This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The free boundary for a semilinear non-homogeneous Bernoulli problem

Lili Du College of Mathematics and Statistics, Shenzhen University,Shenzhen 518061, P. R. China. dulili@szu.edu.cn  and  Chunlei Yang Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China. yang_chunlei@stu.scu.edu.cn
Abstract.

In the classical homogeneous one-phase Bernoulli-type problem, the free boundary consists of a ”regular” part and a ”singular” part, as Alt and Caffarelli have shown in their pioneer work (J. Reine Angew. Math., 325, 105-144, 1981) that regular points are C1,γC^{1,\gamma} in two-dimensions. Later, Weiss (J. Geom. Anal., 9, 317-326, 1999) first realized that in higher dimensions a critical dimension dd^{*} exists so that the singularities of the free boundary can only occur when ddd\geqslant d^{*}.

In this paper, we consider a non-homogeneous semilinear one-phase Bernoulli-type problem, and we show that the free boundary is a disjoint union of a regular and a singular set. Moreover, the regular set is locally the graph of a C1,γC^{1,\gamma} function for some γ(0,1)\gamma\in(0,1). In addition, there exists a critical dimension dd^{*} so that the singular set is empty if d<dd<d^{*}, discrete if d=dd=d^{*} and of locally finite dd\mathcal{H}^{d-d^{*}} Hausdorff measure if d>dd>d^{*}. As a byproduct, we relate the existence of viscosity solutions of a non-homogeneous problem to the Weiss-boundary adjusted energy, which provides an alternative proof to existence of viscosity solutions for non-homogeneous problems.

The first author is supported by National Nature Science Foundation of China Grant 11971331, 12125102, and Sichuan Youth Science and Technology Foundation 2021JDTD0024.

1. Introduction and main results

Free boundary problems are a particular type of boundary value problem where the domain is a part of the solution that is up to be determined. Typically, the classical one-phase Bernoulli-type problem deals with the minimization problem

min{Ω|u|2+Q2(x)χ{u>0}dx:uH1(Ω),u=u0 on S}.\displaystyle\min\left\{\int_{\Omega}|\nabla u|^{2}+Q^{2}(x)\chi_{\{u>0\}}\>dx\colon u\in H^{1}(\Omega),u=u^{0}\text{ on }S\right\}. (1.1)

Here Ωd\Omega\subset\mathbb{R}^{d} (d2d\geqslant 2) is a bounded open set and locally Ω\partial\Omega is a Lipschitz graph. SΩS\subset\partial\Omega is measurable and d1(S)>0\mathcal{H}^{d-1}(S)>0. The Dirichlet data on SS is given by u0H1(Ω)u^{0}\in H^{1}(\Omega), u00u^{0}\geqslant 0. The given force function Q(x):ΩQ(x)\colon\Omega\to\mathbb{R} is assumed to be non-negative and measurable. χ{u>0}\chi_{\{u>0\}} denotes the indicator function of the set {u>0}\{u>0\}. Minimizers of problem (1.1) are solutions to the following problem:

Δu=0 in Ω+(u),u=0,|u|=Q(x) on Ω+(u),\displaystyle\Delta u=0\quad\text{ in }\quad\varOmega^{+}(u),\qquad u=0,\ \ |\nabla u|=Q(x)\quad\text{ on }\quad\partial\varOmega^{+}(u), (1.2)

where Ω+(u):=Ω{u>0}\varOmega^{+}(u):=\Omega\cap\{u>0\} and Ω+(u):=Ω{u>0}\partial\varOmega^{+}(u):=\Omega\cap\partial\{u>0\}.

In this paper, we investigate a natural generalization of the above one-phase Bernoulli-type problem in the presence of a right-hand side which depends on the solution itself. Let d\mathbb{R}^{d}, Ω\Omega, Ω\partial\Omega, SS, u0u^{0} and Q(x)Q(x) be the same mathematical objects as in (1.1) and (1.2). Let F(t)C2,β()F(t)\in C^{2,\beta}(\mathbb{R}) be a function for some β(0,1)\beta\in(0,1), and let us define

f(t):=12F(t).\displaystyle f(t):=-\tfrac{1}{2}F^{\prime}(t). (1.3)

Consider the functional

J(u)=Ω|u|2+F(u)+Q2(x)χ{u>0}dx\displaystyle J(u)=\int_{\Omega}|\nabla u|^{2}+F(u)+Q^{2}(x)\chi_{\{u>0\}}\>dx (1.4)

over the class of admissible functions

𝒦:={uH1(Ω):uΨ a.e. in Ω,u=u0 on S}.\displaystyle\mathcal{K}:=\{u\in H^{1}(\Omega)\colon u\leqslant\Psi\text{ a.e. in }\Omega,\ \ u=u^{0}\text{ on }S\}. (1.5)

Here ΨC0(Ω¯)C2,α(Ω)\Psi\in C^{0}(\bar{\Omega})\cap C^{2,\alpha}(\Omega) is a given function, satisfying

ΔΨ+f(Ψ)0 in Ω,Ψ>0 in Ω,0u0Ψ on S.\displaystyle\Delta\Psi+f(\Psi)\leqslant 0\quad\text{ in }\Omega,\qquad\Psi>0\quad\text{ in }\Omega,\qquad 0\leqslant u^{0}\leqslant\Psi\quad\text{ on }S. (1.6)

Observe that when the free boundary Ω+(u)\partial\varOmega^{+}(u) is smooth, the Euler-Lagrange equations of (1.4) are given by

Δu=f(u)\displaystyle-\Delta u=f(u)\quad in Ω+(u),u=0,|u|=Q(x) on Ω+(u).\displaystyle\text{ in }\quad\varOmega^{+}(u),\qquad u=0,\ \ |\nabla u|=Q(x)\quad\text{ on }\quad\partial\varOmega^{+}(u). (1.7)

Our main purposes of this article is to investigate the impact of non-zero right-hand side f(u)f(u) on the structure and the regularity of the free boundary. This is because that the system (1.7) has numerous applications in physics and the right-hand side f(u)f(u) has many physical explanations. For instance when d=2d=2, the unknown variable uu can be regarded as the scalar stream function and the function f(u)f(u) stands for vorticity strength and the system (1.7) is used for modeling the incompressible inviscid jet and cavity flow with general vorticity ([11, 12]), and for the periodic water waves with non-zero vorticity ([10, 32, 33, 34]).

Let us shortly summarize the mathematical results relevant in the context of homogeneous one-phase problem (1.2). In their seminal paper [1], Alt and Caffarelli derived the smoothness of the free boundary for weak solutions. After that, Caffarelli introduced the notion of viscosity solutions to the problem (1.2) in a series of artworks [3, 4, 5], and proved the smoothness of the free boundary for a larger class of solutions. These approaches appears to be universal and were used to study quasilinear (even degenerate) Bernoulli-type problems [2, 14]. This paper aims to extend the main theorem in the paper by Alt and Caffarelli to more general semilinear situations as well as the higher-dimensional case. However, our paper replace the core of that paper, which relies on a Weiss-type monotonicity formula and a viscosity approach developed by De Silva, which promises to be applicable to one-phase problems governed by more complex operators [17].

It should be also worth noting that the appearance of singularities and the structure of the free boundary in higher dimensions (d3d\geqslant 3) play a significant role in the study of minimal surfaces. The first far-reaching observation from this perspective was dedicated to Weiss [35], who revealed that for minimizers of the problem (1.1), there is a critical dimension d3d^{*}\geqslant 3 such that the singular set of the free boundary is empty if d<dd<d^{*}, and is a discrete set of isolated points if d=dd=d^{*}, and is a closed set of Hausdorff dimension ddd-d^{*} if d>dd>d^{*}. To the best of our knowledge, d{5,6,7}d^{*}\in\{5,6,7\} and we refer readers to [9, 15, 22] for detail. In this article, we also study the properties of the singular set. We will prove a similar result as Weiss in [35] for our semilinear case. The main obstacle here is that the blow-up limit of our problem appears not to minimize the original functional so that we can no longer follow directly the classical approach of Weiss. As a final twist, we add, is the precise value of dd^{*}, which is still an open problem, even to the homogeneous problem (1.2).

1.1. Assumptions, notations and definitions

Let F(t)C2,β()F(t)\in C^{2,\beta}(\mathbb{R}) be a convex function for some β(0,1)\beta\in(0,1), satisfying F′′(t)F0F^{\prime\prime}(t)\leqslant F_{0} for all tt\in{\mathbb{R}}, and

F(0)=0,F0F(t)0 for t0,\displaystyle F(0)=0,\qquad-F_{0}\leqslant F^{\prime}(t)\leqslant 0\quad\text{ for }\quad t\leqslant 0, (1.8)

where F00F_{0}\geqslant 0 is a given constant. Assume that Q(x)C0,β(Ω¯)Q(x)\in C^{0,\beta}(\bar{\Omega}) is a function which satisfies

0<QminQ(x)Qmax<+ for each xΩ¯.\displaystyle 0<Q_{\mathrm{min}}\leqslant Q(x)\leqslant Q_{\mathrm{max}}<+\infty\quad\text{ for each }\quad x\in\bar{\Omega}. (1.9)

Here Qmin<QmaxQ_{\mathrm{min}}<Q_{\mathrm{max}} are two given positive constants. Note that in view of the assumptions we imposed on FF, it is obvious that f(t)C1,β()f(t)\in C^{1,\beta}(\mathbb{R}) defined in (1.3) is function which satisfies

0f(t)F02 for t0,F02f(t)0 for t.\displaystyle 0\leqslant f(t)\leqslant\frac{F_{0}}{2}\quad\text{ for }\quad t\leqslant 0,\qquad-\frac{F_{0}}{2}\leqslant f^{\prime}(t)\leqslant 0\quad\text{ for }\quad t\in\mathbb{R}. (1.10)

It should be worth noting that if x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) is a free boundary point, then by (1.10), f(u(x0))=f(0)0f(u(x^{0}))=f(0)\geqslant 0 on Ω+(u)\partial\varOmega^{+}(u). This implies that the non-linear force term is non-negative on the free boundary. This is the main difference between the one considered in [23], whose right-hand side is vanishing on the free boundary.

We further make some comments to our monotone assumptions (1.8) on F(t)F(t). Firstly, F(0)=0F(0)=0 is quite natural since F(t)F(t) is actually the primitive of f(t)f(t) and F(t):=20tf(s)𝑑sF(t):=-2\int_{0}^{t}f(s)\>ds. F(t)0F^{\prime}(t)\leqslant 0 for t0t\leqslant 0 was applied to prove that minimizers are non-negative in Ω\Omega. The convexity of F′′(t)0F^{\prime\prime}(t)\geqslant 0 is needed for applying the comparison principle. These assumptions are imposed because that all the results demonstrated in this paper are not the conditional regularity of the free boundary and there are no apriori assumptions on the regularity of the solutions and topological properties of the free boundary. This is the main difference between our work and other non-homogeneous problems [16].

Throughout this paper d\mathbb{R}^{d} will be the usual Euclidean space of dimension dd. We denote by cdc_{d} or CdC_{d} the constants depending only on the dimensions. For any tt\in\mathbb{R}, we denote the positive and negative parts of tt by t±:=max{±t,0}t^{\pm}:=\max\{\pm t,0\}, so that t=t+tt=t^{+}-t^{-} and |t|=t++t|t|=t^{+}+t^{-}. The open dd-dimensional ball with its center at x0=(x10,,xd0)dx^{0}=(x_{1}^{0},\dots,x_{d}^{0})\in\mathbb{R}^{d} of radius r>0r>0 and volume ωdrd\omega_{d}r^{d} will be denoted by Br(x0):={xd:|xx0|<r}B_{r}(x^{0}):=\{x\in\mathbb{R}^{d}\colon|x-x^{0}|<r\}. If in particular x0=0x^{0}=0, we denote by Br:=Br(0)B_{r}:=B_{r}(0) for simplicity. The unit sphere of dd-dimensional will be denoted by 𝕊d1\mathbb{S}^{d-1}. If u:BRu\colon B_{R}\to\mathbb{R} is a function expressed in polar coordinates as u=u(ρ,θ)u=u(\rho,\theta), then

|u|2=(ρu)2+1ρ2|θu|2,Δu=ρρu+d1ρρu+1ρ2Δ𝕊u,\displaystyle|\nabla u|^{2}=(\partial_{\rho}u)^{2}+\frac{1}{\rho^{2}}|\nabla_{\theta}u|^{2},\qquad\Delta u=\partial_{\rho\rho}u+\frac{d-1}{\rho}\partial_{\rho}u+\frac{1}{\rho^{2}}\Delta_{\mathbb{S}}u, (1.11)

where θu\nabla_{\theta}u is the sphere gradient and Δ𝕊u\Delta_{\mathbb{S}}u is the spherical Laplacian.

Given a set EdE\subset\mathbb{R}^{d}, we denote by χE\chi_{E} the characteristic function of the set EE. We denote by DED\subset\subset E the compact subsets DD of EE. In the text we use the dd-dimensional Lebesgue-measure |||\cdot| and the mm-dimensional Hausdorff measure m\mathcal{H}^{m}. Sometimes, |||\cdot| will also represent the absolute value, depending on the context. The Lebesgue density for EE is defined to be the limit

ϑ:=limr0|EBr(x0)||Br(x0)|, where x0=(x10,,xd0)d.\displaystyle\vartheta:=\lim_{r\to 0}\frac{|E\cap B_{r}(x^{0})|}{|B_{r}(x^{0})|},\quad\text{ where }\quad x^{0}=(x_{1}^{0},\ldots,x_{d}^{0})\in\mathbb{R}^{d}.

It is easy to see that ϑ[0,1]\vartheta\in[0,1]. For any EdE\subset\mathbb{R}^{d} and ϑ[0,1]\vartheta\in[0,1], the set E(γ)E^{(\gamma)} will be the set of points at which EE has Lebesgue density equal to ϑ\vartheta, namely,

E(ϑ)={x0=(x10,,xd0)d:limr0+|EBr(x0)||Br(x0)|=ϑ}.\displaystyle E^{(\vartheta)}=\left\{x^{0}=(x_{1}^{0},\ldots,x_{d}^{0})\in\mathbb{R}^{d}\colon\lim_{r\to 0^{+}}\frac{|E\cap B_{r}(x^{0})|}{|B_{r}(x^{0})|}=\vartheta\right\}. (1.12)

Let red(E):={xd: there exists νB1 such that rdBr(x)|χEχ{y:(yx)ν(x)<0}|0 as r0}\partial_{\mathrm{red}}(E):=\{x\in\mathbb{R}^{d}\colon\text{ there exists }\nu\in\partial B_{1}\text{ such that }r^{-d}\int_{B_{r}(x)}|\chi_{E}-\chi_{\{y\colon(y-x)\cdot\nu(x)<0\}}|\to 0\text{ as }r\to 0\} be the reduced boundary of EE.

We will use the notation J(u,D)J(u,D) for any DΩD\subset\Omega to highlight the domain of the functional which was restricted to. Sometimes we use the notation B1+(u):=B1{u>0}B_{1}^{+}(u):=B_{1}\cap\{u>0\} and B1+(u):=B1{u>0}\partial B_{1}^{+}(u):=B_{1}\cap\partial\{u>0\}. For each r>0r>0 and x0dx^{0}\in\mathbb{R}^{d}, we denote by ux0,r(x)u_{x^{0},r}(x) and ur(x)u_{r}(x) the functions ux0,r(x):=1ru(x0+rx)u_{x^{0},r}(x):=\frac{1}{r}u(x^{0}+rx) and ur:=1ru(rx)u_{r}:=\frac{1}{r}u(rx), respectively. Let {rn}n=1\{r_{n}\}_{n=1}^{\infty} be a vanishing sequence of positive numbers, and we denote by un(x):=ux0,rn(x)u_{n}(x):=u_{x^{0},r_{n}}(x) the blow-up sequence for every xBR(x0)x\in B_{R}(x^{0}) and R>0R>0. We say that a function u0:du_{0}\colon\mathbb{R}^{d}\to\mathbb{R} is a blow-up limit of uu at x0Ωx^{0}\in\Omega if for every rn0r_{n}\to 0 as nn\to\infty and for every R>0R>0, unu_{n} converges uniformly to u0u_{0} in BRB_{R}, that is, limnunu0L(BR)=0\lim_{n\to\infty}\|u_{n}-u_{0}\|_{L^{\infty}(B_{R})}=0. We say that x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) is a regular point if there exists a blow-up limit u0u_{0} of uu at x0x^{0} which has the form

u0(x)=Q(x0)(xν)+, for every xd, and some νd.\displaystyle u_{0}(x)=Q(x^{0})(x\cdot\nu)^{+},\quad\text{ for every }\quad x\in\mathbb{R}^{d},\quad\text{ and some }\quad\nu\in\mathbb{R}^{d}.

The set of regular points will be denoted by regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) and we define the singular part of the free boundary as the complementary of regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u)

singΩ+(u):=Ω+(u)regΩ+(u).\displaystyle\partial_{\mathrm{sing}}\varOmega^{+}(u):=\partial\varOmega^{+}(u)\setminus\partial_{\mathrm{reg}}\varOmega^{+}(u).

In the majority of this article, we work with the so-called minimizers.

Definition 1.1 (Minimizers).

We say that u𝒦u\in\mathcal{K} is a minimizer of JJ in Ω\Omega, provided that

J(u)J(v) for all v𝒦.\displaystyle J(u)\leqslant J(v)\qquad\text{ for all }v\in\mathcal{K}. (1.13)

In some contexts, uu is called an absolute minimizer of JJ in Ω\Omega if (1.13) is satisfied.

Remark 1.1.

Most of our results in this paper can be generalized also for local minimizers, for which (1.13) is satisfied for vu+H01(D)v\in u+H_{0}^{1}(D) and for any DΩD\subset\subset\Omega.

The notion of viscosity solutions was first systematically introduced by Lions and his cooperators in [8], who established an integrated theory on the existence and uniqueness theory for fully-nonlinear partial differential equations. The viscosity approach to the associated free boundary problem was later developed by Caffarelli. We now define the notion of viscosity solutions to our problem and we first introduce the concept of ”touch”.

Definition 1.2 (Touch).

Given uu, ϕC0(Ω)\phi\in C^{0}(\Omega), we say that ϕ\phi touches uu from below (above) at x0Ωx^{0}\in\Omega if u(x0)=ϕ(x0)u(x^{0})=\phi(x^{0}) and u(x)ϕ(x)u(x)\geqslant\phi(x) (u(x)ϕ(x)u(x)\leqslant\phi(x)) in a small neighborhood of x0x^{0}.

With the aid of ”touch”, we formally define viscosity solutions of problem (1.7).

Definition 1.3 (Viscosity solutions).

Let uC0(Ω)u\in C^{0}(\Omega) be a non-negative function in Ω\Omega. Then uu is a solution to the problem (1.7) in the sense of viscosity, provided that for every x0Ω+(u)¯x^{0}\in\overline{\varOmega^{+}(u)}, the following does hold.

  1. (1)

    If x0Ω+(u)x^{0}\in\varOmega^{+}(u) and

    • if ϕC2(Ω+(u))\phi\in C^{2}(\varOmega^{+}(u)) touches uu from below at x0x^{0}, then Δϕ(x0)+f(ϕ(x0))0\Delta\phi(x^{0})+f(\phi(x^{0}))\leqslant 0,

    • if ϕC2(Ω+(u))\phi\in C^{2}(\varOmega^{+}(u)) touches uu from above at x0x^{0}, then Δϕ(x0)+f(ϕ(x0))0\Delta\phi(x^{0})+f(\phi(x^{0}))\geqslant 0.

  2. (2)

    If x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) and

    • if ϕC2(Ω)\phi\in C^{2}(\Omega) touches uu from below at x0x^{0}, then |ϕ(x0)|Q(x0)|\nabla\phi(x^{0})|\leqslant Q(x^{0}),

    • if ϕC2(Ω)\phi\in C^{2}(\Omega) touches uu from above at x0x^{0}, then |ϕ(x0)|Q(x0)|\nabla\phi(x^{0})|\geqslant Q(x^{0}).

1.2. Main results and plan of the paper

The main results in this paper state that the free boundary of the problem (1.7) can be decomposed into a disjoint union of a regular set and a singular set (presented in Theorem 1.2), the regular set of the free boundary is the graph of a C1,γC^{1,\gamma} function locally, while for the singular set, there exists a critical dimension d{5,6,7}d^{*}\in\{5,6,7\} so that the singularities can only occur when d>dd>d^{*} (presented in Theorem 1.3).

In proving these two results we need an array of technique tools including a Weiss-type monotonicity formula (presented in Proposition 5.3), optimal linear growth of solutions (presented in Proposition 2.5) and an optimal linear non-degeneracy property (presented in Proposition 3.2). In addition, due to the Lipschitz continuity of minimizers (presented in Proposition 3.1), a blow-up analysis (presented in Proposition 4.5) was derived for every free boundary point.

The monotonicity formula for a homogeneous one-phase Bernoulli-type problem (1.10) was first obtained in [35]. There special cases were considered for f(t)0f(t)\equiv 0. In this paper, we generalize it to more general settings. It should be noted that in Proposition 5.9 we establish a monotonicity formula relating the rescaling ux0,ru_{x^{0},r} with its one-homogeneous extension zx0,rz_{x^{0},r} (See (5.81) for the precise definition).

Theorem 1.2 (Structure of the free boundary).

Let JJ and 𝒦\mathcal{K} be given as in (1.4) and (1.5), respectively. Then there is a solution to the minimization problem minv𝒦J(v)\min_{v\in\mathcal{K}}J(v). Every solution uu is a Lipschitz viscosity solution to the problem (1.7) in the sense of Definition 1.3.

The set Ω+(u)\varOmega^{+}(u) has locally finite perimeter in Ω\Omega and the free boundary Ω+(u)\partial\varOmega^{+}(u) can be decomposed into a disjoint union of a regular set regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) and a singular set singΩ+(u)\partial_{\mathrm{sing}}\varOmega^{+}(u). Namely,

Ω+(u)=12γ<1(Ω+(u))(ϑ),\displaystyle\partial\varOmega^{+}(u)=\bigcup_{\tfrac{1}{2}\leqslant\gamma<1}(\varOmega^{+}(u))^{(\vartheta)},

where (Ω+(u))(ϑ)(\varOmega^{+}(u))^{(\vartheta)} is defined in the sense of (1.12). The regular set consists of points in which the Lebesgue density of the set Ω+(u)\varOmega^{+}(u) is precisely 12\tfrac{1}{2}, and the singular set consists of points in which the Lebesgue density of Ω+(u)\varOmega^{+}(u) is strictly between 12\tfrac{1}{2} and 11.

regΩ+(u)=(Ω+(u))(1/2) and singΩ+(u)=12<ϑ<1(Ω+(u))(ϑ).\displaystyle\partial_{\mathrm{reg}}\varOmega^{+}(u)=\left(\varOmega^{+}(u)\right)^{(1/2)}\qquad\text{ and }\qquad\partial_{\mathrm{sing}}\varOmega^{+}(u)=\bigcup_{\tfrac{1}{2}<\vartheta<1}\left(\varOmega^{+}(u)\right)^{(\vartheta)}.

Moreover, for every ϑ[12,1)\vartheta\in[\tfrac{1}{2},1) and every blow-up limit u0u_{0}, we have

(Ω+(u))(ϑ)={xΩ+(u):ϑ=|B1{u0>0}||B1|}.\displaystyle(\varOmega^{+}(u))^{(\vartheta)}=\left\{x\in\partial\varOmega^{+}(u)\colon\vartheta=\frac{|B_{1}\cap\{u_{0}>0\}|}{|B_{1}|}\right\}.
Theorem 1.3 (Regularity of the regular set and the dimension for the singular set).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega, then the regular part of the free boundary regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) is an open subset of Ω+(u)\partial\varOmega^{+}(u) and is locally a graph of a C1,γC^{1,\gamma} function for γ(0,β)\gamma\in(0,\beta). The singular part of the free boundary singΩ+(u)\partial_{\mathrm{sing}}\varOmega^{+}(u) is a closed subset of Ω+(u)\partial\varOmega^{+}(u) and

d1(singΩ+(u))=0.\displaystyle\mathcal{H}^{d-1}(\partial_{\mathrm{sing}}\varOmega^{+}(u))=0.

Moreover, there exists d{5,6,7}d^{*}\in\{5,6,7\} such that

  • If d<dd<d^{*}, then singΩ+(u)=\partial_{\mathrm{sing}}\varOmega^{+}(u)=\varnothing and therefore all free boundary points are regular and Ω+(u)=regΩ+(u)\partial\varOmega^{+}(u)=\partial_{\mathrm{reg}}\varOmega^{+}(u).

  • If d=dd=d^{*}, then the singular set singΩ+(u)\partial_{\mathrm{sing}}\varOmega^{+}(u) contains at most a finite number of isolated points,

  • If d>dd>d^{*}, then the Hausdorff dimension of singΩ+(u)\partial_{\mathrm{sing}}\varOmega^{+}(u) is less than ddd-d^{*}.

2. Preliminaries

In this section, we establish some fundamental facts about minimizers of JJ in 𝒦\mathcal{K}, including the non-negativity and the governing equation (weak sense) for uu in Ω\Omega. Note that since u0H1(Ω)u^{0}\in H^{1}(\Omega), it is easy to check that u0𝒦u^{0}\in\mathcal{K} and thus 𝒦\mathcal{K}\neq\varnothing. Therefore, the existence of minimizers can be obtained by a compactness argument as in [1, Lemma 3.1].

Proposition 2.1 (Hölder regularity).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Br(x0)ΩB_{r}(x^{0})\subset\Omega, then there exists a constant CC, so that

|u(x)u(y)|C|xy|log(1|xy|) in Br/2(x0).\displaystyle|u(x)-u(y)|\leqslant C|x-y|\log\left(\frac{1}{|x-y|}\right)\quad\text{ in }B_{r/2}(x^{0}).

In particular, uC0,α(Br/2(x0))u\in C^{0,\alpha}(B_{r/2}(x^{0})) for some α(0,1)\alpha\in(0,1).

Proof.

