This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The global stability of the Kaluza–Klein spacetime

Cécile Huneau École Polytechnique & CNRS cecile.huneau@polytechnique.edu Annalaura Stingo École Polytechnique annalaura.stingo@polytechnique.edu  and  Zoe Wyatt King’s College London zoe.wyatt@kcl.ac.uk
Abstract.

In this paper we show the classical global stability of the flat Kaluza–Klein spacetime, which corresponds to Minkowski spacetime in 1+4\mathbb{R}^{1+4} with one direction compactified on a circle. We consider small perturbations which are allowed to vary in all directions including the compact direction. These perturbations lead to the creation of massless modes and Klein–Gordon modes. On the analytic side, this leads to a PDE system coupling wave equations to an infinite sequence of Klein–Gordon equations with different masses. The techniques we use are based purely in physical space using the vectorfield method.

1. Introduction

The goal of the present article is to prove the global stability of the Kaluza–Klein spacetime for the Einstein vacuum equations

(1.1) Rμν[g]=0R_{\mu\nu}[g]=0

where RμνR_{\mu\nu} denotes the Ricci tensor of an unknown Lorentzian metric gg. The Kaluza–Klein spacetime is a solution of (1.1) on 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1} and consists of a Lorentzian metric g¯\overline{g}, given in the standard coordinates (t,x)1+3(t,x)\in{\mathbb{R}}^{1+3}, y𝕊1y\in{\mathbb{S}}^{1} by

g¯=(dt)2+𝒊=13(dx𝒊)2+(dy)2.\overline{g}=-(dt)^{2}+\sum_{{\bm{i}}=1}^{3}(dx^{\bm{i}})^{2}+(dy)^{2}.

The Einstein equations in this higher dimensional setting have, as in the standard 3+13+1 setting, a well-posed initial value formulation. The data consist of a triplet (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) where Σ0\Sigma_{0} is a 4-dimensional manifold diffeomorphic to 3×𝕊1{\mathbb{R}}^{3}\times{\mathbb{S}}^{1} equipped with a Riemannian metric g0g_{0} and K0K_{0} is a symmetric two-tensor. Solving (1.1) with initial data (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) means that one looks for a 5-dimensional manifold \mathscr{M} with a Lorentzian metric gg satisfying (1.1) and an embedding Σ0\Sigma_{0}\hookrightarrow\mathscr{M} such that g0g_{0} is the pullback of gg to Σ0\Sigma_{0} and K0K_{0} is the second fundamental form of Σ0\Sigma_{0}. The initial value problem is overdetermined and the data must satisfy the constraint equations111We use the Einstein summation convention over repeated indexes. Greek indexes run from 0 to 4 while Latin indexes run from 1 to 4. Bold Greek and Latin indexes run up to 3. We use the notation x0=tx^{0}=t and x4=yx^{4}=y so that μ=/xμ\partial_{\mu}=\partial/\partial x^{\mu} for μ=0,,4\mu=0,\dots,4 denotes any derivative along the coordinate axes.

R[g0]K0ijK0ij+K0iiK0jj=0,jK0ijiK0jj=0R[g_{0}]-K_{0}^{ij}{K_{0}}_{ij}+{K_{0}}_{i}^{i}{K_{0}}^{j}_{j}=0,\quad\nabla^{j}{K_{0}}_{ij}-\nabla_{i}{K_{0}}^{j}_{j}=0

where R[g0]R[g_{0}] is the scalar curvature of g0g_{0} and \nabla is the Levi-Civita connection of g0g_{0}. These equations simply come from the vanishing of the time components of the Einstein tensor

R0i=0,R0012Rg00=0.R_{0i}=0,\qquad R_{00}-\frac{1}{2}Rg_{00}=0.

In PDE terminology, the local well-posedness of the Einstein equations was proved in the seminal works of Choquet-Bruhat [8] and Choquet-Bruhat and Geroch [10], who show the existence and uniqueness (up to diffeomorphisms) of a maximal globally hyperbolic spacetime arising from any set of smooth initial data satisfying the constraint equations. This is a local result in the sense that it does not guarantee that the spacetime solution (,g)(\mathscr{M},g) is causally geodesically complete. We observe that their proofs, which are performed in a 4-dimensional setting, do not actually depend on the particular manifold \mathscr{M} considered (nor on its dimension, or whether or not it is compact or a product with compact factors) and therefore apply to the Kaluza–Klein setting. We also mention the recent work of the first author with Vâlcu [22] in which initial data for the Einstein equations on manifolds of the form 1+n×𝕋m{\mathbb{R}}^{1+n}\times\mathbb{T}^{m} are constructed.

The articles mentioned above constitute the starting point to investigate and prove the global stability of the flat metric g¯\overline{g}. An informal statement of our main result is the following

Theorem 1.1.

Let (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) be an arbitrary set of smooth asymptotically flat initial data satisfying the constraint equations, with Σ03×𝕊1\Sigma_{0}\cong{\mathbb{R}}^{3}\times{\mathbb{S}}^{1},

g0=((1+χ(r)M/r)I3001)+g01,(I3)𝒊𝒋=δ𝒊𝒋where g01ij=O(r1κ),K0ij=O(r2κ)as r=|x|,κ>0\begin{gathered}{g_{0}}=\begin{pmatrix}(1+\chi(r)M/r)I_{3}&0\\ 0&1\end{pmatrix}+{g_{0}^{1}},\quad(I_{3})_{{\bm{i}}{\bm{j}}}=\delta_{{\bm{i}}{\bm{j}}}\\ \text{where }{g_{0}^{1}}_{ij}=O(r^{-1-\kappa}),\ {K_{0}}_{ij}=O(r^{-2-\kappa})\ \text{as }r=|x|\rightarrow\infty,\ \kappa>0\end{gathered}

and such that g0δg_{0}-\delta and K0K_{0} satisfy global smallness assumptions. Then, there exists a causally geodesically complete spacetime asymptotically converging to the Kaluza–Klein spacetime.

In the above theorem, χ\chi is a cut-off function supported outside some ball centered at 0 and MM is a positive constant corresponding to the ADM mass. We refer to the work of Dai [12] on the positive mass theorem for manifolds including those of Kaluza–Klein type.

The global stability problem for the flat metric g¯\overline{g} can be cast into the form of a small data global existence problem for quasilinear wave equations. The Einstein equations can be written as a system of quasilinear wave equations for the unknown metric coefficients gαβg_{\alpha\beta} if one works with a standard gauge, called the harmonic or wave coordinate or De Donder gauge, in which the (harmonic) coordinates {xα}α=0,,4\{x^{\alpha}\}_{\alpha=0,\dots,4} are defined to be solutions of the geometric wave equation222gμνg^{\mu\nu} and g¯μν\overline{g}^{\mu\nu} denote respectively the coefficients of the inverse metric of gg and g¯\overline{g}. Unless differently specified, we lower and raise indexes using the metric g¯\overline{g}, i.e. for any tensor παβ\pi_{\alpha\beta} we define παβ:=g¯αμg¯βνπμν\pi^{\alpha\beta}:=\overline{g}^{\alpha\mu}\overline{g}^{\beta\nu}\pi_{\mu\nu}. gxα=gμνμνxα=0\Box_{g}x^{\alpha}=g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}x^{\alpha}=0, where \nabla denotes the Levi-Civita connection of gg. Relative to these coordinates the metric gg satisfies the so-called wave condition

(1.2) gαβgνμΓαβν=gαββgαμ12gαβμgαβ=0,μ=0,,4g^{\alpha\beta}g_{\nu\mu}\Gamma^{\nu}_{\alpha\beta}=g^{\alpha\beta}\partial_{\beta}g_{\alpha\mu}-\frac{1}{2}g^{\alpha\beta}\partial_{\mu}g_{\alpha\beta}=0,\quad\mu=0,\dots,4

under which the wave operator g\Box_{g} on functions coincides with the reduced wave operator ~g=gμνμν\tilde{\Box}_{g}=g^{\mu\nu}\partial_{\mu}\partial_{\nu}. In this gauge the equations (1.1) become

(1.3) ~ggαβ=F~αβ(g)(g,g)on 1+3×𝕊1\tilde{\Box}_{g}g_{\alpha\beta}=\tilde{F}_{\alpha\beta}(g)(\partial g,\partial g)\quad\text{on }{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}

where F~αβ(u)(v,v)\tilde{F}_{\alpha\beta}(u)(v,v) depends quadratically on vv. A straightforward computation shows that these source terms decompose into the sum of the following

P~(αg,βg)\displaystyle\tilde{P}(\partial_{\alpha}g,\partial_{\beta}g) :=14gμνgρσ(αgμνβgρσ2αgμρβgνσ)\displaystyle:=\frac{1}{4}g^{\mu\nu}g^{\rho\sigma}\left(\partial_{\alpha}g_{\mu\nu}\partial_{\beta}g_{\rho\sigma}-2\partial_{\alpha}g_{\mu\rho}\partial_{\beta}g_{\nu\sigma}\right)
Q~αβ(g,g)\displaystyle\tilde{Q}_{\alpha\beta}(\partial g,\partial g) :=gμνgρσμgρανgσβgμνgρσQμσ(gρα,gνβ)+gμνgρσQαμ(gνσ,gρβ)\displaystyle:=g^{\mu\nu}g^{\rho\sigma}\partial_{\mu}g_{\rho\alpha}\partial_{\nu}g_{\sigma\beta}-g^{\mu\nu}g^{\rho\sigma}Q_{\mu\sigma}(\partial g_{\rho\alpha},\partial g_{\nu\beta})+g^{\mu\nu}g^{\rho\sigma}Q_{\alpha\mu}(\partial g_{\nu\sigma},\partial g_{\rho\beta})
+gμνgρσQβμ(gνσ,gρα)+12gμνgρσQσα(gμν,gρβ)+12gμνgρσQσβ(gμν,gρα)\displaystyle\quad+g^{\mu\nu}g^{\rho\sigma}Q_{\beta\mu}(\partial g_{\nu\sigma},\partial g_{\rho\alpha})+\frac{1}{2}g^{\mu\nu}g^{\rho\sigma}Q_{\sigma\alpha}(\partial g_{\mu\nu},\partial g_{\rho\beta})+\frac{1}{2}g^{\mu\nu}g^{\rho\sigma}Q_{\sigma\beta}(\partial g_{\mu\nu},\partial g_{\rho\alpha})

where QμνQ_{\mu\nu} denotes the quadratic null form333The quadratic form Q0(ϕ,ψ)=g¯μνμϕνψQ_{0}(\partial\phi,\partial\psi)=\overline{g}^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\psi is also a null form.

Qμν(ϕ,ψ)=μϕνψνϕμψ.Q_{\mu\nu}(\partial\phi,\partial\psi)=\partial_{\mu}\phi\partial_{\nu}\psi-\partial_{\nu}\phi\partial_{\mu}\psi.

The initial conditions (gαβ|t=0,tgαβ|t=0)(g_{\alpha\beta}|_{t=0},\partial_{t}g_{\alpha\beta}|_{t=0}) for (1.3) are defined from (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) as follows

(1.4) gij|t=0=g0ij,g00|t=0=a2,g0i|t=0=gi0|t=0=0,\displaystyle g_{ij}|_{t=0}={g_{0}}_{ij},\qquad g_{00}|_{t=0}=-a^{2},\qquad g_{0i}|_{t=0}=g_{i0}|_{t=0}=0,
(tgij)|t=0=2aK0ij,(tg00)|t=0=2a3g0ijK0ij,\displaystyle(\partial_{t}g_{ij})|_{t=0}=-2a{K_{0}}_{ij},\qquad(\partial_{t}g_{00})|_{t=0}=2a^{3}g_{0}^{ij}{K_{0}}_{ij},
(tg0i)t=0=a2g0kllg0ki12a2g0klig0klaia\displaystyle(\partial_{t}g_{0i})_{t=0}=a^{2}g_{0}^{kl}\partial_{l}{g_{0}}_{ki}-\frac{1}{2}a^{2}g_{0}^{kl}\partial_{i}{g_{0}}_{kl}-a\partial_{i}a

where a2:=(1Mχ(r)r1)a^{2}:=(1-M\chi(r)r^{-1}) denotes the lapse function, so that they are compatible with the constraint equations and satisfy the wave condition. In particular the constraint equations yield a decay for gijg_{ij} of the form

g𝒊𝒋=(1+Mχ(r)r1)δ𝒊𝒋+O(r1κ),g44=1+O(r1κ)g_{{\bm{i}}{\bm{j}}}=\big{(}1+M\chi(r)r^{-1}\big{)}\delta_{{\bm{i}}{\bm{j}}}+O(r^{-1-\kappa}),\qquad g_{44}=1+O(r^{-1-\kappa})

The initial data for g00g_{00} and g0ig_{0i} are free and we set them as in (1.4), following what was done by Lindblad and Rodnianski in their work [40], for compatibility with the wave coordinates for Schwarzschild. The condition (tgij)|t=0=2aK0ij(\partial_{t}g_{ij})|_{t=0}=-2a{K_{0}}_{ij} is given so that K0K_{0} is the second fundamental form of Σ0\Sigma_{0}, i.e. K0(X,Y)=g|t=0(Xt,Y)K_{0}(X,Y)=-g|_{t=0}(\nabla_{X}\partial_{t},Y) for any vector fields X,YX,Y.

Any solution to the Einstein equations (1.1) with smooth data (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) satisfies (1.3)-(1.4) when written in harmonic coordinates. Conversely, any solution gαβg_{\alpha\beta} of (1.3)-(1.4) with initial data compatible with the constraint equations and satisfying the wave condition (1.2) will satisfy (1.2) for all times and hence gives rise to a solution of (1.1) with data (Σ0,g0,K0)(\Sigma_{0},g_{0},K_{0}) defined from (1.4). We refer to Ringström [49] for more details on the subject. From now on, we will then entirely focus on the formulation (1.3)-(1.4).

1.1. State of the art

There is a vast literature in general relativity concerning the stability of physical solutions to the Einstein equations. In the 4-dimensional setting, the global stability of the simplest solution, the Minkowski metric, was proved in a monumental work by Chistodoulou and Klainerman [11] and later revisited in the works of Lindblad and Rodnianski [39, 40] using the harmonic gauge. See also the results by Klainerman and Nicolò [32], Bieri and Zipser [5], Hintz and Vasy [20], Choquet-Bruhat, Chruściel and Loizelet [9] for Einstein-Maxwell systems and by Speck [50] for Einstein equations coupled to a family of nonlinear electromagnetic field equations.

Analogous global stability results have also been proved for other 4-dimensional coupled Einstein matter systems. Einsten-Klein–Gordon systems were investigated by LeFloch and Ma [37] in the case of restricted data coinciding with the Schwarzschild metric outside a compact set, and global stability was later proved by Ionescu and Pausader [25] in the case of unrestricted data. We also cite the works by Fajman, Joudioux and Smulevici [17] and Lindblad and Taylor [41] proving a global stability result for Einstein-Vlasov systems for a class of restricted data, and the result by Bigorgne, Fajman, Joudioux, Smulevici and Thaller [6] about the asymptotic stability of Minkowski spacetime with non-compactly supported massless Vlasov matter. There is also a very rich literature concerning the stability of other explicit 4-dimensional solutions to the Einstein equations, for instance the Kerr solution or solutions to the Einstein equations with positive cosmological constants, but it is not our purpose to list such references here.

Higher dimensional solutions of the Einstein equations, in particular spacetimes with additional compact directions 1+3×𝒦{\mathbb{R}}^{1+3}\times\mathscr{K}, have attracted substantial attention from the theoretical physics community throughout the past century. Theories of higher dimensional gravity are in fact of great interest in supergravity and string theory as possible models for quantum gravity and are possible candidates for providing a unified description of all the fundamental forces in nature (gravity, electromagnetism, weak force and strong force). A guiding philosophy of supergravity theories is that one should be able to recover 4-dimensional physics from higher-dimensional models, hence to perform some sort of dimensional reduction by assuming the extra directions to be compact.

The classical mathematical approach to the unification of general relativity with electromagnetism goes back to the works of physicists Kaluza [26] and Klein [34]. In their original works, one extra dimension is considered and the five spacetime dimensional gravity is compactified on a circle 𝕊R1{\mathbb{S}}^{1}_{R} of radius RR to obtain at low energies a 1+31+3 dimensional Einstein-Maxwell-Scalar field system. We will briefly discuss the reduction from the 5-dimensional to the 4-dimensional model in the next subsection.

In a seminal work by Witten [59] it was proved that the Kaluza–Klein spacetime g¯\overline{g} is unstable at the semiclassical level. However, classical global stability was conjectured to hold true and such a result was proved by the third author [60] for small perturbations that do not depend on the compact direction. The goal of this paper is to extend the result of [60] and to prove the global stability of g¯\overline{g} for more general perturbations that can a-priori depend also on the compact direction. We mention that a result analogous to [60] for cosmological Kaluza–Klein spacetimes, where the Minkowski spacetime is replaced by the 4-dimensional Milne spacetime, has also recently been shown by Branding, Fajman and Kröncke [7]. Furthermore global existence, without a restriction to 𝕊1{\mathbb{S}}^{1}-independent data, was shown on a quasilinear system of wave equations by the first two authors in [21] and on a semilinear wave equation on a cosmological Kaluza–Klein spacetime in [56]. In the context of higher-dimensional gravity we also cite a result by Ettinger [16] on the global well-posedness of a 11-dimensional, semilinear, gauge-invariant wave equation, and a global stability result by Andersson, Blue, Yau and the third author [2] for spacetimes with a supersymmetric compactification: that is, spacetimes (,g^)(\mathscr{M},\hat{g}) with =1+n×K\mathscr{M}={\mathbb{R}}^{1+n}\times K and g^=η1+n+k\hat{g}=\eta_{1+n}+k, where η1+n\eta_{1+n} is the (1+n)(1+n)-dimensional Minkowski metric and (K,k)(K,k) is a compact Riemannian manifold that admits a spin structure and a nonzero parallel spinor. Their proof uses the assumption n9n\geq 9 but the result is conjectured to hold true for n3n\geq 3.

1.2. The zero-mode truncation

The Einstein equations in harmonic coordinates reduce to (1.3), which is a system of wave equations on the product space 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}. Assuming for a moment that the compactifying circle 𝕊1{\mathbb{S}}^{1} is replaced by the circle 𝕊R1{\mathbb{S}}^{1}_{R} of radius R>0R>0, and by Fourier expanding the solution gg of (1.3) along the periodic coordinate

gαβ(t,x,y)=keikygαβk(t,x),g_{\alpha\beta}(t,x,y)=\sum_{k\in\mathbb{Z}}e^{iky}g^{k}_{\alpha\beta}(t,x),

it turns out that

(t2+Δx+y2)gαβ=keiky(t2+Δx(|k|/R)2)gαβk(-\partial^{2}_{t}+\Delta_{x}+\partial^{2}_{y})g_{\alpha\beta}=\sum_{k\in\mathbb{Z}}e^{iky}(-\partial^{2}_{t}+\Delta_{x}-(|k|/R)^{2})g^{k}_{\alpha\beta}

which shows that the zero-modes gαβ0g^{0}_{\alpha\beta} of the metric coefficients are massless waves while the non-zero modes gαβkg^{k}_{\alpha\beta} are massive (Klein–Gordon) waves with mass |k|/R|k|/R for k0k\neq 0. Equations (1.3) are hence equivalent to a system on 1+3{\mathbb{R}}^{1+3} which couples wave equations to an infinite sequence of Klein–Gordon equations with mass |k|/R|k|/R, k{0}k\in\mathbb{Z}\setminus\{0\}.

The heuristic physics argument, as explained by Pope in [48], to deal with this phenomenon is to assume the radius RR to be very small (a choice that would justify why we “don’t see” the additional dimensions) so that the masses |k|/R|k|/R are too large to be physically observable. The non-zero modes are then neglected and the solution is truncated to the massless mode, in other words one assumes that gαβ(t,x,y)=gαβ(t,x)g_{\alpha\beta}(t,x,y)=g_{\alpha\beta}(t,x) is independent of the yy coordinate.

Under the zero-mode truncation assumption, one can reduce the Kaluza–Klein model to a three-dimensional Einstein-Maxwell-scalar field system. As explained in[48], this is done using the following standard ansatz, in which the higher dimensional metric coefficients gαβg_{\alpha\beta} are expressed in terms of three-dimensional fields g^𝜶𝜷,ϕ,𝒜𝜶\hat{g}_{{\bm{\alpha}}{\bm{\beta}}},\phi,\mathscr{A}_{{\bm{\alpha}}} by

g𝜶𝜷=e2κϕg^𝜶𝜷+e2ρϕ𝒜𝜶𝒜𝜷,g𝜶4=e2ρϕ𝒜𝜶,g44=e2ρϕg_{{\bm{\alpha}}{\bm{\beta}}}=e^{2\kappa\phi}\hat{g}_{{\bm{\alpha}}{\bm{\beta}}}+e^{2\rho\phi}\mathscr{A}_{{\bm{\alpha}}}\mathscr{A}_{{\bm{\beta}}},\quad g_{{\bm{\alpha}}4}=e^{2\rho\phi}\mathscr{A}_{{\bm{\alpha}}},\quad g_{44}=e^{2\rho\phi}

where κ=12/12\kappa=\sqrt{12}/12 and ρ=2/12\rho=-2/\sqrt{12}. The Einstein vacuum equations (1.1) reduce then to the following minimally coupled (1+3)(1+3)-dimensional Einstein-Maxwell-Scalar field system

R𝜶𝜷=12𝜶ϕ𝜷ϕ+12e6κϕ(𝜶𝝁𝜷𝝁14𝝁𝝂𝝁𝝂g^𝜶𝜷)\displaystyle R_{{\bm{\alpha}}{\bm{\beta}}}=\frac{1}{2}\partial_{{\bm{\alpha}}}\phi\,\partial_{{\bm{\beta}}}\phi+\frac{1}{2}e^{-6\kappa\phi}\big{(}\mathscr{F}_{{\bm{\alpha}}{\bm{\mu}}}{\mathscr{F}_{{\bm{\beta}}}}^{{\bm{\mu}}}-\frac{1}{4}\mathscr{F}_{{\bm{\mu}}{\bm{\nu}}}\mathscr{F}^{{\bm{\mu}}{\bm{\nu}}}\hat{g}_{{\bm{\alpha}}{\bm{\beta}}}\big{)}
𝜶(e6κϕ𝜶𝜷)=0\displaystyle\nabla^{{\bm{\alpha}}}\big{(}e^{-6\kappa\phi}\mathscr{F}_{{\bm{\alpha}}{\bm{\beta}}}\big{)}=0
~g^ϕ=32κe6κϕ𝝁𝝂𝝁𝝂\displaystyle\tilde{\Box}_{\hat{g}}\phi=-\frac{3}{2}\kappa e^{-6\kappa\phi}\mathscr{F}_{{\bm{\mu}}{\bm{\nu}}}\mathscr{F}^{{\bm{\mu}}{\bm{\nu}}}

where 𝜶𝜷=𝜶𝒜𝜷𝜷𝒜𝜶\mathscr{F}_{{\bm{\alpha}}{\bm{\beta}}}=\partial_{\bm{\alpha}}\mathscr{A}_{\bm{\beta}}-\partial_{\bm{\beta}}\mathscr{A}_{\bm{\alpha}}. The above reduction can be also performed in higher dimensional settings where =1+3×𝕋d\mathscr{M}={\mathbb{R}}^{1+3}\times\mathbb{T}^{d}. In the Kaluza–Klein setting, this truncation to the zero mode is consistent in the sense that a solution to the above Einstein-Maxwell-Scalar field system will be a solution to the original vacuum Einstein equations in 5 dimensions.

The full global stability of the Kaluza–Klein spacetime to general perturbations, that may a-priori depend on the compact direction, involves studying solutions to a significantly more complicated PDE system than the simpler dynamics of the above Einstein-Maxwell-Scalar field system studied in [60]. This is the goal of the present article. We point out that we do not want to focus here on the dependence of the solution on the radius RR and, since there is no canonical choice of the radius RR, we set R=1R=1.

1.3. 4D Wave-Klein–Gordon systems

The dependence of the metric coefficients gαβg_{\alpha\beta} on the periodic coordinate yy and their Fourier decomposition along this direction reveal that system (1.3) is equivalent to a system coupling wave equations to an infinite sequence of Klein–Gordon equations with different masses. The new system is also quasilinear and the coupling between the wave and Klein–Gordon components of the solution is strong.

The study of systems coupling (a finite number of) wave and Klein–Gordon equations has attracted considerable interest from the mathematical community, especially in the past three decades. In terms of small data global well-posedness results in 1+31+3 spacetime dimensions we cite the initial results by Georgiev [19] and Katayama [27], followed by LeFloch and Ma [36], Wang [57, 58] and Ionescu and Pausader [24] who study such systems as a model for the full Einstein-Klein–Gordon equations, see [37] and [25]. In [36] and [57] global well-posedness is proved for compactly supported initial data and quadratic quasilinear nonlinearities that satisfy some suitable conditions, including the null condition of Klainerman [31] for self-interactions between the wave components of the solution. An idea used in these works is that of employing hyperbolic coordinates in the forward light cone; this was first introduced by Klainerman [29] for Klein–Gordon equations and Tataru in the wave context [52], and later reintroduced by LeFloch and Ma in [36] under the name of hyperboloidal foliation method. In [24] global regularity and scattering is proved in the case of small smooth initial data that decay at a suitable rate at infinity and nonlinearities that do not verify the null condition but present a particular resonant structure. We also cite the work by Dong and the third author [14], who prove global well-posedness for a quadratic semilinear interaction in which there are no derivatives on the massless wave component. Other related results are [4, 47, 53, 54, 55, 33, 13]. See also [42, 46, 44, 43, 51, 23, 15, 45] for results about wave-Klein–Gordon systems in lower dimensions, in particular a work by the second author [51] and a subsequent result in collaboration with Ifrim [23], which are the only ones where 2-dimensional strongly coupled quadratic wave-Klein–Gordon systems with small mildly decaying data are investigated. Advanced techniques, among which semiclassical microlocal analysis, para/pseudo-differential calculus, wave packets, modified quasilinear energies, are employed there to tackle a problem that is critical, quasilinear and very weakly dispersive.

A now-standard tool used in most of the aforementioned works is the vector field method. Linear wave and Klein–Gordon equations on 1+n{\mathbb{R}}^{1+n} are invariant under translations, Euclidean rotations and hyperbolic rotations (linear wave equations are also scale-invariant). These symmetries provide a family of admissible vector fields (in the common terminology they are also referred to as Killing vector fields of Minkowski spacetime),

μ,Ω𝒊𝒋=x𝒊𝒋x𝒋𝒊,Ω0𝒊=t𝒊+x𝒊t\partial_{\mu},\qquad\Omega_{{\bm{i}}{\bm{j}}}=x_{\bm{i}}\partial_{\bm{j}}-x_{\bm{j}}\partial_{\bm{i}},\qquad\Omega_{0{\bm{i}}}=t\partial_{\bm{i}}+x_{\bm{i}}\partial_{t}

which commute with the linear wave and Klein–Gordon operators and are used to define higher order energy functionals which control the Sobolev regularity of the solution as well as its decay (and that of its derivatives) in space at infinity. The rotations Ω𝒊𝒋\Omega_{{\bm{i}}{\bm{j}}} and Ω0𝒊\Omega_{0{\bm{i}}} are also usually referred to as Klainerman vector fields. In the absence of Klein–Gordon equations, that is in the case of wave equations only, one can also consider the scaling vector field 𝒮=tt+x𝒊𝒊\mathscr{S}=t\partial_{t}+x^{\bm{i}}\partial_{\bm{i}} (a conformal Killing vector field of Minkowski) and use the control on higher order energies to derive fixed-time pointwise decay bounds for the solution via the so-called Klainerman-Sobolev inequalities (see Klainerman [30])

(1.5) (1+|t|+|x|)n1(1+||t||x||)|u(t,x)|2C|I|(n+2)/2ZIu(t,)L2(n)2.(1+|t|+|x|)^{n-1}(1+||t|-|x||)|u(t,x)|^{2}\leq C\sum_{|I|\leq(n+2)/2}\|Z^{I}u(t,\cdot)\|^{2}_{L^{2}({\mathbb{R}}^{n})}.

In the above inequality ZZ denotes any of the vector fields μ,Ω𝒊𝒋,Ω0𝒊,𝒮\partial_{\mu},\Omega_{{\bm{i}}{\bm{j}}},\Omega_{0{\bm{i}}},\mathscr{S} and ZIZ^{I} is any product of |I||I| such vector fields. Suitable energy estimates and pointwise decay bounds are subsequently used to control the nonlinear terms in the energy inequality and are essential to close the continuity argument which is at the core of the proof of a long-time/global existence result for small data.

The inequality (1.5) is, however, useless when dealing with Klein–Gordon equations. The scaling vector field does not commute well with the linear operator and one cannot generally expect to have a good control of the L2L^{2} norm of 𝒮u\mathscr{S}u when uu is a Klein–Gordon solution. Instead, if uu is compactly supported inside the light cone444Any cone t=|x|+ct=|x|+c with c>0c>0 would do. t=|x|+1t=|x|+1 one can define higher order energy functionals on hyperboloids t2|x|2=s2t^{2}-|x|^{2}=s^{2} and exploit Klainerman-Sobolev inequalities on hyperboloids (see for instance [18])

(1.6) supstn/2|u(t,x)|C|I|(n+2)/2BIuL2(s)\sup_{\mathscr{H}_{s}}t^{n/2}|u(t,x)|\leq C\sum_{|I|\leq(n+2)/2}\|B^{I}u\|_{L^{2}(\mathscr{H}_{s})}

where now BIB^{I} are products involving hyperbolic rotations only, to get a good pointwise control on the solution. This approach has been largely used in the case of compactly supported initial data thanks to the finite speed of propagation satisfied by both wave and Klein–Gordon equations, but it is not adapted to treat the case of initial data that only enjoys some decay at infinity. Other methods have been employed to handle such cases, based on Fourier analysis, normal forms and/or microlocal analysis: see for instance the work by Ionescu and Pausader [24] in the 1+3 dimensional setting, by the second author [51] and in collaboration with Ifrim [23] for the 1+2 dimensional case, and references therein. See also a recent work by LeFloch and Ma [35] using a foliation that merges hyperboloids with constant time slices.

1.4. The 5D problem: main theorem and overview of the proof

According to the positive mass theorem, the solution gαβg_{\alpha\beta} of the Cauchy problem (1.3)-(1.4) must have a non-trivial tail at spacelike infinity555We choose to write this tail so that gαβg_{\alpha\beta} corresponds to the Schwarzschild metric in wave coordinates at leading order. which suggests to set gαβ=g¯αβ+hαβ0+hαβ1g_{\alpha\beta}=\overline{g}_{\alpha\beta}+h^{0}_{\alpha\beta}+h^{1}_{\alpha\beta} where

(1.7) h𝜶𝜷0=χ(rt)χ(r)Mrδ𝜶𝜷,h440=0,\displaystyle h^{0}_{{\bm{\alpha}}{\bm{\beta}}}=\chi\Big{(}\frac{r}{t}\Big{)}\chi(r)\frac{M}{r}\delta_{{\bm{\alpha}}{\bm{\beta}}},\qquad h^{0}_{44}=0,
χ𝒞() with χ(s)=0 for s1/2,χ(s)=1 for s3/4,r=|x|\displaystyle\chi\in\mathscr{C}^{\infty}({\mathbb{R}})\text{ with }\chi(s)=0\text{ for }s\leq 1/2,\ \chi(s)=1\text{ for }s\geq 3/4,\ r=|x|

and look for hαβ1h^{1}_{\alpha\beta} the solution to the following system of quasilinear wave equations

(1.8) ~ghαβ1=Fαβ(h)(h,h)~ghαβ0,on 1+3×𝕊1\tilde{\Box}_{g}h^{1}_{\alpha\beta}=F_{\alpha\beta}(h)(\partial h,\partial h)-\tilde{\Box}_{g}h^{0}_{\alpha\beta},\qquad\text{on }{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}

with data (h1|αβ,thαβ1)|t=2(h^{1}|_{\alpha\beta},\partial_{t}h^{1}_{\alpha\beta})|_{t=2} being small and sufficiently decaying in space. The semilinear source term in the above right hand side decompose into the following sum

Fαβ(h)(h,h)=Pαβ(h,h)+𝐐αβ(h,h)+Gαβ(h)(h,h)F_{\alpha\beta}(h)(\partial h,\partial h)=P_{\alpha\beta}(\partial h,\partial h)+\mathbf{Q}_{\alpha\beta}(\partial h,\partial h)+G_{\alpha\beta}(h)(\partial h,\partial h)

where

  • -

    Pαβ(h,h)P_{\alpha\beta}(\partial h,\partial h) are quadratic weak null terms

    Pαβ(h,h)=14g¯μρg¯νσ(αhμρβhνσ2αhμνβhρσ),P_{\alpha\beta}(\partial h,\partial h)=\frac{1}{4}\bar{g}^{\mu\rho}\bar{g}^{\nu\sigma}\left(\partial_{\alpha}h_{\mu\rho}\partial_{\beta}h_{\nu\sigma}-2\partial_{\alpha}h_{\mu\nu}\partial_{\beta}h_{\rho\sigma}\right),
  • -

    𝐐αβ(h,h)\mathbf{Q}_{\alpha\beta}(\partial h,\partial h) is a linear combination of the classical quadratic null forms,

  • -

    Gαβ(h)(h,h)G_{\alpha\beta}(h)(\partial h,\partial h) are cubic terms. More precisely, they are quadratic in h\partial h with smooth coefficients depending on hh so that Gαβ(0)(h,h)=0G_{\alpha\beta}(0)(\partial h,\partial h)=0.

The reduced wave operator can be written as ~g=xy+Hμνμν\tilde{\Box}_{g}=\Box_{xy}+H^{\mu\nu}\partial_{\mu}\partial_{\nu}, where xy=t2+Δx+y2\Box_{xy}=-\partial^{2}_{t}+\Delta_{x}+\partial^{2}_{y} is the flat wave operator and Hμν:=gμνg¯μνH^{\mu\nu}:=g^{\mu\nu}-\overline{g}^{\mu\nu} is the formal inverse of hμνh_{\mu\nu} for small hh, i.e.

(1.9) Hμν=hμν+𝒪μν(h2)=g¯μρg¯νσhρσ+𝒪μν(h2).H^{\mu\nu}=-h^{\mu\nu}+\mathscr{O}^{\mu\nu}(h^{2})=-\overline{g}^{\mu\rho}\overline{g}^{\nu\sigma}h_{\rho\sigma}+\mathscr{O}^{\mu\nu}(h^{2}).

We can now give a more precise statement of our main result.

Theorem 1.2.

Let κ>0\kappa>0. There exists NN\in{\mathbb{N}} sufficiently large and ϵ0>0\epsilon_{0}>0 small such that, for any 0<ϵ<ϵ00<\epsilon<\epsilon_{0} and initial data g0,K0g_{0},K_{0} solving the constraint equations and satisfying

(1.10) mNi+j=m(1+r)12+i+κyjxi(g0g0)H˙x,y1+(1+r)12+i+κyjxiK0Lx,y2ϵ,mN1i+j=m(1+r)32+i+κyjxi(g0g0)H˙x,y2+(1+r)32+i+κyjxiK0H˙x,y1ϵ\begin{gathered}\sum_{m\leq N}\sum_{i+j=m}\|(1+r)^{\frac{1}{2}+i+\kappa}\partial_{y}^{j}\nabla_{x}^{i}(g_{0}-g^{0})\|_{\dot{H}^{1}_{x,y}}+\|(1+r)^{\frac{1}{2}+i+\kappa}\partial_{y}^{j}\nabla_{x}^{i}K_{0}\|_{L^{2}_{x,y}}\leq\epsilon,\\ \sum_{m\leq N-1}\sum_{i+j=m}\|(1+r)^{\frac{3}{2}+i+\kappa}\partial_{y}^{j}\nabla_{x}^{i}(g_{0}-g^{0})\|_{\dot{H}^{2}_{x,y}}+\|(1+r)^{\frac{3}{2}+i+\kappa}\partial_{y}^{j}\nabla_{x}^{i}K_{0}\|_{\dot{H}^{1}_{x,y}}\leq\epsilon\end{gathered}

together with the L2L^{2} estimate

(1+r)12+κ(g0g0)Lx,y2ϵ\|(1+r)^{-\frac{1}{2}+\kappa}(g_{0}-g^{0})\|_{L^{2}_{x,y}}\leq\epsilon

with r=|x|r=|x| and g0g^{0} defined by

g𝒊𝒋0=(1+Mχ(r)r1)δ𝒊𝒋,g440=1,g4𝒊0=0,g^{0}_{{\bm{i}}{\bm{j}}}=(1+M\chi(r)r^{-1})\delta_{{\bm{i}}{\bm{j}}},\quad g^{0}_{44}=1,\quad g^{0}_{4{\bm{i}}}=0,

there exists a unique global solution gαβg_{\alpha\beta} to (1.3) with initial data given by (1.4). This solution obeys the Einstein equations and decomposes as gαβ=g¯αβ+hαβ0+hαβ1g_{\alpha\beta}=\bar{g}_{\alpha\beta}+h^{0}_{\alpha\beta}+h^{1}_{\alpha\beta}, with hαβ0h^{0}_{\alpha\beta} defined by (1.7) and hαβ1h^{1}_{\alpha\beta} satisfying the pointwise estimate

|hαβ1|C0ϵ(1+t+|x|)1γ|h^{1}_{\alpha\beta}|\leq\frac{C_{0}\epsilon}{(1+t+|x|)^{1-\gamma}}

with C0C_{0} a numerical constant and γ>0\gamma>0 arbitrarily small but fixed.

