This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Geometry of TT-Varieties

Klaus Altmann Institut für Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany altmann@math.fu-berlin.de Nathan Owen Ilten Max Planck Institut für Mathematik, PF 7280, 53072 Bonn, Germany nilten@cs.uchicago.edu Lars Petersen Institut für Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany petersen@math.fu-berlin.de Hendrik Süß Institut für Mathematik, LS Algebra und Geometrie, Brandenburgische Technische Universität Cottbus, PF 10 13 44, 03013 Cottbus, Germany suess@math.tu-cottbus.de  and  Robert Vollmert Institut für Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany vollmert@math.fu-berlin.de
Abstract.

This is a survey of the language of polyhedral divisors describing TT-varieties. This language is explained in parallel to the well established theory of toric varieties. In addition to basic constructions, subjects touched on include singularities, separatedness and properness, divisors and intersection theory, cohomology, Cox rings, polarizations, and equivariant deformations, among others.

1. Introduction

1.1. \mathbb{C}^{*}-actions and toric varieties

The present paper is a survey about complex TT-varieties, i.e. about normal (nn-dimensional) varieties XX over \mathbb{C} with the effective action of a torus T:=()kT:=(\mathbb{C}^{*})^{k}. The case k=1k=1 is a classical one — especially singularities with a so-called “good” \mathbb{C}^{*}-action have been studied intensively by Pinkham [Pin74, Pin77, Pin78]. The case n=kn=k is classical as well — first studied by Demazure [Dem70], such varieties are called “toric varieties”. The basic theory encodes the category of toric varieties and equivariant morphisms in purely combinatorial terms. Many famous theories in algebraic geometry have their combinatorial counterpart and thus illustrate the geometry from an alternative point of view. The dictionary between algebraic geometry and combinatorics sometimes even helps to establish new theories. The most prominent example of this phenomenon might be the development of mirror symmetry in the 1990’s. Building on the notion of reflexive polytopes, Batyrev gave a first systematic mathematical treatment of this subject [Bat94].

1.2. Higher complexity

For some features, however, it is useful to consider lower dimensional torus actions as well. For instance, when deforming a toric variety, the embedded torus TT still acts naturally on the total- and base-spaces X~S\widetilde{X}\to S, but it is usually too small to provide a toric structure on them. The adjacent fibers XsX_{s} are even worse: depending on the isotropy group of TT at the point sSs\in S, only a subtorus of TT still acts. Thus, it is worth to study the general case as well. The difference nkn-k is then called the complexity of a TT-variety XX.
While complexity 0 means toric, the next case of complexity 11 was systematically studied by Timashev (even for more general algebraic groups) in [Tim97]. On the other hand, Flenner and Zaidenberg [FZ03] gave a very useful description of \mathbb{C}^{*}-surfaces even for “non-good” actions. Starting in 2003, there is a series of papers dealing with a general treatment of TT-varieties in terms of so-called polyhedral divisors. The idea is to catch the non-combinatorial part of a TT-variety XX in an (nk)(n-k)-dimensional variety YY which is a sort of quotient Y=X/TY=X/T. Now, XX can be described by presenting a “polyhedral” divisor 𝒟\mathcal{D} on YY with coefficients being not numbers but instead convex polyhedra in the vector space N:=NN_{\mathbb{Q}}:=N\otimes_{\mathbb{Z}}\mathbb{Q} where NN is the lattice of one-parameter subgroups of TT.

1.3. What this paper is about

The idea of the present paper is to give an introduction to this subject and to serve as a survey for the many recent papers on TT-varieties. Moreover, since the notion of polyhedral divisors and the theory of TT-varieties closely follows the concept of toric varieties, we will treat both cases in parallel. This means that the present paper also serves as a quick introduction to the fascinating field of toric varieties. For a broader discussion and detailed proofs of facts related to toric geometry which are merely mentioned here, the reader is asked to consult any of the standard textbooks like [KKMSD73], [Dan78], [Ful93], and [Oda88]. The subjects of non-toric TT-varieties are covered in [AH03], [AH06], [AHS08], [AH08], [IS10], [Süß], [PS], [IS], [IVa], [HI], [Vol10], [HS10], [AW], and [AP].

There are also applications of the theory of TT-varieties and polyhedral divisors in affine geometry [Liea, Lieb, Liec] and coding theory [IS10] which are not covered by this survey. Very recently, SL2\operatorname{SL}_{2}-actions on affine T-varieties have also been studied [AL].

2. Affine TT-varieties

2.1. Affine toric varieties

Let MM and NN be two mutually dual, free abelian groups of rank kk. In other words, both are isomorphic to k\mathbb{Z}^{k}, and we have a natural perfect pairing M×NM\times N\to\mathbb{Z}. Then T:=Spec[M]=NT:=\operatorname{Spec}\mathbb{C}[M]=N\otimes_{\mathbb{Z}}\mathbb{C}^{*} is the coordinate free version of the torus ()k(\mathbb{C}^{*})^{k} mentioned in (1.1). On the other hand, N=HomalgGr(,T)N=\mbox{\rm Hom}_{\operatorname{algGr}}(\mathbb{C}^{*},T) is the set of one-parameter subgroups of TT, and M=HomalgGr(T,)M=\mbox{\rm Hom}_{\operatorname{algGr}}(T,\mathbb{C}^{*}) equals the character group of TT. We denote by M:=MM_{\mathbb{Q}}:=M\otimes_{\mathbb{Z}}\mathbb{Q} and N:=NN_{\mathbb{Q}}:=N\otimes_{\mathbb{Z}}\mathbb{Q} the associated \mathbb{Q}-vector spaces.
We always assume that the generators aia^{i} for a polyhedral cone σ=a1,,am:=i=1m0aiN\sigma=\langle a^{1},\ldots,a^{m}\rangle:=\sum_{i=1}^{m}\mathbb{Q}_{\geq 0}\,a^{i}\subseteq N_{\mathbb{Q}} are primitive elements of NN, i.e. they are not proper multiples of other elements of NN. Dropping this assumption is the first step towards the theory of toric stacks which we will not pursue here, cf. [BCS05]. Moreover, we will often identify a primitive element aNa\in N with the ray 0a\mathbb{Q}_{\geq 0}\cdot a it generates. Given σ\sigma as above, we define its dual cone as σ:={uM|σ,u0}\sigma^{\scriptscriptstyle\vee}:=\{u\in M_{\mathbb{Q}}\,|\;\langle\sigma,u\rangle\geq 0\}. If σ\sigma does not contain a non-trivial linear subspace (i.e. 0σ0\in\sigma is a vertex), then dimσ=k\dim\sigma^{\scriptscriptstyle\vee}=k, and we use the semigroup algebra [σM]:=uσMχu\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap M]:=\oplus_{u\in\sigma^{\scriptscriptstyle\vee}\cap M}\mathbb{C}\,\chi^{u} to define the kk-dimensional toric variety

TV(σ):=TV(σ,N):=Spec[σM].\operatorname{TV}(\sigma):=\operatorname{TV}(\sigma,N):=\operatorname{Spec}\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap M].

This is a normal variety. If dimσ=k\dim\sigma=k, the (finite) set EσME\subseteq\sigma^{\scriptscriptstyle\vee}\cap M of indecomposable elements is called the Hilbert basis of σ\sigma^{\scriptscriptstyle\vee}. Furthermore, TV(σ)E\operatorname{TV}(\sigma)\subset\mathbb{C}^{E} is defined by a binomial ideal which arises from the relations between the elements of the Hilbert basis EE, cf. (3.2).

Example 1.

Let σ=(1,2),(1,2)2\sigma=\langle(-1,2),\,(1,2)\rangle\subseteq\mathbb{Q}^{2}. This gives rise to σ=[2,1],[2,1]\sigma^{\scriptscriptstyle\vee}=\langle[-2,1],\,[2,1]\rangle and E={[e,1]|2e2}E=\{[e,1]\,|\;-2\leq e\leq 2\}, illustrated in Figure 1. The resulting TV(σ)5\operatorname{TV}(\sigma)\subseteq\mathbb{C}^{5} is the cone over the rational normal curve of degree 44, and its defining ideal is generated by the six minors expressing the inequality rank(y0y1y2y3y1y2y3y4)1.\operatorname{rank}\left(\begin{smallmatrix}y_{0}&y_{1}&y_{2}&y_{3}\\ y_{1}&y_{2}&y_{3}&y_{4}\end{smallmatrix}\right)\leq 1.

(a) σ\sigma
y0\scriptstyle y_{0}y1\scriptstyle y_{1}y3\scriptstyle y_{3}y4\scriptstyle y_{4}y2\scriptstyle y_{2}
(b) σ\sigma^{\scriptscriptstyle\vee}
Figure 1. Cones for Example 1.

2.2. Toric bouquets

The previous notion allows for a generalization. If ΔN\Delta\subseteq N_{\mathbb{Q}} is a polyhedron, then we denote by

tail(Δ):={aN|a+ΔΔ}\operatorname{tail}(\Delta):=\{a\in N_{\mathbb{Q}}\,|\;a+\Delta\subseteq\Delta\}

its so-called tailcone. Assume that this cone is pointed, i.e. contains no non-trivial linear subspace; then Δ\Delta has a non-empty set of vertices 𝒱(Δ){\mathcal{V}}(\Delta). Denoting their compact convex hull by Δc\Delta^{c}, the polyhedron Δ\Delta splits into the “Minkowski” sum Δc+tail(Δ)\Delta^{c}+\operatorname{tail}(\Delta). Moreover, Δ\Delta gives rise to its inner normal fan 𝒩(Δ)\mathcal{N}(\Delta) consisting of the linearity regions of the function minΔ,:tail(Δ)\min\langle\Delta,{\scriptstyle\bullet}\rangle:\operatorname{tail}(\Delta)^{\scriptscriptstyle\vee}\to\mathbb{Q}. Note that the cones of 𝒩(Δ)\mathcal{N}(\Delta) are in a one-to-one correspondence to the faces FΔF\leq\Delta via the map F𝒩(F,Δ):={uM|F,u=minΔ,u}F\mapsto\mathcal{N}(F,\Delta):=\{u\in M_{\mathbb{Q}}\,|\;\langle F,u\rangle=\min\langle\Delta,u\rangle\}. We can now define

TV(Δ):=Spec[𝒩(Δ)M]\operatorname{TV}(\Delta):=\operatorname{Spec}\mathbb{C}[\mathcal{N}(\Delta)\cap M]

where [𝒩(Δ)M]:=[σM]\mathbb{C}[\mathcal{N}(\Delta)\cap M]:=\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap M] as a \mathbb{C}-vector space. Note, however, that the multiplication is given by

χuχu:={χu+uif u,u belong to a common cone of 𝒩(Δ)0otherwise.\chi^{u}\cdot\chi^{u^{\prime}}:=\left\{\begin{array}[]{ll}\chi^{u+u^{\prime}}&\mbox{if $u,u^{\prime}$ belong to a common cone of $\mathcal{N}(\Delta)$}\\ 0&\mbox{otherwise}.\end{array}\right.

A scheme of the form TV(Δ)\operatorname{TV}(\Delta) is called a toric bouquet. We obtain the decomposition

TV(Δ)=v𝒱(Δ)TV(0(Δv))\operatorname{TV}(\Delta)=\bigcup_{v\in{\mathcal{V}}(\Delta)}\operatorname{TV}(\mathbb{Q}_{\geq 0}\cdot(\Delta-v))

into irreducible (toric) components, compare with (6.1). Note that there is a one-to-one correspondence between polyhedral cones and affine toric varieties, whereas the construction of a toric bouquet only depends on the normal fan 𝒩(Δ)\mathcal{N}(\Delta). Hence, dilations of the compact edges of Δ\Delta and translations do not affect the structure of the corresponding bouquet.

Example 2.

Consider the cone σ:=(1,0),(1,1)2\sigma:=\langle(1,0),(1,1)\rangle\subset\mathbb{Q}^{2} together with the σ\sigma-polyhedron Δ=(0,0)(0,1)¯+σ=Δc+tail(Δ)\Delta=\overline{(0,0)(0,1)}+\sigma=\Delta^{c}+\operatorname{tail}(\Delta) and its inner normal fan 𝒩(Δ)\mathcal{N}(\Delta) as depicted in Figure 2. Observe that Spec[𝒩(Δ)M]\operatorname{Spec}\mathbb{C}[\mathcal{N}(\Delta)\cap M] is equidimensional and consists of two irreducible components isomorphic to 𝔸2\mathbb{A}^{2} which are glued along an affine line.

F1F_{1}F2F_{2}
(a) Δ\Delta
𝒩(F1,Δ)\mathcal{N}(F_{1},\Delta)𝒩(F2,Δ)\mathcal{N}(F_{2},\Delta)
(b) 𝒩(Δ)\mathcal{N}(\Delta)
Figure 2. An affine toric bouquet, cf. Example 2.

2.3. Polyhedral and p-divisors

Let MM, NN, σN\sigma\subseteq N_{\mathbb{Q}} be as in (2.1). In particular, we assume that σ\sigma contains no non-trivial linear subspace. These data then give rise to a semigroup (with respect to Minkowski addition)

Pol+(N,σ):={ΔN|Δ polyhedron with tail(Δ)=σ}.\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma):=\{\Delta\subseteq N_{\mathbb{Q}}\,|\;\Delta\mbox{ polyhedron with }\operatorname{tail}(\Delta)=\sigma\}.

Note that Pol+(N,σ)\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma) satisfies the cancellation law and contains σ\sigma as its neutral element. If, in addition, YY is a normal, projective variety over \mathbb{C}, then we denote by CaDiv0(Y)\operatorname{CaDiv}_{\geq 0}(Y) the semigroup of effective Cartier divisors and call elements

𝒟=Z𝒟ZZPol+(N,σ)0CaDiv0(Y)\mathcal{D}=\sum_{Z}\mathcal{D}_{Z}\otimes Z\in\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma)\otimes_{\mathbb{Z}_{\geq 0}}\operatorname{CaDiv}_{\geq 0}(Y)

polyhedral divisors on YY in NN (or simply on (Y,N)(Y,N)) with tail(𝒟):=σ\operatorname{tail}(\mathcal{D}):=\sigma. We will also allow \emptyset as an element of Pol+(N,σ)\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma) which satisfies +Δ:=\emptyset+\Delta:=\emptyset. This somewhat bizarre coefficient is needed to deal with non-compact, open loci defined as Loc(𝒟):=Y𝒟Z=Z\operatorname{Loc}(\mathcal{D}):=Y\setminus\bigcup_{\mathcal{D}_{Z}=\emptyset}Z. For each u(tail(𝒟))u\in(\operatorname{tail}(\mathcal{D}))^{\scriptscriptstyle\vee}, we may then consider the evaluation

𝒟(u):=𝒟Zmin𝒟Z,uZ|Loc𝒟CaDiv(Loc𝒟).\mathcal{D}(u):=\sum_{\mathcal{D}_{Z}\neq\emptyset}\min\langle\mathcal{D}_{Z},u\rangle\cdot Z|_{\operatorname{Loc}\mathcal{D}}\in\operatorname{CaDiv}_{\mathbb{Q}}(\operatorname{Loc}\mathcal{D}).

This is an ordinary \mathbb{Q}-divisor with supp𝒟(u)supp𝒟:=Loc𝒟𝒟ZZ\operatorname{supp}\mathcal{D}(u)\subseteq\operatorname{supp}\mathcal{D}:=\operatorname{Loc}\mathcal{D}\cap\bigcup_{\mathcal{D}_{Z}\neq\emptyset}Z.

Definition 3.

𝒟\mathcal{D} is called a p-divisor if all evaluations 𝒟(u)\mathcal{D}(u) are semiample (i.e. have positive, base point free multiples) and, additionally, are big for uint(tail(𝒟))u\in\operatorname{int}(\operatorname{tail}(\mathcal{D}))^{\scriptscriptstyle\vee}. Note that this condition is void if Loc(𝒟)\operatorname{Loc}(\mathcal{D}) is affine.

Polyhedral divisors have the property that 𝒟(u)+𝒟(u)𝒟(u+u)\mathcal{D}(u)+\mathcal{D}(u^{\prime})\leq\mathcal{D}(u+u^{\prime}). Hence, they lead to a sheaf of rings 𝒪Loc(𝒟):=uσM𝒪Loc(𝒟(u))χu{\mathcal{O}}_{\operatorname{Loc}}(\mathcal{D}):=\bigoplus_{u\in\sigma^{\vee}\cap M}{\mathcal{O}}_{\operatorname{Loc}}(\mathcal{D}(u))\,\chi^{u} giving rise to the schemes

TV~(𝒟):=SpecLoc(𝒟)𝒪(𝒟) and the affine TV(𝒟):=SpecΓ(Loc(𝒟),𝒪(𝒟)).\operatorname{\widetilde{TV}}(\mathcal{D}):=\operatorname{Spec}_{\operatorname{Loc}(\mathcal{D})}{\mathcal{O}}(\mathcal{D})\mbox{ and the affine }\operatorname{TV}(\mathcal{D}):=\operatorname{Spec}\Gamma(\operatorname{Loc}(\mathcal{D}),{\mathcal{O}}(\mathcal{D})).

The latter space does not change if 𝒟\mathcal{D} is pulled back via a birational modification YYY^{\prime}\to Y or if 𝒟\mathcal{D} is altered by a principal polyhedral divisor on YY, that is, an element in the image of the natural map N(Y)Pol(N,σ)CaDiv(Y)N\otimes_{\mathbb{Z}}\mathbb{C}(Y)^{*}\to\operatorname{Pol}_{\mathbb{Q}}(N,\sigma)\otimes_{\mathbb{Z}}\operatorname{CaDiv}(Y). Two p-divisors which differ by chains of those operations are called equivalent. Note that this implies that YY can always be replaced by a log-resolution.

Theorem 4 ([AH06], Theorems (3.1), (3.4); Corollary (8.12)).

The map 𝒟TV(𝒟)\mathcal{D}\mapsto\operatorname{TV}(\mathcal{D}) yields a bijection between equivalence classes of p-divisors and normal, affine \mathbb{C}-varieties with an effective TT-action.

2.4. Products of TT-varieties

Consider some TT-variety XX and a TT^{\prime}-variety XX^{\prime}. Then the product X×XX\times X^{\prime} carries the natural structure of a T×TT\times T^{\prime}-variety. As we shall see, the combinatorial data describing X×XX\times X^{\prime} arise as a kind of product of the combinatorial data describing XX and XX^{\prime}.

For simplicity, we will only consider the affine case, although the construction easily globalizes. Thus, consider p-divisors 𝒟,𝒟\mathcal{D},\mathcal{D}^{\prime} on respectively Y,YY,Y^{\prime}, with tailcones σ,σ\sigma,\sigma^{\prime}, respectively. We define the product p-divisor 𝒟×𝒟\mathcal{D}\times\mathcal{D}^{\prime} on Y×YY\times Y^{\prime} as follows:

𝒟×𝒟=ZY(𝒟Z×σ)(Z×Y)+ZY(σ×𝒟Z)(Y×Z)\mathcal{D}\times\mathcal{D}^{\prime}=\sum_{Z\subset Y}(\mathcal{D}_{Z}\times\sigma^{\prime})\otimes(Z\times Y^{\prime})+\sum_{Z^{\prime}\subset Y^{\prime}}(\sigma\times\mathcal{D}_{Z^{\prime}}^{\prime})\otimes(Y\times Z^{\prime})
Proposition 5.

For any p-divisors 𝒟\mathcal{D} and 𝒟\mathcal{D}^{\prime}, TV(𝒟×𝒟)TV(𝒟)×TV(𝒟)\operatorname{TV}(\mathcal{D}\times\mathcal{D}^{\prime})\cong\operatorname{TV}(\mathcal{D})\times\operatorname{TV}(\mathcal{D}^{\prime}).

Proof.

For any u~=(u,u)MM\widetilde{u}=(u,u^{\prime})\in M\oplus M^{\prime},

Γ(Loc(𝒟×𝒟),𝒪(𝒟×𝒟(u~)))\displaystyle\Gamma\big{(}\operatorname{Loc}(\mathcal{D}\times\mathcal{D}^{\prime}),{\mathcal{O}}(\mathcal{D}\times\mathcal{D}^{\prime}(\widetilde{u}))\big{)}\hskip-2.0pt =Γ(Loc(𝒟×𝒟),𝒪(𝒟(u)×Y)𝒪(Y×𝒟(u)))\displaystyle=\hskip-1.0pt\Gamma\big{(}\operatorname{Loc}(\mathcal{D}\times\mathcal{D}^{\prime}),{\mathcal{O}}(\mathcal{D}(u)\times Y^{\prime})\otimes{\mathcal{O}}(Y\times\mathcal{D}^{\prime}(u^{\prime}))\big{)}
=Γ(Loc(𝒟),𝒪(𝒟(u)))Γ(Loc(𝒟),𝒪(𝒟(u)))\displaystyle=\hskip-1.0pt\Gamma\big{(}\operatorname{Loc}(\mathcal{D}),{\mathcal{O}}(\mathcal{D}(u))\big{)}\otimes\Gamma\big{(}\operatorname{Loc}(\mathcal{D}^{\prime}),{\mathcal{O}}(\mathcal{D}^{\prime}(u^{\prime}))\big{)}

where the last equality is due to the Künneth formula for coherent sheaves, see [Gro63, Theorem 6.7.8]. ∎

Remark 6.

A special case of the above is when XX and XX^{\prime} are toric varieties. Here, the proposition simplifies to TV(σ×σ)TV(σ)×TV(σ)\operatorname{TV}(\sigma\times\sigma^{\prime})\cong\operatorname{TV}(\sigma)\times\operatorname{TV}(\sigma^{\prime}).

3. The functor TV\operatorname{TV}

3.1. Maps between toric varieties

We will now see that all constructions from the previous section are functorial. Let us start with the setting given in (2.1). A \mathbb{Z}-linear map F:NNF\colon N^{\prime}\to N satisfying F(σ)σF_{\mathbb{Q}}(\sigma^{\prime})\subseteq\sigma gives rise to a morphism TV(F):TV(σ,N)TV(σ,N)\operatorname{TV}(F)\colon\operatorname{TV}(\sigma^{\prime},N^{\prime})\to\operatorname{TV}(\sigma,N) of affine toric varieties via F(σM)(σ)MF^{\scriptscriptstyle\vee}(\sigma^{\scriptscriptstyle\vee}\cap M)\subseteq(\sigma^{\prime})^{\scriptscriptstyle\vee}\cap M^{\prime}. For example, if EσME\subseteq\sigma^{\scriptscriptstyle\vee}\cap M is a Hilbert basis, then the embedding TV(σ)E\operatorname{TV}(\sigma)\hookrightarrow\mathbb{C}^{E} from (2.1) is induced by the map E:NEE\colon N\to\mathbb{Z}^{E}.

3.2. Maps between TT-varieties

A generalization of the functoriality to the setting of (2.3) also has to take care of the underlying variety YY.
Let (Y,𝒟,N)(Y^{\prime},\mathcal{D}^{\prime},N^{\prime}) and (Y,𝒟,N)(Y,\mathcal{D},N) be p-divisors. Consider now any tuple (F,ϕ,𝔣)(F,\phi,\mathfrak{f}) consisting of a map F:NNF:N\to N^{\prime}, a dominant morphism ϕ:YY\phi:Y^{\prime}\to Y, and an element 𝔣=vifiN(Y)\mathfrak{f}=\sum v_{i}\otimes f_{i}\in N\otimes\mathbb{C}(Y^{\prime})^{*}, satisfying F𝒟φ𝒟+div(𝔣)F_{*}\mathcal{D}^{\prime}\subseteq\varphi^{*}\mathcal{D}+\operatorname{div}(\mathfrak{f}) (to be checked for all coefficients separately). Here,

F𝒟:=ZF(𝒟Z)ZF_{*}\mathcal{D}^{\prime}:=\sum_{Z^{\prime}}F(\mathcal{D}^{\prime}_{Z^{\prime}})\otimes Z^{\prime}

is the push forward of 𝒟\mathcal{D}^{\prime} by FF,

φ𝒟:=Z𝒟Zφ(Z)\varphi^{*}\mathcal{D}:=\sum_{Z}\mathcal{D}_{Z}\otimes\varphi^{*}(Z)

is the pull back of 𝒟\mathcal{D} by ϕ\phi, and

div(𝔣)=i(vi)div(fi)\operatorname{div}(\mathfrak{f})=\sum_{i}(v_{i})\otimes\operatorname{div}(f_{i})

is the principal polyhedral divisor associated to 𝔣\mathfrak{f}. Such a tuple provides us with naturally defined morphisms

TV~(F,φ,𝔣):TV~(𝒟,N)TV~(𝒟,N),and\displaystyle\operatorname{\widetilde{TV}}(F,\varphi,\mathfrak{f})\colon\operatorname{\widetilde{TV}}(\mathcal{D}^{\prime},N^{\prime})\to\operatorname{\widetilde{TV}}(\mathcal{D},N),\qquad\mbox{and}
TV(F,φ,𝔣):TV(𝒟,N)TV(𝒟,N).\displaystyle\operatorname{TV}(F,\varphi,\mathfrak{f})\colon\operatorname{TV}(\mathcal{D}^{\prime},N^{\prime})\to\operatorname{TV}(\mathcal{D},N).

This construction yields an equivalence of categories between polyhedral cones and affine toric varieties in the toric case (where only the map FF plays a role). To obtain a similar result for the relation between p-divisors and TT-varieties one first needs to define the category of the former by turning both types of equivalences mentioned in (2.3) into isomorphisms. This can be done by the common technique of localization which is known from the construction of derived categories. In the category of TT-varieties we restrict to morphisms ψ:XX\psi:X^{\prime}\rightarrow X, with T.ψ(X)XT.\psi(X^{\prime})\subset X being dense. We will call such morphisms orbit dominating.

Theorem 7 ([AH06], Corollary 8.14).

The functor TV\operatorname{TV} induces an equivalence from the category of p-divisors to the category of normal affine varieties with effective torus action and orbit dominating equivariant morphisms.

3.3. Open embeddings

Let us fix a torus TT. To glue affine TT-varieties together one has to understand TT-equivariant open embeddings. In the toric case, an inclusion F:σσF_{\mathbb{Q}}:\sigma^{\prime}\hookrightarrow\sigma of cones in NN_{\mathbb{Q}} (i.e. F=idNF=\operatorname{id}_{N} with σσ\sigma^{\prime}\subseteq\sigma) provides an open embedding TV(F)\operatorname{TV}(F) if and only if σ\sigma^{\prime} is a face of σ\sigma. Indeed, if σ=face(σ,u):=σu\sigma^{\prime}=\operatorname{face}(\sigma,u):=\sigma\cap u^{\bot} is cut out by the supporting hyperplane uσu\in\sigma^{\scriptscriptstyle\vee}, then [σM]=[σM]χu\mathbb{C}[{\sigma^{\prime}}^{\scriptscriptstyle\vee}\cap M]=\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap M]_{\chi^{u}} equals the localization by χu\chi^{u}. Thus, TV(σ)=[χu0]TV(σ)\operatorname{TV}(\sigma^{\prime})=[\chi^{u}\neq 0]\subseteq\operatorname{TV}(\sigma).

Example 8.

The origin {0}\{0\} is a common face of all cones σ\sigma. Hence, the torus T=TV(0,N)TV(σ,N)T=\operatorname{TV}(0,N)\subseteq\operatorname{TV}(\sigma,N) appears as an open subset in all toric varieties.

Similarly, if 𝒟\mathcal{D} is a p-divisor on YY and f𝒪Loc𝒟(𝒟(u))f\in{\mathcal{O}}_{\operatorname{Loc}\mathcal{D}}(\mathcal{D}(u)), then f(y)χu(Y)[M](TV(𝒟))f(y)\chi^{u}\in\mathbb{C}(Y)[M]\subseteq\mathbb{C}(\operatorname{TV}(\mathcal{D})) is an MM-homogeneous rational function on TV(𝒟)\operatorname{TV}(\mathcal{D}). The localization procedure of the toric setting now generalizes to to the present setting: the open subset [fχu0]TV(𝒟)[f\chi^{u}\neq 0]\subseteq\operatorname{TV}(\mathcal{D}) is again a TT-variety. Its associated p-divisor 𝒟fχu\mathcal{D}_{f\chi^{u}} is still supported on YY and its tailcone is tail(𝒟fχu)=face(tail(𝒟),u)\operatorname{tail}(\mathcal{D}_{f\chi^{u}})=\operatorname{face}(\operatorname{tail}(\mathcal{D}),u). Moreover,

𝒟fχu=face(𝒟,u)+(divf+𝒟(u))\mathcal{D}_{f\chi^{u}}=\operatorname{face}(\mathcal{D},u)+\emptyset\otimes(\operatorname{div}f+\mathcal{D}(u))

where the face operator is supposed to be applied to the polyhedral coefficients only. More specifically, face(Δ,u):={aΔ|a,u=minΔ,u}\operatorname{face}(\Delta,u):=\{a\in\Delta\,|\;\langle a,u\rangle=\min\langle\Delta,u\rangle\}. Note that Zu(f):=divf+𝒟(u)Z_{u}(f):=\operatorname{div}f+\mathcal{D}(u) is an effective divisor which depends “continuously” upon ff.
In contrast to the toric case, not all TT-invariant open subsets are of the form [fχu0][f\chi^{u}\neq 0]. We will now present a precise characterization of open embeddings, which is quite technical, but apparently does not easily simplify in the general case. For the much nicer case of complexity one, however, we refer to (5.2). We need the following notation: for a polyhedral divisor 𝒟=Z𝒟ZZ\mathcal{D}=\sum_{Z}\mathcal{D}_{Z}\otimes Z and a not necessarily closed point yYy\in Y we define 𝒟y:=yZ𝒟ZPol+(N,σ)\mathcal{D}_{y}:=\sum_{y\in Z}\mathcal{D}_{Z}\in\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma).
For any two p-divisors 𝒟,𝒟\mathcal{D},\mathcal{D}^{\prime} on a common (Y,N)(Y,N), we say that 𝒟𝒟\mathcal{D}^{\prime}\subseteq\mathcal{D} if the polyhedral coefficients respectively satisfy 𝒟Z𝒟Z\mathcal{D}^{\prime}_{Z}\subseteq\mathcal{D}_{Z}. Two such p-divisors induce maps ι~:TV~(𝒟)TV~(𝒟)\widetilde{\iota}:\operatorname{\widetilde{TV}}(\mathcal{D}^{\prime})\to\operatorname{\widetilde{TV}}(\mathcal{D}) and ι:TV(𝒟)TV(𝒟)\iota:\operatorname{TV}(\mathcal{D}^{\prime})\to\operatorname{TV}(\mathcal{D}). The former is an open embedding if and only if 𝒟𝒟\mathcal{D}^{\prime}\leq\mathcal{D}, i.e. if and only if all coefficients 𝒟Z\mathcal{D}^{\prime}_{Z} are faces of the corresponding 𝒟Z\mathcal{D}_{Z}. In particular, this implies that tail(𝒟)tail(𝒟)\operatorname{tail}(\mathcal{D}^{\prime})\leq\operatorname{tail}(\mathcal{D}).

