\beta-1,\alpha\beta-1,\alpha+\beta-2\alpha\beta\right>\right)

where α,β\alpha,\beta are indeterminates.

The Hydra-33 partial field is:

3=((α),1,α,1α,α2α+1)\mathbb{H}_{3}=\left(\mathbb{Q}(\alpha),\left<-1,\alpha,1-\alpha,\alpha^{2}-\alpha+1\right>\right)

where α\alpha is an indeterminate.

The Hydra-22 partial field is:

2=([i,1/2],i,1i)\mathbb{H}_{2}=\left(\mathbb{Z}\left[i,1/2\right],\left<i,1-i\right>\right)

where ii is a root of x2+1=0x^{2}+1=0.

We also let 1=GF(5)\mathbb{H}_{1}=\mathrm{GF}(5), and 6=5\mathbb{H}_{6}=\mathbb{H}_{5}.

For each i{1,2,3,4}i\in\{1,2,3,4\}, there is a homomorphism ϕi:i+1i\phi_{i}:\mathbb{H}_{i+1}\rightarrow\mathbb{H}_{i}. For example, let ϕ4\phi_{4} be determined by ϕ4(α)=α\phi_{4}(\alpha)=\alpha, ϕ4(β)=11α\phi_{4}(\beta)=\frac{1}{1-\alpha}, and ϕ4(γ)=α(β1)β(1α)\phi_{4}(\gamma)=\frac{\alpha(\beta-1)}{\beta(1-\alpha)}; let ϕ3\phi_{3} be determined by ϕ3(α)=α\phi_{3}(\alpha)=\alpha and ϕ4(β)=αα1\phi_{4}(\beta)=\frac{\alpha}{\alpha-1}; let ϕ2\phi_{2} be determined by ϕ2(α)=i\phi_{2}(\alpha)=i; and let ϕ1\phi_{1} be determined by ϕ1(i)=2\phi_{1}(i)=2.

Lemma 2.3 ([21, Theorem 5.7]).

Let MM be a GF(5)\mathrm{GF}(5)-representable matroid that is 33-connected and has a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, and let i{1,2,3,4,5,6}i\in\{1,2,3,4,5,6\}. The matroid MM is i\mathbb{H}_{i}-representable if and only if MM has at least ii inequivalent representations over GF(5)\mathrm{GF}(5).

For 2\mathbb{H}_{2}-representable matroids that are 33-connected with a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, the two inequivalent GF(5)\mathrm{GF}(5)-representations can be obtained by substituting i{2,3}i\in\{2,3\}. For 3\mathbb{H}_{3}-representable matroids, three inequivalent GF(5)\mathrm{GF}(5)-representations can be obtained by substituting α{2,3,4}\alpha\in\{2,3,4\}. For 4\mathbb{H}_{4}-representable matroids, four inequivalent GF(5)\mathrm{GF}(5)-representations can be obtained by substituting

(α,β){(2,2),(3,3),(3,4),(4,3)}.(\alpha,\beta)\in\{(2,2),(3,3),(3,4),(4,3)\}.

For 5\mathbb{H}_{5}-representable matroids, six inequivalent GF(5)\mathrm{GF}(5)-representations can be obtained by substituting

(α,β,γ){(2,3,3),(3,2,2),(4,3,3),(2,4,4),(3,2,4),(4,4,2)}.(\alpha,\beta,\gamma)\in\{(2,3,3),(3,2,2),(4,3,3),(2,4,4),(3,2,4),(4,4,2)\}.
Corollary 2.4 (see [21, Lemma 5.17]).

Let MM be a GF(5)\mathrm{GF}(5)-representable matroid that is 33-connected and has a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor. The matroid MM is 5\mathbb{H}_{5}-representable if and only if MM has six inequivalent representations over GF(5)\mathrm{GF}(5).

A matroid is dyadic if it is representable over GF(3)\mathrm{GF}(3) and GF(5)\mathrm{GF}(5). Equivalently, a matroid is dyadic if it is 𝔻\mathbb{D}-representable, where 𝔻\mathbb{D} is the partial field

([1/2],1,2).(\mathbb{Z}[1/2],\left<-1,2\right>).

There is a homomorphism from 𝔻\mathbb{D} to every field with characteristic not two. There is also a homomorphism from 𝔻\mathbb{D} to 2\mathbb{H}_{2}. Note that, although a dyadic matroid is 2\mathbb{H}_{2}-representable, it has no {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, so Lemma 2.3 does not apply.

The kk-regular partial fields

For a non-negative integer kk, the kk-regular partial field is:

𝕌k=((α1,,αk),{xy:x,y{0,1,α1,,αk} and xy}),\mathbb{U}_{k}=(\mathbb{Q}(\alpha_{1},\dots,\alpha_{k}),\left<\{x-y:x,y\in\{0,1,\alpha_{1},\dotsc,\alpha_{k}\}\textrm{ and }x\neq y\}\right>),

where α1,,αk\alpha_{1},\dotsc,\alpha_{k} are indeterminates. A matroid is kk-regular if it is representable over the kk-regular partial field.

Note that 𝕌k\mathbb{U}_{k} is the universal partial field of U2,3+kU_{2,3+k} [26, Theorem 3.3.24]. It is easy to see that, for any non-negative integer kk, there is a homomorphism from 𝕌k\mathbb{U}_{k} to 𝕌k+1\mathbb{U}_{k+1}.

In particular, the 0-regular (or just regular) partial field is

𝕌0=(,{1,1});\mathbb{U}_{0}=(\mathbb{Q},\{1,-1\});

the 11-regular (or near-regular) partial field is

𝕌1=((α),1,α,α1),\mathbb{U}_{1}=(\mathbb{Q}(\alpha),\left<-1,\alpha,\alpha-1\right>),

where α\alpha is an indeterminate; the 22-regular partial field is

𝕌2=((α1,α2),1,α1,α2,α11,α21,α1α2),\mathbb{U}_{2}=(\mathbb{Q}(\alpha_{1},\alpha_{2}),\left<-1,\alpha_{1},\alpha_{2},\alpha_{1}-1,\alpha_{2}-1,\alpha_{1}-\alpha_{2}\right>),

where α1,α2\alpha_{1},\alpha_{2} are indeterminates; and the 33-regular partial field is

𝕌3=((α1,α2,α3),1,α1,α2,α3,α11,α21,α31,α1α2,α1α3,α2α3),\mathbb{U}_{3}=(\mathbb{Q}(\alpha_{1},\alpha_{2},\alpha_{3}),\left<-1,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{1}-1,\alpha_{2}-1,\alpha_{3}-1,\alpha_{1}-\alpha_{2},\alpha_{1}-\alpha_{3},\alpha_{2}-\alpha_{3}\right>),

where α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3} are indeterminates.

Van Zwam [26] observed that there is a homomorphism from 𝕌3\mathbb{U}_{3} to 5\mathbb{H}_{5}. It turns out that there is a homomorphism ϕ:𝕌35\phi:\mathbb{U}_{3}\rightarrow\mathbb{H}_{5} where ϕ\phi is a bijection [7].

Lemma 2.5 ([7, Lemma 2.25]).

The partial fields 5\mathbb{H}_{5} and 𝕌3\mathbb{U}_{3} are isomorphic. In particular, a matroid is 33-regular if and only if it is 5\mathbb{H}_{5}-representable.

The next corollary then follows from Lemmas 2.3, 2.5 and 2.4.

Corollary 2.6.

Let MM be a 33-connected matroid with a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor. The following are equivalent:

  1. (i)

    MM is 33-regular.

  2. (ii)

    MM has at least five inequivalent GF(5)\mathrm{GF}(5)-representations.

  3. (iii)

    MM has precisely six inequivalent GF(5)\mathrm{GF}(5)-representations.

Alternatively, a matroid is 33-regular if and only if it is either near-regular or has six inequivalent GF(5)\mathrm{GF}(5)-representations.

Lemma 2.7 ([26, Lemmas 6.2.5 and 7.3.15]).

For i{1,2,3,4}i\in\{1,2,3,4\}, let NN be an excluded minor for the class of i+1\mathbb{H}_{i+1}-representable matroids, such that NN is i\mathbb{H}_{i}-representable. Then NN is a strong i\mathbb{H}_{i}-stabilizer.

Other partial fields

Although not of central importance, we also refer to the following partial fields:

𝕂2=((α),1,α1,α,α+1)\mathbb{K}_{2}=(\mathbb{Q}(\alpha),\left<-1,\alpha-1,\alpha,\alpha+1\right>)

where α\alpha is an indeterminate, and

𝕊=([ζ],ζ),\mathbb{S}=(\mathbb{Z}[\zeta],\left<\zeta\right>),

where ζ\zeta is a root of x2x+1=0x^{2}-x+1=0. See [26] for further details.

Delta-wye exchange

Let MM be a matroid with a triangle T={a,b,c}T=\{a,b,c\}. Consider a copy of M(K4)M(K_{4}) having TT as a triangle with {a,b,c}\{a^{\prime},b^{\prime},c^{\prime}\} as the complementary triad labelled such that {a,b,c}\{a,b^{\prime},c^{\prime}\}, {a,b,c}\{a^{\prime},b,c^{\prime}\} and {a,b,c}\{a^{\prime},b^{\prime},c\} are triangles. Let PT(M,M(K4))P_{T}(M,M(K_{4})) denote the generalised parallel connection of MM with this copy of M(K4)M(K_{4}) along the triangle TT. Let MM^{\prime} be the matroid PT(M,M(K4))\TP_{T}(M,M(K_{4}))\backslash T where the elements aa^{\prime}, bb^{\prime} and cc^{\prime} are relabelled as aa, bb and cc respectively. The matroid MM^{\prime} is said to be obtained from MM by a Δ\Delta-YY exchange on the triangle TT, and is denoted ΔT(M)\Delta_{T}(M). Dually, M′′M^{\prime\prime} is obtained from MM by a YY-Δ\Delta exchange on the triad T={a,b,c}T^{*}=\{a,b,c\} if (M′′)(M^{\prime\prime})^{*} is obtained from MM^{*} by a Δ\Delta-YY exchange on TT^{*}. The matroid M′′M^{\prime\prime} is denoted T(M)\nabla_{T^{*}}(M).

We say that a matroid M1M_{1} is ΔY\Delta Y-equivalent to a matroid M0M_{0} if M1M_{1} can be obtained from M0M_{0} by a sequence of Δ\Delta-YY and YY-Δ\Delta exchanges on coindependent triangles and independent triads, respectively. We let Δ(M)\Delta(M) denote the set of matroids that are ΔY\Delta Y-equivalent to MM. For a set of matroids \mathcal{M}, we use Δ()\Delta(\mathcal{M}) to denote MΔ(M)\bigcup_{M\in\mathcal{M}}\Delta(M). We also use Δ(M)\Delta^{*}(M) to denote Δ({M,M})\Delta(\{M,M^{*}\}), and use Δ()\Delta^{*}(\mathcal{M}) to denote MΔ(M)\bigcup_{M\in\mathcal{M}}\Delta^{*}(M).

Oxley, Semple, and Vertigan proved that the set of excluded minors for \mathbb{P}-representability is closed under Δ\Delta-YY exchange (see also [1]), and, more generally, segment-cosegment exchange.

Proposition 2.8 ([19, Theorem 1.1]).

Let \mathbb{P} be a partial field, and let MM be an excluded minor for the class of \mathbb{P}-representable matroids. If MΔ(M)M^{\prime}\in\Delta^{*}(M), then MM^{\prime} is an excluded minor for the class of \mathbb{P}-representable matroids.

Proxies

Following [8], in order to simulate a matroid representation over a partial field, we use a representation over a finite field where we have constraints on the subdeterminants appearing in the representation. We briefly recap this theory (for a more detailed account, see [8, Section 3]).

Let =(R,G)\mathbb{P}=(R,G) be a partial field. We say that pp\in\mathbb{P} is fundamental if 1p1-p\in\mathbb{P}. We denote the set of fundamentals of \mathbb{P} by 𝔉()\mathfrak{F}(\mathbb{P}). Let AA be a \mathbb{P}-matrix. For a \mathbb{P}-matrix AA^{\prime}, we write AAA^{\prime}\preceq A if AA^{\prime} is a submatrix of a \mathbb{P}-matrix that is projectively equivalent to AA. The cross ratios of AA are

Cr(A)={p:[11p1]A}.\operatorname{Cr}(A)=\left\{p:\begin{bmatrix}1&1\\ p&1\end{bmatrix}\preceq A\right\}.

Let F𝔉()F\subseteq\mathfrak{F}(\mathbb{P}). We say that the \mathbb{P}-matrix AA is FF-confined if Cr(A)F{0,1}\operatorname{Cr}(A)\subseteq F\cup\{0,1\}. If AA is an FF-confined \mathbb{P}-matrix and ϕ:\phi:\mathbb{P}\rightarrow\mathbb{P}^{\prime} is a homomorphism, then M[A]=M[ϕ(A)]M[A]=M[\phi(A)] and

Cr(ϕ(A))ϕ(F),\operatorname{Cr}(\phi(A))\subseteq\phi(F),

so that ϕ(A)\phi(A) is an ϕ(F)\phi(F)-confined representation over \mathbb{P}^{\prime}.

For a finite field 𝔽\mathbb{F} and homomorphism ϕ:𝔽\phi:\mathbb{P}\rightarrow\mathbb{F}, let Fϕ=ϕ(𝔉())F_{\phi}=\phi(\mathfrak{F}(\mathbb{P})). We say that (𝔽,ϕ)(\mathbb{F},\phi) is a proxy for \mathbb{P} if for any FϕF_{\phi}-confined 𝔽\mathbb{F}-matrix AA, there exists a \mathbb{P}-matrix AA^{\prime} such that ϕ(A)\phi(A^{\prime}) is scaling-equivalent to AA. The following is a consequence of [8, Theorem 3.5].

Lemma 2.9.

Let i{2,3,4,5}i\in\{2,3,4,5\}. There exists a prime pp and a homomorphism ϕ:iGF(p)\phi:\mathbb{H}_{i}\rightarrow\mathrm{GF}(p) such that (GF(p),ϕ)(\mathrm{GF}(p),\phi) is a proxy for i\mathbb{H}_{i}.

In particular, when (GF(p),ϕ)(\mathrm{GF}(p),\phi) is a proxy for i\mathbb{H}_{i}, a matroid MM is i\mathbb{H}_{i}-representable if and only if MM has an FϕF_{\phi}-confined GF(p)\mathrm{GF}(p)-representation. In Table 1, we provide the proxies for each Hydra-ii partial field that we used in our computations.

Partial field Finite Field Homomorphism2GF(29)i123GF(151)α44GF(947)α272,β9285GF(3527)α1249,β295,γ3517\begin{array}[]{lll}\text{Partial field }&\text{Finite Field }&\text{Homomorphism}\\ \hline\cr\mathbb{H}_{2}&\mathrm{GF}(29)&i\mapsto 12\\ \mathbb{H}_{3}&\mathrm{GF}(151)&\alpha\mapsto 4\\ \mathbb{H}_{4}&\mathrm{GF}(947)&\alpha\mapsto 272,\beta\mapsto 928\\ \mathbb{H}_{5}&\mathrm{GF}(3527)&\alpha\mapsto 1249,\beta\mapsto 295,\gamma\mapsto 3517\\ \end{array}

Table 1. Proxies for the Hydra-ii partial fields.

Splitter theorems

For our computations, we keep track only of 33-connected matroids with an 𝒩\mathcal{N}-minor (where the matroids in 𝒩\mathcal{N} are strong stabilizers). Thus, we require the following consequence of Seymour’s Splitter Theorem (see, for example, [18, Corollary 12.2.2]).

Lemma 2.10 ([8, Corollary 2.8]).

Let MM be a 33-connected matroid with a proper NN-minor, where NN is not near-regular. Then, for some {M,N}{(M,N),(M,N)}\{M^{\prime},N^{\prime}\}\in\{(M,N),(M^{*},N^{*})\}, there exists an element eE(M)e\in E(M^{\prime}) such that M\eM^{\prime}\backslash e is 33-connected and has an NN^{\prime}-minor.

Hall, Mayhew, and van Zwam [15] proved an excluded-minor characterisation for near-regular matroids. Two of the excluded minors for this class are U2,5U_{2,5} and U3,5U_{3,5}. In this paper, we deal primarily with 33-connected matroids that have a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, so Lemma 2.10 applies.

To find the excluded minors for 5\mathbb{H}_{5}-representability on up to 1313 elements, we use the technique referred to as “splicing” in [8, Section 4.5]. Briefly, when MM^{\prime} is a matroid, MeM_{e} is an extension of MM^{\prime} by an element ee, and MfM_{f} is an extension of MM^{\prime} by an element ff, then the extensions MeM_{e} and MfM_{f} are compatible if there exists a matroid MM on E(M){e,f}E(M^{\prime})\cup\{e,f\} such that M\f=MeM\backslash f=M_{e} and M\e=MfM\backslash e=M_{f}. (A characterisation of compatible extensions was given by Cheung [11].) In this case, following [8], we say that MM is a splice of MeM_{e} and MfM_{f}. (We note that a “splice” has a different meaning in [4].) For a positive integer nn, an (n+1)(n+1)-element matroid can be constructed as the splice of two nn-element matroids, MeM_{e} and MfM_{f} say, where MeM_{e} and MfM_{f} are both single-element extensions of some (n1)(n-1)-element matroid MM^{\prime}.

Starting from some set 𝒩\mathcal{N} of “seed matroids”, we build a catalog of the 33-connected matroids in the class that have an NN-minor for some N𝒩N\in\mathcal{N}. Suppose MM is a matroid that should appear in the catalog, where MM has an NN-minor for N𝒩N\in\mathcal{N}. In order to ensure that MM is obtained as the splice of two matroids MaM_{a} and MbM_{b}, we require a guarantee that, for some pair {a,b}E(M)\{a,b\}\subseteq E(M), the matroid M\a,bM\backslash a,b is also in the catalog. In fact, by closing the catalog under duality, it suffices that one of MM and MM^{*} appears in the catalog. Thus, we require a pair {a,b}E(M)\{a,b\}\subseteq E(M), such that either M\a,bM\backslash a,b or M/a,bM/a,b is 33-connected and has an NN-minor; such a pair {a,b}\{a,b\} is known as an NN-detachable pair [9].

To describe the conditions under which MM has no NN-detachable pairs, we require some definitions.

Definition 2.11.

