This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Fenchel–Nielsen twist in terms of the cross ratio coordinates

Takeru Asaka
Abstract

We calculate the Fenchel–Nielsen twist in the enhanced Teichmüller space of a marked surface by the cross ratio coordinates.

footnotetext: AMS Subject Classifications: 51H25footnotetext: Key words and phrases: enhanced Teichmüller space, Fenchel–Nielsen twist, cross ratio coordinates, earthquake theorem, cluster algebras

1 Introduction

The Fenchel–Nielsen twist is a generalization of the Dehn twist. It is a deformation in the Teichmüller space defined by cutting a hyperbolic surface along a simple closed geodesic, rotating one side of the cut relative to the other, and attaching these sides. If the scale of the rotation is equal to the length of the simple closed geodesic, then the Fenchel–Nielsen twist is equal to the Dehn twist.

Thurston’s earthquake deformation is a generalization of the Fenchel–Nielsen twist. It is a deformation cutting a hyperbolic surface along a lamination instead of a simple closed geodesic ([Thu]). An earthquake deformation is one of the main actors of the two-dimensional hyperbolic geometry and used to solve the Nielsen realization problem by Kerckhoff ([Ker]). Moreover, the density of the earthquake flow in the moduli space is studied by Mirzakhani ([Mir]).

In the case of closed surfaces, for any earthquake deformation EE, there exists a sequence of the Fenchel–Nielsen twists converging EE. In the case of marked surfaces, instead of the Fenchel–Nielsen twists, for any earthquake deformation EE, there exists a sequence of earthquake deformations along ideal arcs converging EE. We calculated earthquake deformations along ideal arcs ([Asa] and [AIK]).

In this paper, we calculate the Fenchel–Nielsen twist in the enhanced Teichmüller space of a marked surface by the cross ratio coordinates. For a marked surface (Σ,M)(\Sigma,M) and a closed curve CC on ΣM\Sigma\setminus M, we assume that any connected component of ΣC\Sigma\setminus C has at least one marked point. Then, we can embed the annulus A1,1A_{1,1} with one point on each boundary component into Σ\Sigma so that A1,1A_{1,1} includes CC as Figure 1.

Refer to caption
Figure 1: the annulus A1,1A_{1,1}

We take an element gg of the enhanced Teichmüller space 𝒯^(Σ)\widehat{\mathcal{T}}(\Sigma) of (Σ,M)(\Sigma,M). Let the cross ratio coordinates of gg for the numbered ideal arcs in Figure 1 be (X1,X2,X3,X4)(X_{1},X_{2},X_{3},X_{4}) and the length of the simple closed geodesic on gg corresponding to CC be L(f2)L(f_{2}). We take a rotation parameter t0t\in\mathbb{R}_{\geq 0}.

Theorem 1.1.

In the situation above, the cross ratio coordinates (X1(EtC(g)),X2(EtC(g)),(X_{1}(E_{tC}(g)),X_{2}(E_{tC}(g)),
X3(EtC(g)),X_{3}(E_{tC}(g)), X4(EtC(g)))X_{4}(E_{tC}(g))) which the Fenchel–Nielsen twist along CC with length tL(f2)tL(f_{2}) acts on are

X1(EtC(g))=\displaystyle X_{1}(E_{tC}(g))= X12(X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1)etL(f2)((X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11))2,\displaystyle X_{1}\cdot\dfrac{2\left(X_{1}\,X_{2}\,\cosh(L(f_{2}))-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\left(\frac{L(f_{2})}{2}\right)+X_{1}+1\right)\,e^{t\,L(f_{2})}}{\left(\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)\right)^{2}},
X2(EtC(g))=\displaystyle X_{2}(E_{tC}(g))= X2((X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21))22(X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1)etL(f2),\displaystyle X_{2}\cdot\frac{\left(\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)\right)^{2}}{2\left(X_{1}\,X_{2}\,\cosh\,(L(f_{2}))-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\,\left(\frac{L(f_{2})}{2}\right)+X_{1}+1\right)\,e^{t\,L(f_{2})}},
X3(EtC(g))=\displaystyle X_{3}(E_{tC}(g))= X3(X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11)(X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21),\displaystyle X_{3}\cdot\dfrac{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)}{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)},
X4(EtC(g))=\displaystyle X_{4}(E_{tC}(g))= X4(X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11)(X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21).\displaystyle X_{4}\cdot\dfrac{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)}{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)}.
Remark 1.2.

When tt is an integer mm, the Fenchel–Nielsen twist becomes the mm times Dehn twist and Xi(EtC(g))(i=1,,4)X_{i}(E_{tC}(g))\ (i=1,...,4) becomes the rational function of Xi(i=1,,4)X_{i}\ (i=1,...,4).

Also, the Fenchel–Nielsen twist was calculated by the coordinates of triangle length or by the trace coordinates by Garden ([Gar]).

1.1 Motivation from the cluster algebra and future works

From [FG2], the cross ratio coordinates are deeply related to the cluster algebra introduced by Fomin–Zelevinsky [FZ1]. A mutation class 𝐬\mathbf{s} is one of the subjects in the cluster algebra and associated with the piecewise-linear manifold 𝒳𝐬(trop)\mathcal{X}_{\mathbf{s}}(\mathbb{R}^{\text{trop}}) homeomorphic to (trop)n(\mathbb{R}^{\text{trop}})^{n}. Let the fan having the cones, one of whose coordinates of 𝒳𝐬(trop)\mathcal{X}_{\mathbf{s}}(\mathbb{R}^{\text{trop}}) are all equal to or greater than zero as the full dimensional cones be called the Fock–Goncharov fan 𝔉𝐬+\mathfrak{F}_{\mathbf{s}}^{+}. We denote the support of the Fock-Goncharov fan as |𝔉𝐬+||\mathfrak{F}_{\mathbf{s}}^{+}|.