Proposition 9 ([AHS08], Proposition (3.4)).

The morphism ι\iota is an open embedding \Leftrightarrow 𝒟𝒟\mathcal{D}^{\prime}\leq\mathcal{D} and, additionally, for each yLoc(𝒟)y\in\operatorname{Loc}(\mathcal{D}^{\prime}) there are uytail(𝒟)Mu_{y}\in\operatorname{tail}(\mathcal{D})^{\scriptscriptstyle\vee}\cap M and a divisor Zy|𝒟(uy)|Z_{y}\in|\mathcal{D}(u_{y})| such that ysuppZyy\notin\operatorname{supp}Z_{y}, 𝒟y=face(𝒟y,uy)\mathcal{D}^{\prime}_{y}=\operatorname{face}(\mathcal{D}_{y},u_{y}), and face(𝒟z,uy)=face(𝒟z,uy)\operatorname{face}(\mathcal{D}^{\prime}_{z},u_{y})=\operatorname{face}(\mathcal{D}_{z},u_{y}) for all zLoc(𝒟)supp(Zy)z\in\operatorname{Loc}(\mathcal{D})\setminus\operatorname{supp}(Z_{y}).

Example 10.

Let UX=SpecAU\subset X=\operatorname{Spec}A be an open embedding of normal affine varieties. By normality, D=XUD=X\setminus U is a Weil divisor. Then the open embedding UXU\subset X of trivial TT-varieties corresponds to the divisors 𝒟=D𝒟=0\mathcal{D}^{\prime}=\emptyset\otimes D\leq\mathcal{D}=0 on XX. For yLoc(𝒟)=Uy\in\operatorname{Loc}(\mathcal{D}^{\prime})=U, choose fyf_{y} in the ideal of DXD\subset X that doesn’t vanish at yy. Then uy:=0u_{y}:=0 and Zy:=div(fy)Z_{y}:=\operatorname{div}(f_{y}) satisfy the conditions of Proposition 9. Note that UU is not necessarily of the form [f0][f\neq 0].

Example 11.

Consider the divisors

𝒟={}𝒟=[1,){}\mathcal{D}^{\prime}=\emptyset\otimes\{\infty\}\leq\mathcal{D}=[1,\infty)\otimes\{\infty\}

on 1\mathbb{P}^{1} with tailcone [0,)[0,\infty). Then TV~(𝒟)TV(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D})\to\operatorname{TV}(\mathcal{D}) is the blowup of 𝔸2\mathbb{A}^{2} at the origin, and the open subset TV~(𝒟)TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}^{\prime})\subset\operatorname{\widetilde{TV}}(\mathcal{D}) intersects the exceptional divisor, so TV(𝒟)TV(𝒟)\operatorname{TV}(\mathcal{D}^{\prime})\to\operatorname{TV}(\mathcal{D}) is not injective.

3.4. General toric and TT-varieties

The characterization of open embeddings for affine toric varieties via the face relation between polyhedral cones leads directly to the notion of a (polyhedral) fan which is a special instance of a polyhedral subdivision:

Definition 12.

A finite set Σ\Sigma of polyhedral cones in NN_{\mathbb{Q}} is called a fan if the intersection of two cones from Σ\Sigma is a common face of both and, moreover, if Σ\Sigma contains all faces of its elements. (The normal fan 𝒩(Δ)\mathcal{N}(\Delta) from (2.2) is an example.)

Given a fan Σ\Sigma we can glue the affine toric varieties associated to its elements, namely

TV(Σ):=σΣTV(σ)withTV(σ)TV(τ)=TV(στ),\operatorname{TV}(\Sigma):=\bigcup_{\sigma\in\Sigma}\operatorname{TV}(\sigma)\hskip 8.00003pt\mbox{with}\hskip 8.00003pt\operatorname{TV}(\sigma)\cap\operatorname{TV}(\tau)=\operatorname{TV}(\sigma\cap\tau),

and {TV(σ)|σΣ maximal}\{\operatorname{TV}(\sigma)\,|\;\sigma\in\Sigma\mbox{ maximal}\} is an open, affine, TT-invariant covering of TV(Σ)\operatorname{TV}(\Sigma). This variety is automatically separated, and it is compact if and only if |Σ|:=σΣσ=N|\Sigma|:=\bigcup_{\sigma\in\Sigma}\sigma=N_{\mathbb{Q}}. Moreover, the functoriality globalizes; here the right notion for a morphism (N,Σ)(N,Σ)(N^{\prime},\Sigma^{\prime})\to(N,\Sigma) is a linear map F:NNF:N^{\prime}\to N such that for all σΣ\sigma^{\prime}\in\Sigma^{\prime} there is a σΣ\sigma\in\Sigma with F(σ)σF(\sigma^{\prime})\subseteq\sigma.
The above construction can be generalized in a straight-forward, if somewhat technical, manner to describe general TT-varieties. Let 𝒟,𝒟\mathcal{D},\mathcal{D}^{\prime} be p-divisors on (Y,N)(Y,N). Their intersection 𝒟𝒟\mathcal{D}\cap\mathcal{D}^{\prime} is the polyhedral divisor with ZZ-coefficient 𝒟Z𝒟Z\mathcal{D}_{Z}\cap\mathcal{D}_{Z}^{\prime} for any divisor ZZ on YY. If 𝒟𝒟\mathcal{D}^{\prime}\subseteq\mathcal{D}, we say 𝒟\mathcal{D}^{\prime} is a face of 𝒟\mathcal{D} if the induced map ι:TV(𝒟)TV(𝒟)\iota:\operatorname{TV}(\mathcal{D}^{\prime})\to\operatorname{TV}(\mathcal{D}) is an open embedding, i.e. the conditions of Proposition 9 hold.

Definition 13.

A finite set 𝒮\mathcal{S} of p-divisors on (Y,N)(Y,N) is called a divisorial fan if the intersection of two p-divisors from 𝒮\mathcal{S} is a common face of both and, moreover, 𝒮\mathcal{S} is closed under taking intersections.

Similar to the toric case, we can construct a scheme from a divisorial fan 𝒮\mathcal{S} via

TV(𝒮):=𝒟𝒮TV(𝒟)withTV(𝒟)TV(𝒟)=TV(𝒟𝒟).\operatorname{TV}(\mathcal{S}):=\bigcup_{\mathcal{D}\in\mathcal{S}}\operatorname{TV}(\mathcal{D})\hskip 8.00003pt\mbox{with}\hskip 8.00003pt\operatorname{TV}(\mathcal{D})\cap\operatorname{TV}(\mathcal{D}^{\prime})=\operatorname{TV}(\mathcal{D}\cap\mathcal{D}^{\prime}).

In general, the resulting scheme may not be separated, but there is a combinatorial criterion for checking this, see [AHS08, Theorem 7.5]. On the other hand, by covering any TT-variety XX with invariant affine open subsets, it is possible to construct a divisorial fan 𝒮\mathcal{S} with X=TV(𝒮)X=\operatorname{TV}(\mathcal{S}), see [AHS08, Theorem 5.6].

In general, the notion of divisorial fan can be cumbersome to work with, in large part due to the technical nature of Proposition 9. However, a manageable substitute can be obtained in complexity 1, see (5.3).

4. How to construct p-divisors

4.1. Toric varieties

The affine toric setting presented in (2.1) fits into the language of (2.3) when setting Y=SpecY=\operatorname{Spec}\mathbb{C}. Since divisors on points are void, the only information carried by 𝒟\mathcal{D} is its tailcone σ\sigma. Thus, TV~(𝒟)=TV(𝒟)=TV(σ)\operatorname{\widetilde{TV}}(\mathcal{D})=\operatorname{TV}(\mathcal{D})=\operatorname{TV}(\sigma) in this case.

4.2. Toric downgrades

The toric case, however, can also provide us with more interesting examples. To this end we consider a toric variety TV(δ,N~)\operatorname{TV}(\delta,\widetilde{N}) and fix a subtorus action TT~T\hookrightarrow\widetilde{T}. Now, what is the description of TV(δ,N~)\operatorname{TV}(\delta,\widetilde{N}) as a TT-variety? Assuming that the embedding TT~T\hookrightarrow\widetilde{T} is induced from a surjection of the corresponding character groups p:M~Mp:\widetilde{M}\rightarrow\hskip-8.00003pt\rightarrow M, we denote the kernel by MYM_{Y} and obtain two mutually dual exact sequences (7) and (12).
Setting σ:=Nδ\sigma:=N_{\mathbb{Q}}\cap\delta, the map pp gives us a surjection δσ\delta^{\scriptscriptstyle\vee}\rightarrow\hskip-8.00003pt\rightarrow\sigma^{\scriptscriptstyle\vee}. On the dual side, denote the surjection N~NY\widetilde{N}\rightarrow\hskip-8.00003pt\rightarrow N_{Y} by qq. However, instead of just considering the cone q(δ)q(\delta), we denote by Σ\Sigma the coarsest fan refining the images of all faces of δ\delta under the map qq. Then, |Σ|=q(δ)|\Sigma|=q(\delta), and the set Σ(1)\Sigma(1) of rays in Σ\Sigma, i.e. its one-dimensional cones, contains the set q(δ(1))q(\delta(1)).

(7)
(12)

Next, we perform the following two mutually dual constructions. For uσu\in\sigma^{\scriptscriptstyle\vee} and a|Σ|a\in|\Sigma|, let (u)MY,\nabla(u)\subseteq M_{Y,\mathbb{Q}} and 𝒟aN\mathcal{D}_{a}\subseteq N_{\mathbb{Q}} be as indicated in the diagram above. Note that we have to make use of some section s:MM~s:M\hookrightarrow\widetilde{M} of pp, i.e. a splitting of the two sequences, to shift both polyhedra from p1(u)p^{-1}(u) and q1(a)q^{-1}(a) into the respective fibers over 0. Both polyhedra are linked to each other by the equality

mina,(u)=min𝒟a,u\min\langle a,\nabla(u)\rangle=\min\langle\mathcal{D}_{a},u\rangle

which is an easy consequence (via a=q(x)a=q(x) and u=p(y)u=p(y)) of the following lemma appearing in the proof of [AH03, Proposition 8.5].

Lemma 14.

xδx\in\delta, yδy\in\delta^{\scriptscriptstyle\vee} \Rightarrow minq1q(x)δ,y+minx,p1p(y)δ=x,y\min\langle q^{-1}q(x)\cap\delta,y\rangle+\min\langle x,p^{-1}p(y)\cap\delta^{\scriptscriptstyle\vee}\rangle=\langle x,y\rangle.

Thus, defining Y:=TV(Σ)Y:=\operatorname{TV}(\Sigma), we can refer to the upcoming discussion in (6.1) for the construction of TT-invariant Weil divisors orb¯(a)TV(Σ)\overline{\operatorname{orb}}(a)\subseteq\operatorname{TV}(\Sigma) for aΣ(1)a\in\Sigma(1) to define the p-divisor 𝒟δ:=aΣ(1)𝒟aorb¯(a)\mathcal{D}^{\delta}:=\sum_{a\in\Sigma(1)}\mathcal{D}_{a}\otimes\overline{\operatorname{orb}}(a) on (Y,N)(Y,N). Although we have indexed the coeffixients of 𝒟\mathcal{D} by a ray aa instead of a prime divisor, this is harmless since we may always identify aa with the divisor orb¯(a)TV(Σ)\overline{\operatorname{orb}}(a)\subseteq\operatorname{TV}(\Sigma). It follows from the characterization of toric nef Cartier divisors and the above equality involving (u)\nabla(u) and 𝒟a\mathcal{D}_{a} that TV(δ)=TV(𝒟δ)\operatorname{TV}(\delta)=\operatorname{TV}(\mathcal{D}^{\delta}).

Remark 15.

Note that qq does not yield a map (N~,δ)(NY,Σ)(\widetilde{N},\delta)\to(N_{Y},\Sigma) in general. To achieve this, one has to further subdivide δ\delta into the fan δ~\widetilde{\delta} consisting of the preimages of the cones of Σ\Sigma. Moreover, observe that TV(δ~)=TV~(𝒟)\operatorname{TV}(\widetilde{\delta})=\operatorname{\widetilde{TV}}(\mathcal{D}), which illustrates both the contraction TV~(𝒟)TV(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D})\to\operatorname{TV}(\mathcal{D}) as well as the morphism TV~(𝒟)Y\operatorname{\widetilde{TV}}(\mathcal{D})\to Y.

4.3. General affine TT-varieties

Let XnX\subseteq\mathbb{C}^{n} be an equivariantly embedded, normal, affine TT-variety which intersects the torus non-trivially, and denote by f1,,fmf_{1},\ldots,f_{m} MM-homogeneous generating equations for XX. If TT acts diagonally and effectively on n\mathbb{C}^{n}, then each variable xix_{i} has a degree in MM which gives rise to a surjection p:M~:=nMp:\widetilde{M}:=\mathbb{Z}^{n}\rightarrow\hskip-8.00003pt\rightarrow M, eνdegxνe_{\nu}\mapsto\deg x_{\nu} as in the previous section. Setting δ:=0n\delta:=\mathbb{Q}^{n}_{\geq 0} and ui:=degfiMu_{i}:=\deg f_{i}\in M, we use the section s:MM~s:M\hookrightarrow\widetilde{M} as mentioned in (4.2) to shift the equations fif_{i} to the Laurent polynomials fi:=χs(ui)fi[MY]f^{\prime}_{i}:=\chi^{-s(u_{i})}f_{i}\in\mathbb{C}[M_{Y}]. They define a closed subvariety of the torus TY:=Spec[MY]T_{Y}:=\operatorname{Spec}\mathbb{C}[M_{Y}], and we use this to modify the definition of YY from (4.2) to the normalization of

V(f1,,fm)¯TV(Σ).\overline{V(f^{\prime}_{1},\ldots,f^{\prime}_{m})}\subseteq\operatorname{TV}(\Sigma).

If orb¯(a)\overline{\operatorname{orb}}(a) are Cartier divisors, then we can consider their pull backs Za:=orb¯(a)YZ_{a}:=\overline{\operatorname{orb}}(a)\cap Y. Thus, we arrive at the description X=TV(𝒟)X=\operatorname{TV}(\mathcal{D}) as a TT-variety, where 𝒟=aΣ(1)𝒟aZa\mathcal{D}=\sum_{a\in\Sigma(1)}\mathcal{D}_{a}\otimes Z_{a}.

Remark 16.

It is sometimes easier to consider TT-equivariant embeddings XTV(δ)X\hookrightarrow\operatorname{TV}(\delta) instead of XnX\hookrightarrow\mathbb{C}^{n}. In this case, everything also works out as discussed in the paragraph above.

4.4. Slices of divisorial fans

At the end of (3.4) we introduced the notion of divisorial fans, which encode invariant open affine coverings of general TT-varieties. The face conditions guarantees that for any divisorial fan 𝒮={𝒟i}\mathcal{S}=\{\mathcal{D}^{i}\} and any prime divisor ZYZ\subset Y, the set

𝒮Z={𝒟Zi}\mathcal{S}_{Z}=\{\mathcal{D}_{Z}^{i}\}

is a polyhedral subdivision in NN_{\mathbb{Q}} called a slice. Indeed, since open embeddings between affine TT-varieties TV(𝒟)TV(𝒟)\operatorname{TV}(\mathcal{D}^{\prime})\hookrightarrow\operatorname{TV}(\mathcal{D}) imply that 𝒟𝒟\mathcal{D}^{\prime}\leq\mathcal{D}, the polyhedra 𝒟ZiN\mathcal{D}_{Z}^{i}\subseteq N_{\mathbb{Q}} are supposed to be glued along the common faces 𝒟Z𝒟Z\mathcal{D}^{\prime}_{Z}\leq\mathcal{D}_{Z}.

These slices can be viewed another way as well. Similarly to (4.3), one can try to embed a general TT-variety XX into a toric variety TV()\operatorname{TV}(\mathcal{F}) with some fan \mathcal{F} of polyhedral cones δ\delta in N~\widetilde{N}_{\mathbb{Q}}. Now, the method of (4.2) can be copied to yield an 𝒮\mathcal{S} on TV(Σ)\operatorname{TV}(\Sigma) describing TV()\operatorname{TV}(\mathcal{F}) as a TT-variety denoted by TV(𝒮)\operatorname{TV}(\mathcal{S}) and, afterwards, one follows (4.3) to find the right YTV(Σ)Y\subseteq\operatorname{TV}(\Sigma) to which 𝒮\mathcal{S} should be restricted in order to describe XX. In this setting, the slices 𝒮Z\mathcal{S}_{Z} appear as intersections of the fan \mathcal{F} with certain affine subspaces, explaining the choice of terminology.
It is tempting to think that the slices 𝒮Z\mathcal{S}_{Z} capture the entire information of 𝒮\mathcal{S}. However, the important point is that one also must keep track of which of the polyhedral cells inside the different 𝒟Z\mathcal{D}_{Z} belong to a common p-divisor. This is related to the question of how much is contracting along TV~(𝒮)TV(𝒮)\operatorname{\widetilde{TV}}(\mathcal{S})\to\operatorname{TV}(\mathcal{S}). Thus, one is supposed to introduce labels for the cells in 𝒮Z\mathcal{S}_{Z}. Again, we refer to (5.3) for a nice way of overcoming this problem in complexity one.

5. Globalization in complexity 1

5.1. The degree polyhedron

Let 𝒟=PY𝒟PP\mathcal{D}=\sum_{P\in Y}\mathcal{D}_{P}\otimes P denote a p-divisor of complexity one on the curve YY with tailcone σ\sigma. Since prime divisors ZZ coincide with closed points PYP\in Y we will from now on replace the letter ZZ by PP in this setting. As in the definition of 𝒟P\mathcal{D}_{P} in (3.3) we can now introduce the degree

deg𝒟:=PY𝒟PPol+(N,σ).\deg\mathcal{D}:=\sum_{P\in Y}\mathcal{D}_{P}\in\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma).

Note that it satisfies the equation mindeg𝒟,u=deg𝒟(u)\min\langle\deg\mathcal{D},u\rangle=\deg\mathcal{D}(u). In contrast, considering the sum of the polyhedral coefficients of a p-divisor in higher complexity does not make much sense. Nonetheless, one may define the degree of a p-divisor on a polarized YY via the following construction: let CYC\subseteq Y be a curve or, more generally, a numerical class of curves in YY. Then there is a well defined generalized polyhedron (C𝒟)Pol(N,σ)(C\cdot\mathcal{D})\in\operatorname{Pol}_{\mathbb{Q}}(N,\sigma) where the term “generalized” refers to an element in the Grothendieck group associated to Pol+(N,σ)\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma). Hence, it is representable as the formal difference of two polyhedra.

5.2. Using deg𝒟\deg\mathcal{D} to characterize open embeddings

For a p-divisor 𝒟\mathcal{D} on a curve YY it is as obvious as important to observe that

deg𝒟Loc𝒟=Y.\deg\mathcal{D}\neq\emptyset\;\Leftrightarrow\;\operatorname{Loc}\mathcal{D}=Y.

Moreover, if 𝒟\mathcal{D} is a polyhedral divisor on YY then it is not hard to see that 𝒟\mathcal{D} is a p-divisor \Leftrightarrow deg𝒟tail(𝒟)\deg\mathcal{D}\subsetneq\operatorname{tail}(\mathcal{D}) and 𝒟(w)\mathcal{D}(w) has a principal multiple for all w(tail(𝒟))w\in(\operatorname{tail}(\mathcal{D}))^{\scriptscriptstyle\vee} with w(deg𝒟)0w^{\bot}\cap(\deg\mathcal{D})\neq 0. Note that the latter condition is automatically fulfilled if Y=1Y=\mathbb{P}^{1}.
Nonetheless, degree polyhedra play their most important roles in the characterization of open embeddings since they transform the technical condition from (3.3) into a very natural and geometric one.

Theorem 17 ([IS], Lemma 1.4).

Let YY be a curve and 𝒟,𝒟\mathcal{D}^{\prime},\mathcal{D} be a polyhedral and a p-divisor, respectively, such that 𝒟𝒟\mathcal{D}^{\prime}\leq\mathcal{D}. Then, 𝒟\mathcal{D}^{\prime} is a p-divisor and TV(𝒟)TV(𝒟)\operatorname{TV}(\mathcal{D}^{\prime})\hookrightarrow\operatorname{TV}(\mathcal{D}) is a TT-equivariant open embedding \Leftrightarrow deg𝒟=deg𝒟tail(𝒟)\deg\mathcal{D}^{\prime}=\deg\mathcal{D}\cap\operatorname{tail}(\mathcal{D}^{\prime}).

In particular, if 𝒮={𝒟i}\mathcal{S}=\{\mathcal{D}^{i}\} is a divisorial fan as in (3.4) then the set {tail(𝒟i)|𝒟i𝒮}\{\operatorname{tail}(\mathcal{D}^{i})\,|\,\mathcal{D}^{i}\in\mathcal{S}\} forms the so-called tailfan tail(𝒮)\operatorname{tail}(\mathcal{S}), and the subsets deg𝒟itail(𝒟i)\deg\mathcal{D}^{i}\subsetneq\operatorname{tail}(\mathcal{D}^{i}) glue together to a proper subset deg𝒮|tail(𝒮)|\deg\mathcal{S}\subsetneq|\operatorname{tail}(\mathcal{S})|. The single degree polyhedra can be recovered as deg𝒟i=deg𝒮tail(𝒟i)\deg\mathcal{D}^{i}=\deg\mathcal{S}\cap\operatorname{tail}(\mathcal{D}^{i}).

5.3. Non-affine TT-varieties in complexity 1

Another important feature of curves as base spaces YY is that Loc𝒟Y\operatorname{Loc}\mathcal{D}\subseteq Y is either projective (if deg𝒟\deg\mathcal{D}\neq\emptyset) or affine (if deg𝒟=\deg\mathcal{D}=\emptyset). In the latter case, TV~(𝒟)=TV(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D})=\operatorname{TV}(\mathcal{D}), and gluing those cells does not cause problems. For the other case, an easy observation is

Lemma 18.

Let 𝒟\mathcal{D} be a p-divisor on a curve YY with deg𝒟\deg\mathcal{D}\neq\emptyset. Then, for all PYP\in Y, we have that dim𝒟P=dim(tail(𝒟))\dim\mathcal{D}_{P}=\dim(\operatorname{tail}(\mathcal{D})).

Indeed, we have the following chain of inequalities

dim(tail(𝒟))dim𝒟Pdim(deg𝒟)dim(tail(𝒟))\dim(\operatorname{tail}(\mathcal{D}))\leq\dim\mathcal{D}_{P}\leq\dim(\deg\mathcal{D})\leq\dim(\operatorname{tail}(\mathcal{D}))

each of which results from a combination of translations and inclusions.

Consider a divisorial fan 𝒮={𝒟i}\mathcal{S}=\{\mathcal{D}^{i}\} on a curve. For the following, we will make the reasonable assumption that each (lower-dimensional) cone of Σ=tail(𝒮)\Sigma=\operatorname{tail}(\mathcal{S}) is the face of a full-dimensional cone of tail(𝒮)\operatorname{tail}(\mathcal{S}). For example, this is satisfied if the support of tail(𝒮)\operatorname{tail}(\mathcal{S}) is a polyhedral cone or the entire space NN_{\mathbb{Q}}. Now we have seen in (4.4) and (5.2) that a divisorial fan 𝒮={𝒟i}\mathcal{S}=\{\mathcal{D}^{i}\} on a curve determines a pair (P𝒮PP,𝔡𝔢𝔤)(\sum_{P}\mathcal{S}_{P}\otimes P,\mathfrak{deg}). This motivates the following definition:

Definition 19.

Consider a pair (P𝒮PP,𝔡𝔢𝔤)(\sum_{P}\mathcal{S}_{P}\otimes P,\mathfrak{deg}) where 𝒮P\mathcal{S}_{P} are all polyhedral subdivisions with some common tailfan Σ\Sigma and deg|Σ|\deg\subset|\Sigma|. This pair is called an f-divisor if for any full-dimensional σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}) with 𝔡𝔢𝔤σ\mathfrak{deg}\cap\sigma\neq\emptyset, 𝒟σ:=ΔZσ\mathcal{D}^{\sigma}:=\sum\Delta_{Z}^{\sigma} is a p-divisor and 𝔡𝔢𝔤σ=deg𝒟σ\mathfrak{deg}\cap\sigma=\deg\mathcal{D}^{\sigma}. Here ΔZσ\Delta_{Z}^{\sigma} denotes the unique polyhedron in 𝒮Z\mathcal{S}_{Z} with tail(ΔZσ)=σ\operatorname{tail}(\Delta_{Z}^{\sigma})=\sigma.

Proposition 20 ([Süß, IS, Proposition 1.6]).

Consider an f-divisor (P𝒮PP,𝔡𝔢𝔤)(\sum_{P}\mathcal{S}_{P}\otimes P,\mathfrak{deg}). Under the above assumptions, there is a divisorial fan 𝒮\mathcal{S} with slices 𝒮P\mathcal{S}_{P} and degree 𝔡𝔢𝔤\mathfrak{deg}. For any other such divisorial fan 𝒮\mathcal{S}^{\prime}, we have TV(𝒮)=TV(𝒮)\operatorname{TV}(\mathcal{S})=\operatorname{TV}(\mathcal{S}^{\prime}).

Indeed, we can take the divisorial fan 𝒮\mathcal{S} to consist of p-divisors 𝒟σ\mathcal{D}^{\sigma} for full-dimensional σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}) with non-empty degree, for σ\sigma with empty degree any finite set of p-divisors providing an open affine covering of TV~(𝒟σ)\operatorname{\widetilde{TV}}(\mathcal{D}^{\sigma}), and intersections thereof.

Remark 21.

Since the subset 𝔡𝔢𝔤|tail(𝒮)|\mathfrak{deg}\subseteq|\operatorname{tail}(\mathcal{S})| is completely determined by the equality 𝔡𝔢𝔤𝒟=P𝒟P\mathfrak{deg}\cap\mathcal{D}=\sum_{P}\mathcal{D}_{P}, it is just necessary to know if deg𝒟\deg\mathcal{D} is empty or not. This leads to the notion of markings (of tailcones with deg𝒟\deg\mathcal{D}\neq\emptyset) in [Süß, IS].

If 𝒮\mathcal{S} is an f-divisor, i.e. a pair (P𝒮PP,𝔡𝔢𝔤)(\sum_{P}\mathcal{S}_{P}\otimes P,\mathfrak{deg}), we write TV(𝒮)\operatorname{TV}(\mathcal{S}) for the TT-variety it determines as in proposition 20. Note that we use the same symbol for divisorial fans and f-divisors, since they both determine general TT-varieties (although the former also contains the information of a specific affine cover). As has already been observed in the affine case of (2.3), different f-divisors 𝒮,𝒮\mathcal{S},\mathcal{S}^{\prime} might yield the same (or equivariantly isomorphic) TT-varieties TV(𝒮)=TV(𝒮)\operatorname{TV}(\mathcal{S})=\operatorname{TV}(\mathcal{S}^{\prime}). This is the case if there are isomorphisms φ:YY\varphi:Y\rightarrow Y^{\prime} and F:NNF:N\rightarrow N^{\prime} and an element ivifiN(Y)\sum_{i}v_{i}\otimes f_{i}\in N\otimes\mathbb{C}(Y^{\prime}) such that 𝒮φ(P)+iordP(fi)vi=F(𝒮P)\mathcal{S}^{\prime}_{\varphi(P)}+\sum_{i}\operatorname{ord}_{P}(f_{i})\cdot v_{i}=F(\mathcal{S}_{P}) holds for every PYP\in Y and we have 𝔡𝔢𝔤=F(𝔡𝔢𝔤)\mathfrak{deg}^{\prime}=F(\mathfrak{deg}).

Example 22.

We consider the projectivized cotangent bundle on the first Hirzebruch surface 1\mathcal{F}_{1}. The non-trivial slices of its divisorial fan 𝒮\mathcal{S} over 1\mathbb{P}^{1} are illustrated in Figure 3. The associated tailfan Σ\Sigma and degree deg𝒮\deg\mathcal{S} are given in Figure 4.