The proof of the above result is based on a bootstrap argument, i.e. on the propagation of some suitable a-priori energy estimates and pointwise decay bounds on the solution, which is performed in two main steps:

Step 1: deduction of higher order energy inequalities and of sharp pointwise estimates from the a-priori energy assumptions;

Step 2: estimates of the trilinear and quartic terms appearing in the right hand side of the energy inequalities. In particular, deduction of suitable higher order L2L^{2} estimates of the source terms from the a-priori energy assumptions and the pointwise decay bounds.

In order to run the above argument and in view of the issues discussed in the previous subsection, one needs to find a strategy to obtain (at least in the first instance) pointwise decay bounds on the solution from the a-priori assumptions, knowing that inequality (1.5) cannot be used and (1.6) is valid only in the interior of some light cone.

Similar to [21], the approach we take in the present paper is to decompose the whole spacetime and study the problem separately in two regions, corresponding to the interior and exterior of a hyperboloid666In this curved background, the Minkowski cone {t=|x|+1}\{t=|x|+1\} is in fact only asymptotically spacelike. asymptotically approaching the cone {t=|x|+1}×𝕊1\{t=|x|+1\}\times{\mathbb{S}}^{1}. This decomposition is quite natural, in that the analysis in the exterior is totally independent of that in the interior and requires different tools. It also allows us to explain our arguments with more clarity.

1.4.1. Exterior region: the bootstrap assumptions.

The bootstrap assumptions in the exterior region are higher order weighted energy estimates on the solution

Ee,κ(t,ZNh1)1/22C0ϵtσ,\displaystyle E^{\text{e},\kappa}(t,Z^{\leq N}h^{1})^{1/2}\leq 2C_{0}\epsilon t^{\sigma},
Ee,1+κ(t,ZN1h1)1/22C0ϵtσ\displaystyle E^{e,1+\kappa}(t,\partial Z^{\leq N-1}h^{1})^{1/2}\leq 2C_{0}\epsilon t^{\sigma}

where the weighted energy functional is defined, for any λ>0\lambda>0, as

Ee,λ(t,hαβ1)={|x|t1}×𝕊1(2+|x|t)1+2λ|txyhαβ1(t,x,y)|2𝑑x𝑑y+2t{|x|τ1}×𝕊1(2+|x|t)2λ|¯hαβ1(τ,x,y)|2𝑑x𝑑y𝑑τ.E^{e,\lambda}(t,h^{1}_{\alpha\beta})=\iint_{\{|x|\geq t-1\}\times{\mathbb{S}}^{1}}(2+|x|-t)^{1+2\lambda}|\nabla_{txy}h^{1}_{\alpha\beta}(t,x,y)|^{2}dxdy\ \\ +\int_{2}^{t}\iint_{\{|x|\geq\tau-1\}\times{\mathbb{S}}^{1}}(2+|x|-t)^{2\lambda}|\overline{\nabla}h^{1}_{\alpha\beta}(\tau,x,y)|^{2}dxdyd\tau.

In the above integrals, txy\nabla_{txy} denotes the spacetime gradient while ¯=(¯0,,¯4)=(t+r,∂̸𝒊,y)\overline{\nabla}=(\overline{\partial}_{0},\dots,\overline{\partial}_{4})=(\partial_{t}+\partial_{r},\not{\partial}_{{\bm{i}}},\partial_{y}) denotes the tangent gradient to the cones {t=r+1}×𝕊1\{t=r+1\}\times{\mathbb{S}}^{1}, with ∂̸𝒊=ix𝒊rt\not{\partial}_{\bm{i}}=\partial_{i}-\frac{x_{\bm{i}}}{r}\partial_{t} being the angular derivatives. The parameter κ\kappa in the above a-priori estimates is related to the asymptotic decay of the data, NN\in{\mathbb{N}} is assumed to be sufficiently large and 0<σ<κ0<\sigma<\kappa sufficiently small. Weighted Sobolev and Hardy inequalities allow us to obtain fixed-time pointwise decay bounds on the solution from the assumptions on the weighted energies, as for any given smooth function UU

|txyU(t,x,y)|C(1+|x|)1(2+|x|t)12λ|I|3Ee,λ(t,ZIU)1/2,|U(t,x,y)|C(1+|x|)1(2+|x|t)λ|I|2Ee,λ(t,ZIU)1/2.\begin{gathered}|\nabla_{txy}U(t,x,y)|\leq C(1+|x|)^{-1}(2+|x|-t)^{-\frac{1}{2}-\lambda}\sum_{|I|\leq 3}E^{e,\lambda}(t,Z^{I}U)^{1/2},\\ |U(t,x,y)|\leq C(1+|x|)^{-1}(2+|x|-t)^{-\lambda}\sum_{|I|\leq 2}E^{e,\lambda}(t,Z^{I}U)^{1/2}.\end{gathered}

They also allow us to uncover faster spacetime decay for the tangential derivatives, since their weighted L2L^{2}-spacetime norm is controlled by the energy, and to recover the well-known property of waves that higher order derivatives enjoy better decay in terms of the distance from the outgoing Minkowski cones, which follows from the second energy assumption above. We point out that, in the context of waves on 1+3{\mathbb{R}}^{1+3} where the full range of vector fields Γ{Ω𝒊𝒋,Ω0𝒊,𝒮}\Gamma\in\{\Omega_{{\bm{i}}{\bm{j}}},\Omega_{0{\bm{i}}},\mathscr{S}\} is available, the latter two properties are easily derived from algebraic relations. In particular, one can use that

|¯ψ||I|1|ΓIψ|1+t+|t|x||,|2ψ||I|1|ΓIψ|1+|t|x||.|\overline{\partial}\psi|\lesssim\sum_{|I|\leq 1}\frac{|\Gamma^{I}\psi|}{1+t+|t-|x||},\qquad|\partial^{2}\psi|\lesssim\sum_{|I|\leq 1}\frac{|\partial\Gamma^{I}\psi|}{1+|t-|x||}.

1.4.2. Interior region: the bootstrap assumptions.

The bootstrap assumptions in the interior region are bounds on higher order energies defined on truncated hyperboloids

s={(t,x):t2|x|2=s2 and t1+1+|x|2}×𝕊1,s2\mathscr{H}_{s}=\{(t,x):t^{2}-|x|^{2}=s^{2}\text{ and }t\geq 1+\sqrt{1+|x|^{2}}\}\times{\mathbb{S}}^{1},\qquad s\geq 2

which are the branches of hyperboloids contained in the interior region, and pointwise decay bounds on differentiated metric coefficients carrying only Klainerman vector field derivatives. We denote the zero-mode (respectively zero-average) component of coefficient hαβ1h^{1}_{\alpha\beta} by

hαβ1,=𝕊1hαβ1𝑑y, and hαβ1,=hαβ1hαβ1,.h^{1,\flat}_{\alpha\beta}=\fint_{{\mathbb{S}}^{1}}h^{1}_{\alpha\beta}dy,\quad\text{ and }\quad h^{1,\natural}_{\alpha\beta}=h^{1}_{\alpha\beta}-h^{1,\flat}_{\alpha\beta}.

We assume that, for some large integers 1N1N1\ll N_{1}\ll N and some small777In practice, ζ,γ\zeta,\gamma and δ\delta are going to be replaced with a hierarchy of increasing ζk,γk\zeta_{k},\gamma_{k} and δk\delta_{k}, where kk accounts for the number of Klainerman vector fields in the product ZIZ^{I}, so that ζiγjδk\zeta_{i}\ll\gamma_{j}\ll\delta_{k} for any i,j,ki,j,k and the algebraic relation γi+δj<δk\gamma_{i}+\delta_{j}<\delta_{k} whenever j<kj<k. 0<ζ<γδ0<\zeta<\gamma\ll\delta, the following bounds are satisfied

Ei(s,1ZNhαβ1)Cϵ2s1+ζ,\displaystyle E^{i}(s,\partial^{\leq 1}Z^{\leq N}h^{1}_{\alpha\beta})\leq C\epsilon^{2}s^{1+\zeta},
Ei(s,ZNhαβ1,)Cϵ2sζ,\displaystyle E^{i}(s,Z^{\leq N}h^{1,\flat}_{\alpha\beta})\leq C\epsilon^{2}s^{\zeta},
Ei(s,NN1ZN1hαβ1)Cϵ2sδ\displaystyle E^{i}(s,\partial^{\leq N-N_{1}}Z^{\leq N_{1}}h^{1}_{\alpha\beta})\leq C\epsilon^{2}s^{\delta}

where

Ei(s,hαβ1)\displaystyle E^{i}(s,h^{1}_{\alpha\beta}) :=s|(s/t)thαβ1|2+|¯hαβ1|2dxdy\displaystyle:=\iint_{\mathscr{H}_{s}}\big{|}(s/t)\partial_{t}h^{1}_{\alpha\beta}\big{|}^{2}+|\underline{\nabla}h^{1}_{\alpha\beta}|^{2}dxdy
=s|(s/t)xhαβ1|2+|(1/t)𝒮hαβ1|2+1i<j3|(1/t)Ωijhαβ1|2+|yhαβ1|2dxdy\displaystyle\,=\iint_{\mathscr{H}_{s}}\big{|}(s/t)\nabla_{x}h^{1}_{\alpha\beta}\big{|}^{2}+\big{|}(1/t)\mathscr{S}h^{1}_{\alpha\beta}\big{|}^{2}+\sum_{1\leq i<j\leq 3}\big{|}(1/t)\Omega_{ij}h^{1}_{\alpha\beta}\big{|}^{2}+|\partial_{y}h^{1}_{\alpha\beta}|^{2}\,dxdy

and with Γ{Ω𝒊𝒋,Ω0𝒊}\Gamma\in\{\Omega_{{\bm{i}}{\bm{j}}},\Omega_{0{\bm{i}}}\}

|ΓN1hαβ1,(t,x)|Cϵ(1+t)1+γ(1+|t|x||)γ,|\Gamma^{\leq N_{1}}h^{1,\flat}_{\alpha\beta}(t,x)|\leq C\epsilon(1+t)^{-1+\gamma}(1+|t-|x||)^{\gamma},\quad
t32y1(IΓJhαβ1,)LxLy2(s)+t12stx(IΓJhαβ1,)LxLy2(s)Cϵsγ,|I|+|J|N1+1,|J|N1.\|t^{\frac{3}{2}}\partial_{y}^{\leq 1}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\|t^{\frac{1}{2}}s\partial_{tx}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\leq C\epsilon s^{\gamma},\quad|I|+|J|\leq N_{1}+1,\ |J|\leq N_{1}.

In the above energy functional, ¯=(1¯,,4¯)\underline{\nabla}=(\underline{\partial_{1}},\dots,\underline{\partial_{4}}) denotes the tangent gradient (to the hyperboloids) with ¯𝒊=𝒊+(x𝒊/t)t\underline{\partial}_{{\bm{i}}}=\partial_{{\bm{i}}}+(x_{{\bm{i}}}/t)\partial_{t} for 𝒊=1,2,3{\bm{i}}=1,2,3 and ¯4=4\underline{\partial}_{4}=\partial_{4}. Klainerman-Sobolev inequalities on hyperboloids permit us to deduce pointwise decay bounds for the solution, as for any given smooth function UU one has

sup𝕊1|txU(t,x,y)|C(1+t)1(1+|t|x||)1/2|I|3Ei(s,ZIU)1/2,sup𝕊1|¯U(t,x,y)|C(1+t)3/2|I|3Ei(s,ZIU)1/2.\begin{gathered}\sup_{{\mathbb{S}}^{1}}|\nabla_{tx}U(t,x,y)|\leq C(1+t)^{-1}(1+|t-|x||)^{-1/2}\sum_{|I|\leq 3}E^{i}(s,Z^{I}U)^{1/2},\\ \sup_{{\mathbb{S}}^{1}}|\underline{\nabla}U(t,x,y)|\leq C(1+t)^{-3/2}\sum_{|I|\leq 3}E^{i}(s,Z^{I}U)^{1/2}.\end{gathered}

Note that the latter inequality shows, again, that tangential derivatives enjoy better decay estimates than usual derivatives. We postpone the explanation of why we use the above hierarchy of energy assumptions to later in this section.

1.4.3. Estimates on inhomogeneities: null and weak-null terms

Once energy bounds and pointwise decay bounds are available, one has to estimate the trilinear and quartic terms appearing in the right hand side of the energy inequalities. These involve the source terms of the equation satisfied by the differentiated coefficients ZKhαβ1Z^{K}h^{1}_{\alpha\beta}

~gZKhαβ1=FαβK+Fαβ0,K\tilde{\Box}_{g}Z^{K}h^{1}_{\alpha\beta}=F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta}

where

FαβK=ZKFαβ(h)(h,h)[ZK,Hμνμν]hαβ1,Fαβ0,K=ZK~ghαβ0F^{K}_{\alpha\beta}=Z^{K}F_{\alpha\beta}(h)(\partial h,\partial h)-[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta},\qquad F^{0,K}_{\alpha\beta}=Z^{K}\tilde{\Box}_{g}h^{0}_{\alpha\beta}

are semilinear quadratic interactions. The explicit inhomogeneous terms Fαβ0,KF^{0,K}_{\alpha\beta} and the differentiated cubic terms ZKGαβ(h)(h,h)Z^{K}G_{\alpha\beta}(h)(\partial h,\partial h) are short range perturbations of the linear equations. We do not discuss them here as they cause no issue in the analysis. The differentiated null terms ZK𝐐αβ(h,h)Z^{K}\mathbf{Q}_{\alpha\beta}(\partial h,\partial h) are also easily controlled, thanks to the following well-known property

|Q0(ψ,φ)|+|Qαβ(ψ,φ)|\displaystyle|Q_{0}(\partial\psi,\partial\varphi)|+|Q_{\alpha\beta}(\partial\psi,\partial\varphi)| |¯ψ||φ|+|ψ||¯φ|\displaystyle\lesssim|\overline{\partial}\psi||\partial\varphi|+|\partial\psi||\overline{\partial}\varphi|
|¯ψ||φ|+|ψ||¯φ|+(s/t)2|ψ||φ|\displaystyle\lesssim|\underline{\partial}\psi||\partial\varphi|+|\partial\psi||\underline{\partial}\varphi|+(s/t)^{2}|\partial\psi||\partial\varphi|

and the better behavior of tangential derivatives.

The quadratic interactions that are more delicate to treat and require special attention are the differentiated null terms ZKPαβ(h,h)Z^{K}P_{\alpha\beta}(\partial h,\partial h) and the commutator terms [ZK,Hμνμν]hαβ1[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}. The particular structure of such terms was first highlighted by Lindblad and Rodnianski [38, 39, 40] in the 4-dimensional setting and shows all its potential in the null frame 𝒰={L,L¯,S1,S2}{y}\mathscr{U}=\{L,\underline{L},S^{1},S^{2}\}\cup\{\partial_{y}\}, where L=t+rL=\partial_{t}+\partial_{r}, L¯=tr\underline{L}=\partial_{t}-\partial_{r} and S1,S2S^{1},S^{2} are smooth vector fields tangent to the spheres 𝕊2={u3:ux/|x|=0}{\mathbb{S}}^{2}=\{u\in{\mathbb{R}}^{3}:u\cdot x/|x|=0\}.

As concerns the weak null terms, one sees that if the metric tensor is expressed with respect to 𝒰\mathscr{U} then

Pαβ(h,h)hTU2+hLLhL¯L¯,T𝒯,U𝒰P_{\alpha\beta}(\partial h,\partial h)\sim\partial h_{TU}^{2}+\partial h_{LL}\partial h_{\underline{L}\underline{L}},\qquad T\in\mathscr{T},U\in\mathscr{U}

where 𝒯={L,S1,S2}{y}\mathscr{T}=\{L,S^{1},S^{2}\}\cup\{\partial_{y}\} denotes the frame tangent to the flat outgoing cones. On the one hand, the choice of gauge (in particular the wave coordinate condition) ensures that the derivatives of hLTh_{LT} coefficients are well behaved, as they satisfy

(1.11) |hLT||¯h|+𝒪(hh).|\partial h_{LT}|\lesssim|\overline{\partial}h|+\mathscr{O}(h\cdot\partial h).

On the other hand, the metric coefficients hTUh_{TU} solve quasilinear wave equations whose source terms are null or cubic. In the exterior region, we exploit this property to prove that the higher order weighted energies of such coefficients grow at a slower rate tCϵt^{C\epsilon}, where ϵσ\epsilon\ll\sigma is the size of the data. From this we infer an improved pointwise decay for ZKhTU\partial Z^{K}h_{TU} with |K|N|K|\ll N and the following weighted L2L^{2} bound for the differentiated weak null terms

i=01(2+rt)12+i+κiZNiPαβL2ϵ2t1+Cϵ+𝒪(ϵ2t1).\sum_{i=0}^{1}\big{\|}(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N-i}P_{\alpha\beta}\big{\|}_{L^{2}}\lesssim\epsilon^{2}t^{-1+C\epsilon}+\mathscr{O}(\epsilon^{2}t^{-1-}).

The above estimate shows that the weak null terms contribute to a slow growth of the exterior energies. In the interior region, the enhanced pointwise bounds satisfied by the derivatives of ZKhTU1Z^{K}h^{1}_{TU} for |K|N|K|\ll N are instead obtained directly from the equations they satisfy, using integration along characteristics as done in [40]. This approach is possible provided that we already have at our disposal suitable bounds on the solution in the exterior region.

1.4.4. Commutator terms in the exterior region

The commutator terms also display an important structure when expressed with respect to the null frame. The tensor HμνH^{\mu\nu} is decomposed as follows

(1.12) Hμν:=H0,μν+H1,μν,H0,𝝁𝝂:=χ(rt)χ(r)Mrδ𝝁𝝂,H0,44=0,H^{\mu\nu}:=H^{0,\mu\nu}+H^{1,\mu\nu},\quad H^{0,{\bm{\mu}}{\bm{\nu}}}:=-\chi\Big{(}\frac{r}{t}\Big{)}\chi(r)\frac{M}{r}\delta^{{\bm{\mu}}{\bm{\nu}}},\quad H^{0,44}=0,

where H0,μνH^{0,\mu\nu} is the “Schwarzschild part” of HH. The estimates of [ZK,H0,μνμν]hαβ1[Z^{K},H^{0,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta} are straightforward and, similar to the weak null terms discussed above, responsible for a slow growth of the exterior energy. The estimates of the commutator involving coefficients H1,μνH^{1,\mu\nu} are instead obtained using the fact that, for any tensor πμν\pi^{\mu\nu} and function ψ\psi,

|πμνμνψ||πLL||2ψ|+|π||¯ψ||\pi^{\mu\nu}\partial_{\mu}\partial_{\nu}\psi|\lesssim|\pi_{LL}||\partial^{2}\psi|+|\pi||\partial\overline{\partial}\psi|

so that either the tensor coefficient is a “good” coefficient πLL\pi_{LL} or one of the two derivatives acting on ψ\psi is a tangential derivative. As highlighted above, in the exterior region the enhanced behaviour of second order derivatives ¯\partial\overline{\partial} as well as of 2\partial^{2} is encoded in the energy assumptions. What is more, weighted Hardy type inequalities and weighted Sobolev-Hardy inequalities allow us to get a good control of the higher order weighted L2L^{2} norms, as well as to recover good pointwise decay bounds, of the solution with no derivatives. Suitable higher order weighted L2L^{2} estimates for these commutator terms in the exterior region follow then rather easily.

1.4.5. Commutator terms in the interior region

A much more delicate analysis of the commutator terms is required in the interior region. On the one hand, the interior energy assumptions do not provide us with additional information on the second order derivatives and the interior energy functionals only give a H˙1\dot{H}^{1} type control on the differentiated solution. The classical Hardy inequality written on hyperboloids is

r1UL2(s)¯UL2(s)+UL2(Σtse)\|r^{-1}U\|_{L^{2}(\mathscr{H}_{s})}\lesssim\|\underline{\partial}U\|_{L^{2}(\mathscr{H}_{s})}+\|\partial U\|_{L^{2}(\Sigma^{\text{e}}_{t_{s}})}

where Σtse\Sigma^{\text{e}}_{t_{s}} is the exterior constant time slice that intersects the interior hyperboloid s\mathscr{H}_{s} on the boundary between the two regions. Such an inequality provides us with a control of the L2L^{2} norm of the undifferentiated solution at the costly expense of a r1r^{-1} factor. On the other hand, no extra decay (in terms of the distance from the outgoing cones) is expected for the second order derivatives of the solution. In fact, the zero-average component of the solution hαβ1,h^{1,\natural}_{\alpha\beta} is a Klein–Gordon type function, in that each of its Fourier mode along the yy-direction is solution to a Klein–Gordon equation (see subsection 1.2). As a consequence of this latter fact one only has |2hαβ1,|+|hαβ1,|(1+t+r)3/2|\partial^{2}h^{1,\natural}_{\alpha\beta}|+|\partial h^{1,\natural}_{\alpha\beta}|\lesssim(1+t+r)^{-3/2}, which coupled with the above Hardy inequality gives

ZKh1,2hαβ1,L2(s)s1/2(¯h1,L2(s)+h1,L2(Σtse))s1/2+δ.\big{\|}Z^{K}h^{1,\flat}\cdot\partial^{2}h^{1,\natural}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}\lesssim s^{-1/2}\big{(}\|\underline{\partial}h^{1,\flat}\|_{L^{2}(\mathscr{H}_{s})}+\|\partial h^{1,\flat}\|_{L^{2}(\Sigma^{\text{e}}_{t_{s}})}\big{)}\lesssim s^{-1/2+\delta}.

The same inequality holds if h1,h^{1,\flat} is replaced by (H1,μν)(H^{1,\mu\nu})^{\flat}. These “wave-Klein–Gordon” contributions to the commutator are the ones responsible for the s1+s^{1+} growth of the higher order energies on s\mathscr{H}_{s}. They are, however, absent in the equations satisfied by the zero-modes ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta}, as for any two functions f,gf,g one has

(fg)=fg+(fg),(f\cdot g)^{\flat}=f^{\flat}\cdot g^{\flat}+\big{(}f^{\natural}\cdot g^{\natural}\big{)}^{\flat},

therefore a much slower growth is expected for the higher order energies of hαβ1,h^{1,\flat}_{\alpha\beta}.

The above observation motivates the use of a hierarchy in the interior energy assumptions and to separately propagate the higher order energy estimates for the zero-modes. To propagate the different interior energy assumptions, we then need to estimate the commutators [ZK,π1,μνμν]ϕ[Z^{K},\pi^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]\phi separately for π=H1,,H1,\pi=H^{1,\flat},H^{1,\natural} and ϕ=hαβ1,,hαβ1,\phi=h^{1,\flat}_{\alpha\beta},h^{1,\natural}_{\alpha\beta}. The analysis is reasonably straightforward when π=H1,\pi=H^{1,\natural} as we can rely on the Poincaré inequality. When π=H1,\pi=H^{1,\flat} the analysis is finer, as we express the metric coefficients H1,μνH^{1,\mu\nu} relative to the null framework and all derivatives in terms of t,y\partial_{t},\partial_{y} and of the tangential derivatives ¯𝒂\underline{\partial}_{\bm{a}} to hyperboloids. Doing this, we see that

|[ZK,(H1,μν)μν]ϕ||ZKHLL1,||t2ϕ|+|ZKH4L1,||tyϕ|+|t2r2|t2|ZKH1,||t2ϕ|+|ZKH1,||Zϕ|1+t+r+ |[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]\phi|\\ \lesssim|Z^{K}H^{1,\flat}_{LL}||\partial^{2}_{t}\phi|+|Z^{K}H^{1,\flat}_{4L}||\partial_{t}\partial_{y}\phi|+\frac{|t^{2}-r^{2}|}{t^{2}}|Z^{K}H^{1,\flat}||\partial^{2}_{t}\phi|+\frac{|Z^{K}H^{1,\flat}||\partial Z\phi|}{1+t+r}+\dots{}

The remarkable property of the above right hand side is that each quadratic term either contains coefficients HLL1,H^{1,\flat}_{LL} and H4L1,H^{1,\flat}_{4L} - which are “good” as a consequence of the wave condition - or have an extra decaying factor (|t2r2|/t)2(|t^{2}-r^{2}|/t)^{2} and (1+t+r)1(1+t+r)^{-1}. Then suitable estimates on the L2(s)L^{2}(\mathscr{H}_{s}) norms of the above terms are obtained by using a Hardy inequality à la Lindblad and Rodnianski with weights in trt-r, which allow us to better exploit the pointwise decay of our solution. We point the reader to subsection 4.6 for further details.

1.4.6. The null framework

We emphasise the importance of choosing a framework which correctly highlights the structure of the weak null terms. In fact, the absence of “bad” interactions, such as (hL¯L¯)2(\partial h_{\underline{L}\underline{L}})^{2} and hLLhTU\partial h_{LL}\cdot\partial h_{TU} in the expression of the weak null terms with respect to the null framework, is crucially related to the fact that the transversal field L¯\underline{L} is orthogonal to 𝕊2×𝕊1{\mathbb{S}}^{2}\times{\mathbb{S}}^{1}, i.e. that g¯(L¯,A)=0\bar{g}(\underline{L},A)=0 for A{S1,S2,y}A\in\{S^{1},S^{2},\partial_{y}\}. On the contrary, the framework arising naturally from hyperboloids

={t,¯𝒂=a+x𝒂tt}{y},\mathscr{F}=\Big{\{}\partial_{t},\quad\underline{\partial}_{\bm{a}}=\partial_{a}+\frac{x^{\bm{a}}}{t}\partial_{t}\Big{\}}\cup\{\partial_{y}\},

in which the “transversal field” (t\partial_{t} in the above example) is not orthogonal to 𝕊2×𝕊1{\mathbb{S}}^{2}\times{\mathbb{S}}^{1}, causes the analogue of the bad interaction hL¯L¯hTU\partial h_{\underline{L}\underline{L}}\cdot\partial h_{TU} to appear and critically fails to give a useful expression for the weak null terms. This consideration leads us to adopt the null frame decomposition both in the exterior and the interior region and to combine it with the foliation by hyperboloids in the latter region. Indeed in this region, and when required, the metric coefficients are expressed with respect to the null frame 𝒰\mathscr{U} (in order to use the enhanced behavior of hLTh_{LT} and hTUh_{TU} coefficients) while derivatives are written in terms of those in \mathscr{F} (in order to distinguish between the “good” tangential derivatives ¯𝒂,y\underline{\partial}_{\bm{a}},\partial_{y} and the “bad” direction t\partial_{t}). Note our approach is different from what was done in previous works on Einstein-Klein–Gordon systems. We finally mention that a different framework than the null one is used by Ionescu and Pausader [25], which is reminiscent of the div-curl decomposition of vector-fields in fluid models and is more compatible with the Fourier transform approach employed there.

1.4.7. The Einstein-Klein–Gordon equations

We conclude by pointing out that our proof can be used, mutatis mutandis, to provide a new proof of the stability of the Minkowski solution to the Einstein-Klein–Gordon equations. To briefly illustrate this point, we recall that in a harmonic gauge the Einstein-Klein–Gordon equations read

(1.13) ~gh𝜶𝜷=F~𝜶𝜷(h)(h,h)2(𝜶ϕ𝜷ϕ+m22g𝜶𝜷),~gϕ=m2ϕ.\tilde{\Box}_{g}h_{{\bm{\alpha}}{\bm{\beta}}}=\tilde{F}_{{\bm{\alpha}}{\bm{\beta}}}(h)(\partial h,\partial h)-2\Big{(}\partial_{\bm{\alpha}}\phi\partial_{\bm{\beta}}\phi+\frac{m^{2}}{2}g_{{\bm{\alpha}}{\bm{\beta}}}\Big{)},\qquad\tilde{\Box}_{g}\phi=m^{2}\phi.

These equations are posed on 1+3{\mathbb{R}}^{1+3}, m>0m>0 is a constant parameter and hh is a perturbation away from the Minkowski spacetime 𝐦\mathbf{m} defined via g𝜶𝜷=𝐦𝜶𝜷h𝜶𝜷g_{{\bm{\alpha}}{\bm{\beta}}}=\mathbf{m}_{{\bm{\alpha}}{\bm{\beta}}}-h_{{\bm{\alpha}}{\bm{\beta}}}. The system (1.13) is much simpler to treat than (1.3). For example, without the 𝕊1{\mathbb{S}}^{1}, the metric tensor hh remains entirely wave-like and so all problematic wave–Klein–Gordon commutators no longer occur. The only Klein–Gordon field is ϕ\phi and it couples into the equation for the metric only via semilinear nonlinearities. This coupling is weak in the sense that the bootstrap assumptions for h𝜶𝜷h_{{\bm{\alpha}}{\bm{\beta}}} and ϕ\phi can be propagated separately. To conclude, due to our choice of null framework, combined with the separate analysis used in the interior and exterior regions, our proof provides an alternative perspective from what was done in previous works on Einstein-Klein–Gordon systems in [37, 25].

1.5. Notation

Below is a list of notation, some of which have already been introduced in the introduction, that we will use throughout the paper.

Coordinates:

  • {xα}α=0,,4\{x^{\alpha}\}_{\alpha=0,\dots,4} with x0=tx^{0}=t\in{\mathbb{R}}, x=(x1,x2,x3)3x=(x^{1},x^{2},x^{3})\in{\mathbb{R}}^{3}, x4=y𝕊1x^{4}=y\in{\mathbb{S}}^{1} are the harmonic coordinates. They satisfy the geometric wave equation gμνμνxα=0g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}x^{\alpha}=0. We will always denote by r=|x|r=|x| the radial component of xx;

  • u=t+ru=t+r and u¯=tr{\underline{u}}=t-r are the null coordinates. They are used in the exterior region.

Derivatives:

  • txy=(0,,4)\nabla_{txy}=(\partial_{0},\dots,\partial_{4}) denotes the spacetime gradient, with μ=/xμ\partial_{\mu}=\partial/\partial x^{\mu}. xy\nabla_{xy} denotes the full spatial gradient in 3×𝕊1{\mathbb{R}}^{3}\times{\mathbb{S}}^{1} while x\nabla_{x} is the spatial gradient in 3{\mathbb{R}}^{3}. tx\nabla_{tx} is the 4D spacetime gradient;

  • xy\partial_{xy} denotes any of the derivatives i\partial_{i} with i=1,,4i=1,\dots,4, while x\partial_{x} denotes any of the derivatives 𝒊\partial_{{\bm{i}}} with 𝒊=1,2,3{\bm{i}}=1,2,3. The definition of tx\partial_{tx} and txy\partial_{txy} are similar. We will use \partial and txy\partial_{txy} interchangeably;

  • xy=t2+Δx+y2\Box_{xy}=-\partial^{2}_{t}+\Delta_{x}+\partial^{2}_{y} and x=t2+Δx\Box_{x}=-\partial^{2}_{t}+\Delta_{x};

  • r=(x𝒊/r)𝒊\partial_{r}=(x^{{\bm{i}}}/r)\partial_{{\bm{i}}} denotes the radial derivative in 3{\mathbb{R}}^{3};

  • ∂̸\not{\partial} denotes any of the angular components ∂̸𝒊=𝒊(x𝒊/r)r\not{\partial}_{{\bm{i}}}=\partial_{\bm{i}}-(x_{\bm{i}}/r)\partial_{r} of 𝒊\partial_{{\bm{i}}} for 𝒊=1,2,3{\bm{i}}=1,2,3;

  • u=(1/2)(t+r)\partial_{u}=(1/2)(\partial_{t}+\partial_{r}) and u¯=(1/2)(tr)\partial_{\underline{u}}=(1/2)(\partial_{t}-\partial_{r}) denote the null derivatives;

  • ¯=(¯0,,¯4)=(t+r,∂̸𝒊,y)\overline{\nabla}=(\overline{\partial}_{0},\dots,\overline{\partial}_{4})=(\partial_{t}+\partial_{r},\not{\partial}_{{\bm{i}}},\partial_{y}) denotes the tangent gradient to the cones {t=r+1}×𝕊1\{t=r+1\}\times{\mathbb{S}}^{1}. Moreover ¯x=(¯0,,¯3)=(t+r,∂̸𝒊)\overline{\nabla}_{x}=(\overline{\partial}_{0},\dots,\overline{\partial}_{3})=(\partial_{t}+\partial_{r},\not{\partial}_{{\bm{i}}});

  • ¯\overline{\partial} denotes any of the tangent derivatives ¯α\overline{\partial}_{\alpha} in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}, ¯x\overline{\partial}_{x} denotes any of the tangent derivatives ¯𝜶\overline{\partial}_{{\bm{\alpha}}} in 1+3{\mathbb{R}}^{1+3};

  • ¯=(¯1,,¯4)\underline{\nabla}=(\underline{\partial}_{1},\dots,\underline{\partial}_{4}) denotes the tangent gradient to the hyperboloids in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}, with ¯𝒊=𝒊+(x𝒊/t)t\underline{\partial}_{{\bm{i}}}=\partial_{{\bm{i}}}+(x^{{\bm{i}}}/t)\partial_{t} and ¯4=y\underline{\partial}_{4}=\partial_{y}. Moreover ¯x=(¯1,¯2,¯3)\underline{\nabla}_{x}=(\underline{\partial}_{1},\underline{\partial}_{2},\underline{\partial}_{3});

  • ¯\underline{\partial} denotes any of the tangent derivatives ¯𝒂,¯4\underline{\partial}_{\bm{a}},\underline{\partial}_{4} in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}, ¯x\underline{\partial}_{x} denotes any of tangent derivatives ¯𝒂\underline{\partial}_{{\bm{a}}} in 1+3{\mathbb{R}}^{1+3}. Sometimes we will use ¯0=t\underline{\partial}_{0}=\partial_{t}.

Products:

  • Given a multi-index α=(α0,α1,,α4)5\alpha=(\alpha_{0},\alpha_{1},\dots,\alpha_{4})\in\mathbb{N}^{5}, its length is computed classically as |α|=i=04αi|\alpha|=\sum_{i=0}^{4}\alpha_{i}. We set α:=0α01α12α23α34α4\partial^{\alpha}:=\partial_{0}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}\partial_{3}^{\alpha_{3}}\partial_{4}^{\alpha_{4}} and xα:=1α12α23α3\partial^{\alpha}_{x}:=\partial^{\alpha_{1}}_{1}\partial^{\alpha_{2}}_{2}\partial^{\alpha_{3}}_{3}. The definition of xyα\partial^{\alpha}_{xy} and txα\partial^{\alpha}_{tx} are analogous;

  • More generally, given a family of vector fields {X1,,Xn}\{X_{1},\dots,X_{n}\} and a multi-index α=(α1,,αn)n\alpha=(\alpha_{1},\dots,\alpha_{n})\in\mathbb{N}^{n}, Xα=X1α1XnαnX^{\alpha}=X^{\alpha_{1}}_{1}\dots X^{\alpha_{n}}_{n}. With an abuse of notation we will sometimes write XkX^{k} (resp. XkX^{\leq k}) instead of α:|α|=kXα\sum_{\alpha:|\alpha|=k}X^{\alpha} (resp. α:|α|kXα\sum_{\alpha:|\alpha|\leq k}X^{\alpha}).

Metrics:

  • g¯=(dt)2+𝒊(dx𝒊)2+(dy)2\overline{g}=-(dt)^{2}+\sum_{\bm{i}}(dx^{\bm{i}})^{2}+(dy)^{2} denotes the Kaluza–Klein metric on 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1};

  • gg denotes a solution of the Einstein equations (1.1) on 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1};

  • g¯αβ\overline{g}^{\alpha\beta} and gαβg^{\alpha\beta} denote the inverse of the metrics g¯αβ\overline{g}_{\alpha\beta} and gαβg_{\alpha\beta} respectively. For any other arbitrary nn-tensor tensor πα1αn\pi_{\alpha_{1}\dots\alpha_{n}}, indices are raised and lowered using g¯\overline{g}, e.g πα1α2αn=g¯α1μπμα2αn{\pi^{\alpha_{1}}}_{\alpha_{2}\dots\alpha_{n}}=\overline{g}^{\alpha_{1}\mu}\pi_{\mu\alpha_{2}\dots\alpha_{n}};

  • Hαβ=gαβg¯αβH^{\alpha\beta}=g^{\alpha\beta}-\overline{g}^{\alpha\beta} corresponds to the formal inverse of hαβ=gαβg¯αβh_{\alpha\beta}=g_{\alpha\beta}-\overline{g}_{\alpha\beta}. When hh is sufficiently small we have Hαβ=hαβ+𝒪αβ(h2)H^{\alpha\beta}=-h^{\alpha\beta}+\mathscr{O}^{\alpha\beta}(h^{2}).