Let PP be an exactly 33-separating set in a matroid MM, with |P|=2t6|P|=2t\geq 6. Suppose PP has the following properties:

  1. (a)

    there is a partition {L1,,Lt}\{L_{1},\dotsc,L_{t}\} of PP into pairs such that for all distinct i,j{1,,t}i,j\in\{1,\dotsc,t\}, the set LiLjL_{i}\cup L_{j} is a cocircuit,

  2. (b)

    there is a partition {K1,,Kt}\{K_{1},\dotsc,K_{t}\} of PP into pairs such that for all distinct i,j{1,,t}i,j\in\{1,\dotsc,t\}, the set KiKjK_{i}\cup K_{j} is a circuit,

  3. (c)

    M/pM/p and M\pM\backslash p are 33-connected for each pPp\in P,

  4. (d)

    for all distinct i,j{1,,t}i,j\in\{1,\dotsc,t\}, the matroid si(M/a/b)\operatorname{si}(M/a/b) is 33-connected for any aLia\in L_{i} and bLjb\in L_{j}, and

  5. (e)

    for all distinct i,j{1,,t}i,j\in\{1,\dotsc,t\}, the matroid co(M\a\b)\operatorname{co}(M\backslash a\backslash b) is 33-connected for any aKia\in K_{i} and bKjb\in K_{j}.

Then we say PP is a spiky 33-separator of MM.

Definition 2.12.

A matroid MM is a quad-flower if r(M)=r(M)=6r(M)=r^{*}(M)=6, and there is a labelling {1,2,3}{p,q,s,t}\bigcup_{\ell\in\{1,2,3\}}\{p_{\ell},q_{\ell},s_{\ell},t_{\ell}\} of E(M)E(M) such that, for all (i,j){(1,2),(2,3),(3,1)}(i,j)\in\{(1,2),(2,3),(3,1)\},

  1. (i)

    {pi,qi,si,ti}\{p_{i},q_{i},s_{i},t_{i}\} is a circuit and a cocircuit,

  2. (ii)

    the sets {pi,qi,pj,sj}\{p_{i},q_{i},p_{j},s_{j}\}, {pi,qi,qj,tj}\{p_{i},q_{i},q_{j},t_{j}\}, {si,ti,pj,sj}\{s_{i},t_{i},p_{j},s_{j}\}, and {si,ti,qj,tj}\{s_{i},t_{i},q_{j},t_{j}\} are circuits, and

  3. (iii)

    the sets {pi,si,pj,qj}\{p_{i},s_{i},p_{j},q_{j}\}, {pi,si,sj,tj}\{p_{i},s_{i},s_{j},t_{j}\}, {qi,ti,pj,qj}\{q_{i},t_{i},p_{j},q_{j}\}, and {qi,ti,sj,tj}\{q_{i},t_{i},s_{j},t_{j}\} are cocircuits.

We call {1,2,3}{p,q,s,t}\bigcup_{\ell\in\{1,2,3\}}\{p_{\ell},q_{\ell},s_{\ell},t_{\ell}\} the quad-flower labelling of MM, and say that MM has standard labelling if E(M)={1,2,3}{p,q,s,t}E(M)=\bigcup_{\ell\in\{1,2,3\}}\{p_{\ell},q_{\ell},s_{\ell},t_{\ell}\} and the quad-flower labelling is obtained by applying the identity map.

An example of a quad-flower is given in Figure 1.

\Vertexs1s_{1}\Vertexq1q_{1}\Vertexp1p_{1}\Vertext1t_{1}\Vertexq2q_{2}\Vertexs2s_{2}\Vertexp2p_{2}\Vertext2t_{2}\Vertexs3s_{3}\Vertexq3q_{3}\Vertexp3p_{3}\Vertext3t_{3}
Figure 1. A quad-flower.
Definition 2.13.

A matroid MM is a nest if r(M)=r(M)=6r(M)=r^{*}(M)=6, and there is a labelling {e1,e1,e2,e2,,e6,e6}\{e_{1},e_{1}^{\prime},e_{2},e_{2}^{\prime},\dotsc,e_{6},e_{6}^{\prime}\} of E(M)E(M) such that

  1. (i)

    the following sets are circuits:

    {e1,e2,e3,e4},{e3,e4,e5,e6},{e5,e6,e1,e2},\{e_{1},e_{2},e_{3}^{\prime},e_{4}^{\prime}\},\{e_{3},e_{4},e_{5}^{\prime},e_{6}^{\prime}\},\{e_{5},e_{6},e_{1}^{\prime},e_{2}^{\prime}\},
    {e5,e4,e1,e3},{e1,e3,e2,e6},{e2,e6,e5,e4},\{e_{5},e_{4},e_{1}^{\prime},e_{3}^{\prime}\},\{e_{1},e_{3},e_{2}^{\prime},e_{6}^{\prime}\},\{e_{2},e_{6},e_{5}^{\prime},e_{4}^{\prime}\},
    {e2,e3,e5,e1},{e5,e1,e4,e6},{e4,e6,e2,e3},\{e_{2},e_{3},e_{5}^{\prime},e_{1}^{\prime}\},\{e_{5},e_{1},e_{4}^{\prime},e_{6}^{\prime}\},\{e_{4},e_{6},e_{2}^{\prime},e_{3}^{\prime}\},
    {e4,e1,e2,e5},{e2,e5,e3,e6},{e3,e6,e4,e1},\{e_{4},e_{1},e_{2}^{\prime},e_{5}^{\prime}\},\{e_{2},e_{5},e_{3}^{\prime},e_{6}^{\prime}\},\{e_{3},e_{6},e_{4}^{\prime},e_{1}^{\prime}\},
    {e3,e5,e4,e2},{e4,e2,e1,e6},{e1,e6,e3,e5},\{e_{3},e_{5},e_{4}^{\prime},e_{2}^{\prime}\},\{e_{4},e_{2},e_{1}^{\prime},e_{6}^{\prime}\},\{e_{1},e_{6},e_{3}^{\prime},e_{5}^{\prime}\},
  2. (ii)

    and the following sets are cocircuits:

    {e3,e4,e1,e2},{e1,e2,e5,e6},{e5,e6,e3,e4}\{e_{3},e_{4},e_{1}^{\prime},e_{2}^{\prime}\},\{e_{1},e_{2},e_{5}^{\prime},e_{6}^{\prime}\},\{e_{5},e_{6},e_{3}^{\prime},e_{4}^{\prime}\}
    {e1,e3,e5,e4},{e5,e4,e2,e6},{e2,e6,e1,e3}\{e_{1},e_{3},e_{5}^{\prime},e_{4}^{\prime}\},\{e_{5},e_{4},e_{2}^{\prime},e_{6}^{\prime}\},\{e_{2},e_{6},e_{1}^{\prime},e_{3}^{\prime}\}
    {e5,e1,e2,e3},{e2,e3,e4,e6},{e4,e6,e5,e1}\{e_{5},e_{1},e_{2}^{\prime},e_{3}^{\prime}\},\{e_{2},e_{3},e_{4}^{\prime},e_{6}^{\prime}\},\{e_{4},e_{6},e_{5}^{\prime},e_{1}^{\prime}\}
    {e2,e5,e4,e1},{e4,e1,e3,e6},{e3,e6,e2,e5}\{e_{2},e_{5},e_{4}^{\prime},e_{1}^{\prime}\},\{e_{4},e_{1},e_{3}^{\prime},e_{6}^{\prime}\},\{e_{3},e_{6},e_{2}^{\prime},e_{5}^{\prime}\}
    {e4,e2,e3,e5},{e3,e5,e1,e6},{e1,e6,e4,e2}.\{e_{4},e_{2},e_{3}^{\prime},e_{5}^{\prime}\},\{e_{3},e_{5},e_{1}^{\prime},e_{6}^{\prime}\},\{e_{1},e_{6},e_{4}^{\prime},e_{2}^{\prime}\}.

We call {e1,e1,e2,e2,,e6,e6}\{e_{1},e_{1}^{\prime},e_{2},e_{2}^{\prime},\dotsc,e_{6},e_{6}^{\prime}\} the nest labelling of MM, and say that MM has standard labelling if E(M)={e1,e1,e2,e2,,e6,e6}E(M)=\{e_{1},e_{1}^{\prime},e_{2},e_{2}^{\prime},\dotsc,e_{6},e_{6}^{\prime}\} and the nest labelling is obtained by applying the identity map.

Note that a “nest” is referred to as a “nest of twisted cubes” in [9].

Theorem 2.14 ([9, Corollary 6.3]).

Let MM be a 33-connected matroid and let NN be a 33-connected minor of MM with |E(M)|11|E(M)|\geq 11, |E(N)|4|E(N)|\geq 4, and |E(M)||E(N)|5|E(M)|-|E(N)|\geq 5. Then either

  1. (i)

    MM has an NN-detachable pair;

  2. (ii)

    there is a matroid MM^{\prime} obtained by performing a single Δ\Delta-YY or YY-Δ\Delta exchange on MM such that MM^{\prime} has an NN-minor and an NN-detachable pair, or

  3. (iii)

    MM has a spiky 33-separator PP such that at most one element of E(M)E(N)E(M)-E(N) is not in PP, or

  4. (iv)

    |E(M)|=12|E(M)|=12, and MM is either a quad-flower or a nest.

The next lemma is used to handle the possibility that Theorem 2.14(iii) holds. It is a slight generalisation of [6, Lemma 7.2], but can be proved using essentially the same argument as given there.

Lemma 2.15 (see [6, Lemma 7.2]).

Let \mathbb{P} be a partial field, let NN be a non-binary 33-connected strong stabilizer for the class of \mathbb{P}-representable matroids, and let MM be an excluded minor for the class of \mathbb{P}-representable matroids, where MM has an NN-minor. If MM has a spiky 33-separator PP such that at most one element of E(M)E(N)E(M)-E(N) is not in PP, then |E(M)||E(N)|+5|E(M)|\leq|E(N)|+5.

To handle the possibility that Theorem 2.14(iv) holds, we need to consider what (partial) fields a quad-flower, or a nest, is representable over. This analysis is done in the next section.

3. Exceptional 1212-element matroids

When MM is a quad-flower or a nest, and NN is a 33-connected minor of MM, we cannot guarantee that MM has an NN-detachable pair. When enumerating potential excluded minors using splicing, these matroids will be skipped. Thus, we need to be able to verify that these matroids are not excluded minors for the class of 5\mathbb{H}_{5}-representable matroids. It suffices to verify that each of these matroids contains either the Fano matroid F7F_{7}, the non-Fano matroid F7F_{7}^{-}, or the relaxation of the non-Fano matroid F7=F_{7}^{=}, as a proper minor (due to the upcoming Lemma 4.2). However, so that these techniques can also be applied more generally (for partial fields other than 5\mathbb{H}_{5}), we briefly study quad-flowers and nests. We will show that there are, up to isomorphism, three quad-flowers that are representable over some field (one is binary, one is dyadic, and one is representable over all fields of size at least four), whereas any other quad-flower has a proper minor that is not representable over any field. Up to isomorphism, there are three nests: one is binary, one is dyadic, while the other is not representable over any field.

Quad-flowers

First, we consider the circuits in a quad-flower. We will see that the only sets that can be non-spanning circuits are the 44-element circuits listed in the definition, and certain 66-element sets. Among these 66-element sets, there are some that are circuits in every quad-flower, and some that can be either a circuit or a basis. We introduce notation to refer to the latter sets. Recall that a quad-flower with standard labelling is on the ground set {1,2,3}{p,q,s,t}\bigcup_{\ell\in\{1,2,3\}}\{p_{\ell},q_{\ell},s_{\ell},t_{\ell}\}. For J{1,2,3}J\subseteq\{1,2,3\}, let XJX_{J} be the 66-element set such that {pi,ti}XJ\{p_{i},t_{i}\}\subseteq X_{J} for each iJi\in J, and {qi,si}XJ\{q_{i},s_{i}\}\subseteq X_{J} for each i{1,2,3}Ji\in\{1,2,3\}-J.

Lemma 3.1.

Let MM be a quad-flower with standard labelling. Then all of the following hold:

  1. (i)

    If CC is a non-spanning circuit of MM, then |C|{4,6}|C|\in\{4,6\}.

  2. (ii)

    If CC is a circuit of MM with |C|=4|C|=4, then CC is one of the 1515 circuits listed in Definition 2.12(i)–(ii).

  3. (iii)

    For any (i,j,k){(1,2,3),(2,3,1),(3,1,2)}(i,j,k)\in\{(1,2,3),(2,3,1),(3,1,2)\} and Zi{{pi,qi},{si,ti}}Z_{i}\in\{\{p_{i},q_{i}\},\{s_{i},t_{i}\}\}, Zj{{pj,tj},{qj,sj}}Z_{j}\in\{\{p_{j},t_{j}\},\{q_{j},s_{j}\}\}, and Zk{{pk,sk},{qk,tk}}Z_{k}\in\{\{p_{k},s_{k}\},\{q_{k},t_{k}\}\}, the set ZiZjZkZ_{i}\cup Z_{j}\cup Z_{k} is a 66-element circuit of MM.

  4. (iv)

    If CC is a circuit of MM with |C|=6|C|=6 but CC is not a circuit described in (iii), then C=XJC=X_{J} for some J{1,2,3}J\subseteq\{1,2,3\}.

Proof.

By orthogonality and the fact that no circuit is properly contained in another, a quad-flower has no circuits of size at most five other than the 1515 circuits of size four listed in the definition. Since r(M)=6r(M)=6, this proves (i) and (ii). Moreover, by circuit elimination and orthogonality, it follows that (iii) holds. For (iv), let XE(M)X\subseteq E(M) with |X|=6|X|=6 such that XX does not contain one of the 1515 circuits of size four, and XX is not a circuit as described in (iii). It follows that X=XJX=X_{J} for some J{1,2,3}J\subseteq\{1,2,3\}. ∎

Although we focus on the circuits in a quad-flower, a similar statement to Lemma 3.1 can be made regarding the cocircuits. It then follows easily that a quad-flower is 33-connected.

We distinguish three particular quad-flowers; we will show that (up to isomorphism) these are the only three quad-flowers that are representable over some field. We say that

  • MM is a binary quad-flower if MM has a quad-flower labelling such that XJX_{J} is a circuit for all J{1,2,3}J\subseteq\{1,2,3\};

  • MM is a dyadic quad-flower if MM has a quad-flower labelling such that, for J{1,2,3}J\subseteq\{1,2,3\}, the set XJX_{J} is a circuit if and only if |J|{0,2}|J|\in\{0,2\}; and

  • MM is a free quad-flower if MM has a quad-flower labelling such that XJX_{J} is a basis for all J{1,2,3}J\subseteq\{1,2,3\}.

The next lemma illustrates the reasoning behind the first two of these names.

Lemma 3.2.

Let MM be a quad-flower. Then precisely one of the following holds:

  1. (i)

    MM is a binary quad-flower, and MM is 𝔽\mathbb{F}-representable if and only if 𝔽\mathbb{F} has characteristic two,

  2. (ii)

    MM is a dyadic quad-flower, and MM is 𝔽\mathbb{F}-representable if and only if 𝔽\mathbb{F} has characteristic not two,

  3. (iii)

    MM is a free quad-flower, and MM is 𝔽\mathbb{F}-representable if and only if |𝔽|4|\mathbb{F}|\geq 4, or

  4. (iv)

    MM has a proper minor MM^{\prime} such that MM^{\prime} is not representable over any field.

Proof.

We let MM be a quad-flower with standard labelling, so Lemma 3.1 holds. Consider XJX_{J} for some J{1,2,3}J\subseteq\{1,2,3\}. There are 88 possibilities for the set XJX_{J}, and each of these could be either a circuit or a basis in a quad-flower MM. It is convenient to think of each XJX_{J} as a vertex in a graph: consider the 33-dimensional hypercube graph QQ on vertex set {XJ:J{1,2,3}}\{X_{J}:J\subseteq\{1,2,3\}\}, where distinct vertices XIX_{I} and XJX_{J} are adjacent if and only if the cardinality of the set difference IJI\triangle J is one. Let 𝐗\mathbf{X} be a subset of the vertices of QQ, where XJ𝐗X_{J}\in\mathbf{X} if XJX_{J} is a circuit of MM, whereas XJ𝐗X_{J}\notin\mathbf{X} if XJX_{J} is a basis of MM. Then, for the quad-flower MM, we obtain an auxiliary set 𝐗V(Q)\mathbf{X}\subseteq V(Q).

Suppose that XI,XJ𝐗X_{I},X_{J}\in\mathbf{X} for some XIX_{I} and XJX_{J} that are adjacent in QQ (so |IJ|=1|I\triangle J|=1). Let ZXIXJZ\subseteq X_{I}\cap X_{J} such that |Z|=3|Z|=3. Then it follows that M/ZM/Z has an F7F_{7}-restriction (where F7F_{7} is the Fano matroid), so MM is not representable over any field that does not have characteristic two. On the other hand, if precisely one of XIX_{I} and XJX_{J} is in 𝐗\mathbf{X}, then it follows that M/ZM/Z has an F7F^{-}_{7}-restriction (where F7F^{-}_{7} is the non-Fano matroid), so MM is not representable over fields with characteristic two.

We first assume that MM is not a binary quad-flower, a dyadic quad-flower, nor a free quad-flower, and show that (iv) holds. In particular, since MM is not a binary quad-flower nor a free quad-flower, 𝐗{,V(Q)}\mathbf{X}\notin\{\emptyset,V(Q)\}. We claim that if 𝐗\mathbf{X} is not a stable set in QQ, then MM has a proper minor that is not representable over any field. Since 𝐗{,V(Q)}\mathbf{X}\notin\{\emptyset,V(Q)\}, there exist adjacent vertices of QQ, precisely one of which is in 𝐗\mathbf{X}. Suppose 𝐗\mathbf{X} is not a stable set in QQ, so there exist adjacent vertices of QQ in 𝐗\mathbf{X}. Then there exist distinct I,J,K{1,2,3}I,J,K\subseteq\{1,2,3\} such that XI,XJ𝐗X_{I},X_{J}\in\mathbf{X} and XK𝐗X_{K}\notin\mathbf{X}, where XJX_{J} is adjacent to both XIX_{I} and XKX_{K} in QQ. It now follows, by the previous paragraph, that MM has a proper minor that is not representable over any field, as claimed.