Assume without loss of generality that x0=0x^{0}=0. Let vBrv\in B_{r} be a function given by Δv+f(v)=0\Delta v+f(v)=0 in BrB_{r} and v=uv=u on Br\partial B_{r}. The maximum principle gives that vΨv\leqslant\Psi in Ω\Omega and thus v𝒦v\in\mathcal{K}. By the minimality of uu in BrB_{r}, one has J(u;Br)J(v;Br)J(u;B_{r})\leqslant J(v;B_{r}) and this implies

0Br|(vu)|2+2(vu)v+(F(v)F(u))dx+BrQ2(x)(χ{v>0}χ{u>0})𝑑xBr|(vu)|2dx+Qmax2Brχ{v>0}𝑑x,\displaystyle\begin{aligned} 0&\leqslant\int_{B_{r}}-|\nabla(v-u)|^{2}+2\nabla(v-u)\cdot\nabla v+(F(v)-F(u))\>dx+\int_{B_{r}}Q^{2}(x)(\chi_{\{v>0\}}-\chi_{\{u>0\}})\>dx\\ &\leqslant\int_{B_{r}}-|\nabla(v-u)|^{2}\>dx+Q_{\mathrm{max}}^{2}\int_{B_{r}}\chi_{\{v>0\}}\>dx,\end{aligned} (2.14)

where we have used the assumption (1.9) in the second inequality. Therefore,

Br|(uv)|2𝑑xQmax2|Br{v>0}|Qmax2|Br|Crd,\displaystyle\int_{B_{r}}|\nabla(u-v)|^{2}\>dx\leqslant Q_{\mathrm{max}}^{2}|B_{r}\cap\{v>0\}|\leqslant Q_{\mathrm{max}}^{2}|B_{r}|\leqslant Cr^{d},

where CC depends only on dd and QmaxQ_{\mathrm{max}}. Proceeding as in [6, Theorem 2.1] we complete the proof of the proposition. ∎

Proposition 2.2 (Properties of minimizers).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega, then u0u\geqslant 0 in Ω\Omega and uu satisfies the equation

Δu+f(u)0 in Ω,\displaystyle\Delta u+f(u)\geqslant 0\quad\text{ in }\quad\Omega, (2.15)

in the weak sense. Moreover, uu satisfies the equation

Δu+f(u)=0 in Ω+(u),\displaystyle\Delta u+f(u)=0\quad\text{ in }\quad\varOmega^{+}(u), (2.16)

in the classical sense. That is, uC2,α(D)u\in C^{2,\alpha}(D) satisfies (2.16) for any DΩ+(u)D\subset\subset\varOmega^{+}(u).

Proof.

Choose uε:=uεmin{u,0}u_{\varepsilon}:=u-\varepsilon\min\{u,0\} for any ε(0,1)\varepsilon\in(0,1). Then uε𝒦u_{\varepsilon}\in\mathcal{K} is admissible. By the minimality of uu, we have

Ω|min{u,0}|2𝑑xΩF((1ε)min{u,0})2min{u,0}𝑑x.\displaystyle\int_{\Omega}|\nabla\min\{u,0\}|^{2}\>dx\leqslant-\int_{\Omega}\frac{F^{\prime}((1-\varepsilon)\min\{u,0\})}{2}\min\{u,0\}\>dx. (2.17)

Since F(t)0F^{\prime}(t)\leqslant 0 for t0t\leqslant 0, we have from (2.17) that Ω|min{u,0}|2𝑑x0\int_{\Omega}|\nabla\min\{u,0\}|^{2}\>dx\leqslant 0 and thus u0u\geqslant 0 in Ω\Omega. Consider now the first variation limε01ε(J(uεξ)J(u))0\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}(J(u-\varepsilon\xi)-J(u))\geqslant 0 for any ξ0\xi\geqslant 0, ξC0(Ω)\xi\in C_{0}^{\infty}(\Omega), and we have that

0Ωuξ+F(u)2ξdx,\displaystyle 0\leqslant-\int_{\Omega}\nabla u\cdot\nabla\xi+\frac{F^{\prime}(u)}{2}\xi\>dx,

which gives (2.15). By Proposition 2.2, uu is a continuous function in Ω\Omega and this implies that Ω+(u)\varOmega^{+}(u) is an open subset of Ω\Omega. For any ξC0(Ω+(u))\xi\in C_{0}^{\infty}(\varOmega^{+}(u)), it is easy to check that the function uεξ𝒦u-\varepsilon\xi\in\mathcal{K} and Ω+(uεξ)Ω+(u)\varOmega^{+}(u-\varepsilon\xi)\subset\varOmega^{+}(u) for |ε|>0|\varepsilon|>0 small. Thus, by the minimality of uu we have

0\displaystyle 0 =Ωuξ+F(uεξ)2ξdx for any ε.\displaystyle=\int_{\Omega}\nabla u\cdot\nabla\xi+\frac{F^{\prime}(u-\varepsilon\xi)}{2}\xi\>dx\quad\text{ for any }\quad\varepsilon. (2.18)

Passing to the limit as ε0\varepsilon\to 0 in (2.18) gives (2.16). It now follows from the Schauder interior estimate in [21] that uC2,α(D)u\in C^{2,\alpha}(D) for any compact subset DD of Ω+(u)\varOmega^{+}(u). ∎

We now introduce the following Lemma, which helps us to establish the optimal linear growth of minimizers up to the free boundary.

Lemma 2.3.

Let Ψ\Psi be given in (1.6), then for every non-negative function uH1(Br(x0))u\in H^{1}(B_{r}(x^{0})) where Br(x0)ΩB_{r}(x^{0})\subset\Omega the following estimates does hold:

|Br(x0){u=0}|(1rBr(x0)u𝑑d1rF0M02)2CdBr(x0)|(uh)|2.\displaystyle|B_{r}(x^{0})\cap\{u=0\}|\left(\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}-r\frac{F_{0}M_{0}}{2}\right)^{2}\leqslant C_{d}\int_{B_{r}(x^{0})}|\nabla(u-h)|^{2}. (2.19)

Here hh is a function defined by Δh+f(h)=0\Delta h+f(h)=0 in Br(x0)B_{r}(x^{0}) with boundary value h=uh=u on Br(x0)\partial B_{r}(x^{0}) and M0:=supΩ¯ΨM_{0}:=\sup_{\bar{\Omega}}\Psi.

Remark 2.4.

An estimate of the type (2.19) was first brought by Alt and Caffarelli [Lemma 3.2, [1]], and we generalize the result of Lemma 3.2 in [1] to our semilinear case.

Proof.

Assume without loss of generality x0=0x^{0}=0. Let vH1(Br)v\in H^{1}(B_{r}) be the solution to the problem

min{Br|v|2+F(v)dx:vuH01(Br),vu}.\displaystyle\min\left\{\int_{B_{r}}|\nabla v|^{2}+F(v)\>dx\colon v-u\in H_{0}^{1}(B_{r}),\ \ v\geqslant u\right\}.

Then vv satisfies Δv+f(v)0\Delta v+f(v)\leqslant 0 in BrB_{r} and Δv+f(v)=0\Delta v+f(v)=0 in Br{v>u}B_{r}\cap\{v>u\}. Now for each |z|12|z|\leqslant\frac{1}{2} we consider a transformation T:BrBrT\colon B_{r}\to B_{r} given by Tz(x):=(r|x|)z+xT_{z}(x):=(r-|x|)z+x for each xBrx\in B_{r}. Define

uz(x):=u(Tz(x)) and vz(x):=v(Tz(x)).\displaystyle u_{z}(x):=u(T_{z}(x))\qquad\text{ and }\qquad v_{z}(x):=v(T_{z}(x)).

Let

Sz:={ξB1:uz(ρξ)=0 for some ρ[r8,r]}.\displaystyle S_{z}:=\left\{\xi\in\partial B_{1}\colon u_{z}(\rho\xi)=0\quad\text{ for some }\quad\rho\in\left[\frac{r}{8},r\right]\right\}.

For ξSz\xi\in S_{z}, we define

rξ:=inf{ρ[r8,r]:uz(ρξ)=0,ξSz}.\displaystyle r_{\xi}:=\inf\left\{\rho\in\left[\frac{r}{8},r\right]\colon u_{z}(\rho\xi)=0,\ \ \xi\in S_{z}\right\}.

By a slicing argument for 1\mathcal{H}^{1} a.e. ξSz\xi\in S_{z} the function ρuz(ρξ)\rho\mapsto\nabla u_{z}(\rho\xi) and ρvz(ρξ)\rho\mapsto\nabla v_{z}(\rho\xi) are square integrable. Define a function g(ρ):=uz(ρξ)vz(ρξ)g(\rho):=u_{z}(\rho\xi)-v_{z}(\rho\xi) for 0<ρr0<\rho\leqslant r, then g(ρ)g(\rho) is absolutely continuous in (0,r)(0,r), and so, using also the fact that g(r)=0g(r)=0 (since u=vu=v on Br\partial B_{r}) and uz(rξξ)=0u_{z}(r_{\xi}\xi)=0, we have vz(rξξ)=g(r)g(rξ)=rξr(vz(ρξ)uz(ρξ))ξ𝑑ρv_{z}(r_{\xi}\xi)=g(r)-g(r_{\xi})=\int_{r_{\xi}}^{r}\nabla(v_{z}(\rho\xi)-u_{z}(\rho\xi))\cdot\xi\>d\rho. Using Hölder inequality we have

vz(rξξ)rrξ(rξr|(vzuz)(ρξ)|2𝑑ρ)1/2.\displaystyle v_{z}(r_{\xi}\xi)\leqslant\sqrt{r-r_{\xi}}\left(\int_{r_{\xi}}^{r}|\nabla(v_{z}-u_{z})(\rho\xi)|^{2}\>d\rho\right)^{1/2}. (2.20)

Since Δh=f(h)f(0)+F0M02F0M02\Delta h=-f(h)\leqslant-f(0)+\frac{F_{0}M_{0}}{2}\leqslant\frac{F_{0}M_{0}}{2} for any xBrx\in B_{r}, where we have used the fact f(0)0f(0)\geqslant 0 in the last inequality. Since h0h\geqslant 0 on Br\partial B_{r} satisfying ΔhM\Delta h\leqslant M in BrB_{r} for M:=F0M020M:=\frac{F_{0}M_{0}}{2}\geqslant 0, it follows from Lemma 2.4 (a) in [20] that

h(x)\displaystyle h(x) rdr|x|(r+|x|)d1(1r2Bru𝑑d12d1Md)Cdr|x|r(Bru𝑑d1r2M).\displaystyle\geqslant r^{d}\frac{r-|x|}{(r+|x|)^{d-1}}\left(\frac{1}{r^{2}}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-\frac{2^{d-1}M}{d}\right)\geqslant C_{d}\frac{r-|x|}{r}\left(\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-r^{2}M\right).

Since vv is a super-solution in BrB_{r} with the same boundary value of hh, we have v(x)h(x)v(x)\geqslant h(x) in BrB_{r}. Taking x=(rrξ)z+rξξx=(r-r_{\xi})z+r_{\xi}\xi yields

vz(rξξ)=v((rrξ)z+rξξ)Cdrrξr(Bru𝑑d1r2M).\displaystyle v_{z}(r_{\xi}\xi)=v((r-r_{\xi})z+r_{\xi}\xi)\geqslant C_{d}\frac{r-r_{\xi}}{r}\left(\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-r^{2}M\right). (2.21)

Combined (2.21) with (2.20) together gives

(rrξ)(1rBru𝑑d1rM)2\displaystyle(r-r_{\xi})\left(\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-rM\right)^{2} Cdrξr|(vzuz)(ρξ)|2𝑑ρ.\displaystyle\leqslant C_{d}\int_{r_{\xi}}^{r}|\nabla(v_{z}-u_{z})(\rho\xi)|^{2}\>d\rho.

Integrating over ξSz𝕊d1\xi\in S_{z}\subset\mathbb{S}^{d-1}, we obtain the inequality

(Sz(rrξ)𝑑ξ)(1rBru𝑑d1rM)2CdB1rξr|(vzuz)(ρξ)|2𝑑ρ𝑑ξ.\displaystyle\left(\int_{S_{z}}(r-r_{\xi})\>d\xi\right)\left(\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-rM\right)^{2}\leqslant C_{d}\int_{\partial B_{1}}\int_{r_{\xi}}^{r}|\nabla(v_{z}-u_{z})(\rho\xi)|^{2}\>d\rho d\xi.

By the uniform estimate that r/8rξrr/8\leqslant r_{\xi}\leqslant r, we have

|BrBr/4(rz){u=0}|(1rBru𝑑d1rM)2\displaystyle|B_{r}\setminus B_{r/4}(rz)\cap\{u=0\}|\left(\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-rM\right)^{2} CdBr|(vzuz)|2𝑑x\displaystyle\leqslant C_{d}\int_{B_{r}}|\nabla(v_{z}-u_{z})|^{2}\>dx
CdBr|(vu)|2𝑑x,\displaystyle\leqslant C_{d}\int_{B_{r}}|\nabla(v-u)|^{2}\>dx,

where we have used the fact that the Jacobian of TT is bounded by a dimensional constant which is independent of rr. The desired result (2.19) follows by integrating over zz. ∎

With Lemma 2.3 at hand, we immediately have

Proposition 2.5 (Optimal linear growth of minimizers).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega, and let x0Ωx^{0}\in\Omega be such that |Br(x0){u=0}|0|B_{r}(x^{0})\cap\{u=0\}|\neq 0 for Br(x0)ΩB_{r}(x^{0})\subset\Omega, then

1rBr(x0)u𝑑d1CdQmax+rF0M02,\displaystyle\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}\leqslant\sqrt{C_{d}}Q_{\mathrm{max}}+r\frac{F_{0}M_{0}}{2}, (2.22)

where F0F_{0} is given in (1.8) and M0=supΩ¯ΨM_{0}=\sup_{\bar{\Omega}}\Psi.

Proof.

Assume x0=0x^{0}=0 and let hh be a function defined by Δh+f(h)=0\Delta h+f(h)=0 in BrB_{r} and h=uh=u on Br\partial B_{r}. The maximum principle gives that hΨh\leqslant\Psi in BrB_{r} and thus h𝒦h\in\mathcal{K} is admissible. By the optimality J(u)J(h)J(u)\leqslant J(h) and a similar calculation as in (2.14) gives

Br|(uh)|2Qmax2|Br{u=0}|.\displaystyle\int_{B_{r}}|\nabla(u-h)|^{2}\leqslant Q_{\mathrm{max}}^{2}|B_{r}\cap\{u=0\}|. (2.23)

Applying Lemma 2.3 and it follows from (2.19) and (2.23) that

|Br{u=0}|(1rBru𝑑d1rF0M02)2CdQmax2|Br{u=0}|.\displaystyle|B_{r}\cap\{u=0\}|\left(\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-r\frac{F_{0}M_{0}}{2}\right)^{2}\leqslant C_{d}Q_{\mathrm{max}}^{2}|B_{r}\cap\{u=0\}|.

By our assumption |Br{u=0}|0|B_{r}\cap\{u=0\}|\neq 0 and we obtain (2.22). ∎

Remark 2.6.

In view of Proposition 2.5 and if in particular x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) is a free boundary point, then choose Br(x0)B_{r}(x^{0}) be a small ball with rmin{2QmaxF0M0,1}r\leqslant\min\{\frac{2Q_{\mathrm{max}}}{F_{0}M_{0}},1\}, we have

1rBr(x0)u𝑑d1CdQmax,\displaystyle\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}\leqslant C_{d}^{*}Q_{\mathrm{max}},

where Cd:=Cd+1C_{d}^{*}:=\sqrt{C_{d}}+1.

3. Optimal regularity and non-degeneracy

The first goal of this section is to prove that minimizers are locally Lipschitz functions in Ω\Omega. Precisely, we found that if a minimizer grows like its distance to the free boundary, then it is Lipschitz continuous near the free boundary. We summarize it as follows:

Proposition 3.1 (Lipschitz regularity of minimizers).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega, then uC0,1(Ω)u\in C^{0,1}(\Omega). Moreover, for every DΩD\subset\subset\Omega containing a free boundary point, one has

supD|u(x)|C(d,F0,D,Ω)(Qmax+F0),\displaystyle\sup_{D}|\nabla u(x)|\leqslant C(d,F_{0},D,\Omega)(Q_{\mathrm{max}}+F_{0}), (3.24)

where F0F_{0} is given in (1.8).

Proof.

Suppose that x0Ωx^{0}\in\Omega with ρ(x0)<12min{dist(x0,Ω),1}\rho(x^{0})<\frac{1}{2}\min\{\operatorname{dist}(x^{0},\partial\Omega),1\} where ρ(x0):=dist(x0,{u=0})\rho(x^{0}):=\operatorname{dist}(x^{0},\{u=0\}). Then we claim that

u(x0)ρ(x0)C(d,F0)(Qmax+F0),\displaystyle\frac{u(x^{0})}{\rho(x^{0})}\leqslant C(d,F_{0})(Q_{\mathrm{max}}+F_{0}), (3.25)

where F0F_{0} is given in (1.8). Assume u(x0)ρ(x0)>M>0\tfrac{u(x^{0})}{\rho(x^{0})}>M>0 for some M>0M>0, and we derive an upper bound for MM. Consider the function uρ(x):=u(x0+ρ(xx0))ρu_{\rho}(x):=\frac{u(x^{0}+\rho(x-x^{0}))}{\rho} for ρ:=ρ(x0)\rho:=\rho(x^{0}) and xB1(x0)x\in B_{1}(x^{0}). Then uρu_{\rho} satisfies Δuρ+ρf(ρuρ)=0\Delta u_{\rho}+\rho f(\rho u_{\rho})=0 in B1(x0)B_{1}(x^{0}). A direct calculation gives that

|ρf(ρuρ)|ρ|f(0)|+ρ2maxt0|f(t)|uρρ2F0+ρ22F0uρ.\displaystyle|\rho f(\rho u_{\rho})|\leqslant\rho|f(0)|+\rho^{2}\max_{t\geqslant 0}|f^{\prime}(t)|u_{\rho}\leqslant\frac{\rho}{2}F_{0}+\frac{\rho^{2}}{2}F_{0}u_{\rho}. (3.26)

Thanks to the Harnack inequality [30, Corollary 1.1], we have

infB3/4(x0)uρcMCF0,\displaystyle\inf_{B_{3/4}(x^{0})}u_{\rho}\geqslant cM-CF_{0}, (3.27)

where cc and CC are constants depending on dd and F0F_{0}. Let yB1(x0){uρ=0}y\in\partial B_{1}(x^{0})\cap\{u_{\rho}=0\} be a point and vv be a function defined by Δv+ρf(ρv)=0\Delta v+\rho f(\rho v)=0 in B1(y)B_{1}(y) and v=uρv=u_{\rho} on B1(y)\partial B_{1}(y). Since uρu_{\rho} is a minimizer, we have from J(uρ;B1(y))J(v;B1(y))J(u_{\rho};B_{1}(y))\leqslant J(v;B_{1}(y)), the convexity of FF, and a similar calculation as in (2.14) that

B1(y)|(uρv)|2𝑑xQmax2B1(y)χ{uρ=0}𝑑x.\displaystyle\int_{B_{1}(y)}|\nabla(u_{\rho}-v)|^{2}\>dx\leqslant Q_{\mathrm{max}}^{2}\int_{B_{1}(y)}\chi_{\{u_{\rho}=0\}}\>dx. (3.28)

It then follows from the maximum principle that vuρv\geqslant u_{\rho} in B1(y)B_{1}(y). This combined with (3.27) yields vuρcMCF0>0v\geqslant u_{\rho}\geqslant cM-CF_{0}>0 in B3/4(x0)B1(y)B_{3/4}(x^{0})\cap B_{1}(y). Using Harnack inequality [30, Corollary 1.1] for the function vv once again gives

v(x)cMCF0 in B1/2(y).\displaystyle v(x)\geqslant cM-CF_{0}\quad\text{ in }\quad B_{1/2}(y). (3.29)

Take y=0y=0 for simplicity and define

φ(x):=C0(eβ|x|2eβ)C0:=cMCF0.\displaystyle\varphi(x):=C_{0}(e^{-\beta|x|^{2}}-e^{-\beta})\qquad C_{0}:=cM-CF_{0}.

After a direct computation, Δφ+ρf(ρφ)>0\Delta\varphi+\rho f(\rho\varphi)>0 for 12<|x|<1\frac{1}{2}<|x|<1, provided that β>0\beta>0 is sufficiently large. This implies that Δ(φv)+ρf(ρφ)ρf(ρv)>0\Delta(\varphi-v)+\rho f(\rho\varphi)-\rho f(\rho v)>0 in B1B1/2B_{1}\setminus B_{1/2}. It follows from the maximum principle that v(x)φ(x)=C0(eβ|x|2eβ)cC0(1|x|)v(x)\geqslant\varphi(x)=C_{0}(e^{-\beta|x|^{2}}-e^{-\beta})\geqslant cC_{0}(1-|x|) in B1B1/2B_{1}\setminus B_{1/2}, this together with (3.29) gives

v(x)(cMCF0)(1|x|) in B1.\displaystyle v(x)\geqslant(cM-CF_{0})(1-|x|)\quad\text{ in }\quad B_{1}. (3.30)

With the aid of (3.28) and (3.30), it follows from a similar argument as in [1, Lemma 3.2] and [2, Lemma 2.2] that (cMCF0)2CQmax2(cM-CF_{0})^{2}\leqslant CQ_{\mathrm{max}}^{2}. This implies MC(Qmax+F0)M\leqslant C(Q_{\mathrm{max}}+F_{0}) and proves (3.25).

We now prove that uC0,1(Ω)u\in C^{0,1}(\Omega). Let ρ(x0)<13min{dist(x0,Ω),1}\rho(x^{0})<\tfrac{1}{3}\min\{\operatorname{dist}(x^{0},\partial\Omega),1\} where ρ(x0)=dist(x0,{u=0})\rho(x^{0})=\operatorname{dist}(x^{0},\{u=0\}), and let us define u~(x~):=u(x0+ρ(x0)x~)ρ(x0)\tilde{u}(\tilde{x}):=\frac{u(x^{0}+\rho(x^{0})\tilde{x})}{\rho(x^{0})}. Then it follows from (3.25) that u~(x~)C(Qmax+F0)\tilde{u}(\tilde{x})\leqslant C(Q_{\mathrm{max}}+F_{0}) in B1B_{1} for CC depends on dd and F0F_{0}. Since Δu~+ρ(x0)f(ρ(x0)u~)\Delta\tilde{u}+\rho(x^{0})f(\rho(x^{0})\tilde{u}), we have from (3.25), (3.26) and elliptic estimates in [21] that

|u~(0)|C(uC0(B1)+ρ(x0)f(ρ(x0)u)L(B1))C(Qmax+F0),\displaystyle|\nabla\tilde{u}(0)|\leqslant C(\|u\|_{C^{0}(B_{1})}+\rho(x^{0})\|f(\rho(x^{0})u)\|_{L^{\infty}(B_{1})})\leqslant C(Q_{\mathrm{max}}+F_{0}),

where CC depends only on dd and F0F_{0}. Therefore

|u(x0)|=|u~(0)|C(Qmax+F0).\displaystyle|\nabla u(x^{0})|=|\nabla\tilde{u}(0)|\leqslant C(Q_{\mathrm{max}}+F_{0}).

Thus, for any DΩD\subset\subset\Omega, |u(x)||\nabla u(x)| is bounded in DΩ+(u)ND\cap\varOmega^{+}(u)\cap N, where NN is a small neighborhood of the free boundary. Since uC2,α(Ω+(u))u\in C^{2,\alpha}(\varOmega^{+}(u)) and u=0\nabla u=0 a.e. in {u=0}Ω\{u=0\}\cap\Omega, we have uC0,1(Ω)u\in C^{0,1}(\Omega). The rest of the proof is standard and can be obtained by proceeding as in [Page 11, Theorem 2.3, [2]]. ∎

The second goal of this section is to establish a non-degeneracy property for minimizers, which gives us a uniform LL^{\infty} bound of minimizers up to the free boundary Ω+(u)\partial\varOmega^{+}(u).

Proposition 3.2 (Non-degeneracy of minimizers).

For any κ(0,1)\kappa\in(0,1), there exists a positive constant cd=cd(κ)c_{d}^{*}=c_{d}^{*}(\kappa), so that for any Br(x0)ΩB_{r}(x^{0})\subset\Omega with r<1F0max{cdQmin,1}r<\frac{1}{F_{0}}\max\{c_{d}^{*}Q_{\mathrm{min}},1\}, the following does hold:

1rBr(x0)u𝑑d1cdQmin\displaystyle\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}\leqslant c_{d}^{*}Q_{\mathrm{min}} (3.31)

implies that

u(x)0 in Bκr(x0).\displaystyle u(x)\equiv 0\quad\text{ in }B_{\kappa r}(x^{0}).
Proof.