Null Frame and Decomposition:

  • L=t+rL=\partial_{t}+\partial_{r} denotes the vector field tangent to the outgoing null cones in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}. In components, L0=1L^{0}=1, L𝒊=x𝒊/|x|L^{{\bm{i}}}=x^{{\bm{i}}}/|x| and L4=0L^{4}=0;

  • L¯=tr\underline{L}=\partial_{t}-\partial_{r} denotes the vector field tangent to the incoming null cones in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}. In components, L¯0=1\underline{L}^{0}=1, L¯𝒊=x𝒊/|x|\underline{L}^{{\bm{i}}}=-x^{{\bm{i}}}/|x| and L¯4=0\underline{L}^{4}=0;

  • S1S^{1} and S2S^{2} denote orthogonal vector fields spanning the tangent space of the spheres t=constt=const, r=constr=const, y𝕊1y\in{\mathbb{S}}^{1};

  • 𝒰={L,L¯,S1,S2,y}\mathscr{U}=\{L,\underline{L},S^{1},S^{2},\partial_{y}\} denotes the full null frame in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1};

  • 𝒯={L,S1,S2,y}\mathscr{T}=\{L,S^{1},S^{2},\partial_{y}\} denotes the tangent frame in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1};

  • ={L}\mathscr{L}=\{L\};

  • For any vector field XX and frame vector UU, XU=XαUαX_{U}=X_{\alpha}U^{\alpha} where Xα=g¯αβXβX_{\alpha}=\overline{g}_{\alpha\beta}X^{\beta};

  • For any arbitrary vector field X=Xαα=XLL+XL¯L¯+XS1S1+XS2S2+XyyX=X^{\alpha}\partial_{\alpha}=X^{L}L+X^{\underline{L}}\underline{L}+X^{S^{1}}S^{1}+X^{S^{2}}S^{2}+X^{\partial_{y}}\partial_{y} where XL=(1/2)XL¯X^{L}=-(1/2)X_{\underline{L}}, XL¯=(1/2)XLX^{\underline{L}}=-(1/2)X_{L}, XA=XAX^{A}=X_{A} for A=S1,S2,yA=S^{1},S^{2},\partial_{y};

  • For any (0,2)(0,2) tensor π\pi and two vector fields X,YX,Y

    πXY=παβXαYβ.\pi_{XY}=\pi_{\alpha\beta}X^{\alpha}Y^{\beta}.

    For any two families 𝒱,𝒲\mathscr{V},\mathscr{W} of vector fields, |π|𝒱𝒲:=V𝒱,W𝒲|πVW||\pi|_{\mathscr{V}\mathscr{W}}:=\sum_{V\in\mathscr{V},W\in\mathscr{W}}|\pi_{VW}|;

  • The metric g¯\overline{g} has the following form relative to the null frame, note A,B{S1,S2,y}A,B\in\{S^{1},S^{2},\partial_{y}\},

    g¯LL=g¯L¯L¯=g¯LA=g¯L¯A=0,g¯LL¯=g¯L¯L=2,g¯AB=δAB.\overline{g}_{LL}=\overline{g}_{\underline{L}\underline{L}}=\overline{g}_{LA}=\overline{g}_{\underline{L}A}=0,\quad\overline{g}_{L\underline{L}}=\overline{g}_{\underline{L}L}=-2,\quad\overline{g}_{AB}=\delta_{AB}.

    As concerns the inverse metric, we have

    g¯LL=g¯L¯L¯=g¯LA=g¯L¯A=0,g¯LL¯=g¯L¯L=1/2,g¯AB=δAB.\overline{g}^{LL}=\overline{g}^{\underline{L}\underline{L}}=\overline{g}^{LA}=\overline{g}^{\underline{L}A}=0,\quad\overline{g}^{L\underline{L}}=\overline{g}^{\underline{L}L}=-1/2,\quad\overline{g}^{AB}=\delta^{AB}.

Admissible Vector Fields:

  • {Γ}={Ω𝒊𝒋,Ω0𝒊}\{\Gamma\}=\{\Omega_{{\bm{i}}{\bm{j}}},\Omega_{0{\bm{i}}}\} is the family of Klainerman vector fields, where Ω𝒊𝒋=x𝒊𝒋x𝒋𝒊,\Omega_{{\bm{i}}{\bm{j}}}=x_{\bm{i}}\partial_{\bm{j}}-x_{\bm{j}}\partial_{\bm{i}}, and Ω0𝒊=t𝒊+x𝒊t\Omega_{0{\bm{i}}}=t\partial_{\bm{i}}+x_{\bm{i}}\partial_{t};

  • {Z}={μ,Ω𝒊𝒋,Ω0𝒋,y}\{Z\}=\{\partial_{\mu},\Omega_{{\bm{i}}{\bm{j}}},\Omega_{0{\bm{j}}},\partial_{y}\} is the family of admissible vector fields;

  • For any multi-index K=(I,J)K=(I,J), we set ZK=IΓJZ^{K}=\partial^{I}\Gamma^{J}. If |I|+|J|=n|I|+|J|=n and |J|=k|J|=k, we say that KK is a multi-index of type (n,k)(n,k).

Commutators with the null frame:

  • [Ω0𝒋,t+r]=∂̸𝒋x𝒋r(t+r)[\Omega_{0{\bm{j}}},\partial_{t}+\partial_{r}]=-\not{\partial}_{\bm{j}}-\frac{x_{\bm{j}}}{r}(\partial_{t}+\partial_{r}),    [Ω0𝒋,∂̸𝒌]=(δ𝒋𝒌+x𝒋x𝒌r2)[(t+r)+1rΩ0r][\Omega_{0{\bm{j}}},\not{\partial}_{\bm{k}}]=\big{(}-\delta_{{\bm{j}}{\bm{k}}}+\frac{x_{\bm{j}}x_{\bm{k}}}{r^{2}}\big{)}\big{[}(\partial_{t}+\partial_{r})+\frac{1}{r}\Omega_{0r}\big{]}

  • [Ω𝒊𝒋,t+r]=0[\Omega_{{\bm{i}}{\bm{j}}},\partial_{t}+\partial_{r}]=0 ,   [Ω𝒊𝒋,∂̸𝒌]=δ𝒊𝒌∂̸𝒋+δ𝒋𝒌∂̸𝒊[\Omega_{{\bm{i}}{\bm{j}}},\not{\partial}_{\bm{k}}]=-\delta_{{\bm{i}}{\bm{k}}}\not{\partial}_{\bm{j}}+\delta_{{\bm{j}}{\bm{k}}}\not{\partial}_{\bm{i}}

  • [k,t+r]=δjkrjxjxkr3j[\partial_{k},\partial_{t}+\partial_{r}]=\frac{\delta_{jk}}{r}\partial_{j}-\frac{x_{j}x_{k}}{r^{3}}\partial_{j}

  • [Ω0𝒋,y]=[Ω𝒊𝒋,y]=[α,y]=0[\Omega_{0{\bm{j}}},\partial_{y}]=[\Omega_{{\bm{i}}{\bm{j}}},\partial_{y}]=[\partial_{\alpha},\partial_{y}]=0

Commutators with the hyperbolic derivatives:

  • [Ω0𝒋,t]=𝒋[\Omega_{0{\bm{j}}},\partial_{t}]=-\partial_{\bm{j}}, [Ω0𝒋,¯𝒂]=x𝒂t¯𝒋[\Omega_{0{\bm{j}}},\underline{\partial}_{{\bm{a}}}]=-\frac{x_{{\bm{a}}}}{t}\underline{\partial}_{\bm{j}}, [Ω0𝒋,¯4]=0[\Omega_{0{\bm{j}}},\underline{\partial}_{4}]=0

  • [Ω𝒊𝒋,t]=[Ω𝒊𝒋,¯4]=0[\Omega_{{\bm{i}}{\bm{j}}},\partial_{t}]=[\Omega_{{\bm{i}}{\bm{j}}},\underline{\partial}_{4}]=0, [Ω𝒊𝒋,¯𝒂]=δ𝒂𝒋¯𝒊δ𝒊𝒂¯𝒋[\Omega_{{\bm{i}}{\bm{j}}},\underline{\partial}_{{\bm{a}}}]=\delta_{{\bm{a}}{\bm{j}}}\underline{\partial}_{\bm{i}}-\delta_{{\bm{i}}{\bm{a}}}\underline{\partial}_{\bm{j}}

Exterior Region:

  • ~={(t,x):(t1)2r2=1}×𝕊1\widetilde{\mathscr{H}}=\{(t,x):(t-1)^{2}-r^{2}=1\}\times{\mathbb{S}}^{1} denotes the hyperboloid that separates the interior and exterior region. It asymptotically approaches the cone {t=r+1}×𝕊1\{t=r+1\}\times{\mathbb{S}}^{1};

  • 𝒟e:={(t,x):2t1+1+r2}×𝕊1\mathscr{D}^{\text{e}}:=\{(t,x):2\leq t\leq 1+\sqrt{1+r^{2}}\}\times{\mathbb{S}}^{1} denotes the exterior region;

  • 𝒟Te\mathscr{D}^{\text{e}}_{T} denotes the portion of exterior region in the time slab [2,T)[2,T);

  • Σte:={x3:|x|(t1)21}×𝕊1\Sigma^{\text{e}}_{t}:=\{x\in\mathbb{R}^{3}:|x|\geq\sqrt{(t-1)^{2}-1}\}\times\mathbb{S}^{1} denotes a constant time slice in the exterior region;

Interior Region:

  • 𝒟i:={(t,x):t1+1+r2}×𝕊1\mathscr{D}^{\text{i}}:=\{(t,x):t\geq 1+\sqrt{1+r^{2}}\}\times{\mathbb{S}}^{1} denotes the interior region;

  • s:={t2r2=s2 and tr+1}×𝕊1\mathscr{H}_{s}:=\{t^{2}-r^{2}=s^{2}\text{ and }t\geq r+1\}\times{\mathbb{S}}^{1} denotes a truncated hyperboloid in 1+3×𝕊1{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1};

  • Ss,r:=s{|x|=r}S_{s,r}:=\mathscr{H}_{s}\cap\{|x|=r\} is the two-sphere of radius rr on the hyperboloid s\mathscr{H}_{s};

  • [s0,s]:={(t,x,y)𝒟i:s02t2|x|2s2}\mathscr{H}_{[s_{0},s]}:=\{(t,x,y)\in\mathscr{D}^{\text{i}}:s_{0}^{2}\leq t^{2}-|x|^{2}\leq s^{2}\} denotes the hyperbolic slab in the interior region between s0\mathscr{H}_{s_{0}} and s\mathscr{H}_{s} when s>2s>2;

  • [s0,):={(t,x,y)𝒟i:2t2|x|2}\mathscr{H}_{[s_{0},\infty)}:=\{(t,x,y)\in\mathscr{D}^{\text{i}}:2\leq t^{2}-|x|^{2}\} is the unbounded portion of interior region above some hyperboloid s0\mathscr{H}_{s_{0}}.

1.6. From the null frame to hyperbolic derivatives

Below are some useful formulas relating the null framework 𝒰\mathscr{U} to the hyperbolic derivatives ¯𝒂\underline{\partial}_{\bm{a}}. We recall that s=t2r2s=\sqrt{t^{2}-r^{2}}. We have that

(1.14) L=(1rt)t+x𝒋r¯𝒋,L¯=(1+rt)tx𝒋r¯𝒋,∂̸𝒋=¯𝒋x𝒋x𝒊r2¯𝒊L=\Big{(}1-\frac{r}{t}\Big{)}\partial_{t}+\frac{x^{\bm{j}}}{r}\underline{\partial}_{\bm{j}},\quad\underline{L}=\Big{(}1+\frac{r}{t}\Big{)}\partial_{t}-\frac{x^{\bm{j}}}{r}\underline{\partial}_{\bm{j}},\quad\not{\partial}_{\bm{j}}=\underline{\partial}_{\bm{j}}-\frac{x_{\bm{j}}x^{\bm{i}}}{r^{2}}\underline{\partial}_{\bm{i}}

and

(1.15) UV=cUV00t2+cUVa0¯at+cUV0bt¯b+cUVab¯a¯b+dUV0t+dUVc¯c,U,V𝒰UV=c^{00}_{UV}\partial^{2}_{t}+c^{a0}_{UV}\underline{\partial}_{a}\partial_{t}+c^{0b}_{UV}\partial_{t}\underline{\partial}_{b}+c^{ab}_{UV}\underline{\partial}_{a}\underline{\partial}_{b}+d^{0}_{UV}\partial_{t}+d^{c}_{UV}\underline{\partial}_{c},\qquad U,V\in\mathscr{U}

where

(1.16) cLL00=(1r/t)2,cLL¯00=(1r2/t2),cL¯L¯00=(1+r/t)2,cAU00=0 for A={S1,S2,y},cLy04=1r/t,cL¯y04=(1+r/t),cUV04=0 otherwisecyy44=1,cUV44=0 otherwise\begin{gathered}c^{00}_{LL}=(1-r/t)^{2},\hskip 5.0ptc^{00}_{L\underline{L}}=(1-r^{2}/t^{2}),\hskip 5.0ptc^{00}_{\underline{L}\underline{L}}=(1+r/t)^{2},\hskip 5.0ptc^{00}_{AU}=0\text{ for }A=\{S^{1},S^{2},\partial_{y}\},\\ c^{04}_{L\partial_{y}}=1-r/t,\hskip 5.0ptc^{04}_{\underline{L}\partial_{y}}=(1+r/t),\hskip 5.0ptc^{04}_{UV}=0\text{ otherwise}\\ c^{44}_{\partial_{y}\partial_{y}}=1,\hskip 5.0ptc^{44}_{UV}=0\text{ otherwise}\end{gathered}

and

(1.17) |IΓJcL¯L¯αβ|IJ(1+t+r)|I|,|IΓJdUVγ|IJ(1+t+r)1|I|,|I|0|cLUαβ|t2r2t2,|IΓJcTUαβ|IJ(1+t+r)|I|,|I|1.\begin{gathered}|\partial^{I}\Gamma^{J}c^{\alpha\beta}_{\underline{L}\underline{L}}|\lesssim_{IJ}(1+t+r)^{-|I|},\quad|\partial^{I}\Gamma^{J}d^{\gamma}_{UV}|\lesssim_{IJ}(1+t+r)^{-1-|I|},\qquad|I|\geq 0\\ |c^{\alpha\beta}_{LU}|\lesssim\frac{t^{2}-r^{2}}{t^{2}},\quad|\partial^{I}\Gamma^{J}c^{\alpha\beta}_{TU}|\lesssim_{IJ}(1+t+r)^{-|I|},\qquad|I|\geq 1.\end{gathered}

For any tensor π\pi we have the following relations

(1.18) 4(t/s)2πUVcUV00=πL¯L¯s2(t+r)2+πLL(t+r)2s2+πLL¯4(t/s)^{2}\pi^{UV}c^{00}_{UV}=\pi_{\underline{L}\underline{L}}\frac{s^{2}}{(t+r)^{2}}+\pi_{LL}\frac{(t+r)^{2}}{s^{2}}+\pi_{L\underline{L}}

and

(1.19) πμνμν\displaystyle\pi^{\mu\nu}\partial_{\mu}\partial_{\nu} =πUVcUVμν¯μ¯ν+πUVdUVμ¯μ\displaystyle=\pi^{UV}c^{\mu\nu}_{UV}\underline{\partial}_{\mu}\underline{\partial}_{\nu}+\pi^{UV}d_{UV}^{\mu}\underline{\partial}_{\mu}
=πUV[cUV00t2+cUV𝒂β¯𝒂¯β+cUVα𝒃¯α¯𝒃+cUV4βy¯β+dUVμ¯μ]\displaystyle=\pi^{UV}\big{[}c_{UV}^{00}\partial_{t}^{2}+c_{UV}^{{\bm{a}}\beta}\underline{\partial}_{\bm{a}}\underline{\partial}_{\beta}+c_{UV}^{\alpha{\bm{b}}}\underline{\partial}_{\alpha}\underline{\partial}_{\bm{b}}+c_{UV}^{4\beta}\partial_{y}\underline{\partial}_{\beta}+d_{UV}^{\mu}\underline{\partial}_{\mu}\big{]}
π𝝁𝝂𝝁𝝂\displaystyle\pi^{{\bm{\mu}}{\bm{\nu}}}\partial_{\bm{\mu}}\partial_{\bm{\nu}} =πUV[cUV00t2+cUV𝒂𝜷¯𝒂¯𝜷+cUV𝜶𝒃¯𝜶¯𝒃+dUV𝝁¯𝝁].\displaystyle=\pi^{UV}\big{[}c_{UV}^{00}\partial_{t}^{2}+c_{UV}^{{\bm{a}}{\bm{\beta}}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{\beta}}+c_{UV}^{{\bm{\alpha}}{\bm{b}}}\underline{\partial}_{\bm{\alpha}}\underline{\partial}_{\bm{b}}+d_{UV}^{{\bm{\mu}}}\underline{\partial}_{\bm{\mu}}\big{]}.

For any smooth function u=u(t,x)u=u(t,x), we have the following inequalities

(1.20) |∂̸u||¯xu|,|¯u|(st)2|u|+|¯xu||¯u|(st)2|2u|+|¯xu|(st)2|2u|+1t|Z1u||∂̸∂̸u|1t|¯xZ1u|,|¯¯u|(st)4|2u|+(st)21t|Z1u|+1t|¯xZ1u|.\begin{gathered}|\not{\partial}u|\lesssim|\underline{\partial}_{x}u|,\qquad|\overline{\partial}u|\lesssim\Big{(}\frac{s}{t}\Big{)}^{2}|\partial u|+|\underline{\partial}_{x}u|\\ |\overline{\partial}\partial u|\lesssim\Big{(}\frac{s}{t}\Big{)}^{2}|\partial^{2}u|+|\underline{\partial}_{x}\partial u|\lesssim\Big{(}\frac{s}{t}\Big{)}^{2}|\partial^{2}u|+\frac{1}{t}|\partial Z^{\leq 1}u|\\ |\not{\partial}\not{\partial}u|\lesssim\frac{1}{t}|\underline{\partial}_{x}Z^{\leq 1}u|,\qquad|\overline{\partial}\overline{\partial}u|\lesssim\Big{(}\frac{s}{t}\Big{)}^{4}|\partial^{2}u|+\Big{(}\frac{s}{t}\Big{)}^{2}\frac{1}{t}|\partial Z^{\leq 1}u|+\frac{1}{t}|\underline{\partial}_{x}Z^{\leq 1}u|.\end{gathered}

1.7. Outline of the paper

The rest of the paper is organized in three main sections. Section 2 introduces some properties the metric coefficients inherit from the wave condition and which will be used throughout. Section 3 is devoted to perform the bootstrap argument in the exterior region and hence to prove the global existence of the solution to (1.8) there. In section 4 we perform the bootstrap argument in the interior region and conclude the proof of the main theorem. Two appendix sections follow: in section A we state and prove the exterior and interior energy inequalities, while section B contains a list of weighted Sobolev and Hardy inequalities.

2. The wave condition

The metric solution gg to (1.1) satisfies, when written in harmonic coordinates {xμ}μ\{x^{\mu}\}_{\mu}, the wave coordinate condition

gμνΓμνλ=0,λ=0,4¯g^{\mu\nu}{\Gamma^{\lambda}_{\mu\nu}}=0,\quad\lambda=\overline{0,4}

where Γμνλ\Gamma^{\lambda}_{\mu\nu} are the Christoffel symbols of gg in the coordinates {xμ}μ\{x^{\mu}\}_{\mu}. The above equations are equivalent to each of the following

(2.1) μ(gμν|detg|)=0,gαβαgβν=12gαβνgαβ,αgαν=12gαβgνμμgαβ,ν=0,4¯.\partial_{\mu}\big{(}g^{\mu\nu}\sqrt{|\det g|}\big{)}=0,\quad g^{\alpha\beta}\partial_{\alpha}g_{\beta\nu}=\frac{1}{2}g^{\alpha\beta}\partial_{\nu}g_{\alpha\beta},\quad\partial_{\alpha}g^{\alpha\nu}=\frac{1}{2}g_{\alpha\beta}g^{\nu\mu}\partial_{\mu}g^{\alpha\beta},\quad\nu=\overline{0,4}.

These relations are particularly useful when written with respect to the null framework, as they allow us to recover additional information on metric coefficients HLTH_{LT} (and hence on hLTh_{LT}) for any T𝒯T\in\mathscr{T}, and to show that their derivatives have a special behavior compared to those of general coefficients HμνH^{\mu\nu}. This is the content of the following Lemmas, which are presented in a slightly different form than the ones in [40].

Lemma 2.1.

Let gg be a Lorentzian metric satisfying the wave coordinate condition relative to a coordinate system {xμ}μ=04\{x^{\mu}\}_{\mu=0}^{4}. Let K=(I,J)K=(I,J) be any multi-index with positive length and assume that the perturbation tensor Hμν=gμνg¯μνH^{\mu\nu}=g^{\mu\nu}-\bar{g}^{\mu\nu} satisfies the following

|ZKH|C,|K||K|/2.|Z^{K^{\prime}}H|\lesssim C,\quad\forall\,|K^{\prime}|\leq\lfloor|K|/2\rfloor.

Then

(2.2) |H|𝒯|¯H|+|H||H|(st)2|H|+|¯xyH|+|H||H||\partial H|_{\mathscr{L}\mathscr{T}}\lesssim|\overline{\partial}H|+|H||\partial H|\lesssim\Big{(}\frac{s}{t}\Big{)}^{2}|\partial H|+|\underline{\partial}_{xy}H|+|H||\partial H|

and in any region where rt1r\gtrsim t\gtrsim 1

(2.3) |ZKH|𝒯+|ZKH|𝒯|K||K|(|¯ZKH|+r1|ZKH|)+|K1|+|K2||K||ZK1H||ZK2H|\displaystyle|Z^{K}\partial H|_{\mathscr{L}\mathscr{T}}+|\partial Z^{K}H|_{\mathscr{L}\mathscr{T}}\lesssim\sum_{|K^{\prime}|\leq|K|}(|\overline{\partial}Z^{K^{\prime}}H|+r^{-1}|Z^{K^{\prime}}H|)+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H||\partial Z^{K_{2}}H|
|K||K|(st)2|ZKH|+|¯ZKH|+r1|ZKH|+|K1|+|K2||K||ZK1H||ZK2H|\displaystyle\lesssim\sum_{|K^{\prime}|\leq|K|}\Big{(}\frac{s}{t}\Big{)}^{2}|\partial Z^{K^{\prime}}H|+|\underline{\partial}Z^{K^{\prime}}H|+r^{-1}|Z^{K^{\prime}}H|+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H||\partial Z^{K_{2}}H|

Similar estimates hold for the metric tensor hμν=gμνg¯μνh_{\mu\nu}=g_{\mu\nu}-\bar{g}_{\mu\nu}.

Proof.

We write gμνg^{\mu\nu} in terms of the perturbation metric HμνH^{\mu\nu}. From the following equality

gμν|detg|=(g¯μν+Hμν)(112trH+𝒪(H2))g^{\mu\nu}\sqrt{|\text{det}g|}=(\bar{g}^{\mu\nu}+H^{\mu\nu})\Big{(}1-\frac{1}{2}\text{tr}H+\mathscr{O}(H^{2})\Big{)}

and the wave condition (2.1) we obtain that

(2.4) μ(Hμν12g¯μνtrH+𝒪μν(H2))=0,where 𝒪μν(H2)=𝒪(|H|2).\partial_{\mu}\Big{(}H^{\mu\nu}-\frac{1}{2}\bar{g}^{\mu\nu}\text{tr}H+\mathscr{O}^{\mu\nu}(H^{2})\Big{)}=0,\quad\text{where }\mathscr{O}^{\mu\nu}(H^{2})=\mathscr{O}(|H|^{2}).

The divergence of a vector field can be expressed relative to the null frame as follows

(2.5) μFμ=Lμu¯FμL¯μuFμ+AμAFμ,A{S1,S2,y}\partial_{\mu}F^{\mu}=L_{\mu}\partial_{\underline{u}}F^{\mu}-\underline{L}_{\mu}\partial_{u}F^{\mu}+A_{\mu}\partial_{A}F^{\mu},\quad A\in\{S_{1},S_{2},\partial_{y}\}

so setting H~μν:=Hμν12g¯μνtrH\tilde{H}^{\mu\nu}:=H^{\mu\nu}-\frac{1}{2}\bar{g}^{\mu\nu}\text{tr}H and contracting (2.4) with any T𝒯T\in\mathscr{T} we deduce that

(2.6) u¯HLT=u¯H~LT=uH~L¯TAH~AT+𝒪(HH).\partial_{\underline{u}}H_{LT}=\partial_{\underline{u}}\tilde{H}_{LT}=\partial_{u}\tilde{H}_{\underline{L}T}-\partial_{A}\tilde{H}_{AT}+{\mathscr{O}}(H\cdot\partial H).

The first of the above equalities follows from the fact that g¯LL=gLA=0\bar{g}^{LL}=g^{LA}=0. Relation (2.6) and the first two inequalities in (1.20) imply immediately (2.2).

We now recall the commutators between any admissible vector field ZZ and the null frame, which can be summarized in the following formula

[Z,¯α]=𝜷=03cZα𝜷¯𝜷+𝒊=13dZα𝒊𝒊r+eZαΩ0rr,cZα𝜷,dZα𝒊,eZα=𝒪(xr)[Z,\overline{\partial}_{\alpha}]=\sum_{{\bm{\beta}}=0}^{3}c_{Z\alpha}^{{\bm{\beta}}}\overline{\partial}_{{\bm{\beta}}}+\sum_{{\bm{i}}=1}^{3}d_{Z\alpha}^{{\bm{i}}}\frac{\partial_{{\bm{i}}}}{r}+e_{Z\alpha}\frac{\Omega_{0r}}{r},\qquad c_{Z\alpha}^{{\bm{\beta}}},d_{Z\alpha}^{{\bm{i}}},e_{Z\alpha}=\mathscr{O}\big{(}\frac{x}{r}\big{)}

where cZα𝜷,dZα𝒊,eZαc_{Z\alpha}^{{\bm{\beta}}},d_{Z\alpha}^{{\bm{i}}},e_{Z\alpha} are smooth homogeneous functions of xx such that cα𝜷=eα=0c_{\partial\alpha}^{{\bm{\beta}}}=e_{\partial\alpha}=0, dΓα𝒊=0d^{{\bm{i}}}_{\Gamma\alpha}=0 and

|xIcZα𝜷|+|IdZα𝒊|+|IeZα|r|I|,|I|0.|\partial^{I}_{x}c_{Z\alpha}^{{\bm{\beta}}}|+|\partial^{I}d_{Z\alpha}^{{\bm{i}}}|+|\partial^{I}e_{Z\alpha}|\lesssim r^{-|I|},\qquad|I|\geq 0.

Using an induction argument on |K||K|, one can show that for any sufficiently smooth function ww the following inequality holds true whenever rtr\gtrsim t

(2.7) |[ZK,¯]w||K|<|K|(|¯ZKw|+r1|ZKw|)+|K||K|r1|ZKw|.|[Z^{K},\overline{\partial}]w|\lesssim\sum_{|K^{\prime}|<|K|}(|\overline{\partial}Z^{K^{\prime}}w|+r^{-1}|\partial Z^{K^{\prime}}w|)+\sum_{|K^{\prime}|\leq|K|}r^{-1}|Z^{K^{\prime}}w|.

As concerns the commutators with the transverse vector field, we simply have

(2.8) |[ZK,tr]w||K|<|K||ZKw||K|<|K||u¯ZKw|+|¯ZKw|.|[Z^{K},\partial_{t}-\partial_{r}]w|\lesssim\sum_{|K^{\prime}|<|K|}|\partial Z^{K^{\prime}}w|\lesssim\sum_{|K^{\prime}|<|K|}|\partial_{\underline{u}}Z^{K^{\prime}}w|+|\overline{\partial}Z^{K^{\prime}}w|.

In order to obtain (2.3), we apply ZKZ^{K} vector fields to both sides of equality (2.6). Using (2.7) we find that

|ZKu¯H|𝒯\displaystyle|Z^{K}\partial_{\underline{u}}H|_{\mathscr{L}\mathscr{T}} |K||K|(|¯ZKH|+r1|ZKH|)+|K1|+|K2||K||ZK1H||ZK2H|\displaystyle\lesssim\sum_{|K^{\prime}|\leq|K|}(|\overline{\partial}Z^{K^{\prime}}H|+r^{-1}|Z^{K^{\prime}}H|)+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H||\partial Z^{K_{2}}H|

which, together with (2.8), yields

|u¯ZKH|𝒯\displaystyle|\partial_{\underline{u}}Z^{K}H|_{\mathscr{L}\mathscr{T}} |K||K|(|¯ZKH|+r1|ZKH|)+|K1|+|K2||K||ZK1H||ZK2H|\displaystyle\lesssim\sum_{|K^{\prime}|\leq|K|}(|\overline{\partial}Z^{K^{\prime}}H|+r^{-1}|Z^{K^{\prime}}H|)+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H||\partial Z^{K_{2}}H|
+|K|<|K||u¯ZKH|𝒯.\displaystyle+\sum_{|K^{\prime}|<|K|}|\partial_{\underline{u}}Z^{K^{\prime}}H|_{\mathscr{L}\mathscr{T}}.

The conclusion of the proof of the first inequality in (2.3) then follows by induction on |K||K|. The latter follows using also (1.20). Finally, inequalities (2.2) and (2.3) for hh simply follow from the equality Hμν=hμν+𝒪(h2)H^{\mu\nu}=-h^{\mu\nu}+\mathscr{O}(h^{2}). ∎

Inequalities (2.2) and (2.3) hold true also for the tensor H1,μνH^{1,\mu\nu} introduced in (1.12).

Lemma 2.2.

Under the same assumptions of the previous lemma, we have that

(2.9) |ZKH1|𝒯+|ZKH1|𝒯|K||K|(|¯ZKH1|+r1|ZKH1|)\displaystyle|Z^{K}\partial H^{1}|_{\mathscr{L}\mathscr{T}}+|\partial Z^{K}H^{1}|_{\mathscr{L}\mathscr{T}}\lesssim\sum_{|K^{\prime}|\leq|K|}(|\overline{\partial}Z^{K^{\prime}}H^{1}|+r^{-1}|Z^{K^{\prime}}H^{1}|)
+|K1|+|K2||K||ZK1H1||ZK2H1|+Mχ0(t/2r3t/4)(1+t+r)2\displaystyle+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H^{1}||\partial Z^{K_{2}}H^{1}|+\frac{M\chi_{0}\big{(}t/2\leq r\leq 3t/4\big{)}}{(1+t+r)^{2}}

and

(2.10) |ZKH1|𝒯+|ZKH1|𝒯|K||K|(st)2|ZKH1|+|¯ZKH1|+r1|ZKH1|\displaystyle|Z^{K}\partial H^{1}|_{\mathscr{L}\mathscr{T}}+|\partial Z^{K}H^{1}|_{\mathscr{L}\mathscr{T}}\lesssim\sum_{|K^{\prime}|\leq|K|}\Big{(}\frac{s}{t}\Big{)}^{2}|\partial Z^{K^{\prime}}H^{1}|+|\underline{\partial}Z^{K^{\prime}}H^{1}|+r^{-1}|Z^{K^{\prime}}H^{1}|
+|K1|+|K2||K||ZK1H1||ZK2H1|+Mχ0(t/2r3t/4)(1+t+r)2\displaystyle+\sum_{|K_{1}|+|K_{2}|\leq|K|}|Z^{K_{1}}H^{1}||\partial Z^{K_{2}}H^{1}|+\frac{M\chi_{0}\big{(}t/2\leq r\leq 3t/4\big{)}}{(1+t+r)^{2}}

where χ0(t/2r3t/4)\chi_{0}\big{(}t/2\leq r\leq 3t/4\big{)} is a cut-off function supported for t/2r3t/4t/2\leq r\leq 3t/4. Similar estimates hold true for h1h^{1}.

Proof.

We set H~0,μν:=H0,μν12g¯μνtr(H0)\tilde{H}^{0,\mu\nu}:=H^{0,\mu\nu}-\frac{1}{2}\bar{g}^{\mu\nu}\text{tr}(H^{0}) and derive from the definition of H0H^{0} that

(2.11) μH~0,μν=2χ(rt)χ(r)Mt2δν0.\partial_{\mu}\tilde{H}^{0,\mu\nu}=2\chi^{\prime}\Big{(}\frac{r}{t}\Big{)}\chi(r)\frac{M}{t^{2}}\delta^{\nu 0}.

We inject the above formula into (2.4) and obtain that

ZKμ(H1,μν)=ZKμ𝒪μν(H2)ZK(2χ(rt)χ(r)Mt2δν0).Z^{K}\partial_{\mu}(H^{1,\mu\nu})=-Z^{K}\partial_{\mu}\mathscr{O}^{\mu\nu}(H^{2})-Z^{K}\Big{(}2\chi^{\prime}\Big{(}\frac{r}{t}\Big{)}\chi(r)\frac{M}{t^{2}}\delta^{\nu 0}\Big{)}.

Then the result of the statement follows using the same argument as in previous lemma’s proof. Furthermore, from (1.12) a similar inequality can be proved for hμν1h^{1}_{\mu\nu}. ∎

3. The Exterior Region

The goal of this section is to prove the existence in the exterior region 𝒟e\mathscr{D}^{\text{e}} of the solution hαβ1h^{1}_{\alpha\beta} of (1.8) with data satisfying the hypothesis of theorem 1.2. The proof is based on a bootstrap argument in which the a-priori assumptions are bounds on the higher order weighted energies of hαβ1h^{1}_{\alpha\beta}, introduced below.

For any fixed κ>0\kappa>0, we define the exterior weighted energy functional of hαβ1h^{1}_{\alpha\beta} as

Ee,κ(t,hαβ1)={|x|t1}×𝕊1(2+|x|t)1+2κ|txyhαβ1(t,x,y)|2𝑑x𝑑y+2t{|x|τ1}×𝕊1(2+|x|t)2κ|¯hαβ1(τ,x,y)|2𝑑x𝑑y𝑑τE^{\text{e},\kappa}(t,h^{1}_{\alpha\beta})=\iint_{\{|x|\geq t-1\}\times{\mathbb{S}}^{1}}(2+|x|-t)^{1+2\kappa}|\nabla_{txy}h^{1}_{\alpha\beta}(t,x,y)|^{2}dxdy\ \\ +\int_{2}^{t}\iint_{\{|x|\geq\tau-1\}\times{\mathbb{S}}^{1}}(2+|x|-t)^{2\kappa}|\overline{\nabla}h^{1}_{\alpha\beta}(\tau,x,y)|^{2}dxdyd\tau

and denote Ee,κ(t,h1)=α,βEe,κ(t,hαβ1)E^{\text{e},\kappa}(t,h^{1})=\sum_{\alpha,\beta}E^{\text{e},\kappa}(t,h^{1}_{\alpha\beta}). We fix NN\in{\mathbb{N}} with N7N\geq 7 and assume the existence of a positive constant C0C_{0} and of some small parameters 0<σ<κ/310<\sigma<\kappa/3\ll 1 such that the solution h1h^{1} of (1.8) exists in 𝒟T0e\mathscr{D}^{\text{e}}_{T_{0}} and for all t[2,T0)t\in[2,T_{0}) it satisfies

(3.1) Ee,κ(t,ZNh1)1/22C0ϵtσ\displaystyle E^{\text{e},\kappa}(t,Z^{\leq N}h^{1})^{1/2}\leq 2C_{0}\epsilon t^{\sigma}
(3.2) Ee,1+κ(t,ZNh1)1/22C0ϵtσ.\displaystyle E^{e,1+\kappa}(t,\partial Z^{\leq N}h^{1})^{1/2}\leq 2C_{0}\epsilon t^{\sigma}.

The result we want to prove here affirms the following

Proposition 3.1.

Let NN\in{\mathbb{N}} with N6N\geq 6 be fixed. There exists a constant C0C_{0} sufficiently large, 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small and a universal positive constant CC such that, for every 0<ϵ<ϵ00<\epsilon<\epsilon_{0} if h1h^{1} is a solution of (1.8) in the time interval [2,T0)[2,T_{0}) and satisfies the bounds (3.1)-(3.2) for all t[2,T0)t\in[2,T_{0}), then in the same interval it actually satisfies

(3.3) Ee,κ(t,ZNh1)1/2C0ϵtσ2+CC0ϵ\displaystyle E^{\text{e},\kappa}(t,Z^{\leq N}h^{1})^{1/2}\leq C_{0}\epsilon t^{\frac{\sigma}{2}+CC_{0}\epsilon}
(3.4) Ee,1+κ(t,ZNh1)1/2C0ϵtσ2+CC0ϵ.\displaystyle E^{e,1+\kappa}(t,\partial Z^{\leq N}h^{1})^{1/2}\leq C_{0}\epsilon t^{\frac{\sigma}{2}+CC_{0}\epsilon}.

The time T0T_{0} in the statement of the above proposition is arbitrary and one can hence infer that the solution exists globally in 𝒟e\mathscr{D}^{\text{e}}. We also observe that, as a consequence of the energy assumptions (3.1)-(3.2), there exists an integrable function lL1([2,T0))l\in L^{1}([2,T_{0})) such that

(3.5) (2+rt)12+κZNh1L2(Σte)2C0ϵtσ\displaystyle\big{\|}(2+r-t)^{\frac{1}{2}+\kappa}\ \partial Z^{\leq N}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\leq 2C_{0}\epsilon t^{\sigma}
(3.6) (2+rt)κ¯ZNh1L2(Σte)2C0ϵl(t)tσ\displaystyle\big{\|}(2+r-t)^{\kappa}\ \overline{\partial}Z^{\leq N}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\leq 2C_{0}\epsilon\sqrt{l(t)}t^{\sigma}
(3.7) (2+rt)32+κ2ZNh1L2(Σte)2C0ϵtσ\displaystyle\big{\|}(2+r-t)^{\frac{3}{2}+\kappa}\ \partial^{2}Z^{\leq N}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\leq 2C_{0}\epsilon t^{\sigma}
(3.8) (2+rt)1+κ¯ZNh1L2(Σte)2C0ϵl(t)tσ.\displaystyle\big{\|}(2+r-t)^{1+\kappa}\ \overline{\partial}\partial Z^{\leq N}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\leq 2C_{0}\epsilon\sqrt{l(t)}t^{\sigma}.