  1. 1.

    The condition |𝔉𝐬+|=𝒳𝐬(trop)|\mathfrak{F}_{\mathbf{s}}^{+}|=\mathcal{X}_{\mathbf{s}}(\mathbb{R}^{\text{trop}}) is equivalent to the condition 𝐬\mathbf{s} is of finite type ([FG2]). In this case, we defined a cluster earthquake map and proved the earthquake theorem ([AIK]).

  2. 2.

    As for the condition |𝔉𝐬+||\mathfrak{F}_{\mathbf{s}}^{+}| is dense in 𝒳𝐬(trop)\mathcal{X}_{\mathbf{s}}(\mathbb{R}^{\text{trop}}), some sufficient conditions were given ([Yur1] and [Yur2]). In this case, it may be possible that we define a cluster earthquake map and prove the earthquake theorem by continuous extension of the definition on |𝔉𝐬+||\mathfrak{F}_{\mathbf{s}}^{+}|.

The Fenchel–Nielsen twist is an earthquake on the other area than |𝔉𝐬+||\mathfrak{F}_{\mathbf{s}}^{+}|. Future prospects are the explicit definition of the cluster earthquake map and another proof of the earthquake theorem by using the formula of the Fenchel–Nielsen twist. For example, we can draw an earthquake map on the enhanced Teichmüller space 𝒯^(A1,1)\widehat{\mathcal{T}}(A_{1,1}) for an annulus A1,1A_{1,1} with one point on each boundary component in Figure 2. The marked surface A1,1A_{1,1} is the simplest case that is not treated in either [BKS] or [AIK].

Refer to caption
Figure 2: Each color-coded area is the place where one point of 𝒯^(A1,1)\widehat{\mathcal{T}}(A_{1,1}) moves by an earthquake map for each full dimensional cone of 𝔉𝐬+\mathfrak{F}_{\mathbf{s}}^{+}. The royalblue curve is the locus to which the unit circumference about some cross ratio coordinates on 𝒳𝐬(trop)\mathcal{X}_{\mathbf{s}}(\mathbb{R}^{\text{trop}}) is moved by an earthquake map. The magenta curve is drawn by the formula of the Fenchel–Nielsen twist in this paper. This is an incomplete figure, as it requires infinite iterations of drawing.

Each full dimensional cone of 𝔉𝐬+\mathfrak{F}_{\mathbf{s}}^{+} corresponds to the set of measured laminations along an ideal triangulation. We observe that the images of the earthquake map relative to 𝔉𝐬+\mathfrak{F}_{\mathbf{s}}^{+} asymptotically approach the locus of the Fenchel–Nielsen twist.

2 The enhanced Teichmüller space and the cross ratio coordinates

We start with the same settings as [AIK]. Let Σ\Sigma be an oriented compact topological surface which may have boundaries and MM be a finite subset in Σ\Sigma. We assume that each boundary component has at least one point of MM. We call (Σ,M)(\Sigma,M) a marked surface.

Let MM_{\circ} be the intersection of MM and the interior of Σ\Sigma. We define Σ:=ΣM\Sigma^{\ast}:=\Sigma\setminus M_{\circ}. An ideal arc in (Σ,M)(\Sigma,M) is an isotopy class of an arc in Σ\Sigma^{\ast} connecting the points of MM without self-intersection except for its endpoints. We require that an ideal arc not to be represented by a boundary segment. A nonempty maximal disjoint collection Δ\Delta of ideal arcs without a self-folded triangle is called an ideal triangulation of Σ\Sigma. We assume that there is an ideal triangulation in (Σ,M)(\Sigma,M). A labeled triangulation is an ideal triangulation Δ\Delta equipped with a bijection :IΔ\ell:I\to\Delta, where nn is the number of ideal arcs and I:={1,,n}I:=\{1,\dots,n\} is a fixed index set.

Definition 2.1.

Let Hyp(Σ)\mathrm{Hyp}(\Sigma) be the set of hyperbolic metrics on ΣM\Sigma\setminus M where each point in MIntΣM\cap\mathrm{Int}\Sigma corresponds to a funnel or a cusp, and each point in MΣM\cap\partial\Sigma corresponds to a spike of a crown. For hHyp(Σ)h\in\mathrm{Hyp}(\Sigma), let MhMM_{\circ}^{h}\subset M_{\circ} denotes the set of punctures that give rise to funnels.

Definition 2.2.
  1. 1.

    For hHyp(Σ)h\in{\rm Hyp}(\Sigma), let Σh\Sigma^{h} be the hyperbolic surface obtained from (ΣM,h)(\Sigma\setminus M,h) by truncating the outer side of the shortest closed geodesic in each funnel. For pMhp\in M_{\circ}^{h}, let p\partial_{p} denote the resulting boundary component.

  2. 2.