Assume x0=0x^{0}=0 and consider the function uru_{r} for some r>0r>0 so that {xΩ:rx}Ω\{x\in\Omega\colon rx\}\subset\Omega. Then obviously, Δur+rf(rur)=0\Delta u_{r}+rf(ru_{r})=0 in Ω+(ur)\varOmega^{+}(u_{r}). Define

u:=supBκur for some κ(0,1).\displaystyle\ell_{u}:=\sup_{B_{\sqrt{\kappa}}}u_{r}\quad\text{ for some }\kappa\in(0,1). (3.32)

Since Δurrf(rur)rf(0)rF02\Delta u_{r}\geqslant-rf(ru_{r})\geqslant-rf(0)\geqslant-\frac{rF_{0}}{2} in Ω\Omega, it follows from the maximum principle that

ur(x)rF021|x|22d+1|x|2dωdB1ur|xy|d𝑑d1 for every xBκ.\displaystyle u_{r}(x)\leqslant\frac{rF_{0}}{2}\frac{1-|x|^{2}}{2d}+\frac{1-|x|^{2}}{d\omega_{d}}\int_{\partial B_{1}}\frac{u_{r}}{|x-y|^{d}}\>d\mathcal{H}^{d-1}\quad\text{ for every }x\in B_{\sqrt{\kappa}}. (3.33)

Taking supremum on the both sides of (3.33) and using (3.32), we have

urF02+Cd(κ)B1ur𝑑d1.\displaystyle\ell_{u}\leqslant\frac{rF_{0}}{2}+C_{d}(\kappa)\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{1}}u_{r}\>d\mathcal{H}^{d-1}. (3.34)

Let vv be a function defined by Δv+rf(rv)=0\Delta v+rf(rv)=0 in BκBκB_{\sqrt{\kappa}}\setminus B_{\kappa}, v=0v=0 in BκB_{\kappa} and v=uv=\ell_{u} outside BκB_{\sqrt{\kappa}}. Then the standard elliptic estimates yields

supBκ|v|C(supBκv+rf(rv)L(Bκ))C(u+rF0),\displaystyle\sup_{\partial B_{\kappa}}|\nabla v|\leqslant C(\sup_{B_{\sqrt{\kappa}}}v+r\|f(rv)\|_{L^{\infty}(B_{\sqrt{\kappa}})})\leqslant C(\ell_{u}+rF_{0}), (3.35)

where CC is a constant depending on κ\kappa and F0F_{0}. Note that the function w:=min{ur,v}w:=\min\{u_{r},v\} is an admissible function and so J(ur;Bκ)J(w;Bκ)J(u_{r};B_{\sqrt{\kappa}})\leqslant J(w;B_{\sqrt{\kappa}}). On the other hand, Bκ|w|2+F(rw)+Q2(rx)χ{w>0}dx=0\int_{B_{\kappa}}|\nabla w|^{2}+F(rw)+Q^{2}(rx)\chi_{\{w>0\}}\>dx=0, due to the fact that v=0v=0 in BκB_{\kappa}. Thus

J(ur;Bκ)=Bκ|ur|2+F(rur)+Q2(rx)χ{ur>0}dxBκBκ|w|2|ur|2+F(rw)F(rur)+Q2(rx)(χ{w>0}χ{ur>0})dxBκBκ|(wur)|2+2w(wur)+rF(rw)(wur)dxBκBκ|min{vur,0}|2+2vmin{vur,0}+rF(rv)min{vur,0}dx2Bκmin{vur,0}\pdvν𝑑d1,\displaystyle\begin{aligned} J(u_{r};B_{\kappa})&=\int_{B_{\kappa}}|\nabla u_{r}|^{2}+F(ru_{r})+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx\\ &\leqslant\int_{B_{\sqrt{\kappa}}\setminus B_{\kappa}}|\nabla w|^{2}-|\nabla u_{r}|^{2}+F(rw)-F(ru_{r})+Q^{2}(rx)\left(\chi_{\{w>0\}}-\chi_{\{u_{r}>0\}}\right)\>dx\\ &\leqslant\int_{B_{\sqrt{\kappa}}\setminus B_{\kappa}}-|\nabla(w-u_{r})|^{2}+2\nabla w\cdot\nabla(w-u_{r})+rF^{\prime}(rw)(w-u_{r})\>dx\\ &\leqslant\int_{B_{\sqrt{\kappa}}\setminus B_{\kappa}}-|\nabla\min\{v-u_{r},0\}|^{2}+2\nabla v\cdot\nabla\min\{v-u_{r},0\}+rF^{\prime}(rv)\min\{v-u_{r},0\}\>dx\\ &\leqslant 2\int_{\partial B_{\kappa}}\min\{v-u_{r},0\}\pd{v}{\nu}\>d\mathcal{H}^{d-1},\end{aligned} (3.36)

where ν\nu is the unit normal vector. Here we have used the fact that BκBκχ{w>0}χ{ur>0}dx0\int_{B_{\sqrt{\kappa}}\setminus B_{\kappa}}\chi_{\{w>0\}}-\chi_{\{u_{r}>0\}}\>dx\leqslant 0 in the third inequality since {w>0}{ur>0}\{w>0\}\subset\{u_{r}>0\}. By the convexity of FF, we have F(rur)F(0)rurrF0urF(ru_{r})\geqslant F^{\prime}(0)ru_{r}\geqslant-rF_{0}u_{r} and this gives

Bκ|ur|2+Q2(rx)χ{ur>0}dxJ(ur;Bκ)+BκrF0ur𝑑x.\displaystyle\int_{B_{\kappa}}|\nabla u_{r}|^{2}+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx\leqslant J(u_{r};B_{\kappa})+\int_{B_{\kappa}}rF_{0}u_{r}\>dx. (3.37)

It follows from (3.34), (3.35), (3.36), (3.37) and the trace theorem that

Bκ|ur|2+Q2(rx)χ{ur>0}dx2Bκmin{vur,0}\pdvν𝑑d1+BκrF0ur𝑑xC(u+rF0)(Bκur𝑑d1+Bκur𝑑x)C(u+rF0)(Bκurχ{ur>0}𝑑x+CBκ|ur|χ{ur>0}𝑑x)C(u+rF0)(u+rF0Qmin2Bκχ{ur>0}𝑑x+CQminBκ|ur|2+Q2(rx)χ{ur>0}dx)C(u+rF0)Qmin[(u+rF0)Qmin+1]Bκ|ur|2+Q2(rx)χ{ur>0}dx,\displaystyle\begin{aligned} &\int_{B_{\kappa}}|\nabla u_{r}|^{2}+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx\\ &\leqslant 2\int_{\partial B_{\kappa}}\min\{v-u_{r},0\}\pd{v}{\nu}\>d\mathcal{H}^{d-1}+\int_{B_{\kappa}}rF_{0}u_{r}\>dx\\ &\leqslant C(\ell_{u}+rF_{0})\left(\int_{\partial B_{\kappa}}u_{r}\>d\mathcal{H}^{d-1}+\int_{B_{\kappa}}u_{r}\>dx\right)\\ &\leqslant C(\ell_{u}+rF_{0})\left(\int_{B_{\kappa}}u_{r}\chi_{\{u_{r}>0\}}\>dx+C\int_{B_{\kappa}}|\nabla u_{r}|\chi_{\{u_{r}>0\}}\>dx\right)\\ &\leqslant C(\ell_{u}+rF_{0})\left(\frac{\ell_{u}+rF_{0}}{Q_{\mathrm{min}}^{2}}\int_{B_{\kappa}}\chi_{\{u_{r}>0\}}\>dx+\frac{C}{Q_{\mathrm{min}}}\int_{B_{\kappa}}|\nabla u_{r}|^{2}+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx\right)\\ &\leqslant\frac{C(\ell_{u}+rF_{0})}{Q_{\mathrm{min}}}\left[\frac{(\ell_{u}+rF_{0})}{Q_{\mathrm{min}}}+1\right]\int_{B_{\kappa}}|\nabla u_{r}|^{2}+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx,\end{aligned} (3.38)

where CC is a constant depending on dd, F0F_{0} and κ\kappa. Thanks to (3.31) and (3.34), we have

u+rF0QminC(1QminB1ur𝑑d1+rF0Qmin)Ccd.\displaystyle\frac{\ell_{u}+rF_{0}}{Q_{\mathrm{min}}}\leqslant C\left(\frac{1}{Q_{\mathrm{min}}}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{1}}u_{r}\>d\mathcal{H}^{d-1}+\frac{rF_{0}}{Q_{\mathrm{min}}}\right)\leqslant Cc_{d}^{*}.

This implies that u+rF0Qmin\frac{\ell_{u}+rF_{0}}{Q_{\mathrm{min}}} is sufficiently small, provided that cdc_{d}^{*} is sufficiently small. This together with the last inequality in (3.38) implies that

Bκ|ur|2+Q2(rx)χ{ur>0}dx=0,\displaystyle\int_{B_{\kappa}}|\nabla u_{r}|^{2}+Q^{2}(rx)\chi_{\{u_{r}>0\}}\>dx=0,

for cdc_{d}^{*} small enough. Thus ur=0u_{r}=0 in BκB_{\kappa}, provided that cdc_{d}^{*} is small enough. This concludes the proof. ∎

Remark 3.3.

Proposition 3.2 remains true if Br(x0)B_{r}(x^{0}) is not contained in Ω\Omega, provided that u=0u=0 in Br(x0)ΩB_{r}(x^{0})\cap\partial\Omega.

The following corollaries are direct applications of Proposition 3.2 and Remark 2.6.

Corollary 3.4.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega, then for any DΩD\subset\subset\Omega, there are constants 0cdCd0\leqslant c_{d}^{*}\leqslant C_{d}^{*} so that for every Br(x0)DB_{r}(x^{0})\subset D with x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u)

cdQmin1rBr(x0)u𝑑d1CdQmax.\displaystyle c_{d}^{*}Q_{\mathrm{min}}\leqslant\frac{1}{r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}\leqslant C_{d}^{*}Q_{\mathrm{max}}.
Corollary 3.5 (optimal linear nondegeneracy).

Let u𝒦u\in\mathcal{K} be a local minimizer of JJ in Br(x0)ΩB_{r}(x^{0})\subset\Omega with x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u). Then

supBr(x0)|u|rcdQmin.\displaystyle\sup_{B_{r}(x^{0})}|u|\geqslant rc_{d}^{*}Q_{\mathrm{min}}.

In the end of this section, we prove a density estimate that will be used in our forthcoming study.

Proposition 3.6 (Density estimates).

Let DΩD\subset\subset\Omega, then there exists a positive constant c(0,1)c\in(0,1), such that for any Br(x0)DB_{r}(x^{0})\subset D, centered at x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) with r>0r>0 small,

c<|Br(x0){u>0}||Br(x0)|<1c.\displaystyle c<\frac{|B_{r}(x^{0})\cap\{u>0\}|}{|B_{r}(x^{0})|}<1-c. (3.39)
Proof.

Without loss of generality, we assume that x0=0x^{0}=0, and we first prove the estimate by below. It follows from Corollary 3.5 that there exists a point yBry\in\partial B_{r} such that u(y)>ηru(y)>\eta r for some constant η>0\eta>0. Define a function v(x)=u(x)+F0|x|24dv(x)=u(x)+\frac{F_{0}|x|^{2}}{4d}. A direct calculation gives that Δv=Δu+F02f(0)f(u)0\Delta v=\Delta u+\frac{F_{0}}{2}\geqslant f(0)-f(u)\geqslant 0 in BrB_{r}. This implies that for κ>0\kappa>0 small,

F0r2dκ+1κrBκr(y)u𝑑d11κrBκr(y)v𝑑d1v(y)κrηκ,\displaystyle\frac{F_{0}r}{2d\kappa}+\frac{1}{\kappa r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{\kappa r}(y)}u\>d\mathcal{H}^{d-1}\geqslant\frac{1}{\kappa r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{\kappa r}(y)}v\>d\mathcal{H}^{d-1}\geqslant\frac{v(y)}{\kappa r}\geqslant\frac{\eta}{\kappa},

for sufficiently small κ>0\kappa>0. It follows that

1κrBκr(y)u𝑑d1ηκF0r2dκ>η4κ,\displaystyle\frac{1}{\kappa r}\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{\kappa r}(y)}u\>d\mathcal{H}^{d-1}\geqslant\frac{\eta}{\kappa}-\frac{F_{0}r}{2d\kappa}>\frac{\eta}{4\kappa},

provided that r>0r>0 is sufficiently small. By Proposition 3.2, we have that u>0u>0 in Bκr(y)B_{\kappa r}(y), which gives the lower bound.

Consider a function vv defined in B¯r\bar{B}_{r} by Δv+f(v)=0\Delta v+f(v)=0 in BrB_{r} and v=uv=u on Br\partial B_{r}. The maximum principle implies that uvΨu\leqslant v\leqslant\Psi in BrB_{r} where Ψ\Psi is defined in (1.6). Therefore v𝒦v\in\mathcal{K} is admissible. The minimality of uu and a similar calculation as in (2.14) gives Br|(uv)|2𝑑xQmax2|Br{u=0}|\int_{B_{r}}|\nabla(u-v)|^{2}\>dx\leqslant Q_{\mathrm{max}}^{2}|B_{r}\cap\{u=0\}|. Thanks to Poincaré and Hölder inequality, one has

Qmax2|Br{u=0}|Br|(vu)|2𝑑xcr2Br|vu|2𝑑x.\displaystyle Q_{\mathrm{max}}^{2}|B_{r}\cap\{u=0\}|\geqslant\int_{B_{r}}|\nabla(v-u)|^{2}\>dx\geqslant\frac{c}{r^{2}}\int_{B_{r}}|v-u|^{2}\>dx. (3.40)

For any yBkry\in B_{kr}, since ΔvM0F02f(0)\Delta v\leqslant\frac{M_{0}F_{0}}{2}-f(0) with M0=supΩ¯ΨM_{0}=\sup_{\bar{\Omega}}\Psi, a direct calculation gives

v(y)r2|y|2dωdrBru|xy|d𝑑d1+(M0F0f(0))|y|2r22d(1Cκ)Bru𝑑d1Cr2.\displaystyle\begin{aligned} v(y)&\geqslant\frac{r^{2}-|y|^{2}}{d\omega_{d}r}\int_{\partial B_{r}}\frac{u}{|x-y|^{d}}\>d\mathcal{H}^{d-1}+(M_{0}F_{0}-f(0))\frac{|y|^{2}-r^{2}}{2d}\\ &\geqslant(1-C\kappa)\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-Cr^{2}.\end{aligned} (3.41)

It follows from (3.41), Proposition 3.1 Proposition 3.2 that

v(y)u(y)v(u)Cκr(1Cκ)Bru𝑑d1CκrCr2cQminr,\displaystyle\begin{aligned} v(y)-u(y)&\geqslant v(u)-C\kappa r\\ &\geqslant(1-C\kappa)\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}}u\>d\mathcal{H}^{d-1}-C\kappa r-Cr^{2}\\ &\geqslant cQ_{\mathrm{min}}r,\end{aligned} (3.42)

provided that κ\kappa and rr are sufficiently small.

Combining with (3.40) and (3.42), one has

Qmax2|Br{u=0}|cr2Br|vu|2𝑑xcr2Bkr|vu|2𝑑xc(κ)Qmin2rd,\displaystyle Q_{\mathrm{max}}^{2}|B_{r}\cap\{u=0\}|\geqslant\frac{c}{r^{2}}\int_{B_{r}}|v-u|^{2}\>dx\geqslant\frac{c}{r^{2}}\int_{B_{kr}}|v-u|^{2}\>dx\geqslant c(\kappa)Q_{\mathrm{min}}^{2}r^{d}, (3.43)

for r>0r>0 sufficiently small. Thus, in view of (3.43), we have

|Br{u=0}||Br|cQminQmax,\displaystyle\frac{|B_{r}\cap\{u=0\}|}{|B_{r}|}\geqslant c\frac{Q_{\mathrm{min}}}{Q_{\mathrm{max}}},

where cc is independent of rr. This gives the upper bound in (3.39) since QminQmax>0\frac{Q_{\mathrm{min}}}{Q_{\mathrm{max}}}>0. ∎

4. Locally finite perimeter of the positivity set and blow-up limits

In this section we prove that the set Ω+(u)\varOmega^{+}(u) has (locally) finite perimeter in Ω\Omega. The first step is a measure estimate of the free boundary. To begin with, let us define

λ:=Δu+f(u),\displaystyle\lambda:=\Delta u+f(u), (4.44)

and

λ0:=Δu+f(u)χ{u>0}.\displaystyle\lambda_{0}:=\Delta u+f(u)\chi_{\{u>0\}}. (4.45)

Then we immediately have

Lemma 4.1.

Let λ\lambda and λ0\lambda_{0} be defined as in (4.44) and (4.45), respectively, then λ\lambda is a Radon measure supported on Ω{u=0}\Omega\cap\{u=0\} and its singular point is contained in the free boundary. λ0\lambda_{0} is a positive Radon measure supported in Ω+(u)\partial\varOmega^{+}(u).

Proof.

For any ξC0(Ω)\xi\in C_{0}^{\infty}(\Omega) with ξ0\xi\geqslant 0, define η(t):=max{min{2t,1},0}\eta(t):=\max\{\min\{2-t,1\},0\} for any t>0t>0. Then

Ωu(ξη(tu))dx=Ωuξdx+Ω{u1t}u(ξη(tu)ξ)dx=ΩuξdxΩ+(u)f(u)ξ𝑑x+Ω{1tu2t}(2ut)f(u)ξ𝑑x+Ω{u2t}f(u)ξ𝑑xΩuξdxΩ+(u)f(u)ξ𝑑x,\displaystyle\begin{aligned} \int_{\Omega}\nabla u\cdot\nabla(\xi\eta(tu))\>dx&=\int_{\Omega}\nabla u\cdot\nabla\xi\>dx+\int_{\Omega\cap\{u\geqslant\tfrac{1}{t}\}}\nabla u\cdot\nabla(\xi\eta(tu)-\xi)\>dx\\ &=\int_{\Omega}\nabla u\cdot\nabla\xi\>dx-\int_{\varOmega^{+}(u)}f(u)\xi\>dx\\ &\quad+\int_{\Omega\cap\{\tfrac{1}{t}\leqslant u\leqslant\tfrac{2}{t}\}}(2-ut)f(u)\xi\>dx+\int_{\Omega\cap\{u\leqslant\tfrac{2}{t}\}}f(u)\xi\>dx\\ &\geqslant\int_{\Omega}\nabla u\cdot\nabla\xi\>dx-\int_{\varOmega^{+}(u)}f(u)\xi\>dx,\end{aligned} (4.46)

for t>0t>0 large enough, where we have used the fact f(u)f(0)20f(u)\geqslant\frac{f(0)}{2}\geqslant 0 in Ω{u2t}\Omega\cap\{u\leqslant\tfrac{2}{t}\} for t>0t>0 large enough. On the other hand, one has

Ωu(ξη(tu))dx=Ω{1tu2t}(2ut)uξξt|u|2dx+Ω{0<u1t}uξdxΩ{0<u2t}|u||ξ|𝑑x.\displaystyle\begin{aligned} \int_{\Omega}\nabla u\cdot\nabla(\xi\eta(tu))\>dx&=\int_{\Omega\cap\{\tfrac{1}{t}\leqslant u\leqslant\tfrac{2}{t}\}}(2-ut)\nabla u\cdot\nabla\xi-\xi t|\nabla u|^{2}\>dx+\int_{\Omega\cap\{0<u\leqslant\tfrac{1}{t}\}}\nabla u\cdot\nabla\xi\>dx\\ &\leqslant\int_{\Omega\cap\{0<u\leqslant\tfrac{2}{t}\}}|\nabla u||\nabla\xi|\>dx.\end{aligned} (4.47)

It follows from (4.46) and (4.47) that

ΩuξdxΩ+(u)f(u)ξ𝑑xΩ{0<u2t}|u||ξ|𝑑x.\displaystyle\int_{\Omega}\nabla u\cdot\nabla\xi\>dx-\int_{\varOmega^{+}(u)}f(u)\xi\>dx\leqslant\int_{\Omega\cap\{0<u\leqslant\tfrac{2}{t}\}}|\nabla u||\nabla\xi|\>dx. (4.48)

Passing to the limit as nn\to\infty in (4.48), we conclude that Δu+f(u)χ{u>0}0\Delta u+f(u)\chi_{\{u>0\}}\geqslant 0 in the sense of distributions. Consequently, there exists a positive Radon measure λ0\lambda_{0} supported on Ω+(u)\partial\varOmega^{+}(u) so that λ0=Δu+f(u)χ{u>0}\lambda_{0}=\Delta u+f(u)\chi_{\{u>0\}}. Recalling (1.10) that f(0)0f(0)\geqslant 0 there exists a positive Radon measure λ\lambda supported on Ω{u=0}\Omega\cap\{u=0\} so that λ=λ0+f(0)χ{u=0}=Δu+f(u)\lambda=\lambda_{0}+f(0)\chi_{\{u=0\}}=\Delta u+f(u). ∎

Compare to [1, Theorem 4.3], we have the following result adjusted to our semilinear settings.

Proposition 4.2.

Let λ\lambda and λ0\lambda_{0} be defined as in (4.44) and (4.45), respectively, and let DΩD\subset\subset\Omega. Then there exist positive constants cc and CC, depending on dd, F0F_{0} and the Lipschitz coefficient of uu in Br(x0)B_{r}(x^{0}), so that for any Br(x0)GB_{r}(x^{0})\subset G with x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) and r<r0r<r_{0},

crd1Br(x0)𝑑λCrd1.\displaystyle cr^{d-1}\leqslant\int_{B_{r}(x^{0})}\>d\lambda\leqslant Cr^{d-1}. (4.49)

Moreover,

crd1Br(x0){u>0}𝑑λ=Br(x0)𝑑λ0Crd1.\displaystyle cr^{d-1}\leqslant\int_{B_{r}(x^{0})\cap\partial\{u>0\}}\>d\lambda=\int_{B_{r}(x^{0})}\>d\lambda_{0}\leqslant Cr^{d-1}. (4.50)
Proof.

For any ε>0\varepsilon>0, introduce the function dε,Br(x0)=min{dist(x,dBr(x0))ε,1}d_{\varepsilon,B_{r}(x^{0})}=\min\{\tfrac{\operatorname{dist}(x,\mathbb{R}^{d}\setminus B_{r}(x^{0}))}{\varepsilon},1\} as a test function for Br(x0)DB_{r}(x^{0})\subset D. Then

Ωdε,Br(x0)𝑑λ=Ωudε,Br(x0)+f(u)dε,Br(x0)dx.\displaystyle\int_{\Omega}d_{\varepsilon,B_{r}(x^{0})}\>d\lambda=\int_{\Omega}\nabla u\cdot\nabla d_{\varepsilon,B_{r}(x^{0})}+f(u)d_{\varepsilon,B_{r}(x^{0})}\>dx. (4.51)

Due to the fact that dε,Br(x0)d_{\varepsilon,B_{r}(x^{0})} converges to χBr(x0)\chi_{B_{r}(x^{0})} as ε0\varepsilon\to 0, we take the limit ε0\varepsilon\to 0 in (4.51) and obtain

Br(x0)𝑑λ=Br(x0)uνdd1+Br(x0)f(u)𝑑xCrd1+CF0rdCrd1,\displaystyle\int_{B_{r}(x^{0})}\>d\lambda=\int_{\partial B_{r}(x^{0})}\nabla u\cdot\nu\>d\mathcal{H}^{d-1}+\int_{B_{r}(x^{0})}f(u)\>dx\leqslant Cr^{d-1}+CF_{0}r^{d}\leqslant Cr^{d-1}, (4.52)

where the constant CC depends on dd, F0F_{0} and the Lipschitz constant of uu in Br(x0)B_{r}(x^{0}). This gives the right hand side of (4.49).

Let yBr(x0)y\in B_{r}(x^{0}) and Gy(x)G_{y}(x) be the Green function for Laplacian in Br(x0)B_{r}(x^{0}) with pole yy. If u(y)>0u(y)>0, then yy is outside the support of the Radon measure λ\lambda, and this implies

Br(x0)Gy(x)𝑑λ=u(y)Br(x0)f(u)Gy(x)𝑑x+Br(x0)uνGy(x)dd1.\displaystyle\int_{B_{r}(x^{0})}G_{y}(x)\>d\lambda=-u(y)-\int_{B_{r}(x^{0})}f(u)G_{y}(x)\>dx+\int_{\partial B_{r}(x^{0})}u\partial_{-\nu}G_{y}(x)\>d\mathcal{H}^{d-1}. (4.53)

With the help of Corollary 3.5 there exists a point yBκry\in\partial B_{\kappa r} so that u(y)cd(κ)Qminr>0u(y)\geqslant c_{d}^{*}(\kappa)Q_{\mathrm{min}}r>0 for κ>0\kappa>0 small. On the other hand, since uu is Lipschitz continuous, we have u(y)=u(y)u(x0)Cκru(y)=u(y)-u(x^{0})\leqslant C\kappa r and u>0u>0 in Bc(κ)r(y)B_{c(\kappa)r}(y) for small constants c(κ)c(\kappa). This combined with (4.53) gives

Br(x0)Gy(x)𝑑λCκrCF0rd+c(1κ)Br(x0)u𝑑d1c0r,(c0>0),\displaystyle\int_{B_{r}(x^{0})}G_{y}(x)\>d\lambda\geqslant-C\kappa r-CF_{0}r^{d}+c(1-\kappa)\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\partial B_{r}(x^{0})}u\>d\mathcal{H}^{d-1}\geqslant c_{0}r,\quad(c_{0}>0), (4.54)

provided that κ\kappa and rr small enough. Note that we have

Br(x0)Gy(x)𝑑λ=Br(x0){u=0}Gy(x)𝑑λsupBr(x0){u=0}Gy(x)Br(x0)𝑑λC(κ)r2dBr(x0)𝑑λ.\displaystyle\begin{aligned} \int_{B_{r}(x^{0})}G_{y}(x)\>d\lambda&=\int_{B_{r}(x^{0})\cap\{u=0\}}G_{y}(x)\>d\lambda\leqslant\sup_{B_{r}(x^{0})\cap\{u=0\}}G_{y}(x)\int_{B_{r}(x^{0})}d\lambda\leqslant C(\kappa)r^{2-d}\int_{B_{r}(x^{0})}\>d\lambda.\end{aligned} (4.55)

Here we used the fact that dist(y,Br(x0){u=0})c(κ)r\operatorname{dist}(y,B_{r}(x^{0})\cap\{u=0\})\geqslant c(\kappa)r. Combining (4.54) and (4.55) together gives the left hand side of (4.49).

We now prove (4.50). Firstly, the right-hand side of (4.50) is obvious since Br;x0+(u)𝑑λBr(x0)𝑑λ\int_{\partial B_{r;x^{0}}^{+}(u)}\>d\lambda\leqslant\int_{B_{r}(x^{0})}\>d\lambda. Moreover,

Br(x0)𝑑λ\displaystyle\int_{B_{r}(x^{0})}\>d\lambda =Br(x0){u>0}𝑑λ+Br(x0){u=0}𝑑λ\displaystyle=\int_{B_{r}(x^{0})\cap\partial\{u>0\}}\>d\lambda+\int_{B_{r}(x^{0})\cap\{u=0\}}\>d\lambda
Br(x0){u>0}𝑑λ+Br(x0){u=0}f(0)𝑑x\displaystyle\leqslant\int_{B_{r}(x^{0})\cap\partial\{u>0\}}\>d\lambda+\int_{B_{r}(x^{0})\cap\{u=0\}}f(0)\>dx
Br(x0){u>0}𝑑λ+CdF0rd,\displaystyle\leqslant\int_{B_{r}(x^{0})\cap\partial\{u>0\}}\>d\lambda+C_{d}F_{0}r^{d},

which implies that

Br(x0){u>0}𝑑λBr(x0)𝑑λCdF0rdcrd1CdF0rdcrd1,\displaystyle\int_{B_{r}(x^{0})\cap\partial\{u>0\}}\>d\lambda\geqslant\int_{B_{r}(x^{0})}\>d\lambda-C_{d}F_{0}r^{d}\geqslant cr^{d-1}-C_{d}F_{0}r^{d}\geqslant cr^{d-1},

for sufficiently small rr, which gives the left-hand side of (4.50). ∎

The next theorem easily follows easily from Proposition 4.2, precisely as in [1].

Theorem 4.3 (Representation theorem).

Let uu be a minimizer. Then:

  1. (1)

    d1(D{u>0})<+\mathcal{H}^{d-1}(D\cap\partial\{u>0\})<+\infty for every DΩD\subset\subset\Omega.

  2. (2)

    There exists a Borel function quq_{u}, such that

    Δu+f(u)χ{u>0}=qud1 {u>0}.\displaystyle\Delta u+f(u)\chi_{\{u>0\}}=q_{u}\mathcal{H}^{d-1}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}{\partial\{u>0\}}.