The first step to recover the enhanced bounds (3.3)-(3.4) is to compare the equation satisfied by the differentiated unknown ZKhαβ1Z^{K}h^{1}_{\alpha\beta} for any K=(I,J)K=(I,J) with |K|N+1|K|\leq N+1, with the linear inhomogeneous equation (A.1). The commutation of ZKZ^{K} with equation (1.8) shows that ZKhαβ1Z^{K}h^{1}_{\alpha\beta} solves

(3.9) ~gZKhαβ1=FαβK+Fαβ0,K,Fαβ0,K=ZK~ghαβ0\tilde{\Box}_{g}Z^{K}h^{1}_{\alpha\beta}=F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta},\qquad F^{0,K}_{\alpha\beta}=Z^{K}\tilde{\Box}_{g}h^{0}_{\alpha\beta}

with source term FαβKF^{K}_{\alpha\beta} given by

(3.10) FαβK=ZKFαβ(h)(h,h)[ZK,Hμνμν]hαβ1.F^{K}_{\alpha\beta}=Z^{K}F_{\alpha\beta}(h)(\partial h,\partial h)-[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}.

The second step consists in recovering suitable pointwise decay estimates and L2L^{2} estimates for tensors hαβh_{\alpha\beta} and HαβH^{\alpha\beta} and their derivatives. Our aim is in fact to apply energy inequality (A.2) with 𝐖=ZKhαβ1\mathbf{W}=Z^{K}h^{1}_{\alpha\beta}, 𝐅=FαβK+Fαβ0,K\mathbf{F}=F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta} and w(q)=(2+rt)12+i+κw(q)=(2+r-t)^{\frac{1}{2}+i+\kappa} with i=0,1i=0,1 depending on KK. Such estimates allow us, on the one hand, to justify the use of (A.2) and, on the other, to suitably estimate the different contributions to the right hand side of such energies, and hence to propagate (3.1)-(3.2). The derivation of these bounds is the content of the following subsections.

3.1. Pointwise bounds

A first set of pointwise decay bounds for the metric perturbation hαβ1h^{1}_{\alpha\beta}, as well as for tensor H1,αβH^{1,\alpha\beta}, are obtained from the a-priori energy assumptions (3.1)-(3.2) via the weighted Sobolev and Hardy embeddings stated in appendix B. As concerns the mass term, a straightforward computation using directly the expression of hαβ0h^{0}_{\alpha\beta} in (1.7) shows that for all (t,x,y)1+3×𝕊1(t,x,y)\in{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}

(3.11) sup𝕊1|IZJh0|ϵ(1+r)1|I|.\sup_{{\mathbb{S}}^{1}}|\partial^{I}Z^{J}h^{0}|\lesssim\epsilon(1+r)^{-1-|I|}.
Proposition 3.2.

Let us define the weighted pointwise norm

|u(t)|λ:=sup(x,y)Σte(1+t+r)(2+rt)1+λ|u(t,x,y)|.|u(t)|_{\lambda}:=\sup_{(x,y)\in\Sigma^{\text{e}}_{t}}(1+t+r)(2+r-t)^{1+\lambda}|u(t,x,y)|.

Assume that the solution hαβ1h^{1}_{\alpha\beta} of (1.8) exists in the time interval [2,T0)[2,T_{0}) and satisfies (3.1)-(3.2) for all t[2,T0)t\in[2,T_{0}). Then the following estimates hold true in 𝒟T0e\mathscr{D}^{\text{e}}_{T_{0}}

(3.12) |ZN3h1|κ+|2ZN3h1|1/2+κC0ϵtσ|\partial Z^{\leq N-3}h^{1}|_{\kappa}+|\partial^{2}Z^{\leq N-3}h^{1}|_{1/2+\kappa}\lesssim C_{0}\epsilon t^{\sigma}
(3.13) |¯ZN3h1|κ1/2+|¯ZN3h1|κC0ϵtσl(t)|\overline{\partial}Z^{\leq N-3}h^{1}|_{\kappa-1/2}+|\overline{\partial}\partial Z^{\leq N-3}h^{1}|_{\kappa}\lesssim C_{0}\epsilon t^{\sigma}\sqrt{l(t)}
(3.14) |ZN2h1|κ1C0ϵtσ|Z^{\leq N-2}h^{1}|_{\kappa-1}\lesssim C_{0}\epsilon t^{\sigma}
(3.15) |ZN3h1,|κ1/2C0ϵtσ.|Z^{\leq N-3}h^{1,\natural}|_{\kappa-1/2}\lesssim C_{0}\epsilon t^{\sigma}.

Estimates (3.12)-(3.14) hold true also for tensor H1,αβH^{1,\alpha\beta}.

Proof.

Estimate (3.12) (resp. (3.13)) for the second order derivatives 2\partial^{2} (resp. ¯\overline{\partial}\partial) of ZN3h1Z^{\leq N-3}h^{1} follows from the energy bound (3.7) (resp. (3.8)) and from inequality (B.2) applied with β=1+λ\beta=1+\lambda and λ=1/2+κ\lambda=1/2+\kappa (resp. λ=κ\lambda=\kappa).

Estimate (3.12) (resp. (3.13)) for the first order derivatives \partial (resp. ¯\overline{\partial}) of ZN3h1Z^{\leq N-3}h^{1} follows from the energy bound (3.7) (resp. (3.8)) and inequality (B.5) applied with β=1+κ\beta=1+\kappa (resp. β=1/2+κ\beta=1/2+\kappa), and estimate (3.15) follows using in addition the Poincaré inequality.

Estimate (3.14) follows from the energy bound (3.5) and inequality (B.5) with β=κ\beta=\kappa.

Finally, one can show that estimates (3.12)-(3.14) hold true for H1,αβH^{1,\alpha\beta} using (1.9). ∎

As a result of inequality (2.9) and the pointwise bounds we just obtained, we can show that the metric coefficients hLT1h^{1}_{LT} satisfy enhanced pointwise decay estimates compared to those in Proposition 3.2.

Proposition 3.3.

Under the assumptions of Proposition 3.2, we have

(3.16) |ZN3hLT1(t,x,y)|C0ϵ[(1+t+r)1+σl(t)(2+rt)12κ+(1+t+r)2+2σ(2+rt)κ]\displaystyle|\partial Z^{\leq N-3}h^{1}_{LT}(t,x,y)|\lesssim C_{0}\epsilon\big{[}(1+t+r)^{-1+\sigma}\sqrt{l(t)}(2+r-t)^{-\frac{1}{2}-\kappa}+(1+t+r)^{-2+2\sigma}(2+r-t)^{-\kappa}\big{]}
(3.17) |ZN4hLT1(t,x,y)|C0ϵ(1+t+r)32+2σ(2+rt)12κ\displaystyle|Z^{\leq N-4}h^{1}_{LT}(t,x,y)|\lesssim C_{0}\epsilon(1+t+r)^{-\frac{3}{2}+2\sigma}(2+r-t)^{\frac{1}{2}-\kappa}

and

(3.18) ZNhLT1(t,r)L2(𝕊2×𝕊1)C0ϵtσtκμ(2+rt)μ(l(t)r1/2+1r).\|Z^{\leq N}h^{1}_{LT}(t,r)\|_{L^{2}(\mathbb{S}^{2}\times\mathbb{S}^{1})}\lesssim\frac{C_{0}\epsilon t^{\sigma}}{t^{\kappa-\mu}(2+r-t)^{\mu}}\Big{(}\frac{\sqrt{l(t)}}{r^{1/2}}+\frac{1}{r}\Big{)}.

The same bounds are satisfied by HLT1H^{1}_{LT}.

Proof.

From relation (1.9) and pointwise bounds (3.11), (3.12), (3.14), it is clear that the estimates (3.16) and (3.17) for hLT1h^{1}_{LT} are also satisfied by HLT1H^{1}_{LT}.

Bound (3.16) follows immediately from inequality (2.9) coupled with (3.12)-(3.14).

The proof of (3.17) requires more work because a naive integration of (3.16) along the integral curves of tr\partial_{t}-\partial_{r} does not produce the required result due to the factor l(t)\sqrt{l(t)} (it would if this was replaced by the explicit decay t1/2t^{-1/2}). Of course, the estimate is satisfied in the region where r2tr\geq 2t simply after (3.14). We then restrict our attention to the portion of exterior region for which r<2tr<2t and proceed as follows:

  • -

    first, we recover a better bound for ZN4hLT1\partial Z^{\leq N-4}h^{1}_{LT} than the one in (3.16), in which l(t)\sqrt{l(t)} is replaced by a decay t12+t^{-\frac{1}{2}+}. This is obtained by the integration of ¯rZN4hLT1\underline{\partial}_{r}\partial Z^{\leq N-4}h^{1}_{LT} along hyperboloids in some dyadic time slab, where ¯r=x𝒋trΩ0𝒋\underline{\partial}_{r}=\frac{x^{\bm{j}}}{tr}\Omega_{0{\bm{j}}};

  • -

    then, we deduce the desired estimate on ZN4hLT1Z^{\leq N-4}h^{1}_{LT} by integration of the bounds obtained in step 1 along the integral curves of u¯\partial_{{\underline{u}}}.

Step 1. From the relation ¯r=x𝒋trΩ0𝒋\underline{\partial}_{r}=\frac{x^{\bm{j}}}{tr}\Omega_{0{\bm{j}}} and inequality (3.16), we see that in fact

|¯rZN4hLT1|(1+t+r)1|ZN3hLT1|C0ϵ(1+t+r)2+σl(t)(2+rt)12κ+C0ϵ(1+t+r)3+2σ(2+rt)κ.|\underline{\partial}_{r}\partial Z^{\leq N-4}h^{1}_{LT}|\lesssim(1+t+r)^{-1}|\partial Z^{\leq N-3}h^{1}_{LT}|\\ \lesssim C_{0}\epsilon(1+t+r)^{-2+\sigma}\sqrt{l(t)}(2+r-t)^{-\frac{1}{2}-\kappa}+C_{0}\epsilon(1+t+r)^{-3+2\sigma}(2+r-t)^{-\kappa}.

Moreover, thanks to the pointwise bound (3.12) we have that on the cone r=2tr=2t

|ZN4hLT1(t,x,y)|C0ϵ(1+t+r)2κ+σ.|\partial Z^{\leq N-4}h^{1}_{LT}(t,x,y)|\lesssim C_{0}\epsilon(1+t+r)^{-2-\kappa+\sigma}.

We dyadically decompose the time interval [2,T0)=k=1k0[2k,2k+1)[2,T0)[2,T_{0})=\cup_{k=1}^{k_{0}}[2^{k},2^{k+1})\cap[2,T_{0}) where k0ln2T0k_{0}\sim\ln_{2}T_{0} and denote 𝒞ke\mathscr{C}^{e}_{k} the portion of the exterior region in the time slab [2k,2k+1)[2^{k},2^{k+1}), so that 𝒞e=k=1k0𝒞ke\mathscr{C}^{e}=\cup_{k=1}^{k_{0}}\mathscr{C}^{e}_{k}. Inequality (3.16) and the fact that lL1([2,T0))l\in L^{1}([2,T_{0})) imply the existence, for every fixed kk, of a time τk[2k,2k+1)[2,T0)\tau_{k}\in[2^{k},2^{k+1})\cap[2,T_{0}) such that

|ZN4hLT1(τk,x,y)|C0ϵτk32+σ(2+rτk)12κ+C0ϵτk2+2σ(2+rτk)κ.|\partial Z^{\leq N-4}h^{1}_{LT}(\tau_{k},x,y)|\lesssim C_{0}\epsilon\tau_{k}^{-\frac{3}{2}+\sigma}(2+r-\tau_{k})^{-\frac{1}{2}-\kappa}+C_{0}\epsilon\tau_{k}^{-2+2\sigma}(2+r-\tau_{k})^{-\kappa}.

For every fixed (t,x,y)𝒞ke(t,x,y)\in\mathscr{C}^{e}_{k}, we then integrate ¯rZN4hLT1\underline{\partial}_{r}\partial Z^{\leq N-4}h^{1}_{LT} along the integral curve τγ(τ)\tau\mapsto\gamma(\tau) of ¯r\underline{\partial}_{r} passing through (t,x,y)(t,x,y)999These are the hyperboloids {τ2|w|2=t2r2}\{\tau^{2}-|w|^{2}=t^{2}-r^{2}\}. If t=rt=r they degenerate into the cone {τ|w|=tr}\{\tau-|w|=t-r\}. until its first intersection with {τ=τk}{|w|=2τ}\{\tau=\tau_{k}\}\cup\{|w|=2\tau\}. We denote (τk,xk,y)(\tau^{*}_{k},x^{*}_{k},y) the point at which such an intersection occurs first and observe that τk2kt\tau^{*}_{k}\sim 2^{k}\sim t. We deduce that

(3.19) |ZN4hLT1(t,x,y)||ZN4hLT1(τk,xk,y)|+τkt|¯rZN4hLT1(γ(τ))|𝑑τ\displaystyle|\partial Z^{\leq N-4}h^{1}_{LT}(t,x,y)|\leq|\partial Z^{N-4}h^{1}_{LT}(\tau^{*}_{k},x^{*}_{k},y)|+\int_{\tau^{*}_{k}}^{t}|\underline{\partial}_{r}\partial Z^{\leq N-4}h^{1}_{LT}(\gamma(\tau))|d\tau
C0ϵ(1+t+r)32+σ(2+rt)12κ+C0ϵ(1+t+r)2+2σ(2+rt)κ.\displaystyle\lesssim C_{0}\epsilon(1+t+r)^{-\frac{3}{2}+\sigma}(2+r-t)^{-\frac{1}{2}-\kappa}+C_{0}\epsilon(1+t+r)^{-2+2\sigma}(2+r-t)^{-\kappa}.

Step 2. We now integrate (3.19) along the integral lines of u¯\partial_{{\underline{u}}}, up to ={r=2t}{t=2}\mathscr{B}=\{r=2t\}\cup\{t=2\}. After (3.14), we have that

|ZN2h1|C0ϵ(1+t+r)2(2+rt).|Z^{\leq N-2}h^{1}|_{\mathscr{B}}\lesssim C_{0}\epsilon(1+t+r)^{-2}(2+r-t).

Therefore, from (3.19) we get that

|ZN4hLT1(t,x,y)||ZN4hLT1(λk,xk,y)|+λkt|u¯ZN4hLT1(γ(τ))|𝑑τ\displaystyle|Z^{\leq N-4}h^{1}_{LT}(t,x,y)|\leq|Z^{\leq N-4}h^{1}_{LT}(\lambda^{*}_{k},x^{*}_{k},y)|+\int_{\lambda^{*}_{k}}^{t}|\partial_{{\underline{u}}}Z^{\leq N-4}h^{1}_{LT}(\gamma(\tau))|d\tau
C0ϵ(1+t+r)2(2+rt)+(1+t+r)32+σλktC0ϵ(2+t+r2τ)12κ𝑑τ\displaystyle\lesssim C_{0}\epsilon(1+t+r)^{-2}(2+r-t)+(1+t+r)^{-\frac{3}{2}+\sigma}\int_{\lambda^{*}_{k}}^{t}C_{0}\epsilon(2+t+r-2\tau)^{-\frac{1}{2}-\kappa}d\tau
+(1+t+r)2+2σλktC0ϵ(2+t+r2τ)κ𝑑τ\displaystyle+(1+t+r)^{-2+2\sigma}\int_{\lambda^{*}_{k}}^{t}C_{0}\epsilon(2+t+r-2\tau)^{-\kappa}d\tau

and

|ZN4hLT1(t,x,y)|C0ϵ(1+t+r)32+2σ(2+rt)12κ.|Z^{\leq N-4}h^{1}_{LT}(t,x,y)|\lesssim C_{0}\epsilon(1+t+r)^{-\frac{3}{2}+2\sigma}(2+r-t)^{\frac{1}{2}-\kappa}.

As concerns the proof of (3.18), we begin by applying inequality (B.6) with β=μ\beta=\mu to ZNhLT1Z^{\leq N}h^{1}_{LT}. We get that

(2+rt)2μr2ZNhLT1L2(𝕊2×𝕊1)2Σte(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑y.(2+r-t)^{2\mu}r^{2}\|Z^{\leq N}h^{1}_{LT}\|_{L^{2}(\mathbb{S}^{2}\times\mathbb{S}^{1})}^{2}\lesssim\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy.

We decompose the above right hand side into

ΣteΣ2te(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑y+Σ2te(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑y.\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy+\iint_{\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy.

The integral over Σ2te\Sigma^{\text{e}}_{2t} is simply estimated using the energy bound (3.5) as follows

Σ2te(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑yt2(μκ)Σte(2+rt)1+2κ|ZNh1|2𝑑x𝑑yϵ2t2(μκ+σ).\iint_{\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy\lesssim t^{2(\mu-\kappa)}\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\kappa}|\partial Z^{\leq N}h^{1}|^{2}dxdy\lesssim\epsilon^{2}t^{2(\mu-\kappa+\sigma)}.

The integral over ΣteΣ2te\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t} is estimated using (2.9) for h1h^{1}

ΣteΣ2te(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑y\displaystyle\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy
ΣteΣ2te(2+rt)1+2μM2χ02(t/2r3t/4)r4𝑑x𝑑y\displaystyle\lesssim\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}M^{2}\chi_{0}^{2}(t/2\leq r\leq 3t/4)r^{-4}dxdy
+ΣteΣ2te(2+rt)1+2μ(|¯ZNh1|2+r2|ZNh1|2+|K1|+|K2|N|ZK1h1|2|ZK2h1|2)𝑑x𝑑y,\displaystyle+\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}\Big{(}|\overline{\partial}Z^{\leq N}h^{1}|^{2}+r^{-2}|Z^{\leq N}h^{1}|^{2}+\sum_{|K_{1}|+|K_{2}|\leq N}|Z^{K_{1}}h^{1}|^{2}|\partial Z^{K_{2}}h^{1}|^{2}\Big{)}dxdy,

where χ0(t/2r3t/4)\chi_{0}(t/2\leq r\leq 3t/4) is a smooth cut-off function supported in t/2r3t/4t/2\leq r\leq 3t/4. We observe that the portion of such support contained in the exterior region is bounded. Therefore we get the following:

- from the smallness assumption on MM and the above observation

ΣteΣ2te(2+rt)1+2μM2χ02(t/2r3t/4)r4𝑑x𝑑yϵ2t4;\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}M^{2}\chi_{0}^{2}(t/2\leq r\leq 3t/4)r^{-4}dxdy\lesssim\epsilon^{2}t^{-4};

- from the energy bound (3.6)

ΣteΣ2te(2+rt)1+2μ|¯ZNh1|2𝑑x𝑑yt1+2(μκ)Σte(2+rt)2κ|¯ZNh1|2𝑑x𝑑yϵ2t1+2(μκ+σ)l(t);\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}|\overline{\partial}Z^{\leq N}h^{1}|^{2}dxdy\\ \lesssim t^{1+2(\mu-\kappa)}\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{2\kappa}|\overline{\partial}Z^{\leq N}h^{1}|^{2}dxdy\lesssim\epsilon^{2}t^{1+2(\mu-\kappa+\sigma)}l(t);

- from inequality (B.4) with β=2κ1\beta=2\kappa-1 and the energy bound (3.5)

ΣteΣ2te(2+rt)1+2μr2|ZNh1|2𝑑x𝑑yt2(μκ)ΣteΣ2te(2+rt)2κ1|ZNh1|2𝑑x𝑑y\displaystyle\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}r^{-2}|Z^{\leq N}h^{1}|^{2}dxdy\lesssim t^{2(\mu-\kappa)}\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{2\kappa-1}|Z^{\leq N}h^{1}|^{2}dxdy
t2(μκ)Σte(2+rt)1+2κ|ZNh1|2𝑑x𝑑yϵ2t2(μκ+σ);\displaystyle\lesssim t^{2(\mu-\kappa)}\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\kappa}|\partial Z^{\leq N}h^{1}|^{2}dxdy\lesssim\epsilon^{2}t^{2(\mu-\kappa+\sigma)};

- from the energy bound (3.5) and the pointwise bound (3.14) that

|K1|+|K2|N|K1|N/2\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{1}|\leq\lfloor N/2\rfloor\end{subarray}} ΣteΣ2te(2+rt)1+2μ|ZK1h1|2|ZK2h1|2𝑑x𝑑y\displaystyle\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}|Z^{K_{1}}h^{1}|^{2}|\partial Z^{K_{2}}h^{1}|^{2}dxdy
ϵ2t2σΣteΣ2te(2+rt)1+2(μκ)r2|ZNh1|2𝑑x𝑑yϵ4t2+4σ;\displaystyle\lesssim\epsilon^{2}t^{2\sigma}\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2(\mu-\kappa)}r^{-2}|\partial Z^{\leq N}h^{1}|^{2}dxdy\lesssim\epsilon^{4}t^{-2+4\sigma};

- finally, from the decay bound (3.12), inequality (B.4) and the energy bound (3.5)

|K1|+|K2|N|K2|N/2\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{2}|\leq\lfloor N/2\rfloor\end{subarray}} ΣteΣ2te(2+rt)1+2μ|ZK1h1|2|ZK2h1|2𝑑x𝑑y\displaystyle\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{1+2\mu}|Z^{K_{1}}h^{1}|^{2}|\partial Z^{K_{2}}h^{1}|^{2}dxdy
ϵ2t2σΣteΣ2te(2+rt)1+2(μκ)r2|ZNh1|2𝑑x𝑑y\displaystyle\lesssim\epsilon^{2}t^{2\sigma}\iint_{\Sigma^{\text{e}}_{t}\setminus\Sigma^{\text{e}}_{2t}}(2+r-t)^{-1+2(\mu-\kappa)}r^{-2}|Z^{\leq N}h^{1}|^{2}dxdy
ϵ2t2+2σΣte(2+rt)1+2κ|ZNh1|2𝑑x𝑑yϵ4t2+4σ.\displaystyle\lesssim\epsilon^{2}t^{-2+2\sigma}\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\kappa}|\partial Z^{\leq N}h^{1}|^{2}dxdy\lesssim\epsilon^{4}t^{-2+4\sigma}.

Summing up,

Σte(2+rt)1+2μ(ZNhLT1)2𝑑x𝑑yC02ϵ2t2(μκ+σ)(1+tl(t))\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\mu}(\partial Z^{\leq N}h^{1}_{LT})^{2}dxdy\lesssim C_{0}^{2}\epsilon^{2}t^{2(\mu-\kappa+\sigma)}(1+t\,l(t))

which concludes the proof of (3.18). ∎

3.2. The null and cubic terms

The combination of the energy assumptions and the decay bounds obtained in proposition 3.2 yield easily the following weighted L2(Σte)L^{2}(\Sigma^{\text{e}}_{t}) estimates of the differentiated null and cubic terms.

Proposition 3.4.

Fix i=0,1i=0,1. Under the a-priori energy assumptions (3.1)-(3.2) we have

(3.20) (2+rt)12+i+κiZN𝐐αβ(h,h)L2(Σte)C02ϵ2t1+2σl(t)+C02ϵ2t2+2σ\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}{\bf Q}_{\alpha\beta}(\partial h,\partial h)\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)}+C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}

and

(3.21) (2+rt)12+i+κiZNGαβ(h)(h,h)L2(Σte)C03ϵ3t2+3σ.\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}G_{\alpha\beta}(h)(\partial h,\partial h)\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{3}\epsilon^{3}t^{-2+3\sigma}.
Proof.

We write h=h1+h0h=h^{1}+h^{0} and inject this decomposition into 𝐐αβ{\bf Q}_{\alpha\beta} and GαβG_{\alpha\beta}. We prove estimates (3.20) and (3.21) for null and cubic interactions involving only h1h^{1}-factors. The remaining interactions, i.e. those involving at least one h0h^{0}-factor, can be easily treated thanks to (3.11) so we leave the details to the reader.

It is well-known that the admissible vector fields ZZ preserve the null structure, in the sense that for any null form QQ

ZQ(ϕ,ψ)=Q(Zϕ,ψ)+Q(ϕ,Zψ)+Q~(ϕ,ψ)ZQ(\partial\phi,\partial\psi)=Q(\partial Z\phi,\partial\psi)+Q(\partial\phi,\partial Z\psi)+\tilde{Q}(\partial\phi,\partial\psi)

where Q~\tilde{Q} is also a null form. Together with the fundamental property

|Q(ϕ,ψ)||¯ϕ||ψ|+|ϕ||¯ψ|,|Q(\partial\phi,\partial\psi)|\lesssim|\overline{\partial}\phi||\partial\psi|+|\partial\phi||\overline{\partial}\psi|,

it implies that for i=0,1i=0,1

|iZN𝐐αβ(h1,h1)||K1|+|K2|N|I1|+|I2|=i|¯I1ZK1h1||I2ZK2h1|.|\partial^{i}Z^{\leq N}{\bf Q}_{\alpha\beta}(\partial h^{1},\partial h^{1})|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}|\overline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|.

We observe that at least one of the two indexes in the above summation has length smaller than N/2\lfloor N/2\rfloor. Therefore, if NN is sufficiently large (e.g. N6N\geq 6) so that N/2N3\lfloor N/2\rfloor\leq N-3 we deduce the following:

- from (3.13) and (3.5)

|K1|+|K2|N|K1|N/2|I1|+|I2|=i(2+rt)12+i+κ¯I1ZK1h1I2ZK2h1L2(Σte)C0ϵt1+σl(t)ji(2+rt)(i+j)2jZNh1L2(Σte)C02ϵ2t1+2σl(t);\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{1}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|=i\end{subarray}}\|(2+r-t)^{\frac{1}{2}+i+\kappa}\overline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}\ \partial\partial^{I_{2}}Z^{K_{2}}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}\epsilon t^{-1+\sigma}\sqrt{l(t)}\sum_{j\leq i}\|(2+r-t)^{\frac{(i+j)}{2}}\partial\partial^{j}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)};

- from (3.12) and (3.6)

|K1|+|K2|N|K2|N/2(2+rt)12+i+κ¯ZK1h1iZK2h1L2(Σte)C0ϵt1+σ¯ZNh1L2(Σte)C02ϵ2t1+2σl(t);\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{2}|\leq\lfloor N/2\rfloor\end{subarray}}\|(2+r-t)^{\frac{1}{2}+i+\kappa}\overline{\partial}Z^{K_{1}}h^{1}\ \partial\partial^{i}Z^{K_{2}}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}\epsilon t^{-1+\sigma}\|\overline{\partial}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)};

- from (3.12) and (3.8)

|K1|+|K2|N1|K2|(N1)/2(2+rt)32+κ¯ZK1h1ZK2h1L2(Σte)C0ϵt1+σ(2+rt)12¯ZN1h1L2(Σte)C02ϵ2t1+2σl(t).\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N-1\\ |K_{2}|\leq\lfloor(N-1)/2\rfloor\end{subarray}}\|(2+r-t)^{\frac{3}{2}+\kappa}\overline{\partial}\partial Z^{K_{1}}h^{1}\ \partial Z^{K_{2}}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}\epsilon t^{-1+\sigma}\|(2+r-t)^{\frac{1}{2}}\overline{\partial}\partial Z^{\leq N-1}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)}.

As concerns the cubic terms, we have that

|iZNGαβ(h1)(h1,h1)||K1|+|K2|+|K3|N|I1|+|I2|+|I3|=i|I1ZK1h1||I2ZK2h1||I3ZK3h1|.|\partial^{i}Z^{\leq N}G_{\alpha\beta}(h^{1})(\partial h^{1},\partial h^{1})|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}||\partial\partial^{I_{3}}Z^{K_{3}}h^{1}|.

From (3.12), inequality (B.4) with β=2κ1\beta=2\kappa-1 and (3.5), we deduce

|K1|+|K2|+|K3|N|K2|+|K3|N/2|I2|+|I3|=i(2+rt)12+i+κZK1h1I2ZK2h1I3ZK3h1L2(Σte)C02ϵ2t2+2σ(2+rt)3i2κZNh1L2(Σte)C02ϵ2t2+2σ(2+rt)12+κZNh1L2(Σte)C03ϵ3t2+3σ.\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{2}|+|K_{3}|\leq\lfloor N/2\rfloor\\ |I_{2}|+|I_{3}|=i\end{subarray}}\|(2+r-t)^{\frac{1}{2}+i+\kappa}Z^{K_{1}}h^{1}\,\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\,\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\|(2+r-t)^{-\frac{3-i}{2}-\kappa}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{3}\epsilon^{3}t^{-2+3\sigma}.

The other interactions are easier to treat and their estimates are obtained similarly to what has been done above for the quadratic terms. We leave the details to the reader. ∎

An immediate consequence of the pointwise bounds (3.12)-(3.14) is the following:

Proposition 3.5.

Under the assumptions (3.1)-(3.2) we have that

(3.22) |ZN3𝐐αβ(h1,h1)(t)|12+2κC02ϵ2t1+2σl(t),\displaystyle|Z^{\leq N-3}\mathbf{Q}_{\alpha\beta}(\partial h^{1},\partial h^{1})(t)|_{\frac{1}{2}+2\kappa}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)},
(3.23) |ZN3Gαβ(h1)(h1,h1)(t)|1+3κC03ϵ3t2+3σ.\displaystyle|Z^{\leq N-3}G_{\alpha\beta}(h^{1})(\partial h^{1},\partial h^{1})(t)|_{1+3\kappa}\lesssim C_{0}^{3}\epsilon^{3}t^{-2+3\sigma}.

3.3. The commutator terms

The goal of this section is to get suitable weighted L2(Σte)L^{2}(\Sigma^{\text{e}}_{t}) estimates of the commutator terms [ZK,Hμνμν]hαβ1[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta} for |K|N|K|\leq N. Such terms have a remarkable property when written in the null frame, which was first highlighted in [40]. We present below a slightly different version of this, which involves expanding first in the null frame before evaluating the commutators.

Lemma 3.6.

Let KK be any fixed multi-index and assume that πμν\pi^{\mu\nu} is a tensor satisfying

|ZKπ|C,|K||K|/2.|Z^{K^{\prime}}\pi|\leq C,\quad\forall\ |K^{\prime}|\leq\lfloor|K|/2\rfloor.

Then for any smooth function ϕ\phi

(3.24) |[ZK,πμνμν]ϕ||K1|+|K2||K||K2|<|K||ZK1π||2ZK2ϕ|+|ZK1π||¯ZK2ϕ|\displaystyle|[Z^{K},\pi^{\mu\nu}\partial_{\mu}\partial_{\nu}]\phi|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}|Z^{K_{1}}\pi|_{\mathscr{L}\mathscr{L}}|\partial^{2}Z^{K_{2}}\phi|+|Z^{K_{1}}\pi||\overline{\partial}\partial Z^{K_{2}}\phi|
+|K1|+|K2||K|r1|ZK1π||ZK2ϕ|\displaystyle+\sum_{|K_{1}|+|K_{2}|\leq|K|}r^{-1}|Z^{K_{1}}\pi||\partial Z^{K_{2}}\phi|

and

(3.25) |[ZK,πμνμν]ϕ|K1|+|K2||K||K2|<|K|(ZK1πLLt2ZK2ϕ+ZK1π4LytZK2ϕ+ZK1π44y2ZK2ϕ)|\displaystyle\Big{|}[Z^{K},\pi^{\mu\nu}\partial_{\mu}\partial_{\nu}]\phi-\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}\big{(}Z^{K_{1}}\pi_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}\phi+Z^{K_{1}}\pi_{4L}\cdot\partial_{y}\partial_{t}Z^{K_{2}}\phi+Z^{K_{1}}\pi_{44}\cdot\partial^{2}_{y}Z^{K_{2}}\phi\big{)}\Big{|}
|K1|+|K2||K||K2|<|K||t2r2|t2|ZK1π||2ZK2ϕ|+|ZK1π||¯xZK2ϕ|+|K1|+|K2||K||ZK1π||ZK2ϕ|1+t+r.\displaystyle\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}\frac{|t^{2}-r^{2}|}{t^{2}}|Z^{K_{1}}\pi||\partial^{2}Z^{K_{2}}\phi|+|Z^{K_{1}}\pi||\partial\underline{\partial}_{x}Z^{K_{2}}\phi|+\sum_{|K_{1}|+|K_{2}|\leq|K|}\frac{|Z^{K_{1}}\pi||\partial Z^{K_{2}}\phi|}{1+t+r}.
Proof.

Let U,VU,V denote any vector field in 𝒰\mathscr{U}. Inequality (3.24) follows from the following decomposition

(3.26) [ZK,πμνμν]ϕ=[ZK,πUVUV]ϕ=|K1|+|K2||K||K2|<|K|(ZK1πUV)UVZK2ϕ+ZK1πUV[ZK2,UV]ϕ\displaystyle[Z^{K},\pi^{\mu\nu}\partial_{\mu}\partial_{\nu}]\phi=[Z^{K},\pi^{UV}UV]\phi=\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}(Z^{K_{1}}\pi^{UV})UVZ^{K_{2}}\phi+Z^{K_{1}}\pi^{UV}\ [Z^{K_{2}},UV]\phi

and the fact that

(3.27) |[ZJ,TU]ϕ||J|<|J||¯ZJϕ|+|J′′||J|r1|ZJ′′ϕ|.|[Z^{J},TU]\phi|\lesssim\sum_{|J^{\prime}|<|J|}|\overline{\partial}\partial Z^{J^{\prime}}\phi|+\sum_{|J^{\prime\prime}|\leq|J|}r^{-1}|\partial Z^{J^{\prime\prime}}\phi|.

Using instead (1.19) we find that101010 We recall that ¯0=t\underline{\partial}_{0}=\partial_{t}

[ZK,πμνμν]ϕ=[ZK,π𝝁𝝂𝝁𝝂]ϕ+[ZK,π4ν4ν]ϕ+[ZK,πν4ν4]ϕ\displaystyle[Z^{K},\pi^{\mu\nu}\partial_{\mu}\partial_{\nu}]\phi=[Z^{K},\pi^{{\bm{\mu}}{\bm{\nu}}}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]\phi+[Z^{K},\pi^{4\nu}\partial_{4}\partial_{\nu}]\phi+[Z^{K},\pi^{\nu 4}\partial_{\nu}\partial_{4}]\phi
=[ZK,πUVcUV00t2]ϕ+[ZK,πUV(cUV𝒂𝜷¯𝒂¯𝜷+cUV𝜶𝒃¯𝜶¯𝒃+dUVμ¯μ)]ϕ\displaystyle=[Z^{K},\pi^{UV}c^{00}_{UV}\partial^{2}_{t}]\phi+[Z^{K},\pi^{UV}(c_{UV}^{{\bm{a}}{\bm{\beta}}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{\beta}}+c_{UV}^{{\bm{\alpha}}{\bm{b}}}\underline{\partial}_{\bm{\alpha}}\underline{\partial}_{\bm{b}}+d_{UV}^{\mu}\underline{\partial}_{\mu})]\phi
+[ZK,π4UyU]ϕ+[ZK,πU4U4]ϕ\displaystyle\quad+[Z^{K},\pi^{4U}\partial_{y}U]\phi+[Z^{K},\pi^{U4}U\partial_{4}]\phi

where, thanks to the fact that |IΓJcLL00|I,J(t2r2)/t2|\partial^{I}\Gamma^{J}c^{00}_{LL}|\lesssim_{I,J}(t^{2}-r^{2})/t^{2} and 𝒊=¯𝒊x𝒊tt\partial_{\bm{i}}=\underline{\partial}_{\bm{i}}-\frac{x_{\bm{i}}}{t}\partial_{t}, and up to homogeneous zero-order coefficients, we schematically have the following equalities

[ZK,πUVcUV00t2]ϕ=|K1|+|K2||K||K2|<|K|ZK1πLLt2ZK2ϕ+|t2r2|t2ZK1π2ZK2ϕ+ZK1π¯xZK2ϕ,[Z^{K},\pi^{UV}c^{00}_{UV}\partial^{2}_{t}]\phi=\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}Z^{K_{1}}\pi_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}\phi+\frac{|t^{2}-r^{2}|}{t^{2}}Z^{K_{1}}\pi\cdot\partial^{2}Z^{K_{2}}\phi+Z^{K_{1}}\pi\cdot\partial\underline{\partial}_{x}Z^{K_{2}}\phi,
[ZK,πUV(cUV𝒂𝜷¯𝒂¯𝜷+cUV𝜶𝒃¯𝜶¯𝒃+dUVμ¯μ)]ϕ=|K1|+|K2||K||K2|<|K|ZK1π¯xZK2ϕ+ZK1πZK2ϕ1+t+r,[Z^{K},\pi^{UV}(c_{UV}^{{\bm{a}}{\bm{\beta}}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{\beta}}+c_{UV}^{{\bm{\alpha}}{\bm{b}}}\underline{\partial}_{\bm{\alpha}}\underline{\partial}_{\bm{b}}+d_{UV}^{\mu}\underline{\partial}_{\mu})]\phi=\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}Z^{K_{1}}\pi\cdot\partial\underline{\partial}_{x}Z^{K_{2}}\phi+\frac{Z^{K_{1}}\pi\cdot\partial Z^{K_{2}}\phi}{1+t+r},
[ZK,π4UyU]ϕ=|K1|+|K2||K||K2|<|K|ZK1π4LytZK2ϕ+ZK1π44y2ZK2ϕ+ZK1πy¯xZK2ϕ.[Z^{K},\pi^{4U}\partial_{y}U]\phi=\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}Z^{K_{1}}\pi_{4L}\cdot\partial_{y}\partial_{t}Z^{K_{2}}\phi+Z^{K_{1}}\pi_{44}\cdot\partial^{2}_{y}Z^{K_{2}}\phi+Z^{K_{1}}\pi\cdot\partial_{y}\underline{\partial}_{x}Z^{K_{2}}\phi.

Proposition 3.7.