Now we assume that 𝐗\mathbf{X} is a stable set in QQ. We note that MM is one of four quad-flowers, up to isomorphism (recalling that MM is not a dyadic or free quad-flower). For any j{1,2,3}j\in\{1,2,3\}, the set 𝐘j={XJ:jJ}\mathbf{Y}_{j}=\{X_{J}:j\in J\} or the set 𝐘j={XJ:jJ}\mathbf{Y}^{\prime}_{j}=\{X_{J}:j\notin J\} induces a 44-cycle in QQ, so at most two of the four sets in 𝐘j\mathbf{Y}_{j} or 𝐘j\mathbf{Y}^{\prime}_{j} are circuits. Since MM is not a binary quad-flower, a dyadic quad-flower, nor a free quad-flower, there exists some j{1,2,3}j\in\{1,2,3\} such that either |𝐘j𝐗|=1|\mathbf{Y}_{j}\cap\mathbf{X}|=1 or |𝐘j𝐗|=1|\mathbf{Y}^{\prime}_{j}\cap\mathbf{X}|=1. Up to isomorphism, we may assume that {p1,t1,p2,t2,p3,t3}\{p_{1},t_{1},p_{2},t_{2},p_{3},t_{3}\} is a circuit in MM, but the sets {p1,t1,p2,t2,q3,s3}\{p_{1},t_{1},p_{2},t_{2},q_{3},s_{3}\}, {p1,t1,q2,s2,p3,t3}\{p_{1},t_{1},q_{2},s_{2},p_{3},t_{3}\}, and {p1,t1,q2,s2,q3,s3}\{p_{1},t_{1},q_{2},s_{2},q_{3},s_{3}\} are bases. Consider M=M/p1M^{\prime}=M/p_{1}. We claim that MM^{\prime} is not representable over any field. If MM^{\prime} has an 𝔽\mathbb{F}-representation AA^{\prime} for some field 𝔽\mathbb{F}, then it is easy to verify (see [18, Theorem 6.4.7], for example) that AA^{\prime} is projectively equivalent to a matrix of the form

[\@arstruts1t1s2t2s3t3\\q10-11100\\p200011\\q20001\\p3110010\\q31000] ,\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{3}\\q_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\p_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\q_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*\\p_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\q_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle*$\hfil\kern 5.0pt\crcr}}}}\right]$}},

where * signifies the entry is non-zero.

By considering the dependent sets {s1,s3,t3,q1,q3}\{s_{1},s_{3},t_{3},q_{1},q_{3}\}, {s1,t1,s3,q1,p2}\{s_{1},t_{1},s_{3},q_{1},p_{2}\}, {t1,s3,t3,q1,p2}\{t_{1},s_{3},t_{3},q_{1},p_{2}\}, and {s2,t2,s3,p3,q3}\{s_{2},t_{2},s_{3},p_{3},q_{3}\}, we see that the matrix is in fact of the form

[\@arstruts1t1s2t2s3t3\\q10-11100\\p200α011\\q2000-α11\\p3110010\\q311000-1] ,\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{3}\\q_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\p_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\alpha$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\q_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-\alpha$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\p_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\q_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-1$\hfil\kern 5.0pt\crcr}}}}\right]$}},

for some α𝔽{0}\alpha\in\mathbb{F}-\{0\}. However, α=1\alpha=1 since {t1,p2,t2,p3,t3}\{t_{1},p_{2},t_{2},p_{3},t_{3}\} is a circuit in MM^{\prime}, but α1\alpha\neq 1 since {t1,q2,s2,q3,s3}\{t_{1},q_{2},s_{2},q_{3},s_{3}\} is a basis in MM^{\prime}. So MM^{\prime} is not representable over any field.

We have shown that if MM is not a binary quad-flower, a dyadic quad-flower, nor a free quad-flower, then (iv) holds. Suppose now that MM is a quad-flower that is representable over some partial field \mathbb{P}. Let AA be a \mathbb{P}-representation for MM. Then it is easy to verify that AA is projectively equivalent to the matrix

[\@arstruts1t1s2t2s3t3\\p1101100\\q10-11100\\p200α011\\q2000-α11\\p3110010\\q311000-1] ,\hbox{}\vbox{\kern 0.86108pt\hbox{$\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle s_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle t_{3}\\p_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\q_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\p_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle\alpha$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\q_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-\alpha$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\p_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\q_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle-1$\hfil\kern 5.0pt\crcr}}}}\right]$}},

where α0\alpha\neq 0.

When MM is a binary quad-flower, we obtain a GF(2n)\mathrm{GF}(2^{n})-representation (for any positive integer nn) by setting α=1\alpha=1, so MM is representable over any field with characteristic two. Since a binary quad-flower has an F7F_{7}-minor, it is not representable over any other field, so (i) holds.

When MM is a dyadic quad-flower, we obtain a 𝔻\mathbb{D}-representation by setting α=1\alpha=1 (where det(A[{p1,q2,q3},{s1,t2,t3}])=2\det(A[\{p_{1},q_{2},q_{3}\},\{s_{1},t_{2},t_{3}\}])=2). In particular, this is an 𝔽\mathbb{F}-representation for any field 𝔽\mathbb{F} having characteristic not two. Since a dyadic quad-flower has an F7F_{7}^{-}-minor, (ii) holds.

When MM is a free quad-flower, then MM has an F7=F_{7}^{=}-minor, where F7=F_{7}^{=} is the matroid obtained from F7F_{7}^{-} by relaxing a circuit-hyperplane. Thus MM is not 22-regular. In particular, as F7=F_{7}^{=} has a U2,5U_{2,5}-minor, MM is not binary or ternary. However, MM is 𝔽\mathbb{F}-representable whenever |𝔽|4|\mathbb{F}|\geq 4, as then the above matrix is an 𝔽\mathbb{F}-representation after choosing α𝔽{0,1,1}\alpha\in\mathbb{F}-\{0,1,-1\}. (Alternatively, the above matrix is a 𝕂2\mathbb{K}_{2}-representation, and there is a homomorphism from 𝕂2\mathbb{K}_{2} to any field with size at least four [26, Lemma 2.5.33].) This shows that (iii) holds. ∎

Nests

Next, we consider nests. We start by considering the circuits. We omit the proof of the next lemma; it follows from orthogonality, the circuit axioms, and the fact that r(M)=6r(M)=6, similar to Lemma 3.1.

Lemma 3.3.

Let MM be a nest with standard labelling. Then all of the following hold:

  1. (i)

    If CC is a non-spanning circuit of MM, then |C|{4,6}|C|\in\{4,6\}.

  2. (ii)

    If CC is a circuit of MM with |C|=4|C|=4, then CC is one of the 1515 circuits listed in Definition 2.13(i).

  3. (iii)

    If {ei,ej,ek,e}\{e_{i},e_{j},e_{k}^{\prime},e_{\ell}^{\prime}\} is a circuit of MM, then {ei,ej}({e1,,e6}{ek,e})\{e_{i},e_{j}\}\cup(\{e_{1}^{\prime},\dotsc,e_{6}^{\prime}\}-\{e_{k}^{\prime},e_{\ell}^{\prime}\}) and ({e1,,e6}{ei,ej}){ek,e}(\{e_{1},\dotsc,e_{6}\}-\{e_{i},e_{j}\})\cup\{e_{k}^{\prime},e_{\ell}^{\prime}\} are 66-element circuits of MM.

  4. (iv)

    If CC is a circuit of MM with |C|=6|C|=6 but CC is not a circuit described in (iii), then C{{e1,e2,e3,e4,e5,e6},{e1,e2,e3,e4,e5,e6}}C\in\{\{e_{1},e_{2},e_{3},e_{4},e_{5},e_{6}\},\{e_{1}^{\prime},e_{2}^{\prime},e_{3}^{\prime},e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\}\}.

By Lemma 3.3, there are three non-isomorphic nests, depending on whether both, none, or one of the sets described in (iv) are circuits. We say that a nest is

  • tight if it has a nest labelling such that both {e1,e2,e3,e4,e5,e6}\{e_{1},e_{2},e_{3},e_{4},e_{5},e_{6}\} and {e1,e2,e3,e4,e5,e6}\{e_{1}^{\prime},e_{2}^{\prime},e_{3}^{\prime},e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\} are circuits;

  • loose if it has a nest labelling such that both {e1,e2,e3,e4,e5,e6}\{e_{1},e_{2},e_{3},e_{4},e_{5},e_{6}\} and {e1,e2,e3,e4,e5,e6}\{e_{1}^{\prime},e_{2}^{\prime},e_{3}^{\prime},e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\} are bases; and

  • slack if it has a nest labelling such that one of {e1,e2,e3,e4,e5,e6}\{e_{1},e_{2},e_{3},e_{4},e_{5},e_{6}\} and {e1,e2,e3,e4,e5,e6}\{e_{1}^{\prime},e_{2}^{\prime},e_{3}^{\prime},e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\} is a circuit, and the other is a basis.

Lemma 3.4.

Let MM be a nest. Then MM has a {F7,F7}\{F_{7},F_{7}^{-}\}-minor. Moreover,

  1. (i)

    when MM is tight, MM is 𝔽\mathbb{F}-representable if and only if 𝔽\mathbb{F} has characteristic two;

  2. (ii)

    when MM is loose, MM is 𝔽\mathbb{F}-representable if and only if 𝔽\mathbb{F} has characteristic not two; and

  3. (iii)

    if MM is slack, then MM is not representable over any field.

Proof.

Assume that MM has standard labelling, and consider the minor M1=M/{e4,e5,e6}\{e1,e2}M_{1}=M/\{e_{4},e_{5},e_{6}\}\backslash\{e_{1}^{\prime},e_{2}^{\prime}\}. By Definition 2.13(i) and Lemma 3.3(iii), M1M_{1} has circuits {e3,e3,e4}\{e_{3},e_{3}^{\prime},e_{4}^{\prime}\}, {e3,e5,e6}\{e_{3},e_{5}^{\prime},e_{6}^{\prime}\}, {e2,e5,e4}\{e_{2},e_{5}^{\prime},e_{4}^{\prime}\}, {e1,e4,e6}\{e_{1},e_{4}^{\prime},e_{6}^{\prime}\}, {e2,e3,e6}\{e_{2},e_{3}^{\prime},e_{6}^{\prime}\}, and {e1,e3,e5}\{e_{1},e_{3}^{\prime},e_{5}^{\prime}\}. Moreover, {e1,e2,e3}\{e_{1},e_{2},e_{3}\} is either a circuit or a basis in M1M_{1}. It follows that MM has an {F7,F7}\{F_{7},F_{7}^{-}\}-minor. Suppose that MM is tight or loose. If MM is tight, then MM has an F7F_{7}-minor, so MM is not representable over any field that does not have characteristic two; and if MM is loose, then MM has an F7F_{7}^{-}-minor, so MM is not representable over any field that has characteristic two. Let AA be the matrix

[\@arstrute1e3e5e2e4e6\\e2010011\\e4001101\\e6100110\\e1011001\\e3101100\\e5110010]\kern 0.0pt\kern 2.5pt\kern-5.0pt\left[\kern 0.0pt\kern-2.5pt\kern-5.55557pt\vbox{\kern-0.86108pt\vbox{\vbox{ \halign{\kern\arraycolsep\hfil\@arstrut$\kbcolstyle#$\hfil\kern\arraycolsep& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep&& \kern\arraycolsep\hfil$\@kbrowstyle#$\ifkbalignright\relax\else\hfil\fi\kern\arraycolsep\cr 5.0pt\hfil\@arstrut$\scriptstyle$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{1}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{3}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{5}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{2}^{\prime}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{4}^{\prime}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle e_{6}^{\prime}\\e_{2}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\e_{4}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\e_{6}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\e_{1}^{\prime}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1\\e_{3}^{\prime}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0\\e_{5}^{\prime}$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 1$\hfil\kern 5.0pt&5.0pt\hfil$\scriptstyle 0$\hfil\kern 5.0pt\crcr}}}}\right]

over a field 𝔽\mathbb{F}. When 𝔽\mathbb{F} has characteristic two, AA is an 𝔽\mathbb{F}-representation of a tight nest; otherwise, AA is an 𝔽\mathbb{F}-representation of a loose nest. This proves (i) and (ii).

It remains to prove (iii). Suppose MM is slack, and consider the minor M2=M/{e1,e2,e3}\{e4,e6}M_{2}=M/\{e_{1}^{\prime},e_{2}^{\prime},e_{3}^{\prime}\}\backslash\{e_{4},e_{6}\}. By Definition 2.13(i) and Lemma 3.3(iii), M2M_{2} has circuits {e5,e1,e5}\{e_{5},e_{1},e_{5}^{\prime}\}, {e1,e2,e4}\{e_{1},e_{2},e_{4}^{\prime}\}, {e1,e3,e6}\{e_{1},e_{3},e_{6}^{\prime}\}, {e2,e3,e5}\{e_{2},e_{3},e_{5}^{\prime}\}, {e2,e5,e6}\{e_{2},e_{5},e_{6}^{\prime}\}, and {e3,e5,e4}\{e_{3},e_{5},e_{4}^{\prime}\}. Either {e1,e2,e3}\{e_{1},e_{2},e_{3}\} is a circuit in M1M_{1} and {e4,e5,e6}\{e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\} is a basis in M2M_{2}, or {e1,e2,e3}\{e_{1},e_{2},e_{3}\} is a basis in M1M_{1} and {e4,e5,e6}\{e_{4}^{\prime},e_{5}^{\prime},e_{6}^{\prime}\} is a circuit in M2M_{2}. It follows that MM has both an F7F_{7}- and F7F_{7}^{-}-minor, so MM is not representable over any field. ∎

4. Excluded minors for 33-regular matroids

In this section, we consider excluded minors for the class of 5\mathbb{H}_{5}-representable matroids. Recall that this is, equivalently, the class of 33-regular matroids. The following theorem is the recently obtained excluded-minor characterisation of 22-regular matroids [7, 8]. The matroids appearing in this theorem are well known (as they appear in the excluded-minor characterisation for either GF(4)\mathrm{GF}(4)-representable matroids [14] or near-regular matroids [15]), with two exceptions. The matroid P8P_{8}^{-} is obtained from P8P_{8} by relaxing one of the two disjoint circuit-hyperplanes. The matroid TQ8TQ_{8} is a rank-44 sparse paving matroid on ground set {0,1,,7}\{0,1,\dotsc,7\} with eight non-spanning circuits {{i,i+2,i+4,i+5}:i{0,1,,7}}\big{\{}\{i,i+2,i+4,i+5\}:i\in\{0,1,\dotsc,7\}\big{\}}, working modulo 8.

Theorem 4.1 ([7, Theorem 1.2]).

A matroid MM is 22-regular if and only if MM has no minor isomorphic to U2,6U_{2,6}, U3,6U_{3,6}, U4,6U_{4,6}, P6P_{6}, F7F_{7}, F7F_{7}^{*}, F7F_{7}^{-}, (F7)(F_{7}^{-})^{*}, F7=F_{7}^{=}, (F7=)(F_{7}^{=})^{*}, 𝐴𝐺(2,3)\e\mathit{AG}(2,3)\backslash e, (𝐴𝐺(2,3)\e)(\mathit{AG}(2,3)\backslash e)^{*}, (𝐴𝐺(2,3)\e)ΔY(\mathit{AG}(2,3)\backslash e)^{\Delta Y}, P8P_{8}, P8P_{8}^{-}, P8=P_{8}^{=}, and 𝑇𝑄8\mathit{TQ}_{8}.

The next lemma follows from Theorem 4.1, by considering which of the excluded minors for 22-regular matroids are 33-regular (see [8, Table 5]).

Lemma 4.2.

Let MM be an excluded minor for the class of 33-regular matroids. Then, either

  1. (i)

    MM has a {U2,6,U3,6,U4,6,P6}\{U_{2,6},U_{3,6},U_{4,6},P_{6}\}-minor, or

  2. (ii)

    MM is isomorphic to a matroid in

    {F7,F7,F7,(F7),F7=,(F7=),𝐴𝐺(2,3)\e,(𝐴𝐺(2,3)\e),(𝐴𝐺(2,3)\e)ΔY,P8,P8,P8=,𝑇𝑄8}.\{F_{7},F_{7}^{*},F_{7}^{-},(F_{7}^{-})^{*},F_{7}^{=},(F_{7}^{=})^{*},\\ \mathit{AG}(2,3)\backslash e,(\mathit{AG}(2,3)\backslash e)^{*},(\mathit{AG}(2,3)\backslash e)^{\Delta Y},P_{8},P_{8}^{-},P_{8}^{=},\mathit{TQ}_{8}\}.

The following is a consequence of the fact that U2,5U_{2,5} is a strong 5\mathbb{H}_{5}-stabilizer [26, Lemma 7.3.16].

Lemma 4.3.

The matroids U2,6U_{2,6}, U3,6U_{3,6}, U4,6U_{4,6}, and P6P_{6} are strong 5\mathbb{H}_{5}-stabilizers.

We also require the following consequence of Lemmas 3.2, 3.4 and 4.2.

Lemma 4.4.

If MM is a quad-flower or a nest, then MM is not an excluded minor for the class of 33-regular matroids.

Proof.

If MM is a nest, then MM has either F7F_{7} or F7F_{7}^{-} as a proper minor, by Lemma 3.4, so MM is not an excluded minor for the class of 33-regular matroids, by Lemma 4.2. Suppose that MM is a quad-flower that is an excluded minor for the class of 33-regular matroids. Then every proper minor of MM is 33-regular. By Lemma 3.2, MM is either a binary quad-flower, a dyadic quad-flower, or a free quad-flower. But then MM has either F7F_{7}, F7F_{7}^{-}, or F7=F_{7}^{=} as a proper minor, respectively, contradicting Lemma 4.2. ∎

\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(a) F7F_{7}.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(b) F7F_{7}^{-}.
\SetVertexNoLabel\Vertexaa\Vertexgg\Vertexee\Vertexdd\Vertexff\Vertexbb\Vertexcc
(c) F7=F_{7}^{=}.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(d) H7H_{7}.
\SetVertexNoLabel\Vertexaa\Vertexgg\Vertexee\Vertexdd\Vertexff\Vertexbb\Vertexcc\Vertex
(e) M(K4)+eM(K_{4})+e.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(f) 𝒲3+e\mathcal{W}^{3}+e.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(g) Λ3\Lambda_{3}.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(h) Q6+eQ_{6}+e.
\SetVertexNoLabel\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex\Vertex
(i) R6+eR_{6}+e.
Figure 2. Nine rank-33 excluded minors for the class of 33-regular matroids.