    We call an orientation-preserving homeomorphism f:IntΣIntΣhf:\mathrm{Int}\Sigma\rightarrow\mathrm{Int}\Sigma^{h} a signed homeomorphism if it maps a representative of each ideal arc to a complete geodesic so that each end incident to pMhp\in M_{\circ}^{h} is mapped to a spiraling geodesic into the geodesic boundary p\partial_{p} in either left or right direction. Given a signed homeomorphism ff, its signature ϵf=(ηp)p{+,0,}M\epsilon_{f}=(\eta_{p})_{p}\in\{+,0,-\}^{M_{\circ}} is defined by

    ηp={+if pMh and f(αp) spirals to the left along the geodesic boundary p,0if pMMh,if pMh and f(αp) spirals to the right along the geodesic boundary p.\eta_{p}=\begin{cases}+&\mbox{if $p\in M_{\circ}^{h}$ and $f(\alpha_{p})$ spirals to the left along the geodesic boundary $\partial_{p}$},\\ 0&\mbox{if $p\in M_{\circ}\setminus M_{\circ}^{h}$},\\ -&\mbox{if $p\in M_{\circ}^{h}$ and $f(\alpha_{p})$ spirals to the right along the geodesic boundary $\partial_{p}$}.\end{cases}

    Here αp\alpha_{p} is any ideal arc incident to pp. See also Figure 3.

  3. 3.

    We say that two pairs (Σhi,fi)(\Sigma^{h_{i}},f_{i}) for i=1,2i=1,2 are equivalent if f2f11f_{2}\circ f_{1}^{-1} is homotopic to an isometry Σh1Σh2\Sigma^{h_{1}}\to\Sigma^{h_{2}}, and ϵf1=ϵf2\epsilon_{f_{1}}=\epsilon_{f_{2}}. We call the set 𝒯^(Σ)\widehat{\mathcal{T}}(\Sigma) of the equivalent classes of the pairs (Σh,f)(\Sigma^{h},f) the enhanced Teichmüller space.

Refer to caption
Figure 3: an example of a signature

We introduce the cross ratio coordinates into 𝒯^(Σ)\widehat{\mathcal{T}}(\Sigma). Let \mathbb{H} be the upper half space in the complex plane and 𝕊𝟙={}\mathbb{S_{\infty}^{1}}=\mathbb{R}\cup\{\infty\} be the boundary of \mathbb{H}.

Definition 2.3.

Given a labeled triangulation (Δ,)(\Delta,\ell) and iIi\in I, let i\square_{i} be the unique quadrilateral in Δ\Delta containing the ideal arc (i)\ell(i) as a diagonal. For a point [Σh,f]𝒯^(Σ)[\Sigma^{h},f]\in\widehat{\mathcal{T}}(\Sigma), choose a geodesic lift f(i)~Σh~\widetilde{f(\square_{i})}\subset\widetilde{\Sigma^{h}}\subset\mathbb{H} of f(i)f(\square_{i}) with respect to the universal covering Σh~Σh\widetilde{\Sigma^{h}}\to\Sigma^{h} determined by the hyperbolic structure hh. Let x,y,z,w𝕊𝟙x,y,z,w\in\mathbb{S_{\infty}^{1}} be the four ideal vertices of f(i)~\widetilde{f(\square_{i})} in this counter-clockwise order, and assume that xx is an endpoint of the lift of (i)\ell(i). Then we define the cross ratio coordinate associated with iIi\in I by

Xi(Δ,)([Σh,f]):=[x:y:z:w]>0,X_{i}^{(\Delta,\ell)}([\Sigma^{h},f]):=[x:y:z:w]>0,

where

[x:y:z:w]\displaystyle[x:y:z:w] :=wxwzzyyx\displaystyle:=\frac{w-x}{w-z}\cdot\frac{z-y}{y-x}

denotes the cross ratio of the four points in 𝕊𝟙\mathbb{S_{\infty}^{1}}. Since the right-hand side is invariant under Möbius transformations, Xi(Δ,)X_{i}^{(\Delta,\ell)} does not depend on the choice of the lift f(i)~\widetilde{f(\square_{i})}, and does not change if we choose the other endpoint of (i)\ell(i) as xx.

In order to define the Fenchel–Nielsen twist, we give another description of 𝒯^(Σ)\widehat{\mathcal{T}}(\Sigma). We take [Σ0h,f0]𝒯^(Σ)[\Sigma^{h}_{0},f_{0}]\in\widehat{\mathcal{T}}(\Sigma) and denote the closure in 𝕊𝟙\mathbb{H}\cup\mathbb{S_{\infty}^{1}} of the lift Σ0h~\widetilde{\Sigma^{h}_{0}} of Σ0h\Sigma^{h}_{0} as Σ0h~¯\overline{\widetilde{\Sigma^{h}_{0}}}. Let (Σ)=Σ0h~¯𝕊𝟙\mathcal{F}_{\infty}(\Sigma)=\overline{\widetilde{\Sigma^{h}_{0}}}\cap\mathbb{S_{\infty}^{1}}. We consider that (Σ)\mathcal{F}_{\infty}(\Sigma) has the same cyclic order as 𝕊𝟙\mathbb{S_{\infty}^{1}}.