Under the energy assumptions (3.1)-(3.2) we have for i=0,1i=0,1

(3.28) (2+rt)12+i+κ[iZN,Hμνμν]hαβ1L2(Σte)ϵt1Ee,i+κ(t,iZNihαβ1)1/2\displaystyle\left\|(2+r-t)^{\frac{1}{2}+i+\kappa}[\partial^{i}Z^{\leq N},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-1}E^{\text{e},i+\kappa}(t,\partial^{i}Z^{\leq N-i}h^{1}_{\alpha\beta})^{1/2}
+ϵ2t(κρ)+2σ(t1/2l(t)+t1).\displaystyle+\epsilon^{2}t^{-(\kappa-\rho)+2\sigma}\big{(}t^{-1/2}\sqrt{l(t)}+t^{-1}\big{)}.
Proof.

We set ϕ=hαβ1\phi=h^{1}_{\alpha\beta} in (3.24) and begin by observing that, for every KK with |K|N|K|\leq N, the terms in the last line of the right hand side have already been estimated. In fact, the cubic terms satisfy (3.21) and the following bound was obtained in the proof of proposition 3.14

i=0,1|K1|+|K2|N|I1|+|I2|=i(2+rt)12+i+κr1I1ZK1hI2ZK2hL2(Σte)ϵ2t32+2σ.\sum_{\begin{subarray}{c}i=0,1\\ |K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|(2+r-t)^{\frac{1}{2}+i+\kappa}\,r^{-1}\partial^{I_{1}}Z^{K_{1}}h\cdot\partial\partial^{I_{2}}Z^{K_{2}}h\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon^{2}t^{-\frac{3}{2}+2\sigma}.

Using (3.11) and (3.7), (3.8), it is straightforward to prove that for i=0,1i=0,1

|K1|+|K2|N|I1|+|I2|=i(2+rt)12+i+κI1ZK1h02I2ZK2h1L2(Σte)ϵt1Ee,i+κ(iZNh1)1/2,\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\big{\|}(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{I_{1}}Z^{K_{1}}h^{0}\cdot\partial^{2}\partial^{I_{2}}Z^{K_{2}}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-1}E^{\text{e},i+\kappa}(\partial^{i}Z^{\leq N}h^{1})^{1/2},

hence we only focus on estimating the terms of the first line in the right hand side of (3.24) with hh replaced by h1h^{1}. We choose exponents (p1,p2)(p_{1},p_{2}) such that

(p1,p2)={(2,),if |K1|=N(,2),if |K2|=N1(4,4),otherwise.(p_{1},p_{2})=\begin{cases}(2,\infty),\quad&\text{if }|K_{1}|=N\\ (\infty,2),\quad&\text{if }|K_{2}|=N-1\\ (4,4),\quad&\text{otherwise}.\end{cases}

From the Sobolev’s injections H2(𝕊2×𝕊1)L(𝕊2×𝕊1)H^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})\subset L^{\infty}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1}) and H1(𝕊2×𝕊1)L4(𝕊2×𝕊1)H^{1}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})\subset L^{4}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})

|K1|+|K2|N|I2|=i(2+rt)12+i+κZK1h1¯I2ZK2h1L2(Σte)2|K1|+|K2|N|I2|=irt1(2+rt)1+2i+2κZK1h1Lp1(𝕊2×𝕊1)2¯I2ZK2h1Lp2(𝕊2×𝕊1)2r2𝑑rrt1(2+rt)1+2i+2κZNh1L2(𝕊2×𝕊1)2¯ZN1h1L2(𝕊2×𝕊1)2r2𝑑r\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{2}|=i\end{subarray}}\big{\|}(2+r-t)^{\frac{1}{2}+i+\kappa}Z^{K_{1}}h^{1}\cdot\overline{\partial}\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}^{2}\\[-5.0pt] \leq\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{2}|=i\end{subarray}}\int_{r\geq t-1}(2+r-t)^{1+2i+2\kappa}\|Z^{K_{1}}h^{1}\|^{2}_{L^{p_{1}}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}\|\overline{\partial}\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\|^{2}_{L^{p_{2}}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}r^{2}dr\\ \lesssim\int_{r\geq t-1}(2+r-t)^{1+2i+2\kappa}\|Z^{\leq N}h^{1}\|^{2}_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}\|\overline{\partial}\partial Z^{\leq N-1}h^{1}\|^{2}_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}r^{2}dr

so using the inequality (B.6) with β=κ\beta=\kappa and the energy assumptions (3.5), (3.6) we get

(2+rt)12+κZNh1L2(Σte)2rt1(2+rt)1+2ir2¯ZN1h1L2(𝕊2×𝕊1)2r2𝑑r\displaystyle\lesssim\left\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{\leq N}h^{1}\right\|^{2}_{L^{2}(\Sigma^{\text{e}}_{t})}\int_{r\geq t-1}(2+r-t)^{1+2i}r^{-2}\|\overline{\partial}\partial Z^{\leq N-1}h^{1}\|^{2}_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}r^{2}dr
t12κ(2+rt)12+κZNh1L2(Σte)2(2+rt)1+κ¯ZN1h1L2(Σte)2ϵ4t12κ+4σl(t).\displaystyle\lesssim t^{-1-2\kappa}\left\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{\leq N}h^{1}\right\|^{2}_{L^{2}(\Sigma^{\text{e}}_{t})}\left\|(2+r-t)^{1+\kappa}\overline{\partial}\partial Z^{\leq N-1}h^{1}\right\|^{2}_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon^{4}t^{-1-2\kappa+4\sigma}l(t).

The same Sobolev’s embeddings, coupled with the decay bound (3.18) and the energy assumption (3.5), also yield for i=0,1i=0,1

|K1|+|K2|N|I2|=i(2+rt)12+i+κZK1hLL12I2ZK2h1L2(Σte)2\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{2}|=i\end{subarray}}\big{\|}(2+r-t)^{\frac{1}{2}+i+\kappa}Z^{K_{1}}h^{1}_{LL}\cdot\partial^{2}\partial^{I_{2}}Z^{K_{2}}h^{1}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}^{2}
rt1(2+rt)1+2i+2κZNhLL1L2(𝕊2×𝕊1)2ZN1h1L2(𝕊2×𝕊1)2r2𝑑r\displaystyle\lesssim\int_{r\geq t-1}(2+r-t)^{1+2i+2\kappa}\|Z^{\leq N}h^{1}_{LL}\|^{2}_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}\|\partial\partial Z^{\leq N-1}h^{1}\|^{2}_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}r^{2}dr
ϵ2t2(κρ)+2σ(t1l(t)+t2)(2+rt)12+i+κZN1h1L2(Σte)2\displaystyle\lesssim\epsilon^{2}t^{-2(\kappa-\rho)+2\sigma}(t^{-1}l(t)+t^{-2})\left\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial\partial Z^{\leq N-1}h^{1}\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}^{2}
ϵ4t2(κρ)+4σ(t1l(t)+t2).\displaystyle\lesssim\epsilon^{4}t^{-2(\kappa-\rho)+4\sigma}(t^{-1}l(t)+t^{-2}).

Finally, when i=1i=1 the remaining terms to discuss are of the form ZK1hLL12ZK2h1\partial Z^{K_{1}}h^{1}_{LL}\cdot\partial^{2}Z^{K_{2}}h^{1} and ZK1h1¯ZK2h1\partial Z^{K_{1}}h^{1}\cdot\overline{\partial}\partial Z^{K_{2}}h^{1} but those behave like null terms (the former thanks to (2.9) for h1h^{1}) and hence satisfy (3.20). The details are left to the reader.

We also have the following pointwise estimate of the commutator terms involving a smaller number of vector fields. It will be useful in the proof of Lemma 4.12.

Lemma 3.8.

Under the energy assumptions (3.1)-(3.2), there exists δ>0\delta^{\prime}>0 such that

(3.29) |[ZN4,H1,μνμν]hαβ1|κC02ϵ2t2+2σl(t)+ϵ2t2δ(2+rt)12.\big{|}[Z^{\leq N-4},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{|}_{\kappa}\lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\sqrt{l(t)}+\epsilon^{2}t^{-2-\delta^{\prime}}(2+r-t)^{-\frac{1}{2}}.
Proof.

We use (3.24) with π=H1\pi=H^{1} and ϕ=hαβ1\phi=h^{1}_{\alpha\beta}. Pointwise bounds (3.12) and (3.17) yield

|K1|+|K2|N4|ZK1HLL12ZK2hαβ1|C02ϵ2t2δ+σ(2+rt)32κ\sum_{|K_{1}|+|K_{2}|\leq N-4}\big{|}Z^{K_{1}}H^{1}_{LL}\cdot\partial^{2}Z^{K_{2}}h^{1}_{\alpha\beta}\big{|}\lesssim C_{0}^{2}\epsilon^{2}t^{-2-\delta+\sigma}(2+r-t)^{-\frac{3}{2}-\kappa}

for some δ>σ\delta>\sigma, bounds (3.13) and (3.14) give

|K1|+|K2|N4|ZK1H1¯ZK2hαβ1|C02ϵ2t2+2σl(t)(2+rt)12κ\sum_{|K_{1}|+|K_{2}|\leq N-4}\big{|}Z^{K_{1}}H^{1}\cdot\partial\overline{\partial}Z^{K_{2}}h^{1}_{\alpha\beta}\big{|}\lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\sqrt{l(t)}(2+r-t)^{-1-2\kappa}

and finally (3.12) and (3.14) imply

|K1|+|K2|N4r1|ZK1H1ZK2hαβ1|C02ϵ2t3+2σ(2+rt)12κ.\sum_{|K_{1}|+|K_{2}|\leq N-4}r^{-1}\big{|}Z^{K_{1}}H^{1}\cdot\partial Z^{K_{2}}h^{1}_{\alpha\beta}\big{|}\lesssim C_{0}^{2}\epsilon^{2}t^{-3+2\sigma}(2+r-t)^{-1-2\kappa}.

The result of the statement follows by setting δ=δσ\delta^{\prime}=\delta-\sigma. ∎

3.4. The hTU1h^{1}_{TU} coefficients

In this subsection we show that, for any T𝒯T\in\mathscr{T} and U𝒰U\in\mathscr{U}, the coefficients hTU1h^{1}_{TU} satisfy better energy bounds than (3.1), more precisely that for any fixed 0<ρ<κ0<\rho<\kappa there exists some positive constant CC such that

(3.30) Ee,κρ(t,ZNhTU1)1/2C0ϵtCϵ,t[2,T0).E^{\text{e},\kappa-\rho}(t,Z^{\leq N}h^{1}_{TU})^{1/2}\lesssim C_{0}\epsilon t^{C\epsilon},\qquad t\in[2,T_{0}).

This estimate essentially follows from the fact that no weak null terms appear among the source terms in the equation satisfied by hTU1h^{1}_{TU}. This can be simply seen by applying TαUβT^{\alpha}U^{\beta} to (1.8) and then commuting with ZKZ^{K}, which shows that ZKhTU1Z^{K}h^{1}_{TU} is solution to

(3.31) ~gZKhTU1=FTUK+FTU0,K,FTU0,K=Fαβ0,KTαUβ\tilde{\Box}_{g}Z^{K}h^{1}_{TU}=F^{K}_{TU}+F^{0,K}_{TU},\qquad F^{0,K}_{TU}=F^{0,K}_{\alpha\beta}T^{\alpha}U^{\beta}

with source term FTUKF^{K}_{TU} given by

(3.32) FTUK\displaystyle F^{K}_{TU} =[ZK,Hμνμν]hTU1+ZKFTU(h)(h,h)\displaystyle=-[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{TU}+Z^{K}F_{TU}(h)(\partial h,\partial h)
+|K||K|CTU,K𝒊αβ∂̸𝒊ZKhαβ1+DTU,KαβZKhαβ1\displaystyle+\sum_{|K^{\prime}|\leq|K|}C^{{\bm{i}}\alpha\beta}_{TU,K^{\prime}}\not{\partial}_{\bm{i}}Z^{K^{\prime}}h^{1}_{\alpha\beta}+D^{\alpha\beta}_{TU,K^{\prime}}Z^{K^{\prime}}h^{1}_{\alpha\beta}
+|K1|+|K2||K|ETUμν,K1K2𝒊αβZK1Hμν∂̸𝒊ZK2hαβ1+FTUμν,K1K2αβZK1HμνZK2hαβ1\displaystyle+\sum_{|K_{1}|+|K_{2}|\leq|K|}E^{{\bm{i}}\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}Z^{K_{1}}H^{\mu\nu}\cdot\not{\partial}_{\bm{i}}Z^{K_{2}}h^{1}_{\alpha\beta}+F^{\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}Z^{K_{1}}H^{\mu\nu}\cdot Z^{K_{2}}h^{1}_{\alpha\beta}

and smooth coefficients CTU,Kiαβ,ETUμν,K1K2iαβ=O(r1)C^{i\alpha\beta}_{TU,K^{\prime}},E^{i\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}=O(r^{-1}), DTU,Kαβ,FTUμν,K1K2αβ=O(r2)D^{\alpha\beta}_{TU,K^{\prime}},F^{\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}=O(r^{-2}). Besides the additional terms arising from the commutation of vector fields TT and UU with the reduced wave operator, the main difference between the source terms FαβKF^{K}_{\alpha\beta} and FTUKF^{K}_{TU} lies in the fact that the latter is a linear combination of quadratic null terms and cubic terms only, as PTU=PαβTαUβP_{TU}=P_{\alpha\beta}T^{\alpha}U^{\beta} and

(3.33) |PTU(ϕ,ψ)||¯ϕ||ψ|+|ψ||¯ψ|.|P_{TU}(\phi,\psi)|\lesssim|\overline{\partial}\phi||\partial\psi|+|\partial\psi||\overline{\partial}\psi|.

We compare (3.31) with equation (A.1). Thanks to the smallness of HH provided by (3.11) and (3.17), we can apply the result of proposition A.1 with 𝐖=ZKhTU1\mathbf{W}=Z^{K}h^{1}_{TU}, 𝐅=FTUK+FTU0,K\mathbf{F}=F^{K}_{TU}+F^{0,K}_{TU}, w(q)=(2+rt)1+2(κρ)w(q)=(2+r-t)^{1+2(\kappa-\rho)} and t1=2,t2=tt_{1}=2,t_{2}=t. We obtain that

(3.34) Ee,κρ(t,ZKhTU1)\displaystyle E^{\text{e},\kappa-\rho}(t,Z^{K}h^{1}_{TU})
+~2,t(2+rt)1+2(κρ)[(12(1+r2)+χ(rt)χ(r)M2r)|tZKhTU1|2+|¯ZKhTU1|2]𝑑x𝑑y\displaystyle+\int_{\tilde{\mathscr{H}}_{2,t}}(2+r-t)^{1+2(\kappa-\rho)}\Big{[}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{TU}|^{2}+|\underline{\nabla}Z^{K}h^{1}_{TU}|^{2}\Big{]}dxdy
+𝒟[2,t]e(2+rτ)2(κρ)(|LZKhTU1|2+|∇̸ZKhTU1|2)𝑑τ𝑑x𝑑yEe,κρ(2,ZKhTU1)\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(\kappa-\rho)}\big{(}|LZ^{K}h^{1}_{TU}|^{2}+|\not{\nabla}Z^{K}h^{1}_{TU}|^{2}\big{)}d\tau dxdy\lesssim E^{\text{e},\kappa-\rho}(2,Z^{K}h^{1}_{TU})
+𝒟[2,t]e(2+rτ)1+2(κρ)|(FTUK+FTU0,K+αHασσZKhTU1)tZKhTU1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(\kappa-\rho)}|(F^{K}_{TU}+F^{0,K}_{TU}+{\partial^{\alpha}H_{\alpha}}^{\sigma}\,\partial_{\sigma}Z^{K}h^{1}_{TU})\partial_{t}Z^{K}h^{1}_{TU}|d\tau dxdy
+𝒟[2,t]e(2+rτ)1+2(κρ)|tHασσZKhTU1αZKhTU1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(\kappa-\rho)}|{\partial_{t}H_{\alpha}}^{\sigma}\,\partial_{\sigma}Z^{K}h^{1}_{TU}\,\partial^{\alpha}Z^{K}h^{1}_{TU}|\,d\tau dxdy
+𝒟[2,t]e(2+rτ)2(κρ)|HρσρZKhTU1σZKhTU1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(\kappa-\rho)}|H^{\rho\sigma}\partial_{\rho}Z^{K}h^{1}_{TU}\partial_{\sigma}Z^{K}h^{1}_{TU}|\ d\tau dxdy
+𝒟[2,t]e(2+rτ)2(κρ)|(H0σ+ω𝒋H𝒋σ)σZKhTU1tZKhTU1|𝑑τ𝑑x𝑑y.\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(\kappa-\rho)}|(-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma})\partial_{\sigma}Z^{K}h^{1}_{TU}\,\partial_{t}Z^{K}h^{1}_{TU}|\ d\tau dxdy.

We start by estimating the contributions coming from the source term FTU0,KF^{0,K}_{TU}.

Lemma 3.9.

There exists δ>0\delta>0 such that, under the energy assumptions (3.1)-(3.2) and for i=0,1i=0,1, we have

(3.35) (2+rt)12+i+κiZN~ghαβ0L2(Σte)ϵt3i+ϵ2t2+δ.\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}\tilde{\Box}_{g}h^{0}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-3-i}+\epsilon^{2}t^{-2+\delta}.

Consequently

(2+rt)12+κρZNFTU0L2(Σte)ϵt3+ϵ2t2+δ.\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}Z^{\leq N}F^{0}_{TU}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-3}+\epsilon^{2}t^{-2+\delta}.
Proof.

We recall that definition (1.7) of h0h^{0} and that ~ghαβ0=F00+F01+F02\tilde{\Box}_{g}h^{0}_{\alpha\beta}=F^{00}+F^{01}+F^{02} with

(3.36) F00=hαβ0,F01=h0,μνμνhαβ0,F02=(h1,μν+𝒪μν(h2))μνhαβ0.F^{00}=\Box h^{0}_{\alpha\beta},\qquad F^{01}=-h^{0,\mu\nu}\partial_{\mu}\partial_{\nu}h^{0}_{\alpha\beta},\qquad F^{02}=(-h^{1,\mu\nu}+\mathscr{O}^{\mu\nu}(h^{2}))\partial_{\mu}\partial_{\nu}h^{0}_{\alpha\beta}.

The fundamental remark is that (M/r)=0\Box(M/r)=0 away from r=0r=0, which implies that F00F^{00} is supported for t/2r3t/4t/2\leq r\leq 3t/4. Consequently, suppF00𝒟T0e\text{supp}F^{00}\cap\mathscr{D}^{\text{e}}_{T_{0}} is bounded and from (3.11)

|iZNF00|ϵ(1+r)3+i,(2+rt)12+i+κiZNF00L2(Σte)ϵt3i.\begin{gathered}|\partial^{i}Z^{\leq N}F^{00}|\lesssim\frac{\epsilon}{(1+r)^{3+i}},\ \qquad\ \|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}F^{00}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-3-i}.\end{gathered}

From (3.11) we also see that

|iZNF01|ϵ2(1+r)4+i(2+rt)12+i+κiZNF01L2(Σte)ϵ2r72+κL2(Σte)ϵ2t2+κ.\begin{gathered}|\partial^{i}Z^{\leq N}F^{01}|\lesssim\frac{\epsilon^{2}}{(1+r)^{4+i}}\\ \|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}F^{01}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon^{2}\|r^{-\frac{7}{2}+\kappa}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon^{2}t^{-2+\kappa}.\end{gathered}

From (3.11), the Hardy inequality (B.4) with β=2κ1\beta=2\kappa-1 and estimate (3.5), we have that

|K1|+|K2|N|I2|=i(2+rt)12+i+κZK1h1,μνμνI2ZK2hαβ0L2(Σte)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{2}|=i\end{subarray}}\|(2+r-t)^{\frac{1}{2}+i+\kappa}Z^{K_{1}}h^{1,\mu\nu}\partial_{\mu}\partial_{\nu}\partial^{I_{2}}Z^{K_{2}}h^{0}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
ϵ(2+rt)12+i+κr3iZK1h1,μνL2(Σte)ϵt2(2+rt)12+κZK1h1,μνL2(Σte)ϵ2t2+σ.\displaystyle\lesssim\epsilon\|(2+r-t)^{\frac{1}{2}+i+\kappa}r^{-3-i}Z^{K_{1}}h^{1,\mu\nu}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon t^{-2}\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{K_{1}}h^{1,\mu\nu}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\epsilon^{2}t^{-2+\sigma}.

The cubic terms 𝒪μν(h2)μνhαβ0\mathscr{O}^{\mu\nu}(h^{2})\partial_{\mu}\partial_{\nu}h^{0}_{\alpha\beta} verify similar estimates, the details are left to the reader. ∎

In order to estimate the contributions due to the curved background, we first highlight the following relations.

Lemma 3.10.

For any sufficiently smooth function ϕ\phi we have

(3.37) αHασσϕ=12(u¯HLLuHL¯L+AHAL)L¯ϕ+(αHαT)Tϕ\displaystyle{\partial^{\alpha}H_{\alpha}}^{\sigma}\,\partial_{\sigma}\phi=-\frac{1}{2}(\partial_{{\underline{u}}}H_{LL}-\partial_{u}H_{\underline{L}L}+\partial_{A}H_{AL})\underline{L}\phi+({\partial^{\alpha}H_{\alpha}}^{T})T\phi
(3.38) tHασσϕαϕ=14tHLL(L¯ϕ)2+tHTα(αϕ)(Tϕ)\displaystyle{\partial_{t}H_{\alpha}}^{\sigma}\,\partial_{\sigma}\phi\,\partial^{\alpha}\phi=\frac{1}{4}\partial_{t}H_{LL}(\underline{L}\phi)^{2}+\partial_{t}H^{T\alpha}\,(\partial_{\alpha}\phi)(T\phi)
(3.39) Hρσρϕσϕ=14HLL(L¯ϕ)2+HTα(Tϕ)(αϕ)\displaystyle H^{\rho\sigma}\partial_{\rho}\phi\,\partial_{\sigma}\phi=\frac{1}{4}H_{LL}(\underline{L}\phi)^{2}+H^{T\alpha}(T\phi)(\partial_{\alpha}\phi)
(3.40) (H0σ+ω𝒋H𝒋σ)σϕ=12HLLL¯ϕ+HLT(Tϕ)\displaystyle(-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma})\partial_{\sigma}\phi=-\frac{1}{2}H_{LL}\,\underline{L}\phi+{H_{L}}^{T}(T\phi)
Proof.

The proof of the above equalities follows after expressing all vector fields relative to the null frame 𝒰={L,L¯,S1,S2,y}\mathscr{U}=\{L,\underline{L},S^{1},S^{2},\partial_{y}\} and observing that

H0σ+ω𝒋H𝒋σ=g¯μνLμHνσ=HLσ.-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma}=\bar{g}_{\mu\nu}L^{\mu}H^{\nu\sigma}={H_{L}}^{\sigma}.

Lemma 3.11.

Under the a-priori assumptions (3.1)-(3.2) we have that for i=0,1i=0,1 and any multi-index KK with |K|N|K|\leq N

(3.41) 𝒟[2,t]e(2+rτ)1+2(i+κ)|μHμσσiZKhαβ1tiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|\partial^{\mu}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{t}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
𝒟[2,t]e(2+rτ)1+2(i+κ)|tHμσσiZKhαβ1μiZKhαβ1|𝑑τ𝑑x𝑑yC03ϵ3\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|\partial_{t}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial^{\mu}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy\lesssim C_{0}^{3}\epsilon^{3}

and

(3.42) 𝒟[2,t]e(2+rτ)2(i+κ)|HρσρiZKhαβ1σiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|H^{\rho\sigma}\partial_{\rho}\cdot\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
+𝒟[2,t]e(2+rτ)2(i+κ)|(H0σ+ω𝒋H𝒋σ)σiZKhαβ1tiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|(-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma})\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{t}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|d\tau dxdy
2tϵEe,i+κ(τ,iZKhαβ1)τ𝑑τ+C03ϵ3.\displaystyle\lesssim\int_{2}^{t}\frac{\epsilon E^{\text{e},i+\kappa}(\tau,\partial^{i}Z^{K}h^{1}_{\alpha\beta})}{\tau}\,d\tau+C_{0}^{3}\epsilon^{3}.

For any 0ρ<κ0\leq\rho<\kappa, the same inequalities hold with (κ,hαβ1)(\kappa,h^{1}_{\alpha\beta}) replaced by (κρ,hTU1)(\kappa-\rho,h^{1}_{TU}).

Proof.

We start by remarking that from inequality (2.2) and bounds (3.11) to (3.14)

|HLL|+|¯H||¯h1|+|h0|+|h||h|C0ϵ(tσl(t)r(2+rt)κ+t2σr2),|\partial H_{LL}|+|\overline{\partial}H|\lesssim|\overline{\partial}h^{1}|+|\partial h^{0}|+|h||\partial h|\lesssim C_{0}\epsilon\Big{(}\frac{t^{\sigma}\sqrt{l(t)}}{r(2+r-t)^{\kappa}}+\frac{t^{2\sigma}}{r^{2}}\Big{)},

which together with the energy bounds (3.5) and (3.7) implies

(2+rt)12+i+κ(|HLL|+|¯H|)iZNh1L2(Σte)C02ϵ2t1+2σl(t)+C02ϵ2t2+3σ.\|(2+r-t)^{\frac{1}{2}+i+\kappa}(|\partial H_{LL}|+|\overline{\partial}H|)\partial\partial^{i}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)}+C_{0}^{2}\epsilon^{2}t^{-2+3\sigma}.

From the pointwise estimates (3.11), (3.12) and energy bounds (3.6), (3.8) we also have

(2+rt)12+i+κH¯iZNh1L2(Σte)C02ϵ2t1+2σl(t).\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial H\cdot\overline{\partial}\partial^{i}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)}.

The Cauchy-Schwartz inequality, relation (3.37) and the above estimates yield that for t[2,T0)t\in[2,T_{0})

𝒟[2,t]e(2+rτ)1+2(i+κ)μHμσσiZKhαβ1tiZKhαβ1|dτdxdy\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}\partial^{\mu}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{t}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
2t(2+rτ)12+i+κμHμσσiZKhαβ1L2(Σte)Ee,i+κ(τ,iZKhαβ1)1/2𝑑τC03ϵ3.\displaystyle\lesssim\int_{2}^{t}\|(2+r-\tau)^{\frac{1}{2}+i+\kappa}\partial^{\mu}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}E^{\text{e},i+\kappa}(\tau,\partial^{i}Z^{K}h^{1}_{\alpha\beta})^{1/2}d\tau\lesssim C_{0}^{3}\epsilon^{3}.

Similarly, using relation (3.38) we get

𝒟[2,t]e(2+rτ)1+2(i+κ)|tHμσσiZKhαβ1μiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|\partial_{t}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial^{\mu}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
𝒟[2,t]e(2+rτ)12+i+κHLLiZKhαβ1L2(Σte)Ee,i+κ(τ,iZKhαβ1)1/2𝑑τ𝑑x𝑑y\displaystyle\lesssim\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}\|(2+r-\tau)^{\frac{1}{2}+i+\kappa}\partial H_{LL}\cdot\partial\partial^{i}Z^{K}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}E^{\text{e},i+\kappa}(\tau,\partial^{i}Z^{K}h^{1}_{\alpha\beta})^{1/2}d\tau dxdy
+𝒟[2,t]e(2+rτ)12+i+κH¯iZKhαβ1L2(Σte)Ee,i+κ(τ,iZKhαβ1)1/2𝑑τ𝑑x𝑑yC03ϵ3.\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}\|(2+r-\tau)^{\frac{1}{2}+i+\kappa}\partial H\cdot\overline{\partial}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}E^{\text{e},i+\kappa}(\tau,\partial^{i}Z^{K}h^{1}_{\alpha\beta})^{1/2}d\tau dxdy\lesssim C_{0}^{3}\epsilon^{3}.

Finally, from formulas (3.39) and (3.40) and pointwise bounds (3.11), (3.14) and (3.18)

𝒟[2,t]e(2+rτ)2(i+κ)|HρσρiZKhαβ1σiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|H^{\rho\sigma}\cdot\partial_{\rho}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
+𝒟[2,t]e(2+rτ)2(i+κ)|(H0σ+ω𝒋H𝒋σ)σiZKhαβ1tiZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|(-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma})\cdot\partial_{\sigma}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{t}\partial^{i}Z^{K}h^{1}_{\alpha\beta}|d\tau dxdy
𝒟[2,t]e(2+rt)2(i+κ)[|HLL||iZKhαβ1|2+|H||¯iZKhαβ1||iZKhαβ1|]𝑑τ𝑑x𝑑y\displaystyle\lesssim\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-t)^{2(i+\kappa)}\big{[}|H_{LL}||\partial\partial^{i}Z^{K}h^{1}_{\alpha\beta}|^{2}+|H||\overline{\partial}\partial^{i}Z^{K}h^{1}_{\alpha\beta}||\partial\partial^{i}Z^{K}h^{1}_{\alpha\beta}|\big{]}\,d\tau dxdy
2tϵEe,i+κ(τ,iZKhαβ1)τ𝑑τ+C03ϵ3.\displaystyle\lesssim\int_{2}^{t}\frac{\epsilon E^{\text{e},i+\kappa}(\tau,\partial^{i}Z^{K}h^{1}_{\alpha\beta})}{\tau}\,d\tau+C_{0}^{3}\epsilon^{3}.

Proposition 3.12.

Let 0<ρ<κ0<\rho<\kappa be fixed. Under the energy assumptions (3.1)-(3.2) there exists a constant C>0C>0 such that (3.30) holds for all t[2,T0)t\in[2,T_{0}).

Proof.

The result follows from inequality (3.34) and the estimates we have obtained so far. The quadratic semilinear terms in PTUP_{TU} are now null, as observed in (3.33), therefore from (3.20) and (3.21) and the smallness of ϵ\epsilon it follows that

(2+rt)12+κρZNFTUL2(Σte)C02ϵ2t1+2σl(t)+C02ϵ2t2+3σ.\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}Z^{\leq N}F_{TU}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2\sigma}\sqrt{l(t)}+C_{0}^{2}\epsilon^{2}t^{-2+3\sigma}.

The only terms that still need to be addressed are the contributions to (3.32) arising from the commutation of the null frame with the reduced wave operator. Using the energy bounds (3.6) we see that

(2+rt)12+κρCTU,K𝒊αβ∂̸𝒊ZNhαβ1L2(Σte)(2+rt)12+κρr1¯ZNhαβ1L2(Σte)\displaystyle\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}C^{{\bm{i}}\alpha\beta}_{TU,K^{\prime}}\cdot\not{\partial}_{\bm{i}}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}r^{-1}\overline{\nabla}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
t12ρ(2+rt)κ¯ZNhαβ1L2(Σte)C0ϵt12ρ+σl(t)\displaystyle\lesssim t^{-\frac{1}{2}-\rho}\|(2+r-t)^{\kappa}\overline{\nabla}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}\epsilon t^{-\frac{1}{2}-\rho+\sigma}\sqrt{l(t)}

while from (3.5) and the weighted Hardy inequality (B.4) with β=2κ1\beta=2\kappa-1 we get

(2+rt)12+κρDTU,KαβZNhαβ1L2(Σte)(2+rt)12+κρr2ZNhαβ1L2(Σte)\displaystyle\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}D^{\alpha\beta}_{TU,K^{\prime}}\cdot Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}r^{-2}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
t1ρ(2+rt)κ12ZNhαβ1L2(Σte)t1ρ(2+rt)12+κZNhαβ1L2(Σte)\displaystyle\lesssim t^{-1-\rho}\|(2+r-t)^{\kappa-\frac{1}{2}}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim t^{-1-\rho}\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
C0ϵt1ρ+σ.\displaystyle\lesssim C_{0}\epsilon t^{-1-\rho+\sigma}.

We then recall the decomposition (1.12) of the tensor HH, with H0,μνH^{0,\mu\nu} satisfying (3.11) and H1,μνH^{1,\mu\nu} verifying the bounds (3.12)-(3.14). We similarly get

|K1|+|K2|N|K1|N/2(2+rt)12+κρETUμν,K1K2𝒊αβZK1H1,μν∂̸𝒊ZK2hαβ1L2(Σte)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{1}|\leq\lfloor N/2\rfloor\end{subarray}}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}E^{{\bm{i}}\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\cdot Z^{K_{1}}H^{1,\mu\nu}\cdot\not{\partial}_{\bm{i}}Z^{K_{2}}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
+|K1|+|K2||K|(2+rt)12+κρETUμν,K1K2𝒊αβZK1H0,μν∂̸𝒊ZK2hαβ1L2(Σte)\displaystyle+\sum_{|K_{1}|+|K_{2}|\leq|K|}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}E^{{\bm{i}}\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\cdot Z^{K_{1}}H^{0,\mu\nu}\cdot\not{\partial}_{\bm{i}}Z^{K_{2}}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
C0ϵtσ(2+rt)12+κρr2¯ZNhαβ1L2(Σte)C02ϵ2t32ρ+2σl(t)\displaystyle\lesssim C_{0}\epsilon t^{\sigma}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}r^{-2}\overline{\nabla}Z^{\leq N}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-\frac{3}{2}-\rho+2\sigma}\sqrt{l(t)}

and

|K1|+|K2|N|K2|N/2(2+rt)12+κρETUμν,K1K2𝒊αβZK1H1,μν∂̸𝒊ZK2hαβ1L2(Σte)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{2}|\leq\lfloor N/2\rfloor\end{subarray}}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}E^{{\bm{i}}\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\cdot Z^{K_{1}}H^{1,\mu\nu}\cdot\not{\partial}_{\bm{i}}Z^{K_{2}}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
C0ϵtσl(t)(2+rt)12ρr2ZNH1,μνL2(Σte)\displaystyle\lesssim C_{0}\epsilon t^{\sigma}\sqrt{l(t)}\|(2+r-t)^{\frac{1}{2}-\rho}r^{-2}Z^{\leq N}H^{1,\mu\nu}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
C0ϵt1ρκ+σl(t)(2+rt)12+κZNH1,μνL2(Σte)C02ϵ2t1ρκ+2σl(t).\displaystyle\lesssim C_{0}\epsilon t^{-1-\rho-\kappa+\sigma}\sqrt{l(t)}\|(2+r-t)^{\frac{1}{2}+\kappa}\partial Z^{\leq N}H^{1,\mu\nu}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1-\rho-\kappa+2\sigma}\sqrt{l(t)}.

Finally,

|K1|+|K2|N(2+rt)12+κρFTUμν,K1K2αβZK1HμνZK2hαβ1L2(Σte)\displaystyle\sum_{|K_{1}|+|K_{2}|\leq N}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}F^{\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\cdot Z^{K_{1}}H^{\mu\nu}\cdot Z^{K_{2}}h^{1}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}
C0ϵtσ(2+rt)12+κρr3ZNh1L2(Σte)C02ϵ2t2ρ+2σ.\displaystyle\lesssim C_{0}\epsilon t^{\sigma}\|(2+r-t)^{\frac{1}{2}+\kappa-\rho}r^{-3}Z^{\leq N}h^{1}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-2-\rho+2\sigma}.

By substituting the above estimates together with (3.28), (3.35), (3.41) and (3.42) into (3.34) and choosing ϵ01\epsilon_{0}\ll 1 sufficiently small so that C0ϵ<1C_{0}\epsilon<1 we finally find the existence of a universal constant CC such that

Ee,κρ(t,ZKhTU1)\displaystyle E^{\text{e},\kappa-\rho}(t,Z^{K}h^{1}_{TU}) CEe,κρ(2,ZKhTU1)+CC02ϵ2+2tCϵEe,κρ(τ,ZKhTU1)τ𝑑τ.\displaystyle\leq CE^{\text{e},\kappa-\rho}(2,Z^{K}h^{1}_{TU})+CC_{0}^{2}\epsilon^{2}+\int_{2}^{t}\frac{C\epsilon E^{\text{e},\kappa-\rho}(\tau,Z^{K}h^{1}_{TU})}{\tau}\,d\tau.

Observe that Ee,κρ(2,ZKhTU1)Ee,κ(t,h1)E^{\text{e},\kappa-\rho}(2,Z^{K}h^{1}_{TU})\lesssim E^{\text{e},\kappa}(t,h^{1}). Grönwall’s inequality and the energy assumption (3.1) allow us to obtain

Ee,κρ(t,ZKhTU1)C(Ee,κ(2,ZKh1)+C02ϵ2)tCϵ2CC02ϵ2tCϵE^{\text{e},\kappa-\rho}(t,Z^{K}h^{1}_{TU})\leq C(E^{\text{e},\kappa}(2,Z^{K}h^{1})+C_{0}^{2}\epsilon^{2})t^{C\epsilon}\leq 2CC_{0}^{2}\epsilon^{2}t^{C\epsilon}

and hence conclude the proof. ∎

An immediate consequence of (3.30) are the following weighted L2L^{2} bounds

(3.43) (2+rt)12+κρZNhTU1L2(Σte)C0ϵtCϵ\displaystyle\big{\|}(2+r-t)^{\frac{1}{2}+\kappa-\rho}\ \partial Z^{\leq N}h^{1}_{TU}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}\epsilon t^{C\epsilon}
(3.44) (2+rt)κρ¯ZNhTU1L2(Σte)C0ϵtCϵl(t)\displaystyle\big{\|}(2+r-t)^{\kappa-\rho}\ \overline{\partial}Z^{\leq N}h^{1}_{TU}\big{\|}_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}\epsilon t^{C\epsilon}\sqrt{l(t)}

for all t[2,T0)t\in[2,T_{0}), where lL1([2,T0))l\in L^{1}([2,T_{0})). The weighted Sobolev injection (B.2) with β=1+2(κρ)\beta=1+2(\kappa-\rho) also yields the following pointwise bound

(3.45) |ZN3hTU1|κρ12C0ϵtCϵ.|\partial Z^{\leq N-3}h^{1}_{TU}|_{\kappa-\rho-\frac{1}{2}}\lesssim C_{0}\epsilon t^{C\epsilon}.