(a) 𝒮0\mathcal{S}_{0}
(b) 𝒮1\mathcal{S}_{1}
(c) 𝒮\mathcal{S}_{\infty}
Figure 3. Non-trivial slices of 𝒮((Ω1))\mathcal{S}(\mathbb{P}(\Omega_{\mathcal{F}_{1}})), cf. Example 22.
(a) Σ=tail(𝒮\Sigma=\operatorname{tail}(\mathcal{S})
(b) deg𝒮\deg\mathcal{S}
Figure 4. Tailfan and degree of 𝒮((Ω1))\mathcal{S}\big{(}\mathbb{P}(\Omega_{\mathcal{F}_{1}})\big{)}, cf. Example 22.

6. The TT-orbit decomposition

6.1. TT-orbits in toric varieties

Let σN\sigma\subseteq N_{\mathbb{Q}} be a not necessarily full-dimensional, pointed polyhedral cone. Then, denoting Nσ:=N/span(σN)N_{\sigma}:=N/\operatorname{span}_{\mathbb{Z}}(\sigma\cap N), the affine toric variety TV(σ,N)\operatorname{TV}(\sigma,N) contains a unique closed TT-orbit orb(σ):=Spec[σM]=Nσ=TV(0,Nσ)\operatorname{orb}(\sigma):=\operatorname{Spec}\mathbb{C}[\sigma^{\bot}\cap M]=N_{\sigma}\otimes_{\mathbb{Z}}\mathbb{C}^{*}=\operatorname{TV}(0,N_{\sigma}) with dimorb(σ)=rankNdimσ\dim\operatorname{orb}(\sigma)=\operatorname{rank}N-\dim\sigma. If τσ\tau\leq\sigma is a face, then we obtain the diagram

TV(0,Nτ)\textstyle{\operatorname{TV}(0,N_{\tau})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}open\scriptstyle{\operatorname{open}}Spec[τM]\textstyle{\;\operatorname{Spec}\mathbb{C}[\tau^{\bot}\cap M]\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}open\scriptstyle{\operatorname{open}}orb(τ)\textstyle{\;\operatorname{orb}(\tau)\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}closed\scriptstyle{\operatorname{closed}}open\scriptstyle{\operatorname{open}}TV(τ)\textstyle{\;\operatorname{TV}(\tau)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}open\scriptstyle{\operatorname{open}}TV(σ¯,Nτ)\textstyle{\operatorname{TV}(\overline{\sigma},N_{\tau})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Spec[στM]\textstyle{\;\operatorname{Spec}\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap\tau^{\bot}\cap M]\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}orb¯(τ)\textstyle{\;\overline{\operatorname{orb}}(\tau)\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}closed\scriptstyle{\operatorname{closed}}TV(σ)\textstyle{\;\operatorname{TV}(\sigma)}

with σ¯:=im(σNτ,)\overline{\sigma}:=\operatorname{im}(\sigma\to N_{\tau,\mathbb{Q}}). This construction does also work in the global setting: if Σ\Sigma is a fan, then there is a stratification TV(Σ)=σΣorb(σ)\operatorname{TV}(\Sigma)=\bigsqcup_{\sigma\in\Sigma}\operatorname{orb}(\sigma) with orb(σ)orb¯(τ)\operatorname{orb}(\sigma)\subseteq\overline{\operatorname{orb}}(\tau) \Leftrightarrow τσ\tau\leq\sigma. In particular, we obtain the TT-invariant Weil divisors of TV(Σ)\operatorname{TV}(\Sigma) as orb¯(a)\overline{\operatorname{orb}}(a) for aΣ(1)a\in\Sigma(1). Moreover, the closure of the TT-orbits are again toric varieties with orb¯(τ)=TV(Σ¯,Nτ)\overline{\operatorname{orb}}(\tau)=\operatorname{TV}(\overline{\Sigma},N_{\tau}) and Σ¯:={σ¯|τσΣ}\overline{\Sigma}:=\{\overline{\sigma}\,|\;\tau\leq\sigma\in\Sigma\} being a fan in NτN_{\tau}.
Note that we can, alternatively, generalize the TT-orbit decomposition of the affine TV(σ)\operatorname{TV}(\sigma) to the situation of toric bouquets TV(Δ)\operatorname{TV}(\Delta) from (2.2). Its TT-orbits correspond to the faces of Δ\Delta. In particular, as already mentioned in (2.2), the irreducible components of TV(Δ)\operatorname{TV}(\Delta) are counted by the vertices v𝒱(Δ)v\in{\mathcal{V}}(\Delta).

6.2. TT-orbits for p-divisors

Let 𝒟\mathcal{D} be an integral p-divisor on a projective variety YY, i.e. assume that the coefficients 𝒟Z\mathcal{D}_{Z} of the Cartier divisors ZZ are lattice polyhedra. Equivalently, we ask for 𝒟(u)\mathcal{D}(u) to be an ordinary Cartier divisor for all utail(𝒟)Mu\in\operatorname{tail}(\mathcal{D})^{\scriptscriptstyle\vee}\cap M. Then, π:TV~(𝒟)Y\pi:\operatorname{\widetilde{TV}}(\mathcal{D})\to Y is a flat map fitting into the following diagram:

TV~(𝒟)\textstyle{\;\operatorname{\widetilde{TV}}(\mathcal{D})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}π\scriptstyle{\pi}TV(𝒟)\textstyle{\;\operatorname{TV}(\mathcal{D})\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\textstyle{Y}Loc𝒟\textstyle{\;\operatorname{Loc}\mathcal{D}\;\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}SpecΓ(Loc𝒟,𝒪Loc)\textstyle{\;\operatorname{Spec}\Gamma(\operatorname{Loc}\mathcal{D},{\mathcal{O}}_{\operatorname{Loc}})}

For yLoc𝒟Yy\in\operatorname{Loc}\mathcal{D}\subseteq Y, the fiber π1(y)\pi^{-1}(y) equals the toric bouquet TV(𝒟y)\operatorname{TV}(\mathcal{D}_{y}) with 𝒟y:=yZ𝒟ZPol+(N,σ)\mathcal{D}_{y}:=\sum_{y\in Z}\mathcal{D}_{Z}\in\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma) as it was already used in (3.3). Note that the neutral element tail(𝒟)\operatorname{tail}(\mathcal{D}) serves as the sum of the empty set of summands. Hence, there is a decomposition of TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}) into TT-orbits orb(y,F)\operatorname{orb}(y,F) where yLoc𝒟y\in\operatorname{Loc}\mathcal{D} is a closed point and F𝒟yF\leq\mathcal{D}_{y} is a non-empty face. Their dimension is dimorb(y,F)=codimNF\dim\,\operatorname{orb}(y,F)=\operatorname{codim}_{N}F. While every TT-orbit orb(y,F)TV~(𝒟)\operatorname{orb}(y,F)\subseteq\operatorname{\widetilde{TV}}(\mathcal{D}) maps, via the contraction pp, isomorphically into TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}), some of them might be identified with each other:

Proposition 23 ([AH06], Theorem 10.1).

Let (y,F)(y,F) and (y,F)(y^{\prime},F^{\prime}) correspond to the TT-orbits orb(y,F)\operatorname{orb}(y,F) and orb(y,F)\operatorname{orb}(y^{\prime},F^{\prime}). Then they become identified along pp \Leftrightarrow 𝒩(F,Δ)=𝒩(F,Δ)=:λ\mathcal{N}(F,\Delta)=\mathcal{N}(F^{\prime},\Delta^{\prime})=:\lambda (cf. (2.2)) and Φu(y)=Φu(y)\Phi_{u}(y)=\Phi_{u}(y^{\prime}) for uintλu\in\operatorname{int}\lambda, where Φu\Phi_{u} denotes the stabilized morphism associated to the semi-ample divisor 𝒟(u)\mathcal{D}(u).

If 𝒟\mathcal{D} is a general, i.e. not integral p-divisor, then a similar result holds true. However, one has to deal with the sublattices Sy:={uM|𝒟(u) is principal in y}S_{y}:=\{u\in M\,|\;\mathcal{D}(u)\mbox{ is principal in }y\} as was done in [AH06, §7].

6.3. Invariant Weil divisors on TT-varieties

In contrast to (6.2), we are now going to use the notation orb(y,F)\operatorname{orb}(y,F) also for non-closed points yYy\in Y, e.g. for generic points η\eta of subvarieties of YY. Note that the dimension of their closures is then given as dimorb¯(y,F)=dimy¯+codimNF\dim\,\overline{\operatorname{orb}}(y,F)=\dim\overline{y}+\operatorname{codim}_{N}F. We conclude from (6.2) that there are two kinds of TT-invariant prime divisors in TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}): on the one hand, we have the so-called vertical divisors

D(Z,v):=orb¯(η(Z),v)D_{(Z,v)}:=\overline{\operatorname{orb}}(\eta(Z),v)

for prime divisors ZYZ\subseteq Y and vertices v𝒟Zv\in\mathcal{D}_{Z}. On the other hand, there are the so-called horizontal divisors

Dϱ:=orb¯(η(Y),ϱ)D_{\varrho}:=\overline{\operatorname{orb}}(\eta(Y),\varrho)

with ϱ\varrho being a ray of the cone tail(𝒟)=𝒟η(Y)\operatorname{tail}(\mathcal{D})=\mathcal{D}_{\eta(Y)}. The TT-invariant prime divisors on TV(𝒟)\operatorname{TV}(\mathcal{D}) correspond exactly to those on TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}) which are not contracted via p:TV~(𝒟)TV(𝒟)p:\operatorname{\widetilde{TV}}(\mathcal{D})\to\operatorname{TV}(\mathcal{D}).
In the special case of complexity one, i.e. if YY is a curve, the vertical divisors D(P,v)D_{(P,v)} (with PY()P\in Y(\mathbb{C}) and vΔPv\in\Delta_{P}) survive completely in TV(𝒟)\operatorname{TV}(\mathcal{D}). In contrast, some of the horizontal divisors DϱD_{\varrho} may be contracted.

Definition 24.

Let 𝒮\mathcal{S} be an f-divisor on YY. The set of rays ϱ(tail(𝒮))(1)\varrho\in(\operatorname{tail}(\mathcal{S}))(1) for which the prime divisor DϱD_{\varrho} is not contracted via the map p:TV~(𝒮)TV(𝒮)p:\widetilde{\operatorname{TV}}(\mathcal{S})\to\operatorname{TV}(\mathcal{S}) is denoted by :=(𝒮)\mathcal{R}:=\mathcal{R}(\mathcal{S}).

Remark 25.

The set (𝒮)\mathcal{R}(\mathcal{S}) can be determined from (𝒮,deg𝒮)(\mathcal{S},\deg\mathcal{S}). Indeed, (𝒮)={ρ(tail(𝒮))(1)|ρdeg𝒮=}\mathcal{R}(\mathcal{S})=\{\rho\in(\operatorname{tail}(\mathcal{S}))(1)\,|\,\rho\cap\deg\mathcal{S}=\emptyset\}, cf. for example [Pet10, Proposition 2.1].

7. Cartier divisors

7.1. Invariant principal divisors on toric varieties

Let ΣN\Sigma\subset N_{\mathbb{Q}} be a polyhedral fan. The monomials χu\chi^{u} in [M](TV(Σ))\mathbb{C}[M]\subseteq\mathbb{C}(\operatorname{TV}(\Sigma)) are the TT-invariant, rational functions on the toric variety TV(Σ)\operatorname{TV}(\Sigma). Hence, the principal divisor associated to such a function must be a linear combination of the TT-invariant Weil divisors orb¯(a)\overline{\operatorname{orb}}(a) from (6.1). The coefficients can be obtained by restricting the situation to the open subsets ×()k1TV(a,N)TV(Σ)\mathbb{C}\times(\mathbb{C}^{*})^{k-1}\cong\operatorname{TV}(a,N)\subseteq\operatorname{TV}(\Sigma) for each aΣ(1)a\in\Sigma(1) separately. This gives us

div(χu)=aΣ(1)a,uorb¯(a),\operatorname{div}(\chi^{u})=\sum_{a\in\Sigma(1)}\langle a,u\rangle\cdot\overline{\operatorname{orb}}(a),

i.e. the orbits of codimension one satisfy the relation aΣ(1)aorb¯(a)0\sum_{a\in\Sigma(1)}a\otimes\overline{\operatorname{orb}}(a)\sim 0. Note that every divisor is linearly equivalent to an invariant one. Assuming that Σ\Sigma contains a cone whose dimension equals the rank of NN, this leads to the famous exact sequence

0Mdiv[DivTTV(Σ)=Σ(1)]Cl(TV(Σ))0.0\to M\stackrel{{\scriptstyle\operatorname{div}}}{{\longrightarrow}}\big{[}\operatorname{Div}_{T}\operatorname{TV}(\Sigma)=\mathbb{Z}^{\Sigma(1)}\big{]}\to\operatorname{Cl}(\operatorname{TV}(\Sigma))\to 0.

7.2. Invariant principal divisors on TT-varieties

Let 𝒟\mathcal{D} be a p-divisor on YY. Similarly to (3.3), the place of the monomials χu\chi^{u} in (7.1) is now taken by the functions f(y)χu(Y)[M](TV(𝒟))f(y)\chi^{u}\in\mathbb{C}(Y)[M]\subseteq\mathbb{C}(\operatorname{TV}(\mathcal{D})). Identifying a ray ϱtail(𝒟)(1)\varrho\in\operatorname{tail}(\mathcal{D})(1) with its primitive lattice vector and denoting by μ(v)\mu(v) the smallest integer k1k\geq 1 for vNv\in N_{\mathbb{Q}} such that kvk\cdot v is a lattice point, one has the following characterization of TT-invariant principal divisors:

Theorem 26 ([PS], Proposition 3.14).

The principal divisor which is associated to f(y)χu(Y)[M]f(y)\,\chi^{u}\in\mathbb{C}(Y)[M] on TV~(𝒟)\widetilde{TV}(\mathcal{D}) or TV(𝒟)\operatorname{TV}(\mathcal{D}) is given by

div(f(y)χu)=ϱϱ,uDϱ+(Z,v)μ(v)(v,u+ordZf)D(Z,v)\operatorname{div}\big{(}f(y)\,\chi^{u}\big{)}=\sum_{\varrho}\langle\varrho,u\rangle D_{\varrho}+\sum_{(Z,v)}\mu(v)\big{(}\langle v,u\rangle+\operatorname{ord}_{Z}f\big{)}\cdot D_{(Z,v)}

where, if focused on TV(𝒟)\operatorname{TV}(\mathcal{D}), one is supposed to omit all prime divisors being contracted via p:TV~(𝒟)TV(𝒟)p:\operatorname{\widetilde{TV}}(\mathcal{D})\to\operatorname{TV}(\mathcal{D}).

A proof which (formally) locally inverts the toric downgrade construction from (4.2) is given in [AP, (2.4)]. Hence, the claim becomes a direct consequence of (7.1).

7.3. Invariant Cartier divisors on toric varieties

We consider an invariant Cartier divisor DD on TV(Σ)\operatorname{TV}(\Sigma). Restricting to an open affine chart TV(σ)TV(Σ)\operatorname{TV}(\sigma)\subset\operatorname{TV}(\Sigma) we have that D|TV(σ)=div(χuσ)D|_{\operatorname{TV}(\sigma)}=\operatorname{div}(\chi^{-u_{\sigma}}) with uσMσ:=M/(Mσ)u_{\sigma}\in M_{\sigma}:=M/(M\cap\sigma^{\perp}). The compatibility condition on intersections gives us that ϕτσ(uσ)=uτ\phi_{\tau\sigma}(u_{\sigma})=u_{\tau} where τ\tau denotes a face of σ\sigma and ϕτσ:MσMτ\phi_{\tau\sigma}:M_{\sigma}\to M_{\tau} is the natural restriction. Hence, we can regard {uσ|σΣ}\{u_{\sigma}\ |\ \sigma\in\Sigma\} as a piecewise continuous linear function ψD:|Σ|\psi_{D}:|\Sigma|\to\mathbb{Q} which is locally defined as ψD||σ|=uσ\psi_{D}|_{|\sigma|}=u_{\sigma}. Vice versa, any continuous function ψ:|Σ|\psi:|\Sigma|\to\mathbb{Q} which is linear on the cones σΣ\sigma\in\Sigma and integral on |Σ|N|\Sigma|\cap N can be evaluated along the primitive generators of the rays ρΣ(1)\rho\in\Sigma(1) and thus defines an invariant Cartier divisor DψD_{\psi} on TV(Σ)\operatorname{TV}(\Sigma).

A special instance of the above correspondence shows that every lattice polyhedron M\nabla\subseteq M_{\mathbb{Q}} such that Σ\Sigma is a subdivision of the inner normal fan 𝒩()\mathcal{N}(\nabla), cf. (2.2) and (14.1), gives rise to a Cartier divisor div()\operatorname{div}(\nabla) whose sheaf 𝒪TV(Σ)(div())\mathcal{O}_{\operatorname{TV}(\Sigma)}(\operatorname{div}(\nabla)) is globally generated by the monomials corresponding to M\nabla\cap M. Locally, on the chart TV(σ)TV(Σ)\operatorname{TV}(\sigma)\subseteq\operatorname{TV}(\Sigma) for a maximal cone σΣ\sigma\in\Sigma, one has 𝒪TV(Σ)(div())=χu𝒪TV(Σ)\mathcal{O}_{\operatorname{TV}(\Sigma)}(\operatorname{div}(\nabla))=\chi^{u}\cdot\mathcal{O}_{\operatorname{TV}(\Sigma)} with uMu\in\nabla\cap M being the vertex corresponding to the unique cone δ𝒩()\delta\in\mathcal{N}(\nabla) containing σ\sigma. The associated Weil divisor is then given by

div()=aΣ(1)mina,orb¯(a).\operatorname{div}(\nabla)=-\!\sum_{a\in\Sigma(1)}\min\langle a,\nabla\rangle\cdot\overline{\operatorname{orb}}(a).

7.4. Invariant Cartier divisors in complexity 1

Let 𝒮\mathcal{S} be an f-divisor on the curve YY. A divisorial support function on 𝒮\mathcal{S} is a collection (hP)PY(h_{P})_{P\in Y} of continuous piecewise affine linear functions hP:|𝒮P|h_{P}:|\mathcal{S}_{P}|\to\mathbb{Q} such that

  1. (1)

    hPh_{P} has integral slope and integral translation on every polyhedron in the polyhedral complex 𝒮PN\mathcal{S}_{P}\subset N_{\mathbb{Q}}.

  2. (2)

    all hPh_{P} have the same linear part =:h¯=:\underline{h}.

  3. (3)

    the set of points PYP\in Y for which hPh_{P} differs from h¯\underline{h} is finite.

Observe that we may restrict hPh_{P} to a subcomplex of 𝒮P\mathcal{S}_{P}. Similarly, we may restrict a divisorial support function hh to a p-divisor 𝒟𝒮\mathcal{D}\in\mathcal{S} which we will denote by h|𝒟h|_{\mathcal{D}}.

In addition, we can associate a divisorial support function sf(D)\operatorname{sf}(D) to any Cartier divisor DCaDivYD\in\operatorname{CaDiv}Y by setting sf(D)PcoeffP(D)\operatorname{sf}(D)_{P}\equiv\operatorname{coeff}_{P}(D). Moreover, we can consider any element uMu\in M as a divisorial support function by setting sf(u)Pu\operatorname{sf}(u)_{P}\equiv u.

Definition 27.

A divisorial support function hh on 𝒮\mathcal{S} is called principal if h=sf(u)+sf(D)h=\operatorname{sf}(u)+\operatorname{sf}(D) for some uMu\in M and some principal divisor DD on YY. It is called Cartier if its restriction h|𝒟h|_{\mathcal{D}} is principal for every 𝒟𝒮\mathcal{D}\in\mathcal{S} with Loc𝒟=Y\operatorname{Loc}\mathcal{D}=Y. The set of Cartier support functions is a free abelian group which we denote by CaSF(𝒮)\operatorname{CaSF}(\mathcal{S}).

The following result not only plays an important role for the proof of Proposition 29 but it is also interesting by itself, since it generalizes the fact that the Picard group of an affine toric variety is trivial.

Lemma 28 ([PS], Proposition 3.1).

Assume that 𝒟\mathcal{D} has complete locus. Then every invariant Cartier divisor on TV(𝒟)\operatorname{TV}(\mathcal{D}) is already principal.

Let TV(𝒮)\operatorname{TV}(\mathcal{S}) be a complexity-one TT-variety and denote by TCaDiv(TV(𝒮))\operatorname{T-CaDiv}(\operatorname{TV}(\mathcal{S})) the free abelian group of TT-invariant Cartier divisors on TV(𝒮)\operatorname{TV}(\mathcal{S}). Choosing affine invariant charts on which the Cartier divisor in question trivializes, one can use its local representations f(y)χu(Y)[M]f(y)\chi^{u}\in\mathbb{C}(Y)[M] to define piecewise affine functions hP:=ordPf+,uh_{P}:=\operatorname{ord}_{P}f+\langle\cdot,u\rangle. It is then not hard to see that these functions glue and yield an element hCaSF(𝒮)h\in\operatorname{CaSF}(\mathcal{S}) which leads to the following correspondence:

Proposition 29 ([PS], Proposition 3.10).

TCaDiv(TV(𝒮))CaSF(𝒮)\operatorname{T-CaDiv}(\operatorname{TV}(\mathcal{S}))\cong\operatorname{CaSF}(\mathcal{S}) as free abelian groups.

We will sometimes identify an element hCaSF(𝒮)h\in\operatorname{CaSF}(\mathcal{S}) with its induced TT-invariant Cartier divisor DhD_{h} via this correspondence. As a consequence of Theorem 26 we obtain that the Weil divisor associated to a given Cartier divisor h=(hP)Ph=(h_{P})_{P} on TV(𝒮)\operatorname{TV}(\mathcal{S}) is equal to

ϱh¯(ϱ)Dϱ(P,v)μ(v)hP(v)D(P,v).-\sum_{\varrho}\underline{h}(\varrho)D_{\varrho}-\sum_{(P,v)}\mu(v)h_{P}(v)D_{(P,v)}.
Remark 30.

Let DψD_{\psi} denote a Cartier divisor on the toric variety TV(Σ)\operatorname{TV}(\Sigma) which is associated to the integral piecewise linear function ψ:|Σ|\psi:|\Sigma|\to\mathbb{Q} (see (7.3)). Performing a downgrade to complexity one (cf. (4.2)), we denote the induced f-divisor by 𝒮\mathcal{S}. The associated Cartier support function hψh^{\psi} or, more specifically, its only non-trivial parts h0ψh^{\psi}_{0} and hψh^{\psi}_{\infty} then result from the restriction of ψ\psi to the slices 𝒮0\mathcal{S}_{0} and 𝒮\mathcal{S}_{\infty}, respectively.

7.5. The divisor class group

Using the results from (6.3) and (7.2) one obtains that (cf. [PS, Section 3])

Cl(TV(𝒮))=ϱDϱD(Z,v)D(Z,v)u(ϱ)Dϱ+D(Z,v)μ(v)(v,u+aZ)D(Z,v),\operatorname{Cl}(\operatorname{TV}(\mathcal{S}))=\frac{\bigoplus_{\varrho}\mathbb{Z}\cdot D_{\varrho}\oplus\bigoplus_{D_{(Z,v)}}\mathbb{Z}\cdot D_{(Z,v)}}{\big{\langle}\sum u(\varrho)D_{\varrho}+\sum_{D_{(Z,v)}}\mu(v)(\langle v,u\rangle+a_{Z})D_{(Z,v)}\big{\rangle}},

where uu runs over all elements of MM and ZaZZ\sum_{Z}a_{Z}Z over all principal divisors on YY. However, assuming that TV(𝒮)\operatorname{TV}(\mathcal{S}) is a complete rational TT-variety of complexity one, it is possible to find a representation of Cl(TV(𝒮))\operatorname{Cl}(\operatorname{TV}(\mathcal{S})) which is analogous to the exact sequence from (7.1) as follows.

Let 𝒮=P1𝒮P[P]\mathcal{S}=\sum_{P\in\mathbb{P}^{1}}\mathcal{S}_{P}\otimes[P] be a complete f-divisor on 1\mathbb{P}^{1}. In particular, deg𝒮|tail(𝒮)|=N\deg\mathcal{S}\subsetneq|\operatorname{tail}(\mathcal{S})|=N_{\mathbb{Q}}. Choose a minimal finite subset 𝒫1\mathcal{P}\subseteq\mathbb{P}^{1} containing at least two points and such that 𝒮P\mathcal{S}_{P} is trivial (i.e. 𝒮P=tail(𝒮)\mathcal{S}_{P}=\operatorname{tail}(\mathcal{S})) for P1𝒫P\in\mathbb{P}^{1}\setminus\mathcal{P}. If vv is a vertex of the slice 𝒮P\mathcal{S}_{P}, we denote P(v)=PP(v)=P. Let us define 𝒱:={v𝒮P(0)|P𝒫}\mathcal{V}\;:=\;\{v\in\mathcal{S}_{P}(0)\,|\;P\in\mathcal{P}\} together with the maps

Q:𝒱𝒫/withe(v)μ(v)e(p(v))¯ande(ϱ)0,Q:\;\mathbb{Z}^{\mathcal{V}\cup\mathcal{R}}\to\mathbb{Z}^{\mathcal{P}}/\mathbb{Z}\quad\textnormal{with}\quad e(v)\mapsto\mu(v)\,\overline{e(p(v))}\quad\textnormal{and}\quad e(\varrho)\mapsto 0\,,

and

ϕ:𝒱Nwithe(v)μ(v)vande(ϱ)ϱ\phi:\;\mathbb{Z}^{\mathcal{V}\cup\mathcal{R}}\to N\quad\textnormal{with}\quad e(v)\mapsto\mu(v)v\quad\textnormal{and}\quad e(\varrho)\mapsto\varrho

with e(v)e(v) and e(ϱ)e(\varrho) denoting the natural basis vectors.

Proposition 31 ([AP], Section 2).

For a complete rational complexity-one TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}), one has the following exact sequence

0(𝒫/)M(𝒱)Cl(TV(𝒮))00\to(\mathbb{Z}^{\mathcal{P}}/\mathbb{Z})^{\vee}\oplus M\to\big{(}\mathbb{Z}^{\mathcal{V}\cup\mathcal{R}}\big{)}^{\vee}\to\operatorname{Cl}(\operatorname{TV}(\mathcal{S}))\to 0

where the first map is induced from (Q,ϕ)(Q,\phi).

Example 32.

We return to the projectivized cotangent bundle of 1\mathcal{F}_{1}, cf. Example 22. From the discussion above we see that its Picard rank is equal to 22+7=3-2-2+7=3 which confirms a classical result.

8. Canonical divisors, positivity, and divisor ideals

8.1. The canonical divisor

Given an nn-dimensional toric variety TV(Σ)\operatorname{TV}(\Sigma) the invariant logarithmic nn-form ω:=dχe1χe1dχenχen\omega:=\frac{d\chi^{e_{1}}}{\chi^{e_{1}}}\wedge\dots\wedge\frac{d\chi^{e_{n}}}{\chi^{e_{n}}}, where {e1,,en}\{e_{1},\dots,e_{n}\} denotes a basis of MM, defines a rational differential form on TV(Σ)\operatorname{TV}(\Sigma). Moreover, the latter turns out to be independent of the chosen basis and thus leads to the description KTV(Σ)=ϱΣ(1)DϱK_{\operatorname{TV}(\Sigma)}=-\sum_{\varrho\in\Sigma(1)}D_{\varrho}. Considering a torus action of complexity k>0k>0, let KYK_{Y} denote a representation of the canonical divisor on the base YY, i.e. KY=divωYK_{Y}=\operatorname{div}\omega_{Y} for some rational differential form ωYΩ1(Y)\omega_{Y}\in\Omega^{1}(Y). Then one can construct a rational differential form

Ω1(TV(𝒮))ωTV(𝒮):=ωYdχe1χe1dχekχek\Omega^{1}(\operatorname{TV}(\mathcal{S}))\ni\omega_{\operatorname{TV}(\mathcal{S})}:=\omega_{Y}\wedge\frac{d\chi^{e_{1}}}{\chi^{e_{1}}}\wedge\dots\wedge\frac{d\chi^{e_{k}}}{\chi^{e_{k}}}

on the TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}) where, as above, {e1,,ek}\{e_{1},\dots,e_{k}\} denotes a \mathbb{Z}-basis of the lattice MM. By (formally) locally inverting the toric downgrade construction of (4.2) the following equality is an immediate consequence of (7.1) and the above representation of KYK_{Y}:

KTV(𝒮)=(P,v)(μ(v)coefPKY+μ(v)1)D(P,v)ϱDϱ.K_{\operatorname{TV}(\mathcal{S})}=\sum_{(P,v)}(\mu(v)\,\operatorname{coef}_{P}K_{Y}+\mu(v)-1)\,D_{(P,v)}-\sum_{\varrho}D_{\varrho}\,.
Example 33.

Let us revisit (Ω1)\mathbb{P}(\Omega_{\mathcal{F}_{1}}) from Example 22. Recall that (𝒮)=\mathcal{R}(\mathcal{S})=\emptyset and note that the anticanonical divisor K(Ω1)-K_{\mathbb{P}(\Omega_{\mathcal{F}_{1}})} is Cartier. As a Weil divisor it may be represented as

K(Ω1)=2(D([0],(0,0))+D([0],(0,1))+D([0],(0,1))).-K_{\mathbb{P}(\Omega_{\mathcal{F}_{1}})}=2\big{(}D_{([0],(0,0))}+D_{([0],(0,1))}+D_{([0],(0,-1))}\big{)}.