    That is, for any ξC0(Ω)\xi\in C_{0}^{\infty}(\Omega),

    Ωuξdx+Ω+(u)f(u)ξ𝑑x=Ω+(u)quξ𝑑d1.\displaystyle-\int_{\Omega}\nabla u\cdot\nabla\xi\>dx+\int_{\varOmega^{+}(u)}f(u)\xi\>dx=\int_{\partial\varOmega^{+}(u)}q_{u}\xi\>d\mathcal{H}^{d-1}.
  3. (3)

    For any compact subset DD of Ω\Omega, and for any Br(x0)DB_{r}(x^{0})\subset D with x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u), there exists 0<cC<0<c\leqslant C<\infty, independent of rr and x0x^{0}, so that

    0<cqu(x)C<+ and crd1d1(Br(x0){u>0})Crd1.\displaystyle 0<c\leqslant q_{u}(x)\leqslant C<+\infty\qquad\text{ and }\qquad cr^{d-1}\leqslant\mathcal{H}^{d-1}(B_{r}(x^{0})\cap\partial\{u>0\})\leqslant Cr^{d-1}.

As a direct corollary of Theorem 4.3 and [18, Theorem 1, Section 5.11], we have

Corollary 4.4 (Finite perimeter of Ω+(u)\varOmega^{+}(u)).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ, then the set Ω+(u)\varOmega^{+}(u) has locally finite perimeter in Ω\Omega.

In the rest of this section, we shall deal with the blow-up sequences

un(x)=u(x0+rnx)rn for x0Ω+(u).\displaystyle u_{n}(x)=\frac{u(x^{0}+r_{n}x)}{r_{n}}\quad\text{ for }x^{0}\in\partial\varOmega^{+}(u).

Since |un|C|\nabla u_{n}|\leqslant C and un(0)=0u_{n}(0)=0, we have by a diagonal argument and the theorem of Ascoli-Arzela that there exists a non-relabel subsequence and a function u0Wloc1,(d)u_{0}\in W^{1,\infty}_{\mathrm{loc}}(\mathbb{R}^{d}), so that

unu0 in Clocα(d) for some α(0,1),\displaystyle u_{n}\to u_{0}\quad\text{ in }\quad C_{\mathrm{loc}}^{\alpha}(\mathbb{R}^{d})\quad\text{ for some }\quad\alpha\in(0,1), (4.56)

and

unu0 in Lloc(d).\displaystyle\nabla u_{n}\stackrel{{\scriptstyle*}}{{\rightharpoonup}}\nabla u_{0}\quad\text{ in }\quad L_{\mathrm{loc}}^{\infty}(\mathbb{R}^{d}). (4.57)

The function u0u_{0} is usually called a blow-up limit.

Proposition 4.5 (Properties of blow-up limits).

Let {un}\{u_{n}\} be the blow-up sequence and let u0u_{0} be given as in (4.56) and (4.57), respectively. Then

  1. (1)

    Ω+(un)Ω+(u0)\partial\varOmega^{+}(u_{n})\to\partial\varOmega^{+}(u_{0}) locally in the Hausdorff distance of d\mathbb{R}^{d}.

  2. (2)

    χ{un>0}χ{u0>0}\chi_{\{u_{n}>0\}}\to\chi_{\{u_{0}>0\}} in Lloc1(d)L_{\mathrm{loc}}^{1}(\mathbb{R}^{d}).

  3. (3)

    unu0\nabla u_{n}\to\nabla u_{0} a.e. in d\mathbb{R}^{d}.

  4. (4)

    unu0u_{n}\to u_{0} strongly in Hloc1(d)H_{\mathrm{loc}}^{1}(\mathbb{R}^{d}).

  5. (5)

    u0u_{0} is a global minimizer of the functional J0(v)J_{0}(v) in BrB_{r} for any r>0r>0. Namely,

    J0(u0)=minvJ0(v) for any vH1(Br) with v=u0 on Br,\displaystyle J_{0}(u_{0})=\min_{v}J_{0}(v)\quad\text{ for any }v\in H^{1}(B_{r})\text{ with }v=u_{0}\text{ on }\partial B_{r}, (4.58)

    where J0(v):=Br|v|2+Q(x0)χ{v>0}dxJ_{0}(v):=\int_{B_{r}}|\nabla v|^{2}+Q(x^{0})\chi_{\{v>0\}}\>dx.

  6. (6)

    u0u_{0} satisfies the problem Δu0=0\Delta u_{0}=0 in B1+(u0)B_{1}^{+}(u_{0}) and |u0|=Q(x0)|\nabla u_{0}|=Q(x^{0}) on B1{u0>0}B_{1}\cap\partial\{u_{0}>0\} and the non-degeneracy property: there exists some constants 0<c0<10<c_{0}<1 so that

    c0<|B1{u0>0}||B1|<1c0.\displaystyle c_{0}<\frac{|B_{1}\cap\{u_{0}>0\}|}{|B_{1}|}<1-c_{0}. (4.59)
Proof.

The argument (1)-(3) are standard. We only remark that these three properties strongly rely on Corollary 3.4 in our semilinear case. For the fourth property, it suffices to show that there exists a non-relabel subsequence {un}\{u_{n}\} such that unu0\nabla u_{n}\to\nabla u_{0} strongly in Lloc2(d)L_{\mathrm{loc}}^{2}(\mathbb{R}^{d}), namely, for any R>0R>0 the inequality

lim supnBR|un|2ξ𝑑xBR|u0|2ξ𝑑x for every ξC0(BR).\displaystyle\limsup_{n\to\infty}\int_{B_{R}}|\nabla u_{n}|^{2}\xi\>dx\leqslant\int_{B_{R}}|\nabla u_{0}|^{2}\xi\>dx\quad\text{ for every }\xi\in C_{0}^{\infty}(B_{R}).

For each nn, unu_{n} is a solution to the problem

Δun+rnf(rnun)=0 in Ω+(un),|un|=Q(x0+rnx) on Ω+(un).\displaystyle\Delta u_{n}+r_{n}f(r_{n}u_{n})=0\quad\text{ in }\quad\varOmega^{+}(u_{n}),\qquad|\nabla u_{n}|=Q(x^{0}+r_{n}x)\quad\text{ on }\quad\partial\varOmega^{+}(u_{n}). (4.60)

Since unu_{n} converges to u0u_{0} locally uniformly, it follows from (4.60) that u0u_{0} is harmonic in {u0>0}\{u_{0}>0\}. Also, using the uniform convergence, the continuity of u0u_{0} and its harmonicity in {u0>0}\{u_{0}>0\} we obtain

d|un|2ξ𝑑x\displaystyle\int_{\mathbb{R}^{d}}|\nabla u_{n}|^{2}\xi\>dx =dun(unξrnf(rnun)ξ)𝑑x\displaystyle=-\int_{\mathbb{R}^{d}}u_{n}\left(\nabla u_{n}\cdot\nabla\xi-r_{n}f(r_{n}u_{n})\xi\right)\>dx
du0u0ξdx=d|u0|2ξ𝑑x as n.\displaystyle\to-\int_{\mathbb{R}^{d}}u_{0}\nabla u_{0}\cdot\nabla\xi\>dx=\int_{\mathbb{R}^{d}}|\nabla u_{0}|^{2}\xi\>dx\quad\text{ as }\quad n\to\infty.

It therefore follows that unu_{n} converges to u0u_{0} strongly in Wloc1,2(d)W_{\mathrm{loc}}^{1,2}(\mathbb{R}^{d}) as nn\to\infty.

We now prove (5). Consider a function ηε(x):=min{dist(x,dBr)ε,1}\eta_{\varepsilon}(x):=\min\{\frac{\operatorname{dist}(x,\mathbb{R}^{d}\setminus B_{r})}{\varepsilon},1\}, it is easy to see that ηεC00,1(Br)\eta_{\varepsilon}\in C_{0}^{0,1}(B_{r}) and 0ηε10\leqslant\eta_{\varepsilon}\leqslant 1. Define vn:=v+(1ηε)(unu0)v_{n}:=v+(1-\eta_{\varepsilon})(u_{n}-u_{0}) and it follows immediately that vn=unv_{n}=u_{n} outside BrB_{r} and {vn>0}{v>0}{ηε<1}\{v_{n}>0\}\subset\{v>0\}\cap\{\eta_{\varepsilon}<1\}. Thus,

Br|un|2+F(rnun)+Q2(x0+rnx)χ{un>0}dx\displaystyle\int_{B_{r}}|\nabla u_{n}|^{2}+F(r_{n}u_{n})+Q^{2}(x^{0}+r_{n}x)\chi_{\{u_{n}>0\}}\>dx
Br|vn|2+F(rnvn)+Q2(x0+rnx)χ{vn>0}dx\displaystyle\leqslant\int_{B_{r}}|\nabla v_{n}|^{2}+F(r_{n}v_{n})+Q^{2}(x^{0}+r_{n}x)\chi_{\{v_{n}>0\}}\>dx
Br|vn|2+F(rnvn)+Q2(x0+rnx)χ{vn>0}dx+BrQ2(x0+rnx)χ{ηε<1}𝑑x.\displaystyle\leqslant\int_{B_{r}}|\nabla v_{n}|^{2}+F(r_{n}v_{n})+Q^{2}(x^{0}+r_{n}x)\chi_{\{v_{n}>0\}}\>dx+\int_{B_{r}}Q^{2}(x^{0}+r_{n}x)\chi_{\{\eta_{\varepsilon}<1\}}\>dx.

Passing to the limit as nn\to\infty gives

Br|u0|2+Q2(x0)χ{u0>0}dxBr|v|2+Q2(x0)χ{v>0}+Q2(x0)Brχ{ηε<1}𝑑x,\displaystyle\int_{B_{r}}|\nabla u_{0}|^{2}+Q^{2}(x^{0})\chi_{\{u_{0}>0\}}\>dx\leqslant\int_{B_{r}}|\nabla v|^{2}+Q^{2}(x^{0})\chi_{\{v>0\}}+Q^{2}(x^{0})\int_{B_{r}}\chi_{\{\eta_{\varepsilon}<1\}}\>dx, (4.61)

where we have used the statements (2) and (3). Taking ε0\varepsilon\to 0 in (4.61) gives the desired result. The fact that Δu0=0\Delta u_{0}=0 follows from the uniform convergence of unu_{n} to u0u_{0} and the first equation in (4.60). The second equation in (4.60) follows from the fact that u0u_{0} is a global minimizer of J0(v)J_{0}(v). Finally for the last property, we point out it directly follows from (5) and [1, Lemma 3.7]. ∎

Remark 4.6.

In conclusion, we compare the classical homogeneous problems with our semilinear non-homogeneous problems as follows:

Table 1. Homogeneous v.s. Nonhomogeneous
Problem Equations for Blow-up sequences Equations for Blow-ups
Problem (1.7) Δun+rnf(un)=0\Delta u_{n}+r_{n}f(u_{n})=0 Δu0=0\Delta u_{0}=0
Problem (1.2) Δun=0\Delta u_{n}=0 Δu0=0\Delta u_{0}=0

One of the significant differences we read from the second column of Table 1 between the two problems is that the blow-up sequence satisfies different equations. However, in view of the last column of Table 1, we see that the blow-up limits of the two problems are both harmonic functions. We stress that this is the main reason we can establish the regularity of the regular set regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) and determine the dimension of the singular set. We will discuss these in the coming four sections precisely.

5. Weiss-type monotonicity formulas

In this section, we establish a Weiss-type monotonicity formula, which will be a useful tool in the study of homogeneity of blow-ups u0u_{0}. The Weiss boundary-adjusted energy developed by Weiss in [35] originally considered the problem (1.1), who proved that blow-up limits of (1.1) are homogeneous functions of degree 11. We borrow this idea and adapt it to our settings. However, the strategy here is slightly different, since our functional JJ involves a non-linear term FF. Our final results reveal that the functional JJ still possesses monotonicity after subtracting the boundary-adjusted term. Before establishing that, we need to introduce some notation. For every Br(x0)ΩB_{r}(x^{0})\subset\Omega and uH1(Br(x0))u\in H^{1}(B_{r}(x^{0})), we define

W(u,r;Q)=1rdBr(x0)(|u|2+F(u)+Q2(x)χ{u>0})𝑑x1rd+1Br(x0)u2𝑑d1,\displaystyle W(u,r;Q)=\frac{1}{r^{d}}\int_{B_{r}(x^{0})}(|\nabla u|^{2}+F(u)+Q^{2}(x)\chi_{\{u>0\}})\>dx-\frac{1}{r^{d+1}}\int_{\partial B_{r}(x^{0})}u^{2}\>d\mathcal{H}^{d-1}, (5.62)

and

W(ux0,r):=W(ux0,r,1,Q(x0+rx))=B1|ux0,r|2+F(rux0,r)+Q2(x0+rx)χ{ux0,r>0}dxB1ux0,r2𝑑d1.\displaystyle\begin{aligned} W(u_{x^{0},r})&:=W(u_{x^{0},r},1,Q(x^{0}+rx))\\ &=\int_{B_{1}}|\nabla u_{x^{0},r}|^{2}+F(ru_{x^{0},r})+Q^{2}(x^{0}+rx)\chi_{\{u_{x^{0},r}>0\}}\>dx-\int_{\partial B_{1}}u_{x^{0},r}^{2}\>d\mathcal{H}^{d-1}.\end{aligned} (5.63)
Remark 5.1.

It is easy to verify the following fact: If uH1(B1)u\in H^{1}(B_{1}) is a minimizer of JJ for all vH1(B1)v\in H^{1}(B_{1}) with v=uv=u on B1\partial B_{1}. Then uu is also a minimizer of W=W(,r;Q)W=W(\cdot,r;Q) in the sense that W(u)W(v)W(u)\leqslant W(v) for every vH1(B1)v\in H^{1}(B_{1}) with v=uv=u on B1\partial B_{1}.

Remark 5.2.

Notice that the first integral in (5.62) is exactly our standard energy J(u;Br)J(u;B_{r}), while the second integral in (5.62) is the noted Weiss boundary-adjusted energy. We pause here for a second to display our pattern for constructing the formula (5.62). Firstly, we focus on the integral involving the gradient of uu and the non-linear term FF. The term |u|2+F(u)|\nabla u|^{2}+F(u) is invoked in the first integral because we require a minimizer to satisfy the equation. Moreover, the order of |u|2+F(u)|\nabla u|^{2}+F(u) is in fact rd1r^{d-1}, due to Proposition 3.1. Indeed, if uu grows like CrCr, then u\nabla u would be bounded and consequently, Br(x0)|u|2𝑑x\int_{B_{r}(x^{0})}|\nabla u|^{2}\>dx should grow like CrdCr^{d}, and so we divide J(u)J(u) by rdr^{d}. Secondly, our final goal is to neutralize the order rdr^{d} caused by the first integral using the boundary adjusted term so that W()W(\cdot) exhibits some boundedness property. Therefore, using the fact again uu grows like CrCr, it is handy that Br(x0)u2𝑑d1\int_{\partial B_{r}(x^{0})}u^{2}\>d\mathcal{H}^{d-1} grows like Crd+1Cr^{d+1} and this is the reason we divide this boundary integral by 1rd+1\tfrac{1}{r^{d+1}}. The matched order between two integrals is crucial so that WW is preserved under the scaling ux0,r(x)=u(x0+rx)/ru_{x^{0},r}(x)=u(x^{0}+rx)/r in the sense that W(u,r,Q)=W(ux0,r)W(u,r,Q)=W(u_{x^{0},r}). This allows us to passing the limit limr0+W(,,r)\lim_{r\to 0^{+}}W(\cdot,\cdot,r) and obtains the wanted homogeneity for blow up limits.

The main body in this section is to prove the following proposition.

Proposition 5.3 (Weiss-type monotonicity formula).

Let Br(x0)ΩB_{r}(x^{0})\subset\Omega with r(0,δ0)r\in(0,\delta_{0}), where δ0=dist(x0,Ω)\delta_{0}=\operatorname{dist}(x^{0},\partial\Omega). Let u𝒦u\in\mathcal{K} be a minimizer in Bδ0(x0)B_{\delta_{0}}(x^{0}). Then

ddrW(u,r;Q)=2rdBr(x0)(uνur)2𝑑d1+1(u,r;F)+𝒬1(r;Q),\displaystyle\frac{d}{dr}W(u,r;Q)=\frac{2}{r^{d}}\int_{\partial B_{r}(x^{0})}\left(\nabla u\cdot\nu-\frac{u}{r}\right)^{2}\>d\mathcal{H}^{d-1}+\mathcal{F}_{1}(u,r;F)+\mathcal{Q}_{1}(r;Q), (5.64)

where

1(u,r;F):=1rd+1Br(x0)uF(u)𝑑x,\displaystyle\mathcal{F}_{1}(u,r;F):=\frac{1}{r^{d+1}}\int_{B_{r}(x^{0})}uF^{\prime}(u)\>dx, (5.65)

and

𝒬1(r;Q)\displaystyle\mathcal{Q}_{1}(r;Q) =:1rd+1BrQ2(x)xdμ(x)drd+1BrQ2(x)χ{u>0}dx+1rdBrQ2(x)χ{u>0}dd1.\displaystyle=:-\frac{1}{r^{d+1}}\int_{B_{r}}Q^{2}(x)x\cdot d\mu(x)-\frac{d}{r^{d+1}}\int_{B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>dx+\frac{1}{r^{d}}\int_{\partial B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}. (5.66)

Here we employed the notation

dμ=χ{u>0}.\displaystyle d\mu=\nabla\chi_{\{u>0\}}. (5.67)
Remark 5.4.

Since Ω+(u)\varOmega^{+}(u) is locally finite perimeter in Ω\Omega, we have that χ{u>0}\chi_{\{u>0\}} is a function of bounded variation and thus (5.67) is well-defined.

Remark 5.5.

If in particular Q(x)Q(x0)>0Q(x)\equiv Q(x^{0})>0, then 𝒬r(r;Q)=0\mathcal{Q}_{r}(r;Q)=0. This can be easily obtained by (5.66) and the following simple fact

12rd+1𝒬1(r;Q)=12Br(x0)x𝑑μ(x)d2Br(x0)χ{u>0}𝑑x+r2Br(x0)χ{u>0}𝑑d1=0.\displaystyle\begin{aligned} \frac{1}{2}r^{d+1}\mathcal{Q}_{1}(r;Q)&=-\frac{1}{2}\int_{B_{r}(x^{0})}x\cdot d\mu(x)-\frac{d}{2}\int_{B_{r}(x^{0})}\chi_{\{u>0\}}\>dx+\frac{r}{2}\int_{\partial B_{r}(x^{0})}\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}\\ &=0.\end{aligned} (5.68)

To prove Proposition 5.3, we need some fundamental tools, the first is a domain variation formula.

Lemma 5.6 (Domain variation formula).

Let Q(x)C0(Ω)Q(x)\in C^{0}(\Omega) be any continuous function, let u𝒦u\in\mathcal{K} be a local minimizer of JJ in Ω\Omega and let ξC0(Ω;d)\xi\in C_{0}^{\infty}(\Omega;\mathbb{R}^{d}). Then we have

Ω2uDξ(u)T(|u|2+F(u))divξdx+ΩQ2(x)ξ(x)𝑑μ=0,\displaystyle\int_{\Omega}2\nabla uD\xi(\nabla u)^{\mathrm{T}}-(|\nabla u|^{2}+F(u))\operatorname{div}\xi\>dx+\int_{\Omega}Q^{2}(x)\xi(x)\cdot d\mu=0, (5.69)

where dμd\mu is defined in (5.67).

Proof.

Let L:=|Dξ|L:=|D\xi| be the Lipschitz constant of ξ\xi. For t>0t>0, we define Ψt(x)=x+tξ(x)\Psi_{t}(x)=x+t\xi(x) and ut(x)=u(x+tξ(x))u_{t}(x)=u(x+t\xi(x)). One can show that, for 0<t<1L0<t<\frac{1}{L}, Ψt:ΩΩ\Psi_{t}\colon\Omega\to\Omega is bijective, Ψt1C(Ω;d)\Psi_{t}^{-1}\in C^{\infty}(\Omega;\mathbb{R}^{d}), and moreover Ψt1(y)yC0(Ω;d)\Psi_{t}^{-1}(y)-y\in C_{0}^{\infty}(\Omega;\mathbb{R}^{d}) with supp(Ψt1(y)y)supp(Ψt)\operatorname{supp}(\Psi_{t}^{-1}(y)-y)\subset\operatorname{supp}(\Psi_{t}). A direct calculation gives DΨt=Id+tDξD\Psi_{t}=\operatorname{Id}+tD\xi and |detDΨt(x)|=1+tdivξ+o(t)|\det D\Psi_{t}(x)|=1+t\operatorname{div}\xi+o(t). By a change of variables,

Ω|ut(x)|2𝑑x=Ω|ut(Ψt1(y))|2|detDΨt1(y)|𝑑y=Ω(|u(y)|2+2tuDξ(u)T+o(t))(1tdivξ+o(t))𝑑y=Ω|u(y)|2𝑑y+tΩ2uDξ(u)T𝑑ytΩ|u(y)|2divξdy+o(t).\displaystyle\begin{aligned} \int_{\Omega}|\nabla u_{t}(x)|^{2}\>dx&=\int_{\Omega}|\nabla u_{t}(\Psi_{t}^{-1}(y))|^{2}|\det D\Psi_{t}^{-1}(y)|\>dy\\ &=\int_{\Omega}(|\nabla u(y)|^{2}+2t\nabla uD\xi(\nabla u)^{\mathrm{T}}+o(t))(1-t\operatorname{div}\xi+o(t))\>dy\\ &=\int_{\Omega}|\nabla u(y)|^{2}\>dy+t\int_{\Omega}2\nabla uD\xi(\nabla u)^{\mathrm{T}}\>dy-t\int_{\Omega}|\nabla u(y)|^{2}\operatorname{div}\xi\>dy+o(t).\end{aligned} (5.70)

Similarly, one has

ΩF(ut(x))𝑑x=ΩF(ut(Ψt1(y)))|detDΨt1(y)|𝑑y=ΩF(u(y))(1tdivξ+o(t))𝑑y=ΩF(u(y))𝑑ytΩF(u(y))divξdy+o(t).\displaystyle\begin{aligned} \int_{\Omega}F(u_{t}(x))\>dx&=\int_{\Omega}F(u_{t}(\Psi_{t}^{-1}(y)))|\det D\Psi_{t}^{-1}(y)|\>dy\\ &=\int_{\Omega}F(u(y))(1-t\operatorname{div}\xi+o(t))\>dy\\ &=\int_{\Omega}F(u(y))\>dy-t\int_{\Omega}F(u(y))\operatorname{div}\xi\>dy+o(t).\end{aligned} (5.71)

By differentiating (5.70) and (5.71) with respect to tt we obtain

ddt(Ω|ut|2+F(ut)dx)|t=0=Ω2uDξ(u)T(|u|2+F(u))divξdy.\displaystyle\left.\frac{d}{dt}\left(\int_{\Omega}|\nabla u_{t}|^{2}+F(u_{t})\>dx\right)\right|_{t=0}=\int_{\Omega}2\nabla uD\xi(\nabla u)^{\mathrm{T}}-(|\nabla u|^{2}+F(u))\operatorname{div}\xi\>dy. (5.72)

We also differentiate the last term in our functional

ddt(ΩQ2(x)χ{ut>0}(x)𝑑x)|t=0=ddtΩQ2(x)χ{u>0}(Ψt(x))𝑑x=ΩQ2(x)ξ𝑑μ(x).\displaystyle\begin{aligned} \frac{d}{dt}\left.\left(\int_{\Omega}Q^{2}(x)\chi_{\{u_{t}>0\}}(x)\>dx\right)\right|_{t=0}&=\frac{d}{dt}\int_{\Omega}Q^{2}(x)\chi_{\{u>0\}}(\Psi_{t}(x))\>dx=\int_{\Omega}Q^{2}(x)\xi\cdot d\mu(x).\end{aligned} (5.73)

Combining (5.72), (5.73) and the fact that uu is a minimizer, we have

0=ddt|t=0J(ut)=Ω2uDξ(u)T(|u|2+F(u))divξdx+ΩQ2(x)ξ𝑑μ.\displaystyle 0=\left.\frac{d}{dt}\right|_{t=0}J(u_{t})=\int_{\Omega}2\nabla uD\xi(\nabla u)^{\mathrm{T}}-(|\nabla u|^{2}+F(u))\operatorname{div}\xi\>dx+\int_{\Omega}Q^{2}(x)\xi\cdot d\mu.

Next we introduce an energy identity comes from the equation satisfied by minimizers.

Lemma 5.7 (Energy identity).

Let u𝒦u\in\mathcal{K} be a local minimizer of JJ in Ω\Omega, then for a.e. r(0,δ0)r\in(0,\delta_{0}) with δ0:=dist(x0,Ω)\delta_{0}:=\operatorname{dist}(x^{0},\partial\Omega),

Br(x0)[|u|2+uF(u)2]𝑑x=Br(x0)uuνdd1.\displaystyle\int_{B_{r}(x^{0})}\left[|\nabla u|^{2}+\frac{uF^{\prime}(u)}{2}\right]\>dx=\int_{\partial B_{r}(x^{0})}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}. (5.74)
Proof.

Without loss of generality, we might assume that x0=0x^{0}=0. For any 0<ε<r0<\varepsilon<r, we define ϕε,rC0(Br)\phi_{\varepsilon,r}\in C_{0}^{\infty}(B_{r}) such that ϕε,r(x)=1\phi_{\varepsilon,r}(x)=1 in BrεB_{r-\varepsilon} and ϕε,r(x)=1εx|x|χ{BrBrε}\nabla\phi_{\varepsilon,r}(x)=-\frac{1}{\varepsilon}\frac{x}{|x|}\chi_{\{B_{r}\setminus B_{r-\varepsilon}\}}. It is easy to see that uϕε,rH01(Br+(u))u\phi_{\varepsilon,r}\in H_{0}^{1}(B_{r}^{+}(u)). Inserting uϕε,ru\phi_{\varepsilon,r} as a test function in (2.18) yields

Br+(u)F(u)2(ϕε,ru)𝑑x\displaystyle-\int_{B_{r}^{+}(u)}\frac{F^{\prime}(u)}{2}(\phi_{\varepsilon,r}u)\>dx =Br+(u)u(ϕε,ru)dx\displaystyle=\int_{B_{r}^{+}(u)}\nabla u\cdot\nabla(\phi_{\varepsilon,r}u)\>dx
=Br|u|2ϕε,r𝑑x1εBrBrε¯ux|x|udx.\displaystyle=\int_{B_{r}}|\nabla u|^{2}\phi_{\varepsilon,r}\>dx-\frac{1}{\varepsilon}\int_{B_{r}\setminus\overline{B_{r-\varepsilon}}}\nabla u\cdot\frac{x}{|x|}u\>dx.