We consider the set

{(ρ,ψ)|ρ:π1(Σ)PSL(2,) is a Fuchsian representation,ψ:(Σ)𝕊𝟙 is ρ(π1(Σ))-equivalent and cyclic-order-preserving.}\left\{(\rho,\psi)\middle|\begin{array}[]{lll}\rho:\pi_{1}(\Sigma)\rightarrow\mathrm{PSL}(2,\mathbb{R})\text{ is a Fuchsian representation,}\\ \psi:\mathcal{F}_{\infty}(\Sigma)\rightarrow\mathbb{S_{\infty}^{1}}\text{ is }\rho(\pi_{1}(\Sigma))\text{-equivalent and cyclic-order-preserving.}\end{array}\right\}

and say that (ρi,ψi)(i=1,2)(\rho_{i},\psi_{i})\ (i=1,2) are equivalent if there exists γPSL(2,)\gamma\in\mathrm{PSL}(2,\mathbb{R}) satisfying ρ2=γρ1γ1\rho_{2}=\gamma\cdot\rho_{1}\cdot\gamma^{-1} and ψ2=γψ1\psi_{2}=\gamma\cdot\psi_{1}. We denote the set of all of these equivalent classes as 𝒯^(Σ)\widehat{\mathcal{T}}_{\infty}(\Sigma).

Proposition 2.4 (cf. [FG1, Theorem 1.6]).

There is a natural bijection between the enhanced Teichmüller  space 𝒯^(Σ)\widehat{\mathcal{T}}(\Sigma) and 𝒯^(Σ)\widehat{\mathcal{T}}_{\infty}(\Sigma).

Indeed, given [Σh,f]𝒯^(Σ)[\Sigma^{h},f]\in\widehat{\mathcal{T}}(\Sigma), the representation ρ\rho is the monodromy of the hyperbolic structure hh, and ψ\psi is given by the continuous extension of the lift f~:Σ~Σh~\widetilde{f}:\widetilde{\Sigma}\to\widetilde{\Sigma^{h}}\subset\mathbb{H} to 𝕊𝟙\mathbb{S_{\infty}^{1}}.

For a simple closed curve CC of ΣM\Sigma\setminus M and t0t\in\mathbb{R}_{\geq 0}, we define the Fenchel–Nielsen twist EtC:𝒯^(Σ)𝒯^(Σ)E_{tC}:\widehat{\mathcal{T}}_{\infty}(\Sigma)\rightarrow\widehat{\mathcal{T}}_{\infty}(\Sigma) as follows. We take [ρ,ψ]𝒯^(Σ)[\rho,\psi]\in\widehat{\mathcal{T}}_{\infty}(\Sigma) and let Σρ~\widetilde{\Sigma_{\rho}} be the universal cover of the hyperbolic surface Σρ:=/ρ(π1(Σ))\Sigma_{\rho}:=\mathbb{H}/\rho(\pi_{1}(\Sigma)). Let C~\widetilde{C} be the union of all lifts of CC in Σρ~\widetilde{\Sigma_{\rho}}. We call each connected component of Σρ~C~\widetilde{\Sigma_{\rho}}\setminus\widetilde{C} a gap. We fix a gap S0S_{0}. Let the length of CC in Σρ\Sigma_{\rho} be L(C)L(C). We endow each gap SS with a hyperbolic element ESPSL(2,)E_{S}\in\mathrm{PSL}(2,\mathbb{R}) as follows.

  • ES0E_{S_{0}} is the identity.

  • For any gap S1S_{1} adjacent to S0S_{0}, let l1l_{1} be the intervening geodesic between these gaps. Let ES1E_{S_{1}} be the hyperbolic element whose axis is l1l_{1}, whose translation distance is tL(C)t\cdot L(C) and whose direction is to the left (i.e. the restriction ES1|S1E_{S_{1}}|_{S_{1}} of ES1E_{S_{1}} moves S1S_{1} to the left from S0S_{0}’s perspective).

  • For any gap S2S_{2} adjacent to S1S_{1} and other than S0S_{0}, let l2l_{2} be the intervening geodesic between these gaps. Let ES2¯\overline{E_{S_{2}}} be the hyperbolic element whose axis is l2l_{2}, whose translation distance is tL(C)t\cdot L(C) and whose direction is to the left. We define ES2:=ES1ES2¯E_{S_{2}}:=E_{S_{1}}\circ\overline{E_{S_{2}}}.

  • Inductively iterating, for any gap SnS_{n} adjacent to Sn1S_{n-1} and other than Sn2S_{n-2}, let lnl_{n} be the intervening geodesic between these gaps. Let ESn¯\overline{E_{S_{n}}} be the hyperbolic element whose axis is lnl_{n}, whose translation distance is tL(C)t\cdot L(C) and whose direction is to the left. We define ESn:=ESn1ESn¯E_{S_{n}}:=E_{S_{n-1}}\circ\overline{E_{S_{n}}}.

We define EtC~:Σρ~C~\widetilde{E_{tC}}:\widetilde{\Sigma_{\rho}}\setminus\widetilde{C}\to\mathbb{H} as EtC~:=S : gapES|S\widetilde{E_{tC}}:=\displaystyle\bigcup_{S\text{ : gap}}E_{S}|_{S} and continuously extend it to EtC~:Σρ~𝕊𝟙\partial_{\infty}\widetilde{E_{tC}}:\partial_{\infty}\widetilde{\Sigma_{\rho}}\rightarrow\mathbb{S_{\infty}^{1}}, where Σρ~\partial_{\infty}\widetilde{\Sigma_{\rho}} is the intersection of Σρ~\widetilde{\Sigma_{\rho}} and 𝕊𝟙\mathbb{S_{\infty}^{1}}.

  1. 1.