Our aim now is to provide the relevant data of the associated Cartier support function h:=sf(K(Ω1))h:=\operatorname{sf}(-K_{\mathbb{P}(\Omega_{\mathcal{F}_{1}})}). To this end we denote the maximal cones of the tailfan by σ1,,σ8\sigma_{1},\dots,\sigma_{8} (starting with the cone (1,0),(1,1)\langle(1,0),(1,1)\rangle and counting counter-clockwise). To illustrate the associated piecewise linear functions hPh_{P} over the relevant slices 𝒮P\mathcal{S}_{P} one may use the following list which displays the local representations sf(ui)+sf(Ei)\operatorname{sf}(u_{i})+\operatorname{sf}(E_{i}) of K(Ω1)|TV(𝒟i)-K_{\mathbb{P}(\Omega_{\mathcal{F}_{1}})}|_{\operatorname{TV}(\mathcal{D}^{i})} where 𝒟i\mathcal{D}^{i} is the p-divisor which is associated to the maximal cone σi\sigma_{i}:

σ1σ2σ3σ4ui[2,0][0,2][2,2][2,0]Ei2[0]+2[1]002[0]+2[]σ5σ6σ7σ8ui[2,0][2,2][0,2][2,0]Ei2[0]+2[]002[0]+2[1]\begin{array}[]{l}\begin{array}[]{c|c|c|c|c}&\sigma_{1}&\sigma_{2}&\sigma_{3}&\sigma_{4}\\ \hline\cr u_{i}&[-2,0]&[0,-2]&[-2,-2]&[2,0]\\[2.15277pt] E_{i}&-2[0]+2[1]&0&0&-2[0]+2[\infty]\end{array}\\[17.22217pt] \begin{array}[]{c|c|c|c|c}&\sigma_{5}&\sigma_{6}&\sigma_{7}&\sigma_{8}\\ \hline\cr u_{i}&[2,0]&[2,2]&[0,2]&[-2,0]\\[2.15277pt] E_{i}&-2[0]+2[\infty]&0&0&-2[0]+2[1]\end{array}\end{array}

More specifically, this means that for every point P1P\in\mathbb{P}^{1} we have that hP|𝒟Pi=ui+coeffPEih_{P}|_{\mathcal{D}^{i}_{P}}=u_{i}+\operatorname{coeff}_{P}E_{i} which is to be considered as an affine linear map N|𝒟Pi|N_{\mathbb{Q}}\supset|\mathcal{D}^{i}_{P}|\to\mathbb{Q}.

8.2. Positivity criteria

We consider a complete complexity-one TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}). For a cone σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}) of maximal dimension and a point PYP\in Y we denote by ΔPσ𝒮P\Delta^{\sigma}_{P}\in\mathcal{S}_{P} the unique polyhedron whose tailcone is equal to σ\sigma. Given a Cartier support function hCaSF(𝒮)h\in\operatorname{CaSF}(\mathcal{S}) we may write hP|ΔPσ=u(σ)+aP(σ)h_{P}|_{\Delta^{\sigma}_{P}}=u(\sigma)+a_{P}(\sigma) and define h|σ(0):=PaP(σ)Ph|_{\sigma}(0)\;:=\;\sum_{P}a_{P}(\sigma)P.

Definition 34.

A function f:Cf:C\to\mathbb{Q} defined over some convex subset CkC\subset\mathbb{Q}^{k} is called concave if f(tx1+(1t)x2)tf(x1)+(1t)f(x2)f(tx_{1}+(1-t)x_{2})\geq tf(x_{1})+(1-t)f(x_{2}) for all x1,x2Cx_{1},x_{2}\in C and 0t10\leq t\leq 1. Given a polyhedral subdivision of CC, the function ff is called strictly concave if the inequality from above becomes strict for all pairs of points (x1,x2)C2(x_{1},x_{2})\in C^{2} which lie in different maximal cells.

Proposition 35 ([PS], Section 3.4).
  1. (1)

    DhD_{h} is nef if and only if hPh_{P} is concave for all PYP\in Y and degh|σ(0)0\deg h|_{\sigma}(0)\leq 0 for every maximal cone σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}).

  2. (2)

    DhD_{h} is semiample if and only if hPh_{P} is concave for all PYP\in Y and h|σ(0)-h|_{\sigma}(0) is semiample for every maximal cone σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}).

  3. (3)

    DhD_{h} is ample if and only if hPh_{P} is strictly concave for all PYP\in Y and h|tail(𝒟)(0)-h|_{\operatorname{tail}(\mathcal{D})}(0) is ample for all maximal 𝒟𝒮\mathcal{D}\in\mathcal{S} with affine locus.

Similar results for the case of varieties with general reductive group actions of complexity one can be found in [Tim00].

It is well known for toric varieties that the anti-canonical divisor is always big. This is not true in general for higher complexity TT-varieties. Nevertheless, for rational TT-varietes of complexity one, it is sufficient to impose the condition of connected isotropy groups. In our language, this is equivalent to the condition that all the vertices of 𝒮P\mathcal{S}_{P} are lattice points.

Proposition 36.

For a rational TT-variety XX of complexity one with connected isotropy groups, the anti-canonical divisor is big.

Proof.

By (8.1) we get an effective anti-canonical divisor KX=ρDρ+2vDQ,v-K_{X}=\sum_{\rho}D_{\rho}+2\cdot\sum_{v}D_{Q,v} for any point QYQ\in Y. Moreover, the effective cone is generated by invariant divisor classes. Now, for every D=DρD=D_{\rho} or D=DP,vD=D_{P,v} we see that the class of (KX)D(-K_{X})-D is effective. This implies that KX-K_{X} sits in the interior of the effective cone, and is thus big. ∎

8.3. The ideal of a Weil divisor

Previous considerations allow us to express the ideal IΓ(TV(𝒟),𝒪TV(𝒟))=Γ(Loc𝒟,𝒪Loc(𝒟))I\subseteq\Gamma(\operatorname{TV}(\mathcal{D}),\mathcal{O}_{\operatorname{TV}(\mathcal{D})})=\Gamma(\operatorname{Loc}\mathcal{D},\,\mathcal{O}_{\operatorname{Loc}}(\mathcal{D})) of a TT-invariant prime divisor:

I(D(Z,v))=utail(𝒟)M{fΓ(Loc,𝒟(u))|div(fχu)D(Z,v)}χu=utail(𝒟)M{fΓ(Loc,𝒟(u))|v,u+ordZf>0}χu.\textstyle\begin{array}[]{r@{\hspace{0.6em}}c@{\hspace{0.6em}}l}I(D_{(Z,v)})\hskip 6.00006pt&=\hfil\hskip 6.00006pt&\bigoplus_{u\in\operatorname{tail}(\mathcal{D})^{\scriptscriptstyle\vee}\cap M}\{f\in\Gamma(\operatorname{Loc},\mathcal{D}(u))\,|\;\operatorname{div}(f\,\chi^{u})\geq D_{(Z,v)}\}\cdot\chi^{u}\\[4.30554pt] \hskip 6.00006pt&=\hfil\hskip 6.00006pt&\bigoplus_{u\in\operatorname{tail}(\mathcal{D})^{\scriptscriptstyle\vee}\cap M}\{f\in\Gamma(\operatorname{Loc},\mathcal{D}(u))\,|\;\langle v,u\rangle+\operatorname{ord}_{Z}f>0\}\cdot\chi^{u}.\end{array}

Since, if ff belongs to Γ(Loc𝒟,𝒟(u))\Gamma(\operatorname{Loc}\mathcal{D},\mathcal{D}(u)), the expression min𝒟Z,u+ordZf\min\langle\mathcal{D}_{Z},u\rangle+\operatorname{ord}_{Z}f is non-negative, we obtain for D(Z,v)D_{(Z,v)} the affine coordinate ring

Γ(Loc𝒟,𝒪)/I=u𝒩(v,𝒟Z)M;v,uΓ(Loc,𝒟(u))/Γ(Loc,𝒟(u)Z)u𝒩(v,𝒟Z)M;v,uΓ(Z,𝒟(u)|Z).\textstyle\begin{array}[]{r@{\hspace{0.6em}}c@{\hspace{0.6em}}l}\Gamma(\operatorname{Loc}\mathcal{D},\,\mathcal{O})/I\hskip 6.00006pt&=\hfil\hskip 6.00006pt&\bigoplus_{u\in\mathcal{N}(v,\mathcal{D}_{Z})\cap M;\,\langle v,u\rangle\in\mathbb{Z}}\Gamma(\operatorname{Loc},\mathcal{D}(u))/\Gamma(\operatorname{Loc},\mathcal{D}(u)-Z)\\[4.30554pt] \hskip 6.00006pt&\subseteq\hfil\hskip 6.00006pt&\bigoplus_{u\in\mathcal{N}(v,\mathcal{D}_{Z})\cap M;\,\langle v,u\rangle\in\mathbb{Z}}\Gamma(Z,\mathcal{D}(u)|_{Z}).\end{array}

Let φ:Z~Z\varphi:\widetilde{Z}\rightarrow Z denote the normalization map. Furthermore, we define the cone σ(Z,v):=0(𝒟Zv)\sigma_{(Z,v)}:=\mathbb{Q}_{\geq 0}\cdot(\mathcal{D}_{Z}-v) and denote by ι:ZY\iota:Z\hookrightarrow Y the inclusion. Then we have that

𝒟(Z,v):=WY(𝒟W+σ(Z,v))(φι)W\mathcal{D}_{(Z,v)}:=\sum_{W\subset Y}(\mathcal{D}_{W}+\sigma_{(Z,v)})\otimes(\varphi\circ\iota)^{*}W

defines a p-divisor over Z~\widetilde{Z} with lattice N(Z,v)=(N+v)NN_{(Z,v)}=(N+\mathbb{Z}v)\subset N_{\mathbb{Q}} such that

TV(𝒟(Z,v))=D(Z,v)~\operatorname{TV}(\mathcal{D}_{(Z,v)})=\widetilde{D_{(Z,v)}}

equals the normalization of the prime divisor D(Z,v)TV(𝒟)D_{(Z,v)}\subset\operatorname{TV}(\mathcal{D}) (see 6.1). Note that (φι)Z(\varphi\circ\iota)^{*}Z is defined only up to linear equivalence, and different choices give rise to isomorphic TT-varieties.

For a prime divisor DρTV(𝒟)D_{\rho}\subset\operatorname{TV}(\mathcal{D}) of horizontal type we obtain the ideal

ϱ:=u𝒟Yϱ𝒪(𝒟(u))\mathcal{I}_{\varrho}:=\bigoplus_{u\in\mathcal{D}_{Y}^{\vee}\setminus\varrho^{\perp}}\mathcal{O}(\mathcal{D}(u))

in an analogous way. The corresponding p-divisor

𝒟ϱ:=Zprϱ(𝒟Z)Z,\mathcal{D}_{\varrho}:=\sum_{Z}\operatorname{pr}_{\varrho}(\mathcal{D}_{Z})\cdot Z,

lives on YY and has tailcone prϱ(tail(𝒟))\operatorname{pr}_{\varrho}(\operatorname{tail}(\mathcal{D})) with lattice prϱ(N)\operatorname{pr}_{\varrho}(N), where prϱ\operatorname{pr}_{\varrho} is the projection NN/ϱN_{\mathbb{Q}}\rightarrow N_{\mathbb{Q}}/\mathbb{Q}\cdot\varrho. As above, we have that Dϱ=TV(𝒟ϱ)D_{\varrho}=\operatorname{TV}(\mathcal{D}_{\varrho}).

9. Cohomology groups of line bundles in complexity 1

9.1. Toric varieties

Consider an equivariant line bundle \mathcal{L} on the toric variety TV(Σ)\operatorname{TV}(\Sigma). The induced torus action on the cohomology spaces Hi(TV(Σ),)H^{i}(\operatorname{TV}(\Sigma),\mathcal{L}) yields a weight decomposition of the latter, i.e. Hi(TV(Σ),)=uMHi(TV(Σ),)(u)H^{i}(\operatorname{TV}(\Sigma),\mathcal{L})=\bigoplus_{u\in M}H^{i}\big{(}\operatorname{TV}(\Sigma),\mathcal{L}\big{)}(u). As in (7.3), we denote by ψ:|Σ|\psi:|\Sigma|\to\mathbb{Q} a continuous piecewise linear function representing the line bundle \mathcal{L}. Introducing the closed subsets Zu:={vN|u,vψ(v)}Z_{u}\;:=\;\{v\in N_{\mathbb{R}}\;|\;\langle\,u,v\,\rangle\geq\psi(v)\}, the complex with entries H0(σ,Zu;)H^{0}(\sigma,Z_{u};\mathbb{C}) associated to the covering of |Σ||\Sigma| by the cones σΣ\sigma\in\Sigma can be identified with the usual Čech complex for TV(Σ)\operatorname{TV}(\Sigma) given by the covering via the affine open subsets TV(σ)\operatorname{TV}(\sigma). This gives us that

Hi(TV(Σ),)(u)=Hi(|Σ|,Zu;),H^{i}\big{(}\operatorname{TV}(\Sigma),\mathcal{L}\big{)}(u)=H^{i}\big{(}|\Sigma|,Z_{u};\mathbb{C}\big{)},

cf. [Dem70]. It follows that if Σ\Sigma is complete and hh is concave, e.g. \mathcal{L} is globally generated, then

Hi(TV(Σ),)=0fori>0,H^{i}(\operatorname{TV}(\Sigma),\mathcal{L})=0\quad\textnormal{for}\quad i>0\,,

see [Dan78, Corollary 7.3]. One also has an analogous result for toric bouquets which is proved by induction on the number of irreducible components and the fact that the restriction homomorphism on the level of global sections is surjective (cf. [Dan78, Lemma 6.8.1]):

Proposition 37 ([Pet10], Section 2.4).

Let XX be a complete equidimensional toric bouquet and \mathcal{L} a nef line bundle on XX. Then Hi(X,)=0H^{i}(X,\mathcal{L})=0 for i>0i>0.

9.2. Global sections

Recall from (7.3) that a globally generated equivariant line bundle \mathcal{L} on a complete toric variety TV(Σ)\operatorname{TV}(\Sigma) corresponds to a polytope M\nabla\subset M_{\mathbb{Q}} such that Γ(TV(Σ),)=uMχu\Gamma(\operatorname{TV}(\Sigma),\mathcal{L})=\bigoplus_{u\in\nabla\cap M}\mathbb{C}\chi^{u}. In the following we will see how to generalize this formula to complexity-one TT-varieties.

Consider a TT-invariant Weil divisor DD on a complexity-one TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}) over the curve YY and define the polyhedron

D:=convHull{uM|ϱ,ucoefϱD for all ϱ},\Box_{D}:=\operatorname{convHull}\;\{u\in M_{\mathbb{Q}}\,|\;\langle\varrho,u\rangle\geq-\operatorname{coef}_{\varrho}D\mbox{ for all }\varrho\in{\mathcal{R}}\}\,,

where coefϱD\operatorname{coef}_{\varrho}D denotes the coefficient of DϱD_{\varrho} inside DD. Moreover, there is a map D:DDivYD^{*}:\Box_{D}\to\operatorname{Div}_{\mathbb{Q}}Y with coefPD(u):=min{v,u+coef(P,v)D/μ(v)|v𝒮P(0)}\operatorname{coef}_{P}D^{*}(u):=\min\{\langle v,u\rangle+\operatorname{coef}_{(P,v)}D/\mu(v)\,|\;v\in\mathcal{S}_{P}(0)\}. As a direct consequence of Theorem 26 one obtains that

Γ(X,𝒪X(D))(u)=Γ(Y,𝒪Y(D(u))),\Gamma\big{(}X,\mathcal{O}_{X}(D)\big{)}(u)=\Gamma\big{(}Y,\mathcal{O}_{Y}(D^{*}(u))\big{)},

cf. [PS, Section 3.3]. In the case that D=DhD=D_{h} is Cartier the function DD^{*} is usually denoted by hh^{*} and we write h\Box_{h} instead of D\Box_{D}.

Example 38.

Let us return to Example 33 and compute dimΓ((Ω1),K(Ω1))\dim\Gamma(\mathbb{P}(\Omega_{\mathcal{F}_{1}}),-K_{\mathbb{P}(\Omega_{\mathcal{F}_{1}})}). The weight polytope of the anticanonical divisor is pictured in Figure 5. Together with all weights (u1,u2)=uh(u_{1},u_{2})=u\in\Box_{h} the following list displays the degree of the induced divisor h(u)h^{*}(u) on 1\mathbb{P}^{1}:

u101210122101210u222211110000011degh(u)00001100121000\begin{array}[]{c|rrrrrrrrrrrrrr}u_{1}&0&1&2&-1&0&1&2&-2&-1&0&1&2&-1&0\\ u_{2}&2&2&2&1&1&1&1&0&0&0&0&0&-1&-1\\[2.15277pt] \hline\cr\deg h^{*}(u)&0&0&0&0&1&1&0&0&1&2&1&0&0&0\end{array}

Summing up over all degrees yields dimΓ(X,KX)=20\dim\Gamma(X,-K_{X})=20.

[gridwidth=0.3pt,griddots=7,subgriddiv=1,gridlabels=5pt](0,0)(-3,-2)(3,3)
Figure 5. Weight polytope associated to K(Ω1)-K_{\mathbb{P}}(\Omega_{\mathcal{F}_{1}}), cf. Example 38.

9.3. Higher cohomology groups for complexity-one torus actions

We suspect that higher cohomology group computations for equivariant line bundles on complexity-one TT-varieties are rather hard in general, in particular if one cannot directly make use of a quotient map to the base curve YY. Hence, we restrict to the case where X=X~X=\widetilde{X}. Invoking Proposition 37, one can directly generalize the toric vanishing result from (9.1) with a “cohomology and base change” argument for the flat projective morphism π:X~Y\pi:\widetilde{X}\to Y to the complexity-one case:

Proposition 39 ([Pet10], Section 2.4).

Let X=X~X=\widetilde{X} be a complete complexity-one TT-variety over the base curve YY. For any nef TT-invariant Cartier divisor DhD_{h} on XX we have that Riπ𝒪X(Dh)=0R^{i}\pi_{*}\mathcal{O}_{X}(D_{h})=0 for i>0i>0. Hence,

Hi(X,𝒪X(Dh))=uhMHi(Y,𝒪Y(h(u))).H^{i}(X,\mathcal{O}_{X}(D_{h}))=\bigoplus_{u\in\Box_{h}\cap M}H^{i}\big{(}Y,\mathcal{O}_{Y}(h^{*}(u))\big{)}\,.

In particular, Hi(X,𝒪X(Dh))=0H^{i}(X,\mathcal{O}_{X}(D_{h}))=0 for i2i\geq 2.

A precursor of this result for smooth projective surfaces and semiample line bundles is formulated as Corollary 3.27 in [IS10]. Its proof uses the well known intersection theory for smooth projective surfaces, cf. [Har77, Chapter V].

Furthermore, it is worthwhile to note that the direct image sheaf always splits into a direct sum of line bundles, namely π𝒪X~(Dh)=uhM𝒪Y(h(u))\pi_{*}\mathcal{O}_{\widetilde{X}}(D_{h})=\bigoplus_{u\in\,\square_{h}\cap M}\mathcal{O}_{Y}(h^{*}(u)) with no positivity assumptions on DhD_{h}. Since the higher direct image sheaves are not locally free in general, explicit higher cohomology group computations have so far proven unsuccessful.

10. Cox rings as affine TT-varieties

Assume XX to be a complete normal variety with finitely generated divisor class group Cl(X)\operatorname{Cl}(X). The Cox ring of XX is then given as the Cl(X)\operatorname{Cl}(X)-graded abelian group

Cox(X):=DCl(X)Γ(X,𝒪X(D))\operatorname{Cox}(X):=\bigoplus_{D\in\operatorname{Cl}(X)}\Gamma(X,{\mathcal{O}}_{X}(D))

which carries a canonical ring structure, see [HS10, Section 2]. In analogy to [HK00], but neither supposing XX to be \mathbb{Q}-factorial nor projective, we call XX a Mori dream space (MDS) if Cox(X)\operatorname{Cox}(X) is a finitely generated \mathbb{C}-algebra.

10.1. The Cox ring of a toric variety

The well known quotient construction n(Spec[z0,,zn]V(z0,,zn))/\mathbb{P}^{n}\cong\big{(}\operatorname{Spec}\mathbb{C}[z_{0},\dots,z_{n}]\setminus V(z_{0},\dots,z_{n})\big{)}/\mathbb{C}^{*} can be generalized to toric varieties TV(Σ)\operatorname{TV}(\Sigma) for which the set of rays Σ(1)\Sigma(1) generates NN_{\mathbb{Q}} (cf. [Cox95]).

The graded homogeneous coordinate ring [z0,,zn]\mathbb{C}[z_{0},\dots,z_{n}] for n\mathbb{P}^{n} is replaced by the polynomial ring [zϱ|ϱΣ(1)]\mathbb{C}[z_{\varrho}\,|\;\varrho\in\Sigma(1)] whose variables correspond to the rays of Σ\Sigma and whose grading is induced by the divisor class group Cl(TV(Σ))\operatorname{Cl}(\operatorname{TV}(\Sigma)), which assigns the degree [Dϱ][D_{\varrho}] to the variable zϱz_{\varrho}. Furthermore, applying Hom(,)\operatorname{Hom}_{\mathbb{Z}}(-,\mathbb{C}^{*}) to the short exact sequence from (7.1), one defines the algebraic group G:=ker(()Σ(1)TN)G:=\ker\big{(}(\mathbb{C}^{*})^{\Sigma(1)}\to T_{N}\big{)} where TN:=N=Hom(M,)T_{N}:=N\otimes_{\mathbb{Z}}\mathbb{C}^{*}=\operatorname{Hom}_{\mathbb{Z}}(M,\mathbb{C}^{*}). Note that GG acts naturally on Σ(1)\mathbb{C}^{\Sigma(1)} and leaves V(B(Σ))V(B(\Sigma)) invariant, where B(Σ)[zϱ|ϱΣ(1)]B(\Sigma)\subset\mathbb{C}[z_{\varrho}\,|\;\varrho\in\Sigma(1)] denotes the irrelevant ideal which is generated by {zσ^:=ϱσ(1)zϱ|σΣ}\big{\{}z_{\hat{\sigma}}:=\prod_{\varrho\notin\sigma(1)}z_{\varrho}\;\big{|}\;\sigma\in\Sigma\big{\}}. The ideal B(Σ)B(\Sigma) generalizes the standard irrelevant ideal z0,,zn[z0,,zn]\langle z_{0},\dots,z_{n}\rangle\subset\mathbb{C}[z_{0},\dots,z_{n}] of projective space. Furthermore, it follows that TV(Σ)=(Σ(1)V(B(Σ)))/G\operatorname{TV}(\Sigma)=\big{(}\mathbb{C}^{\Sigma(1)}\setminus V(B(\Sigma))\big{)}/G is a good quotient.

On the other hand, one can also approach the Cox ring via a more polyhedral point of view. As usual we denote the first non-trivial lattice point on a ray ϱΣ(1)N\varrho\in\Sigma(1)\subseteq N_{\mathbb{Q}} with the same letter ϱ\varrho. Then we consider the canonical map φ:Σ(1)N\varphi:\mathbb{Z}^{\Sigma(1)}\to N, e(ϱ)ϱe(\varrho)\mapsto\varrho. It sends some faces (including the rays) of the positive orthant 0Σ(1)\mathbb{Q}^{\Sigma(1)}_{\geq 0} to cones of the fan Σ\Sigma. Applying the functor TV\operatorname{TV}, we obtain a rational map Spec[zϱ|ϱΣ(1)]TV(Σ)\operatorname{Spec}\mathbb{C}[z_{\varrho}\,|\;\varrho\in\Sigma(1)]-\hskip-3.00003pt\to\operatorname{TV}(\Sigma). In particular, we recover the affine spectrum of [zϱ|ϱΣ(1)]=Cox(TV(Σ))\mathbb{C}[z_{\varrho}\,|\;\varrho\in\Sigma(1)]=\operatorname{Cox}(\operatorname{TV}(\Sigma)) as the toric variety TV(0Σ(1))\operatorname{TV}(\mathbb{Q}^{\Sigma(1)}_{\geq 0}). Thus, the Cox ring of a toric variety gives rise to an affine toric variety itself, and the defining cone 0Σ(1)\mathbb{Q}^{\Sigma(1)}_{\geq 0} can be seen as a polyhedral resolution of the given fan Σ\Sigma, since all linear relations among the rays have been removed.

10.2. The action of the Picard torus

Let XX be an MDS and suppose that Cl(X)\operatorname{Cl}(X) is torsion free. It follows that the total coordinate space SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) is a normal affine variety, and the Cl(X)\operatorname{Cl}(X)-grading encodes an effective action of the so-called Picard torus T:=HomalgGr(Cl(X),)T:=\mbox{\rm Hom}_{\operatorname{algGr}}(\operatorname{Cl}(X),\mathbb{C}^{*}). One could now ask for a description of SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) in terms of some p-divisor Cox\mathcal{E}_{\operatorname{Cox}} on the so-called Chow quotient Y:=SpecCox(X)//chTY:=\operatorname{Spec}\operatorname{Cox}(X)/\hskip-3.00003pt/^{\mbox{\tiny ch}}T which is defined as the normalization of the distinguished component of the inverse limit of the GIT quotients of SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X), cf. [AH06, Section 6]. This has been done in [AW], and in the case of smooth Mori dream surfaces, the result is as follows (cf. [AW, Section 6]): Y=XY=X and, up to shifts of the polyhedral coefficients, Cox=EXΔEE\mathcal{E}_{\operatorname{Cox}}=\sum_{E\subseteq X}\Delta_{E}\otimes E with

ΔE={DEff(X)Cl(X)|(DE)1 and (DE)0 for EE}\Delta_{E}=\{D\in\operatorname{Eff}(X)\subseteq\operatorname{Cl}_{\mathbb{Q}}(X)\,|\;(D\cdot E)\geq-1\mbox{ and }(D\cdot E^{\prime})\geq 0\mbox{ for }E^{\prime}\neq E\}

where E,EE,E^{\prime} run through all negative curves in XX. The common tailcone of the ΔE\Delta_{E} equals Nef(X)\operatorname{Nef}(X), which is dual to Eff(X)\operatorname{Eff}(X), where the latter cone carries the degrees of Cox(X)\operatorname{Cox}(X). If XX is a del Pezzo surface, the formula for ΔE\Delta_{E} simplifies to ΔE=0E¯+Nef(X)Cl(X)\Delta_{E}=\overline{0E}+\operatorname{Nef}(X)\subseteq\operatorname{Cl}_{\mathbb{Q}}(X).

10.3. Generators and relations for complexity-one torus actions

It is a fundamental problem to give a presentation of the Cox ring of an MDS in terms of generators and relations. The crucial idea to approach this problem for a TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}) is to relate its presentation to an appropriate quotient of TV(𝒮)\operatorname{TV}(\mathcal{S}) by the torus action. This ansatz was pursued in [HS10] whose key result states that the Cox ring of TV(𝒮)\operatorname{TV}(\mathcal{S}) is equal to a finitely generated algebra over the Cox ring of YY^{\circ}, where YYY^{\circ}\subseteq Y is the image of the rational map coming from the composition of the rational p1:TV(𝒮)TV~(𝒮)p^{-1}:\operatorname{TV}(\mathcal{S})\to\operatorname{\widetilde{TV}}(\mathcal{S}) with π:TV~(𝒮)Y\pi:\operatorname{\widetilde{TV}}(\mathcal{S})\to Y. Let us now become more specific for complexity-one torus actions. For a point P1P\in\mathbb{P}^{1} together with the set 𝒱P:={D(P,v)|v𝒮P(0)}\mathcal{V}_{P}:=\{D_{(P,v)}\,|\,v\in\mathcal{S}_{P}(0)\} of all vertical divisors lying over PP, we define the tuple μ(P):=(μ(v)|v𝒮P(0)).\mu(P)\;:=\;\big{(}\mu(v)\;|\;v\in\mathcal{S}_{P}(0)\big{)}. After applying an automorphism of 1\mathbb{P}^{1}, we may assume that 𝒫={0,,c1,,cr}\mathcal{P}=\{0,\infty,c_{1},\ldots,c_{r}\}, with cic_{i}\in\mathbb{C}^{*} (cf. (7.5)).

Theorem 40 ([HS10], Theorem 1.2).

The Cox ring of TV(𝒮)\operatorname{TV}(\mathcal{S}) is given by

[TD(P,v),SDρ|P𝒫,ϱ]/Tμ(0)+ciTμ()+Tμ(ci)|i=1,,r,\mathbb{C}\big{[}T_{D_{(P,v)}},S_{D_{\rho}}\;|\;P\in\mathcal{P},\varrho\in\mathcal{R}\big{]}\Big{/}\Big{\langle}T^{\mu(0)}+c_{i}T^{\mu(\infty)}+T^{\mu(c_{i})}\;\Big{|}\;i=1,\ldots,r\Big{\rangle}\,,

where Tμ(P):=v𝒮P(0)TD(P,v)μ(v)T^{\mu(P)}:=\prod_{v\in\mathcal{S}_{P}(0)}T_{D_{(P,v)}}^{\mu(v)} and \mathcal{R} is as in Definition 24.

Example 41.