Letting ε0\varepsilon\to 0, we obtain that for a.e. r(0,δ0)r\in(0,\delta_{0}),

Br[|u|2+uF(u)2]𝑑x=Bruuνdd1.\displaystyle\int_{B_{r}}\left[|\nabla u|^{2}+\frac{uF^{\prime}(u)}{2}\right]\>dx=\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}.

In [7], Caffarelli and et. al. developed a Pohožaev-type identity for vectorial Bernoulli problem, we borrow their idea and adapt it to our settings, which will be applied to prove the monotonicity formula.

Lemma 5.8 (Pohožaev-type identity).

Let u𝒦u\in\mathcal{K} be a local minimizer of JJ in Ω\Omega, let Br(x0)ΩB_{r}(x^{0})\subset\Omega with r(0,δ0)r\in(0,\delta_{0}) where δ0:=dist(x0,Ω)\delta_{0}:=\operatorname{dist}(x^{0},\partial\Omega). Assume that Q(x)Q(x) is a continuous function, then we have the following identity

dBr(x0)(|u|2+F(u))𝑑x=2Br(x0)|u|2𝑑x+rBr(x0)(|u|22(uν)2)𝑑d1+rBr(x0)F(u)𝑑d1+Br(x0)Q2(x)(xx0)𝑑μ(x),\displaystyle\begin{aligned} d\int_{B_{r}(x^{0})}(|\nabla u|^{2}+F(u))\>dx&=2\int_{B_{r}(x^{0})}|\nabla u|^{2}\>dx+r\int_{\partial B_{r}(x^{0})}(|\nabla u|^{2}-2(\nabla u\cdot\nu)^{2})\>d\mathcal{H}^{d-1}\\ &\quad+r\int_{\partial B_{r}(x^{0})}F(u)\>d\mathcal{H}^{d-1}+\int_{B_{r}(x^{0})}Q^{2}(x)(x-x^{0})\cdot d\mu(x),\end{aligned} (5.75)

where the vector Radon measure μ\mu is defined in (5.67).

Proof.

Assume x0=0x^{0}=0 and define ξ(x):=xϕε,r\xi(x):=x\phi_{\varepsilon,r} where ϕε,r\phi_{\varepsilon,r} is the test function given in Lemma 5.7. Introducing ξ(x)\xi(x) as a test function into the domain variation formula (5.69) gives

dΩ(|u|2+F(u))ϕε,r𝑑x=Ω2|u|2ϕε,r+2(ux)(ϕε,ru)dxΩ(|u|2+F(u))(xϕε,r(x))𝑑x+ΩQ2(x)(xϕε,r)𝑑μ(x).\displaystyle\begin{aligned} &d\int_{\Omega}(|\nabla u|^{2}+F(u))\phi_{\varepsilon,r}\>dx\\ &\quad=\int_{\Omega}2|\nabla u|^{2}\phi_{\varepsilon,r}+2(\nabla u\cdot x)(\nabla\phi_{\varepsilon,r}\cdot\nabla u)\>dx-\int_{\Omega}(|\nabla u|^{2}+F(u))(x\cdot\nabla\phi_{\varepsilon,r}(x))\>dx\\ &\qquad+\int_{\Omega}Q^{2}(x)(x\phi_{\varepsilon,r})\cdot\>d\mu(x).\end{aligned} (5.76)

Passing to the limit as ε0\varepsilon\to 0 in (5.76) gives the desired result. ∎

We next show that the formula (5.64) is a direct application of Lemma 5.7 and Lemma 5.8.

Proof of the formula (5.64).

Assume x0=0x^{0}=0, then for a.e. r(0,δ0)r\in(0,\delta_{0}), a straightforward calculation yields

ddr(rd1Bru2𝑑d1)=2rd2Bru2𝑑d1+2rd1Bruuνdd1.\displaystyle\frac{d}{dr}\left(r^{-d-1}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}\right)=-2r^{-d-2}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}+2r^{-d-1}\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}. (5.77)

We further compute

12rd+1ddrW(u,r;Q)\displaystyle\frac{1}{2}r^{d+1}\frac{d}{dr}W(u,r;Q) =d2Br|u|2+F(u)dxd2BrQ2(x)χ{u>0}𝑑x\displaystyle=-\frac{d}{2}\int_{B_{r}}|\nabla u|^{2}+F(u)\>dx-\frac{d}{2}\int_{B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>dx
+r2Br|u|2+F(u)+Q2(x)χ{u>0}dd1\displaystyle\quad+\frac{r}{2}\int_{\partial B_{r}}|\nabla u|^{2}+F(u)+Q^{2}(x)\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}
+1rBru2𝑑d1Bruuνdd1.\displaystyle\quad+\frac{1}{r}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}-\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}.

Using the identity (5.75) for the first integral on the right-hand side, we get

12rd+1ddrW(u,r;Q)\displaystyle\frac{1}{2}r^{d+1}\frac{d}{dr}W(u,r;Q) =12(2Br|u|2+rBr|u|22(uν)2dd1\displaystyle=-\frac{1}{2}\left(2\int_{B_{r}}|\nabla u|^{2}+r\int_{\partial B_{r}}|\nabla u|^{2}-2(\nabla u\cdot\nu)^{2}\>d\mathcal{H}^{d-1}\right.
+rBrF(u)dd1+BrQ2(x)xdμ(x))\displaystyle\qquad\quad\left.+r\int_{\partial B_{r}}F(u)\>d\mathcal{H}^{d-1}+\int_{B_{r}}Q^{2}(x)x\cdot d\mu(x)\right)
d2BrQ2(x)χ{u>0}𝑑x+r2Br(|u|2+F(u))𝑑d1\displaystyle\qquad\quad-\frac{d}{2}\int_{B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>dx+\frac{r}{2}\int_{\partial B_{r}}(|\nabla u|^{2}+F(u))\>d\mathcal{H}^{d-1}
+r2BrQ2(x)χ{u>0}𝑑d1+1rBru2𝑑d1\displaystyle\qquad\quad+\frac{r}{2}\int_{\partial B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}+\frac{1}{r}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}
Bruuνdd1.\displaystyle\qquad\quad-\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}.

Tidying the results, we obtain

12rd+1ddrW(u,r;Q)=Br|u|2𝑑x+rBr(uν)2𝑑d1+1rBru2𝑑d1Bruuνdd112BrQ2(x)x𝑑μ(x)d2BrQ2(x)χ{u>0}𝑑x+r2BrQ2(x)χ{u>0}𝑑d1,\displaystyle\begin{aligned} \frac{1}{2}r^{d+1}\frac{d}{dr}W(u,r;Q)&=-\int_{B_{r}}|\nabla u|^{2}\>dx+r\int_{\partial B_{r}}(\nabla u\cdot\nu)^{2}\>d\mathcal{H}^{d-1}+\frac{1}{r}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}\\ &\qquad-\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}-\frac{1}{2}\int_{B_{r}}Q^{2}(x)x\cdot d\mu(x)\\ &\qquad-\frac{d}{2}\int_{B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>dx+\frac{r}{2}\int_{\partial B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>d\mathcal{H}^{d-1},\end{aligned} (5.78)

where μ\mu is the vector Radon measure defined in (5.67). It follows from Lemma 5.7 and applying (5.74) for the first integral on the right-hand side of (5.78), we obtain for a.e. r(0,δ0)r\in(0,\delta_{0}),

12rd+1ddrW(u,r;Q)=rBr(uν)2𝑑d1+1rBru2𝑑d12Bruuνdd1+BruF(u)2𝑑x12BrQ2(x)x𝑑μ(x)d2BrQ2(x)χ{u>0}𝑑x+r2BrQ2(x)χ{u>0}𝑑d1.\displaystyle\begin{aligned} \frac{1}{2}r^{d+1}\frac{d}{dr}W(u,r;Q)&=r\int_{\partial B_{r}}(\nabla u\cdot\nu)^{2}\>d\mathcal{H}^{d-1}+\frac{1}{r}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}\\ &\qquad-2\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}+\int_{B_{r}}\frac{uF^{\prime}(u)}{2}\>dx\\ &\qquad-\frac{1}{2}\int_{B_{r}}Q^{2}(x)x\cdot d\mu(x)-\frac{d}{2}\int_{B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>dx\\ &\qquad+\frac{r}{2}\int_{\partial B_{r}}Q^{2}(x)\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}.\end{aligned} (5.79)

Notice that

rBr(uν)2𝑑d12Bruuνdd1+1rBru2𝑑d1=rBr(uνur)2𝑑d1.\displaystyle r\int_{\partial B_{r}}(\nabla u\cdot\nu)^{2}\>d\mathcal{H}^{d-1}-2\int_{\partial B_{r}}u\nabla u\cdot\nu\>d\mathcal{H}^{d-1}+\frac{1}{r}\int_{\partial B_{r}}u^{2}\>d\mathcal{H}^{d-1}=r\int_{\partial B_{r}}\left(\nabla u\cdot\nu-\frac{u}{r}\right)^{2}\>d\mathcal{H}^{d-1}. (5.80)

The desired result follows from (5.79) and (5.80). ∎

We next introduce another monotonicity formula, which is different from (5.64) and is obtained by comparing ux0,ru_{x^{0},r} with its one-homogeneous extensions in B1B_{1}.

Proposition 5.9.

Let Br(x0)ΩB_{r}(x^{0})\subset\Omega with r(0,δ0)r\in(0,\delta_{0}), where δ0=dist(x0,Ω)\delta_{0}=\operatorname{dist}(x^{0},\partial\Omega). Let u𝒦u\in\mathcal{K} be a local minimizer in Bδ0(x0)B_{\delta_{0}}(x^{0}) and let zx0,r:B1z_{x^{0},r}\colon B_{1}\to\mathbb{R} be the one-homogeneous extension of ux0,ru_{x^{0},r} defined by

zx0,r:=|x|ux0,r(x|x|).\displaystyle z_{x^{0},r}:=|x|u_{x^{0},r}\left(\frac{x}{|x|}\right). (5.81)

Then

ddrW(ux0,r)=dr(W(zx0,r)W(ux0,r))+1rB1|xux0,rux0,r|2𝑑d1+2(ux0,r;F)+𝒬2(ux0,r;Q),\displaystyle\begin{aligned} \frac{d}{dr}W(u_{x^{0},r})&=\frac{d}{r}(W(z_{x^{0},r})-W(u_{x^{0},r}))+\frac{1}{r}\int_{\partial B_{1}}|x\cdot\nabla u_{x^{0},r}-u_{x^{0},r}|^{2}\>d\mathcal{H}^{d-1}\\ &\ \ +\mathcal{F}_{2}(u_{x^{0},r};F)+{\mathcal{Q}}_{2}(u_{x^{0},r};Q),\end{aligned} (5.82)

where

2(ux0,r;F)=1rB1F(rux0,r)𝑑d1drB1F(rzx0,r)𝑑x,\displaystyle\mathcal{F}_{2}(u_{x^{0},r};F)=\frac{1}{r}\int_{\partial B_{1}}F(ru_{x^{0},r})\>d\mathcal{H}^{d-1}-\frac{d}{r}\int_{B_{1}}F(rz_{x^{0},r})\>dx, (5.83)

and

𝒬2(ux0,r;Q)=1rB1Q2(x0+rx)χ{ux0,r>0}𝑑d1drB1Q2(x0+rx)χ{zr>0}𝑑x.\displaystyle\mathcal{Q}_{2}(u_{x^{0},r};Q)=\frac{1}{r}\int_{\partial B_{1}}Q^{2}(x^{0}+rx)\chi_{\{u_{x^{0},r}>0\}}\>d\mathcal{H}^{d-1}-\frac{d}{r}\int_{B_{1}}Q^{2}(x^{0}+rx)\chi_{\{z_{r}>0\}}\>dx. (5.84)
Remark 5.10.

In [27], Reifenberg exhibited the idea that a purely variational inequality, known as an epiperimetric inequality, will encode the local behavior of the free boundary. Since then, extensive literature has been dedicated to prove different kinds of epiperimetric inequalities. (We refer to [29] for epiperimetric inequality for problem (1.1)). The original idea of Reifenberg is: if :H1(B1)\mathcal{E}\colon H^{1}(B_{1})\to\mathbb{R} is a given energy which satisfies the following properties:

  1. (1)

    (ur)(vr)\mathcal{E}(u_{r})\leqslant\mathcal{E}(v_{r}) for every vrH1(B1)v_{r}\in H^{1}(B_{1}) with vr=urv_{r}=u_{r} on B1\partial B_{1};

  2. (2)

    ddr(ur)C1rB1|xurur|2𝑑d1\frac{d}{dr}\mathcal{E}(u_{r})\geqslant\frac{C_{1}}{r}\int_{\partial B_{1}}|x\cdot\nabla u_{r}-u_{r}|^{2}\>d\mathcal{H}^{d-1} for every r(0,1)r\in(0,1) and for some positive constants C1>0C_{1}>0;

  3. (3)

    ddr(ur)C2r((zr)(ur))\frac{d}{dr}\mathcal{E}(u_{r})\geqslant\frac{C_{2}}{r}(\mathcal{E}(z_{r})-\mathcal{E}(u_{r})) for every r(0,1)r\in(0,1) and for some positive constants C2>0C_{2}>0. Here zrz_{r} is the one-homogeneous extension of uru_{r} defined in (5.81).

  4. (4)

    (hr)(1ε)(ur)\mathcal{E}(h_{r})\leqslant(1-\varepsilon)\mathcal{E}(u_{r}) for all hr=ur=zrh_{r}=u_{r}=z_{r} on B1\partial B_{1}.

Then the uniqueness of blow-up limit is a direct corollary of (1)-(4). As an application of the uniqueness of blow-up limit, one can determine the regularity of the regular set regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u), even the regularity of the singular set singΩ+(u)\partial_{\mathrm{sing}}\varOmega^{+}(u). In our context, the energy to which will apply (1)-(4) is

(u)ωd2=(B1|u|2+F(u)+χ{u>0}dxB1u2𝑑d1)ωd2.\displaystyle\mathcal{E}(u)-\frac{\omega_{d}}{2}=\left(\int_{B_{1}}|\nabla u|^{2}+F(u)+\chi_{\{u>0\}}\>dx-\int_{\partial B_{1}}u^{2}\>d\mathcal{H}^{d-1}\right)-\frac{\omega_{d}}{2}.

This is the core reason we put forward the formula (5.82). Observe that (1)-(3) is a direct result of the formula (5.82) (Please see Remark 5.12 below). However, (4) is unknown and remains to be an open problem. In this paper, we will use an approach to show the uniqueness of blow-up limit (see Section ) heavily dependent on the geometry (flatness) of the free boundary. However, we believe that the regularity of problem (1.7) can also be obtained following Reifenberg’s idea and Proposition 5.9 will help us to prove (2) and (3).

Proof.

Assume x0=0x^{0}=0. It follows from the definition of zrz_{r} that for each r(0,δ0)r\in(0,\delta_{0}) one can write zr:B1z_{r}\colon B_{1}\to\mathbb{R} in polar coordinates ρ(0,1]\rho\in(0,1], θ𝕊d1\theta\in\mathbb{S}^{d-1} as zr(ρ,θ)=ρzr(1,θ)z_{r}(\rho,\theta)=\rho z_{r}(1,\theta). Therefore, we have the following identity.

B1|zr|2𝑑xB1zr2𝑑d1\displaystyle\int_{B_{1}}|\nabla z_{r}|^{2}\>dx-\int_{\partial B_{1}}z_{r}^{2}d\mathcal{H}^{d-1} =01ρd1𝑑ρ𝕊d1(zr2(1,θ)+|θzr(1,θ)|2)𝑑θ𝕊d1zr2𝑑θ\displaystyle=\int_{0}^{1}\rho^{d-1}\>d\rho\int_{\mathbb{S}^{d-1}}(z_{r}^{2}(1,\theta)+|\nabla_{\theta}z_{r}(1,\theta)|^{2})\>d\theta-\int_{\mathbb{S}^{d-1}}z_{r}^{2}\>d\theta
=1d𝕊d1|θzr(1,θ)|2𝑑θd1d𝕊d1zr2(1,θ)𝑑θ\displaystyle=\frac{1}{d}\int_{\mathbb{S}^{d-1}}|\nabla_{\theta}z_{r}(1,\theta)|^{2}\>d\theta-\frac{d-1}{d}\int_{\mathbb{S}^{d-1}}z_{r}^{2}(1,\theta)\>d\theta
=1dB1(|ur|2(xur)2)𝑑d1d1dB1ur2𝑑d1,\displaystyle=\frac{1}{d}\int_{\partial B_{1}}(|\nabla u_{r}|^{2}-(x\cdot\nabla u_{r})^{2})\>d\mathcal{H}^{d-1}-\frac{d-1}{d}\int_{\partial B_{1}}u_{r}^{2}\>d\mathcal{H}^{d-1},

where we have used |u|2=(ρu)2+ρ2|θu|2|\nabla u|^{2}=(\partial_{\rho}u)^{2}+\rho^{-2}|\nabla_{\theta}u|^{2} if u=u(ρ,θ)u=u(\rho,\theta). Thus, let 2(ur;F)\mathcal{F}_{2}(u_{r};F) and 𝒬2(ur;Q)\mathcal{Q}_{2}(u_{r};Q) be defined in (5.83) and (5.84), and it follows from (5.63) that

dr(W(zr)W(ur))+1rB1|xurur|2𝑑d1+2(ur;F)+𝒬2(ur;F)\displaystyle\frac{d}{r}(W(z_{r})-W(u_{r}))+\frac{1}{r}\int_{\partial B_{1}}|x\cdot\nabla u_{r}-u_{r}|^{2}\>d\mathcal{H}^{d-1}+\mathcal{F}_{2}(u_{r};F)+\mathcal{Q}_{2}(u_{r};F)
=drB1(|ur|2+F(rur)+Q2(rx)χ{ur>0})𝑑x\displaystyle=-\frac{d}{r}\int_{B_{1}}(|\nabla u_{r}|^{2}+F(ru_{r})+Q^{2}(rx)\chi_{\{u_{r}>0\}})\>dx
+1rB1(|ur|2+F(rur)+Q2(rx)χ{ur>0})𝑑d1\displaystyle\quad+\frac{1}{r}\int_{\partial B_{1}}(|\nabla u_{r}|^{2}+F(ru_{r})+Q^{2}(rx)\chi_{\{u_{r}>0\}})\>d\mathcal{H}^{d-1}
+2rB1ur2𝑑d12rB1ur(urx)𝑑d1.\displaystyle\quad+\frac{2}{r}\int_{\partial B_{1}}u_{r}^{2}\>d\mathcal{H}^{d-1}-\frac{2}{r}\int_{\partial B_{1}}u_{r}(\nabla u_{r}\cdot x)\>d\mathcal{H}^{d-1}.

On the other hand, by a direct calculation, we have

ddr(rdBr|u|2+F(u)+Q2(x)χ{u>0})\displaystyle\frac{d}{dr}\left(r^{-d}\int_{B_{r}}|\nabla u|^{2}+F(u)+Q^{2}(x)\chi_{\{u>0\}}\right)
=drB1(|ur|2+F(rur)+Q2(rx)χ{ur>0})𝑑x\displaystyle=-\frac{d}{r}\int_{B_{1}}(|\nabla u_{r}|^{2}+F(ru_{r})+Q^{2}(rx)\chi_{\{u_{r}>0\}})\>dx
+1rB1(|ur|2+F(rur)+Q2(rx)χ{ur>0})𝑑d1.\displaystyle\quad+\frac{1}{r}\int_{\partial B_{1}}(|\nabla u_{r}|^{2}+F(ru_{r})+Q^{2}(rx)\chi_{\{u_{r}>0\}})\>d\mathcal{H}^{d-1}.

This proves the result by employing the equality (5.77). ∎

In the end of this section, we collect some properties of the functions i(u,r;F)\mathcal{F}_{i}(u,r;F) and 𝒬i(u,r;Q)\mathcal{Q}_{i}(u,r;Q) for i=1i=1, 22.

Proposition 5.11.

Let i(u,r;F)\mathcal{F}_{i}(u,r;F) and 𝒬i(u,r;Q)\mathcal{Q}_{i}(u,r;Q) for i=1i=1, 22 be defined as in Proposition 5.3 and Proposition 5.9, respectively. Then the following does hold:

  1. (1)

    If u𝒦u\in\mathcal{K} is a minimizer of JJ in Br(x0)B_{r}(x^{0}) and let F(t)F(t) satisfies (1.8) with F(0)=0F^{\prime}(0)=0, then i(u,r;F)0\mathcal{F}_{i}(u,r;F)\geqslant 0 for a.e. r(0,δ0)r\in(0,\delta_{0}).

  2. (2)

    If u𝒦u\in\mathcal{K} is a minimizer of JJ in Br(x0)B_{r}(x^{0}) and let F(t)F(t) satisfies (1.8), then

    i(u,r;F)C for i=1,2,\displaystyle\mathcal{F}_{i}(u,r;F)\geqslant-C\quad\text{ for }\quad i=1,2, (5.85)

    where CC is a constant depending on dd, M0M_{0} and F0F_{0} but independent of rr and x0x^{0}.

  3. (3)

    If Q(x)C0(Br(x0))Q(x)\in C^{0}(B_{r}(x^{0})), then

    𝒬i(r;Q)CQmaxroscBr(x0)Q for a.e. r(0,δ0).\displaystyle\mathcal{Q}_{i}(r;Q)\geqslant-C\frac{Q_{\mathrm{max}}}{r}\operatorname{osc}_{B_{r}(x^{0})}Q\quad\text{ for a.e. }\quad r\in(0,\delta_{0}). (5.86)

    Here CC is a constant depending only on the continuity norm of QQ and oscBr(x0)(Q):=maxBrQminBr(x0)Q\operatorname{osc}_{B_{r}(x^{0})}(Q):=\max_{B_{r}}Q-\min_{B_{r}(x^{0})}Q.

  4. (4)

    If Q(x)Cβ(Br(x0))Q(x)\in C^{\beta}(B_{r}(x^{0})), then

    𝒬i(r;Q)CQmaxr1β[Q]β;Br(x0) for a.e. r(0,δ0),\displaystyle\mathcal{Q}_{i}(r;Q)\geqslant-C\frac{Q_{\mathrm{max}}}{r^{1-\beta}}[Q]_{\beta;B_{r}(x^{0})}\text{ for a.e. }\quad r\in(0,\delta_{0}), (5.87)

    Here CC is a constant depending only on [Q]β;Br(x0):=supxy|Q(x)Q(y)||xy|β[Q]_{\beta;B_{r}(x^{0})}:=\sup_{x\neq y}\frac{|Q(x)-Q(y)|}{|x-y|^{\beta}}.

Proof.

Assume x0=0x^{0}=0. (1). In view of (1.8), F(t)F^{\prime}(t) is an increasing function for tt\in\mathbb{R}, therefore F(0)=0F^{\prime}(0)=0 implies that F(t)F(0)=0F^{\prime}(t)\geqslant F^{\prime}(0)=0 for all t0t\geqslant 0. It follows from Proposition 2.2 that u0u\geqslant 0 in Br(x0)B_{r}(x^{0}) and the definition of 1(u,r;F)\mathcal{F}_{1}(u,r;F) in (5.65) that 1(u,r;F)0\mathcal{F}_{1}(u,r;F)\geqslant 0. In order to prove 2(u,r;F)0\mathcal{F}_{2}(u,r;F)\geqslant 0, it suffices to prove that

drB1F(rzr)𝑑x=dr01ρd1𝑑ρ𝕊d1F(rρzr(1,θ))𝑑θ1rB1F(rur)𝑑d1.\displaystyle\frac{d}{r}\int_{B_{1}}F(rz_{r})\>dx=\frac{d}{r}\int_{0}^{1}\rho^{d-1}\>d\rho\int_{\mathbb{S}^{d-1}}F(r\rho z_{r}(1,\theta))\>d\theta\leqslant\frac{1}{r}\int_{\partial B_{1}}F(ru_{r})\>d\mathcal{H}^{d-1}. (5.88)

In fact, it follows from F(t)0F^{\prime}(t)\geqslant 0 for all t0t\geqslant 0 that

01ρd1𝑑ρ𝕊d1F(rρzr(1,θ))𝑑θ\displaystyle\int_{0}^{1}\rho^{d-1}\>d\rho\int_{\mathbb{S}^{d-1}}F(r\rho z_{r}(1,\theta))\>d\theta 01ρd1𝑑ρ𝕊d1F(rzr(1,θ))𝑑θ\displaystyle\leqslant\int_{0}^{1}\rho^{d-1}\>d\rho\int_{\mathbb{S}^{d-1}}F(rz_{r}(1,\theta))\>d\theta
=1d𝕊d1F(rzr(1,θ))𝑑θ=1dB1F(rur)𝑑d1,\displaystyle=\frac{1}{d}\int_{\mathbb{S}^{d-1}}F(rz_{r}(1,\theta))\>d\theta=\frac{1}{d}\int_{\partial B_{1}}F(ru_{r})\>d\mathcal{H}^{d-1},

where we have used the fact that 0rρz1(1,θ)rzr(1,θ)0\leqslant r\rho z_{1}(1,\theta)\leqslant rz_{r}(1,\theta) for ρ(0,1]\rho\in(0,1] in the first inequality and ur=zrH1(B1)u_{r}=z_{r}\in H^{1}(\partial B_{1}) in the last inequality. This gives (5.88).