3.5. The weak null terms

The goal of this subsection is to recover suitable higher order weighted L2(Σte)L^{2}(\Sigma^{\text{e}}_{t}) estimates for the quadratic weak null terms Pαβ(h,h)P_{\alpha\beta}(\partial h,\partial h) defined as

Pαβ(h,h)=14g¯μρg¯νσ(αhμρβhνσ2αhμνβhρσ).P_{\alpha\beta}(\partial h,\partial h)=\frac{1}{4}\bar{g}^{\mu\rho}\bar{g}^{\nu\sigma}\left(\partial_{\alpha}h_{\mu\rho}\partial_{\beta}h_{\nu\sigma}-2\partial_{\alpha}h_{\mu\nu}\partial_{\beta}h_{\rho\sigma}\right).

These estimates are based on the following remarkable property, highlighted in the works of Lindblad and Rodnianski [38, 39, 40], on Lemma 2.2 and on the bounds (3.43), (3.45) satisfied by hTU1h^{1}_{TU}.

Lemma 3.13.

Let π,θ\pi,\theta be arbitrary 2-tensors and PP be the quadratic form defined by

P(π,θ)=14g¯μρg¯νσ(πμρθνσ2πμνθρσ).P(\pi,\theta)=\frac{1}{4}\bar{g}^{\mu\rho}\bar{g}^{\nu\sigma}\left(\pi_{\mu\rho}\theta_{\nu\sigma}-2\pi_{\mu\nu}\theta_{\rho\sigma}\right).

Then

|P(π,θ)||π|𝒯𝒰|θ|𝒯𝒰+|π||θ|+|π||θ|.|P(\pi,\theta)|\lesssim|\pi|_{\mathscr{T}\mathscr{U}}|\theta|_{\mathscr{T}\mathscr{U}}+|\pi|_{\mathscr{L}\mathscr{L}}|\theta|+|\pi||\theta|_{\mathscr{L}\mathscr{L}}.
Proposition 3.14.

Fix i=0,1i=0,1. There exists some constant C>0C>0 such that, under the a-priori energy assumptions (3.1)-(3.2), we have

(3.46) (2+rt)12+i+κiZNPαβL2(Σte)C02ϵ2[t1+Cϵ+t1+2σl(t)+ϵt32+2σ].\left\|(2+r-t)^{\frac{1}{2}+i+\kappa}\partial^{i}Z^{\leq N}P_{\alpha\beta}\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}\big{[}t^{-1+C\epsilon}+t^{-1+2\sigma}\sqrt{l(t)}+\epsilon t^{-\frac{3}{2}+2\sigma}\big{]}.
Proof.

We write h=h1+h0h=h^{1}+h^{0} and plug this decomposition into Pαβ(h,h)P_{\alpha\beta}(\partial h,\partial h). Using (3.11) and the energy bounds (3.5), (3.7) it is straightforward to prove that there exists some small δ>0\delta>0 such that

i,j=0,1|K1|+|K2|N|I1|+|I2|=i(2+rt)12+i+κI1ZK1h0I2ZK2hjL2(Σte)C02ϵ2t2+δ.\sum_{\begin{subarray}{c}i,j=0,1\\ |K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\|(2+r-t)^{\frac{1}{2}+i+\kappa}\,\partial^{I_{1}}Z^{K_{1}}h^{0}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{j}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-2+\delta}.

Hence we focus on proving that estimate (3.46) holds true for Pαβ(h1,h1)P_{\alpha\beta}(\partial h^{1},\partial h^{1}).

We start by noticing that for any multi-index KK, ZKPαβ(h1,h1)Z^{K}P_{\alpha\beta}(\partial h^{1},\partial h^{1}) is a linear combination of terms of the form Pμν(ZK1h1,ZK2h1)P_{\mu\nu}(\partial Z^{K_{1}}h^{1},\partial Z^{K_{2}}h^{1}) for some multi-indexes K1,K2K_{1},K_{2} such that |K1|+|K2||K||K_{1}|+|K_{2}|\leq|K| and μ,ν=0,,4\mu,\nu=0,\dots,4. Applying Lemma 3.13 and Lemma 2.2 we see that for i=0,1i=0,1

(3.47) |iZNPαβ(h1,h1)||K1|+|K2|N|I1|+|I2|=i|I1ZK1h1|𝒯𝒰|I2ZK2h1|𝒯𝒰\displaystyle|\partial^{i}Z^{\leq N}P_{\alpha\beta}(\partial h^{1},\partial h^{1})|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}|_{\mathscr{T}\mathscr{U}}|\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|_{\mathscr{T}\mathscr{U}}
+|K1|+|K2|N|I1|+|I2|=i|¯I1ZK1h1||I2ZK2h1|+r1|I1ZK1h1||I2ZK2h1|\displaystyle+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}|\overline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|+r^{-1}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|
+|K1|+|K2|+|K3|N|I1|+|I2|+|I3|=i|I1ZK1h1||I2ZK2h1||I3ZK3h1|\displaystyle+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}||\partial\partial^{I_{3}}Z^{K_{3}}h^{1}|
+Mχ0(t/2r3t/4)(1+t+r)2ji|jZNh1|,\displaystyle+\frac{M\chi_{0}(t/2\leq r\leq 3t/4)}{(1+t+r)^{2}}\sum_{j\leq i}|\partial\partial^{j}Z^{\leq N}h^{1}|,

where χ0(t/2r3t/4)\chi_{0}(t/2\leq r\leq 3t/4) is supported for t/2r3t/4t/2\leq r\leq 3t/4. Since the intersection of this support with the exterior region in bounded, it is immediate to see that the weighted L2(Σte)L^{2}(\Sigma^{\text{e}}_{t}) norm of the last term in the above right hand side is bounded by C0ϵ2t2C_{0}\epsilon^{2}t^{-2}.

The cubic terms and the quadratic terms involving a tangential derivative have been estimated in proposition 3.4 and satisfy (3.21) and (3.20) respectively. The weighted L2L^{2} norm of the quadratic term with the extra r1r^{-1} factor is bounded by C02ϵ2t3/2+2σC_{0}^{2}\epsilon^{2}t^{-3/2+2\sigma}, we leave the details to the reader. Finally, from (3.43) and (3.45) with ρ>0\rho>0 such that k>2ρk>2\rho

i=0,1|K1|+|K2|N|I1|+|I2|=i(2+rt)12+i+κ|I1ZK1h1|𝒯𝒰|I2ZK2h1|𝒯𝒰L2(Σte)C0ϵt1+Cϵi=0,1(2+rt)i12+ρ|ZNh1|𝒯𝒰L2(Σte)C02ϵ2t1+2Cϵ.\sum_{\begin{subarray}{c}i=0,1\\ |K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|(2+r-t)^{\frac{1}{2}+i+\kappa}|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}|_{\mathscr{T}\mathscr{U}}|\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|_{\mathscr{T}\mathscr{U}}\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}\\ \lesssim C_{0}\epsilon t^{-1+C\epsilon}\sum_{i=0,1}\left\|(2+r-t)^{i-\frac{1}{2}+\rho}|\partial Z^{\leq N}h^{1}|_{\mathscr{T}\mathscr{U}}\right\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}t^{-1+2C\epsilon}.

From Lemma 3.13 and bounds (3.11), (3.12), (3.16), (3.45) we also get the following pointwise estimate for the differentiated weak null terms.

Proposition 3.15.

There exists a constant C>0C>0 such that, under the a-priori assumptions (3.5)-(3.8), we have that

(3.48) |ZN3Pαβ(h,h)(t)|12\displaystyle\big{|}Z^{\leq N-3}P_{\alpha\beta}(\partial h,\partial h)(t)\big{|}_{\frac{1}{2}} C02ϵ2(t1+2Cϵ+t1+2σl(t)).\displaystyle\lesssim C_{0}^{2}\epsilon^{2}\big{(}t^{-1+2C\epsilon}+t^{-1+2\sigma}\sqrt{l(t)}\big{)}.

3.6. Propagation of the energy estimates

We now proceed to the proof of proposition 3.1. We recall that for any multi-index KK, the differentiated coefficients ZKhαβ1Z^{K}h^{1}_{\alpha\beta} solve (3.9) with source term (3.10). We set i=1i=1 if ZK=ZKZ^{K}=\partial Z^{K^{\prime}} and |K|N|K^{\prime}|\leq N, i=0i=0 if simply |K|N|K|\leq N. Thanks to the smallness of HH provided by (3.11) and (3.17), we apply (A.2) with 𝐖=ZKhαβ1\mathbf{W}=Z^{K}h^{1}_{\alpha\beta}, 𝐅=FαβK+Fαβ0,K\mathbf{F}=F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta}, w(q)=(2+rt)1+2(i+κ)w(q)=(2+r-t)^{1+2(i+\kappa)} and ω=x/|x|\omega=x/|x|. For every t[2,T0)t\in[2,T_{0}) we get the following energy inequality

(3.49) Ee,i+κ(t,ZKhαβ1)\displaystyle E^{e,i+\kappa}(t,Z^{K}h^{1}_{\alpha\beta})
+~2,t(2+rt)1+2(i+κ)[(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1|2+|¯ZKhαβ1|2]𝑑x𝑑y\displaystyle+\int_{\tilde{\mathscr{H}}_{2,t}}(2+r-t)^{1+2(i+\kappa)}\Big{[}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}Z^{K}h^{1}_{\alpha\beta}|^{2}\Big{]}dxdy
Ee,i+κ(2,ZKhαβ1)+𝒟[2,t]e(2+rτ)1+2(i+κ)|(FαβK+μHμσσZKhαβ1)tZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle\lesssim E^{e,i+\kappa}(2,Z^{K}h^{1}_{\alpha\beta})+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|(F^{K}_{\alpha\beta}+\partial^{\mu}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta})\partial_{t}Z^{K}h^{1}_{\alpha\beta}|d\tau dxdy
+𝒟[2,t]e(2+rτ)1+2(i+κ)[|Fαβ0,KtZKhαβ1|+|tHμσσZKh1μZKhαβ1|]𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}\Big{[}|F^{0,K}_{\alpha\beta}\,\partial_{t}Z^{K}h^{1}_{\alpha\beta}|+|\partial_{t}{H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}\cdot\ \partial^{\mu}Z^{K}h^{1}_{\alpha\beta}|\Big{]}\,d\tau dxdy
+𝒟[2,t]e(2+rτ)2(i+κ)|HρσρZKhαβ1σZKhαβ1|𝑑τ𝑑x𝑑y\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|H^{\rho\sigma}\cdot\partial_{\rho}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy
+𝒟[2,t]e(2+rτ)2(i+κ)|(H0σ+ω𝒋H𝒋σ)σZKhαβ1tZKhαβ1|𝑑τ𝑑x𝑑y.\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{2(i+\kappa)}|(-H^{0\sigma}+\omega_{\bm{j}}H^{{\bm{j}}\sigma})\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}\cdot\partial_{t}Z^{K}h^{1}_{\alpha\beta}|d\tau dxdy.

The above inequality is satisfied for all t[2,T0)t\in[2,T_{0}) and the implicit constant is a universal constant.

Proof of proposition 3.1.

We recall the definition of the source term FαβK=ZKFαβF^{K}_{\alpha\beta}=Z^{K}F_{\alpha\beta} where

Fαβ(h)(h,h)=Pαβ(h,h)+𝐐αβ(h,h)+Gαβ(h)(h,h).F_{\alpha\beta}(h)(\partial h,\partial h)=P_{\alpha\beta}(\partial h,\partial h)+\mathbf{Q}_{\alpha\beta}(\partial h,\partial h)+G_{\alpha\beta}(h)(\partial h,\partial h).

The combination of estimates (3.20), (3.21) and (3.46) yields that for i=0,1i=0,1

(2+rt)12+i+κFαβKL2(Σte)C02ϵ2(t1+Cϵ+t1+2σl(t))\|(2+r-t)^{\frac{1}{2}+i+\kappa}F^{K}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}\lesssim C_{0}^{2}\epsilon^{2}\big{(}t^{-1+C\epsilon}+t^{-1+2\sigma}\sqrt{l(t)}\big{)}

which together with the Cauchy-Schwarz inequality and energy assumptions (3.1), (3.2) gives

𝒟[2,t]e(2+rτ)1+2(i+κ)|FαβKtZKhαβ1|𝑑τ𝑑x𝑑y2t(2+rτ)12+i+κFαβKL2(Σte)Ee,i+κ(τ,ZKhαβ1)12𝑑τ2tC03ϵ3(τ1+Cϵ+σ+τ1+2σl(τ))𝑑τC03ϵ3tCϵ+σ.\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|F^{K}_{\alpha\beta}\cdot\partial_{t}Z^{K}h^{1}_{\alpha\beta}|d\tau dxdy\\ \lesssim\int_{2}^{t}\|(2+r-\tau)^{\frac{1}{2}+i+\kappa}F^{K}_{\alpha\beta}\|_{L^{2}(\Sigma^{\text{e}}_{t})}E^{\text{e},i+\kappa}(\tau,Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}d\tau\\ \lesssim\int_{2}^{t}C_{0}^{3}\epsilon^{3}(\tau^{-1+C\epsilon+\sigma}+\tau^{-1+2\sigma}\sqrt{l(\tau)})d\tau\lesssim C_{0}^{3}\epsilon^{3}t^{C\epsilon+\sigma}.

From estimate (3.35) we also get that

𝒟[2,t]e(2+rτ)1+2(i+κ)|Fαβ0,KtZKhαβ1|𝑑τ𝑑x𝑑yC0ϵ2.\iint_{\mathscr{D}^{\text{e}}_{[2,t]}}(2+r-\tau)^{1+2(i+\kappa)}|F^{0,K}_{\alpha\beta}\cdot\partial_{t}Z^{K}h^{1}_{\alpha\beta}|\,d\tau dxdy\lesssim C_{0}\epsilon^{2}.

By injecting the above bounds, together with (3.41) and (3.42), into (3.49) we deduce the existence of a constant C~>0\tilde{C}>0 such that for all t[2,T0)t\in[2,T_{0})

Ee,i+κ(t,ZKhαβ1)\displaystyle E^{\text{e},i+\kappa}(t,Z^{K}h^{1}_{\alpha\beta})
+~2,t(2+rt)1+2(i+κ)[(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1|2+|¯ZKhαβ1|2]𝑑x𝑑y\displaystyle+\int_{\tilde{\mathscr{H}}_{2,t}}(2+r-t)^{1+2(i+\kappa)}\Big{[}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}Z^{K}h^{1}_{\alpha\beta}|^{2}\Big{]}dxdy
C~Ee,i+κ(2,ZKhαβ1)+C~C0ϵ2+C~C03ϵ3tCϵ+σ+C~ϵ2tEe,i+κ(τ,ZKhαβ1)τ𝑑τ.\displaystyle\leq\tilde{C}E^{\text{e},i+\kappa}(2,Z^{K}h^{1}_{\alpha\beta})+\tilde{C}C_{0}\epsilon^{2}+\tilde{C}C_{0}^{3}\epsilon^{3}t^{C\epsilon+\sigma}+\tilde{C}\epsilon\int_{2}^{t}\frac{E^{\text{e},i+\kappa}(\tau,Z^{K}h^{1}_{\alpha\beta})}{\tau}\,d\tau.

By Grönwall’s inequality we then deduce that

Ee,i+κ(t,ZKhαβ1)C~(Ee,i+κ(2,ZKhαβ1)+C0ϵ2+C03ϵ3tCϵ+σ)tC~ϵ.E^{\text{e},i+\kappa}(t,Z^{K}h^{1}_{\alpha\beta})\leq\tilde{C}\big{(}E^{\text{e},i+\kappa}(2,Z^{K}h^{1}_{\alpha\beta})+C_{0}\epsilon^{2}+C_{0}^{3}\epsilon^{3}t^{C\epsilon+\sigma}\big{)}t^{\tilde{C}\epsilon}.

We denote the sum C+C~C+\tilde{C} simply by CC. Finally, we choose C01C_{0}\gg 1 sufficiently large so that 3C~Ee,i+κ(2,ZKhαβ1)(C0ϵ)23\tilde{C}E^{\text{e},i+\kappa}(2,Z^{K}h^{1}_{\alpha\beta})\leq(C_{0}\epsilon)^{2} and 3C~<C03\tilde{C}<C_{0}, then ϵ0>0\epsilon_{0}>0 sufficiently small so that 3C~C03ϵ0<13\tilde{C}C_{0}^{3}\epsilon_{0}<1 and 2Cϵ0<σ2C\epsilon_{0}<\sigma to infer that

Ee,i+κ(t,ZKhαβ1)C02ϵ2tσ+Cϵ.E^{\text{e},i+\kappa}(t,Z^{K}h^{1}_{\alpha\beta})\leq C_{0}^{2}\epsilon^{2}t^{\sigma+C\epsilon}.

As a byproduct, we also deduce that

(3.50) ~2,t(2+rt)1+2(i+κ)[(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1|2+|¯ZKhαβ1|2]𝑑x𝑑yC02ϵ2tσ+Cϵ.\int_{\tilde{\mathscr{H}}_{2,t}}(2+r-t)^{1+2(i+\kappa)}\Big{[}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}Z^{K}h^{1}_{\alpha\beta}|^{2}\Big{]}dxdy\lesssim C_{0}^{2}\epsilon^{2}t^{\sigma+C\epsilon}.

4. The interior region

The goal of this section is to prove the existence in the interior region 𝒟i\mathscr{D}^{\text{i}} of the solution hαβ1h^{1}_{\alpha\beta} to (1.8) with data satisfying the hypothesis of theorem 1.2. The proof is based on a bootstrap argument in which the a-priori assumptions on the solutions are bounds on the higher order energies on truncated hyperboloids s\mathscr{H}_{s} as well as pointwise decay bounds on a certain number of ZZ derivatives acting on it.

We define the interior energy functional as follows

(4.1) Ei(s,hαβ1)\displaystyle E^{\text{i}}(s,h^{1}_{\alpha\beta}) :=s(s/t)2|thαβ1|2+|¯hαβ1|2dxdy\displaystyle:=\iint_{\mathscr{H}_{s}}(s/t)^{2}|\partial_{t}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}h^{1}_{\alpha\beta}|^{2}\,dxdy
=s(s/t)2|xhαβ1|2+t2|𝒮hαβ1|2+t21𝒊<𝒋3|Ω𝒊𝒋hαβ1|2+|yhαβ1|2dxdy,\displaystyle=\iint_{\mathscr{H}_{s}}(s/t)^{2}|\nabla_{x}h^{1}_{\alpha\beta}|^{2}+t^{-2}|\mathscr{S}h^{1}_{\alpha\beta}|^{2}+t^{-2}\sum_{1\leq{\bm{i}}<{\bm{j}}\leq 3}|\Omega_{{\bm{i}}{\bm{j}}}h^{1}_{\alpha\beta}|^{2}+|\partial_{y}h^{1}_{\alpha\beta}|^{2}\,dxdy,

where 𝒮=tt+xx\mathscr{S}=t\partial_{t}+x\cdot\nabla_{x} is the scaling vector field and Ω𝒊𝒋=x𝒊𝒋x𝒋𝒊\Omega_{{\bm{i}}{\bm{j}}}=x_{\bm{i}}\partial_{\bm{j}}-x_{\bm{j}}\partial_{\bm{i}} are the Euclidean rotations in 3{\mathbb{R}}^{3}. Using Parseval’s identity, we also define the energy functional associated to the zero-mode hαβ1,h^{1,\flat}_{\alpha\beta} of the solution as well as that of its zero-average component hαβ1,h^{1,\natural}_{\alpha\beta}, so that

Ei(s,hαβ1)=Ei(s,hαβ1,)+Ei(s,hαβ1,).E^{\text{i}}(s,h^{1}_{\alpha\beta})=E^{\text{i}}(s,h^{1,\flat}_{\alpha\beta})+E^{\text{i}}(s,h^{1,\natural}_{\alpha\beta}).

We fix N,N1N,N_{1}\in{\mathbb{N}} two integers sufficiently large with N14N\geq 14 and N1=N5N_{1}=N-5 and assume the existence of two positive constants 1C1C21\ll C_{1}\ll C_{2}, as well as of a finite and increasing sequence of parameters 0<ζk,γk,δk10<\zeta_{k},\gamma_{k},\delta_{k}\ll 1 with

(4.2) ζiγjδk,i,j,k,γi+δjδk,i,j<k,\zeta_{i}\ll\gamma_{j}\ll\delta_{k},\quad\forall i,j,k,\qquad\gamma_{i}+\delta_{j}\ll\delta_{k},\quad\forall i,j<k,

such that:

\bullet for s0s_{0} close to 2 (e.g. s0=21/10s_{0}=21/10) and for any arbitrarily fixed S0>s0S_{0}>s_{0}, the solution hαβ1h^{1}_{\alpha\beta} exists in the hyperbolic strip [s0,S0)\mathscr{H}_{[s_{0},S_{0})},

\bullet for any s[s0,S0)s\in[s_{0},S_{0}), any multi-index K=(I,J)K=(I,J) of type (N,k)(N,k)111111We recall that a multi-index K=(I,J)K=(I,J) is said to be of type (N,k)(N,k) if |I|+|J|N|I|+|J|\leq N and |J|k|J|\leq k, it satisfies the following energy bounds

(4.3) Ei(s,ZKhαβ1)12+Ei(s,ZKhαβ1)122C1ϵs12+ζk\displaystyle E^{\text{i}}(s,\partial Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}+E^{\text{i}}(s,Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}\leq 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}
(4.4) Ei(s,ZKhαβ1,)122C1ϵsζk\displaystyle E^{\text{i}}(s,Z^{K}h^{1,\flat}_{\alpha\beta})^{\frac{1}{2}}\leq 2C_{1}\epsilon s^{\zeta_{k}}

and for multi-indexes KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.5) Ei(s,ZKhαβ1)122C1ϵsδkE^{\text{i}}(s,Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}\leq 2C_{1}\epsilon s^{\delta_{k}}

\bullet for any s[s0,S0)s\in[s_{0},S_{0}), it satisfies the following pointwise bounds

(4.6) tΓJhαβ1,Lx(s)2C2ϵsγk with |J|=kN1,\|t\,\Gamma^{J}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\lesssim 2C_{2}\epsilon s^{\gamma_{k}}\text{ with }|J|=k\leq N_{1},
(4.7) t12stx(IΓJhαβ1,)LxLy2(s)+t32y1(IΓJhαβ1,)LxLy2(s){2C2ϵ,if |I|N1,|J|=02C2ϵsγk,if |I|+|J|N1+1,|J|=kN1.\begin{split}\|t^{\frac{1}{2}}s\,\partial_{tx}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}&+\|t^{\frac{3}{2}}\partial^{\leq 1}_{y}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\\ &\leq\begin{cases}2C_{2}\epsilon,\ &\text{if }|I|\leq N_{1},\ |J|=0\\ 2C_{2}\epsilon s^{\gamma_{k}},\ &\text{if }|I|+|J|\leq N_{1}+1,\ |J|=k\leq N_{1}.\\ \end{cases}\end{split}

The result we aim to prove states the following

Proposition 4.1.

There exist two constants 1C1C21\ll C_{1}\ll C_{2} sufficiently large, a finite and increasing sequence of parameters 0ζk,γk,δk10\leq\zeta_{k},\gamma_{k},\delta_{k}\ll 1 satisfying (4.2) and 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small such that for every 0<ϵ<ϵ00<\epsilon<\epsilon_{0}, if hαβ1h^{1}_{\alpha\beta} is solution to (1.8) in the hyperbolic strip [s0,S0)\mathscr{H}_{[s_{0},S_{0})} that satisfies the bounds (4.3)-(4.7) for all s[s0,S0)s\in[s_{0},S_{0}) and the energy bounds (3.1)-(3.2) globally in the exterior region, then for every s[s0,S0)s\in[s_{0},S_{0}) it actually satisfies the following:
for multi-indexes KK of type (N,k)(N,k)

(4.8) Ei(s,ZKhαβ1)12+Ei(s,ZKhαβ1)12C1ϵs12+ζk\displaystyle E^{\text{i}}(s,\partial Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}+E^{\text{i}}(s,Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}\leq C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}
(4.9) Ei(s,ZKhαβ1,)12C1ϵsζk;\displaystyle E^{\text{i}}(s,Z^{K}h^{1,\flat}_{\alpha\beta})^{\frac{1}{2}}\leq C_{1}\epsilon s^{\zeta_{k}};

for multi-indexes KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.10) Ei(s,ZKhαβ1)12C1ϵsδkE^{\text{i}}(s,Z^{K}h^{1}_{\alpha\beta})^{\frac{1}{2}}\leq C_{1}\epsilon s^{\delta_{k}}

and finally

(4.11) tΓJhαβ1,Lx(s)C2ϵsγkif |J|=kN1,\|t\,\Gamma^{J}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\leq C_{2}\epsilon s^{\gamma_{k}}\quad\text{if }|J|=k\leq N_{1},
(4.12) t12stx(IΓJhαβ1,)LxLy2(s)\displaystyle\|t^{\frac{1}{2}}s\,\partial_{tx}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})} +t32y1(IΓJhαβ1,)LxLy2(s)\displaystyle+\|t^{\frac{3}{2}}\partial^{\leq 1}_{y}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}
{C2ϵ,if |I|N1,|J|=0C2ϵsγk,if |I|+|J|N1+1,|J|=kN1\displaystyle\leq\begin{cases}C_{2}\epsilon,\ &\text{if }|I|\leq N_{1},\ |J|=0\\ C_{2}\epsilon s^{\gamma_{k}},\ &\text{if }|I|+|J|\leq N_{1}+1,\ |J|=k\leq N_{1}\\ \end{cases}
Remark 4.2.

The a-priori assumptions (4.3)-(4.7) are satisfied when s=s0s=s_{0} as a consequence of the assumptions on the initial data and the local existence result for the Einstein equations. The hyperbolic time S0S_{0} in the above proposition is arbitrary. This implies the existence of the solution in the unbounded region [s0,)\mathscr{H}_{[s_{0},\infty)}, hence in the full interior region.

Remark 4.3.

The result stated above builds upon the energy and pointwise estimates the solution has been proved to satisfy in the exterior region. This can be already seen in the energy inequality (4.16) below, where the energy flux through the separating hypersurface [s0,s]\mathscr{H}_{[s_{0},s]}, which is controlled by the exterior energies, appears in the right hand side of the inequality. Constants C1,γk,δkC_{1},\gamma_{k},\delta_{k} in proposition 4.1 will in particular be chosen relative to C0,σ,κC_{0},\sigma,\kappa so that C1C0C_{1}\gg C_{0}, σγkδkκ\sigma\ll\gamma_{k}\ll\delta_{k}\ll\kappa and δkκσ\delta_{k}\ll\kappa-\sigma for all k=0,,Nk=0,\dots,N. For this reason and throughout the rest of this section, we will often replace C0C_{0} by C1C_{1} in the inequalities obtained using bounds recovered in the exterior region.

In order to recover the enhanced energy bounds (4.8)-(4.10), we compare the equation satisfied by ZKhαβ1Z^{K}h^{1}_{\alpha\beta} and ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta} respectively with (A.1) and apply the energy inequality of proposition A.2. We recall that ZKhαβ1Z^{K}h^{1}_{\alpha\beta} satisfies the following quasilinear wave equation

(4.13) ~gZKhαβ1=FαβK+Fαβ0,K\tilde{\Box}_{g}Z^{K}h^{1}_{\alpha\beta}=F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta}

with source terms

(4.14) Fαβ0,K=ZK~ghαβ0,FαβK=ZKFαβ(h)(h,h)[ZK,Hμνμν]hαβ1F^{0,K}_{\alpha\beta}=Z^{K}\tilde{\Box}_{g}h^{0}_{\alpha\beta},\qquad F^{K}_{\alpha\beta}=Z^{K}F_{\alpha\beta}(h)(\partial h,\partial h)-[Z^{K},H^{\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}

and that the equation of ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta} is obtained by averaging (4.13) over 𝕊1{\mathbb{S}}^{1}

(4.15) xZKhαβ1,+(H𝝁𝝂)𝝁𝝂ZKhαβ1,+((Hμν)μνZKhαβ1,)=FαβK,+Fαβ0,K\Box_{x}Z^{K}h^{1,\flat}_{\alpha\beta}+(H^{{\bm{\mu}}{\bm{\nu}}})^{\flat}\cdot\partial_{\bm{\mu}}\partial_{\bm{\nu}}Z^{K}h^{1,\flat}_{\alpha\beta}+\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}=F^{K,\flat}_{\alpha\beta}+F^{0,K}_{\alpha\beta}

where FαβK,=𝕊1FαβK𝑑yF^{K,\flat}_{\alpha\beta}=\fint_{{\mathbb{S}}^{1}}F^{K}_{\alpha\beta}dy. If the tensor HH satisfies suitable decay bounds in [s0,S0)\mathscr{H}_{[s_{0},S_{0})}, e.g. if for some δ>0\delta>0

|H(t,x,y)|ϵ(1+t+r)34,|HLL1(t,x,y)|ϵ(1+t+r)1+δ|H(t,x,y)|\lesssim\frac{\epsilon}{(1+t+r)^{\frac{3}{4}}},\quad|H^{1}_{LL}(t,x,y)|\lesssim\frac{\epsilon}{(1+t+r)^{1+\delta}}

we derive the following two energy inequalities, which hold for any s[s0,S0)s\in[s_{0},S_{0})

(4.16) Ei(s,ZKhαβ1)Ei(s0,ZKhαβ1)\displaystyle E^{\text{i}}(s,Z^{K}h^{1}_{\alpha\beta})\lesssim E^{\text{i}}(s_{0},Z^{K}h^{1}_{\alpha\beta})
+~s0s(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1|2+|¯ZKhαβ1|2dxdy\displaystyle+\int_{\tilde{\mathscr{H}}_{s_{0}s}}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}Z^{K}h^{1}_{\alpha\beta}|^{2}\,dxdy
+[s0,s]|FαβK+Fαβ0,K+μHμσσZKhαβ1||tZKhαβ1|+12|tHμσσZKhαβ1μZKhαβ1|dtdxdy\displaystyle+\iint_{\mathscr{H}_{[s_{0},s]}}|F^{K}_{\alpha\beta}+F^{0,K}_{\alpha\beta}+{\partial^{\mu}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|+\frac{1}{2}|{\partial_{t}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}\cdot\partial^{\mu}Z^{K}h^{1}_{\alpha\beta}|\,dtdxdy

and

(4.17) Ei(s,ZKhαβ1,)Ei(s0,ZKhαβ1,)\displaystyle E^{\text{i}}(s,Z^{K}h^{1,\flat}_{\alpha\beta})\lesssim E^{\text{i}}(s_{0},Z^{K}h^{1,\flat}_{\alpha\beta})
+~s0s(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1,|2+|¯xZKhαβ1,|2dx\displaystyle+\int_{\tilde{\mathscr{H}}_{s_{0}s}}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|^{2}+|\underline{\nabla}_{x}Z^{K}h^{1,\flat}_{\alpha\beta}|^{2}\,dx
+[s0,s]|FαβK,+Fαβ0,K+μHμσσZKhαβ1,||tZKhαβ1,|+12|tHμσσZKhαβ1,μZKhαβ1,|dtdx\displaystyle+\iint_{\mathscr{H}_{[s_{0},s]}}|F^{K,\flat}_{\alpha\beta}+F^{0,K}_{\alpha\beta}+{\partial^{\mu}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1,\flat}_{\alpha\beta}||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|+\frac{1}{2}|{\partial_{t}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1,\flat}_{\alpha\beta}\cdot\partial^{\mu}Z^{K}h^{1,\flat}_{\alpha\beta}|\,dtdx
+[s0,s]|((Hμν)μνZKhαβ1,)||tZKhαβ1,|𝑑t𝑑x.\displaystyle+\iint_{\mathscr{H}_{[s_{0},s]}}|\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|\,dtdx.

The energy flux through the boundary ~s0s\tilde{\mathscr{H}}_{s_{0}s}, which appears in the right hand side of both of the above inequalities, is suitably controlled using (3.50) with t=ts=s2/2t=t_{s}=s^{2}/2

(4.18) ~s0s(12(1+r2)+χ(rt)χ(r)M2r)|tZKhαβ1|2+|¯xyZKhαβ1|2dxdyC02ϵ2s2σ+Cϵ.\int_{\tilde{\mathscr{H}}_{s_{0}s}}\Big{(}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{)}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|^{2}+|\underline{\nabla}_{xy}Z^{K}h^{1}_{\alpha\beta}|^{2}\,dxdy\lesssim C_{0}^{2}\epsilon^{2}s^{2\sigma+C\epsilon}.

The current section is therefore mainly devoted to estimating the remaining integrals in the right hand side of (4.16) and (4.17).

4.1. First sets of bounds

Below is a list of L2L^{2} and LL^{\infty} bounds for hαβ1,hαβ1,h^{1}_{\alpha\beta},h^{1,\flat}_{\alpha\beta} and hαβ1,h^{1,\natural}_{\alpha\beta}, which are a straightforward consequence of the a-priori bounds. All bounds stated below hold true also for tensor coefficients H1,μνH^{1,\mu\nu}, after decomposition (1.12) and bound (3.11).

4.1.1. Lxy2L^{2}_{xy} bounds on hyperboloids

From a-priori energy assumptions (4.3)-(4.4), the Parseval identity and Poincaré inequality applied to the zero-average components hαβ1,h^{1,\natural}_{\alpha\beta}, we derive the following L2L^{2} bounds on s\mathscr{H}_{s}, for any multi-index of type (N,k)(N,k) and i=0,1i=0,1,

(4.19) (s/t)iZKhαβ1L2(s)+¯iZKhαβ1L2(s)2C1ϵs12+ζk\displaystyle\left\|(s/t)\partial\partial^{i}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|\underline{\partial}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}
(4.20) (s/t)ZKhαβ1,L2(s)+¯ZKhαβ1,L2(s)2C1ϵsζk\displaystyle\left\|(s/t)\partial Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|\underline{\partial}Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\zeta_{k}}
(4.21) (s/t)ZKhαβ1,L2(s)+¯ZKhαβ1,L2(s)+ZKhαβ1,L2(s)2C1ϵs12+ζk\displaystyle\left\|(s/t)\partial Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|\underline{\partial}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}

and

(4.22) t1𝒮ZKhαβ1,L2(s)+t1ΓZKhαβ1,L2(s)2C1ϵsζk\displaystyle\left\|t^{-1}\mathscr{S}Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|t^{-1}\Gamma Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\zeta_{k}}
(4.23) t1𝒮ZKhαβ1,L2(s)+t1ΓZKhαβ1,L2(s)2C1ϵs12+ζk.\displaystyle\left\|t^{-1}\mathscr{S}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|t^{-1}\Gamma Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}.

For multi-indexes KK of type (N,k)(N,k) with kN1k\leq N_{1} we have

(4.24) (s/t)ZKhαβ1L2(s)+¯ZKhαβ1L2(s)2C1ϵsδk\displaystyle\left\|(s/t)\partial Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|\underline{\partial}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\delta_{k}}
(4.25) (s/t)ZKhαβ1,L2(s)+¯ZKhαβ1,L2(s)+ZKhαβ1,L2(s)2C1ϵsδk\displaystyle\left\|(s/t)\partial Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|\underline{\partial}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\delta_{k}}

and

(4.26) t1𝒮ZKhαβ1L2(s)+t1ΓZKhαβ1L2(s)2C1ϵsδk.\displaystyle\left\|t^{-1}\mathscr{S}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}+\left\|t^{-1}\Gamma Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\leq 2C_{1}\epsilon s^{\delta_{k}}.

Moreover, provided that σ,ϵ1\sigma,\epsilon\ll 1 are sufficiently small so that σ+Cϵζk\sigma+C\epsilon\leq\zeta_{k} for all 1kN1\leq k\leq N, from the Hardy inequality (B.7), energy assumption (4.19) and the exterior energy bound (3.3) (recall that ts=s2/2t_{s}=s^{2}/2) we also deduce the following bound when |J|=kN|J|=k\leq N

(4.27) r1ΓJhαβ1Lxy2(s)2C1ϵs12+ζk+C0ϵsσ+Cϵ2C1ϵs12+ζk\displaystyle\left\|r^{-1}\Gamma^{J}h^{1}_{\alpha\beta}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}+C_{0}\epsilon s^{\sigma+C\epsilon}\lesssim 2C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k}}
(4.28) r1ΓJhαβ1,Lx2(s)2C1ϵsζk+C0ϵsσ+Cϵ2C1ϵsζk.\displaystyle\left\|r^{-1}\Gamma^{J}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}_{x}(\mathscr{H}_{s})}\lesssim 2C_{1}\epsilon s^{\zeta_{k}}+C_{0}\epsilon s^{\sigma+C\epsilon}\lesssim 2C_{1}\epsilon s^{\zeta_{k}}.

For |J|=kN1|J|=k\leq N_{1}, we instead get from (4.24) that

(4.29) r1ΓJhαβ1Lxy2(s)2C1ϵsδk+C0ϵsσ+Cϵ2C1ϵsδk.\left\|r^{-1}\Gamma^{J}h^{1}_{\alpha\beta}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim 2C_{1}\epsilon s^{\delta_{k}}+C_{0}\epsilon s^{\sigma+C\epsilon}\lesssim 2C_{1}\epsilon s^{\delta_{k}}.