Let us describe the Cox ring of (Ω1)\mathbb{P}(\Omega_{\mathcal{F}_{1}}), cf. Example 22. Using Theorem 40 and representatives (1,1)(1,1), (1,0)(1,0), and (0,1)(0,1) for 11, 0, and \infty, respectively, we see that Cox((Ω1))=[T1,,T7]/(T1T2T3T4T5T6T7)\operatorname{Cox}(\mathbb{P}(\Omega_{\mathcal{F}_{1}}))=\mathbb{C}[T_{1},\dots,T_{7}]/(T_{1}T_{2}T_{3}-T_{4}T_{5}-T_{6}T_{7}).

10.4. Polyhedral point of view for complexity-one torus actions

Similar to the viewpoint taken in (10.2) and keeping the setting from (10.3), one can describe SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) via a p-divisor 𝒟Cox\mathcal{D}_{\operatorname{Cox}}. In this case, however, the given TT-action on XX carries over to Cox(X)\operatorname{Cox}(X), and by combining it with the action of the Picard torus, SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) turns into a variety with an effective complexity-one action of a diagonizable group which in general involves torsion. Factoring out the latter gives rise to a finite abelian covering C1C\to\mathbb{P}^{1} (see (17.4)), so that 𝒟Cox\mathcal{D}_{\operatorname{Cox}} lives on a curve CC of usually higher genus rather than on 1\mathbb{P}^{1}. Nonetheless, if the class group Cl(X)\operatorname{Cl}(X) is torsion free C1C\to\mathbb{P}^{1} is the identity map. In this case, the p-divisor 𝒟Cox\mathcal{D}_{\operatorname{Cox}} describing SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) utilizes the very same points P1P\in\mathbb{P}^{1} as 𝒮\mathcal{S}. Denoting by 𝒱:=P𝒫𝒮P(0){\mathcal{V}}:=\bigcup_{P\in{\mathcal{P}}}\mathcal{S}_{P}(0), we define the compact polyhedra

ΔPc:=conv{e(v)/μ(v)|v𝒮P(0)}𝒱\Delta_{P}^{c}:=\operatorname{conv}\{e(v)/\mu(v)\,|\;v\in\mathcal{S}_{P}(0)\}\subseteq\mathbb{Q}^{{{\mathcal{V}}\cup{\mathcal{R}}}}

where the e(v)𝒱e(v)\in\mathbb{Z}^{{\mathcal{V}}} denote the canonical basis vectors and \mathcal{R} is as usual. We similarly define the polyhedral cone

σ:=0S𝒫ΔPc+00𝒱.\sigma\;:=\;\mathbb{Q}_{\geq 0}\cdot\prod_{S\in{\mathcal{P}}}\Delta_{P}^{c}\;+\;\mathbb{Q}^{{\mathcal{R}}}_{\geq 0}\;\subseteq\;\mathbb{Q}^{{{\mathcal{V}}\cup{\mathcal{R}}}}_{\geq 0}.
Proposition 42 ([AP], Theorem 1.2).

Assume Cl(X)\operatorname{Cl}(X) to be torsion free. Then the p-divisor 𝒟Cox\mathcal{D}_{\operatorname{Cox}} of SpecCox(X)\operatorname{Spec}\operatorname{Cox}(X) is, up to shifts of the polyhedral coefficients, given by P𝒫(ΔPc+σ)[P]\sum_{P\in{\mathcal{P}}}(\Delta_{P}^{c}+\sigma)\otimes[P] on 1\mathbb{P}^{1}.

For more details and the general result which also covers the case of a class group with torsion we refer to [AP, Theorem 4.2]. Comparing Proposition 42 with the analogous result in the toric setting (10.1), we see that it consists of a similar construction which resolves the linear dependencies among the elements of 𝒮P(0)N\mathcal{S}_{P}(0)\in N_{\mathbb{Q}} and the rays ϱ\varrho\in\mathcal{R} by assigning separate dimensions to each of them.

Example 43.

Once more we consider the threefold (Ω1))\mathbb{P}(\Omega_{\mathcal{F}_{1}})), cf. Example 22. The tailcone σ:=tail(𝒟Cox)\sigma:=\operatorname{tail}(\mathcal{D}_{\operatorname{Cox}}) of the p-divisor 𝒟Cox\mathcal{D}_{\operatorname{Cox}} is then given as the cone over the product of a quadrangle (product of two intervals) and a triangle. This realization is induced by the three polytopes Δ1c\Delta^{c}_{1} (triangle), Δ0c\Delta^{c}_{0} (compact interval), and Δc\Delta^{c}_{\infty} (compact interval). The non-trivial coefficients of 𝒟Cox\mathcal{D}_{\operatorname{Cox}} are thus equal to ΔPc+σ\Delta^{c}_{P}+\sigma, P{1,0,}P\in\{1,0,\infty\} (up to a shift).

It turns out that the polyhedral divisors Cox\mathcal{E}_{\operatorname{Cox}} (as constructed in (10.2)) and 𝒟Cox\mathcal{D}_{\operatorname{Cox}} are related by upgrade and downgrade constructions via the exact sequence from above, cf. [IVb] and [Pet10, Section 3.5].

11. Invariant valuations and proper equivariant morphisms

For a function field (X)\mathbb{C}(X) of a variety X/X/\mathbb{C}, we consider discrete \mathbb{C}-valuations of FF. These are maps ν:(X){}\nu:\mathbb{C}(X)\rightarrow\mathbb{Q}\cup\{\infty\} fulfilling the properties

  1. (1)

    ν(fg)=ν(f)+ν(g)\nu(f\cdot g)=\nu(f)+\nu(g),

  2. (2)

    ν(f+g)min(ν(f),ν(g)\nu(f+g)\geq\min(\nu(f),\nu(g)),

  3. (3)

    ν()=0\nu(\mathbb{C}^{*})=0, and ν(f)=f=0\nu(f)=\infty\Leftrightarrow f=0.

A center of a valuation is a point xXx\in X such that ν(𝒪X,x)0\nu({\mathcal{O}}_{X,x})\geq 0 and ν(𝔪X,x)>0\nu(\mathfrak{m}_{X,x})>0. By the valuative criterion for properness [Har77, Theorem 4.7], a scheme is complete if every discrete valuation has a unique center. Moreover, it is separated if there exists at most one center.

11.1. Completeness and properness for toric varieties

For a toric variety X=TV(Σ)X=\operatorname{TV}(\Sigma), the function field of XX equals the quotient field of [M]\mathbb{C}[M] and a valuation ν\nu defines a linear form on MM via v:uν(χu)v:u\mapsto\nu(\chi^{u}). Moreover, this gives a one-to-one correspondence between NN_{\mathbb{Q}} and the discrete valuations on (X)\mathbb{C}(X). Here, valuations with center on XX correspond to elements in the support of Σ\Sigma. Hence, a toric variety TV(Σ)\operatorname{TV}(\Sigma) is complete if and only if its fan is complete, i.e. |Σ|=N|\Sigma|=N_{\mathbb{Q}}. Moreover, let F:ΣΣF:\Sigma\rightarrow\Sigma^{\prime} be a map of fans. Then FF defines a proper morphism exactly when |Σ|=F1(|Σ|)|\Sigma|=F^{-1}(|\Sigma^{\prime}|).

11.2. Valuations on TT-varieties and hypercones

The function field of a TT-variety X=TV(𝒮)X=\operatorname{TV}(\mathcal{S}) equals the quotient field of (Y)[M]\mathbb{C}(Y)[M]. An invariant valuation corresponds via the relation ν(fχu)=μ(f)+u,v\nu(f\cdot\chi^{u})=\mu(f)+\langle u,v\rangle to a pair (μ,v)(\mu,v), where μ\mu is a valuation on (Y)\mathbb{C}(Y) and vNv\in N_{\mathbb{Q}}. In this situation we write simply ν=(μ,v)\nu=(\mu,v).

If μ\mu is a valuation with center yYy\in Y, then we get a well defined group homomorphism

μ:CaDiv0(Y)0;Dμ(f),\mu:\operatorname{CaDiv}_{\geq 0}(Y)\rightarrow\mathbb{Q}_{\geq 0};\quad D\mapsto\mu(f),

where D=div(f)D=\operatorname{div}(f) locally at yy. This map extends to a homomorphism μ:Pol+(N,σ)Z0CaDiv0(Y)Pol+(N,σ)\mu:\operatorname{Pol}^{+}(N,\sigma)\otimes_{Z_{\geq 0}}\operatorname{CaDiv}_{\geq 0}(Y)\rightarrow\operatorname{Pol}^{+}(N,\sigma). Now we have the following

Proposition 44 ([AHS08, Lemma 7.7]).

A valuation (μ,v)(\mu,v) has a center on TV(𝒟)\operatorname{TV}(\mathcal{D}) if and only if vμ(𝒟)v\in\mu(\mathcal{D}).

Remark 45.

The criterion vμ(𝒟)v\in\mu(\mathcal{D}) implies in particular that μ\mu has a center in the locus of 𝒟\mathcal{D}.

Now, we turn to the case of complexity one. In this situation YY is a smooth complete curve and the non-negative multiples mordym\cdot\operatorname{ord}_{y} of the vanishing orders at points yYy\in Y are the only discrete valuations. For those μ\mu we thus have μ(𝒟)=m𝒟y\mu(\mathcal{D})=m\cdot\mathcal{D}_{y} which is equal to the tailfan if m=0m=0.

For an invariant valuation (μ,v)(\mu,v) with center on X=TV(𝒟)X=\operatorname{TV}(\mathcal{D}), we must either have μ0\mu\equiv 0 and vtail(𝒟)v\in\operatorname{tail}(\mathcal{D}) or μ0\mu\not\equiv 0 and (v,m)𝒟y×{1}N×(v,m)\in\langle\mathcal{D}_{y}\times\{1\}\rangle\subset N_{\mathbb{Q}}\times\mathbb{Q}. Thus, the set of invariant valuations with center on XX can be identified with the disjoint union of the polyhedral cones tail(𝒟)×{0}𝒟y×{1}\langle\operatorname{tail}(\mathcal{D})\times\{0\}\cup\mathcal{D}_{y}\times\{1\}\rangle glued together along the common subsets tail(𝒟)×{0}\operatorname{tail}(\mathcal{D})\times\{0\}. Such an object is called a hypercone. It was introduced by Timashev in [Tim97] (in a version suitable to describe more generally reductive group actions of complexity one). Since the valuations with center already determine an affine variety, a hypercone gives an alternative description of a affine TT-variety of complexity one. In this language a polyhedral divisor is nothing but a (hyper-)cut through a hypercone.

11.3. Complete TT-varieties and proper morphisms

Consider a TT-variety X=TV(𝒮)X=\operatorname{TV}(\mathcal{S}) with 𝒮={𝒟i}1ir\mathcal{S}=\{\mathcal{D}_{i}\}_{1\leq i\leq r}. The divisorial fan 𝒮\mathcal{S} provides us with an open affine torus invariant covering of XX by the varieties Ui=TV(𝒟i)U_{i}=\operatorname{TV}(\mathcal{D}_{i}), 1ir1\leq i\leq r. As already mentioned at the start of (11), the valuative criterion of completeness states that a variety XX is complete exactly when every valuation of (X)\mathbb{C}(X) has a unique center. For TT-varieties it is in fact sufficient to restrict oneself to invariant valuations. Using the results of the previous section we obtain the following

Theorem 46 ([AHS08, Theorem 7.5]).

TV(𝒮)\operatorname{TV}(\mathcal{S}) is complete if and only if every slice μ(𝒮):={μ(𝒟)𝒟𝒮}\mu(\mathcal{S}):=\{\mu(\mathcal{D})\mid\mathcal{D}\in\mathcal{S}\} is a complete subdivision of NN_{\mathbb{Q}}.

As a relative version of this result we obtain a characterization of proper equivariant morphisms. Recall from (3.2) that an orbit dominating equivariant morphism XXX^{\prime}\rightarrow X of TT-varieties is given by a triple ψ=(φ,F,𝔣)\psi=(\varphi,F,{\mathfrak{f}}), consisting of a dominant morphism φ:YY\varphi:Y^{\prime}\rightarrow Y, a lattice homomorphism F:NNF:N^{\prime}\rightarrow N and an element 𝔣(Y)N{\mathfrak{f}}\in\mathbb{C}(Y^{\prime})\otimes N. First we define the preimage of a p-divisor over YY and NN via ψ\psi as a polyhedral divisor over YY^{\prime} and NN

ψ1𝒟:=F1(φ𝒟+div(𝔣)).\psi^{-1}\mathcal{D}:=F^{-1}(\varphi^{*}\mathcal{D}+\operatorname{div}({\mathfrak{f}})).

Let X=TV(𝒮)X^{\prime}=\operatorname{TV}(\mathcal{S}^{\prime}) be a TT-variety with 𝒮={𝒟i}1ir\mathcal{S}^{\prime}=\{\mathcal{D}^{\prime}_{i}\}_{1\leq i\leq r}. Assume that ψ\psi defines a map of polyhedral divisors 𝒟i𝒟\mathcal{D}^{\prime}_{i}\rightarrow\mathcal{D} for every ii.

Theorem 47.

The morphism XX=TV(𝒟)X^{\prime}\rightarrow X=\operatorname{TV}(\mathcal{D}) induced by ψ\psi is proper if and only if 𝒮μ:={μ(𝒟i)}i\mathcal{S}^{\prime}_{\mu}:=\{\mu(\mathcal{D}^{\prime}_{i})\}_{i} defines a complete polyhedral subdivision of μ(ψ1(𝒟))\mu(\psi^{-1}(\mathcal{D})) for every μ\mu.

Since the properness can be checked locally on the base, the above theorem can be used to determine whether an arbitrary orbit dominating equivariant morphism XXX^{\prime}\rightarrow X is proper.

Remark 48.

It follows from [HI, Proposition 1.5] that it suffices to check the conditions of Theorems 46 and 47 just for slices of type 𝒮y\mathcal{S}_{y} instead of for all slices 𝒮μ\mathcal{S}_{\mu}.

12. Resolution of singularities

12.1. Toric resolution of singularities

The only non-singular affine toric varieties are products of tori and affine spaces and are given by cones σ\sigma spanned by a subset of a lattice basis. We will call such cones regular. Reducing to the sublattice N(σ)N\cap(\mathbb{Q}\cdot\sigma) we may assume that σ\sigma is of maximal dimension. A cone σ=a1,,ar\sigma=\langle a^{1},\ldots,a^{r}\rangle is regular if and only if it is simplicial and its multiplicity m(σ):=det(a1,,ar)m(\sigma):=\det(a^{1},\ldots,a^{r}) equals ±1\pm 1.

Since equivariant proper birational morphisms to an affine toric variety X=TV(σ)X=\operatorname{TV}(\sigma) correspond to fans subdividing the cone σ\sigma, a resolution of XX is given by a triangulation of σ\sigma into regular cones. Indeed, such a triangulation always exists. It can be constructed by starting with an arbitrary triangulation and subsequently refining non-regular cones τ=a1,,ar\tau=\langle a^{1},\ldots,a^{r}\rangle with rays along lattice elements a~i[0,1)ai\tilde{a}\in\sum_{i}[0,1)\cdot a^{i}. On the one hand, every non-regular cone contains such a lattice element. On the other, the resulting cones of the stellar subdivision along a~\tilde{a} have strictly smaller multiplicities than τ\tau. Indeed, if a~=λiai\tilde{a}=\sum\lambda_{i}a^{i} we get m(τi)=λim(τ)m(\tau_{i})=\lambda_{i}m(\tau), where τi\tau_{i} is the cone spanned by a~\tilde{a} and all the generator of τ\tau except aia^{i}. So after a finite number of steps we end up with a subdivision in regular cones.

This combinatorial approach to resolving toric singularities was generalized by Varchenko in [Var76] to obtain (embedded) resolutions of non-degenerate hypersurface singularities. Consider a regular cone ωM\omega\subset M_{\mathbb{Q}} and a polynomial h=uMαuχu[ωM][x1,,xn]h=\sum_{u\in M}\alpha_{u}\chi^{u}\in\mathbb{C}[\omega\cap M]\cong\mathbb{C}[x_{1},\ldots,x_{n}]. Now, the normal fan Σh\Sigma_{h} of the unbounded polyhedron =conv(supph+ω)\nabla=\operatorname{conv}(\operatorname{supp}h+\omega) refines the dual cone σ=ω\sigma=\omega^{\scriptscriptstyle\vee}. For a compact face FF\prec\nabla we consider the restricted polynomial hF=uFMαuχuh_{F}=\sum_{u\in F\cap M}\alpha_{u}\chi^{u}. If all restricted polynomials define smooth hypersurfaces in the torus T=Spec[M]T=\operatorname{Spec}\mathbb{C}[M], we call hh non-degenerated.

Theorem 49.

If hh is non-degenerated and φ:TV(Σ)TV(Σh)\varphi:\operatorname{TV}{(\Sigma^{\prime})}\rightarrow\operatorname{TV}{(\Sigma_{h})} is a toric resolution of singularities then the strict transform of V(h)V(h) under the induced morphism TV(Σ)TV(σ)=𝔸n\operatorname{TV}(\Sigma^{\prime})\rightarrow\operatorname{TV}(\sigma)=\mathbb{A}^{n} is an (embedded) log-resolution of the singularities of V(h)V(h).

Example 50.

We consider the surface singularity XX given by the equation h=x2+y3+z5h=x^{2}+y^{3}+z^{5}. In a first step, we refine the positive orthant σ=ω\sigma=\omega^{\vee} by replacing it with the normal fan Σh\Sigma_{h} of the Newton diagram of hh. This Newton diagram and its normal fan are pictured in Figure 6; Σh\Sigma_{h} is obtained from the positive orthant σ\sigma via a stellar subdivision along the ray (15,5,6)(15,5,6). In a second step we refine this fan and obtain Σ\Sigma^{\prime} as pictured in Figure 7.

The first step introduces a central exceptional divisor in XX corresponding to the ray ρ=(15,5,6)\rho=\langle(15,5,6)\rangle, with the remaining singularities in the strict transform of XX being toric. In the second step, the singularities of TV(Σh)\operatorname{TV}(\Sigma_{h}) are resolved, which also resolves the (toric) singularities of the strict transform of XX.

\pstThreeDCoor[style=newtonCoor] \pstThreeDLine(0,10,0)(0,0,10)(10,0,0)(0,10,0) \pstThreeDLine(0,0,10)(0,0,5)(0,3,0)(0,10,0) \pstThreeDLine(10,0,0)(2,0,0)(0,3,0)(0,10,0) \pstThreeDLine(0,0,10)(0,0,5)(2,0,0)(10,0,0) \pstThreeDLine(0,3,0)(2,0,0)(0,0,5)(0,3,0)
\pstThreeDCoor[style=newtonDualCoor] \pstThreeDLine(0,0,10)(5,3.3,2)(10,0,0) \pstThreeDLine(0,0,10)(5,3.3,2)(0,10,0) \pstThreeDLine(0,10,0)(5,3.3,2)(10,0,0) \pstThreeDLine(0,10,0)(0,0,10)(10,0,0)(0,10,0) \pstThreeDLine(10,0,0)(0,0,0)(0,10,0) \pstThreeDLine(5,3.3,2)(0,0,0)(0,0,10) \pstThreeDLine(5,3.3,2)(0,0,0)(10,0,0) \pstThreeDLine(5,3.3,2)(0,0,0)(0,10,0) \pstThreeDLine(0,0,10)(0,0,0)(0,10,0) \pstThreeDLine(0,0,10)(0,0,0)(10,0,0)
Figure 6. The Newton diagram of hh and its normal fan Σh\Sigma_{h}.
\pstThreeDLine(0,0,1)(1,0,0)(0,1,0)(0,0,1) \pstThreeDLine(0,1,0)(15,10,6) \pstThreeDLine(1,0,0)(15,10,6) \pstThreeDLine(0,0,1)(15,10,6) \pstThreeDLine(3,2,1)(15,10,6) \pstThreeDLine(3,2,1)(1,0,0) \pstThreeDLine(3,2,1)(8,5,3) \pstThreeDLine(3,2,1)(0,1,0) \pstThreeDLine(3,2,1)(0,1,0) \pstThreeDLine(3,2,1)(5,4,2) \pstThreeDLine(3,2,1)(10,7,4) \pstThreeDDot(10,7,4) \pstThreeDDot(5,4,2) \pstThreeDDot(3,2,2) \pstThreeDDot(9,6,4) \pstThreeDDot(8,5,3) \pstThreeDDot(12,8,5) \pstThreeDDot(6,4,3) \pstThreeDLine(2,1,1)(1,0,0) \pstThreeDLine(2,1,1)(0,0,1) \pstThreeDLine(2,1,1)(15,10,6) \pstThreeDLine(2,1,1)(12,8,5) \pstThreeDLine(2,1,1)(9,6,4) \pstThreeDLine(2,1,1)(6,4,3) \pstThreeDLine(2,1,1)(3,2,2) \pstThreeDLine(2,1,1)(5,3,2) \pstThreeDLine(5,3,2)(1,0,0) \pstThreeDLine(5,3,2)(8,5,3) \pstThreeDLine(5,3,2)(15,10,6) \pstThreeDLine(1,1,1)(0,1,0) \pstThreeDLine(1,1,1)(0,0,1) \pstThreeDLine(1,1,1)(15,10,6) \pstThreeDLine(1,1,1)(12,8,5) \pstThreeDLine(1,1,1)(9,6,4) \pstThreeDLine(1,1,1)(6,4,3) \pstThreeDLine(1,1,1)(3,2,2) \pstThreeDLine(2,2,1)(0,1,0) \pstThreeDLine(2,2,1)(5,4,2) \pstThreeDLine(2,2,1)(10,7,4) \pstThreeDLine(2,2,1)(15,10,6) \pstThreeDLine(2,2,1)(1,1,1) \pstThreeDLine(4,3,2)(15,10,6) \pstThreeDLine(4,3,2)(2,2,1) \pstThreeDLine(4,3,2)(1,1,1) \pstThreeDLine(7,5,3)(4,3,2) \pstThreeDLine(7,5,3)(2,2,1) \pstThreeDLine(7,5,3)(15,10,6) \pstThreeDPut(1,0,-0.1)(1,0,0)(1,0,0)\pstThreeDPut(0,1,-0.1)(0,1,0)(0,1,0)\pstThreeDPut(0,0,1.1)(0,0,1)(0,0,1)\pstThreeDPut(14.9,10,6)ρ\rho\pstThreeDPut(3,2,1)(3,2,1)\scriptstyle(3,2,1)\pstThreeDPut(8,5,3)(8,5,3)\scriptstyle(8,5,3)\pstThreeDPut(10,7,4)(10,7,4)\scriptstyle(10,7,4)\pstThreeDPut(5,4,2)(5,4,2)\scriptstyle(5,4,2)\pstThreeDPut(1,1,1)(1,1,1)\scriptstyle(1,1,1)\pstThreeDPut(2,2,1)(2,2,1)\scriptstyle(2,2,1)\pstThreeDPut(2,1,1)(2,1,1)\scriptstyle(2,1,1)\pstThreeDPut(12,8,5)(12,8,5)\scriptstyle(12,8,5)\pstThreeDPut(9,6,4)(9,6,4)\scriptstyle(9,6,4)\pstThreeDPut(6,4,3)(6,4,3)\scriptstyle(6,4,3)\pstThreeDPut(3,2,2)(3,2,2)\scriptstyle(3,2,2)\pstThreeDPut(5,3,2)(5,3,2)\scriptstyle(5,3,2)\pstThreeDPut(4,3,2)(4,3,2)\scriptstyle(4,3,2)\pstThreeDPut(7,5,3)(7,5,3)\scriptstyle(7,5,3)
Figure 7. Refinement of Σh\Sigma_{h}.
Remark 51.

The approach of Varchenko and the notion of non-degeneracy is generalized in the context of tropical geometry, see [Tev07].

12.2. Toroidal resolutions

We recall from [KKMSD73, Dan91] that a complex normal variety XX is toroidal at the closed point xXx\in X if there exists an affine toric variety TV(σ)\operatorname{TV}(\sigma) such that the germ (Xan,x)(X^{\textnormal{an}},x) is analytically isomorphic to the germ (TV(σ)an,xσ)(\operatorname{TV}(\sigma)^{\textnormal{an}},x_{\sigma}) with xσx_{\sigma} being the unique fixed point in TV(σ)\operatorname{TV}(\sigma). If the above property holds for every xXx\in X then XX itself is called toroidal.

More generally, let BXB\subset X be a closed subvariety. The pair (X,B)(X,B) is called toroidal if for every closed point xXx\in X, there exists a toric variety TV(σ)\operatorname{TV}(\sigma) together with a distinguished set of faces F(σ)F(\sigma) of σ\sigma such that the germ (Xan,Ban;x)(X^{\textnormal{an}},B^{\textnormal{an}};x) is analytically isomorphic to the germ (TV(σ)an,τF(σ)TV(τ)an;xσ)(\operatorname{TV}(\sigma)^{\textnormal{an}},\bigcup_{\tau\in F(\sigma)}\operatorname{TV}(\tau)^{\textnormal{an}};x_{\sigma}).

Given a p-divisor on some YY, we consider a log-resolution φ\varphi of the pair (Y,supp𝒟)(Y,\operatorname{supp}\mathcal{D}). The pullback φ𝒟\varphi^{*}\mathcal{D} leads to the same variety, i.e. X=TV(𝒟)=TV(φ𝒟)X=\operatorname{TV}(\mathcal{D})=\operatorname{TV}(\varphi^{*}\mathcal{D}), but by [LS, Proposition 2.6] we get a toroidal pair (X~,B)(\widetilde{X},B) consisting of the variety X~=TV~(φ𝒟)\widetilde{X}=\operatorname{\widetilde{TV}}(\varphi^{*}\mathcal{D}) and the exceptional set BB of the contraction morphism r:TV~(φ𝒟)TV(φ𝒟)r:\operatorname{\widetilde{TV}}(\varphi^{*}\mathcal{D})\rightarrow\operatorname{TV}(\varphi^{*}\mathcal{D}).

Hence, TV~(φ𝒟)\operatorname{\widetilde{TV}}(\varphi^{*}\mathcal{D}) is called a toroidal resolution of XX. Moreover, for any closed point xX~x\in\widetilde{X}, X~\widetilde{X} is formally locally isomorphic in a neighborhood of xx to the toric variety which is given by the so-called “Cayley cone”

C(𝒟Z1,,𝒟Zr)=(tail(𝒟))×0,𝒟Z1×e1,,𝒟Zr×erN×r.C(\mathcal{D}_{Z_{1}},\ldots,\mathcal{D}_{Z_{r}})=\langle(\operatorname{tail}(\mathcal{D}))\times 0,\;\mathcal{D}_{Z_{1}}\times e_{1},\ldots,\mathcal{D}_{Z_{r}}\times e_{r}\rangle\subset N_{\mathbb{Q}}\times\mathbb{Q}^{r}.

Here, Z1,,ZrZ_{1},\ldots,Z_{r} denotes a set of prime divisors intersecting transversely in the point π(x)Y\pi(x)\in Y. Note that one can obtain a resolution of singularities from this construction by purely toric methods when applying them to the occurring Cayley cones. In particular, TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}) is smooth if and only if all the Cayley cones C(𝒟Z1,,𝒟Zr)C(\mathcal{D}_{Z_{1}},\ldots,\mathcal{D}_{Z_{r}}) are regular. If Loc𝒟\operatorname{Loc}\mathcal{D} is affine we have that TV~(𝒟)=TV(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D})=\operatorname{TV}(\mathcal{D}) and thus obtain a smoothness criterion in this case. If Loc𝒟\operatorname{Loc}\mathcal{D} is complete then, as in the toric situation, TV(𝒟)\operatorname{TV}(\mathcal{D}) is smooth if and only if it is a product of toric and affine spaces [LS, Lemma 5.2]. Hence, 𝒟\mathcal{D} can be obtained by a toric downgrade, see Section 4. For general loci the situation seems to be more complicated.

Remark 52.

The theory of toroidal embeddings [KKMSD73] associates with the toroidal resolution X~X\widetilde{X}\to X a fan that is glued from the Cayley cones described above. The same construction shows that p-divisors generalize Mumford’s description of complexity-one torus actions [KKMSD73, Chapter 4, §1]: if 𝒟=𝒟PP\mathcal{D}=\sum\mathcal{D}_{P}\otimes P is a p-divisor on a curve, then the corresponding toroidal fan is obtained by gluing the cones C(𝒟P)=(tail(𝒟))×0,𝒟P×1C(\mathcal{D}_{P})=\langle(\operatorname{tail}(\mathcal{D}))\times 0,\mathcal{D}_{P}\times 1\rangle along their common face tail(𝒟)\operatorname{tail}(\mathcal{D}) [Vol10]. This in turn coincides with Timashev’s description in terms of hypercones and hyperfans [Tim97, Tim08].

Example 53.

Given N=N=\mathbb{Z}, Y=2=Proj([x,y,z])Y=\mathbb{P}^{2}=\operatorname{Proj}(\mathbb{C}[x,y,z]) and the two prime divisors Z1=V(y)Z_{1}=V(y) and Z2=V(x2zy)Z_{2}=V(x^{2}-zy) we consider the p-divisor

𝒟=[1/2,)Z1+[1/3,)Z2.\mathcal{D}=[\nicefrac{{1}}{{2}},\infty)\otimes Z_{1}+[-\nicefrac{{1}}{{3}},\infty)\otimes Z_{2}.

The corresponding affine variety is the hypersurface in 𝔸4\mathbb{A}^{4} given by x1x22x32x43x_{1}x_{2}^{2}-x_{3}^{2}-x_{4}^{3}. To obtain a toroidal resolution we first need to blow up the intersection points of Z1Z_{1} and Z2Z_{2} or their strict transforms, respectively, in order to get to a normal crossing situation, which is pictured in Figure 8.