    We define a group-homomorphism ρ:π1(Σ)PSL(2,)\rho^{\prime}:\pi_{1}(\Sigma)\to\mathrm{PSL}(2,\mathbb{R}) by the condition EtC~ρ(γ)=ρ(γ)EtC~\partial_{\infty}\widetilde{E_{tC}}\circ\rho(\gamma)=\rho^{\prime}(\gamma)\circ\partial_{\infty}\widetilde{E_{tC}} on Σρ~\partial_{\infty}\widetilde{\Sigma_{\rho}} for any γπ1(Σ)\gamma\in\pi_{1}(\Sigma). Then, ρ\rho^{\prime} is a Fuchsian representation by [BKS, Proposition 3.2.].

  2. 2.

    Define ψ:(Σ)𝕊𝟙\psi^{\prime}:\mathcal{F}_{\infty}(\Sigma)\to\mathbb{S_{\infty}^{1}} by ψ:=EtC~ψ\psi^{\prime}:=\partial_{\infty}\widetilde{E_{tC}}\circ\psi. Then, ψ\psi^{\prime} is ρ\rho^{\prime}-equivariant and order-preserving. See [BB, BKS].

As above, we define

EtC:𝒯^(Σ)𝒯^(Σ),[ρ,ψ][ρ,ψ].E_{tC}:\widehat{\mathcal{T}}_{\infty}(\Sigma)\rightarrow\widehat{\mathcal{T}}_{\infty}(\Sigma),\ [\rho,\psi]\mapsto[\rho^{\prime},\psi^{\prime}].

Moreover, EtC:𝒯^(Σ)𝒯^(Σ)E_{tC}:\widehat{\mathcal{T}}(\Sigma)\rightarrow\widehat{\mathcal{T}}(\Sigma) is naturally induced by Proposition 2.4.

Definition 2.5.

We call EtC:𝒯^(Σ)𝒯^(Σ)E_{tC}:\widehat{\mathcal{T}}(\Sigma)\rightarrow\widehat{\mathcal{T}}(\Sigma) the Fenchel–Nielsen twist along a simple closed curve CC with a twist parameter tt.

3 A formula of the Fenchel–Nielsen twist

3.1 The proof of theorem 1.1

First, we consider an annulus A1,1A_{1,1} with one point on each boundary component and ideal arcs in Figure 1. We take g𝒯^(A1,1)g\in\widehat{\mathcal{T}}(A_{1,1}) and calculate the Fenchel–Nielsen twist along the non-trivial and non-self-intersecting closed curve CC. We number each edge and let the cross ratio coordinates of gg be (X1,X2,X3,X4)(X_{1},X_{2},X_{3},X_{4}).

We lift the surfaces to \mathbb{H} and draw the fundamental domain of the surfaces with dots. Let the endpoints of the lift of the ideal arcs in 𝕊𝟙\mathbb{S_{\infty}^{1}} be x1,x2, 0,x3, 1,x4x_{1},\ x_{2},\ 0,\ x_{3},\ 1,\ x_{4}\ \infty in Figure 4.

Refer to caption
Figure 4: the universal cover \mathbb{H}

Then, we get

x1=X1,x2=X1(X2+1),x3=X1X3X3+1,x4=X4+1X4.\displaystyle\ x_{1}=-X_{1},\ x_{2}=-X_{1}\,\left(X_{2}+1\right),\ x_{3}=-\dfrac{X_{1}\,X_{3}}{X_{3}+1},\ x_{4}=\dfrac{X_{4}+1}{X_{4}}.

We denote the hyperbolic element attaching the edge 22 as f2f_{2}. The element f2f_{2} maps 0, 11 and \infty to x1,x_{1},\ \infty and x2x_{2}, respectively. Here,

f2=1X1X2[X1(X2+1)X111]PSL(2,)f_{2}=\dfrac{1}{\sqrt{X_{1}X_{2}}}\begin{bmatrix}X_{1}\,(X_{2}+1)&-X_{1}\\ -1&1\end{bmatrix}\in\mathrm{PSL}(2,\mathbb{R})

and we calculate the absolute value of the trace of f2f_{2}

|tr(f2)|=X1(X2+1)+1X1X2|\text{tr}(f_{2})|=\dfrac{X_{1}(X_{2}+1)+1}{\sqrt{X_{1}X_{2}}}

and the hyperbolic distance of f2f_{2}

L(f2)=2cosh1(|tr(f2)|2).L(f_{2})=2\,\cosh^{-1}\left(\frac{|\text{tr}(f_{2})|}{2}\right).

The fixed points of f2f_{2} are

p1\displaystyle p_{1} :=X1(X2+1)+1+(X1(X2+1)+1)24X1X22>0,\displaystyle:=\frac{-X_{1}\,(X_{2}+1)+1+\sqrt{{(X_{1}\,(X_{2}+1)+1)}^{2}-4\,X_{1}\,X_{2}}}{2}>0,
p2\displaystyle p_{2} :=X1(X2+1)+1(X1(X2+1)+1)24X1X22<0.\displaystyle:=\frac{-X_{1}\,(X_{2}+1)+1-\sqrt{{(X_{1}\,(X_{2}+1)+1)}^{2}-4\,X_{1}\,X_{2}}}{2}<0.