For a matroid MM, let M+eM+e denote the matroid obtained from MM by a free single-element extension. Consider the set of 1010 matroids that can be obtained from the Fano matroid F7F_{7} by relaxing circuit-hyperplanes. This gives the sequence

{F7},{F7},{F7=},{H7,M(K4)+e},{𝒲3+e,Λ3},{Q6+e},{P6+e},{U3,7};\{F_{7}\},\{F_{7}^{-}\},\{F_{7}^{=}\},\{H_{7},M(K_{4})+e\},\{\mathcal{W}^{3}+e,\Lambda_{3}\},\{Q_{6}+e\},\{P_{6}+e\},\{U_{3,7}\};

geometric representations of these matroids are given in Figure 2. These 1010 matroids give rise to nine ΔY\Delta Y-equivalence classes (the matroids H7H_{7} and M(K4)+eM(K_{4})+e are ΔY\Delta Y-equivalent). Each of these matroids turns out to be an excluded minor for the class of 33-regular matroids.

Theorem 4.5.

There are exactly 3333 matroids that are excluded minors for the class of 33-regular matroids and have at most 1313 elements. These are:

F7,F7,F7=,H7,M(K4)+e,𝒲3+e,Λ3,Q6+e,P6+e,U3,7,F_{7},F_{7}^{-},F_{7}^{=},H_{7},M(K_{4})+e,\mathcal{W}^{3}+e,\Lambda_{3},Q_{6}+e,P_{6}+e,U_{3,7},

and their duals; Δ()(U2,7)\Delta^{(*)}(U_{2,7}); and 𝐴𝐺(2,3)\e\mathit{AG}(2,3)\backslash e, (𝐴𝐺(2,3)\e)(\mathit{AG}(2,3)\backslash e)^{*}, (𝐴𝐺(2,3)\e)ΔY(\mathit{AG}(2,3)\backslash e)^{\Delta Y}, P8P_{8}, P8P_{8}^{-}, P8=P_{8}^{=}, and 𝑇𝑄8\mathit{TQ}_{8}.

Proof.

Let 𝒰(n)\mathcal{U}^{(n)} be the set of all nn-element 33-connected 33-regular matroids with a {U2,6,U3,6,U4,6,P6}\{U_{2,6},U_{3,6},U_{4,6},P_{6}\}-minor. Using a computer, we exhaustively generated the matroids in 𝒰(n)\mathcal{U}^{(n)}, for each n=6,7,8,,13n=6,7,8,\dotsc,13 (see Table 2). By Lemma 4.2, any excluded minor for the class of 33-regular matroids has at least 77 elements. Let n{7,8,9,10}n\in\{7,8,9,10\}, and suppose all excluded minors for the class on fewer than nn elements are known. We generated all 33-connected single-element extensions of some matroid in 𝒰(n1)\mathcal{U}^{(n-1)}; let 𝒵(n)\mathcal{Z}^{(n)} be this collection of matroids. From the collection 𝒵(n)\mathcal{Z}^{(n)}, we filter out any matroids in 𝒰(n)\mathcal{U}^{(n)}, or any matroid containing, as a minor, one of the excluded minors for 33-regular matroids on fewer than nn elements; call the resulting collection 𝒴(n)\mathcal{Y}^{(n)}. Clearly, any matroid in 𝒴(n)\mathcal{Y}^{(n)} is an excluded minor for the class. In fact, if MM is an nn-element excluded minor not listed in Lemma 4.2(ii), then, by Lemmas 4.2 and 2.10, the collection 𝒴(n)\mathcal{Y}^{(n)} contains at least one of MM and MM^{*}, so the complete list of nn-element excluded minors is obtained by closing 𝒴(n)\mathcal{Y}^{(n)} under duality. Now, all excluded minors for the class on at most 1010 elements are known.

Next consider when n=11n=11. In order to utilise the contrapositive of Lemma 2.15, we consider 33-connected matroids with a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, so that, when |E(M)|=11|E(M)|=11 and N{U2,5,U3,5}N\in\{U_{2,5},U_{3,5}\}, we have |E(M)||E(N)|=6|E(M)|-|E(N)|=6. Let 𝒱(n)\mathcal{V}^{(n)} be the set of all nn-element 33-connected 33-regular matroids with a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor. We exhaustively generated the matroids in 𝒱(n)\mathcal{V}^{(n)}, for each n11n\leq 11 (see Table 3). For any (not necessarily non-isomorphic) pair of matroids MeM_{e} and MfM_{f} in 𝒱(10)\mathcal{V}^{(10)}, where MeM_{e} and MfM_{f} are both single-element extensions of some matroid M𝒱(9)M^{\prime}\in\mathcal{V}^{(9)}, we find the splices of MeM_{e} and MfM_{f}. Let 𝒵\mathcal{Z} be the collection of all 1111-element matroids that can be obtained in this way. From the collection 𝒵\mathcal{Z}, we filter out any matroids in 𝒱(11)\mathcal{V}^{(11)}, or any matroid containing, as a minor, one of the excluded minors for 33-regular matroids on at most 1010 elements; call the resulting collection 𝒴(11)\mathcal{Y}^{(11)}. Clearly, any matroid in 𝒴(11)\mathcal{Y}^{(11)} is an excluded minor for the class. In fact, if MM is an 1111-element excluded minor, then, by Lemmas 4.2 and 2.14, either the collection 𝒴(11)\mathcal{Y}^{(11)} contains a matroid that is ΔY\Delta Y-equivalent to MM or MM^{*}, or MM has a spiky 33-separator. But the latter contradicts Lemma 2.15. Therefore, the complete list of 1111-element excluded minors is obtained by closing 𝒴(11)\mathcal{Y}^{(11)} under duality and ΔY\Delta Y-equivalence. Now, all excluded minors for the class on at most 1111 elements are known.

For n{12,13}n\in\{12,13\}, the approach is similar to when n=11n=11, only we return to considering 33-connected 33-regular matroids with a {U2,6,U3,6,U4,6,P6}\{U_{2,6},U_{3,6},U_{4,6},P_{6}\}-minor, for efficiency of the computations. Recall that 𝒰(n)\mathcal{U}^{(n)} is the set of such matroids on nn elements, and we have exhaustively generated the matroids in 𝒰(n)\mathcal{U}^{(n)} for n13n\leq 13. Let n{12,13}n\in\{12,13\}, and assume we know all excluded minors for the class on n1n-1 elements. For any (not necessarily non-isomorphic) pair of matroids MeM_{e} and MfM_{f} in 𝒰(n1)\mathcal{U}^{(n-1)}, where MeM_{e} and MfM_{f} are both single-element extensions of some matroid M𝒰(n2)M^{\prime}\in\mathcal{U}^{(n-2)}, we find the splices of MeM_{e} and MfM_{f}. Let 𝒵(n)\mathcal{Z}^{(n)} be the collection of all nn-element matroids that can be obtained in this way. We note that 𝒵(13)\mathcal{Z}^{(13)} contained 7550463 matroids with rank 6, and 6788774 matroids with rank 7. From the collection 𝒵(n)\mathcal{Z}^{(n)}, we filter out any matroids in 𝒰(n)\mathcal{U}^{(n)}, or any matroid containing, as a minor, one of the excluded minors for 33-regular matroids on at most n1n-1 elements; call the resulting collection 𝒴(n)\mathcal{Y}^{(n)}. Clearly, any matroid in 𝒴(n)\mathcal{Y}^{(n)} is an excluded minor for the class. In fact, if MM is an nn-element excluded minor, then, by Lemmas 4.2, 2.14 and 2.15, either the collection 𝒴(n)\mathcal{Y}^{(n)} contains a matroid that is ΔY\Delta Y-equivalent to either MM or MM^{*}, or n=12n=12 and MM is a quad-flower or a nest. But the latter contradicts Lemma 4.4. Therefore, the complete list of nn-element excluded minors is obtained by closing 𝒴(n)\mathcal{Y}^{(n)} under duality and ΔY\Delta Y-equivalence. This completes the proof. ∎

r\nr\backslash n 6 7 8 9 10 11 12 13
2 1
3 2 2 3 4 3 2 1
4 1 2 15 63 160 252 294 238
5 3 63 572 2969 9701 21766
6 4 160 2969 29288 172233
7 3 252 9701 172233
8 2 294 21766
9 1 238
Total 4 4 21 134 264 6446 49280 388474
Table 2. The number of 33-connected 33-regular nn-element rank-rr matroids with a {U2,6,U3,6,U4,6,P6}\{U_{2,6},U_{3,6},U_{4,6},P_{6}\}-minor, for n13n\leq 13.
r\nr\backslash n 5 6 7 8 9 10 11
2 1 1
3 1 3 4 7 7 5 2
4 1 4 32 125 273 384
5 7 125 1074 5125
6 7 273 5125
7 5 384
8 2
9
10
Total 2 5 8 46 264 1630 11022
Table 3. The number of 33-connected 33-regular nn-element rank-rr matroids with a {U2,5,U3,5}\{U_{2,5},U_{3,5}\}-minor, for n11n\leq 11.

Comparing with the excluded minors for 22-regular matroids, note that instead of U2,6U_{2,6}, U3,6U_{3,6}, U4,6U_{4,6} and P6P_{6}, the matroids that appear as excluded minors for 33-regular matroids are either in Δ()(U2,7)\Delta^{(*)}(U_{2,7}), or can be obtained from F7F_{7} by relaxing zero or more circuit-hyperplanes and then possibly dualising.

In Table 4, we show the excluded minors for 33-regular matroids, grouped by ΔY\Delta Y-equivalence classes, and, for those that are GF(5)\mathrm{GF}(5)-representable, we provide the largest integer ii for which they are i\mathbb{H}_{i}-representable. We also specify their universal partial field, if this partial field is well known.

MM M\mathbb{P}_{M} max{i:M(i)}\max\{i:M\in\mathcal{M}(\mathbb{H}_{i})\} |Δ(M)|\left|\Delta(M)\right|
U2,7U_{2,7} 𝕌4\mathbb{U}_{4} 6
F7F_{7} GF(2)\mathrm{GF}(2) 2
F7F_{7}^{-} 𝔻\mathbb{D} 2 2
F7=F_{7}^{=} 𝕂2\mathbb{K}_{2} 2 2
M(K4)+eM(K_{4})+e 4 4
𝒲3+e\mathcal{W}^{3}+e 2 2
Λ3\Lambda_{3} 4 2
Q6+eQ_{6}+e 2 2
P6+eP_{6}+e 2
U3,7U_{3,7} 2
𝐴𝐺(2,3)\e\mathit{AG}(2,3)\backslash e 𝕊\mathbb{S} 3
P8P_{8} 𝔻\mathbb{D} 2 1
P8P_{8}^{-} 𝕂2\mathbb{K}_{2} 2 1
P8=P_{8}^{=} 4\mathbb{H}_{4} 4 1
𝑇𝑄8\mathit{TQ}_{8} 𝕂2\mathbb{K}_{2} 2 1
Table 4. The excluded minors for the class of 33-regular matroids on at most 1313 elements, and their universal partial fields. We list one representative MM of each ΔY\Delta Y-equivalence class Δ(M)\Delta(M).

Recall that the following was proved by Brettell, Oxley, Semple and Whittle [7].

Theorem 4.6 ([7, Theorem 1.1]).

An excluded minor for the class of 33-regular matroids has at most 1515 elements.

It is natural to ask the viability of using the techniques here (and in [8]) to find the excluded minors for 33-regular matroids on up to 1515 elements, in order to obtain a full excluded-minor characterisation for the class.

For obtaining the excluded minors for the class of 22-regular matroids, an important optimisation used in [8] is that any such excluded minor with at least 99 elements is GF(4)\mathrm{GF}(4)-representable, for otherwise it would also be an excluded minor for the class of GF(4)\mathrm{GF}(4)-representable matroids (the largest of which is known to have 88 elements [14]). Thus, there one can first find certain GF(211)\mathrm{GF}(211)-representable matroids (as a “proxy” for 22-regular matroids), and then the potential excluded minors are GF(4)\mathrm{GF}(4)-representable extensions (or splices) of these matroids. The same cannot be said for 33-regular matroids, where we consider certain GF(3527)\mathrm{GF}(3527)-representable matroids (as a “proxy” for 33-regular matroids), and then must consider all extensions (or splices) of these matroids.

The upshot is, using more time or computing resources, one could probably extend Theorem 4.5 to matroids on 14 elements, but then another big step in computational power would still be required to tackle matroids on 1515 elements. A better approach seems some sort of compromise between an exhaustive computation and developing the theory in order to decrease the bound, as in [7]: that is, a computation that exploits structural results.

5. Excluded minors for i\mathbb{H}_{i}-representable matroids when i{1,2,3,4}i\in\{1,2,3,4\}

In this section, we use the following notation. For i{1,2,3,4,5}i\in\{1,2,3,4,5\}, let 𝒳i\mathcal{X}_{i} be the set of excluded minors for the class of i\mathbb{H}_{i}-representable matroids. For i{1,2,3,4}i\in\{1,2,3,4\}, let 𝒩i\mathcal{N}_{i} be the set of matroids in 𝒳i+1\mathcal{X}_{i+1} that are i\mathbb{H}_{i}-representable. Using this notation, we have:

Lemma 5.1.

Let M𝒳iM\in\mathcal{X}_{i} for some i{1,2,3,4}i\in\{1,2,3,4\}. Then either

  1. (i)

    MM has an 𝒩i\mathcal{N}_{i}-minor, or

  2. (ii)

    M𝒳i+1M\in\mathcal{X}_{i+1}.

Moreover, the matroids in 𝒩i\mathcal{N}_{i} are strong i\mathbb{H}_{i}-stabilizers by Lemma 2.7.

We consider now the computation of matroids in 𝒳i\mathcal{X}_{i} on at most 1010 elements, for i{1,2,3,4}i\in\{1,2,3,4\}. We first consider when i=4i=4, in which case, using Theorems 4.5 and 4, we can start from the following:

Lemma 5.2.

Suppose M𝒳4M\in\mathcal{X}_{4} and |E(M)|13|E(M)|\leq 13. Then, either

  1. (i)

    MM or MM^{*} has a minor in {P8=,Λ3,H7,M(K4)+e}\{P_{8}^{=},\Lambda_{3},H_{7},M(K_{4})+e\}, or

  2. (ii)

    MM is isomorphic to one of 2626 matroids in 𝒳5\mathcal{X}_{5}; namely, MM or MM^{*} is isomorphic to a matroid in

    {F7,F7,F7=,U3,7,𝒲3+e,Q6+e,P6+e,𝐴𝐺(2,3)\e,(𝐴𝐺(2,3)\e)ΔY,P8,P8,𝑇𝑄8}Δ(U2,7).\{F_{7},F_{7}^{-},F_{7}^{=},U_{3,7},\mathcal{W}^{3}+e,Q_{6}+e,P_{6}+e,\\ \mathit{AG}(2,3)\backslash e,(\mathit{AG}(2,3)\backslash e)^{\Delta Y},P_{8},P_{8}^{-},\mathit{TQ}_{8}\}\cup\Delta(U_{2,7}).
Theorem 5.3.

There are 6363 excluded minors for 4\mathbb{H}_{4}-representability on at most 1010 elements.

Proof.

Let M𝒳4M\in\mathcal{X}_{4} with |E(M)|10|E(M)|\leq 10. By Lemma 5.2, if MM is not one of the 26 matroids in Lemma 5.2(ii), then MM has an 𝒩4\mathcal{N}_{4}-minor, where 𝒩4\mathcal{N}_{4} is obtained by closing {P8=,Λ3,H7,M(K4)+e}\{P_{8}^{=},\Lambda_{3},H_{7},M(K_{4})+e\} under duality.

Let 4(n)\mathcal{H}_{4}^{(n)} denote the nn-element 33-connected 4\mathbb{H}_{4}-representable matroids with an 𝒩4\mathcal{N}_{4}-minor. Starting from each matroid N𝒩4N\in\mathcal{N}_{4}, and using the fact that NN is a strong 4\mathbb{H}_{4}-stabilizer (by Lemma 2.7), we exhaustively generated the matroids in 4(n)\mathcal{H}_{4}^{(n)}, for n=7,8,9,10n=7,8,9,10, see Table 5. Suppose all matroids in 𝒳4\mathcal{X}_{4} on fewer than nn elements are known, for some n10n\leq 10. We generated all 33-connected single-element extensions of some matroid in 4(n1)\mathcal{H}^{(n-1)}_{4}, then removed any matroids in 4(n)\mathcal{H}^{(n)}_{4}, or any containing, as a minor, an excluded minor for the class of 4\mathbb{H}_{4}-representable matroids on fewer than nn elements. It follows from Lemma 2.10 that, after closing the resulting set of matroids under duality, we obtain all the matroids in 𝒳4\mathcal{X}_{4} having at most nn elements. ∎

r\nr\backslash n 7 8 9 10
3 3 3 4 3
4 3 24 127 408
5 3 127 1747
6 4 408
7 3
Total 6 30 262 2569
Table 5. The number of 33-connected 4\mathbb{H}_{4}-representable nn-element rank-rr matroids with a 𝒩4\mathcal{N}_{4}-minor, for n10n\leq 10.

For the next layer of the hierarchy, the question becomes: which of the 63 excluded minors are 3\mathbb{H}_{3}-representable? It turns out that 20 of them are, as given in the next lemma. We provide 3\mathbb{H}_{3}-representations for these matroids in the appendix.

Note that some of these matroids are related to the well-known Pappus matroid [18, Page 655], which we denote as 𝖯𝖺𝗉𝗉𝗎𝗌\mathsf{Pappus}. After deleting an element from 𝖯𝖺𝗉𝗉𝗎𝗌\mathsf{Pappus}, the resulting matroid is unique up to isomorphism; we denote this matroid as 𝖯𝖺𝗉𝗉𝗎𝗌\e\mathsf{Pappus}\backslash e. The matroid 𝖯𝖺𝗉𝗉𝗎𝗌\e\mathsf{Pappus}\backslash e has a pair of free bases (see [10, Lemma 2.1]); tightening either one of these results in a matroid that we denote (𝖯𝖺𝗉𝗉𝗎𝗌\e)+(\mathsf{Pappus}\backslash e)^{+} (the two possible matroids are isomorphic).

Lemma 5.4.

If N𝒩3N\in\mathcal{N}_{3} and E(N)10E(N)\leq 10, then NN is one of the 2020 matroids obtained by closing the set

Δ({𝖯𝖺𝗉𝗉𝗎𝗌\e,(𝖯𝖺𝗉𝗉𝗎𝗌\e)+,M3240}){M1543,M1559,M1566,M1596,M1598,Fq}\Delta(\{\mathsf{Pappus}\backslash e,(\mathsf{Pappus}\backslash e)^{+},M_{3240}\})\cup\{M_{1543},M_{1559},M_{1566},M_{1596},M_{1598},Fq\}

under duality.