E2E_{2}Z1Z_{1}Z2Z_{2}E1E_{1}
Figure 8. Normal crossing situation after three blow ups.

Let us denote the morphism coming from the composition of these blowups by φ:Y~Y\varphi:\widetilde{Y}\rightarrow Y. For the pullback of 𝒟\mathcal{D} we obtain

φ𝒟=[1/2,)Z1+[1/3,)Z2+[1/6,)E1+[1/3,)E2.\varphi^{*}\mathcal{D}=[\nicefrac{{1}}{{2}},\infty)\otimes Z_{1}+[-\nicefrac{{1}}{{3}},\infty)\otimes Z_{2}+[\nicefrac{{1}}{{6}},\infty)\otimes E_{1}+[\nicefrac{{1}}{{3}},\infty)\otimes E_{2}.

Here, E1E_{1} and E2E_{2} denote the exceptional divisors. Now, TV~(φ𝒟)X\operatorname{\widetilde{TV}}(\varphi^{*}\mathcal{D})\rightarrow X is a toroidal resolution. We will consider the intersection point Z1E2Z_{1}\cap E_{2}. The corresponding Cayley cone is illustrated in the left picture of Figure 9. It is spanned by (1,0,0)(1,0,0), (1,2,0)(1,2,0) and (1,0,3)(1,0,3). There is a canonical resolution spanned by the additional rays (1,1,1)(1,1,1), (1,1,0)(1,1,0), (1,0,1)(1,0,1) and (1,0,2)(1,0,2), cf. right-hand picture in Figure 9. For the other intersection points one has to refine the Cayley cone similarly.

\pstThreeDCoor[style=cayleyCoor] \pstThreeDLine[linestyle=solid,linecolor=black,linewidth=0.3pt](0.5,1,0)(3.5,1,0) \pstThreeDLine[linestyle=dotted,dotsep=1pt,linewidth=1.2pt](0,0,1)(0.34,0,1) \pstThreeDLine(2,4,0)(0,0,0)(2,0,0) \pstThreeDLine(1,0,3)(0,0,0)(2,0,0) \pstThreeDLine(2,4,0)(0,0,0)(1,0,3) \pstThreeDLine(2,4,0)(0,0,0)(1,0,3) \pstThreeDLine[linestyle=dotted,dotsep=1pt,linewidth=1pt](0,1,0)(0.51,1,0) \pstThreeDLine[linestyle=solid,linecolor=black,linewidth=0.5pt](0.33,0,1)(3.5,0,1) \pstThreeDPut(4.2,1,0)𝒟Z1×e1\mathcal{D}_{Z_{1}}\!\times\!e_{1}\pstThreeDPut(4.2,0,1)𝒟E2×e2\mathcal{D}_{E_{2}}\!\times\!e_{2}\pstThreeDDot(1,2,0) \pstThreeDDot(1,0,3) \pstThreeDDot(1,0,0) \pstThreeDDot(0,1,0) \pstThreeDDot(0,0,1)
(1,1,1)\scriptstyle(1,1,1)(1,0,3)\scriptstyle(1,0,3)(1,2,0)\scriptstyle(1,2,0)(1,0,0)\scriptstyle(1,0,0)(1,0,1)\scriptstyle(1,0,1)(1,0,2)\scriptstyle(1,0,2)(1,1,0)\scriptstyle(1,1,0)
Figure 9. Cayley cone C(𝒟Z1,𝒟E2)C(\mathcal{D}_{Z_{1}},\mathcal{D}_{E_{2}}) and its refinement.

Let us now turn to the case of complexity one. Here, (Y,supp𝒟)(Y,\operatorname{supp}\mathcal{D}) is already smooth. Hence, we only have to consider TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}). It has only toric singularities which are given by the cones σP=𝒟P×{1}N×\sigma_{P}=\langle\mathcal{D}_{P}\times\{1\}\rangle\subset N\times\mathbb{Q} and can be resolved by toric methods.

Example 54.

On Y=1Y=\mathbb{P}^{1} we consider the p-divisor

𝒟=[1/2,)0+[1/3,)+[1/5,)1.\mathcal{D}=[-\nicefrac{{1}}{{2}},\infty)\otimes 0+[\nicefrac{{1}}{{3}},\infty)\otimes\infty+[\nicefrac{{1}}{{5}},\infty)\otimes 1.

This is exactly the surface from Example 50. The corresponding cones σ0\sigma_{0}, σ\sigma_{\infty}, and σ1\sigma_{1} and their toric resolutions are pictured in Figure 10.

(1,2)(-1,2)
(a) σ0\sigma_{0}
(1,3)(1,3)
(b) σ\sigma_{\infty}
(1,5)(1,5)
(c) σ1\sigma_{1}
Figure 10. The cones σy\sigma_{y} and their refinements.

Note that the resolution obtained here is exactly the resolution from Example 50. Moreover, the cones σ0\sigma_{0}, σ\sigma_{\infty}, and σ1\sigma_{1} can be identified with the facets ei,ρ\langle e_{i},\rho\rangle in the fan Σh\Sigma_{h}. Now, the subdivisions of these cones can be seen as induced by the subdivision of Σh\Sigma_{h} we have considered.

This observation is not a coincidence, but a result of the toric embedding coming from the Cox ring representation in Theorem 40. Indeed, in the case of hypersurfaces singularities with complexity one torus action these two resolution strategies are closely related.

13. (Log-)terminality and rationality of singularities

13.1. Canonical divisors and discrepancies in the toric case

Recall from (8.1) that a canonical divisor on a toric variety X=TV(σ)X=\operatorname{TV}(\sigma) is given by KX=ρDρK_{X}=-\sum_{\rho}D_{\rho}. Since every line bundle trivializes on an affine toric variety, XX is \mathbb{Q}-Gorenstein of index \ell exactly when there is an element w1Mw\in\frac{1}{\ell}M such that w,ρ=1\langle w,\rho\rangle=1 for all rays ρσ(1)\rho\in\sigma(1) and \ell\in\mathbb{N} is minimal with this property. Hence, σ\sigma is the cone over a lattice polytope in the hyperplane [w,=l][\langle w,\cdot\rangle=l] with primitive vertices.

Let Σ\Sigma denote a triangulation of σ\sigma which comes from a resolution of singularities. A ray ρΣ(1)σ(1)\rho\in\Sigma{(1)}\setminus\sigma(1) then corresponds to an exceptional divisor with respect to the map TV(Σ)TV(σ)\operatorname{TV}(\Sigma)\rightarrow\operatorname{TV}(\sigma) and its discrepancy is given by discrρ=w,ρ1\text{discr}_{\rho}=\langle w,\rho\rangle-1. Obviously, this value is always greater than 1-1 which implies log-terminality of toric varieties. Note that XX is canonical if and only if

trunc(σ):=σ{w,<1}\text{trunc}(\sigma):=\sigma\cap\{\langle w,\cdot\rangle<1\}

contains no lattice points apart from the origin. Furthermore, XX is terminal if and only if trunc¯(σ)=σ[w,1]\overline{\text{trunc}}(\sigma)=\sigma\cap[\langle w,\cdot\rangle\leq 1] contains only the cone generators as lattice points.

\pstThreeDLine[linestyle=none](-1.5,-1.5,1)(1.5,-1.5,1)(1.5,1.5,1)(-1.5,1.5,1) \pstThreeDLine(0,1,1)(0,0,0)(1,0,1)(0,1,1) \pstThreeDLine(0,-1,1)(0,0,0)(-1,0,1)(0,-1,1) \pstThreeDLine(0,1,1)(0,0,0)(-1,0,1)(0,1,1) \pstThreeDLine(0,-1,1)(0,0,0)(1,0,1)(0,-1,1) \pstPlanePut[plane=xy](0.2,-2,1)height=2\pstThreeDDot(1,0,1) \pstThreeDDot(-1,0,1) \pstThreeDDot(0,1,1) \pstThreeDDot(0,-1,1) \pstThreeDDot(0,0,0.5)
(a) non-canonical
\pstThreeDLine[linestyle=none](-1.5,-2,1)(1.5,-2,1)(1.5,1.5,1)(-1.5,1.5,1) \pstThreeDLine(0,1,1)(0,0,0)(1,0,1)(0,1,1) \pstThreeDLine(0,-1,1)(0,0,0)(-1,0,1)(0,-1,1) \pstThreeDLine(0,1,1)(0,0,0)(-1,0,1)(0,1,1) \pstThreeDLine(0,-1,1)(0,0,0)(1,0,1)(0,-1,1) \pstPlanePut[plane=xy](0,-2.7,1)height=1\pstThreeDDot(1,0,1) \pstThreeDDot(-1,0,1) \pstThreeDDot(0,1,1) \pstThreeDDot(0,-1,1) \pstThreeDDot(0,0,1)
(b) canonical
\pstThreeDLine[linestyle=none](-1,-1,1)(2,-1,1)(2,2,1)(-1,2,1) \pstThreeDLine(0,0,1)(0,0,0)(1,0,1)(0,0,1) \pstThreeDLine(1,0,1)(0,0,0)(1,1,1)(1,0,1) \pstThreeDLine(1,1,1)(0,0,0)(0,1,1)(1,1,1) \pstThreeDLine(0,1,1)(0,0,0)(0,0,1)(0,1,1) \pstThreeDDot(1,0,1) \pstThreeDDot(1,1,1) \pstThreeDDot(0,1,1) \pstThreeDDot(0,0,1) \pstPlanePut[plane=xy](0.5,-1.7,1)height=1
(c) terminal
Figure 11. Different types of toric singularities.

13.2. Rationality and log-terminality for p-divisors

Since toric singularities are log-terminal and thus rational it is sufficient to study a toroidal resolution of XX, e.g. the contraction map TV~(φ𝒟)TV(φ𝒟)\operatorname{\widetilde{TV}}(\varphi^{*}\mathcal{D})\rightarrow\operatorname{TV}(\varphi^{*}\mathcal{D}), for checking the rationality or log-terminality of a variety. This observation leads to the results of [LS], which are summarized in this section.

Theorem 55 ([LS, Thm. 3.4]).

TV(𝒟)\operatorname{TV}(\mathcal{D}) has rational singularities if and only if Hi(Loc𝒟,𝒪(𝒟(u)))=0H^{i}(\operatorname{Loc}\mathcal{D},{\mathcal{O}}(\mathcal{D}(u)))=0 holds for all uMtail(𝒟)u\in M\cap\operatorname{tail}(\mathcal{D})^{\vee} and all i>0i>0.

Corollary 56.

If TV(𝒟)\operatorname{TV}(\mathcal{D}) has complexity one, i.e. YY is a curve, then TV(𝒟)\operatorname{TV}(\mathcal{D}) has rational singularities if and only if

  1. (1)

    Loc𝒟\operatorname{Loc}\mathcal{D} is affine, or

  2. (2)

    Y=1Y=\mathbb{P}^{1} and deg𝒟(u)1\deg\lfloor\mathcal{D}(u)\rfloor\geq-1 for all u(tail(𝒟))Mu\in(\operatorname{tail}(\mathcal{D}))^{\scriptscriptstyle\vee}\cap M.

To obtain a nice characterization of log-terminality we need to restrict ourselves to sufficiently simple torus actions. A torus action on an affine variety is called a (very) good one, if there is a unique fixed point, which is contained in the closures of all orbits (and the GIT-chamber structure of XX is trivial). Such a situation corresponds to a p-divisor 𝒟\mathcal{D} having a tailcone of maximal dimension, such that the locus of 𝒟\mathcal{D} is projective (and 𝒟(u)\mathcal{D}(u) is ample for all urelintσu\in\operatorname{relint}\sigma^{\scriptscriptstyle\vee}).

Fix a canonical divisor KY=ZcZZK_{Y}=\sum_{Z}c_{Z}\cdot Z on YY. Recall from (8.1) that a TT-invariant canonical divisor on TV~(𝒟)\operatorname{\widetilde{TV}}(\mathcal{D}) and TV(𝒟)\operatorname{TV}(\mathcal{D}), respectively, is given by

K\displaystyle K =(Z,v)(μ(v)(1+cZ)1)D(Z,v)ρEρ\displaystyle=\sum_{(Z,v)}(\mu(v)(1+c_{Z})-1)D_{(Z,v)}-\sum_{\rho}E_{\rho}

where one is again supposed, if focused on TV(𝒟)\operatorname{TV}(\mathcal{D}), to omit all prime divisors being contracted via p:TV~(𝒟)TV(𝒟)p:\operatorname{\widetilde{TV}}(\mathcal{D})\to\operatorname{TV}(\mathcal{D}).

Theorem 57 ([PS], Corollary 3.15).

An affine TT-variety TV(𝒟)\operatorname{TV}(\mathcal{D}) with a good torus action is \mathbb{Q}-factorial if and only if

rankCl(Y)+Z(#𝒟Z(0)1)+#𝒟0(1)=dimN.\operatorname{rank}\operatorname{Cl}(Y)+\sum_{Z}(\#\mathcal{D}_{Z}^{(0)}-1)+\#\mathcal{D}_{0}^{(1)}=\dim N.

In particular, YY has a finitely generated class group.

Remark 58.

Note, that the left hand side of the equation in the theorem is always at least dimN\dim N due to the properness condition for 𝒟\mathcal{D}.

We now turn to criteria for (log-)terminality. Due to the toroidal resolution from above one obtains the following result which generalizes the fact of log-terminality of toric varieties.

Proposition 59 ([LS, Cor. 4.10]).

Every \mathbb{Q}-factorial variety XX with torus action of complexity strictly smaller than codim(SingX)1\operatorname{codim}(\operatorname{Sing}_{X})-1 is log-terminal.

For a p-divisor we introduce a boundary divisor on its locus loc(Y)\operatorname{loc}(Y). Let μZ\mu_{Z} be the maximal multiplicity μ(v)\mu(v) of all vertices v𝒟Zv\in\mathcal{D}_{Z}. We define

B=ZμZ1μZZ.B=\sum_{Z}\frac{\mu_{Z}-1}{\mu_{Z}}\cdot Z.
Theorem 60 ([LS, Thm. 4.7]).

A \mathbb{Q}-factorial affine variety TV(𝒟)\operatorname{TV}(\mathcal{D}) with a very good torus action is log-terminal if and only if the pair (loc(Y),B)(\operatorname{loc}(Y),B) is log-terminal and Fano.

Remark 61.

Here, for simplicity we restricted ourselves to the case of \mathbb{Q}-factorial singularities. In [LS] the more general case of \mathbb{Q}-Gorenstein singularities is considered.

14. Polarizations

14.1. Toric varieties built from polyhedra

Let \nabla be a lattice polyhedron in MM_{\mathbb{Q}}, i.e. its vertices (we assume that there is at least one) are contained in MM. Then we can choose a finite subset FMF\subseteq\nabla\cap M such that F+(tail()M)=MF+(\operatorname{tail}(\nabla)\cap M)=\nabla\cap M. Moreover, let Etail()ME\subseteq\operatorname{tail}(\nabla)\cap M be the Hilbert basis, cf. (2.1). Then, if yey_{e} (eEe\in E) and zfz_{f} (fFf\in F) denote the affine and projective coordinates, respectively, we define ()#E×#F1\mathbb{P}(\nabla)\subseteq\mathbb{C}^{\#E}\times\mathbb{P}^{\#F-1}_{\mathbb{C}} as the zero set of the equations

iyeijzfj=kyeklzfl\textstyle\prod_{i}y_{e_{i}}\prod_{j}z_{f_{j}}=\prod_{k}y_{e_{k}}\prod_{l}z_{f_{l}}

associated to relations

i(ei,0)+j(fj,1)=k(ek,0)+l(fl,1)\textstyle\sum_{i}(e_{i},0)+\sum_{j}(f_{j},1)=\sum_{k}(e_{k},0)+\sum_{l}(f_{l},1)

inside MM\oplus\mathbb{Z}. If =σ\nabla=\sigma^{\scriptscriptstyle\vee} from (2.1), then this yields the affine variety (σ)=TV(σ)\mathbb{P}(\sigma^{\scriptscriptstyle\vee})=\operatorname{TV}(\sigma). The easiest compact examples are =\nabla= [0,1][0,1]\subseteq\mathbb{Q}, [0,1]22[0,1]^{2}\subseteq\mathbb{Q}^{2}, and conv((0,0),(1,0),(0,1))2\operatorname{conv}\big{(}(0,0),(1,0),(0,1)\big{)}\subseteq\mathbb{Q}^{2}, yielding 1\mathbb{P}^{1}, 1×1\,\mathbb{P}^{1}\times\mathbb{P}^{1}, and 2\mathbb{P}^{2}, respectively. A nice mixed example \nabla arises from adding 02\mathbb{Q}^{2}_{\geq 0} to the line segment (1,0),(0,1)¯\overline{(1,0),(0,1)}, see Figure 12. With E={(1,0),(0,1)}E=\{(1,0),(0,1)\} and F={(1,0),(0,1)}F=\{(1,0),(0,1)\} we obtain ()2×1\mathbb{P}(\nabla)\subseteq\mathbb{C}^{2}\times\mathbb{P}^{1} cut out by the single equation y(1,0)z(0,1)=y(0,1)z(1,0)y_{(1,0)}z_{(0,1)}=y_{(0,1)}z_{(1,0)}. That is, ()\mathbb{P}(\nabla) equals 2\mathbb{C}^{2} blown up in the origin.

(a) \nabla
(b) 𝒩()\mathcal{N}(\nabla)
Figure 12. From M\nabla\subset M_{\mathbb{Q}} to the toric variety TV(𝒩())\operatorname{TV}(\mathcal{N}(\nabla)), cf. (14.1).

14.2. Maps induced from basepoint free divisors

We will present the relation between the toric varieties TV(Σ)\operatorname{TV}(\Sigma) from (3.4) and those rather simple ones defined in (14.1). Let \nabla be again a lattice polyhedron in MM_{\mathbb{Q}} and denote by Σ:=𝒩()\Sigma:=\mathcal{N}(\nabla) its inner normal fan, cf. (2.2). Then, σ:=|Σ|\sigma:=|\Sigma| and tail()\operatorname{tail}(\nabla) are mutually dual cones and there is a structure morphism TV(Σ)TV(σ)\operatorname{TV}(\Sigma)\to\operatorname{TV}(\sigma). By (7.1), the polyhedron \nabla corresponds to a basepoint free divisor which is globally generated by FMF\subseteq\nabla\cap M. If M\nabla\cap M generates the abelian group MM, then the associated morphism

Φ:TV(Σ)()overTV(σ)E\Phi_{\nabla}:\operatorname{TV}(\Sigma)\to\mathbb{P}(\nabla)\hskip 10.00002pt\mbox{over}\hskip 6.99997pt\operatorname{TV}(\sigma)\subseteq\mathbb{C}^{E}

is the normalization map. If \nabla is replaced by a sufficiently large scalar multiple :=N\nabla:=N\cdot\nabla (for each vertex uu\in\nabla, the set u\nabla-u has to contain the Hilbert basis of the cone generated by it), then it becomes an isomorphism. Thus, \nabla is even an ample divisor. Moreover, if Γ\Gamma\leq\nabla is a face, then we can use the face-cone correspondence from (2.2) to define orb¯(Γ):=orb¯(𝒩(Γ,))TV(Σ)\overline{\operatorname{orb}}(\Gamma):=\overline{\operatorname{orb}}(\mathcal{N}(\Gamma,\nabla))\subseteq\operatorname{TV}(\Sigma). Note that orb¯(Γ)=(Γ)()\overline{\operatorname{orb}}(\Gamma)=\mathbb{P}(\Gamma)\subseteq\mathbb{P}(\nabla) if Φ\Phi_{\nabla} is an isomorphism.

14.3. Coordinate changes

For projective toric varieties ()=TV(Σ)\mathbb{P}(\nabla)=\operatorname{TV}(\Sigma) with Σ=𝒩()\Sigma=\mathcal{N}(\nabla), there are three sorts of coordinates hanging around. First, for every uMu\in M, the element χu[M]\chi^{u}\in\mathbb{C}[M] is a rational function on TV(Σ)\operatorname{TV}(\Sigma). Second, in (10.1) we have seen that TV(Σ)=(Σ(1)V(B(Σ)))/G\operatorname{TV}(\Sigma)=\big{(}\mathbb{C}^{\Sigma(1)}\setminus V(B(\Sigma)\big{)})/G with G=ker(()Σ(1)T)G=\ker\big{(}(\mathbb{C}^{*})^{\Sigma(1)}\to T\big{)}. This leads to the “Cox coordinates” yay_{a} for aΣ(1)a\in\Sigma(1). Finally, in (14.1) and (14.2) we have seen the projective coordinates zuz_{u} for uMu\in\nabla\cap M. What does the relation between these coordinates χu\chi^{u}, yay_{a}, and zuz_{u} look like?
First, if u,uMu,u^{\prime}\in\nabla\cap M, then zu/zu=χuuz_{u}/z_{u^{\prime}}=\chi^{u-u^{\prime}}. In particular, if uu^{\prime} is the vertex corresponding to σΣ\sigma\in\Sigma, i.e. if σ=𝒩(u,)\sigma=\mathcal{N}(u^{\prime},\nabla), then χuu[σM]\chi^{u-u^{\prime}}\in\mathbb{C}[\sigma^{\scriptscriptstyle\vee}\cap M] is a regular function on the open subset TV(σ)TV(Σ)\operatorname{TV}(\sigma)\subseteq\operatorname{TV}(\Sigma). If uMu\in\nabla\cap M, then the associated effective divisor (u)|𝒪TV()()|\nabla(u)\in|{\mathcal{O}}_{\operatorname{TV}(\nabla)}(\nabla)| equals (u)=div(χu)+div()=aΣ(1)(a,umina,)\nabla(u)=\operatorname{div}(\chi^{u})+\operatorname{div}(\nabla)=\sum_{a\in\Sigma(1)}\big{(}\langle a,u\rangle-\min\langle a,\nabla\rangle\big{)}. Hence, the two sets of homogeneous coordinates compare via

zu=aΣ(1)yaa,umina,.z_{u}=\prod_{a\in\Sigma(1)}y_{a}^{\langle a,u\rangle-\min\langle a,\nabla\rangle}.

Note that shifting \nabla without moving uu accordingly does change the exponents. They just measure the lattice distance of uu from the facets of \nabla. Finally, since the rational functions χu\chi^{u} are quotients of zz_{\scriptstyle\bullet} coordinates, one obtains that

χu=aΣ(1)yaa,u.\chi^{u}=\prod_{a\in\Sigma(1)}y_{a}^{\langle a,u\rangle}.

This product is invariant under the GG-action.

14.4. Divisorial polytopes

In (14.1) and (14.2) we have seen that polarized toric varieties correspond to lattice polyhedra. This can be generalized to complete complexity-one TT-varieties if we replace lattice polyhedra with so-called divisorial polytopes:

Definition 62.

Let YY be a smooth projective curve. A divisorial polytope Ψ\Psi on YY consists of a lattice polytope M\Box\subset M_{\mathbb{Q}} and a piecewise affine concave function (cf. Definition 34)

Ψ=ΨPP:DivY,\Psi=\sum\Psi_{P}\otimes P:\Box\to\operatorname{{Div_{\mathbb{Q}}}}Y,

such that

  1. (1)

    For uu in the interior of \Box, degΨ(u)>0\deg\Psi(u)>0 ;

  2. (2)

    For any vertex uu of \Box with degΨ(u)=0\deg\Psi(u)=0, Ψ(u)\Psi(u) is trivial;

  3. (3)

    For all PYP\in Y, the graph of ΨP\Psi_{P} is integral, i.e. has its vertices in M×M\times\mathbb{Z}.

We construct a polarized TT-variety from Ψ\Psi in a roundabout manner. For vNv\in N_{\mathbb{Q}} and any point PYP\in Y, set ΨP(v)=minu(v,uΨP(u))\Psi_{P}^{*}(v)=\min_{u\in\Box}(\langle v,u\rangle-\Psi_{P}(u)); this gives us a collection of piecewise affine concave functions on NN_{\mathbb{Q}}. Now let 𝒮P\mathcal{S}_{P} be the polyhedral subdivision of NN_{\mathbb{Q}} induced by ΨP\Psi_{P}^{*} and take 𝒮=𝒮PP\mathcal{S}=\sum\mathcal{S}_{P}\otimes P. Furthermore, let \mathcal{M} be the subset of tail(𝒮)\operatorname{tail}(\mathcal{S}) consisting of those σtail(𝒮)\sigma\in\operatorname{tail}(\mathcal{S}) such that (degΨ)|Fσ0(\deg\circ\Psi)|_{F_{\sigma}}\equiv 0, where FσF_{\sigma}\prec\Box is the face where ,v\langle\cdot,v\rangle takes its minimum for all vσv\in\sigma.

As in remark 21, the sum of slices 𝒮\mathcal{S} together with markings \mathcal{M} determines a TT-variety XΨX_{\Psi}. Furthermore, Ψ=(ΨP)PY\Psi^{*}=(\Psi_{P}^{*})_{P\in Y} is a divisorial support function determining an ample Cartier divisor on XΨX_{\Psi} as in (7.4) such that (Ψ,Ψ)=(Ψ,)(\Psi^{**},\Box_{\Psi^{*}})=(\Psi,\Box).

Theorem 63 ([IS], Theorem 3.2).

The mapping

Ψ(XΨ,𝒪(DΨ))\Psi\mapsto(X_{\Psi},\mathcal{O}(D_{\Psi^{*}}))

gives a correspondence between divisorial polytopes and pairs of complete complexity-one TT-varieties with an invariant ample line bundle.

14.5. Constructing divisorial polytopes

Given a polarized toric variety XX determined by some lattice polytope M~\nabla\subset{\widetilde{M}}_{\mathbb{Q}}, and given some action of a codimension-one subtorus TT, one may ask what the corresponding divisorial polytope looks like. A downgrading procedure similar to that of (4.2) yields the answer: the inclusion of the subtorus TT in the big torus once again gives an exact sequence

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M~\widetilde{M}p\scriptstyle{p}M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

where MM is the character lattice of TT. We again choose a section s:MM~s:M\hookrightarrow\widetilde{M} of pp. The downgrade of \nabla is then the divisorial polytope Ψ:p()=:Div1\Psi:p(\nabla)=:\Box\to\operatorname{{Div_{\mathbb{Q}}}}\mathbb{P}^{1}, where for uu\in\Box,

Ψ0(u)=max(p1(u)s(u))\displaystyle\Psi_{0}(u)=\max(p^{-1}(u)-s(u))
Ψ(u)=min(p1(u)s(u)).\displaystyle\Psi_{\infty}(u)=\min(p^{-1}(u)-s(u)).

The corresponding variety XΨX_{\Psi} is canonically isomorphic to XX as a polarized TT-variety.

Figure 13. \nabla for a toric Fano threefold, cf. Example 64.
[gridwidth=0.3pt,griddots=5,subgriddiv=1,gridlabels=5pt](-2,-2)(2,2)
(a) \Box
11111111000
(b) Ψ0\Psi_{0}
00011111111
(c) Ψ\Psi_{\infty}
Figure 14. A downgraded divisorial polytope, cf. Example 64.
Example 64.

Consider the polytope

=conv{(1,1,1),(1,0,1),(0,1,1),(0,0,1),\displaystyle\nabla=\operatorname{conv}\big{\{}(-1,-1,-1),(-1,0,-1),(0,-1,-1),(0,0,-1),
(1,1,0),(1,0,0),(0,1,0),(0,1,0)(1,0,0),(1,1,0)\displaystyle(-1,-1,0),(-1,0,0),(0,-1,0),(0,1,0)(1,0,0),(1,1,0)
(0,0,1),(0,1,1),(1,0,1),(1,1,1)}\displaystyle(0,0,1),(0,1,1),(1,0,1),(1,1,1)\big{\}}

pictured in Figure 13. Then ()\mathbb{P}(\nabla) is a toric Fano threefold. We now consider the subtorus action corresponding to the projection 32\mathbb{Z}^{3}\to\mathbb{Z}^{2} onto the first two factors. Using the above downgrading procedure we get a divisorial polytope Ψ:Div1\Psi:\Box\to\operatorname{Div}_{\mathbb{Q}}\mathbb{P}^{1}, where \Box is the hexagon pictured in Figure 14(a), and Ψ0\Psi_{0} and Ψ\Psi_{\infty} are the piecewise affine functions with domains of linearity and values as pictured in Figure 14(b) and (c).

14.6. Divisorial polytopes and the Proj\operatorname{Proj} construction

Similar to the toric case, we can construct a projective variety directly from Ψ\Psi:

(Ψ):=Proj(SymuMΓ(Y,𝒪(Ψ(u)))χu).\mathbb{P}(\Psi):=\operatorname{Proj}\left(\textrm{Sym}^{\bullet}\bigoplus_{u\in\Box\cap M}\Gamma\left(Y,\mathcal{O}(\Psi(u))\right)\chi^{u}\right).

Although the torus TT acts on (Ψ)\mathbb{P}(\Psi), this action will in general not be effective.

Note that the relationship between (Ψ)\mathbb{P}(\Psi) and XΨX_{\Psi} is similar to that between ()\mathbb{P}(\nabla) and TV(𝒩())\operatorname{TV}(\mathcal{N}(\nabla)) for a lattice polytope \nabla, see [IS, Section 4]. Indeed, the ample divisor DΨD_{\Psi^{*}} on XΨX_{\Psi} determines a dominant rational map ΦΨ:XΨ(Ψ)\Phi_{\Psi}:X_{\Psi}\dashrightarrow\mathbb{P}(\Psi). ΦΨ\Phi_{\Psi} is a regular morphism if DΨD_{\Psi^{*}} is globally generated, which is in particular the case if Y=1Y=\mathbb{P}^{1}. Furthermore, assuming that ΦΨ\Phi_{\Psi} is regular, ΦΨ\Phi_{\Psi} is the normalization map if it is birational. A sufficient condition for ΦΨ\Phi_{\Psi} to be birational is that Ψ(u)\Psi(u) is very ample for some uMu\in\Box\cap M, and the set

{uM|dimΓ(Y,𝒪(Ψ(u)))>0}\{u\in\Box\cap M\ |\ \dim\Gamma(Y,{\mathcal{O}}(\Psi(u)))>0\}

generates the lattice MM.