We normalize the scale of the Fenchel–Nielsen deformation by L(f2)L(f_{2}). Therefore, We let t(t0)t\ (t\geq 0) be a twist parameter and define a stratum map EαE_{\alpha} as

A1\displaystyle A_{1} :=1p1p2[1p11p2],\displaystyle:=\dfrac{1}{\sqrt{p_{1}-p_{2}}}\begin{bmatrix}1&-p_{1}\\ 1&-p_{2}\\ \end{bmatrix},
Eα\displaystyle E_{\alpha} :=A11[etL(f2)200etL(f2)2]A1\displaystyle:=A_{1}^{-1}\cdot\begin{bmatrix}e^{\frac{t\,L(f_{2})}{2}}&0\\ 0&e^{-\frac{t\,L(f_{2})}{2}}\end{bmatrix}\cdot A_{1}
=1(p1p2)etL(f2)2[p1p2etL(f2)p1p2(etL(f2)1)etL(f2)+1p1etL(f2)p2].\displaystyle=\dfrac{1}{\left(p_{1}-p_{2}\right)e^{\frac{t\,L(f_{2})}{2}}}\left[\begin{array}[]{cc}p_{1}-p_{2}\,e^{t\,L(f_{2})}&p_{1}\,p_{2}\,(e^{t\,L(f_{2})}-1)\\ -e^{t\,L(f_{2})}+1&p_{1}e^{t\,L(f_{2})}-p_{2}\end{array}\right].

The stratum maps related to cross ratio coordinates are the identity and EαE_{\alpha} as Figure 4.

The values acted by the lift EtC~\widetilde{E_{tC}} of EtCE_{tC} are

EtC~(0)\displaystyle\widetilde{E_{tC}}(0) =p1p2(t1)p1etL(f2)p2,\displaystyle=\dfrac{p_{1}\,p_{2}(t-1)}{p_{1}\,e^{t\,L(f_{2})}-p_{2}},
EtC~(x1)\displaystyle\widetilde{E_{tC}}(x_{1}) =(X1p2+p1p2)etL(f2)(X1p1+p1p2)(X1+p1)etL(f2)(X1+p2),\displaystyle=\dfrac{(X_{1}\,p_{2}+p_{1}\,p_{2})\,e^{t\,L(f_{2})}-(X_{1}\,p_{1}+p_{1}\,p_{2})}{(X_{1}+p_{1})\,e^{t\,L(f_{2})}-(X_{1}+p_{2})},
EtC~(x3)\displaystyle\widetilde{E_{tC}}(x_{3}) =(X1X3p2+(X3+1)p1p2)etL(f2)(X1X3p1+(X3+1)p1p2)(X1X3+(X3+1)p1)etL(f2)(X1X3+(X3+1)p2).\displaystyle=\dfrac{(X_{1}\,X_{3}\,p_{2}+(X_{3}+1)\,p_{1}\,p_{2})\,e^{t\,L(f_{2})}-(X_{1}\,X_{3}\,p_{1}+(X_{3}+1)\,p_{1}\,p_{2})}{(X_{1}\,X_{3}+(X_{3}+1)\,p_{1})\,e^{t\,L(f_{2})}-(X_{1}\,X_{3}+(X_{3}+1)\,p_{2})}.

When we use

p1p2=X1,p_{1}\,p_{2}=-X_{1},

we get

EtC~(0)\displaystyle\widetilde{E_{tC}}(0) =X1(t1)p1etL(f2)p2,\displaystyle=-\dfrac{X_{1}\,(t-1)}{p_{1}\,e^{t\,L(f_{2})}-p_{2}},
EtC~(x1)\displaystyle\widetilde{E_{tC}}(x_{1}) =X1((p21)etL(f2)(p11))(X1+p1)etL(f2)(X1+p2),\displaystyle=\dfrac{X_{1}\,((p_{2}-1)\,e^{t\,L(f_{2})}-(p_{1}-1))}{(X_{1}+p_{1})\,e^{t\,L(f_{2})}-(X_{1}+p_{2})},
EtC~(x3)\displaystyle\widetilde{E_{tC}}(x_{3}) =X1((X3p2X31)etL(f2)(X3p1X31))(X1X3+(X3+1)p1)etL(f2)(X1X3+(X3+1)p2).\displaystyle=\dfrac{X_{1}\,((X_{3}\,p_{2}-X_{3}-1)\,e^{t\,L(f_{2})}-(X_{3}\,p_{1}-X_{3}-1))}{(X_{1}\,X_{3}+(X_{3}+1)\,p_{1})\,e^{t\,L(f_{2})}-(X_{1}\,X_{3}+(X_{3}+1)\,p_{2})}.

We calculate the cross ratio coordinates (X1(EtC(g)),X2(EtC(g)),X3(EtC(g)),X4(EtC(g)))(X_{1}(E_{tC}(g)),X_{2}(E_{tC}(g)),X_{3}(E_{tC}(g)),X_{4}(E_{tC}(g))) which EtCE_{tC} acts on.