Note that, by Theorems 5.3 and 5.4, there are 43 excluded minors for 4\mathbb{H}_{4}-representability that are also excluded minors for 3\mathbb{H}_{3}-representability.

Theorem 5.5.

There are 133133 excluded minors for 3\mathbb{H}_{3}-representability on at most 1010 elements.

Proof.

Essentially the same approach was taken as for the proof of Theorem 5.3, only using Lemma 5.4. The number of nn-element 33-connected 3\mathbb{H}_{3}-representable matroids with an 𝒩3\mathcal{N}_{3}-minor are given in Table 6. ∎

r\nr\backslash n 8 9 10
3 2 3 1
4 9 65 231
5 2 65 1144
6 3 231
7 1
Total 13 136 1608
Table 6. The number of 33-connected 3\mathbb{H}_{3}-representable nn-element rank-rr matroids with a 𝒩3\mathcal{N}_{3}-minor, for n10n\leq 10.
Lemma 5.6.

If N𝒩2N\in\mathcal{N}_{2} and E(N)10E(N)\leq 10, then NN is one of the 9999 matroids obtained by closing the set

{F7,F7=,𝒲3+e,Q6+e,P8,P8,𝑇𝑄8,M1537,M1554,M1556,M1569,M1676,𝐹𝑟1,𝐹𝑟2,𝐹𝑟3,M3241,M10782,M16834,M17078,M17759,M47015,𝐹𝑠1,𝐹𝑠2,𝐹𝑠3,𝐹𝑠4,𝐹𝑡1,𝐹𝑡2,𝐹𝑡4,𝐹𝑡5,𝐹𝑡6,𝐹𝑡7,𝐹𝑡8,𝐹𝑢3,𝐹𝑢5,𝐹𝑢8}\{F_{7}^{-},F_{7}^{=},\mathcal{W}^{3}+e,Q_{6}+e,P_{8},P_{8}^{-},\mathit{TQ}_{8},\\ M_{1537},M_{1554},M_{1556},M_{1569},M_{1676},\mathit{Fr}_{1},\mathit{Fr}_{2},\mathit{Fr}_{3},\\ M_{3241},M_{10782},M_{16834},M_{17078},M_{17759},M_{47015},\mathit{Fs}_{1},\mathit{Fs}_{2},\mathit{Fs}_{3},\mathit{Fs}_{4},\\ \mathit{Ft}_{1},\mathit{Ft}_{2},\mathit{Ft}_{4},\mathit{Ft}_{5},\mathit{Ft}_{6},\mathit{Ft}_{7},\mathit{Ft}_{8},\mathit{Fu}_{3},\mathit{Fu}_{5},\mathit{Fu}_{8}\}

under ΔY\Delta Y-equivalence and duality.

Note that, by Theorems 5.5 and 5.6, there are 3434 excluded minors for 3\mathbb{H}_{3}-representability that are also excluded minors for 2\mathbb{H}_{2}-representability.

Theorem 5.7.

There are 621621 excluded minors for 2\mathbb{H}_{2}-representability on at most 1010 elements.

Proof.

Again, we use a similar approach as in the proof of Theorems 5.5 and 5.3, only using Lemma 5.6. The number of nn-element 33-connected 2\mathbb{H}_{2}-representable matroids with an 𝒩2\mathcal{N}_{2}-minor are given in Table 7. ∎

r\nr\backslash n 7 8 9 10
3 4 13 32 37
4 4 89 913 5125
5 13 913 21839
6 32 5125
7 37
Total 8 115 1890 32163
Table 7. The number of 33-connected 2\mathbb{H}_{2}-representable nn-element rank-rr matroids with a 𝒩2\mathcal{N}_{2}-minor, for n10n\leq 10.
Lemma 5.8.

If N𝒩1N\in\mathcal{N}_{1} and E(N)10E(N)\leq 10, then NN is one of the 441441 matroids obtained by closing the set

{M1601,λ4+,𝐹𝑡3,𝐹𝑢1,𝐹𝑢6,𝐹𝑢7,𝑈𝐺10,M822,M835,M836,M854,M1495,M1505,M1507,𝐾𝑃8,M1519,M1530,M1535,M1538,M1541,M1542,M1553,M1591,M1593,M1599,M1600,M1609,M1610,M1618,M1627,M1674,M1680,M1695,M1698,M1713,M1729,M3193,𝐵𝐵9,A9,𝐵𝐵9Δ,M9574,M9841,M9844,𝑃𝑃9,M10025,M10052,M10241,M10242,M10244,M10251,M10287,M10368,M10459,M11161,M11162,M11347,M12000,M12575,M15729,𝑇𝑄9,M16321,M16332,M18663,M46942,M46945,M47635,M48819,M50041,𝐹𝑣6,𝐹𝑣7,𝐹𝑣8,𝐹𝑣11,𝐹𝑣12,𝐹𝑣16,𝐹𝑣18,𝐹𝑣19,𝐹𝑣21,𝐹𝑣24,𝐹𝑣25,𝐹𝑣27,𝐹𝑣37,𝐹𝑣41,𝐹𝑣42,𝐹𝑣47,𝐹𝑣51,𝐹𝑣54,𝐹𝑣56,𝐹𝑣60,𝐹𝑣61,𝐹𝑣66,𝐹𝑣68,𝐹𝑣71,𝐹𝑣75,𝐹𝑣77,𝐹𝑣85,𝐹𝑣87,𝐹𝑣90,𝐹𝑣91,𝐹𝑣103,𝐺𝑃10,𝑇𝑄10,𝐹𝐹10,𝐹𝑣14,𝐹𝑣22,𝐹𝑣26,𝐹𝑣28,𝐹𝑣30,𝐹𝑣32,𝐹𝑣35,𝐹𝑣36,𝐹𝑣39,𝐹𝑣40,𝐹𝑣43,𝐹𝑣44,𝐹𝑣46,𝐹𝑣48,𝐹𝑣49,𝐹𝑣50,𝐹𝑣53,𝐹𝑣55,𝐹𝑣57,𝐹𝑣58,𝐹𝑣59,𝐹𝑣62,𝐹𝑣63,𝐹𝑣65,𝐹𝑣70,𝐹𝑣72,𝐹𝑣73,𝐹𝑣78,𝐹𝑣79,𝐹𝑣81,𝐹𝑣82,𝐹𝑣83,𝐹𝑣84,𝐹𝑣89,𝐹𝑣92,𝐹𝑣93,𝐹𝑣94,𝐹𝑣95,𝐹𝑣96,𝐹𝑣101,𝐹𝑣102,𝐹𝑣104,𝐹𝑣106,𝐹𝑣111,𝐹𝑣112}\{M_{1601},\lambda_{4}^{+},\mathit{Ft}_{3},\mathit{Fu}_{1},\mathit{Fu}_{6},\mathit{Fu}_{7},\mathit{UG}_{10},M_{822},M_{835},M_{836},M_{854},M_{1495},M_{1505},\\ M_{1507},\mathit{KP}_{8},M_{1519},M_{1530},M_{1535},M_{1538},M_{1541},M_{1542},M_{1553},M_{1591},M_{1593},M_{1599},\\ M_{1600},M_{1609},M_{1610},M_{1618},M_{1627},M_{1674},M_{1680},M_{1695},M_{1698},M_{1713},M_{1729},\\ M_{3193},\mathit{BB}_{9},A_{9},\mathit{BB}_{9}^{\Delta\nabla},M_{9574},M_{9841},M_{9844},\mathit{PP}_{9},M_{10025},M_{10052},M_{10241},M_{10242},\\ M_{10244},M_{10251},M_{10287},M_{10368},M_{10459},M_{11161},M_{11162},M_{11347},M_{12000},M_{12575},\\ M_{15729},\mathit{TQ}_{9},M_{16321},M_{16332},M_{18663},M_{46942},M_{46945},M_{47635},M_{48819},M_{50041},\\ \mathit{Fv}_{6},\mathit{Fv}_{7},\mathit{Fv}_{8},\mathit{Fv}_{11},\mathit{Fv}_{12},\mathit{Fv}_{16},\mathit{Fv}_{18},\mathit{Fv}_{19},\mathit{Fv}_{21},\mathit{Fv}_{24},\mathit{Fv}_{25},\mathit{Fv}_{27},\mathit{Fv}_{37},\mathit{Fv}_{41},\\ \mathit{Fv}_{42},\mathit{Fv}_{47},\mathit{Fv}_{51},\mathit{Fv}_{54},\mathit{Fv}_{56},\mathit{Fv}_{60},\mathit{Fv}_{61},\mathit{Fv}_{66},\mathit{Fv}_{68},\mathit{Fv}_{71},\mathit{Fv}_{75},\mathit{Fv}_{77},\mathit{Fv}_{85},\mathit{Fv}_{87},\\ \mathit{Fv}_{90},\mathit{Fv}_{91},\mathit{Fv}_{103},\mathit{GP}_{10},\mathit{TQ}_{10},\mathit{FF}_{10},\mathit{Fv}_{14},\mathit{Fv}_{22},\mathit{Fv}_{26},\mathit{Fv}_{28},\mathit{Fv}_{30},\mathit{Fv}_{32},\mathit{Fv}_{35},\\ \mathit{Fv}_{36},\mathit{Fv}_{39},\mathit{Fv}_{40},\mathit{Fv}_{43},\mathit{Fv}_{44},\mathit{Fv}_{46},\mathit{Fv}_{48},\mathit{Fv}_{49},\mathit{Fv}_{50},\mathit{Fv}_{53},\mathit{Fv}_{55},\mathit{Fv}_{57},\mathit{Fv}_{58},\mathit{Fv}_{59},\\ \mathit{Fv}_{62},\mathit{Fv}_{63},\mathit{Fv}_{65},\mathit{Fv}_{70},\mathit{Fv}_{72},\mathit{Fv}_{73},\mathit{Fv}_{78},\mathit{Fv}_{79},\mathit{Fv}_{81},\mathit{Fv}_{82},\mathit{Fv}_{83},\mathit{Fv}_{84},\mathit{Fv}_{89},\mathit{Fv}_{92},\\ \mathit{Fv}_{93},\mathit{Fv}_{94},\mathit{Fv}_{95},\mathit{Fv}_{96},\mathit{Fv}_{101},\mathit{Fv}_{102},\mathit{Fv}_{104},\mathit{Fv}_{106},\mathit{Fv}_{111},\mathit{Fv}_{112}\}

under ΔY\Delta Y-equivalence and duality.

Let MM be a uniquely GF(5)\mathrm{GF}(5)-representable matroid that is not dyadic. Then MM has an 𝒩1\mathcal{N}_{1}-minor. In particular, if |E(M)|10|E(M)|\leq 10, then MM or MM^{*} is ΔY\Delta Y-equivalent to a matroid that has an NN-minor, for some matroid NN listed in Lemma 5.8.

Note that, by Theorems 5.7 and 5.8, there are 180180 excluded minors for 2\mathbb{H}_{2}-representability that are also excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids.

Finally, we obtain our main result, Theorem 1.1, which we restate here.

Theorem 1.1.

There are 21282128 excluded minors for GF(5)\mathrm{GF}(5)-representability on 1010 elements.

Proof.

Again, we use a similar approach as in the proof of Theorems 5.3, 5.5 and 5.7, only this time using Lemma 5.8. The number of nn-element rank-rr 33-connected GF(5)\mathrm{GF}(5)-representable matroids with an 𝒩1\mathcal{N}_{1}-minor are given in Table 8. ∎

r\nr\backslash n 8 9 10
3 4 33 120
4 46 2237 51823
5 4 2237 327186
6 33 51823
7 120
Total 54 4540 431072
Table 8. The number of 33-connected nn-element rank-rr matroids that are uniquely GF(5)\mathrm{GF}(5)-representable but not dyadic, for n10n\leq 10.

6. Final remarks

In Table 9, we provide the number of excluded minors for GF(5)\mathrm{GF}(5)-representability of each rank and size (up to at most 10 elements). We also consider the number of ΔY\Delta Y-equivalence classes for each size.

As remarked prior to Proposition 2.8, the excluded minors for representability over a partial field \mathbb{P} are closed not only under Δ\Delta-YY exchange, but also under segment-cosegment exchange (a generalisation of Δ\Delta-YY exchange) [19]. Thus, we could instead consider the number of equivalence classes under segment-cosegment exchange; however, the only effect would be merging two of the classes on 1010 elements, reducing the number of equivalence classes from 920920 to 919919.

nn rr #(matroids) #(ΔY()\Delta Y^{(*)}-classes)
7 2 / 5 1
3 / 4 5
Total 12 4
8 3 / 5 2
4 92
Total 96 73
9 3 / 6 9
4 / 5 219
Total 456 131
10 3 / 7 1
4 / 6 130
5 1866
Total 2128 920
Table 9. The number of excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids on nn elements and rank rr, and the number of ΔY\Delta Y-equivalence classes.

Of the 920920 dual-closed ΔY\Delta Y-equivalence classes of 1010-element excluded minors for the class of GF(5)\mathrm{GF}(5)-representable matroids, 513513 of the classes consist of matroids that are not representable over any field. This corresponds to 12351235 out of the 21282128 excluded minors on 1010 elements.

A partial field \mathbb{P} is universal if it is the universal partial field of some matroid MM; that is, =M\mathbb{P}=\mathbb{P}_{M}. Van Zwam showed that several well-known partial fields are universal [26, Table 3.2], but commented that it was not known if each Hydra-ii partial field is universal, for i{2,3,4,5}i\in\{2,3,4,5\} [26, page 92]. It follows from Lemma 2.5 that U2,6=5\mathbb{P}_{U_{2,6}}=\mathbb{H}_{5}. In the process of finding the excluded minors for GF(5)\mathrm{GF}(5), we were also able to find a matroid MM such that M=i\mathbb{P}_{M}=\mathbb{H}_{i} for each ii, thereby showing that each Hydra partial field is universal. These are given in Table 10. We note that each matroid in this table has at most 99 elements.

M\mathbb{P}_{M} 5\mathbb{H}_{5} 4\mathbb{H}_{4} 3\mathbb{H}_{3} 2\mathbb{H}_{2} GF(5)\mathrm{GF}(5)
MM U2,6U_{2,6} P8=P_{8}^{=} (𝖯𝖺𝗉𝗉𝗎𝗌\e)+(\mathsf{Pappus}\backslash e)^{+} M16834M_{16834} M15729M_{15729}
Table 10. Matroids with Hydra universal partial fields

References

  • [1] S. Akkari and J. Oxley. Some local extremal connectivity results for matroids. Combinatorics, Probability and Computing, 2(04):367–384, 1993.
  • [2] M. Baker and O. Lorscheid. Lift theorems for representations of matroids over pastures. arXiv:2107.00981, 2021.
  • [3] R. E. Bixby. On Reid’s characterization of the ternary matroids. Journal of Combinatorial Theory, Series B, 26(2):174–204, 1979.
  • [4] J. E. Bonin and W. R. Schmitt. Splicing matroids. European Journal of Combinatorics, 32:722–744.
  • [5] N. Brettell. On the excluded minors for the class of matroids representable over all fields of size at least four. In preparation.
  • [6] N. Brettell, B. Clark, J. Oxley, C. Semple, and G. Whittle. Excluded minors are almost fragile. Journal of Combinatorial Theory, Series B, 140:263–322, 2020.
  • [7] N. Brettell, J. Oxley, C. Semple, and G. Whittle. The excluded minors for 22- and 33-regular matroids. Journal of Combinatorial Theory, Series B, 163:133–218, 2023.
  • [8] N. Brettell and R. Pendavingh. Computing excluded minors for classes of matroids representable over partial fields. The Electronic Journal of Combinatorics, 31(P3.20):1–23, 2024.
  • [9] N. Brettell, G. Whittle, and A. Williams. NN-detachable pairs in 33-connected matroids III: the theorem. Journal of Combinatorial Theory, Series B, 153:223–290, 2022.
  • [10] R. Chen and G. Whittle. On recognizing frame and lifted-graphic matroids. Journal of Graph Theory, 87(1):72–76, 2018.
  • [11] A. L. C. Cheung. Compatibility of extensions of a combinatorial geometry. Ph.D., University of Waterloo, 1974.
  • [12] J. Geelen, B. Gerards, and G. Whittle. Solving Rota’s conjecture. Notices of the AMS, 61(7):736–743, 2014.
  • [13] J. Geelen, J. Oxley, D. Vertigan, and G. Whittle. Weak maps and stabilizers of classes of matroids. Advances in Applied Mathematics, (21):305–341, 1998.
  • [14] J. F. Geelen, A. M. H. Gerards, and A. Kapoor. The excluded minors for GF(4)(4)-representable matroids. Journal of Combinatorial Theory, Series B, 79(2):247–299, 2000.
  • [15] R. Hall, D. Mayhew, and S. H. M. van Zwam. The excluded minors for near-regular matroids. European Journal of Combinatorics, 32(6):802–830, 2011.
  • [16] D. Mayhew and G. F. Royle. Matroids with nine elements. Journal of Combinatorial Theory, Series B, 98(2):415–431, 2008.
  • [17] W. Myrvold and J. Woodcock. A large set of torus obstructions and how they were discovered. The Electronic Journal of Combinatorics, 25(1.16):1–17, 2018.
  • [18] J. Oxley. Matroid Theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, New York, second edition, 2011.
  • [19] J. Oxley, C. Semple, and D. Vertigan. Generalized Δ\Delta-YY exchange and kk-regular matroids. Journal of Combinatorial Theory, Series B, 79(1):1–65, 2000.
  • [20] J. Oxley, D. Vertigan, and G. Whittle. On inequivalent representations of matroids over finite fields. Journal of Combinatorial Theory, Series B, 67:325–343, 1996.
  • [21] R. A. Pendavingh and S. H. M. van Zwam. Confinement of matroid representations to subsets of partial fields. Journal of Combinatorial Theory, Series B, 100(6):510–545, 2010.
  • [22] R. A. Pendavingh and S. H. M. van Zwam. Lifts of matroid representations over partial fields. Journal of Combinatorial Theory, Series B, 100(1):36–67, 2010.
  • [23] C. A. Semple. kk-Regular Matroids. Ph.D., Victoria University of Wellington, 1998.
  • [24] P. D. Seymour. Matroid representation over GF(3)(3). Journal of Combinatorial Theory, Series B, 26(2):159–173, 1979.
  • [25] W. T. Tutte. A homotopy theorem for matroids. I, II. Transactions of the American Mathematical Society, 88(1):144–174, 1958.
  • [26] S. H. M. van Zwam. Partial Fields in Matroid Theory. Ph.D., Eindhoven University of Technology, 2009.
  • [27] G. Whittle. On matroids representable over GF(3)(3) and other fields. Transactions of the American Mathematical Society, 349(2):579–603, 1997.
  • [28] Y. Yu. More forbidden minors for wye-delta-wye reducibility. The Electronic Journal of Combinatorics, 13(R7):1–15, 2006.