14.7. The moment map

Consider an action of a torus TT on k\mathbb{P}^{k} given by weights uiMu_{i}\in M, i.e.

t.(x0::xk)=(tu0x0::tukxk).t.(x_{0}:\ldots:x_{k})=(t^{u_{0}}x_{0}:\ldots:t^{u_{k}}x_{k}).

Then a moment map for this action is given by

𝔪:n\displaystyle\mathfrak{m}:\mathbb{P}^{n} M\displaystyle\to M_{\mathbb{R}}
(x0::xn)\displaystyle(x_{0}:\ldots:x_{n}) 1|xi|2|xi|2ui.\displaystyle\mapsto\frac{1}{\sum|x_{i}|^{2}}\cdot\sum|x_{i}|^{2}u_{i}.

If XX is any TT-invariant subvariety ι:Xn\iota:X\hookrightarrow\mathbb{P}^{n}; then a moment map μ\mu for XX is given by the composition μ=𝔪ι\mu=\mathfrak{m}\circ\iota. In particular, if ι\iota is given by sections s0,,sks_{0},\ldots,s_{k} of some very ample line bundle \mathcal{L} on XX, then we have

μ:X\displaystyle\mu:X M\displaystyle\to M_{\mathbb{R}}
x\displaystyle x 1|si(x)|2|si(x)|2ui.\displaystyle\mapsto\frac{1}{\sum|s_{i}(x)|^{2}}\cdot\sum|s_{i}(x)|^{2}u_{i}.

The image of this map is a rational polytope called the moment polytope. By the theorem of Atiyah, Guillemin, and Sternberg, this polytope is the convex hull of the images of the points of XX fixed by TT, see [GS82].

If XX is toric, and \mathcal{L} corresponds to some lattice polytope M\nabla\subset M_{\mathbb{Q}}, then μ(X)=\mu(X)=\nabla, see for example [Ful93], section 4.2. This can be easily seen by considering the images of the TT-fixed points. Indeed, here the weights uiu_{i} are simply the elements of M\nabla\cap M, and the torus fixed points correspond to vertices of \nabla. Setting ρj(x):=|sj(x)|2/(|si(x)|2)\rho_{j}(x):=|s_{j}(x)|^{2}/(\sum|s_{i}(x)|^{2}), one can show that ρj(x)=0\rho_{j}(x)=0 unless xx corresponds to uju_{j}.

On the other hand, if X=XΨX=X_{\Psi} for some divisorial polytope Ψ\Psi and =𝒪(DΨ)\mathcal{L}=\mathcal{O}(D_{\Psi^{*}}), then μ(X)=\mu(X)=\Box. Indeed, let p:X~Xp:\widetilde{X}\to X resolve the indeterminacies of the rational quotient map XYX\to Y to a regular map π:X~Y\pi:\widetilde{X}\to Y. Then the fixed points of X~\widetilde{X} in the fiber π1(P)\pi^{-1}(P) correspond exactly to the vertices of the graph of ΨP\Psi_{P}. By locally upgrading X~\widetilde{X} to a toric variety in a formal neighborhood of π1(P)\pi^{-1}(P), we get that ρj(x)=0\rho_{j}(x)=0 for a fixed point xx unless it corresponds to a vertex of weight uju_{j}, in which case ρj(x)\rho_{j}(x) might be non-zero. Since the fixed points of X~\widetilde{X} map surjectively onto the fixed points of XX, the claim follows.

We can also easily determine the momentum polytopes of the individual components of each fiber π1(P)\pi^{-1}(P). A component ZZ of π1(P)\pi^{-1}(P) corresponds to a facet τ\tau of the graph of ΨP\Psi_{P}, and the fixed points of ZZ correspond exactly to the vertices of τ\tau. By arguments similar to above, μ(Z)\mu(Z) is nothing other than the projection of τ\tau to \Box. Thus, the subdivision of \Box induced by the linearity regions of ΨP\Psi_{P} reflects the structure of the irreducible components of π1(P)\pi^{-1}(P). This is similar to the situation presented in [Kap93, (1.2)] for Grassmannians, which is addressed in more generality in [Hu05].

Example 65.

Consider the divisorial polytope Ψ\Psi from Example 64. Then the moment polytope of XΨX_{\Psi} is the hexagon of Figure 14(a). Furthermore, we can see the fibers of XΨ1X_{\Psi}\mapsto\mathbb{P}^{1}. The general fiber is the toric del Pezzo surface of degree six corresponding to the aforementioned hexagon, whereas the fibers over 0 and \infty each consist of three intersecting copies of 1×1\mathbb{P}^{1}\times\mathbb{P}^{1} as can be seen from the subdivisions in Figures 14(a) and 14(b).

15. Toric intersection theory

15.1. Simplicial toric varieties

Let X=TV(Σ)X=\operatorname{TV}(\Sigma) be a kk-dimensional, complete toric variety induced from a simplicial fan. Thus, XX has at most abelian quotient singularities and one can define (rational) intersection numbers among kk divisors. This intersection product is uniquely determined by exploiting the following basic rules:

  1. (i)

    If, with the notation as in (2.1), σ=a1,,ak\sigma=\langle a^{1},\ldots,a^{k}\rangle is a full-dimensional cone of Σ\Sigma, then (orb¯a1orb¯ak)=1/vol(σ)(\overline{\operatorname{orb}}\,{a^{1}}\cdot\ldots\cdot\overline{\operatorname{orb}}\,{a^{k}})=1/\operatorname{vol}(\sigma) with vol(σ):=det(a1,,ak)\operatorname{vol}(\sigma):=\det(a^{1},\ldots,a^{k}).

  2. (ii)

    If a1,,aka^{1},\ldots,a^{k} (not necessarily distinct) are not contained in a common cone of Σ\Sigma, then (orb¯a1orb¯ak)=0(\overline{\operatorname{orb}}\,{a^{1}}\cdot\ldots\cdot\overline{\operatorname{orb}}\,{a^{k}})=0.

  3. (iii)

    The intersection product factors via the relation aΣ(1)aorb¯(a)0\sum_{a\in\Sigma(1)}a\otimes\overline{\operatorname{orb}}(a)\sim 0 of linear equivalence from (7.1).

Example 66.

In the case of a smooth, complete toric surface TV(Σ)\operatorname{TV}(\Sigma) with Σ(1)={a1,a2,}\Sigma(1)=\{a^{1},a^{2},\dots\}, one always has relations of the sort ai1biai+ai+1=0a^{i-1}-b_{i}\,a^{i}+a^{i+1}=0 between adjacent generators. This leads to the self intersection numbers (orb¯(ai))2=bi(\overline{\operatorname{orb}}(a^{i}))^{2}=-b_{i}. In particular, if 2~2\widetilde{\mathbb{C}^{2}}\to\mathbb{C}^{2} is the blowup of the origin given by the fan Σ\Sigma with Σ(1)={(1,0),(1,1),(0,1)}\Sigma(1)=\{(1,0),(1,1),(0,1)\}, then, despite the fact that it is not complete, one sees that (E2)=1(E^{2})=-1 with E:=orb¯(1,1)E:=\overline{\operatorname{orb}}\,(1,1).

Let us assume that a0=(1,0)a^{0}=(-1,0), ai=(pi,qi)a^{i}=(p_{i},q_{i}), with aia_{i} being numbered counterclockwise. Now, one can prove by induction that the self-intersection numbers bi-b_{i} and the generators aia_{i} are related by the following continued fraction formula

[b1,,bi]:=b11b21=qipi, with 0<pi<qi and pipi(mod qi).[b_{1},\ldots,b_{i}]:=b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots}}=\frac{q_{i}}{p_{i}^{\prime}},\quad\text{ with }0<p_{i}^{\prime}<q_{i}\text{ and }p_{i}^{\prime}\equiv p_{i}\,(\text{mod }q_{i}).

15.2. Intersecting with Cartier divisors

For general, i.e. non-simplicial toric varieties, intersection numbers as in (15.1) do not make sense. However, one can always intersect cycles with Cartier divisors.
Let M\nabla\subseteq M_{\mathbb{Q}} be a lattice polyhedron and Σ:=𝒩()\Sigma:=\mathcal{N}(\nabla). Then, every face Γ\Gamma\leq\nabla gives rise to two different geometric objects. First, in (7.1) we have constructed the Cartier divisor div(Γ)\operatorname{div}(\Gamma) on the toric variety TV(𝒩(Γ))\operatorname{TV}(\mathcal{N}(\Gamma)). Afterwards, in (14.2), we have defined the cycle orb¯(Γ)TV(Σ)\overline{\operatorname{orb}}(\Gamma)\subset\operatorname{TV}(\Sigma). Note that, in accordance with (6.1), this cycle equals TV(𝒩(Γ))\operatorname{TV}(\mathcal{N}(\Gamma)). Now, the fundamental but trivial observation in intersecting TT-invariant cycles with Cartier divisors is

div()orb¯(Γ)=div(Γ).\operatorname{div}(\nabla)\cdot\overline{\operatorname{orb}}(\Gamma)=\operatorname{div}(\Gamma).
Proof.

According to (6.1), this formula is obtained by noting first that the vertices of \nabla corresponding to cones στ:=𝒩(Γ,)\sigma\geq\tau:=\mathcal{N}(\Gamma,\nabla) are exactly those from Γ\Gamma. Then, one restricts the corresponding monomials by shifting Γ\Gamma into the abelian subgroup MΓ:=ΓΓM_{\Gamma}:=\Gamma-\Gamma. This shift makes it possible to understand the above formula as a relation between divisor classes. ∎

The projective way of expressing the formula for div()\operatorname{div}(\nabla) from the end of (7.3) is

div()=Γdist(0,Γ)orb¯(Γ)\operatorname{div}(\nabla)=\sum_{\Gamma}\operatorname{dist}(0,\Gamma)\cdot\overline{\operatorname{orb}}(\Gamma)

where Γ\Gamma runs through the codimension-one faces (“facets”) of \nabla and dist(0,Γ)\operatorname{dist}(0,\Gamma) denotes the oriented (positive, if 00\in\nabla) lattice distance of the origin to the affine hyperplane containing Γ\Gamma.

Example 67.

Let \nabla be the polyhedron from (14.1) describing the blowup 2~2\widetilde{\mathbb{C}^{2}}\to\mathbb{C}^{2} of the origin. Denoting the unique compact edge by ee, we have that div()=orb¯(e)=E\operatorname{div}(\nabla)=-\overline{\operatorname{orb}}(e)=-E since 00\notin\nabla. Thus, (E2)=div()orb¯(e)=div(e)(E^{2})=-\operatorname{div}(\nabla)\cdot\overline{\operatorname{orb}}(e)=\operatorname{div}(e) and the latter describes the ample divisor class of degree one, i.e. a point, on (e)=1\mathbb{P}(e)=\mathbb{P}^{1}.

Corollary 68.

(div()k)=vol()k!(\operatorname{div}(\nabla)^{k})=\operatorname{vol}(\nabla)\cdot k!.

Proof.

We proceed by induction.

(div()k)=(div()k1)Γdist(0,Γ)orb¯(Γ)=Γdist(0,Γ)(div(Γ)k1)=Γdist(0,Γ)vol(Γ)(k1)!=kvol()(k1)!.\begin{array}[]{rcl}(\operatorname{div}(\nabla)^{k})&=&(\operatorname{div}(\nabla)^{k-1})\cdot\sum_{\Gamma}\operatorname{dist}(0,\Gamma)\cdot\overline{\operatorname{orb}}(\Gamma)\\ &=&\sum_{\Gamma}\operatorname{dist}(0,\Gamma)\cdot(\operatorname{div}(\Gamma)^{k-1})\\ &=&\sum_{\Gamma}\operatorname{dist}(0,\Gamma)\cdot\operatorname{vol}(\Gamma)\cdot(k-1)!\;=\;k\cdot\operatorname{vol}(\nabla)\cdot(k-1)!\;.\end{array}\vskip-15.0694pt

15.3. A result for complexity-one TT-varieties

We already know from (14.4) that polytopes have to be replaced by divisorial polytopes when proceeding from toric varieties to complexity-one TT-varieties. To do intersection theory on a complete complexity-one TT-variety TV(𝒮)\operatorname{TV}(\mathcal{S}) we thus have to come up with a natural extension of the volume function.

Definition 69.

For a function h:DivYh^{*}:\Box\rightarrow\operatorname{Div}_{\mathbb{Q}}Y we define its volume to be

volh:=PhPvolM.\operatorname{vol}h^{*}:=\sum_{P}\int_{\Box}h^{*}_{P}\operatorname{vol}_{M_{\mathbb{R}}}\,.

We associate a mixed volume to functions h1,,hkh^{*}_{1},\ldots,h^{*}_{k} by setting

V(h1,,hk):=i=1k(1)i11j1jikvol(hj1++hji).V(h^{*}_{1},\ldots,h^{*}_{k}):=\sum_{i=1}^{k}(-1)^{i-1}\hskip-8.61108pt\sum_{1\leq j_{1}\leq\ldots j_{i}\leq k}\hskip-8.61108pt\operatorname{vol}(h^{*}_{j_{1}}+\cdots+h^{*}_{j_{i}})\,.
Proposition 70 ([PS], Proposition 3.31).

Let 𝒮\mathcal{S} be a complete f-divisor on the curve YY and let DhD_{h} be a semiample Cartier divisor on TV(𝒮)\operatorname{TV}(\mathcal{S}). Setting n:=dimTV(𝒮)n:=\dim\operatorname{TV}(\mathcal{S}), the top self-intersection number of DhD_{h} is given by

(Dh)n=n!volh.(D_{h})^{n}=n!\operatorname{vol}h^{*}.

Moreover, assuming that h1,,hnh_{1},\ldots,h_{n} define semiample Cartier divisors DhiD_{h_{i}}, we have that

(Dh1Dhn)=n!V(h1,,hn).(D_{h_{1}}\cdots D_{h_{n}})=n!\,V(h^{*}_{1},\ldots,h^{*}_{n}).

This assertion follows from the fact that (Dh)n(D_{h})^{n} is equal to limkn!kndimΓ(kDh)\lim_{k\to\infty}\frac{n!}{k^{n}}\dim\Gamma(kD_{h}) and the explicit description of the global sections from (9.2). Note that this statement is a special instance of [Tim00, Theorem 8].

15.4. Intersection graphs for smooth \mathbb{C}^{*}-surfaces

Let 𝒮=P𝒮PP\mathcal{S}=\sum_{P}\mathcal{S}_{P}\otimes P together with 𝔡𝔢𝔤=\mathfrak{deg}=\emptyset be a complete f-divisor in the lattice N=N=\mathbb{Z} on a curve YY of genus gg. Let {P1,,Pr}\{P_{1},\ldots,P_{r}\} be the support of 𝒮\mathcal{S} and 𝒮i:=𝒮Pi\mathcal{S}_{i}:=\mathcal{S}_{P_{i}}. In this situation we also write 𝒮=P𝒮PP=i=1r𝒮iPi\mathcal{S}=\sum_{P}\mathcal{S}_{P}\otimes P=\sum_{i=1}^{r}\mathcal{S}_{i}\otimes P_{i}.

The slices 𝒮i\mathcal{S}_{i} are complete subdivisions of \mathbb{Q} into bounded and half-bounded intervals. This data gives rise to a \mathbb{C}^{*}-surface X=TV(𝒮)X=\operatorname{TV}(\mathcal{S}). Here, we only consider the case of smooth surfaces (for a criterion on smoothness see (12.2)). Since we assume that 𝔡𝔢𝔤=\mathfrak{deg}=\emptyset, TV~(𝒮)=TV(𝒮)\operatorname{\widetilde{TV}}(\mathcal{S})=\operatorname{TV}(\mathcal{S}). By the results on invariant prime divisors from (6.3), we will find two horizontal prime divisors on XX, one for each ray in the tail fan {0,0,0}\{\mathbb{Q}_{\leq 0},0,\mathbb{Q}_{\geq 0}\}. In the case of a \mathbb{C}^{*}-surface a horizontal prime divisor is simply a curve consisting of fixed points. Moreover, these curves turn out to be isomorphic to YY; we will denote them by F+F_{+} and FF_{-}. In addition to these curves we get vertical prime divisors corresponding to boundary points pijqij𝒮i\frac{p_{ij}}{q_{ij}}\in\mathcal{S}_{i}, i=1,,ri=1,\ldots,r and j=1,,nij=1,\ldots,n_{i}. Here we assume, that vi(j+1):=pi(j+1)qi(j+1)>pijqij=:vijv_{i(j+1)}:=\frac{p_{i(j+1)}}{q_{i(j+1)}}>\frac{p_{ij}}{q_{ij}}=:v_{ij}. These curves are closures of maximal orbits of the \mathbb{C}^{*}-action, and we will denote them by DijD_{ij}.

Now, similar to the observations in [LS], it turns out that in a neighbourhood of Di1,,DiriD_{i1},\ldots,D_{ir_{i}}, XX is locally formally isomorphic to the toric surface spanned by the rays (1,0),(pi1,qi1),,(pini,qini),(1,0)(-1,0),(p_{i1},q_{i1}),\ldots,(p_{in_{i}},q_{in_{i}}),(1,0) in a neighbourhood of the invariant prime divisors. In particular, the mutual intersection behaviour of the Di1,,DiniD_{i1},\ldots,D_{in_{i}} is exactly the same as that of the invariant divisors of the toric surface. Hence, two curves DijD_{ij} and DlmD_{lm} intersect (transversely) exactly when i=li=l and |mj|=1|m-j|=1. A curve DijD_{ij} intersects F+F^{+} if and only if pijqij\frac{p_{ij}}{q_{ij}} is a maximal boundary point and it intersects FF_{-} if and only if it is a minimal boundary point, i.e. j=1j=1. In addition, we obtain the self-intersection number

c=(F)2=((F+div(χ1))F)=((ivi1Di1)F)=ivi1c_{-}=(F_{-})^{2}=((F_{-}+\operatorname{div}(\chi^{1}))\cdot F_{-})=((\sum_{i}v_{i1}D_{i1})\cdot F_{-})=\sum_{i}v_{i1}

and similarly

c+=(F+)2=ivini.c_{+}=(F_{+})^{2}=-\sum_{i}v_{in_{i}}.

By the considerations in Example 66, the self-intersection numbers bji=(Dij)2b_{j}^{i}=-(D_{ij})^{2} can be related to the boundary points vij=pijqijv_{ij}=\frac{p_{ij}}{q_{ij}} using the formulae

qi1=1,[b1i,,b(j1)i]:=b1i1b2i1=qijpij.q_{i1}=1,\quad[b_{1}^{i},\ldots,b_{(j-1)}^{i}]:=b_{1}^{i}-\frac{1}{b_{2}^{i}-\frac{1}{\ddots}}=\frac{q_{ij}}{p_{ij}^{\prime}}.

Hence, we obtain an intersection graph of the following form

b11\scriptstyle{{-b^{1}_{1_{\ }}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}b21\scriptstyle{{-b^{1}_{2_{\ }}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}bn11\scriptstyle{{-b^{1}_{n_{1}}}}F\scriptstyle{F^{-}} c\;c_{-} [g][g] \scriptstyle{\vdots}\scriptstyle{\vdots}\scriptstyle{\vdots} c+\;c_{+} [g][g] F+\scriptstyle{F^{+}}b1r\scriptstyle{{-b_{1_{\ }}^{r}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}b2r\scriptstyle{{-b_{2_{\ }}^{r}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}bnrr\scriptstyle{{-b_{n_{r}}^{r}}}

By Orlik and Wagreich [OW77], these graphs correspond to deformation classes of \mathbb{C}^{*}-surfaces with two curves of consisting of fixed points. We indeed obtain families of surfaces having these intersection graphs by varying YY together with the point configuration P1,,PrP_{1},\ldots,P_{r} and by adding algebraic families of degree zero divisors to 𝒮\mathcal{S}.

We can also reverse the procedure to obtain an f-divisor out of an intersection graph. Choose any integral vi1=pi1v_{i1}=p_{i1} satisfying ivi1=c\sum_{i}v_{i1}=c_{-}. The remaining vijv_{ij} are then determined by the bjib_{j}^{i} via the above continued fractions. Choosing any genus gg curve YY and pairwise different points P1,,PrYP_{1},\ldots,P_{r}\in Y then determines an f-divisor. The open choices of the YY, of P1,,PrYP_{1},\ldots,P_{r}\in Y, and of particular vi1v_{i1} reflect the fact that the intersection graph only determines the topological type of XX.

Remark 71.

The Neron-Severi group of a \mathbb{C}^{*}-surface is generated by the the curves F±,Dij,D0F^{\pm},D_{ij},D_{0}. Here the curve D0D_{0} corresponds to the vertex of a trivial coefficient of 𝒮\mathcal{S} and its intersection behaviour is given by D02=0D_{0}^{2}=0, D0F±=1D_{0}\cdot F^{\pm}=1 and D0Dij=0D_{0}\cdot D_{ij}=0. The matrix of the intersection form is encoded by our graph and by the intersection behaviour of D0D_{0}. The relations between the generators are given as the kernel of this matrix. Now Section 8 provides a representative of the canonical class

K=F+FijDij+(r+2g2)D0.K=-F^{+}-F^{-}-\sum_{ij}D_{ij}+(r+2g-2)\cdot D_{0}.
Remark 72.

In order to obtain arbitrary \mathbb{C}^{*}-surfaces, Orlik and Wagreich considered a so-called canonical equivariant resolution of the surface. This resolution is always of the above type. In our notation this is the same as considering the minimal resolution of TV~(𝒮)\operatorname{\widetilde{TV}}(\mathcal{S}) for an arbitrary \mathbb{C}^{*}-surface given as TV(𝒮)\operatorname{TV}(\mathcal{S}).

Recall from the downgrade procedure in Section 4.2 that TV(𝒮)\operatorname{TV}(\mathcal{S}) is toric if Y=1Y=\mathbb{P}^{1} and the support of 𝒮\mathcal{S} consists of at most two points (i.e. (Y,supp(𝒟))(Y,\operatorname{supp}(\mathcal{D})) is a toric pair). By the above, such an f-divisor corresponds to a circular intersection graph with g=0g=0.

16. Deformations

16.1. Deformations of affine toric varieties

An equivariant deformation of a TT-variety XX is a TT-equivariant pullback diagram

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒳\textstyle{\mathcal{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}S\textstyle{S}

where π\pi is a flat map. The torus TT acts on XX, 𝒳\mathcal{X}, and SS, and the TT-action on the total space 𝒳\mathcal{X} induces the given action on the special fiber X=π1(0)X=\pi^{-1}(0).

A deformation of XX over [ε]/(ε2)\mathbb{C}[\varepsilon]/(\varepsilon^{2}) such that TT acts on ε\varepsilon with weight rMr\in M is called homogeneous of degree r-r. This induces an MM-grading on the module TX1T^{1}_{X} of first order deformations. We fix now some primitive degree rMr\in M, along with a cosection s:NNr:=Nrs^{*}\colon N\to N_{r}:=N\cap r^{\perp}. Non-primitive degrees can also be handled at the cost of more complex notation.

Consider now an affine toric variety X=TV(σ)X=\operatorname{TV}(\sigma). Using the toric description of ΩX\Omega_{X} [Dan78], σ\sigma determines a complex that allows one to compute TX1(r)T^{1}_{X}(-r) and, if XX is non-singular in codimension 2, TX2(r)T^{2}_{X}(-r) [Alt94, Alt97a].

TX1(r)T^{1}_{X}(-r) may also be described as a vector space of Minkowski summands of the polyhedron σr:=s(σ{r=1})\sigma_{r}:=s^{*}(\sigma\cap\{r=1\}): the set of scalar multiples of Minkowski summands of a polyhedron Δ\Delta forms a cone C(Δ)C(\Delta), with Grothendieck group V(Δ):=C(Δ)C(Δ)V(\Delta):=C(\Delta)-C(\Delta). For example, if Δ\Delta is a parallelogram, C(Δ)C(\Delta) is two-dimensional, spanned by the edges of Δ\Delta. Then TX1(r)T^{1}_{X}(-r) may be described by augmenting V(σr)V(\sigma_{r}) with information about possible non-lattice vertices of σr\sigma_{r} [Alt00, Theorem 2.5].

Definition 73.

A Minkowski decomposition of a polyhedron Δ\Delta is a Minkowski sum Δ=Δi\Delta=\sum\Delta_{i} of polyhedra Δi\Delta_{i} with common tailcone. It is admissible if for each face of Δ\Delta, at most one of the corresponding faces face(Δi,u)\operatorname{face}(\Delta_{i},u) does not contain lattice points.

For degrees rσr\in\sigma^{\scriptscriptstyle\vee}, admissible decompositions σr=Δ0++Δl\sigma_{r}=\Delta_{0}+\dotsm+\Delta_{l} allow one to construct toric deformations, where 𝒳\mathcal{X} is a toric variety and the embedding X𝒳X\hookrightarrow\mathcal{X} is a morphism of toric varieties. Similarly to the Cayley cone in (12.2), we define the cone σ~\widetilde{\sigma} in N~:=Nrl+1\widetilde{N}:=N_{r}\oplus\mathbb{Z}^{l+1} generated by Δi×{ei}\Delta_{i}\times\{e_{i}\}, 0il0\leq i\leq l. Taking 𝒳=TV(σ~)\mathcal{X}=\operatorname{TV}(\widetilde{\sigma}), the binomials χ[0,ei]χ[0,e0]\chi^{[0,e^{i}]}-\chi^{[0,e^{0}]} define a map π:𝒳l\pi\colon\mathcal{X}\to\mathbb{C}^{l}.

Theorem 74 ([Alt00, Theorem 3.2]).
  1. (1)

    𝒳l\mathcal{X}\to\mathbb{C}^{l} is a toric deformation of XX.

  2. (2)

    The corresponding Kodaira-Spencer map lTX1(r)\mathbb{C}^{l}\to T^{1}_{X}(-r) maps eie_{i} to the class of the Minkowski summand ΔiC(σr)V(σr)\Delta_{i}\in C(\sigma_{r})\subset V(\sigma_{r}).

Example 75.

We consider deformations of the cone over the rational normal curve from Example 1 with r=[0,1]r=[0,1]. The non-trivial Minkowski decompositions of σr=conv{(12,1),(12,1)}\sigma_{r}=\operatorname{conv}\{(-\frac{1}{2},1),(\frac{1}{2},1)\} correspond to the decompositions of the interval [12,12]=[12,0]+[0,12]={12}+[0,1][-\frac{1}{2},\frac{1}{2}]=[-\frac{1}{2},0]+[0,\frac{1}{2}]=\{-\frac{1}{2}\}+[0,1]. For the first decomposition, we get the cones (generated by the columns of)

σ~\displaystyle\widetilde{\sigma} =(12001211000011)\displaystyle=\begin{pmatrix}-\frac{1}{2}&0&0&\frac{1}{2}\\ 1&1&0&0\\ 0&0&1&1\end{pmatrix} σ~\displaystyle\widetilde{\sigma}^{\scriptscriptstyle\vee} =(200200111100),\displaystyle=\begin{pmatrix}-2&0&0&2\\ 0&0&1&1\\ 1&1&0&0\end{pmatrix},

with Hilbert basis E={[e,0,1]2e0}{[e,1,0]0e2}E=\{[e,0,1]\mid-2\leq e\leq 0\}\cup\{[e,1,0]\mid 0\leq e\leq 2\}. The equations for TV(σ~)\operatorname{TV}(\widetilde{\sigma}) and those corresponding to the second decomposition are

rank(y0y1y2y3y1y2y3y4)\displaystyle\operatorname{rank}\begin{pmatrix}y_{0}&y_{1}&y_{2}^{\prime}&y_{3}\\ y_{1}&y_{2}&y_{3}&y_{4}\end{pmatrix} 1\displaystyle\leq 1 rank(y0y1y2y1y2y3y2y3y4)\displaystyle\operatorname{rank}\begin{pmatrix}y_{0}&y_{1}&y_{2}\\ y_{1}&y_{2}^{\prime}&y_{3}\\ y_{2}&y_{3}&y_{4}\end{pmatrix} 1.\displaystyle\leq 1.

yielding two one-parameter deformations with deformation parameters s=y2y2s=y_{2}-y_{2}^{\prime} of degree rr. These two one-parameter deformations generate T1(r)T^{1}(-r). This is in fact Pinkham’s famous example of a singularity whose versal base space consists of two irreducible components; we see curves from both components via the above toric deformations.

[r=1]\scriptstyle[r=1]
(a) σr\sigma_{r}
1\scriptscriptstyle-10\scriptscriptstyle 01\scriptscriptstyle 1==1\scriptscriptstyle-10\scriptscriptstyle 01\scriptscriptstyle 1++1\scriptscriptstyle-10\scriptscriptstyle 01\scriptscriptstyle 1==1\scriptscriptstyle-10\scriptscriptstyle 01\scriptscriptstyle 1++1\scriptscriptstyle-10\scriptscriptstyle 01\scriptscriptstyle 1
(b) Two decompositions.
Figure 15. Toric deformations of the cone over the rational normal curve.