4.1.2. LxLy2L^{\infty}_{x}L^{2}_{y} bounds on hyperboloids

These are obtained using the Poincaré inequality, lemma B.5, relation ¯𝒊=t1Ω0𝒊\underline{\partial}_{{\bm{i}}}=t^{-1}\Omega_{0{\bm{i}}} and energy assumption (4.21).
For multi-indexes KK of type (N2,k)(N-2,k)

(4.30) t32y1ZKhαβ1,LxLy2(s)+t12stxZKhαβ1,LxLy2(s)C1ϵs12+ζk+2;\displaystyle\left\|t^{\frac{3}{2}}\,\partial_{y}^{\leq 1}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{1}{2}}s\,\partial_{tx}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k+2}};

for multi-indices KK of type (N3,k)(N-3,k)

(4.31) t52y1¯xZKhαβ1,LxLy2(s)+t32stx¯xZKhαβ1,LxLy2(s)C1ϵs12+ζk+3;\displaystyle\left\|t^{\frac{5}{2}}\,\partial_{y}^{\leq 1}\underline{\partial}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}s\,\partial_{tx}\underline{\partial}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k+3}};

for multi-indexes KK of type (N4,k)(N-4,k)

(4.32) t72y1¯x2ZKhαβ1,LxLy2(s)+t52stx¯x2ZKhαβ1,LxLy2(s)C1ϵs12+ζk+4.\displaystyle\left\|t^{\frac{7}{2}}\,\partial_{y}^{\leq 1}\underline{\partial}^{2}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{5}{2}}s\,\partial_{tx}\underline{\partial}^{2}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k+4}}.

Moreover, for multi-indexes KK of type (N2,k)(N-2,k) with kN12k\leq N_{1}-2

(4.33) t32y1ZKhαβ1,LxLy2(s)+t12stxZKhαβ1,LxLy2(s)C1ϵsδk+2;\displaystyle\left\|t^{\frac{3}{2}}\,\partial_{y}^{\leq 1}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{1}{2}}s\,\partial_{tx}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\delta_{k+2}};

for multi-indices KK of type (N3,k)(N-3,k) with kN13k\leq N_{1}-3

(4.34) t52y1¯xZKhαβ1,LxLy2(s)+t32stx¯xZKhαβ1,LxLy2(s)C1ϵsδk+3;\displaystyle\left\|t^{\frac{5}{2}}\,\partial_{y}^{\leq 1}\underline{\partial}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}s\,\partial_{tx}\underline{\partial}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\delta_{k+3}};

for multi-indexes KK of type (N4,k)(N-4,k) with kN14k\leq N_{1}-4

(4.35) t72y1¯x2ZKhαβ1,LxLy2(s)+t52stx¯x2ZKhαβ1,LxLy2(s)C1ϵsδk+4.\displaystyle\left\|t^{\frac{7}{2}}\,\partial_{y}^{\leq 1}\underline{\partial}^{2}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}+\left\|t^{\frac{5}{2}}s\,\partial_{tx}\underline{\partial}^{2}_{x}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\delta_{k+4}}.

4.1.3. LxyL^{\infty}_{xy} bounds on hyperboloids

These are obtained from the energy assumptions using Poincaré inequality, lemma B.5 and Sobolev embedding on 𝕊1{\mathbb{S}}^{1}.
For any multi-index KK of type (N3,k)(N-3,k) and i=0,1i=0,1

(4.36) t12s12iZKhαβ1Lxy(s)+t32s12¯iZKhαβ1Lxy(s)C1ϵsζk+3\displaystyle\left\|t^{\frac{1}{2}}s^{\frac{1}{2}}\,\partial\partial^{i}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}s^{-\frac{1}{2}}\,\underline{\partial}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+3}}
(4.37) t12sZKhαβ1,Lxy(s)+t32¯ZKhαβ1,Lxy(s)+t32ZKhαβ1,Lxy(s)C1ϵs12+ζk+3\displaystyle\left\|t^{\frac{1}{2}}s\,\partial Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}\,\underline{\partial}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}Z^{K}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k+3}}
(4.38) t12sZKhαβ1,Lx(s)+t32¯ZKhαβ1,Lx(s)C1ϵsζk+2\displaystyle\left\|t^{\frac{1}{2}}s\,\partial Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{\infty}_{x}(\mathscr{H}_{s})}+\left\|t^{\frac{3}{2}}\,\underline{\partial}Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+2}}

and

(4.39) t12𝒮iZKhαβ1Lxy(s)+t12ΓiZKhαβ1Lxy(s)C1ϵs12+ζk+3\displaystyle\|t^{\frac{1}{2}}\,\mathscr{S}\partial^{i}Z^{K}h^{1}_{\alpha\beta}\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\|t^{\frac{1}{2}}\,\Gamma\partial^{i}Z^{K}h^{1}_{\alpha\beta}\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\frac{1}{2}+\zeta_{k+3}}
(4.40) t12𝒮ZKhαβ1,Lx(s)+t12ΓZKhαβ1,Lx(s)C1ϵsζk+2.\displaystyle\|t^{\frac{1}{2}}\,\mathscr{S}Z^{K}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}+\|t^{\frac{1}{2}}\,\Gamma Z^{K}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+2}}.

From the pointwise bounds (4.7) and the Sobolev embedding on 𝕊1{\mathbb{S}}^{1} we also have that

(4.41) t32IΓJhαβ1,Lxy(s){C2ϵ if |I|N1,|J|=0C2ϵsγk if |I|+|J|N1+1,|J|N1\left\|t^{\frac{3}{2}}\,\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim\begin{cases}C_{2}\epsilon\ &\text{ if }|I|\leq N_{1},\ |J|=0\\ C_{2}\epsilon s^{\gamma_{k}}\ &\text{ if }|I|+|J|\leq N_{1}+1,\ |J|\leq N_{1}\end{cases}

which coupled to (4.38) gives that, for any |I|+|J|N1N3,|J|=k0|I|+|J|\leq N_{1}\leq N-3,|J|=k\geq 0,

(4.42) t12s(IΓJhαβ1)Lxy(s)+t32¯(IΓJhαβ1)Lxy(s)C2ϵsmax(ζk+2,γk).\|t^{\frac{1}{2}}s\,\partial(\partial^{I}\Gamma^{J}h^{1}_{\alpha\beta})\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\|t^{\frac{3}{2}}\underline{\partial}(\partial^{I}\Gamma^{J}h^{1}_{\alpha\beta})\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{2}\epsilon s^{\max(\zeta_{k+2},\gamma_{k})}.

For |J|=kN3|J|=k\leq N-3, we also have the following bound on coefficients without derivatives

(4.43) t12ΓJhαβ1Lxy(s)C1ϵsδk+2.\|t^{\frac{1}{2}}\,\Gamma^{J}h^{1}_{\alpha\beta}\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\delta_{k+2}}.

Such a bound is satisfied by ΓJhαβ1,\Gamma^{J}h^{1,\natural}_{\alpha\beta} thanks to (4.37), while for ΓKhαβ1,\Gamma^{K}h^{1,\flat}_{\alpha\beta} it is obtained by integration. More precisely, on the initial truncated hyperboloid s0\mathscr{H}_{s_{0}} such an estimate is obtained by integrating (4.38) along the hyperboloid itself and up to the boundary s0=Ss0,r0\partial\mathscr{H}_{s_{0}}=S_{s_{0},r_{0}} where r0:=max{r>0:Ss0,rs0}=𝒪(1)r_{0}:=\max\{r>0:S_{s_{0},r}\subset\mathscr{H}_{s_{0}}\}=\mathscr{O}(1). In fact, for any rr0r\leq r_{0} and ω=x/|x|\omega=x/|x|

|ΓJhαβ1,(s02+|x|2,rω)|\displaystyle\big{|}\Gamma^{J}h^{1,\flat}_{\alpha\beta}(\sqrt{s_{0}^{2}+|x|^{2}},r\omega)\big{|} |ΓJhαβ1,(s02+r02,r0ω)|+rr0|¯ΓJhαβ1,(s02+ρ2,ρω)|𝑑ρ\displaystyle\leq\big{|}\Gamma^{J}h^{1,\flat}_{\alpha\beta}(\sqrt{s_{0}^{2}+r_{0}^{2}},r_{0}\omega)\big{|}+\int_{r}^{r_{0}}\big{|}\underline{\partial}\Gamma^{J}h^{1,\flat}_{\alpha\beta}(\sqrt{s_{0}^{2}+\rho^{2}},\rho\omega)\big{|}d\rho
|ΓJhαβ1,(s02+r02,r0ω)|+rC1ϵ(s02+ρ2)34+ζk+22𝑑ρ\displaystyle\lesssim\big{|}\Gamma^{J}h^{1,\flat}_{\alpha\beta}(\sqrt{s_{0}^{2}+r_{0}^{2}},r_{0}\omega)\big{|}+\int_{r}^{\infty}C_{1}\epsilon(s_{0}^{2}+\rho^{2})^{-\frac{3}{4}+\frac{\zeta_{k+2}}{2}}d\rho
C1ϵ(s02+r2)14+ζk+22\displaystyle\lesssim C_{1}\epsilon(s_{0}^{2}+r^{2})^{-\frac{1}{4}+\frac{\zeta_{k+2}}{2}}

where we estimated the first term in the above right hand side using the exterior bound (3.14). For all other points (t,x)(s0,S0)(t,x)\in\mathscr{H}_{(s_{0},S_{0})}, the decay bound (4.43) is instead obtained by integrating (4.38) along the rays with t+rt+r and ω\omega fixed, i.e. along

δ:λ[r,λ]δ(λ)=(t+rλ,λω)\delta:\lambda\in[r,\lambda^{*}]\mapsto\delta(\lambda)=(t+r-\lambda,\lambda\omega)

where λ\lambda^{*} is the first time δ(λ)\delta(\lambda) intersects the lateral boundary ~\tilde{\mathscr{H}} (in which case λ=(t+r)(t+r2)2(t+r1)\lambda^{*}=\frac{(t+r)(t+r-2)}{2(t+r-1)}) or the initial hyperboloid s0\mathscr{H}_{s_{0}} (in which case λ=(t+r)2s022(t+r)\lambda^{*}=\frac{(t+r)^{2}-s_{0}^{2}}{2(t+r)}). In both cases λ=O(t+r)\lambda^{*}=O(t+r), so from the estimates on ~\tilde{\mathscr{H}} following from (3.14) or on the initial truncated hyperboloid s0\mathscr{H}_{s_{0}} derived above, we get

|ΓJhαβ1,(t,x)||ΓJhαβ1,(t+rλ,λω)|+rλ|(ΓJhαβ1,)(δ(λ))|𝑑λ\displaystyle|\Gamma^{J}h^{1,\flat}_{\alpha\beta}(t,x)|\lesssim|\Gamma^{J}h^{1,\flat}_{\alpha\beta}(t+r-\lambda^{*},\lambda^{*}\omega)|+\int_{r}^{\lambda^{*}}|(\partial\Gamma^{J}h^{1,\flat}_{\alpha\beta})(\delta(\lambda))|d\lambda
(C0+C1)ϵ(1+t+r)12sζk+2+C1ϵ(1+t+r)1+ζk+2rλ(t+r2λ)12+ζk+2𝑑λ\displaystyle\lesssim(C_{0}+C_{1})\epsilon\,(1+t+r)^{-\frac{1}{2}}s^{\zeta_{k+2}}+C_{1}\epsilon(1+t+r)^{-1+\zeta_{k+2}}\int_{r}^{\lambda^{*}}(t+r-2\lambda)^{-\frac{1}{2}+\zeta_{k+2}}d\lambda
(C0+C1)ϵ(1+t+r)12sζk+2.\displaystyle\lesssim(C_{0}+C_{1})\epsilon\,(1+t+r)^{-\frac{1}{2}}s^{\zeta_{k+2}}.

4.1.4. LxyL^{\infty}_{xy} bounds for the good metric coefficients

These refer to the enhanced bounds satisfied by the metric coefficients HLT1H^{1}_{LT} as a consequence of the wave condition, more precisely of inequality (2.10), and of the pointwise bounds obtained above. As remarked above, these bounds are also satisfied by the hLT1h^{1}_{LT} metric coefficients.

Proposition 4.4.

Under the assumptions of proposition 4.1, we have that for any s[s0,S0)s\in[s_{0},S_{0}), any multi-index KK of type (N3,k)(N-3,k) and i=0,1i=0,1

(4.44) tiZKHLT1L(s)C1ϵsζk+3\|t\,\partial\partial^{i}Z^{K}H^{1}_{LT}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+3}}

and for any multi-index KK of type (N1,k)(N_{1},k)

(4.45) t32ZKHLT1L(s)C1ϵsδk+2.\|t^{\frac{3}{2}}\partial Z^{K}H^{1}_{LT}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\delta_{k+2}}.

Furthermore, for any multi-index KK of type (N2,k)(N-2,k)

(4.46) t32ZK(HLT1)L(s)C1ϵsζk+2\displaystyle\|t^{\frac{3}{2}}\partial Z^{K}(H^{1}_{LT})^{\flat}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+2}}
(4.47) t12(t/s)2ZK(HLT1)L(s)C1ϵsζk+2.\displaystyle\|t^{\frac{1}{2}}(t/s)^{2}Z^{K}(H^{1}_{LT})^{\flat}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+2}}.
Proof.

The proof of the above estimates is based on inequality (2.10). Estimate (4.44) (resp. (4.45)) is in fact obtained using (4.36) (resp. (4.42)) and (4.43). Estimate (4.46) is deduced similarly, after taking the zero norm of both left and right hand side of (2.10). We recall, in particular, that for any two integrable functions ff and gg defined on 𝕊1{\mathbb{S}}^{1}, we have

(4.48) (fg)=fg+(fg),(fg)=fg+fg+(fg).(fg)^{\flat}=f^{\flat}g^{\flat}+\big{(}f^{\natural}g^{\natural}\big{)}^{\flat},\qquad(fg)^{\natural}=f^{\flat}g^{\natural}+f^{\natural}g^{\flat}+(f^{\natural}g^{\natural})^{\natural}.

Therefore, (4.46) follows from (4.37), (4.38) and (4.43).

Finally, estimate (4.47) is satisfied in the interior of the cone t=2rt=2r after (4.43). In the portion of interior region where t<2rt<2r, it is instead obtained from the integration of (4.46) along the rays with t+r=constt+r=const and ω=const\omega=const and up to the boundary of the interior region. From (3.17) we derive that

|ZK(HLT1)(t,x)|\displaystyle|Z^{K}(H^{1}_{LT})^{\flat}(t,x)| |ZK(HLT1)(δ(λ))|+rλ|ZK(HLT1)(ζ(λ))|𝑑λ\displaystyle\lesssim|Z^{K}(H^{1}_{LT})^{\flat}(\delta(\lambda^{*}))|+\int_{r}^{\lambda^{*}}|\partial Z^{K}(H^{1}_{LT})^{\flat}(\zeta(\lambda))|d\lambda
|ZK(HLT1)(δ(λ))|+rλC1ϵ(t+r)32+ζk+22(t+r2λ)ζk+22𝑑λ\displaystyle\lesssim|Z^{K}(H^{1}_{LT})^{\flat}(\delta(\lambda^{*}))|+\int_{r}^{\lambda^{*}}C_{1}\epsilon(t+r)^{-\frac{3}{2}+\frac{\zeta_{k+2}}{2}}(t+r-2\lambda)^{\frac{\zeta_{k+2}}{2}}d\lambda
C0ϵ(1+t+r)32+2σ(tr)12κ+C1ϵ(t+r)32+ζk+22(tr)1+ζk+22\displaystyle\lesssim C_{0}\epsilon(1+t+r)^{-\frac{3}{2}+2\sigma}(t-r)^{\frac{1}{2}-\kappa}+C_{1}\epsilon(t+r)^{-\frac{3}{2}+\frac{\zeta_{k+2}}{2}}(t-r)^{1+\frac{\zeta_{k+2}}{2}}
C1ϵ(t2r2)1+ζk+22t2t12.\displaystyle\lesssim C_{1}\epsilon\frac{(t^{2}-r^{2})^{1+\frac{\zeta_{k+2}}{2}}}{t^{2}}t^{-\frac{1}{2}}.

Remark 4.5.

By combining together the wave gauge estimate (2.10), with the energy bounds (4.20) and (4.28) (respectively (4.19) and (4.27)) and the pointwise bounds (4.38) and (4.43) (respectively (4.42) and (4.43)), we obtain the following estimate (resp. the second)

(4.49) ZKHLT1,L2(s)C1ϵ{s2ζkif K is of type (N,k),s12+2ζkif K is of type (N+1,k) with kN.\big{\|}\partial Z^{K}H^{1,\flat}_{LT}\big{\|}_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon\begin{cases}s^{2\zeta_{k}}\quad&\text{if }K\text{ is of type }(N,k),\\ s^{\frac{1}{2}+2\zeta_{k}}\quad&\text{if }K\text{ is of type }(N+1,k)\text{ with }k\leq N.\end{cases}

4.2. The null and cubic terms

The L2L^{2} and LL^{\infty} bounds deduced in subsection 4.1 from the a-priori energy bounds, coupled with the a-priori pointwise bounds, allow us to suitably estimate the null and cubic contributions appearing in the equations for ZKhαβ1Z^{K}h^{1}_{\alpha\beta} and ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta}. Quadratic and cubic interactions involving a h0h^{0} factor are the simplest ones to analyze. They satisfy the following estimates, which follow from a straightforward application of the energy bounds (4.19), (4.27) and the pointwise bounds (3.11), (4.42) and (4.43).

Lemma 4.6.

Let Q=Q(ψ,ϕ)Q=Q(\psi,\phi) and C=C(δ)(ϕ,ψ)C=C(\delta)(\phi,\psi) denote a quadratic and a cubic form respectively. Under the a-priori assumptions (4.3)-(4.7), there exists some small constant 0<η10<\eta\ll 1 depending linearly on γk,δk,ζk\gamma_{k},\delta_{k},\zeta_{k}, such that for i=0,1i=0,1

(4.50) 0l+m1iZNQ(hl,hm)L2(s)C1ϵ2s3/2+η\displaystyle\sum_{0\leq l+m\leq 1}\|\partial^{i}Z^{\leq N}Q(\partial h^{l},\partial h^{m})\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon^{2}s^{-3/2+\eta}
(4.51) 0l+m+n2l,m,n1iZNC(hl)(hm,hn)L2(s)C12ϵ3s2+η.\displaystyle\sum_{\begin{subarray}{c}0\leq l+m+n\leq 2\\ l,m,n\leq 1\end{subarray}}\|\partial^{i}Z^{\leq N}C(h^{l})(\partial h^{m},\partial h^{n})\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{3}s^{-2+\eta}.
Proposition 4.7.

Under the a-priori assumptions (4.3)-(4.7) there exists some small constant 0<η3δN10<\eta\leq 3\delta_{N}\ll 1 depending linearly on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k}, such that for i=0,1i=0,1

(4.52) iZN𝐐αβ(h,h)L2(s)(C1ϵ)2s1+η\displaystyle\|\partial^{i}Z^{\leq N}\mathbf{Q}_{\alpha\beta}(\partial h,\partial h)\|_{L^{2}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{2}s^{-1+\eta}
(4.53) iZNGαβ(h)(h,h)L2(s)(C1ϵ)3s3/2+η.\displaystyle\|\partial^{i}Z^{\leq N}G_{\alpha\beta}(h)(\partial h,\partial h)\|_{L^{2}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{3}s^{-3/2+\eta}.

and multi-indexes KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.54) ZK𝐐αβ(h,h)L2(s)(C1ϵ)2s3/2+η\displaystyle\|Z^{K}\mathbf{Q}_{\alpha\beta}(\partial h,\partial h)\|_{L^{2}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{2}s^{-3/2+\eta}
(4.55) ZKGαβ(h)(h,h)L2(s)(C1ϵ)3s2+η.\displaystyle\|Z^{K}G_{\alpha\beta}(h)(\partial h,\partial h)\|_{L^{2}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{3}s^{-2+\eta}.

Moreover, for multi-indexes KK of type (N,k)(N,k)

(4.56) ZK𝐐αβ(h,h)L2(s)(C1ϵ)2(i=14s1+γi+ζki+s1+ζk.)\|Z^{K}\mathbf{Q}^{\flat}_{\alpha\beta}(\partial h,\partial h)\|_{L^{2}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{2}\left(\sum_{i=1}^{4}s^{-1+\gamma_{i}+\zeta_{k-i}}+s^{-1+\zeta_{k}}.\right)
Proof.

Throughout the proof, η\eta will denote a small positive constant that depends linearly on γk\gamma_{k} and δk\delta_{k}. We do not need to keep track of the explicit value of η\eta, which may change from line to line.

We start by decomposing each occurrence of hh in 𝐐αβ\mathbf{Q}_{\alpha\beta} and GαβG_{\alpha\beta} into h0+h1h^{0}+h^{1}. Owing to lemma 4.6, we only need to prove that the above estimates are satisfied for null and cubic interactions involving h1h^{1} factors only.

We recall that the admissible vector fields ZZ preserve the null structure and that for any null form QQ

(4.57) |Q(ϕ,ψ)||¯ϕ||ψ|+|ϕ||¯ψ|+|t2r2|t2|ϕ||ψ|.|Q(\partial\phi,\partial\psi)|\leq|\underline{\partial}\phi||\partial\psi|+|\partial\phi||\underline{\partial}\psi|+\frac{|t^{2}-r^{2}|}{t^{2}}|\partial\phi||\partial\psi|.

For any MM\in\mathbb{N}, we then have

|iZM𝐐αβ(h1,h1)||K1|+|K2|M|I1|+|I2|=i|¯I1ZK1h1||I2ZK2h1|+|t2r2|t2|I1ZK1h1||I2ZK2h1|.|\partial^{i}Z^{\leq M}\mathbf{Q}_{\alpha\beta}(\partial h^{1},\partial h^{1})|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq M\\ |I_{1}|+|I_{2}|=i\end{subarray}}|\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|+\frac{|t^{2}-r^{2}|}{t^{2}}|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|.

We observe that at least one of the two indexes KjK_{j} in the above right hand side has length smaller than M/2\lfloor M/2\rfloor. When M=NM=N and since NN and N1N_{1} are such that N/2+1N1\lfloor N/2\rfloor+1\leq N_{1}, we deduce from energy bound (4.19) and pointwise estimate (4.42) that

|K1|+|K2|N|I1|+|I2|=i¯I1ZK1h1I2ZK2h1Lxy2(s)+(s/t)2I1ZK1h1I2ZK2h1Lxy2(s)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}+\left\|(s/t)^{2}\partial\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}
|K1|+|K2|N|K1|N/2|I1|+|I2|=i((t/s)¯I1ZK1hαβ1Lxy(s)+(s/t)I1ZK1hαβ1Lxy(s))(s/t)I2ZK2hαβ1Lxy2(s)\displaystyle\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{1}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|=i\end{subarray}}\Big{(}\left\|(t/s)\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}+\left\|(s/t)\partial\partial^{I_{1}}Z^{K_{1}}h^{1}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\Big{)}\left\|(s/t)\partial\partial^{I_{2}}Z^{K_{2}}h^{1}_{\alpha\beta}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}
+|K1|+|K2|N|K2|N/2|I1|+|I2|=iI2ZK2hαβ1Lxy(s)¯I1ZK1hαβ1Lxy2(s)(C1ϵ)2s1+η.\displaystyle+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |K_{2}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|\partial\partial^{I_{2}}Z^{K_{2}}h^{1}_{\alpha\beta}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\left\|\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}_{\alpha\beta}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{2}s^{-1+\eta}.

Similarly, when KK is of type (N,k)(N,k) with kN1k\leq N_{1}, we get from energy bound (4.24) and pointwise bound (4.42) that

|K1|+|K2|N|I1|+|I2|=i¯I1ZK1h1I2ZK2h1Lxy2(s)+(s/t)2I1ZK1h1I2ZK2h1Lxy2(s)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq N\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}+\left\|(s/t)^{2}\partial\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}
(C1ϵ)2s32+η.\displaystyle\lesssim(C_{1}\epsilon)^{2}s^{-\frac{3}{2}+\eta}.

Estimate (4.52) can be slightly improved if we only consider the zero mode of the quadratic null interactions. We recall that the zero-mode of a product decomposes as in (4.48), hence

𝐐αβ(h1,h1)=𝐐αβ(h1,,h1,)+(𝐐αβ(h1,,h1,)).\mathbf{Q}^{\flat}_{\alpha\beta}(\partial h^{1},\partial h^{1})=\mathbf{Q}_{\alpha\beta}(\partial h^{1,\flat},\partial h^{1,\flat})+\big{(}\mathbf{Q}_{\alpha\beta}(\partial h^{1,\natural},\partial h^{1,\natural})\big{)}^{\flat}.

The pure zero-mode interactions are treated using the null structure. From the energy bound (4.20) and the pointwise bound (4.38) we derive that

ZN𝐐αβ(h1,,h1,)Lx2(s)ϵ2s32+η.\displaystyle\left\|Z^{\leq N}\mathbf{Q}_{\alpha\beta}(\partial h^{1,\flat},\partial h^{1,\flat})\right\|_{L^{2}_{x}(\mathscr{H}_{s})}\lesssim\epsilon^{2}s^{-\frac{3}{2}+\eta}.

The null structure is instead irrelevant when estimating the quadratic interactions of pure non-zero modes. Using the Cauchy-Schwartz and Poincaré inequalities and assuming N,N1N,N_{1} are such that N/2+1N1\lfloor N/2\rfloor+1\leq N_{1}, we derive from the pointwise bound (4.7), the energy bounds (4.19), (4.21) and (4.25) (recall that N1=N5N_{1}=N-5) and relation (4.2) that

(ZK𝐐αβ(h1,,h1,))Lx2(s)\displaystyle\left\|\big{(}Z^{K}\mathbf{Q}_{\alpha\beta}(\partial h^{1,\natural},\partial h^{1,\natural})\big{)}^{\flat}\right\|_{L^{2}_{x}(\mathscr{H}_{s})} |K1|+|K2||K|ZK1h1,ZK2h1,Ly1Lx2(s)\displaystyle\lesssim\sum_{|K_{1}|+|K_{2}|\leq|K|}\left\|\partial Z^{K_{1}}h^{1,\natural}\cdot\partial Z^{K_{2}}h^{1,\natural}\right\|_{L^{1}_{y}L^{2}_{x}(\mathscr{H}_{s})}
|K1|+|K2||K||K1||K|/2ZK1h1,LxLy2(s)ZK2h1,Lxy2(s)\displaystyle\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor\end{subarray}}\big{\|}\partial Z^{K_{1}}h^{1,\natural}\big{\|}_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}\big{\|}\partial Z^{K_{2}}h^{1,\natural}\big{\|}_{L^{2}_{xy}(\mathscr{H}_{s})}
C1C2ϵ2(s32+η+s1+ζk+i=04s1+γi+ζki).\displaystyle\lesssim C_{1}C_{2}\epsilon^{2}(s^{-\frac{3}{2}+\eta}+s^{-1+\zeta_{k}}+\sum_{i=0}^{4}s^{-1+\gamma_{i}+\zeta_{k-i}}).

As concerns the cubic terms, we have that

|iZMGαβ(h1)(h1,h1)||K1|+|K2|+|K3|M|I1|+|I2|+|I3|=i|I1ZK1h1||I2ZK2h1||I3ZK3h1|.|\partial^{i}Z^{\leq M}G_{\alpha\beta}(h^{1})(\partial h^{1},\partial h^{1})|\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq M\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}||\partial\partial^{I_{3}}Z^{K_{3}}h^{1}|.

When M=NM=N, we get from energy bound (4.19) and pointwise bounds (4.42), (4.43) that

|K1|+|K2|+|K3|N|K1|+|K2|N/2|I1|+|I2|+|I3|=iI1ZK1h1I2ZK2h1I3ZK3h1Lxy2(s)|K1|+|K2|+|K3|N|K1|+|K2|N/2|I1|+|I2|+|I3|=i(t/s)I1ZK1h1I2ZK2h1Lxy(s)(s/t)I3ZK3h1Lxy2(s)(C1ϵ)3s32+η\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{1}|+|K_{2}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}\left\|\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\cdot\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\\ \lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{1}|+|K_{2}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}\left\|(t/s)\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\left\|(s/t)\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\\ \lesssim(C_{1}\epsilon)^{3}s^{-\frac{3}{2}+\eta}

and from (4.27), (4.36) and (4.42)

|K1|+|K2|+|K3|N|K2|+|K3|N/2|I2|+|I3|=iZK1h1I2ZK2h1I3ZK3h1Lxy2(s)\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{2}|+|K_{3}|\leq\lfloor N/2\rfloor\\ |I_{2}|+|I_{3}|=i\end{subarray}}\left\|Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\cdot\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}
|K1|+|K2|+|K3|N|K2|+|K3|N/2|I2|+|I3|=ir1ZK1h1Lxy2(s)rI2ZK2h1I3ZK3h1Lxy(s)(C1ϵ)3s32+η.\displaystyle\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{2}|+|K_{3}|\leq\lfloor N/2\rfloor\\ |I_{2}|+|I_{3}|=i\end{subarray}}\left\|r^{-1}Z^{K_{1}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\left\|r\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\cdot\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{3}s^{-\frac{3}{2}+\eta}.

Similarly, we deduce from (4.24), (4.42), (4.43) that when KK is of type (N,k)(N,k) with kN1k\leq N_{1}

|K1|+|K2|+|K3|N|K1|+|K2|N/2|I1|+|I2|+|I3|=iI1ZK1h1I2ZK2h1I3ZK3h1Lxy2(s)(C1ϵ)3s2+η\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{1}|+|K_{2}|\leq\lfloor N/2\rfloor\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}\left\|\partial^{I_{1}}Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\cdot\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{3}s^{-2+\eta}

while from (4.29) and (4.42)

|K1|+|K2|+|K3|N|K2|+|K3|N/2|I2|+|I3|=iZK1h1I2ZK2h1I3ZK3h1Lxy2(s)(C1ϵ)3s2+η.\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq N\\ |K_{2}|+|K_{3}|\leq\lfloor N/2\rfloor\\ |I_{2}|+|I_{3}|=i\end{subarray}}\left\|Z^{K_{1}}h^{1}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}\cdot\partial\partial^{I_{3}}Z^{K_{3}}h^{1}\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim(C_{1}\epsilon)^{3}s^{-2+\eta}.

Lemma 4.8.

There exists some small constant 0<η3δN10<\eta\leq 3\delta_{N}\ll 1 depending linearly on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k} such that for multi-indexes KK of type (N1,k)(N_{1},k) we have

(4.58) t2ZK𝐐αβ(h,h)Lxy(s)\displaystyle\|t^{2}Z^{K}\mathbf{Q}_{\alpha\beta}(\partial h,\partial h)\|_{L^{\infty}_{xy}(\mathscr{H}_{s})} C22ϵ2s1+η\displaystyle\lesssim C_{2}^{2}\epsilon^{2}s^{-1+\eta}
(4.59) t32ZKGαβ(h)(h,h)Lxy(s)\displaystyle\|t^{\frac{3}{2}}Z^{K}G_{\alpha\beta}(h)(\partial h,\partial h)\|_{L^{\infty}_{xy}(\mathscr{H}_{s})} C1C22ϵ3s2+η.\displaystyle\lesssim C_{1}C_{2}^{2}\epsilon^{3}s^{-2+\eta}.

while for any quadratic form NN we have

(4.60) tZKN(h,h)Lxy(s)C12ϵ2s2+η.\left\|t\,\partial Z^{K}N(\partial h,\partial h)\right\|_{L^{\infty}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}s^{-2+\eta}.
Proof.

This is a direct consequence of bounds (4.42) and (4.43). ∎

4.3. Second order derivatives of the zero modes

As expected for solutions to wave equations on 1+3{\mathbb{R}}^{1+3}, the second order derivatives of the differentiated coefficients ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta} enjoy better decay estimates compared to (4.20) and (4.42) respectively.

Lemma 4.9.

There exists some small constant 0<η2δN10<\eta\leq 2\delta_{N}\ll 1 depending linearly on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k} such that for any multi-index KK of type (N1,k)(N_{1},k)

(4.61) t32(s/t)2t2ZKhαβ1,L(s)C2ϵs1+η.\left\|t^{\frac{3}{2}}(s/t)^{2}\partial_{t}^{2}Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{2}\epsilon s^{-1+\eta}.
Proof.

The flat wave operator can be expressed in terms of the hyperbolic derivatives as

(4.62) tx=(s/t)2t2+2(x𝒂/t)¯𝒂t¯𝒂¯𝒂+r2t3t+3tt-\Box_{tx}=(s/t)^{2}\partial^{2}_{t}+2(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}-\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}+\frac{r^{2}}{t^{3}}\partial_{t}+\frac{3}{t}\partial_{t}

and from (1.15) the curved part can be written as

(H𝝁𝝂)𝝁𝝂=(HUV)cUV𝜶𝜷¯𝜶¯𝜷+(HUV)dUV𝝁¯𝝁.(H^{{\bm{\mu}}{\bm{\nu}}})^{\flat}\partial_{\bm{\mu}}\partial_{\bm{\nu}}=(H^{UV})^{\flat}c^{{\bm{\alpha}}{\bm{\beta}}}_{UV}\underline{\partial}_{\bm{\alpha}}\underline{\partial}_{\bm{\beta}}+(H^{UV})^{\flat}d^{\bm{\mu}}_{UV}\underline{\partial}_{\bm{\mu}}.

Equation (4.15) for ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta} becomes

(4.63) ((s/t)2+(HUV)cUV00)t2ZKhαβ1,\displaystyle\left((s/t)^{2}+(H^{UV})^{\flat}c_{UV}^{00}\right)\partial_{t}^{2}Z^{K}h^{1,\flat}_{\alpha\beta} =S1(ZKhαβ1,)+S2(ZKhαβ1,)\displaystyle=S_{1}(Z^{K}h^{1,\flat}_{\alpha\beta})+S_{2}(Z^{K}h^{1,\flat}_{\alpha\beta})
+FαβK,+(Fαβ0,K)((Hμν)μνZKhαβ1,)\displaystyle+F^{K,\flat}_{\alpha\beta}+(F^{0,K}_{\alpha\beta})^{\flat}-\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}

where FαβK,F^{K,\flat}_{\alpha\beta} is the average over 𝕊1{\mathbb{S}}^{1} of the source term in (4.14), and S1(p),S2(p)S_{1}(p),S_{2}(p) are defined as follows for an arbitrary two tensor pp

(4.64) S1(p):=(2(x𝒂/t)¯𝒂t¯𝒂¯𝒂+r2t3t+3tt)pS2(p):=((HUV)cUV𝒂𝜷¯𝒂¯𝜷+(HUV)cUV𝜶𝒃¯𝜶¯𝒃+(HUV)dUV𝝁¯𝝁)p.\begin{gathered}S_{1}(p):=-\big{(}2(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}-\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}+\frac{r^{2}}{t^{3}}\partial_{t}+\frac{3}{t}\partial_{t}\big{)}p\\ S_{2}(p):=-\big{(}(H^{UV})^{\flat}c_{UV}^{{\bm{a}}{\bm{\beta}}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{\beta}}+(H^{UV})^{\flat}c_{UV}^{{\bm{\alpha}}{\bm{b}}}\underline{\partial}_{\bm{\alpha}}\underline{\partial}_{\bm{b}}+(H^{UV})^{\flat}d_{UV}^{{\bm{\mu}}}\underline{\partial}_{\bm{\mu}}\big{)}p.\end{gathered}

We note that, if ϵ\epsilon is sufficiently small, relation (1.18) with π=(ZKHUV)\pi=(Z^{K}H^{UV})^{\flat}, bounds (3.11), (4.43) and (4.47) yield

(4.65) |(ZKHUV)cUV00|C1ϵt1/2(s/t)2sδk+2(1/2)(s/t)2,\big{|}(Z^{K}H^{UV})^{\flat}c_{UV}^{00}\big{|}\lesssim C_{1}\epsilon t^{-1/2}(s/t)^{2}s^{\delta_{k+2}}\lesssim(1/2)(s/t)^{2},

hence it is enough to prove that the right hand side in (4.63) is bounded by C1ϵt3/2s1+2ζk+3C_{1}\epsilon t^{-3/2}s^{-1+2\zeta_{k+3}}.

This is the case for the S1,S2S_{1},S_{2} terms with p=ZKhαβ1,p=Z^{K}h^{1,\flat}_{\alpha\beta}, as follows by using the pointwise bounds (4.38), (4.43) and (1.17) together with the fact that ¯𝒂=Ω0𝒂/t\underline{\partial}_{\bm{a}}=\Omega_{0{\bm{a}}}/t.

All quadratic and cubic terms in FαβK,F^{K,\flat}_{\alpha\beta}, except for the commutator terms, are estimated using (4.60) and (4.59) respectively, while from (3.36), (3.11) and (4.38) we have

t3(Fαβ0,K)L(s)ϵ.\|t^{3}(F^{0,K}_{\alpha\beta})^{\flat}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim\epsilon.

From the pointwise bounds (4.7), (4.37) and relation (4.2), we have that for multi-indexes KK of type (N1,k)(N_{1},k)

|ZK((Hμν)μνhαβ1,)|\displaystyle\big{|}Z^{K}\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}
|K||K|H1,LxLy2μνZKhαβ1,LxLy2+|K1|+|K2||K||K2|<|K|(ZK1H1,μν)LxLy2μνZK2hαβ1,LxLy2\displaystyle\lesssim\sum_{\begin{subarray}{c}|K^{\prime}|\leq|K|\end{subarray}}\big{\|}H^{1,\natural}\big{\|}_{L^{\infty}_{x}L^{2}_{y}}\ \big{\|}\partial_{\mu}\partial_{\nu}Z^{K^{\prime}}h^{1,\natural}_{\alpha\beta}\big{\|}_{L^{\infty}_{x}L^{2}_{y}}+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}\big{\|}(Z^{K_{1}}H^{1,\mu\nu})^{\natural}\big{\|}_{L^{\infty}_{x}L^{2}_{y}}\big{\|}\partial_{\mu}\partial_{\nu}Z^{K_{2}}h^{1,\natural}_{\alpha\beta}\big{\|}_{L^{\infty}_{x}L^{2}_{y}}
C1C2ϵ2t2s12+ζk+3+C22ϵ2t2s1+γk.\displaystyle\lesssim C_{1}C_{2}\epsilon^{2}t^{-2}s^{-\frac{1}{2}+\zeta_{k+3}}+C_{2}^{2}\epsilon^{2}t^{-2}s^{-1+\gamma_{k}}.