X1(EtC(g))=[Eα(0):1::Eα(X1)]=X1(p12+p22+2X1)etL(f2)((X1+p1)etL(f2)(X1+p2))2,\displaystyle X_{1}(E_{tC}(g))=\hskip 15.0pt[E_{\alpha}\left(0\right):1:\infty:E_{\alpha}\left(X_{1}\right)]\hskip 15.0pt=X_{1}\cdot\dfrac{(p_{1}^{2}+p_{2}^{2}+2\,X_{1})\,e^{t\,L(f_{2})}}{((X_{1}+p_{1})\,e^{t\,L(f_{2})}-(X_{1}+p_{2}))^{2}},\hskip 58.0pt
X2(EtC(g))=[Eα(0):Eα(X2):1:]\displaystyle X_{2}(E_{tC}(g))=[E_{\alpha}\left(0\right):E_{\alpha}\left(X_{2}\right):1:\infty]\hskip 290.0pt
=(p1tp2)(((X2+1)p1+p2+X1X2+X11)etL(f2)(p1+(X2+1)p2+X1X2+X11))(p12+p22+2X1)etL(f2),\displaystyle=\dfrac{\left(p_{1}t-p_{2}\right)\left(\left(\left(X_{2}+1\right)p_{1}+p_{2}+X_{1}X_{2}+X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(p_{1}+\left(X_{2}+1\right)p_{2}+X_{1}X_{2}+X_{1}-1\right)\right)}{\left(p_{1}^{2}+p_{2}^{2}+2X_{1}\right)\,e^{t\,L(f_{2})}},
X3(EtC(g))=[Eα(0)::Eα(X1):Eα(X3)]=X3(X1+p1)etL(f2)(X1+p2)p1etL(f2)p2,\displaystyle X_{3}(E_{tC}(g))=[E_{\alpha}\left(0\right):\infty:E_{\alpha}\left(X_{1}\right):E_{\alpha}\left(X_{3}\right)]=X_{3}\cdot\dfrac{(X_{1}+p_{1})\,e^{t\,L(f_{2})}-(X_{1}+p_{2})}{p_{1}\,e^{t\,L(f_{2})}-p_{2}},\hskip 70.0pt
X4(EtC(g))=[1:X4::Eα(0)]=X4(X1+p1)etL(f2)(X1+p2)p1etL(f2)p2.\displaystyle X_{4}(E_{tC}(g))=\hskip 30.0pt[1:X_{4}:\infty:E_{\alpha}\left(0\right)]\hskip 30.0pt=X_{4}\cdot\dfrac{(X_{1}+p_{1})\,e^{t\,L(f_{2})}-(X_{1}+p_{2})}{p_{1}\,e^{t\,L(f_{2})}-p_{2}}.\hskip 66.0pt

When we use

p1=12(X1X2|tr(f2)|+2+X1X2(|tr(f2)|4)))=1X1X2exp(L(f2)2),\displaystyle p_{1}=\dfrac{1}{2}(-\sqrt{X_{1}\,X_{2}}\,|\text{tr}(f_{2})|+2+\sqrt{X_{1}\,X_{2}\,(|\text{tr}(f_{2})|-4)}))=1-\sqrt{X_{1}\,X_{2}}\,\exp\left(-\frac{L(f_{2})}{2}\right),
p2=12(X1X2|tr(f2)|+2X1X2(|tr(f2)|4)))=1X1X2exp(L(f2)2),\displaystyle p_{2}=\dfrac{1}{2}(-\sqrt{X_{1}\,X_{2}}\,|\text{tr}(f_{2})|+2-\sqrt{X_{1}\,X_{2}\,(|\text{tr}(f_{2})|-4)}))=1-\sqrt{X_{1}\,X_{2}}\,\exp\left(\frac{L(f_{2})}{2}\right),
p1+p2=X1X2X1+1,\displaystyle p_{1}+p_{2}=-X_{1}\,X_{2}-X_{1}+1,

we get

X1(EtC(g))=\displaystyle X_{1}(E_{tC}(g))= X12(X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1)etL(f2)((X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11))2,\displaystyle X_{1}\cdot\dfrac{2\left(X_{1}\,X_{2}\,\cosh(L(f_{2}))-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\left(\frac{L(f_{2})}{2}\right)+X_{1}+1\right)\,e^{t\,L(f_{2})}}{\left(\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)\right)^{2}},
X2(EtC(g))=\displaystyle X_{2}(E_{tC}(g))= X2((X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21))22(X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1)etL(f2),\displaystyle X_{2}\cdot\frac{\left(\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)\right)^{2}}{2\left(X_{1}\,X_{2}\,\cosh\,(L(f_{2}))-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\,\left(\frac{L(f_{2})}{2}\right)+X_{1}+1\right)\,e^{t\,L(f_{2})}},
X3(EtC(g))=\displaystyle X_{3}(E_{tC}(g))= X3(X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11)(X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21),\displaystyle X_{3}\cdot\dfrac{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)}{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)},
X4(EtC(g))=\displaystyle X_{4}(E_{tC}(g))= X4(X1X2eL(f2)2X11)etL(f2)(X1X2eL(f2)2X11)(X1X2eL(f2)21)etL(f2)(X1X2eL(f2)21).\displaystyle X_{4}\cdot\dfrac{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-X_{1}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-X_{1}-1\right)}{\left(\sqrt{X_{1}\,X_{2}}\,e^{-\frac{L(f_{2})}{2}}-1\right)\,e^{t\,L(f_{2})}-\left(\sqrt{X_{1}\,X_{2}}\,e^{\frac{L(f_{2})}{2}}-1\right)}.

We have gotten the formula for A1,1A_{1,1}.

Finally, we consider a general case. We take a marked surface (Σ,M)(\Sigma,M) and a simple closed curve CC on ΣM\Sigma\setminus M. When any connected component of ΣC\Sigma\setminus C has at least one marked point, there are two ideal arcs constituting the boundary of A1,1A_{1,1} which includes CC and whose internal has no marked point. Then, we introduce an ideal triangulation into A1,1A_{1,1} in the same way as Figure 1, add ideal arcs and produce an ideal triangulation of (Σ,M)(\Sigma,M). We have proved Theorem 1.1.