This construction may be generalized to degrees rσr\not\in\sigma^{\scriptscriptstyle\vee} by deforming the toric variety associated with τ=σ{r0}\tau=\sigma\cap\{r\geq 0\} [Alt00], but the total spaces are no longer toric. The resulting families arise naturally in the language of polyhedral divisors as explained in (16.2), or by Mavlyutov’s approach using Cox rings [Mav].

It is even possible to describe the homogeneous parts of the versal deformation if XX is non-singular in codimension 2. The universal Minkowski summand C~(σr)\widetilde{C}(\sigma_{r}) is a cone lying over C(σr)C(\sigma_{r}). The associated map of toric varieties TV(C~(σr))TV(C(σr))\operatorname{TV}(\widetilde{C}(\sigma_{r}))\to\operatorname{TV}(C(\sigma_{r})) allows one to obtain a family 𝒳¯\mathcal{X}\to\overline{\mathcal{M}}, where the scheme ¯\overline{\mathcal{M}} is determined by C(σr)V(σr)C(\sigma_{r})\subset V(\sigma_{r}).

Theorem 76 ([Alt97b],[AK]).

𝒳¯\mathcal{X}\to\overline{\mathcal{M}} is the versal deformation of XX in degree r-r. If XX is an isolated Gorenstein singularity, then T1T^{1} is concentrated in the Gorenstein degree r0r_{0}, so 𝒳\mathcal{X} is the versal deformation.

16.2. Equivariant deformations of affine TT-varieties

Suppose now that XX is some affine TT-variety. By restricting the torus action to the subtorus Tr:=ker(r:T)T_{r}:=\ker(r\colon T\to\mathbb{C}^{*}), the study of deformations in degree rr may be reduced to the study of invariant deformations of the TrT_{r}-variety XX.

Thus, in the following, we replace TT by TrT_{r}, and consider equivariant deformations in degree r=0r=0. In particular, the torus TT acts trivially on the base, and acts on every fiber. Such families may be described by families of polyhedral divisors: the total space 𝒳\mathcal{X} over BB corresponds to a p-divisor \mathcal{E} on ZBZ\to B that restricts to p-divisors s=|Zs\mathcal{E}_{s}=\mathcal{E}_{|Z_{s}} with 𝒳s=TV(s)\mathcal{X}_{s}=\operatorname{TV}(\mathcal{E}_{s}). See Figure 16 for a simple example.

Note that when two prime divisors on ZZ restrict to the same prime divisor on a fiber ZsZ_{s}, their polyhedral coefficients are added via Minkowski summation. If we wish to fix some central fiber X=TV(𝒟)X=\operatorname{TV}(\mathcal{D}), we may obtain invariant deformations of XX in two ways. First of all, we may simply move prime divisors on the base of YY. Secondly, for more interesting deformations, we may split up some of the polyhedral coefficients into Minkowski sums. Requiring that XX is the fiber 𝒳0\mathcal{X}_{0} implies that these Minkowski decompositions must be admissible.

Concretely, we say that a deformation of (Y,{Di})(Y,\{D_{i}\}) is a deformation ZBZ\to B of YY together with a collection of prime divisors {Ei,j}\{E_{i,j}\} such that no Ei,jE_{i,j} contains fibers of ZBZ\to B and such that each Ei,jE_{i,j} restricts to DiD_{i} in YY. Given lil_{i}-parameter Minkowski decompositions 𝒟Di=Δij\mathcal{D}_{D_{i}}=\sum\Delta_{i}^{j} of the coefficients 𝒟Di\mathcal{D}_{D_{i}}, we define a polyhedral divisor \mathcal{E} on ZZ by setting Ei,j=Δij\mathcal{E}_{E_{i,j}}=\Delta_{i}^{j}.

D01\scriptstyle D_{0}^{1}D00\scriptstyle D_{0}^{0}D\scriptstyle D_{\infty}0\scriptstyle 0t\scriptstyle t
(a) Z=1×𝔸1𝔸1Z=\mathbb{P}^{1}\times\mathbb{A}^{1}\to\mathbb{A}^{1}
t\scriptstyle\mathcal{E}_{t}𝒟=0\scriptstyle\mathcal{D}=\mathcal{E}_{0} Δ00\scriptstyle\Delta_{0}^{0}Δ01\scriptstyle\Delta_{0}^{1}Δ\scriptstyle\Delta_{\infty}Δ00+Δ01\scriptstyle\Delta_{0}^{0}+\Delta_{0}^{1}Δ\scriptstyle\Delta_{\infty}0\scriptstyle 0t\scriptstyle t\scriptstyle\infty
(b) Restrictions of \mathcal{E}.
Figure 16. One-parameter toric deformation as deformation of p-divisors.
Theorem 77 ([IVa, Section 2]).

If Y=1Y=\mathbb{P}^{1} and the given Minkowski decompositions are admissible, then there exists a deformation (Z,{Ei,j})(Z,\{E_{i,j}\}) of (Y,{Di})(Y,\{D_{i}\}), where ZZ is the trivial family over some open subset of l\mathbb{C}^{l}, l=lil=\sum l_{i}, such that \mathcal{E} is a p-divisor, and 𝒳=TV()l\mathcal{X}=\operatorname{TV}(\mathcal{E})\to\mathbb{C}^{l} is an invariant deformation of XX. The fibers of this family are TT-varieties TV(s)\operatorname{TV}(\mathcal{E}_{s}), where s\mathcal{E}_{s} is the restriction of \mathcal{E} to the fiber ZsZ_{s}.

Example 78.

Suppose X=TV(σ)X=\operatorname{TV}(\sigma) is toric, and consider some degree rr. By downgrading the torus action to the torus Tr=NrT_{r}=N_{r}\otimes\mathbb{C}^{*}, we obtain the p-divisor 𝒟=σr{0}+σr{}\mathcal{D}=\sigma_{r}\otimes\{0\}+\sigma_{-r}\otimes\{\infty\} on 1\mathbb{P}^{1}. A Minkowski decomposition of σr\sigma_{r} gives rise to an invariant deformation TV()\operatorname{TV}(\mathcal{E}) of the TrT_{r}-variety XX. This deformation is equal to the corresponding deformation obtained in (16.1), whether rσr\in\sigma^{\scriptscriptstyle\vee} or not. The case of a one-parameter deformation is illustrated in Figure 16. Note that σr=\sigma_{-r}=\emptyset if and only if rσr\not\in\sigma^{\scriptscriptstyle\vee}, so for rσr\in\sigma^{\scriptscriptstyle\vee}, DD_{\infty} has coefficient \emptyset, and \mathcal{E} is actually defined on 𝔸l+1\mathbb{A}^{l+1}.

In particular, the deformations of Example 75 are TrT_{r}-varieties with divisors

1=[12,0]D0+[0,12]D12=12D0+[0,1]D1{\begin{array}[b]{rcrcrcr}\mathcal{E}^{1}&=&[-\frac{1}{2},0]\otimes D^{0}&+&[0,\frac{1}{2}]\otimes D^{1}\\ \mathcal{E}^{2}&=&-\frac{1}{2}\otimes D^{0}&+&[0,1]\otimes D^{1}\end{array}}

on 𝔸2=Spec[x,s]\mathbb{A}^{2}=\operatorname{Spec}\mathbb{C}[x,s], with D0=V(x)D^{0}=V(x) and D1=V(sx)D^{1}=V(s-x). Here, ss is the deformation parameter.

16.3. Deformations of complete toric varieties

Consider now a rational complexity-one TT-variety XX defined by a set 𝒮\mathcal{S} of p-divisors as in section 4.4 on Y=1Y=\mathbb{P}^{1}. It is possible to construct invariant deformations of XX by constructing invariant deformations of TV(𝒟)\operatorname{TV}(\mathcal{D}) for all 𝒟𝒮\mathcal{D}\in\mathcal{S} subject to certain compatibility conditions, see [IVa, Section 4]. This construction can in particular be used to obtain deformations of non-affine toric varieties.

There is an especially nice result for the case of complete and smooth toric varieties. Let Σ\Sigma be a complete fan in NN_{\mathbb{Q}} describing a smooth toric variety XX, and let rr be as before. For any ray ρΣ(1)\rho\in\Sigma^{(1)} with ρ,r=1\langle\rho,r\rangle=1, let Γρ(r)\Gamma_{\rho}(-r) be the graph embedded in N{r=1}N_{\mathbb{Q}}\cap\{r=1\} with vertices consisting of rays τΣ(1)ρ\tau\in\Sigma^{(1)}\setminus\rho fulfilling τ,r>0\langle\tau,r\rangle>0. Two vertices τ1\tau_{1}, τ2\tau_{2} of Γρ(r)\Gamma_{\rho}(-r) are connected by an edge if they generate a cone in Σ\Sigma. After applying any cosection s:NNrs^{*}:N\to N_{r} mapping ρ\rho to the origin, we can consider Γρ(r)\Gamma_{\rho}(-r) to actually be embedded in NrN_{\mathbb{Q}}\cap r^{\perp}. Let Ω(r)\Omega(-r) denote the set of all rays ρ\rho of Σ\Sigma such that Γρ(r)\Gamma_{\rho}(-r) is not empty.

Theorem 79 ([Ilt11], Proposition 2.4).

There is an isomorphism

H1(X,𝒯X)(r)ρH0(Γρ(r),)/H^{1}(X,\mathcal{T}_{X})(-r)\cong\bigoplus_{\rho}H^{0}(\Gamma_{\rho}(-r),\mathbb{C})/\mathbb{C}

describing first-order infinitesimal deformations of XX.

Now fix some ρΩ(r)\rho\in\Omega(-r) and choose some connected component CC of Γρ(r)\Gamma_{\rho}(-r). For each σΣ\sigma\in\Sigma, define a Minkowski decomposition of σr\sigma_{r} via

σr={σr+tail(σr)σrC=tail(σr)+σrσrC.\displaystyle\sigma_{r}=\begin{cases}\sigma_{r}+\operatorname{tail}(\sigma_{r})&\sigma_{r}\cap C=\emptyset\\ \operatorname{tail}(\sigma_{r})+\sigma_{r}&\sigma_{r}\cap C\neq\emptyset.\\ \end{cases}
Theorem 80 ([IVa], Section 4).
  1. (1)

    The toric deformations of TV(σ)\operatorname{TV}(\sigma) for σΣ\sigma\in\Sigma constructed from the above decompositions of σr\sigma_{r} glue to an equivariant deformation π(C,ρ,r)\pi(C,\rho,r) of X=TV(Σ)X=\operatorname{TV}(\Sigma).

  2. (2)

    Letting CC range over all connected components of Γρ(r)\Gamma_{\rho}(-r), the images of the π(C,ρ,r)\pi(C,\rho,r) under the Kodaira-Spencer map span H0(Γρ(r),)/H^{0}(\Gamma_{\rho}(-r),\mathbb{C})/\mathbb{C}.

Example 81.

We consider the fourth Hirzebruch surface 4=Proj1(𝒪𝒪(4))\mathcal{F}_{4}=\operatorname{Proj}_{\mathbb{P}^{1}}(\mathcal{O}\oplus\mathcal{O}(4)). This is a toric variety, and a fan Σ\Sigma with TV(Σ)=4\operatorname{TV}(\Sigma)=\mathcal{F}_{4} is pictured in Figure 17(a). Considering r=[0,1]r=[0,1] and ρ\rho the ray through (0,1)(0,1), we get that Γρ(r)\Gamma_{\rho}(-r) consists of two points. Thus, dimT41(r)=1\dim T_{\mathcal{F}_{4}}^{1}(-r)=1. A one-parameter deformation spanning this part of T41T_{\mathcal{F}_{4}}^{1} can be constructed from the Minkowski decomposition pictured in Figure 17(b); the lines {Δ0}\{\Delta^{0}\} and {Δ1}\{\Delta^{1}\} picture the 0th and 11st summands dilated by a factor of two. This Minkowski decomposition comes from choosing the connected component C={1/3}C=\{-1/3\} of Γρ(r)\Gamma_{\rho}(-r).

Note that the general fiber of this deformation is the second Hirzebruch surface 2=Proj1(𝒪𝒪(2))\mathcal{F}_{2}=\operatorname{Proj}_{\mathbb{P}^{1}}(\mathcal{O}\oplus\mathcal{O}(2)). Indeed, the general fiber is given by a collection of p-divisors on 1\mathbb{P}^{1} with slices {Δ0}\{\Delta^{0}\} and {Δ1}\{\Delta^{1}\}. Performing a toric upgrade yields the fan in Figure 17(c), which is a fan for 2\mathcal{F}_{2}.

In these lattice coordinates, T41T_{\mathcal{F}_{4}}^{1} also has one dimensional components in degrees [1,1]-[1,1] and [2,1]-[2,1]. The general fibers of the corresponding homogeneous deformations are 1×1\mathbb{P}^{1}\times\mathbb{P}^{1} and 2\mathcal{F}_{2}, respectively.

[gridwidth=0.3pt,griddots=5,subgriddiv=1,gridlabels=5pt,gridlabelcolor=white](-1,-1)(1,3) [r=1][r=1]ρ\rho
(a) Fan for 4\mathcal{F}_{4}.
{Δ0}\{\Delta^{0}\}{Δ1}\{\Delta^{1}\}Σ[r=1]\Sigma\cap[r=1]13-\frac{1}{3}0011
(b) A Minkowski decomposition.
[gridwidth=0.3pt,griddots=5,subgriddiv=1,gridlabels=5pt,gridlabelcolor=white](-1,-1)(1,3)
(c) Fan for 2\mathcal{F}_{2}.
Figure 17. Deforming 4\mathcal{F}_{4} to 2\mathcal{F}_{2}.

17. Related constructions

17.1. A non-toric view on p-divisors

We return to the setting of (2.3) and consider affine TT-varieties. Let us assume that 𝒟=iΔiZi\mathcal{D}=\sum_{i}\Delta_{i}\otimes Z_{i} is a p-divisor on YY. Note that, in contrast to (2.3), we have symmetrized the notation of the tensor factors, i.e. ΔiPol+(N,σ)\Delta_{i}\in\operatorname{Pol}^{+}_{\mathbb{Q}}(N,\sigma) and ZiCaDiv0(Y)Z_{i}\in\operatorname{CaDiv}_{\geq 0}(Y). In the current section, we moreover adopt another convention differing from (2.3). Setting Y:=Loc(𝒟)Y:=\operatorname{Loc}(\mathcal{D}), this variety is no longer complete. Nevertheless, it is projective over Y0:=SpecΓ(Y,𝒪Y)Y_{0}:=\operatorname{Spec}\Gamma(Y,{\mathcal{O}}_{Y}). Thus, we can now assume that the polyhedra Δi\Delta_{i} are non-empty.
If Δ:=iΔi\Delta:=\sum_{i}\Delta_{i} (which equals deg𝒟\deg\mathcal{D} from (5.1) if YY is a complete curve), then 𝒩(Δ)\mathcal{N}(\Delta) is a fan in MM_{\mathbb{Q}} which refines the polyhedral cone σ\sigma^{\scriptscriptstyle\vee}. Note that we usually would not construct a toric variety from these data since the fan is given in the “wrong” space MM_{\mathbb{Q}} instead of NN_{\mathbb{Q}}. However, we make an exception here and define

W:=(Δ)=TV(𝒩(Δ))TV(σ)=:W0.W:=\mathbb{P}(\Delta)=\operatorname{TV}(\mathcal{N}(\Delta))\longrightarrow\operatorname{TV}(\sigma^{\scriptscriptstyle\vee})=:W_{0}.

This is a projective map, and the polyhedra Δi\Delta_{i} can be interpreted as semiample divisors EiE_{i} on WW. Thus, 𝒟=iEiZi\mathcal{D}=\sum_{i}E_{i}\otimes Z_{i} becomes a “double divisor”, i.e. an element of CaDiv(W)CaDiv(Y)\operatorname{CaDiv}_{\mathbb{Q}}(W)\otimes_{\mathbb{Z}}\operatorname{CaDiv}_{\mathbb{Q}}(Y).

17.2. Symmetrizing equivalences between p-divisors

The equivalence relations on p-divisors mentioned just before Theorem 4 in (2.3) can also be expressed in the symmetric language of (17.1). First, the operation of pulling back 𝒟\mathcal{D} via a modification φ:YY\varphi:Y^{\prime}\to Y can be contrasted with pulling back 𝒟\mathcal{D} via a toric modification ψ:WW\psi:W^{\prime}\to W. The latter corresponds to giving a subdivision of the fan 𝒩(Δ)\mathcal{N}(\Delta); both EiE_{i} and ψEi\psi^{*}E_{i} correspond to the same polyhedron Δi\Delta_{i}.
Second, let us recall from (2.3) the notion of a principal polyhedral divisor (a+σ)div(f)(a+\sigma)\otimes\operatorname{div}(f) with aNa\in N and f(Y)f\in\mathbb{C}(Y)^{*}. In our new setting it is equal to div(χa)div(f)\operatorname{div}(\chi^{-a})\otimes\operatorname{div}(f), i.e. the latter can be understood as a “double principal divisor”.

17.3. Interpreting evaluations

Recall from (2.3) that elements uMu\in M were associated to an evaluation 𝒟(u)=iminΔi,uZiCaDiv(Y)\mathcal{D}(u)=\sum_{i}\min\langle\Delta_{i},u\rangle\cdot Z_{i}\in\operatorname{CaDiv}_{\mathbb{Q}}(Y). To interpret this construction within the language of (17.1), we have to understand the former characters uu of TT as germs of curves in WW, i.e. as maps u:(,0)Wu:(\mathbb{C},0)\to W. Note that the scalar minΔi,u\min\langle\Delta_{i},u\rangle equals the multiplicity of uEiu^{*}E_{i} at the origin or, likewise, the intersection number (Eiu𝒪1)(E_{i}\cdot u_{*}\mathcal{O}_{\mathbb{C}^{1}}) in WW. Hence, the sheaf 𝒪Y(𝒟)\mathcal{O}_{Y}(\mathcal{D}) on YY corresponds to i(Ei𝒰)Di\sum_{i}(E_{i}\cdot\mathcal{U})D_{i} where 𝒰:=uu𝒪1\mathcal{U}:=\oplus_{u}\,u_{\ast}{\mathcal{O}}_{\mathbb{C}^{1}} is a quasi-coherent sheaf on WW with one-dimensional support.

The idea behind the preceding construction is that TV~(𝒟)Y\operatorname{\widetilde{TV}}(\mathcal{D})\to Y looks like a fibration which becomes degenerate over each divisor ZiYZ_{i}\subset Y, and the polyhedron Δi\Delta_{i} tells us what the degeneration looks like. Translating these polyhedra into divisors EiE_{i} on a toric variety WW is linked to the fact that the fibers of TV~(𝒟)Y\operatorname{\widetilde{TV}}(\mathcal{D})\to Y are also toric. We hope that this might serve as a general pattern to describe degenerate fibrations of a certain type in a much broader context. We conclude this section with a construction pointing into this direction.

17.4. Abelian Galois covers of 1\mathbb{P}^{1}

Let AA be a finite, abelian group. Every divisor 𝒟DivA01:=ADiv01\mathcal{D}\in\operatorname{Div}_{A}^{0}\mathbb{P}^{1}:=A\otimes_{\mathbb{Z}}\operatorname{Div}^{0}\mathbb{P}^{1} of degree 0 can then be understood as a linear map ADiv/01A^{*}\to\operatorname{Div}^{0}_{\mathbb{Q}/\mathbb{Z}}\mathbb{P}^{1}, u𝒟(u)u\mapsto\mathcal{D}(u) where A:=Hom(A,/)A^{*}:=\mbox{\rm Hom}(A,\mathbb{Q}/\mathbb{Z}) denotes the dual group. Choosing arbitrary lifts DuDiv01D_{u}\in\operatorname{Div}^{0}_{\mathbb{Q}}\mathbb{P}^{1} and, afterwards, rational functions fu,v=fv,u(1)f_{u,v}=f_{v,u}\in\mathbb{C}(\mathbb{P}^{1}) which satisfy

Du+Dv+div(fu,v)=Du+v,D_{u}+D_{v}+\operatorname{div}(f_{u,v})=D_{u+v},

we may, after possibly correcting the functions fuvf_{uv} by suitable constants, assume that fu,v+wfv,w=fu,vfu+v,wf_{u,v+w}\,f_{v,w}=f_{u,v}\,f_{u+v,w}. Then we can define a multiplication via

𝒪1(Du)𝒪1(Dv)𝒪1(Du+v)fgfgfu,v1\begin{array}[]{ccc}{\mathcal{O}}_{\mathbb{P}^{1}}(D_{u})\otimes{\mathcal{O}}_{\mathbb{P}^{1}}(D_{v})&\longrightarrow&{\mathcal{O}}_{\mathbb{P}^{1}}(D_{u+v})\\ f\hskip 6.00006pt\otimes\hskip 6.00006ptg&\mapsto&fg\,f_{u,v}^{-1}\end{array}

which provides the sheaf

𝒪(𝒟):=uA𝒪1(Du).{\mathcal{O}}(\mathcal{D}):=\bigoplus_{u\in A^{*}}{\mathcal{O}}_{\mathbb{P}^{1}}(D_{u}).

with an associative and commutative 𝒪1{\mathcal{O}}_{\mathbb{P}^{1}}-algebra structure. Up to isomorphism, the latter does not depend on the choices we have made. Finally, the Galois covering associated to 𝒟\mathcal{D} is defined as the relative spectrum C(𝒟):=Spec1𝒪(𝒟)C(\mathcal{D}):=\operatorname{Spec}_{\mathbb{P}^{1}}{\mathcal{O}}(\mathcal{D}).

Proposition 82 ([AP, Theorem 3.2]).

The relative spectrum C(𝒟)C(\mathcal{D}) yields a Galois covering π:C(𝒟)1\pi:C(\mathcal{D})\to\mathbb{P}^{1} whose ramification points are contained in supp𝒟\operatorname{supp}\mathcal{D}. The ramification index of PCP\in C equals the order of the 𝒟\mathcal{D}-coefficient of π(P)\pi(P) inside AA.

Example 83.

If DDiv1D\in\operatorname{Div}_{\mathbb{Z}}\mathbb{P}^{1} is an effective divisor with n|degDn|\deg D, then the associated well-known cyclic nn-fold covering of 1\mathbb{P}^{1} is given, via the above recipe, by understanding DD as an element of Div/n01\operatorname{Div}^{0}_{\mathbb{Z}/n\mathbb{Z}}\mathbb{P}^{1}.

References

  • [AH03] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions, extended version. arXiv:math/0306285v1, 2003.
  • [AH06] Klaus Altmann and Jürgen Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334:557–607, 2006.
  • [AH08] Klaus Altmann and Georg Hein. A fansy divisor on M¯0,n\overline{M}_{0,n}. J. Pure Appl. Algebra, 212(4):840–850, 2008.
  • [AHS08] Klaus Altmann, Jürgen Hausen, and Hendrik Süß. Gluing affine torus actions via divisorial fans. Transformation Groups, 13(2):215–242, 2008.
  • [AK] Klaus Altmann and Lars Kastner. Negative deformations of toric singularities that are smooth in codimension 2. Unpublished manuscript.
  • [AL] I. Arzhantsev and A. Liendo. Polyhedral divisors and SL_2\_2-actions on affine T-varieties. arXiv:math/1105.4494.
  • [Alt94] Klaus Altmann. Computation of the vector space T1T^{1} for affine toric varieties. J. Pure Appl. Algebra, 95(3):239–259, 1994.
  • [Alt97a] Klaus Altmann. Infinitesimal deformations and obstructions for toric singularities. J. Pure Appl. Algebra, 119(3):211–235, 1997.
  • [Alt97b] Klaus Altmann. The versal deformation of an isolated toric Gorenstein singularity. Invent. Math., 128(3):443–479, 1997.
  • [Alt00] Klaus Altmann. One parameter families containing three dimensional toric Gorenstein singularities. Corti, Alessio (ed.) et al., Explicit birational geometry of 3-folds. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 281, 21-50 (2000)., 2000.
  • [AP] Klaus Altmann and Lars Petersen. Cox rings of rational complexity one T-varieties. arXiv:1009.0478v1.
  • [AW] Klaus Altmann and Jarosław Wiśniewski. P-Divisors of Cox rings. arXiv:0911.5167, to appear in Mich. Math.J.
  • [Bat94] Victor V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom., 3(3):493–535, 1994.
  • [BCS05] Lev A. Borisov, Linda Chen, and Gregory G. Smith. The orbifold Chow ring of toric Deligne-Mumford stacks. J. Am. Math. Soc., 18(1):193–215, 2005.
  • [Cox95] D. A. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geometry, 4(1):17–50, 1995.
  • [Dan78] V. I. Danilov. The geometry of toric varieties. Russ. Math. Surv., 33(2):97–154, 1978.
  • [Dan91] V.I. Danilov. De Rham complex on toroidal variety. Lect. Notes Math. 1479, 26-38., 1991.
  • [Dem70] Michel Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup., 3(4):507–588, 1970.
  • [Ful93] William Fulton. Introduction to Toric Varieties. Annals of Mathematical Studies. Princeton University Press, Princeton, 1993.
  • [FZ03] Hubert Flenner and Mikhail Zaidenberg. Normal affine surfaces with \mathbb{C}^{*}-actions. Osaka J. Math., 40(4):981–1009, 2003.
  • [Gro63] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math., (17):91, 1963.
  • [GS82] V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. Invent. Math., 67(3):491–513, 1982.
  • [Har77] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1977.
  • [HI] Andreas Hochenegger and Nathan Owen Ilten. Families of invariant divisors on rational complexity-one TT-varieties. arXiv:0906.4292v3.
  • [HK00] Yi Hu and Sean Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000.
  • [HS10] Jürgen Hausen and Hendrik Süß. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977–1012, 2010.
  • [Hu05] Yi Hu. Topological aspects of Chow quotients. J. Differential Geom., 69(3):399–440, 2005.
  • [Ilt11] Nathan Owen Ilten. Deformations of smooth toric surfaces. Manuscripta Math., 134(1):123–137, 2011.
  • [IS] Nathan Owen Ilten and Hendrik Süß. Polarized complexity-one TT-varieties. arXiv:0910.5919v1 to appear in Mich. Math. J.
  • [IS10] Nathan Owen Ilten and Hendrik Süß. Algebraic geometry codes from polyhedral divisors. J. Symb. Comput., 45(7):734–756, 2010.
  • [IVa] Nathan Owen Ilten and Robert Vollmert. Deformations of rational TT-varieties. arXiv:0903.1393v3 to appear in J. Algebr. Geom.
  • [IVb] Nathan Owen Ilten and Robert Vollmert. Upgrading and downgrading torus actions. arXiv:1103.4010v1.
  • [Kap93] M. M. Kapranov. Chow quotients of Grassmannians. I. In I. M. Gelfand Seminar, volume 16 of Adv. Soviet Math., pages 29–110. Amer. Math. Soc., Providence, RI, 1993.
  • [KKMSD73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal Embeddings I. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1973.
  • [Liea] Alvaro Liendo. Affine T-varieties of complexity one and locally nilpotent derivations. arXiv:0812.0802v2.
  • [Lieb] Alvaro Liendo. 𝔾a\mathbb{G}_{\textnormal{a}}-actions of fiber type on affine T-varieties. arXiv:0911.1110v1.
  • [Liec] Alvaro Liendo. Roots of the affine Cremona group. arXiv:1010.4034v1.
  • [LS] Alvaro Liendo and Hendrik Süß. Normal singularities with torus actions. arXiv:1005.2462v2.
  • [Mav] Anvar Mavlyutov. Deformations of toric varieties via Minkowski sum decompositions of polyhedral complexes. arXiv:0902.0967v3.
  • [Oda88] Tadao Oda. Convex bodies and algebraic geometry, volume 15. Springer, Berlin, 1988.
  • [OW77] P. Orlik and P. Wagreich. Algebraic surfaces with k*-action. Acta Math., 138:43–81, 1977.
  • [Pet10] Lars Petersen. Line Bundles on TT-Varieties and Beyond. PhD thesis, Freie Universität Berlin, 2010.
  • [Pin74] Henry Pinkham. Deformations of algebraic varieties with GmG_{m} action. Astérisque, 20:1–131, 1974.
  • [Pin77] Henry Pinkham. Normal surface singularities with 𝐂\mathbf{C}^{*} action. Math. Ann., 227:183–193, 1977.
  • [Pin78] Henry Pinkham. Deformations of normal surface singularities with 𝐂\mathbf{C}^{*} action. Math. Ann., 232:65–84, 1978.
  • [PS] Lars Petersen and Hendrik Süß. Torus invariant divisors. arXiv:0811.0517v3.
  • [Süß] Hendrik Süß. Canonical divisors on TT-varieties. arXiv:0811.0626v2.
  • [Tev07] Jenia Tevelev. Compactifications of subvarieties of tori. Am. J. Math., 129(4):1087–1104, 2007.
  • [Tim97] Dmitri Timashev. Classification of GG-varieties of complexity 1. Izv. Math., 61(2):363–397, 1997.
  • [Tim00] Dmitri Timashev. Cartier divisors and geometry of normal GG-varieties. Transform. Groups, 5(2):181–204, 2000.
  • [Tim08] Dmitri Timashev. Torus actions of complexity one. Harada, Megumi (ed.) et al., Toric topology. International conference, Osaka, Japan, May 28–June 3, 2006. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 460, 349-364 (2008)., 2008.
  • [Var76] A.N. Varchenko. Zeta-function of monodromy and Newton’s diagram. Invent. Math., 37:253–262, 1976.
  • [Vol10] Robert Vollmert. Toroidal embeddings and polyhedral divisors. Int. J. Algebra, 4(5-8):383–388, 2010.