Appendix

Here we provide representations for the GF(5)\mathrm{GF}(5)-representable matroids appearing as excluded minors for i\mathbb{H}_{i}-representable matroids, for some i{2,3,4,5}i\in\{2,3,4,5\}.

In what follows, matroids appear just once. That is, when NN is a excluded minor for the class of i\mathbb{H}_{i}-representable matroids, and NN is j\mathbb{H}_{j}-representable but not j+1\mathbb{H}_{j+1}-representable for some j<i1j<i-1, then NN appears in the “Excluded minors for i\mathbb{H}_{i}-representable matroids” section under the “j\mathbb{H}_{j}-representable” heading (but not in the “Excluded minors for i1\mathbb{H}_{i-1}-representable matroids” section, for example, despite NN also being an excluded minor for this class).

Matroids on at most nine elements are typically given the name MnM_{n}, where nn is the number in Mayhew and Royle’s catalog of all matroids on at most nine elements. Exceptions are made for well-known matroids that have notation associated with them, or are free extensions or single-element deletions of such matroids, or for matroids that have been discovered in ongoing work on matroids representable over all fields of size at least four [5].

Excluded minors for 5\mathbb{H}_{5}-representable matroids

  • 4\mathbb{H}_{4}-representable:

    M(K4)+eM(K_{4})+e: [1αα1011110αβ(α1)1β]\begin{bmatrix}1&\alpha&\alpha&1\\ 0&1&1&1\\ 1&0&\alpha&\frac{\beta(\alpha-1)}{1-\beta}\\ \end{bmatrix} Λ3\Lambda_{3}: [11α+β2αβαβ11α0α(β1)10α(1β)α(β1)]\begin{bmatrix}1&1&\alpha+\beta-2\alpha\beta&\alpha\beta-1\\ 1&\alpha&0&\alpha(\beta-1)\\ 1&0&\alpha(1-\beta)&\alpha(\beta-1)\\ \end{bmatrix}
    P8=P_{8}^{=}: [11111α+β2αβα(β1)0111(α1)(β1)αβ101β111α(β1)α+β2αβ]\begin{bmatrix}1&-1&-1&1\\ 1&\frac{\alpha+\beta-2\alpha\beta}{\alpha(\beta-1)}&0&1\\ 1&-1&\frac{(\alpha-1)(\beta-1)}{\alpha\beta-1}&0\\ \frac{1}{\beta-1}&1&1&\frac{\alpha(\beta-1)}{\alpha+\beta-2\alpha\beta}\\ \end{bmatrix}
  • 2\mathbb{H}_{2}-representable:

    F7F_{7}^{-}: [011110111101]\begin{bmatrix}0&1&1&1\\ 1&0&1&1\\ 1&1&0&1\end{bmatrix} F7=F_{7}^{=}: [01i110111101]\begin{bmatrix}0&1&i&1\\ 1&0&1&1\\ 1&1&0&1\end{bmatrix}
    𝒲3+e\mathcal{W}^{3}+e: [10i1i1010i11]\begin{bmatrix}1&0&i&1\\ i&1&0&1\\ 0&i&1&1\end{bmatrix} Q6+eQ_{6}+e: [i+120i1111101i2i1]\begin{bmatrix}\frac{i+1}{2}&0&i&1\\ 1&1&1&1\\ 0&\frac{1-i}{2}&-i&1\end{bmatrix}
    P8P_{8}: [0112101111012110]\begin{bmatrix}0&1&1&2\\ 1&0&1&1\\ 1&1&0&1\\ 2&1&1&0\\ \end{bmatrix} P8P_{8}^{-}: [111i+110i+1i+11i100111]\begin{bmatrix}1&1&1&i+1\\ 1&0&i+1&i+1\\ 1&-i&1&0\\ 0&1&1&1\\ \end{bmatrix}
    𝑇𝑄8\mathit{TQ}_{8}: [0i1110ii11i0i1i110]\begin{bmatrix}0&i&1&1\\ 1&0&i&i-1\\ 1&i&0&i\\ 1&i-1&1&0\\ \end{bmatrix}

Excluded minors for 4\mathbb{H}_{4}-representable matroids

  • 3\mathbb{H}_{3}-representable:

    𝖯𝖺𝗉𝗉𝗎𝗌\e\mathsf{Pappus}\backslash e: [110αα2α110αα1α011α11]\begin{bmatrix}1&1&0&\alpha&\frac{\alpha^{2}}{\alpha-1}\\ 1&0&\alpha&\alpha-1&\alpha\\ 0&1&1-\alpha&1&1\\ \end{bmatrix} (𝖯𝖺𝗉𝗉𝗎𝗌\e)+(\mathsf{Pappus}\backslash e)^{+}: [110αα10αα1α011α11]\begin{bmatrix}1&1&0&\alpha&\alpha\\ 1&0&\alpha&\alpha-1&\alpha\\ 0&1&1-\alpha&1&1\\ \end{bmatrix}
    M1559M_{1559}: [α(1α)1111α1α211α0α101α1]\begin{bmatrix}\alpha(1-\alpha)&1&1&1\\ 1&\frac{\alpha-1}{\alpha^{2}}&1&1\\ \alpha&0&\alpha&1\\ 0&1&\alpha&1\\ \end{bmatrix} M1596M_{1596}: [1αα11α1α11α1110α10αα1]\begin{bmatrix}1-\alpha&\alpha&1&1\\ \frac{-\alpha}{1-\alpha}&\frac{1}{1-\alpha}&1&1\\ 1&0&\alpha&1\\ 0&\alpha&\alpha&1\\ \end{bmatrix}
    M1543M_{1543}: [1111αα01α0α2α2α+1011α1α]\begin{bmatrix}1&1&1&1\\ \alpha&\alpha&0&1\\ \alpha&0&\alpha^{2}&\alpha^{2}-\alpha+1\\ 0&1&1-\alpha&1-\alpha\\ \end{bmatrix} M1566M_{1566}: [11α1α11αα1αα1011α0111]\begin{bmatrix}1&1&\frac{\alpha-1}{\alpha}&1\\ 1&\alpha&\alpha&1\\ \frac{\alpha}{\alpha-1}&0&1&1-\alpha\\ 0&1&1&1\\ \end{bmatrix}
    M1598M_{1598}: [1α111α1αααα2α+10α10αα1]\begin{bmatrix}1&\alpha&1&1\\ 1&\alpha-1&\alpha&\alpha\\ \frac{\alpha}{\alpha^{2}-\alpha+1}&0&\alpha&1\\ 0&\alpha&\alpha&1\\ \end{bmatrix}
    M3240M_{3240}: [10α2α2α+1α2α2α+11α1α2α0αα21α1111α1]\begin{bmatrix}1&0&\frac{\alpha^{2}}{\alpha^{2}-\alpha+1}&\frac{\alpha^{2}}{\alpha^{2}-\alpha+1}&1&\alpha\\ 1&\alpha^{2}&\alpha&0&\alpha&\alpha^{2}\\ 1&\alpha-1&1&1&1&\alpha-1\\ \end{bmatrix}
    𝐹𝑞\mathit{Fq}: [111100α(α1)0α2α+1α2α+1α0α10α2α0α1α1α(1α)0α11]\begin{bmatrix}1&1&1&1&0\\ 0&\alpha(\alpha-1)&0&\alpha^{2}-\alpha+1&\alpha^{2}-\alpha+1\\ \alpha&0&\alpha&1&0\\ \alpha^{2}&\alpha&0&\alpha-1&\alpha-1\\ \alpha(1-\alpha)&0&\alpha&1&1\\ \end{bmatrix}
  • 2\mathbb{H}_{2}-representable:

    M1537M_{1537}: [11111i1i1110i101i1]\begin{bmatrix}1&1&1&1\\ \frac{1}{i}&\frac{1}{i}&1&1\\ -1&0&i&1\\ 0&1&i&1\end{bmatrix} M1554M_{1554}: [11111111i0i10ii1]\begin{bmatrix}1&1&1&1\\ -1&-1&1&1\\ i&0&i&1\\ 0&-i&i&1\end{bmatrix}
    M1556M_{1556}: [11111i1i1110i101i1]\begin{bmatrix}1&1&1&1\\ -\frac{1}{i}&-\frac{1}{i}&1&1\\ -1&0&i&1\\ 0&1&i&1\end{bmatrix} M1569M_{1569}: [112111i1i1i0i(1i)10111]\begin{bmatrix}1&1&2&1\\ 1&1-i&1-i&1\\ i&0&i(1-i)&1\\ 0&1&1&1\end{bmatrix}
    M1676M_{1676}: [11111111i0110i11]\begin{bmatrix}1&1&1&1\\ -1&-1&1&1\\ i&0&-1&1\\ 0&-i&-1&1\end{bmatrix}
    𝐹𝑟1\mathit{Fr}_{1}: [1i100111111i1ii1i0101001i+12]\begin{bmatrix}1&i&1&0&0\\ 1&1&1&1&1\\ 1&i&1&i&i\\ 1&-i&0&1&0\\ 1&0&0&1&\frac{i+1}{2}\\ \end{bmatrix} 𝐹𝑟2\mathit{Fr}_{2}: [111111i+1001i101i211101i201i+102i+1]\begin{bmatrix}1&1&1&1&1\\ 1&i+1&0&0&1-i\\ 1&0&\frac{1-i}{2}&1&1\\ 1&0&1-i&2&0\\ 1&i+1&0&2&i+1\\ \end{bmatrix}
    𝐹𝑟3\mathit{Fr}_{3}: [i101i01i+1210i1i001110101011i2]\begin{bmatrix}-i&1&0&1&-i\\ 0&1&\frac{i+1}{2}&1&0\\ i&1&i&0&0\\ 1&1&1&0&1\\ 0&1&0&1&\frac{1-i}{2}\\ \end{bmatrix}
  • Uniquely GF(5)\mathrm{GF}(5)-representable:

    M1601M_{1601}: [1111143011441403]\begin{bmatrix}1&1&1&1\\ 1&4&3&0\\ 1&1&4&4\\ 1&4&0&3\\ \end{bmatrix} λ4+\lambda_{4}^{+}: [1111130413101233]\begin{bmatrix}1&1&1&1\\ 1&3&0&4\\ 1&3&1&0\\ 1&2&3&3\\ \end{bmatrix}

Excluded minors for 3\mathbb{H}_{3}-representable matroids

  • 2\mathbb{H}_{2}-representable:

    M3241M_{3241}: [21+i21i01121i101i211101111i11]\begin{bmatrix}\frac{2}{1+i}&\frac{2}{1-i}&0&1&1&\frac{2}{1-i}\\ 1&0&\frac{1-i}{2}&1&1&1\\ 0&1&1&\frac{1}{1-i}&1&1\\ \end{bmatrix} M10782M_{10782}: [0ii010011i21i1+i100111111]\begin{bmatrix}0&i&-i&0&1\\ 0&0&1&\frac{1-i}{2}&1\\ \frac{i}{1+i}&1&0&0&1\\ 1&1&1&1&1\\ \end{bmatrix}
    M16834M_{16834}: [1111011i1i001021i111i01i]\begin{bmatrix}1&1&1&1&0\\ 1&1-i&1-i&0&0\\ 1&0&2&1-i&1\\ 1&1-i&0&1&i\\ \end{bmatrix} M17078M_{17078}: [11i+1i+12011i0ii+121012101111]\begin{bmatrix}1&1&i+1&\frac{i+1}{2}&0\\ 1&1&i&0&-i\\ \frac{i+1}{2}&1&0&\frac{1}{2}&1\\ 0&1&1&1&1\\ \end{bmatrix}
    M17759M_{17759}: [0i11i+1111110101i10ii+11i]\begin{bmatrix}0&i&1&1&i+1\\ 1&1&1&1&1\\ 0&-1&0&1&i\\ 1&0&\frac{i}{i+1}&1&i\\ \end{bmatrix} M47015M_{47015}: [1101i21+i2111111i+1i1i1i+1i0i+1]\begin{bmatrix}1&1&0&\frac{1-i}{2}&\frac{1+i}{2}\\ 1&1&1&1&1\\ 1&i+1&i&1&i\\ 1&i+1&i&0&i+1\\ \end{bmatrix}
    𝐹𝑠1\mathit{Fs}_{1}: [ii+1110i11i+1i+121110i+1211i+11i+11111i+11i+1]\begin{bmatrix}\frac{i}{i+1}&1&1&0&i&1&\frac{1}{i+1}\\ \frac{i+1}{2}&1&1&1&0&\frac{i+1}{2}&1\\ \frac{1}{i+1}&\frac{1}{i+1}&1&1&1&\frac{1}{i+1}&\frac{1}{i+1}\\ \end{bmatrix} 𝐹𝑠2\mathit{Fs}_{2}: [0i0ii1111111ii0i11i0i+12i11]\begin{bmatrix}0&-i&0&i&-i&1\\ 1&1&1&1&1&1\\ i&i&0&i&1&1\\ i&0&\frac{i+1}{2}&i&1&1\\ \end{bmatrix}
    𝐹𝑠3\mathit{Fs}_{3}: [0i+1211i2001110i1101111i+1i001i+10]\begin{bmatrix}0&\frac{i+1}{2}&1&\frac{1-i}{2}&0&0\\ 1&1&1&0&i&-1\\ 1&0&1&1&1&1\\ \frac{i+1}{i}&0&0&1&i+1&0\\ \end{bmatrix} 𝐹𝑠4\mathit{Fs}_{4}: [001i+121i20111111i+1211i+121i21i211i101ii]\begin{bmatrix}0&0&1&\frac{i+1}{2}&\frac{1-i}{2}&0\\ 1&1&1&1&1&1\\ \frac{i+1}{2}&1&1&\frac{i+1}{2}&\frac{1-i}{2}&\frac{1-i}{2}\\ 1&1-i&1&0&1-i&-i\\ \end{bmatrix}
    𝐹𝑡1\mathit{Ft}_{1}: [i+1i+121i+101111111100i+1i+121i1001i1]\begin{bmatrix}i+1&\frac{i+1}{2}&1&i+1&0\\ 1&1&1&1&1\\ 1&1&1&0&0\\ i+1&\frac{i+1}{2}&1&i&1\\ 0&0&1&i&1\\ \end{bmatrix} 𝐹𝑡2\mathit{Ft}_{2}: [101ii+121101i01i+1i+11i01111110012i+1]\begin{bmatrix}1&0&1-i&i+1&2\\ 1&1&0&1-i&0\\ 1&i+1&i+1&1-i&0\\ 1&1&1&1&1\\ 1&0&0&1&\frac{2}{i+1}\\ \end{bmatrix}
    𝐹𝑡4\mathit{Ft}_{4}: [1i0i+12i+1111111i0ii1i100111i+120]\begin{bmatrix}1&i&0&\frac{i+1}{2}&i+1\\ 1&1&1&1&1\\ 1&i&0&i&i\\ 1&-i&1&0&0\\ 1&1&1&\frac{i+1}{2}&0\\ \end{bmatrix} 𝐹𝑡5\mathit{Ft}_{5}: [i+1ii+110i+10i+121110011111110101i+1]\begin{bmatrix}i+1&i&i+1&1&0\\ i+1&0&\frac{i+1}{2}&1&1\\ 1&0&0&1&1\\ 1&1&1&1&1\\ 0&1&0&1&i+1\\ \end{bmatrix}
    𝐹𝑡6\mathit{Ft}_{6}: [111111ii001011i110101i1ii11]\begin{bmatrix}1&1&1&1&1\\ 1&i&i&0&0\\ 1&0&1&1-i&1\\ 1&0&1&0&\frac{1}{i}\\ 1&i&i&1&1\\ \end{bmatrix} 𝐹𝑡7\mathit{Ft}_{7}: [11111211212i+11021111i+1i+12010i+1i]\begin{bmatrix}1&1&1&1&1\\ 2&1&1&2&1\\ \frac{2}{i+1}&1&0&2&1\\ 1&1&1&i+1&\frac{i+1}{2}\\ 0&1&0&i+1&i\\ \end{bmatrix}
    𝐹𝑡8\mathit{Ft}_{8}: [111111i+11i00101i1i21010111i011]\begin{bmatrix}1&1&1&1&1\\ 1&i+1&1-i&0&0\\ 1&0&1&-i&\frac{1-i}{2}\\ 1&0&1&0&1\\ 1&1-i&0&1&1\\ \end{bmatrix} 𝐹𝑢3\mathit{Fu}_{3}: [011i101110120101211111i+120111]\begin{bmatrix}0&1&1&i&1\\ 0&1&1&-1&0\\ \frac{1}{2}&0&1&0&\frac{1}{2}\\ 1&1&1&1&1\\ \frac{i+1}{2}&0&1&1&1\\ \end{bmatrix}
    𝐹𝑢5\mathit{Fu}_{5}: [1001i21i211111112012121110121i+1211i212]\begin{bmatrix}1&0&0&\frac{1-i}{2}&\frac{1-i}{2}\\ 1&1&1&1&1\\ 1&\frac{1}{2}&0&\frac{1}{2}&\frac{1}{2}\\ 1&1&1&0&\frac{1}{2}\\ 1&\frac{i+1}{2}&1&\frac{1-i}{2}&\frac{1}{2}\\ \end{bmatrix} 𝐹𝑢8\mathit{Fu}_{8}: [011i11110i111111i201010i11+i20]\begin{bmatrix}0&-1&1&i&1\\ 1&1&1&0&i\\ 1&1&1&1&1\\ \frac{1-i}{2}&0&1&0&1\\ 0&i&1&\frac{1+i}{2}&0\\ \end{bmatrix}
  • Uniquely GF(5)\mathrm{GF}(5)-representable:

    𝐹𝑡3\mathit{Ft}_{3}: [1111112200101421010112211]\begin{bmatrix}1&1&1&1&1\\ 1&2&2&0&0\\ 1&0&1&4&2\\ 1&0&1&0&1\\ 1&2&2&1&1\\ \end{bmatrix} 𝐹𝑢1\mathit{Fu}_{1}: [1111113300101311010313311]\begin{bmatrix}1&1&1&1&1\\ 1&3&3&0&0\\ 1&0&1&3&1\\ 1&0&1&0&3\\ 1&3&3&1&1\\ \end{bmatrix}
    𝐹𝑢6\mathit{Fu}_{6}: [1041111041143001111111024]\begin{bmatrix}1&0&4&1&1\\ 1&1&0&4&1\\ 1&4&3&0&0\\ 1&1&1&1&1\\ 1&1&0&2&4\\ \end{bmatrix} 𝐹𝑢7\mathit{Fu}_{7}: [0111110011113000142421041]\begin{bmatrix}0&1&1&1&1\\ 1&0&0&1&1\\ 1&1&3&0&0\\ 0&1&4&2&4\\ 2&1&0&4&1\\ \end{bmatrix}
    𝑈𝐺10\mathit{UG}_{10}: [0214111104111113010104120]\begin{bmatrix}0&2&1&4&1\\ 1&1&1&0&4\\ 1&1&1&1&1\\ 3&0&1&0&1\\ 0&4&1&2&0\\ \end{bmatrix}

Excluded minors for 2\mathbb{H}_{2}-representable matroids

  • Uniquely GF(5)\mathrm{GF}(5)-representable:

    M822M_{822}: [031114011211101]\begin{bmatrix}0&3&1&1&1\\ 4&0&1&1&2\\ 1&1&1&0&1\\ \end{bmatrix} M835M_{835}: [110122011103211]\begin{bmatrix}1&1&0&1&2\\ 2&0&1&1&1\\ 0&3&2&1&1\\ \end{bmatrix}
    M836M_{836}: [301120112411111]\begin{bmatrix}3&0&1&1&2\\ 0&1&1&2&4\\ 1&1&1&1&1\\ \end{bmatrix} M854M_{854}: [402110233111111]\begin{bmatrix}4&0&2&1&1\\ 0&2&3&3&1\\ 1&1&1&1&1\\ \end{bmatrix}
    M1495M_{1495}: [1120102211111202]\begin{bmatrix}1&1&2&0\\ 1&0&2&2\\ 1&1&1&1\\ 1&2&0&2\\ \end{bmatrix} M1505M_{1505}: [3120111101222102]\begin{bmatrix}3&1&2&0\\ 1&1&1&1\\ 0&1&2&2\\ 2&1&0&2\\ \end{bmatrix}
    M1507M_{1507}: [4110111101222102]\begin{bmatrix}4&1&1&0\\ 1&1&1&1\\ 0&1&2&2\\ 2&1&0&2\\ \end{bmatrix} 𝐾𝑃8\mathit{KP}_{8}: [1330111113221401]\begin{bmatrix}1&3&3&0\\ 1&1&1&1\\ 1&3&2&2\\ 1&4&0&1\\ \end{bmatrix}
    M1519M_{1519}: [1440104112321111]\begin{bmatrix}1&4&4&0\\ 1&0&4&1\\ 1&2&3&2\\ 1&1&1&1\\ \end{bmatrix} M1530M_{1530}: [1420102211111202]\begin{bmatrix}1&4&2&0\\ 1&0&2&2\\ 1&1&1&1\\ 1&2&0&2\\ \end{bmatrix}
    M1535M_{1535}: [1140143311111303]\begin{bmatrix}1&1&4&0\\ 1&4&3&3\\ 1&1&1&1\\ 1&3&0&3\\ \end{bmatrix} M1538M_{1538}: [1230124411111404]\begin{bmatrix}1&2&3&0\\ 1&2&4&4\\ 1&1&1&1\\ 1&4&0&4\\ \end{bmatrix}
    M1541M_{1541}: [2210201102131111]\begin{bmatrix}2&2&1&0\\ 2&0&1&1\\ 0&2&1&3\\ 1&1&1&1\\ \end{bmatrix} M1542M_{1542}: [1111140214401241]\begin{bmatrix}1&1&1&1\\ 1&4&0&2\\ 1&4&4&0\\ 1&2&4&1\\ \end{bmatrix}
    M1553M_{1553}: [1031140414101111]\begin{bmatrix}1&0&3&1\\ 1&4&0&4\\ 1&4&1&0\\ 1&1&1&1\\ \end{bmatrix} M1591M_{1591}: [3013041231101111]\begin{bmatrix}3&0&1&3\\ 0&4&1&2\\ 3&1&1&0\\ 1&1&1&1\\ \end{bmatrix}
    M1593M_{1593}: [1111142113431233]\begin{bmatrix}1&1&1&1\\ 1&4&2&1\\ 1&3&4&3\\ 1&2&3&3\\ \end{bmatrix} M1599M_{1599}: [1111134312141430]\begin{bmatrix}1&1&1&1\\ 1&3&4&3\\ 1&2&1&4\\ 1&4&3&0\\ \end{bmatrix}
    M1600M_{1600}: [1111141211401241]\begin{bmatrix}1&1&1&1\\ 1&4&1&2\\ 1&1&4&0\\ 1&2&4&1\\ \end{bmatrix} M1609M_{1609}: [1111133414301201]\begin{bmatrix}1&1&1&1\\ 1&3&3&4\\ 1&4&3&0\\ 1&2&0&1\\ \end{bmatrix}
    M1610M_{1610}: [1111130414201221]\begin{bmatrix}1&1&1&1\\ 1&3&0&4\\ 1&4&2&0\\ 1&2&2&1\\ \end{bmatrix} M1618M_{1618}: [1111114313401201]\begin{bmatrix}1&1&1&1\\ 1&1&4&3\\ 1&3&4&0\\ 1&2&0&1\\ \end{bmatrix}
    M1627M_{1627}: [1111121411301231]\begin{bmatrix}1&1&1&1\\ 1&2&1&4\\ 1&1&3&0\\ 1&2&3&1\\ \end{bmatrix} M1674M_{1674}: [1111103414301241]\begin{bmatrix}1&1&1&1\\ 1&0&3&4\\ 1&4&3&0\\ 1&2&4&1\\ \end{bmatrix}
    M1680M_{1680}: [1111144313101241]\begin{bmatrix}1&1&1&1\\ 1&4&4&3\\ 1&3&1&0\\ 1&2&4&1\\ \end{bmatrix} M1695M_{1695}: [1111140212101421]\begin{bmatrix}1&1&1&1\\ 1&4&0&2\\ 1&2&1&0\\ 1&4&2&1\\ \end{bmatrix}
    M1698M_{1698}: [1111133212301421]\begin{bmatrix}1&1&1&1\\ 1&3&3&2\\ 1&2&3&0\\ 1&4&2&1\\ \end{bmatrix} M1713M_{1713}: [1041124312101111]\begin{bmatrix}1&0&4&1\\ 1&2&4&3\\ 1&2&1&0\\ 1&1&1&1\\ \end{bmatrix}
    M1729M_{1729}: [1111012411202142]\begin{bmatrix}1&1&1&1\\ 0&1&2&4\\ 1&1&2&0\\ 2&1&4&2\\ \end{bmatrix}
    M3193M_{3193}: [101031140101011111]\begin{bmatrix}1&0&1&0&3&1\\ 1&4&0&1&0&1\\ 0&1&1&1&1&1\\ \end{bmatrix} 𝐵𝐵9\mathit{BB}_{9}: [101414131300011111]\begin{bmatrix}1&0&1&4&1&4\\ 1&3&1&3&0&0\\ 0&1&1&1&1&1\\ \end{bmatrix}
    A9A_{9}: [133404132330111111]\begin{bmatrix}1&3&3&4&0&4\\ 1&3&2&3&3&0\\ 1&1&1&1&1&1\\ \end{bmatrix} 𝐵𝐵9Δ\mathit{BB}_{9}^{\Delta\nabla}: [30100311111112031040]\begin{bmatrix}3&0&1&0\\ 0&3&1&1\\ 1&1&1&1\\ 1&2&0&3\\ 1&0&4&0\\ \end{bmatrix}
    M9574M_{9574}: [20111031401110201120]\begin{bmatrix}2&0&1&1&1\\ 0&3&1&4&0\\ 1&1&1&0&2\\ 0&1&1&2&0\\ \end{bmatrix} M9841M_{9841}: [30110111110212012102]\begin{bmatrix}3&0&1&1&0\\ 1&1&1&1&1\\ 0&2&1&2&0\\ 1&2&1&0&2\\ \end{bmatrix}
    M9844M_{9844}: [20120111110211012121]\begin{bmatrix}2&0&1&2&0\\ 1&1&1&1&1\\ 0&2&1&1&0\\ 1&2&1&2&1\\ \end{bmatrix} 𝑃𝑃9\mathit{PP}_{9}: [11144121041044401111]\begin{bmatrix}1&1&1&4&4\\ 1&2&1&0&4\\ 1&0&4&4&4\\ 0&1&1&1&1\\ \end{bmatrix}
    M10025M_{10025}: [40140111110412012122]\begin{bmatrix}4&0&1&4&0\\ 1&1&1&1&1\\ 0&4&1&2&0\\ 1&2&1&2&2\\ \end{bmatrix} M10052M_{10052}: [40140111110211012121]\begin{bmatrix}4&0&1&4&0\\ 1&1&1&1&1\\ 0&2&1&1&0\\ 1&2&1&2&1\\ \end{bmatrix}
    M10241M_{10241}: [40134121200411011111]\begin{bmatrix}4&0&1&3&4\\ 1&2&1&2&0\\ 0&4&1&1&0\\ 1&1&1&1&1\\ \end{bmatrix} M10242M_{10242}: [30130111110214214140]\begin{bmatrix}3&0&1&3&0\\ 1&1&1&1&1\\ 0&2&1&4&2\\ 1&4&1&4&0\\ \end{bmatrix}
    M10244M_{10244}: [40311414110122111111]\begin{bmatrix}4&0&3&1&1\\ 4&1&4&1&1\\ 0&1&2&2&1\\ 1&1&1&1&1\\ \end{bmatrix} M10251M_{10251}: [30143141240211211111]\begin{bmatrix}3&0&1&4&3\\ 1&4&1&2&4\\ 0&2&1&1&2\\ 1&1&1&1&1\\ \end{bmatrix}
    M10287M_{10287}: [20130141000112211111]\begin{bmatrix}2&0&1&3&0\\ 1&4&1&0&0\\ 0&1&1&2&2\\ 1&1&1&1&1\\ \end{bmatrix} M10368M_{10368}: [40121021301110401111]\begin{bmatrix}4&0&1&2&1\\ 0&2&1&3&0\\ 1&1&1&0&4\\ 0&1&1&1&1\\ \end{bmatrix}
    M10459M_{10459}: [40140111110211212120]\begin{bmatrix}4&0&1&4&0\\ 1&1&1&1&1\\ 0&2&1&1&2\\ 1&2&1&2&0\\ \end{bmatrix} M11161M_{11161}: [20110111110312012102]\begin{bmatrix}2&0&1&1&0\\ 1&1&1&1&1\\ 0&3&1&2&0\\ 1&2&1&0&2\\ \end{bmatrix}
    M11162M_{11162}: [30110111110314014104]\begin{bmatrix}3&0&1&1&0\\ 1&1&1&1&1\\ 0&3&1&4&0\\ 1&4&1&0&4\\ \end{bmatrix} M11347M_{11347}: [40130141000114411111]\begin{bmatrix}4&0&1&3&0\\ 1&4&1&0&0\\ 0&1&1&4&4\\ 1&1&1&1&1\\ \end{bmatrix}
    M12000M_{12000}: [30124111110314014103]\begin{bmatrix}3&0&1&2&4\\ 1&1&1&1&1\\ 0&3&1&4&0\\ 1&4&1&0&3\\ \end{bmatrix} M12575M_{12575}: [20110111110413013103]\begin{bmatrix}2&0&1&1&0\\ 1&1&1&1&1\\ 0&4&1&3&0\\ 1&3&1&0&3\\ \end{bmatrix}
    M15729M_{15729}: [30122131400113211111]\begin{bmatrix}3&0&1&2&2\\ 1&3&1&4&0\\ 0&1&1&3&2\\ 1&1&1&1&1\\ \end{bmatrix} 𝑇𝑄9\mathit{TQ}_{9}: [10211400211400211110]\begin{bmatrix}1&0&2&1&1\\ 4&0&0&2&1\\ 1&4&0&0&2\\ 1&1&1&1&0\\ \end{bmatrix}
    M16321M_{16321}: [30123121010113211111]\begin{bmatrix}3&0&1&2&3\\ 1&2&1&0&1\\ 0&1&1&3&2\\ 1&1&1&1&1\\ \end{bmatrix} M16332M_{16332}: [30111131200114111130]\begin{bmatrix}3&0&1&1&1\\ 1&3&1&2&0\\ 0&1&1&4&1\\ 1&1&1&3&0\\ \end{bmatrix}
    M18663M_{18663}: [20111141300112111140]\begin{bmatrix}2&0&1&1&1\\ 1&4&1&3&0\\ 0&1&1&2&1\\ 1&1&1&4&0\\ \end{bmatrix} M46942M_{46942}: [30131111110133131310]\begin{bmatrix}3&0&1&3&1\\ 1&1&1&1&1\\ 0&1&3&3&1\\ 3&1&3&1&0\\ \end{bmatrix}
    M46945M_{46945}: [40142111110211012122]\begin{bmatrix}4&0&1&4&2\\ 1&1&1&1&1\\ 0&2&1&1&0\\ 1&2&1&2&2\\ \end{bmatrix} M47635M_{47635}: [30101111110213214132]\begin{bmatrix}3&0&1&0&1\\ 1&1&1&1&1\\ 0&2&1&3&2\\ 1&4&1&3&2\\ \end{bmatrix}
    M48819M_{48819}: [40122141010114211111]\begin{bmatrix}4&0&1&2&2\\ 1&4&1&0&1\\ 0&1&1&4&2\\ 1&1&1&1&1\\ \end{bmatrix} M50041M_{50041}: [30114111110314314101]\begin{bmatrix}3&0&1&1&4\\ 1&1&1&1&1\\ 0&3&1&4&3\\ 1&4&1&0&1\\ \end{bmatrix}
    𝐹𝑣6\mathit{Fv}_{6}: [140112140131124324111111]\begin{bmatrix}1&4&0&1&1&2\\ 1&4&0&1&3&1\\ 1&2&4&3&2&4\\ 1&1&1&1&1&1\\ \end{bmatrix} 𝐹𝑣7\mathit{Fv}_{7}: [111103211011401011021103]\begin{bmatrix}1&1&1&1&0&3\\ 2&1&1&0&1&1\\ 4&0&1&0&1&1\\ 0&2&1&1&0&3\\ \end{bmatrix}
    𝐹𝑣8\mathit{Fv}_{8}: [410121112123111111003111]\begin{bmatrix}4&1&0&1&2&1\\ 1&1&2&1&2&3\\ 1&1&1&1&1&1\\ 0&0&3&1&1&1\\ \end{bmatrix} 𝐹𝑣11\mathit{Fv}_{11}: [131113201131011212321032]\begin{bmatrix}1&3&1&1&1&3\\ 2&0&1&1&3&1\\ 0&1&1&2&1&2\\ 3&2&1&0&3&2\\ \end{bmatrix}
    𝐹𝑣12\mathit{Fv}_{12}: [111340132203132012111111]\begin{bmatrix}1&1&1&3&4&0\\ 1&3&2&2&0&3\\ 1&3&2&0&1&2\\ 1&1&1&1&1&1\\ \end{bmatrix} 𝐹𝑣16\mathit{Fv}_{16}: [1011110302110304140101024]\begin{bmatrix}1&0&1&1&1\\ 1&0&3&0&2\\ 1&1&0&3&0\\ 4&1&4&0&1\\ 0&1&0&2&4\\ \end{bmatrix}
    𝐹𝑣18\mathit{Fv}_{18}: [0311102301242314040111111]\begin{bmatrix}0&3&1&1&1\\ 0&2&3&0&1\\ 2&4&2&3&1\\ 4&0&4&0&1\\ 1&1&1&1&1\\ \end{bmatrix} 𝐹𝑣19\mathit{Fv}_{19}: [1111102101321222010402113]\begin{bmatrix}1&1&1&1&1\\ 0&2&1&0&1\\ 3&2&1&2&2\\ 2&0&1&0&4\\ 0&2&1&1&3\\ \end{bmatrix}
    𝐹𝑣21\mathit{Fv}_{21}: [4010100144111111414413101]\begin{bmatrix}4&0&1&0&1\\ 0&0&1&4&4\\ 1&1&1&1&1\\ 1&4&1&4&4\\ 1&3&1&0&1\\ \end{bmatrix} 𝐹𝑣24\mathit{Fv}_{24}: [1111113213103301123013202]\begin{bmatrix}1&1&1&1&1\\ 1&3&2&1&3\\ 1&0&3&3&0\\ 1&1&2&3&0\\ 1&3&2&0&2\\ \end{bmatrix}
    𝐹𝑣25\mathit{Fv}_{25}: [1111111201214110202122111]\begin{bmatrix}1&1&1&1&1\\ 1&1&2&0&1\\ 2&1&4&1&1\\ 0&2&0&2&1\\ 2&2&1&1&1\\ \end{bmatrix} 𝐹𝑣27\mathit{Fv}_{27}: [1111103104031303010123111]\begin{bmatrix}1&1&1&1&1\\ 0&3&1&0&4\\ 0&3&1&3&0\\ 3&0&1&0&1\\ 2&3&1&1&1\\ \end{bmatrix}
    𝐹𝑣37\mathit{Fv}_{37}: [1111102104321232010202111]\begin{bmatrix}1&1&1&1&1\\ 0&2&1&0&4\\ 3&2&1&2&3\\ 2&0&1&0&2\\ 0&2&1&1&1\\ \end{bmatrix} 𝐹𝑣41\mathit{Fv}_{41}: [1111131441314220121101024]\begin{bmatrix}1&1&1&1&1\\ 3&1&4&4&1\\ 3&1&4&2&2\\ 0&1&2&1&1\\ 0&1&0&2&4\\ \end{bmatrix}
    𝐹𝑣42\mathit{Fv}_{42}: [0021140011111111121304113]\begin{bmatrix}0&0&2&1&1\\ 4&0&0&1&1\\ 1&1&1&1&1\\ 1&1&2&1&3\\ 0&4&1&1&3\\ \end{bmatrix} 𝐹𝑣47\mathit{Fv}_{47}: [1111114144110331001311140]\begin{bmatrix}1&1&1&1&1\\ 1&4&1&4&4\\ 1&1&0&3&3\\ 1&0&0&1&3\\ 1&1&1&4&0\\ \end{bmatrix}
    𝐹𝑣51\mathit{Fv}_{51}: [0121111111420110431210110]\begin{bmatrix}0&1&2&1&1\\ 1&1&1&1&1\\ 4&2&0&1&1\\ 0&4&3&1&2\\ 1&0&1&1&0\\ \end{bmatrix} 𝐹𝑣54\mathit{Fv}_{54}: [0211002104111304010430111]\begin{bmatrix}0&2&1&1&0\\ 0&2&1&0&4\\ 1&1&1&3&0\\ 4&0&1&0&4\\ 3&0&1&1&1\\ \end{bmatrix}
    𝐹𝑣56\mathit{Fv}_{56}: [1111101121114122131321330]\begin{bmatrix}1&1&1&1&1\\ 0&1&1&2&1\\ 1&1&4&1&2\\ 2&1&3&1&3\\ 2&1&3&3&0\\ \end{bmatrix} 𝐹𝑣60\mathit{Fv}_{60}: [2201144310301101111103011]\begin{bmatrix}2&2&0&1&1\\ 4&4&3&1&0\\ 3&0&1&1&0\\ 1&1&1&1&1\\ 0&3&0&1&1\\ \end{bmatrix}
    𝐹𝑣61\mathit{Fv}_{61}: [2201044310301111111103011]\begin{bmatrix}2&2&0&1&0\\ 4&4&3&1&0\\ 3&0&1&1&1\\ 1&1&1&1&1\\ 0&3&0&1&1\\ \end{bmatrix} 𝐹𝑣66\mathit{Fv}_{66}: [1103301111110103140001143]\begin{bmatrix}1&1&0&3&3\\ 0&1&1&1&1\\ 1&1&0&1&0\\ 3&1&4&0&0\\ 0&1&1&4&3\\ \end{bmatrix}
    𝐹𝑣68\mathit{Fv}_{68}: [1011110402140402120101021]\begin{bmatrix}1&0&1&1&1\\ 1&0&4&0&2\\ 1&4&0&4&0\\ 2&1&2&0&1\\ 0&1&0&2&1\\ \end{bmatrix} 𝐹𝑣71\mathit{Fv}_{71}: [0212202104111113010440123]\begin{bmatrix}0&2&1&2&2\\ 0&2&1&0&4\\ 1&1&1&1&1\\ 3&0&1&0&4\\ 4&0&1&2&3\\ \end{bmatrix}
    𝐹𝑣75\mathit{Fv}_{75}: [1103001111110113140001142]\begin{bmatrix}1&1&0&3&0\\ 0&1&1&1&1\\ 1&1&0&1&1\\ 3&1&4&0&0\\ 0&1&1&4&2\\ \end{bmatrix} 𝐹𝑣77\mathit{Fv}_{77}: [1111002102321202010202111]\begin{bmatrix}1&1&1&1&0\\ 0&2&1&0&2\\ 3&2&1&2&0\\ 2&0&1&0&2\\ 0&2&1&1&1\\ \end{bmatrix}
    𝐹𝑣85\mathit{Fv}_{85}: [4313201102111111010411132]\begin{bmatrix}4&3&1&3&2\\ 0&1&1&0&2\\ 1&1&1&1&1\\ 1&0&1&0&4\\ 1&1&1&3&2\\ \end{bmatrix} 𝐹𝑣87\mathit{Fv}_{87}: [1301111111113241122214023]\begin{bmatrix}1&3&0&1&1\\ 1&1&1&1&1\\ 1&1&3&2&4\\ 1&1&2&2&2\\ 1&4&0&2&3\\ \end{bmatrix}
    𝐹𝑣90\mathit{Fv}_{90}: [0212001104111111010211123]\begin{bmatrix}0&2&1&2&0\\ 0&1&1&0&4\\ 1&1&1&1&1\\ 1&0&1&0&2\\ 1&1&1&2&3\\ \end{bmatrix} 𝐹𝑣91\mathit{Fv}_{91}: [0411320120111111113242120]\begin{bmatrix}0&4&1&1&3\\ 2&0&1&2&0\\ 1&1&1&1&1\\ 1&1&1&3&2\\ 4&2&1&2&0\\ \end{bmatrix}
    𝐹𝑣103\mathit{Fv}_{103}: [1111110411104331213111104]\begin{bmatrix}1&1&1&1&1\\ 1&0&4&1&1\\ 1&0&4&3&3\\ 1&2&1&3&1\\ 1&1&1&0&4\\ \end{bmatrix} 𝐺𝑃10\mathit{GP}_{10}: [4301133001001211020111110]\begin{bmatrix}4&3&0&1&1\\ 3&3&0&0&1\\ 0&0&1&2&1\\ 1&0&2&0&1\\ 1&1&1&1&0\\ \end{bmatrix}
    𝑇𝑄10\mathit{TQ}_{10}: [3001400122011111110441244]\begin{bmatrix}3&0&0&1&4\\ 0&0&1&2&2\\ 0&1&1&1&1\\ 1&1&1&0&4\\ 4&1&2&4&4\\ \end{bmatrix} 𝐹𝐹10\mathit{FF}_{10}: [1001111001131001112033322]\begin{bmatrix}1&0&0&1&1\\ 1&1&0&0&1\\ 1&3&1&0&0\\ 1&1&1&2&0\\ 3&3&3&2&2\\ \end{bmatrix}
    𝐹𝑣14\mathit{Fv}_{14}: [1111121101200110011104210]\begin{bmatrix}1&1&1&1&1\\ 2&1&1&0&1\\ 2&0&0&1&1\\ 0&0&1&1&1\\ 0&4&2&1&0\\ \end{bmatrix} 𝐹𝑣22\mathit{Fv}_{22}: [4030111111400210120124021]\begin{bmatrix}4&0&3&0&1\\ 1&1&1&1&1\\ 4&0&0&2&1\\ 0&1&2&0&1\\ 2&4&0&2&1\\ \end{bmatrix}
    𝐹𝑣26\mathit{Fv}_{26}: [0102100231200211111141101]\begin{bmatrix}0&1&0&2&1\\ 0&0&2&3&1\\ 2&0&0&2&1\\ 1&1&1&1&1\\ 4&1&1&0&1\\ \end{bmatrix} 𝐹𝑣28\mathit{Fv}_{28}: [0012311111131211113431121]\begin{bmatrix}0&0&1&2&3\\ 1&1&1&1&1\\ 1&3&1&2&1\\ 1&1&1&3&4\\ 3&1&1&2&1\\ \end{bmatrix}
    𝐹𝑣30\mathit{Fv}_{30}: [1111102011113122101300111]\begin{bmatrix}1&1&1&1&1\\ 0&2&0&1&1\\ 1&1&3&1&2\\ 2&1&0&1&3\\ 0&0&1&1&1\\ \end{bmatrix} 𝐹𝑣32\mathit{Fv}_{32}: [2001211111331110211044011]\begin{bmatrix}2&0&0&1&2\\ 1&1&1&1&1\\ 3&3&1&1&1\\ 0&2&1&1&0\\ 4&4&0&1&1\\ \end{bmatrix}
    𝐹𝑣35\mathit{Fv}_{35}: [1221211111102301131214100]\begin{bmatrix}1&2&2&1&2\\ 1&1&1&1&1\\ 1&0&2&3&0\\ 1&1&3&1&2\\ 1&4&1&0&0\\ \end{bmatrix} 𝐹𝑣36\mathit{Fv}_{36}: [4410111110330110420110011]\begin{bmatrix}4&4&1&0&1\\ 1&1&1&1&0\\ 3&3&0&1&1\\ 0&4&2&0&1\\ 1&0&0&1&1\\ \end{bmatrix}
    𝐹𝑣39\mathit{Fv}_{39}: [0313202103111111010414132]\begin{bmatrix}0&3&1&3&2\\ 0&2&1&0&3\\ 1&1&1&1&1\\ 1&0&1&0&4\\ 1&4&1&3&2\\ \end{bmatrix} 𝐹𝑣40\mathit{Fv}_{40}: [0012140021111112212102441]\begin{bmatrix}0&0&1&2&1\\ 4&0&0&2&1\\ 1&1&1&1&1\\ 2&2&1&2&1\\ 0&2&4&4&1\\ \end{bmatrix}
    𝐹𝑣43\mathit{Fv}_{43}: [0012121331111113421123111]\begin{bmatrix}0&0&1&2&1\\ 2&1&3&3&1\\ 1&1&1&1&1\\ 3&4&2&1&1\\ 2&3&1&1&1\\ \end{bmatrix} 𝐹𝑣44\mathit{Fv}_{44}: [0313202103111111010214132]\begin{bmatrix}0&3&1&3&2\\ 0&2&1&0&3\\ 1&1&1&1&1\\ 1&0&1&0&2\\ 1&4&1&3&2\\ \end{bmatrix}
    𝐹𝑣46\mathit{Fv}_{46}: [1111114134441400313124111]\begin{bmatrix}1&1&1&1&1\\ 1&4&1&3&4\\ 4&4&1&4&0\\ 0&3&1&3&1\\ 2&4&1&1&1\\ \end{bmatrix} 𝐹𝑣48\mathit{Fv}_{48}: [3212001101111112010201120]\begin{bmatrix}3&2&1&2&0\\ 0&1&1&0&1\\ 1&1&1&1&1\\ 2&0&1&0&2\\ 0&1&1&2&0\\ \end{bmatrix}
    𝐹𝑣49\mathit{Fv}_{49}: [3343102031111113202100431]\begin{bmatrix}3&3&4&3&1\\ 0&2&0&3&1\\ 1&1&1&1&1\\ 3&2&0&2&1\\ 0&0&4&3&1\\ \end{bmatrix} 𝐹𝑣50\mathit{Fv}_{50}: [1433100141111113241144111]\begin{bmatrix}1&4&3&3&1\\ 0&0&1&4&1\\ 1&1&1&1&1\\ 3&2&4&1&1\\ 4&4&1&1&1\\ \end{bmatrix}
    𝐹𝑣53\mathit{Fv}_{53}: [1131232011111110101234311]\begin{bmatrix}1&1&3&1&2\\ 3&2&0&1&1\\ 1&1&1&1&1\\ 0&1&0&1&2\\ 3&4&3&1&1\\ \end{bmatrix} 𝐹𝑣55\mathit{Fv}_{55}: [2031011111333100201144311]\begin{bmatrix}2&0&3&1&0\\ 1&1&1&1&1\\ 3&3&3&1&0\\ 0&2&0&1&1\\ 4&4&3&1&1\\ \end{bmatrix}
    𝐹𝑣57\mathit{Fv}_{57}: [0114322100111112214304111]\begin{bmatrix}0&1&1&4&3\\ 2&2&1&0&0\\ 1&1&1&1&1\\ 2&2&1&4&3\\ 0&4&1&1&1\\ \end{bmatrix} 𝐹𝑣58\mathit{Fv}_{58}: [1111140144021203311100143]\begin{bmatrix}1&1&1&1&1\\ 4&0&1&4&4\\ 0&2&1&2&0\\ 3&3&1&1&1\\ 0&0&1&4&3\\ \end{bmatrix}
    𝐹𝑣59\mathit{Fv}_{59}: [3010100111121201111113102]\begin{bmatrix}3&0&1&0&1\\ 0&0&1&1&1\\ 1&2&1&2&0\\ 1&1&1&1&1\\ 1&3&1&0&2\\ \end{bmatrix} 𝐹𝑣62\mathit{Fv}_{62}: [1111102041441412404100111]\begin{bmatrix}1&1&1&1&1\\ 0&2&0&4&1\\ 4&4&1&4&1\\ 2&4&0&4&1\\ 0&0&1&1&1\\ \end{bmatrix}
    𝐹𝑣63\mathit{Fv}_{63}: [0412220140111201111142141]\begin{bmatrix}0&4&1&2&2\\ 2&0&1&4&0\\ 1&1&1&2&0\\ 1&1&1&1&1\\ 4&2&1&4&1\\ \end{bmatrix} 𝐹𝑣65\mathit{Fv}_{65}: [0013111123121331111121133]\begin{bmatrix}0&0&1&3&1\\ 1&1&1&2&3\\ 1&2&1&3&3\\ 1&1&1&1&1\\ 2&1&1&3&3\\ \end{bmatrix}
    𝐹𝑣70\mathit{Fv}_{70}: [1313101104111114010101130]\begin{bmatrix}1&3&1&3&1\\ 0&1&1&0&4\\ 1&1&1&1&1\\ 4&0&1&0&1\\ 0&1&1&3&0\\ \end{bmatrix} 𝐹𝑣72\mathit{Fv}_{72}: [2313101103111114010301131]\begin{bmatrix}2&3&1&3&1\\ 0&1&1&0&3\\ 1&1&1&1&1\\ 4&0&1&0&3\\ 0&1&1&3&1\\ \end{bmatrix}
    𝐹𝑣73\mathit{Fv}_{73}: [4010211111401300210131131]\begin{bmatrix}4&0&1&0&2\\ 1&1&1&1&1\\ 4&0&1&3&0\\ 0&2&1&0&1\\ 3&1&1&3&1\\ \end{bmatrix} 𝐹𝑣78\mathit{Fv}_{78}: [4101100131111113313112011]\begin{bmatrix}4&1&0&1&1\\ 0&0&1&3&1\\ 1&1&1&1&1\\ 3&3&1&3&1\\ 1&2&0&1&1\\ \end{bmatrix}
    𝐹𝑣79\mathit{Fv}_{79}: [4010300143111111414313102]\begin{bmatrix}4&0&1&0&3\\ 0&0&1&4&3\\ 1&1&1&1&1\\ 1&4&1&4&3\\ 1&3&1&0&2\\ \end{bmatrix} 𝐹𝑣81\mathit{Fv}_{81}: [0101101101111103040140011]\begin{bmatrix}0&1&0&1&1\\ 0&1&1&0&1\\ 1&1&1&1&0\\ 3&0&4&0&1\\ 4&0&0&1&1\\ \end{bmatrix}
    𝐹𝑣82\mathit{Fv}_{82}: [4012321120111100411104143]\begin{bmatrix}4&0&1&2&3\\ 2&1&1&2&0\\ 1&1&1&1&0\\ 0&4&1&1&1\\ 0&4&1&4&3\\ \end{bmatrix} 𝐹𝑣83\mathit{Fv}_{83}: [4010411111401200410121121]\begin{bmatrix}4&0&1&0&4\\ 1&1&1&1&1\\ 4&0&1&2&0\\ 0&4&1&0&1\\ 2&1&1&2&1\\ \end{bmatrix}
    𝐹𝑣84\mathit{Fv}_{84}: [1113304103111112010300111]\begin{bmatrix}1&1&1&3&3\\ 0&4&1&0&3\\ 1&1&1&1&1\\ 2&0&1&0&3\\ 0&0&1&1&1\\ \end{bmatrix} 𝐹𝑣89\mathit{Fv}_{89}: [1111104101241402010424111]\begin{bmatrix}1&1&1&1&1\\ 0&4&1&0&1\\ 2&4&1&4&0\\ 2&0&1&0&4\\ 2&4&1&1&1\\ \end{bmatrix}
    𝐹𝑣92\mathit{Fv}_{92}: [1212101102111112010101120]\begin{bmatrix}1&2&1&2&1\\ 0&1&1&0&2\\ 1&1&1&1&1\\ 2&0&1&0&1\\ 0&1&1&2&0\\ \end{bmatrix} 𝐹𝑣93\mathit{Fv}_{93}: [1112202102111114010200111]\begin{bmatrix}1&1&1&2&2\\ 0&2&1&0&2\\ 1&1&1&1&1\\ 4&0&1&0&2\\ 0&0&1&1&1\\ \end{bmatrix}
    𝐹𝑣94\mathit{Fv}_{94}: [2301100311021014101110201]\begin{bmatrix}2&3&0&1&1\\ 0&0&3&1&1\\ 0&2&1&0&1\\ 4&1&0&1&1\\ 1&0&2&0&1\\ \end{bmatrix} 𝐹𝑣95\mathit{Fv}_{95}: [1111111100421204010444111]\begin{bmatrix}1&1&1&1&1\\ 1&1&1&0&0\\ 4&2&1&2&0\\ 4&0&1&0&4\\ 4&4&1&1&1\\ \end{bmatrix}
    𝐹𝑣96\mathit{Fv}_{96}: [1111111100132301020311222]\begin{bmatrix}1&1&1&1&1\\ 1&1&1&0&0\\ 1&3&2&3&0\\ 1&0&2&0&3\\ 1&1&2&2&2\\ \end{bmatrix} 𝐹𝑣101\mathit{Fv}_{101}: [2311110212040111111110013]\begin{bmatrix}2&3&1&1&1\\ 1&0&2&1&2\\ 0&4&0&1&1\\ 1&1&1&1&1\\ 1&0&0&1&3\\ \end{bmatrix}
    𝐹𝑣102\mathit{Fv}_{102}: [3101311111001143321312113]\begin{bmatrix}3&1&0&1&3\\ 1&1&1&1&1\\ 0&0&1&1&4\\ 3&3&2&1&3\\ 1&2&1&1&3\\ \end{bmatrix} 𝐹𝑣104\mathit{Fv}_{104}: [1140100111320101110441024]\begin{bmatrix}1&1&4&0&1\\ 0&0&1&1&1\\ 3&2&0&1&0\\ 1&1&1&0&4\\ 4&1&0&2&4\\ \end{bmatrix}
    𝐹𝑣106\mathit{Fv}_{106}: [2313001101111114010401130]\begin{bmatrix}2&3&1&3&0\\ 0&1&1&0&1\\ 1&1&1&1&1\\ 4&0&1&0&4\\ 0&1&1&3&0\\ \end{bmatrix} 𝐹𝑣111\mathit{Fv}_{111}: [1111102104021233010142111]\begin{bmatrix}1&1&1&1&1\\ 0&2&1&0&4\\ 0&2&1&2&3\\ 3&0&1&0&1\\ 4&2&1&1&1\\ \end{bmatrix}
    𝐹𝑣112\mathit{Fv}_{112}: [1111121122101314214024101]\begin{bmatrix}1&1&1&1&1\\ 2&1&1&2&2\\ 1&0&1&3&1\\ 4&2&1&4&0\\ 2&4&1&0&1\\ \end{bmatrix}