3.2 The Dehn twist

We consider the formula of the Fenchel–Nielsen twist in the case of t=0t=0 and t=1t=1. By the trace and hyperbolic distance of f2f_{2}, we get

cosh(L(f2)2)=12(X1X2+X1+1X1X2),\displaystyle\cosh\left(\dfrac{L(f_{2})}{2}\right)=\dfrac{1}{2}\left(\dfrac{X_{1}\,X_{2}+X_{1}+1}{\sqrt{X_{1}\,X_{2}}}\right),
cosh(L(f2))=(X1X2+X1+1)22X1X22X1X2.\displaystyle\cosh(L(f_{2}))=\dfrac{(X_{1}\,X_{2}+X_{1}+1)^{2}-2\,X_{1}\,X_{2}}{2\,X_{1}\,X_{2}}.
  1. 1.

    When t=0t=0,

    X1(E0C(g))\displaystyle X_{1}(E_{0\cdot C}(g)) =X12(X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1)2X1X2(cosh(L(f2))1)\displaystyle=X_{1}\,\cdot\,\frac{2\left(X_{1}\,X_{2}\,\cosh\,\left(L\left(f_{2}\right)\right)-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\,\left(\frac{L\left(f_{2}\right)}{2}\right)+X_{1}+1\right)}{2\,X_{1}\,X_{2}\left(\cosh\,\left(L\left(f_{2}\right)\right)-1\right)}
    =X1.\displaystyle=X_{1}.

    The other coordinates are calculated in the same way and we get

    (X1(E0C(g)),X2(E0C(g)),X3(E0C(g)),X4(E0C(g)))=(X1,X2,X3,X4).(X_{1}(E_{0\cdot C}(g)),X_{2}(E_{0\cdot C}(g)),X_{3}(E_{0\cdot C}(g)),X_{4}(E_{0\cdot C}(g)))=(X_{1},X_{2},X_{3},X_{4}).
  2. 2.

    When t=1t=1,

    X1(E1C(g))\displaystyle X_{1}(E_{1\cdot C}(g)) =X1X1X2cosh(L(f2))2X1X2cosh(L(f2)2)+X1+1(X1+1)2(cosh(L(f2))1)\displaystyle=X_{1}\,\cdot\,\frac{X_{1}\,X_{2}\,\cosh\,\left(L\left(f_{2}\right)\right)-2\,\sqrt{X_{1}\,X_{2}}\,\cosh\,\left(\frac{L\left(f_{2}\right)}{2}\right)+X_{1}+1}{\left(X_{1}+1\right)^{2}\left(\cosh\,\left(L\left(f_{2}\right)\right)-1\right)}
    =X12X2(X1+1)2.\displaystyle=\dfrac{X_{1}^{2}\,X_{2}}{(X_{1}+1)^{2}}.

    The other coordinates are calculated in the same way and we get

    (X1(E1C(g)),X2(E1C(g)),X3(E1C(g)),X4(E1C(g)))\displaystyle(X_{1}(E_{1\cdot C}(g)),X_{2}(E_{1\cdot C}(g)),X_{3}(E_{1\cdot C}(g)),X_{4}(E_{1\cdot C}(g)))
    =(X12X2(X1+1)2,1X1,(X1+1)X3,(X1+1)X4).\displaystyle=\left(\dfrac{X_{1}^{2}\,X_{2}}{(X_{1}+1)^{2}},\dfrac{1}{X_{1}},(X_{1}+1)\,X_{3},(X_{1}+1)\,X_{4}\right).

    It is a formula of the Dehn twist.

Acknowledgement

The author thanks Tsukasa Ishibashi and Shunsuke Kano for their valuable discussion. He would like to thank his supervisor, Takuya Sakasai for his patient guidance.

References

  • [Asa] T. Asaka, Earthquake maps of a once-punctured torus, Master’s thesis, University of Tokyo (2018), http://www.cajpn.org/refs/thesis/18M-Asaka.pdf.
  • [AIK] T. Asaka, T. Ishibashi and S. Kano, Earthquake theorem for cluster algebras of finite type, Int. Math. Res. Not. 8 (2024), 7129–7159
  • [BB] R. Benedetti and F. Bonsante, (2+1)(2+1) Einstein spacetimes of finite type, Eur. Math. Soc., Zürich, 13 (2009), 533–609.
  • [BKS] F. Bonsante, K. Krasnov and J. M. Schlenker, Multi-black holes and earthquakes on Riemann surfaces with boundaries, Int. Math. Res. Not., 3 (2011), 487–552.
  • [FG1] V. V. Fock and A. B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211.
  • [FG2] V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930.
  • [FZ1] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.
  • [FZ4] S. Fomin and A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112–164.
  • [Gar] G. S. Garden, Earthquakes on the once-punctured torus, arXiv:2203.06609.
  • [Ker] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), 235–265.
  • [Mir] M. Mirzakhani, Ergodic theory of the earthquake flow, Int. Math. Res. Not. IMRN 2008, Art. ID rnm116, 39 pp.
  • [Nak] T. Nakanishi, Cluster patterns and scattering diagrams, Part I. Basics in Cluster Algebras, arXiv:2201.11371.
  • [Pen] R. C. Penner, Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012.
  • [Thu] W. P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, London Math. Soc. 112 (1984), 91–112.
  • [Yur1] T. Yurikusa, Density of gg-vector cones from triangulated surfaces, Int. Math. Res. Not. IMRN, 21(2020), 8081-8119.
  • [Yur2] T. Yurikusa, Acyclic cluster algebras with dense gg-vector fans, arxiv:2107.13482

Takeru Asaka

Graduate School of Information Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.

Email : asakatakeru@gmail.com