(2). Since uu is a minimizer, we have from Proposition 3.1 that |u|C|\nabla u|\leqslant C for some constant depending on dd and F0F_{0}. This implies that |u(x)|C|xx0|Cr|u(x)|\leqslant C|x-x^{0}|\leqslant Cr in Br(x0)B_{r}(x^{0}). On the other hand, in via of (1.8) and a direct calculation, we obtain

maxu0|F(u)|2(|f(0)|+maxt0|f(t)||u|)2(F02+F02M0)C(F0,M0).\displaystyle\max_{u\geqslant 0}|F^{\prime}(u)|\leqslant 2(|f(0)|+\max_{t\geqslant 0}|f^{\prime}(t)||u|)\leqslant 2\left(\frac{F_{0}}{2}+\frac{F_{0}}{2}M_{0}\right)\leqslant C(F_{0},M_{0}). (5.89)

Therefore, it follows from (5.65) and (5.89) that

|1(u,r;F)|1rd+1Br|uF(u)|𝑑xCrdmaxu0|F(u)|Br𝑑xC(d,F0,M0).\displaystyle|\mathcal{F}_{1}(u,r;F)|\leqslant\frac{1}{r^{d+1}}\int_{B_{r}}|uF^{\prime}(u)|\>dx\leqslant\frac{C}{r^{d}}\max_{u\geqslant 0}|F^{\prime}(u)|\int_{B_{r}}\>dx\leqslant C(d,F_{0},M_{0}). (5.90)

This proves (5.85) for i=1i=1. For 2(ur;F)\mathcal{F}_{2}(u_{r};F), we compute

2(ur;F)\displaystyle\mathcal{F}_{2}(u_{r};F) =1rB1F(0)+F(rξr)rurdd1dr01ρd1𝑑ρ𝕊d1F(0)+F(rζr)rρzr(1,θ)dθ\displaystyle=\frac{1}{r}\int_{\partial B_{1}}F(0)+F^{\prime}(r\xi_{r})ru_{r}\>d\mathcal{H}^{d-1}-\frac{d}{r}\int_{0}^{1}\rho^{d-1}\>d\rho\int_{\mathbb{S}^{d-1}}F(0)+F^{\prime}(r\zeta_{r})r\rho z_{r}(1,\theta)\>d\theta
=B1F(rξr)ur𝑑d1d01ρd𝑑ρ𝕊d1F(rζr)zr(1,θ)𝑑θ\displaystyle=\int_{\partial B_{1}}F^{\prime}(r\xi_{r})u_{r}\>d\mathcal{H}^{d-1}-d\int_{0}^{1}\rho^{d}\>d\rho\int_{\mathbb{S}^{d-1}}F^{\prime}(r\zeta_{r})z_{r}(1,\theta)\>d\theta
=B1F(rξr)ur𝑑d1dd+1B1F(rζr)ur𝑑d1\displaystyle=\int_{\partial B_{1}}F^{\prime}(r\xi_{r})u_{r}\>d\mathcal{H}^{d-1}-\frac{d}{d+1}\int_{\partial B_{1}}F^{\prime}(r\zeta_{r})u_{r}\>d\mathcal{H}^{d-1}
=1rdBrF(ξ)u𝑑d1dd+11rdBrF(ζ)u𝑑d1\displaystyle=\frac{1}{r^{d}}\int_{\partial B_{r}}F^{\prime}(\xi)u\>d\mathcal{H}^{d-1}-\frac{d}{d+1}\frac{1}{r^{d}}\int_{\partial B_{r}}F^{\prime}(\zeta)u\>d\mathcal{H}^{d-1}

Then it follows from (5.89) and a similar calculation as in (5.90) that (5.85) holds for i=2i=2.

(3). Recalling (5.66) and compute

𝒬1(r;Q)=1rd+1Br(Q2(x)Q2(0))x𝑑μ(x)drd+1Br(Q2(x)Q2(0))χ{u>0}𝑑x+1rdBr(Q2(x)Q2(0))χ{u>0}𝑑d1CQmaxoscBrQrdBrd|μ|(x)CdQmaxoscBrQrd+1Brχ{u>0}𝑑xCQmaxoscBrQrdBrχ{u>0}𝑑d1CQmaxroscBrQ,\displaystyle\begin{aligned} \mathcal{Q}_{1}(r;Q)&=-\frac{1}{r^{d+1}}\int_{B_{r}}(Q^{2}(x)-Q^{2}(0))x\cdot d\mu(x)-\frac{d}{r^{d+1}}\int_{B_{r}}(Q^{2}(x)-Q^{2}(0))\chi_{\{u>0\}}\>dx\\ &\quad+\frac{1}{r^{d}}\int_{\partial B_{r}}(Q^{2}(x)-Q^{2}(0))\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}\\ &\geqslant-C\frac{Q_{\mathrm{max}}\operatorname{osc}_{B_{r}}Q}{r^{d}}\int_{B_{r}}d|\mu|(x)-C\frac{dQ_{\mathrm{max}}\operatorname{osc}_{B_{r}}Q}{r^{d+1}}\int_{B_{r}}\chi_{\{u>0\}}\>dx\\ &\quad-C\frac{Q_{\mathrm{max}}\operatorname{osc}_{B_{r}}Q}{r^{d}}\int_{\partial B_{r}}\chi_{\{u>0\}}\>d\mathcal{H}^{d-1}\\ &\geqslant-C\frac{Q_{\mathrm{max}}}{r}\operatorname{osc}_{B_{r}}Q,\end{aligned} (5.91)

where we have used Remark 5.5 in the first identity. As for 𝒬2\mathcal{Q}_{2}, we first notice that if QQ is a constant, then 𝒬20\mathcal{Q}_{2}\equiv 0, indeed,

B1χ{zr>0}=01sd1𝑑s𝕊d1χ{ur>0}𝑑d1=1dB1χ{ur>0}𝑑d1.\displaystyle\int_{B_{1}}\chi_{\{z_{r}>0\}}=\int_{0}^{1}s^{d-1}ds\int_{\mathbb{S}^{d-1}}\chi_{\{u_{r}>0\}}d\mathcal{H}^{d-1}=\frac{1}{d}\int_{\partial B_{1}}\chi_{\{u_{r}>0\}}d\mathcal{H}^{d-1}.

Therefore, we can rewrite 𝒬2\mathcal{Q}_{2} in the following form

𝒬2(ur;Q)=1rB1χ{ur>0}(Q2(rx)Q2(0))𝑑d1drB1χ{zr>0}(Q2(rx)Q2(0))𝑑x.\displaystyle\mathcal{Q}_{2}(u_{r};Q)=\frac{1}{r}\int_{\partial B_{1}}\chi_{\{u_{r}>0\}}(Q^{2}(rx)-Q^{2}(0))\>d\mathcal{H}^{d-1}-\frac{d}{r}\int_{B_{1}}\chi_{\{z_{r}>0\}}(Q^{2}(rx)-Q^{2}(0))\>dx.

Then we can follow a similar argument as in (5.91) to conclude the proof.

(4). The desired result (5.87) follows by a similar calculation as in (3), so we omit it. ∎

Remark 5.12.

If in particular f(0)=0f(0)=0 and QconstQ\equiv\operatorname{const}, it follows from (5.82), (5.83) and the first property in Proposition 5.11 that

ddrW(ux0,r)1rB1|xux0,rux0,r|2𝑑d1 for a.e. r(0,δ0),\displaystyle\frac{d}{dr}W(u_{x^{0},r})\geqslant\frac{1}{r}\int_{\partial B_{1}}|x\cdot\nabla u_{x^{0},r}-u_{x^{0},r}|^{2}\>d\mathcal{H}^{d-1}\quad\text{ for a.e. }\quad r\in(0,\delta_{0}),

and

ddrW(ux0,r)dr(W(zx0,r)W(ux0,r)) for a.e. r(0,δ0).\displaystyle\frac{d}{dr}W(u_{x^{0},r})\geqslant\frac{d}{r}(W(z_{x^{0},r})-W(u_{x^{0},r}))\quad\text{ for a.e. }\quad r\in(0,\delta_{0}).

Notice that these two inequalities were exactly the second and the third property we have mentioned in Remark 5.10.

6. Structure of the free boundary

This section dedicates to prove Theorem 1.2 using those technical tools obtained in the previous sections. The first one is a direct application of the Weiss-type monotonicity formula we obtained in Proposition 5.3 and Proposition 5.9, which tells us that blow-up limits of minimizers are homogeneous functions of degree one.

Proposition 6.1 (Homogeneity of blow-up limits).

Let uu be a minimizer of JJ in Ω\Omega with 0Ω0\in\Omega and u(0)=0u(0)=0, let F(t)F(t) satisfy (1.8). Assume that QQ is Dini-continuous at the origin, namely,

limr0+r1roscBrQdx<.\displaystyle\lim_{r\to 0^{+}}\int_{r}\frac{1}{r}\operatorname{osc}_{B_{r}}Q\>dx<\infty. (6.92)

Let BrnΩB_{r_{n}}\subset\Omega with rn0r_{n}\to 0 as nn\to\infty. Let u0u_{0} be a blow-up limit of uu at the origin with respect to the sequence rnr_{n}. Then

  1. (1)

    The limit limr0+W(u,r,Q)\lim_{r\to 0^{+}}W(u,r,Q) exists and is finite for a.e. r(0,δ0)r\in(0,\delta_{0});

  2. (2)

    u0u_{0} is a homogeneous function of degree one.

Proof.

Define ρ(r):=0r1soscBsQds\rho(r):=\int_{0}^{r}\frac{1}{s}\operatorname{osc}_{B_{s}}Q\>ds. Then it follows from the assumption (6.92) that ρ(r)\rho(r) is absolutely continuous with respect to r(0,δ0)r\in(0,\delta_{0}) and thus ρ(r)\rho^{\prime}(r) and limr0+ρ(r)\lim_{r\to 0^{+}}\rho(r) exists for a.e. r(0,δ0)r\in(0,\delta_{0}). It follows from (5.64) that ddrW(u,r;Q)i(u,r;F)+𝒬i(r;Q)\frac{d}{dr}W(u,r;Q)\geqslant\mathcal{F}_{i}(u,r;F)+\mathcal{Q}_{i}(r;Q) for i=1i=1 and i=2i=2 with 𝒬2(r;Q)=0\mathcal{Q}_{2}(r;Q)=0. It follows from the second and the third property of Proposition (5.11) that ddrW(u,r;Q)CQmaxroscBrQ\frac{d}{dr}W(u,r;Q)\geqslant-C-\frac{Q_{\mathrm{max}}}{r}\operatorname{osc}_{B_{r}}Q. Thus the function G(u,r;Q):=W(u,r;Q)+Cr+CQmaxρ(r)G(u,r;Q):=W(u,r;Q)+Cr+CQ_{\mathrm{max}}\rho(r) satisfies ddrG(u,r;Q)0\frac{d}{dr}G(u,r;Q)\geqslant 0 for a.e. r(0,δ0)r\in(0,\delta_{0}) and therefore the limit limr0+G(u,r;Q)\lim_{r\to 0^{+}}G(u,r;Q) exists. Since limr0+Cr=0\lim_{r\to 0^{+}}Cr=0, due to the fact that CC is independent of rr and limr0+ρ(r)=0\lim_{r\to 0^{+}}\rho(r)=0 we obtain that the limit limr0+W(u,r;Q)[,+)\lim_{r\to 0^{+}}W(u,r;Q)\in[-\infty,+\infty) exists. Since u(0)=0u(0)=0 we may see by regularity results that W(u,0+;Q)>W(u,0^{+};Q)>-\infty. This proves (1).

(2). To prove the second statement, we use the formula (5.64) and one can also use the formula (5.82) to obtain the same result without effort. We integrate the inequality (5.64) and we have

rnϱrnσ1rB1|xurur|2𝑑d1𝑑rW(u,rnσ,Q)W(u,rnϱ,Q)+rnϱrnσC𝑑r+CQmax(ρ(rnσ)ρ(rnϱ)),\displaystyle\begin{aligned} &\int_{r_{n}\varrho}^{r_{n}\sigma}\frac{1}{r}\int_{\partial B_{1}}|x\cdot\nabla u_{r}-u_{r}|^{2}\>d\mathcal{H}^{d-1}dr\\ &\leqslant W(u,r_{n}\sigma,Q)-W(u,r_{n}\varrho,Q)+\int_{r_{n}\varrho}^{r_{n}\sigma}C\>dr+CQ_{\mathrm{max}}(\rho(r_{n}\sigma)-\rho(r_{n}\varrho)),\end{aligned} (6.93)

where we have used (5.85), (5.86) and (6.92). It follows by rescaling (6.93) that

0\displaystyle 0 BσBϱ|z|d2(unzun)𝑑z\displaystyle\leqslant\int_{B_{\sigma}\setminus B_{\varrho}}|z|^{-d-2}(\nabla u_{n}\cdot z-u_{n})\>dz
W(u,rnσ,Q)W(u,rnϱ,Q)+Crn(σϱ)+CQmax(ρ(σrn)ρ(ϱrn)).\displaystyle\leqslant W(u,r_{n}\sigma,Q)-W(u,r_{n}\varrho,Q)+Cr_{n}(\sigma-\varrho)+CQ_{\mathrm{max}}(\rho(\sigma r_{n})-\rho(\varrho r_{n})).

Passing to the limit as nn\to\infty we have the desired homogeneity. ∎

Remark 6.2.

Although in the above Proposition, we mainly focused on the homogeneity of free boundary point 0Ω+(u)0\in\partial\varOmega^{+}(u), one can also consider the case 0Ω+(u)0\in\varOmega^{+}(u). In fact, if 0Ω0\in\Omega with u(0)>0u(0)>0, then it follows from the regularity results |u|2C|\nabla u|^{2}\leqslant C in Ω\Omega that W(u,r,Q)C1C2r2W(u,r,Q)\leqslant C_{1}-\tfrac{C_{2}}{r^{2}} for any 0<r<δ00<r<\delta_{0}. This implies that W(u,0+,Q)=W(u,0^{+},Q)=-\infty for all such points. The homogeneity of u0u_{0} at these points can be verified same as in the second part of the proof in Proposition 6.1.

Remark 6.3.

In a significant work [33] on two-dimensional gravity water waves Vǎrvǎrucǎ and Weiss on two-dimensional gravity water waves with vorticity. They put forward a monotonicity formula to investigate the local behavior of ”stagnation points”, at which points uu is a 32\tfrac{3}{2}-homogeneous function. We point out that one can apply Proposition 6.1 to deduce the homogeneity for those points away from the stagnation points.

In the rest of this section, we will focus on the limit

ϑ:=limr0+|Br(x0){u>0}||Br(x0)| for every x0Ω+(u).\displaystyle\vartheta:=\lim_{r\to 0^{+}}\frac{|B_{r}(x^{0})\cap\{u>0\}|}{|B_{r}(x^{0})|}\quad\text{ for every }\quad x^{0}\in\partial\varOmega^{+}(u). (6.94)

It follows from Proposition 3.6 that ϑ(0,1)\vartheta\in(0,1) and we will finally prove that ϑ[12,1)\vartheta\in[\tfrac{1}{2},1) for every free boundary point and that the regular part of the free boundary regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) is fully characterized by this limit. Most of the ideas come from [25] and we begin with the following observation.

Proposition 6.4.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega with 0Ω0\in\Omega and u(0)=0u(0)=0, let F(t)F(t) satisfy (1.8) and let Q(x)Q(x) be a Hölder continuous function at the origin which satisfies (1.9), then the limit ϑ\vartheta defined in (6.94) exists and

ϑ=|B1{u0>0}||B1|.\displaystyle\vartheta=\frac{|B_{1}\cap\{u_{0}>0\}|}{|B_{1}|}. (6.95)
Proof.

Let {rn}n=1>0\{r_{n}\}_{n=1}^{\infty}>0 be a vanishing sequence and let unu_{n} be a blow-up sequence at with respect to BrnB_{r_{n}}. It follows from Proposition 4.5 (3), (4) and Proposition 6.1 (2) that

limnW(un;Q(rnx))\displaystyle\lim_{n\to\infty}W(u_{n};Q(r_{n}x)) =B1|u0|2𝑑xB1u02𝑑d1+Q2(0)limr0+Brχ{u>0}𝑑xrd\displaystyle=\int_{B_{1}}|\nabla u_{0}|^{2}\>dx-\int_{\partial B_{1}}u_{0}^{2}\>d\mathcal{H}^{d-1}+Q^{2}(0)\lim_{r\to 0^{+}}\frac{\int_{B_{r}}\chi_{\{u>0\}}\>dx}{r^{d}}
=Q2(0)ωdlimr0+|Br{u>0}||Br|=Q2(0)ωdϑ,\displaystyle=Q^{2}(0)\omega_{d}\lim_{r\to 0^{+}}\frac{|B_{r}\cap\{u>0\}|}{|B_{r}|}=Q^{2}(0)\omega_{d}\vartheta,

The limit here exists because limr0+W(u,r;Q)\lim_{r\to 0^{+}}W(u,r;Q) exists (by Proposition 6.1 (1)). On the other hand, since χ{un>0}χ{u0>0}\chi_{\{u_{n}>0\}}\to\chi_{\{u_{0}>0\}} in Lloc1(d)L_{\mathrm{loc}}^{1}(\mathbb{R}^{d}) (by Proposition 4.5 (2)), we have that

limnB1χ{un>0}Q2(rnx)𝑑x=Q2(0)B1χ{u0>0}𝑑x\displaystyle\lim_{n\to\infty}\int_{B_{1}}\chi_{\{u_{n}>0\}}Q^{2}(r_{n}x)\>dx=Q^{2}(0)\int_{B_{1}}\chi_{\{u_{0}>0\}}\>dx

Thus

Q2(0)ωd|B1{u0>0}||B1|=limnW(un;Q(rnx))=Q2(0)ωdϑ,\displaystyle Q^{2}(0)\omega_{d}\frac{|B_{1}\cap\{u_{0}>0\}|}{|B_{1}|}=\lim_{n\to\infty}W(u_{n};Q(r_{n}x))=Q^{2}(0)\omega_{d}\vartheta,

which is exactly (6.95). ∎

Remark 6.5.

In view of (6.95) and (4.59) that ϑ(0,1)\vartheta\in(0,1) and thus u0u_{0} is a non-constantly-vanishing function in B1B_{1}. That is, u00u_{0}\not\equiv 0 in B1(0)B_{1}(0).

At this stage, we point out Theorem 1.2 is a direct corollary of the following proposition.

Proposition 6.6.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega with 0Ω0\in\Omega and u(0)=0u(0)=0, let F(t)F(t) satisfy (1.8) and let Q(x)Q(x) be a Hölder continuous function at the origin which satisfies (1.9) with Q(0)=1Q(0)=1. Then for ϑ\vartheta be defined in (6.94), we have

  1. (1)

    ϑ[12,1)\vartheta\in\left[\frac{1}{2},1\right) for every x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u).

  2. (2)

    regΩ+(u)=(Ω+(u))(1/2)\partial_{\mathrm{reg}}\varOmega^{+}(u)=(\varOmega^{+}(u))^{(1/2)}.

Proof.

The upper bound of ϑ\vartheta follows directly from (6.95) and (4.59). Assume that x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) and that unu_{n} is the blow-up sequence converges to a blow-up limit u0:du_{0}\colon\mathbb{R}^{d}\to\mathbb{R}. It follows once again from Proposition 4.5 (6) and Proposition 6.1 (2) that u0u_{0} is one-homogeneous and harmonic in B1+(u0)B_{1}^{+}(u_{0}). This implies that u0u_{0} is a solution to the equation (in polar coordinates) Δ𝕊u0=(d1)u0-\Delta_{\mathbb{S}}u_{0}=(d-1)u_{0} on B1+(u0)\partial B_{1}^{+}(u_{0}), where Δ𝕊\Delta_{\mathbb{S}} is defined in (1.11). It follows from Remark 4.8 in [25] that d1(B1+(u0))dωd2\mathcal{H}^{d-1}(\partial B_{1}^{+}(u_{0}))\geqslant\frac{d\omega_{d}}{2}. Using the homogeneity of u0u_{0}, we immediately have |B1{u0>0}|ωd2|B_{1}\cap\{u_{0}>0\}|\geqslant\frac{\omega_{d}}{2}. Now, the convergence limnB1χ{un>0}𝑑x=B1χ{u0>0}𝑑x\lim_{n\to\infty}\int_{B_{1}}\chi_{\{u_{n}>0\}}\>dx=\int_{B_{1}}\chi_{\{u_{0}>0\}}\>dx by Proposition 4.5 (2) implies that

ϑ=limn|B1{un>0}||B1|=|B1{u0>0}||B1|12,\displaystyle\vartheta=\lim_{n\to\infty}\frac{|B_{1}\cap\{u_{n}>0\}|}{|B_{1}|}=\frac{|B_{1}\cap\{u_{0}>0\}|}{|B_{1}|}\geqslant\frac{1}{2},

which concludes (1). In the case of equality γ=12\gamma=\frac{1}{2}, we have by Remark 4.8 in [26] that u0|B1u_{0}|_{\partial B_{1}} is precisely the first eigenvalue on 𝕊+d1\mathbb{S}^{d-1}_{+}, whose one-homogeneous extension is precisely the one-plane solution (xν)+(x\cdot\nu)^{+} for some νB1\nu\in\partial B_{1}. This implies that if uu is a minimizer of JJ in Ω\Omega, then regΩ+(u)=(Ω+(u))(1/2)\partial_{\mathrm{reg}}\varOmega^{+}(u)=(\varOmega^{+}(u))^{(1/2)}. ∎

7. Regularity of the free boundary near regular points

In this section, we focus on the regularity of regular free boundary points, and the structure of singular free boundary points will be considered in the forthcoming section. We will first prove the uniqueness of blow-up limit and the polynomial convergence rate of a blow-up sequence. Then regularity of free boundaries is a direct consequence of these two facts. Such techniques are prevalent in recent research and are robust because there are quantities of arguments, for instance, via an epiperimetric inequality, to verify the uniqueness of blow-up limit and the rate of convergence for blow-up sequences. This method was mainly borrowed from [Chapter 8, [31]]. In this section we assume without loss of generality that 0Ω0\in\Omega and that Q(0)=1Q(0)=1. We begin by showing that minimizers of JJ in Ω\Omega are viscosity solutions in the sense of Definition 1.3.

Proposition 7.1 (Minimizers are viscosity solutions).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega. Then uu is a viscosity solution of (1.7) in the sense of definition 1.3.

Proof.

Step I. Assume that x0Ω+(u)x^{0}\in\varOmega^{+}(u) and that ϕC(Ω)\phi\in C^{\infty}(\Omega) touching uu from below at x0x^{0}. Then uC2,αu\in C^{2,\alpha} smooth at x0x^{0}, (uϕ)(x0)=0(u-\phi)(x^{0})=0 and (uϕ)(x)0(u-\phi)(x)\geqslant 0 in a small neighborhood of x0x^{0}. This implies that the function (uϕ)(u-\phi) attains a local minimum at x0x^{0} and so Δ(uϕ)(x0)0\Delta(u-\phi)(x^{0})\geqslant 0 by the second derive test of calculus. Therefore,

Δϕ(x0)+f(ϕ(x0))\displaystyle\Delta\phi(x^{0})+f(\phi(x^{0})) =Δϕ(x0)+f(u(x0))Δu(x0)+f(u(x0))=0,\displaystyle=\Delta\phi(x^{0})+f(u(x^{0}))\leqslant\Delta u(x^{0})+f(u(x^{0}))=0,

where we have used the fact that Δu(x0)+f(u(x0))=0\Delta u(x^{0})+f(u(x^{0}))=0 for x0Ω+(u)x^{0}\in\varOmega^{+}(u). It is easy to check the case in a similar way when ϕ\phi touches uu from above at x0x^{0}.

Step II. It remains to check that uu satisfies the free boundary condition |u|=Q(x0)|\nabla u|=Q(x^{0}) in the viscosity sense. To this end, suppose that the function ϕ\phi touches uu from below at x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) and assume without loss of generality that x0=0x^{0}=0. Consider the following two blow-up sequences un(x):=u(rnx)rnu_{n}(x):=\frac{u(r_{n}x)}{r_{n}} and ϕn(x):=ϕ(rnx)rn\phi_{n}(x):=\frac{\phi(r_{n}x)}{r_{n}} where rn0+r_{n}\to 0^{+} as nn\to\infty. Since uu is a minimizer, we have that the convergence is uniform in B1B_{1}. Since ϕ\phi is a smooth function in Ω\Omega, the limit ϕ0:=limnϕn(x)\phi_{0}:=\lim_{n\to\infty}\phi_{n}(x) exists and we have ϕ0=ξ0x\phi_{0}=\xi_{0}\cdot x, where the vector ξ0d\xi_{0}\in\mathbb{R}^{d} is precisely the gradient ϕ(0)\nabla\phi(0). Without loss of generality we may assume that ξ0=Aed\xi_{0}=Ae_{d} for some non-negative constant A0A\geqslant 0. Thus,

|ϕ(0)|=|ϕ0(0)|=A and ϕ0(x)=Axd.\displaystyle|\nabla\phi(0)|=|\nabla\phi_{0}(0)|=A\quad\text{ and }\quad\phi_{0}(x)=Ax_{d}. (7.96)

Moreover, we can assume that A>0A>0 since otherwise the inequality |ϕ|Q(0)=1|\nabla\phi|\leqslant Q(0)=1 holds trivially. It follows from Proposition 4.5 (6), Proposition 6.1 (2) and Remark 6.5 that u0Hloc1(d)u_{0}\in H_{\mathrm{loc}}^{1}(\mathbb{R}^{d}) is a non-trivial, continuous and one-homogeneous function, harmonic in B1+(u0)B_{1}^{+}(u_{0}). By the uniform convergence we have u0ϕ0u_{0}\geqslant\phi_{0} and this implies {u0>0}{ϕ0>0}={xd>0}\{u_{0}>0\}\supset\{\phi_{0}>0\}=\{x_{d}>0\}. Thus it follows from Lemma 5.31 [28] that {u0>0}={xd>0}\{u_{0}>0\}=\{x_{d}>0\} because the case {u0>0}={xd0}\{u_{0}>0\}=\{x_{d}\neq 0\} is ruled out (by (4.59) or Proposition 6.6). Moreover, u0u_{0} is a global minimizer of J0(v)J_{0}(v) where J0(v)J_{0}(v) is defined in (4.58) and hence satisfies the optimality condition |u0|=Q(0)=1|\nabla u_{0}|=Q(0)=1. In conclusion, u0(x)=xd+u_{0}(x)=x_{d}^{+} for xdx\in\mathbb{R}^{d}. Finally, it follows from u0ϕ0u_{0}\geqslant\phi_{0} and (7.96) that A1A\leqslant 1, and we have from (7.96) that |ϕ(0)|1|\nabla\phi(0)|\leqslant 1, as desired. The case when ϕ\phi touches uu from above is similar and we omit it. ∎

Remark 7.2.

Since minimizers are continuous in Ω\Omega, we define

f~(x):=(fu)(x), for every xΩ.\displaystyle\tilde{f}(x):=-(f\circ u)(x),\quad\text{ for every }\quad x\in\Omega. (7.97)

It follows from a direct calculation that

|f~(x)|=|f(u(x))||f(0)|+maxs0|f(s)|uL(Ω)C(F0,M0),\displaystyle|\tilde{f}(x)|=|f(u(x))|\leqslant|f(0)|+\max_{s\geqslant 0}|f^{\prime}(s)|\|u\|_{L^{\infty}(\Omega)}\leqslant C(F_{0},M_{0}),

where M0:=supΩΨM_{0}:=\sup_{\Omega}\Psi and Ψ\Psi is given in (1.6). Thus, f~C0(Ω)L(Ω)\tilde{f}\in C^{0}(\Omega)\cap L^{\infty}(\Omega). Moreover, we infer from Proposition 7.1 that uu is a viscosity solution to

Δu=f~(x) in Ω+(u),|u|=Q(x) on Ω+(u).\displaystyle\Delta u=\tilde{f}(x)\quad\text{ in }\quad\varOmega^{+}(u),\qquad|\nabla u|=Q(x)\quad\text{ on }\quad\partial\varOmega^{+}(u). (7.98)

In what follows, we will apply De Silva’s viscosity approach to prove the regularity of the regular set regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) of the free boundary. The first observation is that the free boundaries are ε\varepsilon-flat near points in regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u).

Lemma 7.3 (ε\varepsilon-flat for regular free boundary points).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega. Assume that 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u), then there exists ε1>0\varepsilon_{1}>0 such that the rescaling uru_{r} is ε1\varepsilon_{1}-flat in B1B_{1} in the direction νB1\nu\in\partial B_{1} for every r(0,1)r\in(0,1). That is,

(xνε1)+ur(x)(xν+ε1)+ for everyxB1, and some νB1.\displaystyle(x\cdot\nu-\varepsilon_{1})^{+}\leqslant u_{r}(x)\leqslant(x\cdot\nu+\varepsilon_{1})^{+}\quad\text{ for every}\quad x\in B_{1},\quad\text{ and some }\quad\nu\in\partial B_{1}.
Proof.

Recall the definition regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u), there is a vanishing sequence rn0+r_{n}\to 0^{+} such that the blow-up sequence un(x)=u(rnx)rnu_{n}(x)=\frac{u(r_{n}x)}{r_{n}} converges uniformly in B1B_{1} to a function u0:du_{0}\colon\mathbb{R}^{d}\to\mathbb{R} of the form u0(x)=(xν)+u_{0}(x)=(x\cdot\nu)^{+} for some νd\nu\in\mathbb{R}^{d}. Then there exists ε>0\varepsilon>0 such that for nn large enough,

unu0L(B1)<ε,\displaystyle\|u_{n}-u_{0}\|_{L^{\infty}(B_{1})}<\varepsilon,

which implies that

un>0 in {xν>ε} and un=0 in {xν<ε}.\displaystyle u_{n}>0\quad\text{ in }\quad\{x\cdot\nu>\varepsilon\}\qquad\text{ and }\qquad u_{n}=0\quad\text{ in }\quad\{x\cdot\nu<-\varepsilon\}.

This gives that unu_{n} is 2ε2\varepsilon-flat in B1B_{1}. Namely,

(xν2ε)+un(x)(xν+2ε)+ in B1,\displaystyle(x\cdot\nu-2\varepsilon)^{+}\leqslant u_{n}(x)\leqslant(x\cdot\nu+2\varepsilon)^{+}\quad\text{ in }\quad B_{1}, (7.99)

for some νB1\nu\in\partial B_{1}. Let now r(0,1)r\in(0,1) be arbitrary, then there must exist nn\in\mathbb{N} such that rn+1rrnr_{n+1}\leqslant r\leqslant r_{n}. Thus, there is ϱ(0,1]\varrho\in(0,1] such that r=ϱrnr=\varrho r_{n}. Now since unu_{n} satisfies (7.99), we get that ur=uϱrnu_{r}=u_{\varrho r_{n}} satisfies

(xν2εϱ)+ur(x)(xν+2εϱ)+ in B1.\displaystyle\left(x\cdot\nu-\frac{2\varepsilon}{\varrho}\right)^{+}\leqslant u_{r}(x)\leqslant\left(x\cdot\nu+\frac{2\varepsilon}{\varrho}\right)^{+}\quad\text{ in }\quad B_{1}.

Set ε1=2εϱ>0\varepsilon_{1}=\tfrac{2\varepsilon}{\varrho}>0 we obtain for every r(0,1)r\in(0,1), uru_{r} satisfies

(xνε1)+ur(xν+ε1)+ in B1,\displaystyle(x\cdot\nu-\varepsilon_{1})^{+}\leqslant u_{r}\leqslant(x\cdot\nu+\varepsilon_{1})^{+}\quad\text{ in }\quad B_{1},

for some νB1\nu\in\partial B_{1}, as desired. ∎

With Lemma 7.3 at hand we obtain the following improvement of flatness [Lemma 4.1 in [16]] for viscosity solutions.

Lemma 7.4 (Improvement of flatness).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega. Assume that 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u). Then there are universal constants κ(0,1)\kappa\in(0,1), σ(0,1)\sigma\in(0,1), C0>0C_{0}>0 and ε0>0\varepsilon_{0}>0 such that if uru_{r} is ε\varepsilon-flat in B1B_{1} in the direction νB1\nu\in\partial B_{1} for every r(0,1)r\in(0,1) and ε(0,ε0]\varepsilon\in(0,\varepsilon_{0}], then uκru_{\kappa r} is σε\sigma\varepsilon-flat in B1B_{1} in the direction ν~B1\tilde{\nu}\in\partial B_{1} with |ν~ν|C0ε|\tilde{\nu}-\nu|\leqslant C_{0}\varepsilon.

With Lemma 7.4 at hand, we are able to prove the core Lemma in this section:

Lemma 7.5 (Uniqueness of the blow-up).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega. Assume that 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u). Then there is a unique vector ν0B1d\nu_{0}\in\partial B_{1}\subset\mathbb{R}^{d} such that

uru0L(B1)C1rγ for every r12,\displaystyle\|u_{r}-u_{0}\|_{L^{\infty}(B_{1})}\leqslant C_{1}r^{\gamma}\quad\text{ for every }\quad r\leqslant\frac{1}{2}, (7.100)

where

u0(x):=(ν0x)+ for every xd.\displaystyle u_{0}(x):=(\nu_{0}\cdot x)^{+}\quad\text{ for every }\quad x\in\mathbb{R}^{d}. (7.101)

Here C1C_{1}, γ\gamma are positive constants depending on κ\kappa, σ\sigma, C0C_{0} and ε0\varepsilon_{0} (Recall Lemma 7.4).

Proof.

Repeated use of Lemma 7.4 via nn times gives uκn2u_{\frac{\kappa^{n}}{2}} is ε0σn\varepsilon_{0}\sigma^{n}-flat in the direction νnB1\nu_{n}\in\partial B_{1} such that

|νnνn+1|C0ε0σn for every n.\displaystyle|\nu_{n}-\nu_{n+1}|\leqslant C_{0}\varepsilon_{0}\sigma^{n}\quad\text{ for every }n\in\mathbb{N}.

This implies that {νn}\{\nu_{n}\} is a Cauchy sequence so that there is a vector ν0\nu_{0} such that

ν0:=limnνn and |ν0νn|C0ε01σσn.\displaystyle\nu_{0}:=\lim_{n\to\infty}\nu_{n}\quad\text{ and }\quad|\nu_{0}-\nu_{n}|\leqslant\frac{C_{0}\varepsilon_{0}}{1-\sigma}\sigma^{n}.

This implies

|(xν0)+uκn/2||(xν0)+(xνn+ε0σn)|(1+C01σ)σn in B1.\displaystyle|(x\cdot\nu_{0})_{+}-u_{\kappa^{n}/2}|\leqslant|(x\cdot\nu_{0})_{+}-(x\cdot\nu_{n}+\varepsilon_{0}\sigma^{n})|\leqslant\left(1+\frac{C_{0}}{1-\sigma}\right)\sigma^{n}\quad\text{ in }\quad B_{1}. (7.102)

Thus we set

u0(x)=(xν0)+.\displaystyle u_{0}(x)=(x\cdot\nu_{0})^{+}.

Now we verify (7.100). Let r(0,12]r\in(0,\tfrac{1}{2}] and let nn\in\mathbb{N} be such that κn+12<rκn2\tfrac{\kappa^{n+1}}{2}<r\leqslant\frac{\kappa^{n}}{2}. It follows that there must exist ϱ(κ,1]\varrho\in(\kappa,1] such that r=ϱrnr=\varrho r_{n}. Since uκn/2u_{\kappa^{n}/2} satisfies

(xνnε0σn)+uκn/2(xνn+ε0σn)+ in B1,\displaystyle(x\cdot\nu_{n}-\varepsilon_{0}\sigma^{n})^{+}\leqslant u_{\kappa^{n}/2}\leqslant(x\cdot\nu_{n}+\varepsilon_{0}\sigma^{n})^{+}\quad\text{ in }\quad B_{1},

it is handy that uru_{r} satisfies

(xνnε0ϱσn)+ur(xνn+ε0ϱσn)+ in B1.\displaystyle\left(x\cdot\nu_{n}-\frac{\varepsilon_{0}}{\varrho}\sigma^{n}\right)^{+}\leqslant u_{r}\leqslant\left(x\cdot\nu_{n}+\frac{\varepsilon_{0}}{\varrho}\sigma^{n}\right)^{+}\quad\text{ in }\quad B_{1}.

Thus, unurL(B1)ε0ϱσnε0κσn\|u_{n}-u_{r}\|_{L^{\infty}(B_{1})}\leqslant\frac{\varepsilon_{0}}{\varrho}\sigma^{n}\leqslant\frac{\varepsilon_{0}}{\kappa}\sigma^{n}. It follows from (7.102) that uru0L(B1)(1+C01σ+1κ)ε0σn\|u_{r}-u_{0}\|_{L^{\infty}(B_{1})}\leqslant(1+\frac{C_{0}}{1-\sigma}+\frac{1}{\kappa})\varepsilon_{0}\sigma^{n}. Choose γ\gamma so that κγ=σ\kappa^{\gamma}=\sigma, and we obtain

uru0L(B1)(2/κ)γ(1+C01σ+1κ)ε0rγ.\displaystyle\|u_{r}-u_{0}\|_{L^{\infty}(B_{1})}\leqslant(2/\kappa)^{\gamma}\left(1+\frac{C_{0}}{1-\sigma}+\frac{1}{\kappa}\right)\varepsilon_{0}r^{\gamma}.

This concludes the proof by letting C1=(1+C01σ+1κ)C_{1}=\left(1+\frac{C_{0}}{1-\sigma}+\frac{1}{\kappa}\right). ∎

We now introduce the following notion: For any ε>0\varepsilon>0, x0Ωx^{0}\in\Omega and νd\nu\in\mathbb{R}^{d}, we define 𝒞ε±(x0,ν)\mathcal{C}_{\varepsilon}^{\pm}(x^{0},\nu) to be the cones

𝒞ε±(x0,ν):={xd:±ν(xx0)>ε|xx0|}.\displaystyle\mathcal{C}_{\varepsilon}^{\pm}(x^{0},\nu):=\{x\in\mathbb{R}^{d}\colon\pm\nu\cdot(x-x^{0})>\varepsilon|x-x^{0}|\}.

In fact, as an application of the uniqueness of blow-ups, we have

Corollary 7.6 (regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) is Lipschitz continuity).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω\Omega. Assume that 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u). Then Ω+(u)\partial\varOmega^{+}(u) is a Lipschitz graph in a small neighborhood of 0.

Proof.

The idea of this proof is originally from Proposition 8.6 in [31], we adapt it to our settings.

Step I. In this first step, we show that if uu minimizes JJ in B1B_{1} with u(0)=0u(0)=0 and 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u). Then for every ε>0\varepsilon>0 there exists R>0R>0 such that

{u>0 in 𝒞ε+(0,ν0)BR,u=0 in 𝒞ε(0,ν0)BR,\displaystyle\begin{cases}\begin{aligned} u&>0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{+}(0,\nu_{0})\cap B_{R},\\ u&=0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{-}(0,\nu_{0})\cap B_{R},\end{aligned}\end{cases} (7.103)

where ν0B1\nu_{0}\in\partial B_{1}. To this end, let γ\gamma and C1C_{1} be defined as in the Lemma 7.5. Then it follows from (7.100) that ur(xν0C1rγ)+u_{r}\geqslant(x\cdot\nu_{0}-C_{1}r^{\gamma})^{+} for every xB1x\in B_{1}. Choose CC be any positive constant such that CC1C\geqslant C_{1}, we obtain

{xB1:xν0>Crγ}Ω+(ur).\displaystyle\{x\in B_{1}\colon x\cdot\nu_{0}>Cr^{\gamma}\}\subset\varOmega^{+}(u_{r}). (7.104)

On the other hand, observe that uru_{r} is also a minimizer of JJ in B1B_{1}, therefore uru_{r} is non-degenerate in B1B_{1} so that

Ω+(ur){xB1:xν0<Crγ}=\displaystyle\varOmega^{+}(u_{r})\cap\{x\in B_{1}\colon x\cdot\nu_{0}<-Cr^{\gamma}\}=\varnothing (7.105)

Estimates (7.104) and (7.105) imply (7.103) by taking R>0R>0 such that CRγεCR^{\gamma}\leqslant\varepsilon.

Step II. In this step, we prove that the free boundary near the origin can be expressed by the graph of a function gg, precisely, there exists a δ>0\delta>0 such that

(Bδ×(δ,δ))Ω+(u)={(x,t)Bδ×(δ,δ):t=g(x)}.\displaystyle(B_{\delta}^{\prime}\times(-\delta,\delta))\cap\partial\varOmega^{+}(u)=\{(x^{\prime},t)\in B_{\delta}^{\prime}\times(-\delta,\delta)\colon t=g(x^{\prime})\}.

Without loss of generality, we assume that ν0=ed\nu_{0}=e_{d} and therefore u0(x)=xd+u_{0}(x)=x_{d}^{+} is the blow-up limit in 0. Thus Ω+(u0)={xd>0}\varOmega^{+}(u_{0})=\{x_{d}>0\}. Let now ε(0,1)\varepsilon\in(0,1) and RR be as in (7.103), it follows that

{u>0 in 𝒞ε+(0,ed)BR,u=0 in 𝒞ε(0,ed)BR,\displaystyle\begin{cases}\begin{aligned} u&>0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{+}(0,e_{d})\cap B_{R},\\ u&=0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{-}(0,e_{d})\cap B_{R},\end{aligned}\end{cases}

where 𝒞ε±\mathcal{C}_{\varepsilon}^{\pm} is the cone {xd:±xd>ε|x|}\{x\in\mathbb{R}^{d}\colon\pm x_{d}>\varepsilon|x|\}. Let x0Bδx_{0}^{\prime}\in B_{\delta}^{\prime} where δR1ε2\delta\leqslant R\sqrt{1-\varepsilon^{2}}, it follows that the segment {(x0,t):t>εR}\{(x_{0}^{\prime},t)\colon t>\varepsilon R\} is contained in {u>0}\{u>0\} and the segment {(x0,t):t<εR}\{(x_{0}^{\prime},t)\colon t<-\varepsilon R\} is contained in {u=0}\{u=0\}. Therefore, g(x0):=inf{t:u(x0,t)>0}g(x_{0}^{\prime}):=\inf\{t\colon u(x_{0}^{\prime},t)>0\} is well defined and x0:=(x0,g(x0))Ω+(u)BRx^{0}:=(x_{0}^{\prime},g(x_{0}^{\prime}))\in\partial\varOmega^{+}(u)\cap B_{R}. Moreover, one has

ε|x0|g(x0)ε|x0|,\displaystyle-\varepsilon|x_{0}^{\prime}|\leqslant g(x_{0}^{\prime})\leqslant\varepsilon|x_{0}^{\prime}|,

which implies that |x0||x0|1+ε22δ|x^{0}|\leqslant|x_{0}^{\prime}|\sqrt{1+\varepsilon^{2}}\leqslant\sqrt{2}\delta. In order to finish the claim, it suffices to show that if δ>0\delta>0 is small enough, then

{u>0 in 𝒞2ε+(x0,ed)BR(x0),u=0 in 𝒞2ε(x0,ed)BR(x0).\displaystyle\begin{cases}\begin{aligned} u&>0\quad&&\text{ in }\mathcal{C}_{2\varepsilon}^{+}(x^{0},e_{d})\cap B_{R}(x^{0}),\\ u&=0\quad&&\text{ in }\mathcal{C}_{2\varepsilon}^{-}(x^{0},e_{d})\cap B_{R}(x^{0}).\end{aligned}\end{cases} (7.106)

Indeed, as a direct consequence of (7.106), one can easily deduce that

(Bδ×(δ,δ)){u>0}={(x,t)Bδ×(δ,δ):t>g(x)},\displaystyle(B_{\delta}^{\prime}\times(-\delta,\delta))\cap\{u>0\}=\{(x^{\prime},t)\in B_{\delta}^{\prime}\times(-\delta,\delta)\colon t>g(x^{\prime})\},
(Bδ×(δ,δ)){u=0}={(x,t)Bδ×(δ,δ):tg(x)}.\displaystyle(B_{\delta}^{\prime}\times(-\delta,\delta))\cap\{u=0\}=\{(x^{\prime},t)\in B_{\delta}^{\prime}\times(-\delta,\delta)\colon t\leqslant g(x^{\prime})\}.

We now prove (7.106) to conclude this step. Applying (7.106) for the free boundary point x0x^{0}, we have

{u>0 in 𝒞ε+(x0,νx0)BR(x0),u=0 in 𝒞ε(x0,νx0)BR(x0).\displaystyle\begin{cases}\begin{aligned} u&>0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{+}(x^{0},\nu_{x^{0}})\cap B_{R}(x^{0}),\\ u&=0\quad&&\text{ in }\mathcal{C}_{\varepsilon}^{-}(x^{0},\nu_{x^{0}})\cap B_{R}(x^{0}).\end{aligned}\end{cases}

In view of (7.106), we only need to show 𝒞2ε±(x0,ed)𝒞ε±(x0,νx0)\mathcal{C}_{2\varepsilon}^{\pm}(x^{0},e_{d})\subset\mathcal{C}_{\varepsilon}^{\pm}(x^{0},\nu_{x^{0}}). Since uu is a Lipschitz function with Lipschitz coefficient LL in B1B_{1} and 0, x0Ω+(u)BRx^{0}\in\partial\varOmega^{+}(u)\cap B_{R}, let α:=γ1+γ\alpha:=\frac{\gamma}{1+\gamma} and r:=|x0|1αr:=|x^{0}|^{1-\alpha},

|urux0,r|=1r|u(rx)u(x0+rx)|Lr|x0|=L|x0|α,\displaystyle|u_{r}-u_{x^{0},r}|=\frac{1}{r}|u(rx)-u(x^{0}+rx)|\leqslant\frac{L}{r}|x^{0}|=L|x^{0}|^{\alpha},

for every xB1x\in B_{1}. This implies urux0,rL(B1)L|x0|α\|u_{r}-u_{x^{0},r}\|_{L^{\infty}(B_{1})}\leqslant L|x^{0}|^{\alpha}. On the other hand, if we denote u0u_{0} and ux0u_{x^{0}} the unique blow-up limit of uu at 0 and x0x^{0} respectively. It follows from (7.106) that

ux0ux0,rL(B1)C1rγ and uru0L(B1)C1rγ.\displaystyle\|u_{x^{0}}-u_{x^{0},r}\|_{L^{\infty}(B_{1})}\leqslant C_{1}r^{\gamma}\quad\text{ and }\quad\|u_{r}-u_{0}\|_{L^{\infty}(B_{1})}\leqslant C_{1}r^{\gamma}.

Choose RR such that (2R)1α12(2R)^{1-\alpha}\leqslant\tfrac{1}{2}, we have by rγ=|x0|αr^{\gamma}=|x^{0}|^{\alpha} that

ux0u0L(B1)(L+2C1)|x0|α.\displaystyle\|u_{x^{0}}-u_{0}\|_{L^{\infty}(B_{1})}\leqslant(L+2C_{1})|x^{0}|^{\alpha}.

This implies |ν0ed|C|x0|α|\nu_{0}-e_{d}|\leqslant C|x^{0}|^{\alpha} by a direct calculation. Let x𝒞2ε±(x0,ed)x\in\mathcal{C}_{2\varepsilon}^{\pm}(x^{0},e_{d}). Then,

νx0(xx0)\displaystyle\nu_{x^{0}}\cdot(x-x^{0}) =ed(xx0)+(νx0ed)(xx0)\displaystyle=e_{d}\cdot(x-x^{0})+(\nu_{x^{0}}-e_{d})\cdot(x-x^{0})
>2ε|xx0|C(2δ)α|xx0|>ε|xx0|,\displaystyle>2\varepsilon|x-x^{0}|-C(\sqrt{2}\delta)^{\alpha}|x-x^{0}|>\varepsilon|x-x^{0}|,

where we choose δ\delta such that C(2δ)αεC(\sqrt{2}\delta)^{\alpha}\leqslant\varepsilon. This finishes 𝒞2ε±(x0,ed)𝒞ε±(x0,νx0)\mathcal{C}_{2\varepsilon}^{\pm}(x^{0},e_{d})\subset\mathcal{C}_{\varepsilon}^{\pm}(x^{0},\nu_{x^{0}}) and thus (7.106) is concluded.

Step III. We now prove that g:Bδg\colon B_{\delta}^{\prime}\to\mathbb{R} is Lipschitz continuous on BδB_{\delta}^{\prime}. Let x1x_{1}^{\prime}, x2Bδx_{2}^{\prime}\in B_{\delta}^{\prime} where x1=(x1,g(x1))x^{1}=(x_{1}^{\prime},g(x_{1}^{\prime})) and x2=(x2,g(x2))x^{2}=(x_{2}^{\prime},g(x_{2}^{\prime})). Since x1𝒞2ε+(x2,ed)x^{1}\notin\mathcal{C}_{2\varepsilon}^{+}(x^{2},e_{d}), we have that

g(x1)g(x2)=(x1x2)ed2ε|x1x2|+2ε|g(x1)g(x2)|.\displaystyle g(x_{1}^{\prime})-g(x_{2}^{\prime})=(x^{1}-x^{2})\cdot e_{d}\leqslant 2\varepsilon|x_{1}^{\prime}-x_{2}^{\prime}|+2\varepsilon|g(x_{1}^{\prime})-g(x_{2}^{\prime})|.

A same inequality can be derived since x2𝒞2ε+(x1,ed)x^{2}\notin\mathcal{C}_{2\varepsilon}^{+}(x^{1},e_{d}). Two estimates give (12ε)|g(x1)g(x2)|2ε|x1x2|(1-2\varepsilon)|g(x_{1}^{\prime})-g(x_{2}^{\prime})|\leqslant 2\varepsilon|x_{1}^{\prime}-x_{2}^{\prime}|. Choosing ε14\varepsilon\leqslant\frac{1}{4}, we obtain

|g(x1)g(x2)|4ε|x1x2|,\displaystyle|g(x_{1}^{\prime})-g(x_{2}^{\prime})|\leqslant 4\varepsilon|x_{1}^{\prime}-x_{2}^{\prime}|,

which concludes the proof of the Lipschitz continuity of gg. ∎

We are now in a position to prove the regularity of the free boundary near regular points.

Proposition 7.7 (Regularity of regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u)).

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d}. Assume that 0regΩ+(u)0\in\partial_{\mathrm{reg}}\varOmega^{+}(u), then there exists a small neighborhood, the size of which depends on dd, [Q]Cβ;Ω[Q]_{C^{\beta};\Omega}, F0F_{0} and M0M_{0} so that regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) is C1,γC^{1,\gamma} regularity in that neighborhood for γ(0,β)\gamma\in(0,\beta).

Proof.

Consider the blow-up sequence uk(x):=uδk(x)=u(δkx)δku_{k}(x):=u_{\delta_{k}}(x)=\frac{u(\delta_{k}x)}{\delta_{k}} with δk0\delta_{k}\to 0 as kk\to\infty. It is easy to see that for every kk, uku_{k} is a solution to

Δuk=f~k(x) in B1+(uk),|uk|=Qk(x) on B1+(uk),\displaystyle\Delta u_{k}=\tilde{f}_{k}(x)\quad\text{ in }\quad B_{1}^{+}(u_{k}),\qquad|\nabla u_{k}|=Q_{k}(x)\quad\text{ on }\quad\partial B_{1}^{+}(u_{k}), (7.107)

where f~k(x)=δkf~(δkx)\tilde{f}_{k}(x)=\delta_{k}\tilde{f}(\delta_{k}x) and Qk(x)=Q(δkx)Q_{k}(x)=Q(\delta_{k}x). It follows that there is a positive constant ε¯\bar{\varepsilon} such that the following does hold:

|f~k(x)|=|δkf~(δkx)|=δkf~Lε¯,\displaystyle|\tilde{f}_{k}(x)|=|\delta_{k}\tilde{f}(\delta_{k}x)|=\delta_{k}\|\tilde{f}\|_{L^{\infty}}\leqslant\bar{\varepsilon},

and

|Qk(x)1|=|Q(δkx)Q(0)|δkβ[Q]βε¯.\displaystyle|Q_{k}(x)-1|=|Q(\delta_{k}x)-Q(0)|\leqslant\delta_{k}^{\beta}[Q]_{\beta}\leqslant\bar{\varepsilon}.

Thus, using Proposition 4.5, up to extracting a subsequence: uku0u_{k}\to u_{0} locally and uniformly in d\mathbb{R}^{d} and Ω+(uk)Ω+(u0)\partial\varOmega^{+}(u_{k})\to\partial\varOmega^{+}(u_{0}) locally in the Hausdorff distance in d\mathbb{R}^{d} for a globally defined function u0:du_{0}\colon\mathbb{R}^{d}\to\mathbb{R}. Moreover, every blow-up limit u0u_{0} is a solution to Δu0=0\Delta u_{0}=0 in B1+(u0)B_{1}^{+}(u_{0}) and |u0|=1|\nabla u_{0}|=1 on B1+(u0)\partial B_{1}^{+}(u_{0}). It follows from Corollary 7.6 that Ω+(u)\partial\varOmega^{+}(u) is a Lipschitz graph in a small neighborhood of 0. We also see from (1)-(2) above that Ω+(u0)\partial\varOmega^{+}(u_{0}) is Lipschitz continuous. Thus, u0u_{0} is a so-called one-plane solution, namely (up to rotations), u0(x)=xd+u_{0}(x)=x_{d}^{+}. Consequently, we conclude that for all kk large enough, uku_{k} is ε¯\bar{\varepsilon}-flat in B1B_{1}, i.e.

(xdε¯)+uk(x)(xd+ε¯)+, in B1.\displaystyle(x_{d}-\bar{\varepsilon})^{+}\leqslant u_{k}(x)\leqslant(x_{d}+\bar{\varepsilon})^{+},\quad\text{ in }\quad B_{1}.

Thus, uku_{k} satisfies the flatness condition required by Theorem 1.1 in [16]. Moreover, f~k\tilde{f}_{k} and QkQ_{k} also satisfy the requirements of Theorem 1.1 in [16]. Combining these facts, we conclude from Theorem 1.1 in [16] that Ω+(u)\partial\varOmega^{+}(u) is C1,γC^{1,\gamma} in B1/2B_{1/2}. This finishes the proof. ∎

8. Dimension of the singular set

This concluding section dedicates to investigate the structure of the singular set. We will prove Theorem 1.3 for our semilinear case. Our results discover that the non-linear right-hand side in our settings does not affect the structure of singularities and our argument follows by ”dimension reduction” process. We begin by giving the definition of dd^{*}.

Definition 8.1 (Definition of dd^{*}, compare to [35]).

We define dd^{*} to be the smallest dimension dd so that there exists a function z:dz\colon\mathbb{R}^{d}\to\mathbb{R} such that

  1. (1)

    zz is a non-negative one-homogeneous absolute minimum of J0J_{0} given in (4.58);

  2. (2)

    The free boundary {z>0}\partial\{z>0\} is not a (d1)(d-1)-dimensional C1C^{1}-regular surface in d\mathbb{R}^{d}.

In [13], it was proved that singΩ+(u)=\partial_{\mathrm{sing}}\varOmega^{+}(u)=\varnothing when d=2d=2. We present here a different proof, which depends mainly on the homogeneity of minimizers and this is completely different from [13].

Proposition 8.1.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω2\Omega\subset\mathbb{R}^{2}, then Ω+(u)=regΩ+(u)\partial\varOmega^{+}(u)=\partial_{\mathrm{reg}}\varOmega^{+}(u).

Proof.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ω2\Omega\subset\mathbb{R}^{2}. Then it follows from Proposition 4.5 (4) that u0:2u_{0}\colon\mathbb{R}^{2}\to\mathbb{R} is a global minimizer of J0(v)J_{0}(v) (recall (4.58) in 2\mathbb{R}^{2}. We write u0u_{0} in polar coordinates u0(ρ,θ)=ρc(θ)u_{0}(\rho,\theta)=\rho c(\theta). Since cc is continuous, we have that {c>0}\{c>0\} is open and so it is a countable union of disjoint arcs. Based on the fact that local minimizers of J0(v)J_{0}(v) cannot have isolated zeros, we have that {c>0}𝕊1\{c>0\}\neq\mathbb{S}^{1}. It follows from Proposition 4.5 and Proposition 6.1 (2) that up to a rotation, the trace cc is a solution to

c′′(θ)+c(θ)=0 in (0,π),c(0)=c(π)=0.\displaystyle c^{\prime\prime}(\theta)+c(\theta)=0\quad\text{ in }\quad(0,\pi),\qquad c(0)=c(\pi)=0.

It follows that c(θ)c(\theta) is a multiple of sinθ\sin\theta on (0,π)(0,\pi). Thus, {c>0}\{c>0\} is a union of disjoint arcs, each one of length π\pi. Since 0Ω+(u0)0\in\partial\varOmega^{+}(u_{0}), thanks (4.59), one has |B1{u0>0}|<|B1|=π|B_{1}\cap\{u_{0}>0\}|<|B_{1}|=\pi. The homogeneity of u0u_{0} then implies that 1({c>0})<2π\mathcal{H}^{1}(\{c>0\})<2\pi. Therefore, {c>0}\{c>0\} is an arc of length π\pi and u0u_{0} is of the form u0(x)=a(xν)+u_{0}(x)=a(x\cdot\nu)^{+} for some a>0a>0. Thanks to Proposition 4.5 (5), we obtain a=Q(0)a=Q(0). Consequently, u0(x)=Q(0)(xν)+u_{0}(x)=Q(0)(x\cdot\nu)^{+} and it follows from the definition of regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u) that Ω+(u)=regΩ+(u)\partial\varOmega^{+}(u)=\partial_{\mathrm{reg}}\varOmega^{+}(u). Thus by Definition 8.1, d3d^{*}\geqslant 3. ∎

When d<dd<d^{*}, we have the following fact

Proposition 8.2.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d} with 2d<d2\leqslant d<d^{*}, then singΩ+(u)=\partial_{\mathrm{sing}}\varOmega^{+}(u)=\varnothing and Ω+(u)=regΩ+(u)\partial\varOmega^{+}(u)=\partial_{\mathrm{reg}}\varOmega^{+}(u).

Proof.

Let x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u) be an arbitrary free boundary point and let rn0r_{n}\to 0 be a infinitesimal sequence. Then it follows that the blow-up sequence unu_{n} converges uniformly to a blow-up limit u0u_{0}. Thanks to Proposition 4.5 (4), u0u_{0} is a global minimizer of J0J_{0} in d\mathbb{R}^{d} where J0J_{0} is defined in (4.58). It then follows from the definition of dd^{*} that singΩ+(u0)=\partial_{\mathrm{sing}}\varOmega^{+}(u_{0})=\varnothing. By the definition of regΩ+(u)\partial_{\mathrm{reg}}\varOmega^{+}(u), we obtain that every blow-up u00u_{00} of u0u_{0} is of the form Q(0)(xν)+Q(0)(x\cdot\nu)^{+} for some νB1\nu\in\partial B_{1}. In particular, it holds for every blow-up limit in 0. Since (by Proposition 6.1 (2)) u0u_{0} is one-homogeneous function, we have

u00(x)=limnu0(rnx)rn=limnu0(x)=u0(x),\displaystyle u_{00}(x)=\lim_{n\to\infty}\frac{u_{0}(r_{n}x)}{r_{n}}=\lim_{n\to\infty}u_{0}(x)=u_{0}(x),

which implies that the blow-up limit u00u_{00} of u0u_{0} is indeed u0u_{0} itself, and so

u0(x)=Q(0)(xν)+, for some νB1.\displaystyle u_{0}(x)=Q(0)(x\cdot\nu)^{+},\quad\text{ for some }\nu\in B_{1}.

Thus, for nn large enough, we have

un(x)Q(0)(xν)+L(B1)ε, for some νB1.\displaystyle\|u_{n}(x)-Q(0)(x\cdot\nu)^{+}\|_{L^{\infty}(B_{1})}\leqslant\varepsilon,\quad\text{ for some }\nu\in B_{1}.

Set y=x0+rnxy=x^{0}+r_{n}x and we have from the definition of unu_{n} that

u(y)rnQ(0)rn((yx0)ν)+L(Brn(x0))ε, for some νB1.\displaystyle\left\|\frac{u(y)}{r_{n}}-\frac{Q(0)}{r_{n}}((y-x^{0})\cdot\nu)^{+}\right\|_{L^{\infty}(B_{r_{n}}(x^{0}))}\leqslant\varepsilon,\quad\text{ for some }\nu\in B_{1}.

This implies that there exists r(0,R)r\in(0,R) such that

u(y)Q(0)((yx0)ν)+L(Br(x0))εr, for some νB1.\displaystyle\|u(y)-Q(0)((y-x^{0})\cdot\nu)^{+}\|_{L^{\infty}(B_{r}(x^{0}))}\leqslant\varepsilon r,\quad\text{ for some }\nu\in B_{1}. (8.108)

In via of (8.108), there must exist ε¯>0\bar{\varepsilon}>0 such that uu is ε¯\bar{\varepsilon}-flat in B1B_{1}. Moreover, since uu minimizes JJ in B1B_{1}, it follows from Proposition 7.1 that uu is a viscosity solution in B1dB_{1}\subset\mathbb{R}^{d}. Thanks to Proposition 7.7, we know that Ω+(u)\partial\varOmega^{+}(u) is C1,γC^{1,\gamma} in a small neighborhood of x0Ω+(u)x^{0}\in\partial\varOmega^{+}(u). Thus, x0regΩ+(u)x^{0}\in\partial_{\mathrm{reg}}\varOmega^{+}(u). Since x0x^{0} is arbitrary, we conclude that singΩ+(u)=\partial_{\mathrm{sing}}\varOmega^{+}(u)=\varnothing and this concludes the proof. ∎

We now investigate the case d=dd=d^{*}. Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d^{*}} (Proposition 8.6 below). To this end, we begin by studying the singular set of a one-homogeneous function in d\mathbb{R}^{d}. In [35], Weiss showed that the singular set of one-homogeneous function is a cone in d\mathbb{R}^{d} in homogeneous case. We follow his approach and extend the same result to our case.

Lemma 8.3.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d}. Then the graph of any blow-up limit u0u_{0} is a minimal cone with vertex at 0d0\in\mathbb{R}^{d}.

Proof.

It suffices to prove the following two facts:

  1. (1)

    Every blow-up limit u0u_{0} of uu is a non-negative one-homogeneous global minimizer of J0J_{0} in d\mathbb{R}^{d}.

  2. (2)

    For any open and bounded set DdD\subset\mathbb{R}^{d} satisfying D¯(Ω+(u0)redΩ+(u0))=\bar{D}\cap(\partial\varOmega^{+}(u_{0})\setminus\partial_{\mathrm{red}}\varOmega^{+}(u_{0}))=\varnothing,

    Per(Ω+(u0),D)Per(F,D),\displaystyle\operatorname{Per}(\varOmega^{+}(u_{0}),D)\leqslant\operatorname{Per}(F,D),

    for any FΩ+(u0)F\subset\varOmega^{+}(u_{0}) so that FD\partial F\cap D is a C2C^{2} surface and supp(χFχ{u0>0})D\operatorname{supp}(\chi_{F}-\chi_{\{u_{0}>0\}})\subset D. Here Per(E)\operatorname{Per}(E) denotes the perimeter of a given set EdE\subset\mathbb{R}^{d}.

Notice that (1) is a direct consequence of Proposition 4.5 (5) and Proposition 6.1 (2). To prove the above mentioned second property, since Q(x)C0,β(Ω)Q(x)\in C^{0,\beta}(\Omega), it follows from Theorem 5.5 in [1] that u0u_{0} is a weak solution. Then a same argument as in Theorem 2.8 in [35] gives the desired result. ∎

We now consider a blow-up limit u00u_{00} of u0u_{0} at x00Ω+(u0)x^{0}\neq 0\in\partial\varOmega^{+}(u_{0}), the following fact was first proved by Weiss in [35] for minimizers of J0J_{0}, we adapt it to our settings.

Lemma 8.4.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d} and let u0u_{0} be any blow-up limits of uu at any free boundary points. Then the graph of u00u_{00} is a minimal cone with vertex at 0 and u00u_{00} is constant in the direction x0x^{0}. That is, u00(x)=u00(x+tx0)u_{00}(x)=u_{00}(x+tx^{0}) for xdx\in\mathbb{R}^{d} and tt\in\mathbb{R}. Moreover, {t:tx0}singΩ+(u)\{t\in\mathbb{R}\colon tx^{0}\}\subset\partial_{\mathrm{sing}}\varOmega^{+}(u).

Proof.

The proof is similar to Lemma 3.1 in [35]. Notice that u0u_{0} is a global minimizer of J0J_{0} in d\mathbb{R}^{d}, therefore one has

u00(x+tx0)\displaystyle u_{00}(x+tx^{0}) =limnu0(x0+rn(x+tx0))rn\displaystyle=\lim_{n\to\infty}\frac{u_{0}(x^{0}+r_{n}(x+tx^{0}))}{r_{n}}
=limn(1+trnrn)u0(x0+rn1+trnx),\displaystyle=\lim_{n\to\infty}\left(\frac{1+tr_{n}}{r_{n}}\right)u_{0}\left(x^{0}+\frac{r_{n}}{1+tr_{n}}x\right),

where we have used the homogeneity of u0u_{0} in the second identity. We now claim that

limn(1+trnrn)u0(x0+rn1+trnx)=limnu0(x0+rnx)rn.\displaystyle\lim_{n\to\infty}\left(\frac{1+tr_{n}}{r_{n}}\right)u_{0}\left(x^{0}+\frac{r_{n}}{1+tr_{n}}x\right)=\lim_{n\to\infty}\frac{u_{0}(x^{0}+r_{n}x)}{r_{n}}. (8.109)

Since u0u_{0} is a global minimizer of J0J_{0}, thanks to Corollary 3.3 in [1], u0u_{0} is a Lipschitz function with Lipschitz coefficient L0:=u0L(B1)L_{0}:=\|\nabla u_{0}\|_{L^{\infty}(B_{1})}. Then a straightforward estimate gives

|1+trnrnu0(x0+rn1+trnx)1rnu0(x0+rnx)|\displaystyle\left|\frac{1+tr_{n}}{r_{n}}u_{0}\left(x^{0}+\frac{r_{n}}{1+tr_{n}}x\right)-\frac{1}{r_{n}}u_{0}(x^{0}+r_{n}x)\right|
t|u0(x0+rn1+trnx)u0(x0)|+1rn|u0(x0+rn1+trnx)u0(x0+rnx)|\displaystyle\leqslant t\left|u_{0}\left(x^{0}+\frac{r_{n}}{1+tr_{n}}x\right)-u_{0}(x^{0})\right|+\frac{1}{r_{n}}\left|u_{0}\left(x^{0}+\frac{r_{n}}{1+tr_{n}}x\right)-u_{0}(x^{0}+r_{n}x)\right|
2trnL0|x|1+trn0 as n.\displaystyle\leqslant\frac{2tr_{n}L_{0}|x|}{1+tr_{n}}\to 0\quad\text{ as }n\to\infty.

Then the desired result follows from (8.109). ∎

In via of a same argument as in Lemma 3.2 in [35], one has the following property for u00u_{00} given in Lemma 8.4.

Lemma 8.5.

The graph of u00|d1=u¯u_{00}|_{\mathbb{R}^{d-1}}=\bar{u} is a minimal cone and 0singΩ+(u¯)0\in\partial_{\mathrm{sing}}\varOmega^{+}(\bar{u}).

As a direct corollary of Lemma 8.4 and Lemma 8.5, one has

Proposition 8.6.

Let u𝒦u\in\mathcal{K} be minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d^{*}}. Then singΩ+(u){0}=\partial_{\mathrm{sing}}\varOmega^{+}(u)\setminus\{0\}=\varnothing. In particular, this means dimsingΩ+(u)=0\dim_{\mathcal{H}}\partial_{\mathrm{sing}}\varOmega^{+}(u)=0.

Proof.

Step I. Suppose there is a sequence of singular free boundary points xnsingΩ+(u)x_{n}\in\partial_{\mathrm{sing}}\varOmega^{+}(u) converging to some point x0x^{0} as nn\to\infty, and we claim x0singΩ+(u)x^{0}\in\partial_{\mathrm{sing}}\varOmega^{+}(u). Let us consider the blow-up sequence unu_{n} at x0x^{0} and we denote by u0u_{0} the blow-up limit of unu_{n} as nn\to\infty. On the one hand, the uniform convergence of unu_{n} implies that u0(x0)=0u_{0}(x^{0})=0. On the other hand, since for each nn, unu_{n} minimizes JJ, we may infer from Corollary 3.5 that for every r>0r>0 small

u0L(Br(x0))\displaystyle\|u_{0}\|_{L^{\infty}(B_{r}(x^{0}))} limn(unL(Br(x0))unu0L(Br(x0)))\displaystyle\geqslant\lim_{n\to\infty}(\|u_{n}\|_{L^{\infty}(B_{r}(x^{0}))}-\|u_{n}-u_{0}\|_{L^{\infty}(B_{r}(x^{0}))})
lim infnunL(Br/2(x0))ηr,\displaystyle\geqslant\liminf_{n\to\infty}\|u_{n}\|_{L^{\infty}(B_{r/2}(x^{0}))}\geqslant\eta r,

which gives x0Ω+(u0)x^{0}\in\partial\varOmega^{+}(u_{0}). If x0regΩ+(u0)x^{0}\in\partial_{\mathrm{reg}}\varOmega^{+}(u_{0}), so that every blow-up limit u00u_{00} of u0u_{0} at x0x^{0} is of the form Q(0)((xx0)ν)+Q(0)((x-x^{0})\cdot\nu)^{+} for some νB1\nu\in\partial B_{1}. Moreover, there is a sequence rn0r_{n}\to 0 so that

limnu0(x0+rn(xx0))rnQ(0)((xx0)ν)+L(B1)=0.\displaystyle\lim_{n\to\infty}\left\|\frac{u_{0}(x^{0}+r_{n}(x-x^{0}))}{r_{n}}-Q(0)((x-x^{0})\cdot\nu)^{+}\right\|_{L^{\infty}(B_{1})}=0.

Let y:=x0+rn(xx0)y:=x^{0}+r_{n}(x-x^{0}), one has

0=limn1rnu0(y)Q0((yx0)ν)+L(Brn(x0)).\displaystyle 0=\lim_{n\to\infty}\frac{1}{r_{n}}\left\|u_{0}(y)-Q_{0}((y-x^{0})\cdot\nu)^{+}\right\|_{L^{\infty}(B_{r_{n}}(x^{0}))}.

In particular, there exists r(0,R)r\in(0,R) so that

u0()Q0((x0)ν)+L(Br(x0))εr3.\displaystyle\|u_{0}(\cdot)-Q_{0}((\cdot-x^{0})\cdot\nu)^{+}\|_{L^{\infty}(B_{r}(x^{0}))}\leqslant\frac{\varepsilon r}{3}.

Since u0u_{0} is a continuous function, we have for sufficiently large nn,

u0()Q(0)((xn)ν)+L(Br(xn))2εr3\displaystyle\|u_{0}(\cdot)-Q(0)((\cdot-x_{n})\cdot\nu)^{+}\|_{L^{\infty}(B_{r}(x_{n}))}\leqslant\frac{2\varepsilon r}{3}

Since unu_{n} converges to u0u_{0} uniformly, we get for sufficiently large nn,

un()Q(0)((xn)ν)+L(Br(xn))εr.\displaystyle\|u_{n}(\cdot)-Q(0)((\cdot-x_{n})\cdot\nu)^{+}\|_{L^{\infty}(B_{r}(x_{n}))}\leqslant\varepsilon r.

This implies that there exists ε¯>0\bar{\varepsilon}>0 so that unu_{n} is ε¯\bar{\varepsilon}-flat in Br(xn)B_{r}(x_{n}). Moreover, unu_{n} is a viscosity solution. Thanks to the regularity results we have Ω+(un)\partial\varOmega^{+}(u_{n}) is C1,γC^{1,\gamma} in a small neighborhood of xnx_{n} and this implies that xnregΩ+(un)x_{n}\in\partial_{\mathrm{reg}}\varOmega^{+}(u_{n}), which yields a contradiction with the initial assumption.

Step II. The minimality of uu and Proposition 6.1 (2) imply that u0:du_{0}\colon\mathbb{R}^{d^{*}}\to\mathbb{R} is a non-negative global minimizer of J0J_{0} in d\mathbb{R}^{d^{*}}. Then it follows from Lemma 8.4, Lemma 8.5 and similar argument in [35] that

singΩ+(u0){0}=.\displaystyle\partial_{\mathrm{sing}}\varOmega^{+}(u_{0})\setminus\{0\}=\varnothing. (8.110)

Let xnsingΩ+(u)x_{n}\in\partial_{\mathrm{sing}}\varOmega^{+}(u) and let rn:=|xnx0|r_{n}:=|x_{n}-x^{0}|. Notice now that for every n>0n>0 the point ξn:=xnx0rnB1\xi_{n}:=\frac{x_{n}-x^{0}}{r_{n}}\in\partial B_{1} is a singular point for unu_{n}. Up to extracting a subsequence, we may assume that ξn\xi_{n} converges to a point ξ0B1\xi_{0}\in\partial B_{1}. It follows from Step I that ξ0singΩ+(u0)\xi_{0}\in\partial_{\mathrm{sing}}\varOmega^{+}(u_{0}). This yields a contradiction to (8.110). ∎

Proposition 8.7.

Let u𝒦u\in\mathcal{K} be a minimizer of JJ in Ωd\Omega\subset\mathbb{R}^{d} for d>dd>d^{*}, then

dim(singΩ+(u))dd.\displaystyle\dim_{\mathcal{H}}(\partial_{\mathrm{sing}}\varOmega^{+}(u))\leqslant d-d^{*}. (8.111)
Proof.

Let d>dd>d^{*} and let s>0s>0 be fixed. We will prove

dd+s(singΩ+(u))=0.\displaystyle\mathcal{H}^{d-d^{*}+s}(\partial_{\mathrm{sing}}\varOmega^{+}(u))=0. (8.112)

Suppose that this is not the case and dd+s(singΩ+(u))>0\mathcal{H}^{d-d^{*}+s}(\partial_{\mathrm{sing}}\varOmega^{+}(u))>0. Then it follows that there is a point x0singΩ+(u)x^{0}\in\partial_{\mathrm{sing}}\varOmega^{+}(u) and a sequence rn0r_{n}\to 0 such that

dd+s(singΩ+(u)Brn(x0))εrndd+s.\displaystyle\mathcal{H}^{d-d^{*}+s}(\partial_{\mathrm{sing}}\varOmega^{+}(u)\cap B_{r_{n}}(x^{0}))\geqslant\varepsilon r_{n}^{d-d^{*}+s}.

Choosing unu_{n} a blow-up sequence, we get

dd+s(singΩ+(un)B1)ε.\displaystyle\mathcal{H}^{d-d^{*}+s}(\partial_{\mathrm{sing}}\varOmega^{+}(u_{n})\cap B_{1})\geqslant\varepsilon.

Up to extracting a subsequence, unu_{n} converges to a blow-up limit u0u_{0} and u0u_{0} is a one-homogeneous global minimizer of J0J_{0} in d\mathbb{R}^{d}. Consequently,

dd+s(singΩ+(u0)B1)ε,\displaystyle\mathcal{H}^{d-d^{*}+s}(\partial_{\mathrm{sing}}\varOmega^{+}(u_{0})\cap B_{1})\geqslant\varepsilon,

which yields a contradiction to Federer dimension reduction Theorem [19] for one-homogeneous global minimizer of J0J_{0} in d\mathbb{R}^{d}. ∎

References

  • [1] H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325, 105-144, (1981).
  • [2] H. W. Alt, L. A. Caffarelli, A. Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11, 1-44, (1984).
  • [3] L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are C1,αC^{1,\alpha}, Rev. Mat. Iberoamericana., 3, 139-162, (1987).
  • [4] L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42, 55-78, (1989).
  • [5] L. A. Caffarelli, A Harnack inequality to the regularity of free boundaries. Part III: existence theory, compactness, and dependence on X, Ann. Scuola Norm. Sup. Pisa, 15(4), 583-602, (1988).
  • [6] H. W. Alt, L. A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282(2), 431-461, (1984).
  • [7] L. A. Caffarelli, H. Shahgholian, K. Yeressian, A minimization problem with free boundary related to a cooperative system, Duke. Math. J., 167(10), 1825-1882, (2018).
  • [8] M. G. Crandall, H. Ishii, P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67, (1992).
  • [9] L. A. Caffarelli, D. S. Jerison, C. E. Kenig, Global energy minimizers for free boundary problems and full regularity in three diemsnions, Contemp. Math. Amer. Math. Soc. Providence., 350, 83-97, (2004).
  • [10] A. Constantin, W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57(4), 481-527, (2004).
  • [11] J. F. Cheng, L. L. Du, Y. F. Wang, Two-dimensional impinging jets in hydrodynamic rotational flows, Ann. Inst. H. Poincaré Anal. Non Linéaire., 34, 1355-1386, (2017).
  • [12] J. F. Cheng, L. L. Du, Q. Zhang, Two-dimensional cavity flow in an infinitely long channel with non-zero vorticity, J. Differential Equations., 263, 4126-4155, (2017).
  • [13] J. F. Cheng, L. L. Du, A free boundary problem for semilinear elliptic equation and its applications, arXiv:2006.02269vl.
  • [14] D. Danielli, A Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. PDE., 23(1), 97-124, (2005).
  • [15] D. De Silva, D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math., 635, 1-21, (2009).
  • [16] D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces Free Bound., 13, 223-238, (2011).
  • [17] L. L. Du, C. L. Yang, The free boundary of steady axisymmetric inviscid flow with vorticity II: near the non-degenerate points, arXiv:2310.09477.
  • [18] L. C. Evans, Measure Theory and Fine Properties of Functions, Boca Raton, CRC Press, 2nd revised, edition (2015).
  • [19] H. Federer, Geometric Measure Theory, Springer Berlin, Heidelberg, (1996).
  • [20] B. Gustaffsson, H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., 473, 137-179, (1996).
  • [21] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, (1998).
  • [22] D. S. Jerison, O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., 25, 1240-1257, (2015).
  • [23] R. Leitão, E V. Teixeira, Regularity and geometric estimates for minima of discontinuous functionals, Rev. Mat. Iberoam., 31, 69-108, (2015).
  • [24] C. B. Morrey, Multiple Integrals in The Calculus of Variations, Classics in Mathematics., Springer, Berlin, (2008).
  • [25] D. Mazzoleni, S, Terracini, B. Velochkov, Regularity of the optimal sets for some spectral functionals, Geom. Funct. Anal., 27, 373–426 (2017).
  • [26] D. Mazzoleni, S, Terracini, B. Velochkov, Regularity of the free boundary for the vectorial Bernoulli problem, Anal. PDE., 13, 741-764, (2020).
  • [27] E. R. Reifenberg, An epiperimetric inequality related to the analytic of minimal surfaces, Ann. of Math., 80, 1-14, (1964).
  • [28] E. Russ, B. Tery, B.Velichkov, Existence and regularity of optimal shapes for elliptic operators with drift, Calc. Var. PDE., 58, 199, (2019).
  • [29] L. Spolaor, B. Velichkov, An epiperimetric inequality for the regularity of some free boundary problems: the 22-dimensional case, Comm. Pure. Appl. Math., 72(2), 375-421, (2019).
  • [30] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20, 721-747, (1967).
  • [31] B. Velichkov, Regularity of the One-phase Free Boundaries, Lect. Notes(2023). https://doi.org/10.1007/ 978- 3- 031- 13238- 4.
  • [32] E. Vărvărucă, On some properties of the traveling water waves with vorticity, Siam. J. Math. Anal., 39(5), 1686-1692, (2008).
  • [33] E. Vărvărucă, G. Weiss, The stokes conjecture for waves with vorticity, Ann. Inst. H. Poincaré., 29, 861-885, (2012).
  • [34] G. Weiss, G. H. Zhang, A free boundary approach to two-dimensional steady capillary gravity water waves, Arch. Ration. Mech. Anal., 203, 747-768, (2012).
  • [35] G. Weiss, Partial regularity for a minimum problem with free boundary, J. Geom. Anal., 9(2), 317-326, (1999).