We observe that the above bound can be improved if |K|N11|K|\leq N_{1}-1 to C22ϵ2t2s1+γkC_{2}^{2}\epsilon^{2}t^{-2}s^{-1+\gamma_{k}}.

Finally, for the purpose of this proof it is enough to write the commutator terms which only involve zero-modes as

|K1|+|K2||K||K2|<|K|ZK1H1,2ZK2hαβ1,\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}Z^{K_{1}}H^{1,\flat}\cdot\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}

which is estimated by C1C2ϵ2t3/2s1+2ζk+2C_{1}C_{2}\epsilon^{2}t^{-3/2}s^{-1+2\zeta_{k+2}} using (4.38) whenever ZK1Z^{K_{1}} contains at least a usual derivative, and (4.6) together with (4.38) otherwise.

The conclusion of the proof follows by assuming ϵ\epsilon sufficiently small so that C2ϵ<1C_{2}\epsilon<1. ∎

We highlight that the proof of the above Lemma also yields the following

Corollary 4.10.

For every multi-index KK of type (N11,k)(N_{1}-1,k) we have

(4.66) t2((H1,μν)μνZKhαβ1,)L(s)+t2([ZK,H1,μνμν]hαβ1)L(s)C12ϵ2s1+η.\big{\|}t^{2}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{\|}_{L^{\infty}(\mathscr{H}_{s})}+\big{\|}t^{2}\big{(}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{)}^{\flat}\big{\|}_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}s^{-1+\eta}.
Lemma 4.11.

There exists some small constant 0<η2δN10<\eta\leq 2\delta_{N}\ll 1 depending linearly on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k} such that for any multi-index KK of the type (N1,k)(N-1,k) we have

(4.67) (s/t)2t2ZKhαβ1,L2(s)C1ϵs1+η.\displaystyle\left\|(s/t)^{2}\partial^{2}_{t}Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{-1+\eta}.
(4.68) (s/t)2t2ZKhαβ1,L2(s)C1ϵs12+η.\displaystyle\left\|(s/t)^{2}\partial^{2}_{t}\partial Z^{K}h^{1,\flat}_{\alpha\beta}\right\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{-\frac{1}{2}+\eta}.
Proof.

This is based on (4.63) and (4.64). We only detail the proof of estimate (4.67), since (4.68) is obtained in a similar way by replacing energy bound (4.20) with (4.19) whenever it occurs.

We make use of (4.63), (4.64) and (4.65) to estimate the S1,S2S_{1},S_{2} terms. From ¯𝒂=(1/t)Ω0𝒂\underline{\partial}_{\bm{a}}=(1/t)\Omega_{0{\bm{a}}}, the energy bound (4.20) and the pointwise bounds (3.11), (4.43) we derive that

i=01sSi(ZKhαβ1,)L2(s)(s/t)Γ1ZKhαβ1,L2(s)C1ϵsζk+1.\sum_{i=0}^{1}\left\|sS_{i}(Z^{K}h^{1,\flat}_{\alpha\beta})\right\|_{L^{2}(\mathscr{H}_{s})}\lesssim\|(s/t)\partial\Gamma^{\leq 1}Z^{K}h^{1,\flat}_{\alpha\beta}\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{\zeta_{k+1}}.

We recall that the quadratic null terms satisfy (4.56), while the cubic terms verify (4.53). In general, the zero-mode of a quadratic interaction can be estimated as follows: using (4.20) and (4.38) we find

|K1|+|K2||K|ZK1h1,ZK2h1,Lx2(s)|K||K|C1ϵs1+δN(s/t)ZKh1,L2(s)C12ϵ2s1+2δN\sum_{|K_{1}|+|K_{2}|\leq|K|}\|\partial Z^{K_{1}}h^{1,\flat}\cdot\partial Z^{K_{2}}h^{1,\flat}\|_{L^{2}_{x}(\mathscr{H}_{s})}\lesssim\sum_{\begin{subarray}{c}|K^{\prime}|\leq|K|\end{subarray}}C_{1}\epsilon s^{-1+\delta_{N}}\|(s/t)\partial Z^{K^{\prime}}h^{1,\flat}\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}s^{-1+2\delta_{N}}

while, since N/2+1N1\lfloor N/2\rfloor+1\leq N_{1}, from (4.7) and (4.21) we get

|K1|+|K2||K|(ZK1h1,ZK2h1,)Lx2(s)|K||K|C2ϵs32+γN1(s/t)ZKh1,Lxy2(s)\displaystyle\sum_{|K_{1}|+|K_{2}|\leq|K|}\|\big{(}\partial Z^{K_{1}}h^{1,\natural}\cdot\partial Z^{K_{2}}h^{1,\natural}\big{)}^{\flat}\|_{L^{2}_{x}(\mathscr{H}_{s})}\lesssim\sum_{|K^{\prime}|\leq|K|}C_{2}\epsilon s^{-\frac{3}{2}+\gamma_{N_{1}}}\|(s/t)\partial Z^{K^{\prime}}h^{1,\natural}\|_{L^{2}_{xy}(\mathscr{H}_{s})}
C1C2ϵ2s1+2δN.\displaystyle\lesssim C_{1}C_{2}\epsilon^{2}s^{-1+2\delta_{N}}.

From (4.7) and (4.21) we also have

((Hμν)μνZKhαβ1,)L2(s)C1C2ϵ2s1+ζk.\left\|\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\right\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}C_{2}\epsilon^{2}s^{-1+\zeta_{k}}.

Finally, from (3.36), estimate (3.11), the Hardy inequality (B.7) and energy estimates (3.1) and (4.20) we get

(4.69) ZK~gh0L2(s)ϵs32.\|Z^{K}\tilde{\Box}_{g}h^{0}\|_{L^{2}(\mathscr{H}_{s})}\lesssim\epsilon s^{-\frac{3}{2}}.

4.4. The hTU1h^{1}_{TU} coefficients

In this subsection we show that for any T𝒯T\in\mathscr{T} and U𝒰U\in\mathscr{U}, the differentiated metric coefficients ZN11hTU1\partial Z^{\leq N_{1}-1}h^{1}_{TU} satisfy better lower order decay bounds than the ones in (4.42) obtained via Klainerman-Sobolev inequalities. More precisely, we want to prove the following:

Proposition 4.12.

There exists a constant C>0C>0 such that, for any multi-index KK of type (N11,k)(N_{1}-1,k) and any multi-indexes II with |I|N11|I|\leq N_{1}-1, we have that

(4.70) sup𝕊1|αZKhTU1|C1ϵt1+Cϵ\displaystyle\sup_{{\mathbb{S}}^{1}}|\partial_{\alpha}Z^{K}h^{1}_{TU}|\lesssim C_{1}\epsilon t^{-1+C\epsilon}
(4.71) sup𝕊1|αIhTU1|C1ϵt1.\displaystyle\sup_{{\mathbb{S}}^{1}}|\partial_{\alpha}\partial^{I}h^{1}_{TU}|\lesssim C_{1}\epsilon t^{-1}.

We observe that the above bounds are satisfied by any ZKhTU1,\partial Z^{K}h^{1,\natural}_{TU} with |K|N1|K|\leq N_{1} as a consequence of (4.41). In the interior of the cone t=2rt=2r they follow immediately from (4.38), where one has t2r23t2/4t^{2}-r^{2}\geq 3t^{2}/4 and consequently

|ZN3haβ1,(t,x,y)|C1ϵt3/2+ζN.|\partial Z^{\leq N-3}h^{1,\flat}_{a\beta}(t,x,y)|\lesssim C_{1}\epsilon t^{-3/2+\zeta_{N}}.

For all other points in the interior region, (4.70)-(4.71) are instead obtained by integration along characteristics, see lemma 4.13. The difference between hTU1h^{1}_{TU} and any general coefficient hαβ1h^{1}_{\alpha\beta} relies on the fact that weak null terms do not appear in the equation (3.31) satisfied by the former. We only sketch the proof of the following lemma, see [40] for additional details.

Lemma 4.13.

Let s>s0s>s_{0} and 𝒟s\mathscr{D}_{s} be the set of points (t,x)(t,x) in the cone t/2<|x|<2t3t/2<|x|<2t-3 with t2t\geq 2 such that

|x|t2s2 if (t,x)𝒟i or ts2/2 otherwise.|x|\leq\sqrt{t^{2}-s^{2}}\text{ if }(t,x)\in\mathscr{D}^{\text{i}}\quad\text{ or }\quad t\leq s^{2}/2\text{ otherwise.}

We denote by B𝒟s\partial_{B}\mathscr{D}_{s} the lateral boundary of 𝒟s\mathscr{D}_{s}, i.e.

B𝒟s:={(t,x):|x|=t/2 and t8/3 or |x|=2t3 and ts2/2}.\partial_{B}\mathscr{D}_{s}:=\{(t,x):|x|=t/2\text{ and }t\leq 8/3\text{ or }|x|=2t-3\text{ and }t\leq s^{2}/2\}.

Let uu be a solution to the wave equation on the curved 4-dimensional spacetime ~gu=F\tilde{\Box}_{g}u=F, where g=(g𝛍𝛎)g=(g_{{\bm{\mu}}{\bm{\nu}}}) is a Lorenztian metric, g1=(g𝛍𝛎)g^{-1}=(g^{{\bm{\mu}}{\bm{\nu}}}) is its inverse and FF is some smooth source term. Let m=(m𝛍𝛎)m=(m_{{\bm{\mu}}{\bm{\nu}}}) denote the Minkowski metric, m1=(m𝛍𝛎)m^{-1}=(m^{{\bm{\mu}}{\bm{\nu}}}) its inverse and π𝛍𝛎:=g𝛍𝛎m𝛍𝛎\pi^{{\bm{\mu}}{\bm{\nu}}}:=g^{{\bm{\mu}}{\bm{\nu}}}-m^{{\bm{\mu}}{\bm{\nu}}}. For any spacetime point (t,x)𝒟s(t,x)\in\mathscr{D}_{s}, let (τ,φ(τ;t,x))(\tau,\varphi(\tau;t,x)) be the integral curve of the vector field

t+1πLL/41+πLL/4r\partial_{t}+\frac{1-\pi_{LL}/4}{1+\pi_{LL}/4}\partial_{r}

passing through (t,x)(t,x), i.e. φ(t;t,x)=x\varphi(t;t,x)=x. Assume that

|πLL¯(t,x)|<1/4and|πLL(t,x)|ϵ|tr|t+r,(t,x)𝒟s.|\pi^{L\underline{L}}(t,x)|<1/4\quad\text{and}\quad|\pi_{LL}(t,x)|\leq\epsilon\frac{|t-r|}{t+r},\qquad\forall(t,x)\in\mathscr{D}_{s}.

Then for any (t,x)𝒟s(t,x)\in\mathscr{D}_{s} one has that

(4.72) t|(tr)u(t,x)|\displaystyle t|(\partial_{t}-\partial_{r})u(t,x)| supB𝒟s|(tr)(ru)|+2t|M[u,π](τ)|𝑑τ+2tτ|F|(τ,φ(τ;t,x))𝑑τ\displaystyle\lesssim\sup_{\partial_{B}\mathscr{D}_{s}}|(\partial_{t}-\partial_{r})(ru)|+\int_{2}^{t}|M[u,\pi](\tau)|d\tau+\int_{2}^{t}\tau|F|_{(\tau,\varphi(\tau;t,x))}d\tau

where

(4.73) M[u,π](τ)=(r|Δ𝕊1u|+|π|𝒯(r|¯u|+|u|)+|π|r|¯2u|)|(τ,φ(τ;t,x)).M[u,\pi](\tau)=\Big{(}r|\Delta_{{\mathbb{S}}^{1}}u|+|\pi|_{\mathscr{L}\mathscr{T}}\big{(}r|\overline{\partial}\partial u|+|\partial u|\big{)}+|\pi|r|\overline{\partial}^{2}u|\Big{)}|_{(\tau,\varphi(\tau;t,x))}.
Proof.

From the hypothesis on π\pi, 2gLL¯=12πLL¯>1/2-2g^{L\underline{L}}=1-2\pi^{L\underline{L}}>1/2 and g~αβ:=gαβ2gLL¯\tilde{g}^{\alpha\beta}:=\frac{g^{\alpha\beta}}{-2g^{L\underline{L}}} is well-defined. From ~gu=F\tilde{\Box}_{g}u=F one has that

xu+θαβαβu=F2gLL¯\Box_{x}u+\theta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}u=\frac{F}{-2g^{L\underline{L}}}

where θαβ:=g~αβmαβ\theta^{\alpha\beta}:=\tilde{g}^{\alpha\beta}-m^{\alpha\beta} satisfies the following

θLL¯=0,θLT=(2gLL¯)1πLT,tr¯θ=(2gLL¯)1(tr¯θ+πLL¯),|θ||π||θαβαβu1rθL¯L¯L¯2(ru)||π|𝒯|¯u|+|π||¯2u|+|π|r1|u|.\begin{gathered}\theta_{L\underline{L}}=0,\quad\theta_{LT}=(-2g^{L\underline{L}})^{-1}\pi_{LT},\quad\overline{\text{tr}}\theta=(-2g^{L\underline{L}})^{-1}(\overline{\text{tr}}\theta+\pi_{L\underline{L}}),\quad|\theta|\lesssim|\pi|\\ \Big{|}\theta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}u-\frac{1}{r}\theta^{\underline{L}\underline{L}}\underline{L}^{2}(ru)\Big{|}\lesssim|\pi|_{\mathscr{L}\mathscr{T}}|\overline{\partial}\partial u|+|\pi||\overline{\partial}^{2}u|+|\pi|r^{-1}|\partial u|.\end{gathered}

We recall that the flat wave operator can be written as follows

xu=1r(t+r)(tr)(ru)+Δ𝕊1u.\Box_{x}u=\frac{1}{r}(\partial_{t}+\partial_{r})(\partial_{t}-\partial_{r})(ru)+\Delta_{{\mathbb{S}}^{1}}u.

Therefore

|(t+1πLL/41+πLL/4r)(tr)(ru)|r|Δ𝕊1u|+|π|𝒯(r|¯u|+|u|)+|π|r|¯2u|+|rF|.\displaystyle\Big{|}\Big{(}\partial_{t}+\frac{1-\pi_{LL}/4}{1+\pi_{LL}/4}\partial_{r}\Big{)}(\partial_{t}-\partial_{r})(ru)\Big{|}\lesssim r|\Delta_{{\mathbb{S}}^{1}}u|+|\pi|_{\mathscr{L}\mathscr{T}}\big{(}r|\overline{\partial}\partial u|+|\partial u|\big{)}+|\pi|r|\overline{\partial}^{2}u|+|rF|.

Due to the smallness assumption on πLL\pi_{LL}, any integral curve (τ,φ(τ;t,x))(\tau,\varphi(\tau;t,x)) passing through a point (t,x)𝒟s(t,x)\in\mathscr{D}_{s} must intersect the boundary B𝒟s\partial_{B}\mathscr{D}_{s}. The result of the lemma finally follows from integration along the characteristic curve, from which we get

|(tr)(ru)(t,x)||(tr)(ru)(t0,x0)|+t0t|M[u,π](τ)|+τ|F|(τ,φ(τ;t,x))dτ|(\partial_{t}-\partial_{r})(ru)(t,x)|\lesssim|(\partial_{t}-\partial_{r})(ru)(t_{0},x_{0})|+\int_{t_{0}}^{t}|M[u,\pi](\tau)|+\tau|F|_{(\tau,\varphi(\tau;t,x))}d\tau

where (t0,x0)(t_{0},x_{0}) is the first point at which the intersection with the lateral boundary occurs. ∎

Proof of Proposition 4.12.

Throughout this proof we will denote by η\eta any small positive constant that linearly depends on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k}. After the above observations, we only need to prove that (4.70) and (4.71) are satisfied in the exterior of the cone t=2rt=2r. Such estimates are satisfied by the (s/t)2t(s/t)^{2}\partial_{t} and ¯𝒂\underline{\partial}_{\bm{a}} derivatives as a consequence of (4.38). Moreover, since

t\displaystyle\partial_{t} =trtt+x𝒂t+r¯𝒂+rt+r(tr),𝒂\displaystyle=\frac{t-r}{t}\partial_{t}+\frac{x^{\bm{a}}}{t+r}\underline{\partial}_{\bm{a}}+\frac{r}{t+r}(\partial_{t}-\partial_{r}),\qquad\partial_{\bm{a}} =¯𝒂x𝒃tt\displaystyle=\underline{\partial}_{\bm{a}}-\frac{x_{\bm{b}}}{t}\partial_{t}

we can reduce to proving them for the tr\partial_{t}-\partial_{r} derivative, which we do by applying Lemma 4.13. We remark that for a point (t,x)𝒟s𝒟i(t,x)\in\mathscr{D}_{s}\cap\mathscr{D}^{\text{i}}, the integral curve (τ,φ(τ;t,x))(\tau,\varphi(\tau;t,x)) may have a non-empty intersection with the exterior region, which explains why in the following we invoke some pointwise estimates obtained in section 3.

The integration of (3.31) along 𝕊1{\mathbb{S}}^{1} shows that ZKhαβ1,Z^{K}h^{1,\flat}_{\alpha\beta} is solution to the following equation

(4.74) xZKhTU1,+(H𝝁𝝂)𝝁𝝂ZKhTU1,=FTUK,+FTU0,K((Hμν)μνZKhTU1,)\Box_{x}Z^{K}h^{1,\flat}_{TU}+(H^{{\bm{\mu}}{\bm{\nu}}})^{\flat}\partial_{\bm{\mu}}\partial_{\bm{\nu}}Z^{K}h^{1,\flat}_{TU}=F^{K,\flat}_{TU}+F^{0,K}_{TU}-\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{TU}\big{)}^{\flat}

where FTUK,=(FTUK)F^{K,\flat}_{TU}=(F^{K}_{TU})^{\flat} and FTUKF^{K}_{TU} is given by (3.32). We recall that tensor HμνH^{\mu\nu} decomposes as in (1.12). The hypothesis of Lemma 4.13 are met thanks to the pointwise bounds (3.11), (3.17) and (4.47), therefore for all s>s0s>s_{0} and all (t,x)𝒟s(t,x)\in\mathscr{D}_{s}

(4.75) |(tr)ZKhTU1,(t,x)|t1supB𝒟s|(tr)(rZKhTU1,)|+t12t|M[ZKhTU1,,H](τ)|𝑑τ\displaystyle|(\partial_{t}-\partial_{r})Z^{K}h^{1,\flat}_{TU}(t,x)|\leq t^{-1}\sup_{\partial_{B}\mathscr{D}_{s}}|(\partial_{t}-\partial_{r})(rZ^{K}h^{1,\flat}_{TU})|+t^{-1}\int_{2}^{t}|M[Z^{K}h^{1,\flat}_{TU},H^{\flat}](\tau)|d\tau
+t12tτ(RHS of (4.74))𝑑τ\displaystyle+t^{-1}\int_{2}^{t}\tau\,(\text{RHS of }\eqref{eq_ZKhTU})d\tau

where M[,]M[\cdot,\cdot] is given by the formula in (4.73).

From the interior pointwise bounds (4.38), (4.43) and the exterior pointwise bounds (3.12), (3.14) we see that

supB𝒟s|(tr)(rZKhTU1,)|C1ϵt12+η.\sup_{\partial_{B}\mathscr{D}_{s}}|(\partial_{t}-\partial_{r})(rZ^{K}h^{1,\flat}_{TU})|\lesssim C_{1}\epsilon t^{-\frac{1}{2}+\eta}.

As concerns the contribution coming from M[ZKhTU1,,H]M[Z^{K}h^{1,\flat}_{TU},H^{\flat}], we see from formula (4.73) together with the fact that ∂̸𝒋=x𝒊r2Ω𝒊𝒋\not{\partial}_{\bm{j}}=\frac{x^{\bm{i}}}{r^{2}}\Omega_{{\bm{i}}{\bm{j}}} and the exterior pointwise bounds (3.12)-(3.14) that for points (t,x)𝒟s𝒟e(t,x)\in\mathscr{D}_{s}\cap\mathscr{D}^{\text{e}}

|M[ZKhTU1,,H](t,x)|C0ϵt1+2σl(t)+C02ϵ2t2+2σ.|M[Z^{K}h^{1,\flat}_{TU},H^{\flat}](t,x)|\lesssim C_{0}\epsilon t^{-1+2\sigma}\sqrt{l(t)}+C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}.

In 𝒟s𝒟i\mathscr{D}_{s}\cap\mathscr{D}^{\text{i}}, we rewrite (4.73) using inequality (1.20)

|M[ZKhTU1,,H](t,x)||¯Z1ZKhTU1,|+|H|𝒯(r(st)2|2ZKhTU1,|+|Z1ZKhTU1,|)\displaystyle|M[Z^{K}h^{1,\flat}_{TU},H^{\flat}](t,x)|\lesssim|\underline{\partial}Z^{\leq 1}Z^{K}h^{1,\flat}_{TU}|+|H^{\flat}|_{\mathscr{L}\mathscr{T}}\Big{(}r\Big{(}\frac{s}{t}\Big{)}^{2}|\partial^{2}Z^{K}h^{1,\flat}_{TU}|+|\partial Z^{\leq 1}Z^{K}h^{1,\flat}_{TU}|\Big{)}
+|H|(r(st)4|2ZKhTU1,|+(st)2|Z1ZKhTU1,|+|¯Z1ZKhTU1,|)\displaystyle+|H^{\flat}|\Big{(}r\Big{(}\frac{s}{t}\Big{)}^{4}|\partial^{2}Z^{K}h^{1,\flat}_{TU}|+\Big{(}\frac{s}{t}\Big{)}^{2}|\partial Z^{\leq 1}Z^{K}h^{1,\flat}_{TU}|+|\underline{\partial}Z^{\leq 1}Z^{K}h^{1,\flat}_{TU}|\Big{)}

and hence deduce from pointwise bounds (3.11), (4.38), (4.38), (4.43), (4.47) that

|M[ZKhTU1,,H](t,x)|C1ϵt32+η.|M[Z^{K}h^{1,\flat}_{TU},H^{\flat}](t,x)|\lesssim C_{1}\epsilon t^{-\frac{3}{2}+\eta}.

Overall, M[ZKhTU1,,H]|(τ,φ(τ;t,x))M[Z^{K}h^{1,\flat}_{TU},H^{\flat}]|_{(\tau,\varphi(\tau;t,x))} is an integrable function of τ\tau.

We next show that the right hand side of (4.74) multiplied by tt is integrable in τ\tau along the characteristic curve. Concerning the contributions to FTUK,F^{K,\flat}_{TU}, see formula (3.32): the weak null terms do not appear in FTUK,F^{K,\flat}_{TU}, hence from (3.22), (3.23) and (4.58), (4.59) we have that

|ZKFTU(t,x)|C12ϵ2t52+η+C02ϵ2t2+2σl(t).|Z^{K}F^{\flat}_{TU}(t,x)|\lesssim C_{1}^{2}\epsilon^{2}t^{-\frac{5}{2}+\eta}+C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\sqrt{l(t)}.

The terms arising from the commutation of the null frame with the wave operator are estimated, on the one hand, using (3.11), pointwise interior bounds (4.38), (4.43) and the exterior bounds (3.13), (3.14)

|K||K|CTU,K𝒊αβ|∂̸𝒊ZKhαβ1,|+|DTU,KαβZKhαβ1,|C1ϵt52+η+C0ϵt2+σl(t).\sum_{|K^{\prime}|\leq|K|}C^{{\bm{i}}\alpha\beta}_{TU,K^{\prime}}\big{|}\not{\partial}_{\bm{i}}Z^{K^{\prime}}h^{1,\flat}_{\alpha\beta}\big{|}+\big{|}D^{\alpha\beta}_{TU,K^{\prime}}Z^{K^{\prime}}h^{1,\flat}_{\alpha\beta}\big{|}\lesssim C_{1}\epsilon t^{-\frac{5}{2}+\eta}+C_{0}\epsilon t^{-2+\sigma}\sqrt{l(t)}.

On the other hand, using additionally the a-priori bound (4.6) we see that

|K1|+|K2||K||ETUμν,K1K2𝒊αβ(ZK1Hμν∂̸𝒊ZK2hαβ1)|+|FTUμν,K1K2αβ(ZK1HμνZK2hαβ1)|\displaystyle\sum_{|K_{1}|+|K_{2}|\leq|K|}\big{|}E^{{\bm{i}}\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\big{(}Z^{K_{1}}H^{\mu\nu}\cdot\not{\partial}_{\bm{i}}Z^{K_{2}}h^{1}_{\alpha\beta}\big{)}^{\flat}\big{|}+\big{|}F^{\alpha\beta}_{TU\mu\nu,K_{1}K_{2}}\big{(}Z^{K_{1}}H^{\mu\nu}\cdot Z^{K_{2}}h^{1}_{\alpha\beta}\big{)}^{\flat}\big{|}
C1C2ϵ2t52+η+C02ϵ2t2+2σl(t).\displaystyle\lesssim C_{1}C_{2}\epsilon^{2}t^{-\frac{5}{2}+\eta}+C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}\sqrt{l(t)}.

From (4.66), together with (3.12) and (3.14), we have that

|((H1,μν)μνZKhTU1,)(t,x)|+|([ZK,H1,μνμν]hTU1,)(t,x)|C12ϵ2t52+η.\big{|}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{TU}\big{)}^{\flat}(t,x)\big{|}+\big{|}\big{(}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{TU}\big{)}^{\flat}(t,x)\big{|}\lesssim C_{1}^{2}\epsilon^{2}t^{-\frac{5}{2}+\eta}.

Thus all together

t|FTUK,[ZK,H0,𝝁𝝂𝝁𝝂]hTU1,|+t|((H1,μν)μνZKhTU1,)(t,x)|C1ϵt32+η+C0ϵt1+2σl(t).t|F^{K,\flat}_{TU}-[Z^{K},H^{0,{\bm{\mu}}{\bm{\nu}}}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{TU}|+t\big{|}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{TU}\big{)}^{\flat}(t,x)\big{|}\\ \lesssim C_{1}\epsilon t^{-\frac{3}{2}+\eta}+C_{0}\epsilon t^{-1+2\sigma}\sqrt{l(t)}.

Using the structure highlighted in Lemma 3.9, one can easily show that

|FTU0,K(t,x)|ϵt3.|F^{0,K}_{TU}(t,x)|\lesssim\epsilon t^{-3}.

Finally, if KK is such that ZK=IZ^{K}=\partial^{I} is a product of derivatives only, with |I|N1|I|\leq N_{1}, we derive from (3.11), (3.12) and (4.38) that

t|[I,(H0,𝝁𝝂)𝝁𝝂]hTU1,||I1|+|I2|=|I||I1|1t|I1H0||2I2hTU1,|C1ϵ2t2+δk+2.t\big{|}[\partial^{I},(H^{0,{\bm{\mu}}{\bm{\nu}}})\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{TU}\big{|}\lesssim\sum_{\begin{subarray}{c}|I_{1}|+|I_{2}|=|I|\\ |I_{1}|\geq 1\end{subarray}}t|\partial^{I_{1}}H^{0}|\,|\partial^{2}\partial^{I_{2}}h^{1,\flat}_{TU}|\lesssim C_{1}\epsilon^{2}t^{-2+\delta_{k+2}}.

This is an integrable quantity, as all others above, therefore we obtain (4.71).

Bound (4.70) follows then by induction on the number kk of vector fields in ZKZ^{K}, since

|[ZK,(H0,𝝁𝝂)𝝁𝝂]hTU1,|\displaystyle|[Z^{K},(H^{0,{\bm{\mu}}{\bm{\nu}}})\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{TU}| |I1|+|K2||K||I1|1,|K2|<|K||I1H0||2ZK2hTU1,|+|K1|+|K2′′||K||K2′′|<|K||ZK1H0||2ZK2′′hTU1,|\displaystyle\leq\sum_{\begin{subarray}{c}|I_{1}|+|K^{\prime}_{2}|\leq|K|\\ |I_{1}|\geq 1,\,|K^{\prime}_{2}|<|K|\end{subarray}}|\partial^{I_{1}}H^{0}||\partial^{2}Z^{K^{\prime}_{2}}h^{1,\flat}_{TU}|+\sum_{\begin{subarray}{c}|K_{1}|+|K^{\prime\prime}_{2}|\leq|K|\\ |K^{\prime\prime}_{2}|<|K|\end{subarray}}|Z^{K_{1}}H^{0}||\partial^{2}Z^{K^{\prime\prime}_{2}}h^{1,\flat}_{TU}|
|K|<|K|1(1+t+r)2|2ZKhTU1,|+|K′′|<|K|1(1+t+r)|2ZK′′hTU1,|\displaystyle\leq\sum_{\begin{subarray}{c}|K^{\prime}|<|K|\end{subarray}}\frac{1}{(1+t+r)^{2}}|\partial^{2}Z^{K^{\prime}}h^{1,\flat}_{TU}|+\sum_{\begin{subarray}{c}|K^{\prime\prime}|<|K|\end{subarray}}\frac{1}{(1+t+r)}|\partial^{2}Z^{K^{\prime\prime}}h^{1,\flat}_{TU}|

where KK^{\prime} is a multi-index of type (|K|1,k)(|K|-1,k) and K′′K^{\prime\prime} is of type (|K|1,k1)(|K|-1,k-1).

4.5. The weak null terms

In this section we prove estimates on the weak null terms.

Lemma 4.14.

For any multi-index KK of type (N,k)(N,k) and i=0,1i=0,1, we have that

(4.76) iZKPαβ(h,h)Lxy2(s)C12ϵ2s12+ζk,\left\|\partial^{i}Z^{K}P_{\alpha\beta}(\partial h,\partial h)\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}s^{-\frac{1}{2}+\zeta_{k}},

while for any multi-index KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.77) ZKPαβ(h,h)Lxy2(s)C12ϵ2s1+δk.\displaystyle\left\|Z^{K}P_{\alpha\beta}(\partial h,\partial h)\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}s^{-1+\delta_{k}}.

Moreover, for KK a multi-index of type (N,k)(N,k) we have

(4.78) ZKPαβ(h,h)Lxy2(s)C1ϵs1KEi(s,ZKh1,)1/2+C1ϵs1+CϵK′′Ei(s,ZK′′h1,)1/2+C12ϵ2s32+2δN+C12ϵ2δk>N1(i=14s1+γi+ζki+s1+ζk)\left\|Z^{K}P^{\flat}_{\alpha\beta}(\partial h,\partial h)\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\\ \lesssim C_{1}\epsilon s^{-1}\sum_{K^{\prime}}E^{\text{i}}(s,Z^{K^{\prime}}h^{1,\flat})^{1/2}+C_{1}\epsilon s^{-1+C\epsilon}\sum_{K^{\prime\prime}}E^{\text{i}}(s,Z^{K^{\prime\prime}}h^{1,\flat})^{1/2}+C_{1}^{2}\epsilon^{2}s^{-\frac{3}{2}+2\delta_{N}}\\ +C_{1}^{2}\epsilon^{2}\delta_{k>N_{1}}\left(\sum_{i=1}^{4}s^{-1+\gamma_{i}+\zeta_{k-i}}+s^{-1+\zeta_{k}}\right)

where KK^{\prime} is of type (|K|,k)(|K|,k), K′′K^{\prime\prime} of type (|K|1,k1)(|K|-1,k-1), and where δk>N1=1\delta_{k>N_{1}}=1 when k>N1k>N_{1}, 0 otherwise.

Proof.

We start by decomposing each occurrence of hh into the sum h0+h1h^{0}+h^{1} and observe that the quadratic interactions involving at least one factor h0h^{0} verify (4.50). We hence focus on estimating the weak null terms only involving factors h1h^{1} and distinguish between the region inside the cone t=2rt=2r and its complement in 𝒟i\mathscr{D}^{\text{i}}.

In the interior of the cone t=2rt=2r (where sts\approx t), the bounds of the statement do not depend on the weak null structure: consequently they are the same as the bounds for the null terms (4.52), (4.54) and (4.56).

The estimates in the region 𝒟i{t<2r}\mathscr{D}^{\text{i}}\cap\{t<2r\} follow from the particular structure of the weak null terms and the wave condition. We have already seen that these two yield inequality (3.47) which, after (1.20), can be also written in the following form

(4.79) |iZKPαβ(h1,h1)||K1|+|K2||K||I1|+|I2|=i|I1ZK1h1|𝒯𝒰|I2ZK2h1|𝒯𝒰\displaystyle\big{|}\partial^{i}Z^{K}P_{\alpha\beta}(\partial h^{1},\partial h^{1})\big{|}\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |I_{1}|+|I_{2}|=i\end{subarray}}|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}|_{\mathscr{T}\mathscr{U}}|\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|_{\mathscr{T}\mathscr{U}}
+|K1|+|K2||K||I1|+|I2|=i(st)2|I1ZK1h1||I2ZK2h1|+|¯I1ZK1h1||I2ZK2h1|\displaystyle+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |I_{1}|+|I_{2}|=i\end{subarray}}\Big{(}\frac{s}{t}\Big{)}^{2}|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|+|\underline{\partial}\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|
+|K1|+|K2||K||I1|+|I2|=ir1|I1ZK1h1||I2ZK2h1|+|K1|+|K2|+|K3||K||I1|+|I2|+|I3|=i|I1ZK1h1||I2ZK2h1||I3ZK3h1|\displaystyle+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |I_{1}|+|I_{2}|=i\end{subarray}}r^{-1}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}|+\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|+|K_{3}|\leq|K|\\ |I_{1}|+|I_{2}|+|I_{3}|=i\end{subarray}}|\partial^{I_{1}}Z^{K_{1}}h^{1}||\partial\partial^{I_{2}}Z^{K_{2}}h^{1}||\partial\partial^{I_{3}}Z^{K_{3}}h^{1}|
+Mχ0(t/2r3t/4)(1+t+r)2|iZKh1|.\displaystyle+\frac{M\chi_{0}(t/2\leq r\leq 3t/4)}{(1+t+r)^{2}}|\partial\partial^{i}Z^{\leq K}h^{1}|.

We observe that the quadratic terms on the second line of (4.79) are null and hence satisfy (4.52), (4.54) and (4.56); the ones on the third line are cubic (or cubic-like) and satisfy (4.53), (4.55); moreover

Mχ0(t/2r3t/4)(1+t+r)2iZKh1L2ϵs2(s/t)iZKh1L2C1ϵ2s32+δk.\left\|\frac{M\chi_{0}(t/2\leq r\leq 3t/4)}{(1+t+r)^{2}}\,\partial\partial^{i}Z^{\leq K}h^{1}\right\|_{L^{2}}\lesssim\epsilon s^{-2}\left\|(s/t)\partial\partial^{i}Z^{\leq K}h^{1}\right\|_{L^{2}}\lesssim C_{1}\epsilon^{2}s^{-\frac{3}{2}+\delta_{k}}.

Finally, from the enhanced bounds (4.70), (4.71) satisfied by the hTU1h^{1}_{TU} coefficients we derive

|K1|+|K2||K||I1|+|I2|=iI1ZK1hTU1I2ZK2hTU1L2|I1|+|K2||K|+i|I1|(|K|+i)/2(t/s)I1hTU1L(s/t)ZK2hTU1L2\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |I_{1}|+|I_{2}|=i\end{subarray}}\left\|\partial\partial^{I_{1}}Z^{K_{1}}h^{1}_{TU}\cdot\partial\partial^{I_{2}}Z^{K_{2}}h^{1}_{TU}\right\|_{L^{2}}\lesssim\sum_{\begin{subarray}{c}|I_{1}|+|K_{2}|\leq|K|+i\\ |I_{1}|\leq\lfloor(|K|+i)/2\rfloor\end{subarray}}\|(t/s)\partial\partial^{I_{1}}h^{1}_{TU}\|_{L^{\infty}}\|(s/t)\partial Z^{K_{2}}h^{1}_{TU}\|_{L^{2}}
+|I1|+|J1|+|K2||K|+i|I1|+|J1|(|K|+i)/2|J1|1(t/s)I1ΓJ1hTU1L(s/t)ZK2hTU1L2\displaystyle+\sum_{\begin{subarray}{c}|I_{1}|+|J_{1}|+|K_{2}|\leq|K|+i\\ |I_{1}|+|J_{1}|\leq\lfloor(|K|+i)/2\rfloor\\ |J_{1}|\geq 1\end{subarray}}\|(t/s)\partial\partial^{I_{1}}\Gamma^{J_{1}}h^{1}_{TU}\|_{L^{\infty}}\|(s/t)\partial Z^{K_{2}}h^{1}_{TU}\|_{L^{2}}
C1ϵs1j=0i(s/t)jZKhTU1L2+C1ϵs1+2Cϵj=0i(s/t)jZK1hTU1L2.\displaystyle\lesssim C_{1}\epsilon s^{-1}\sum_{j=0}^{i}\|(s/t)\partial\partial^{j}Z^{\leq K}h^{1}_{TU}\|_{L^{2}}+C_{1}\epsilon s^{-1+2C\epsilon}\sum_{j=0}^{i}\|(s/t)\partial\partial^{j}Z^{\leq K-1}h^{1}_{TU}\|_{L^{2}}.

4.6. The commutator terms

The goal of this section is to get suitable estimates for the trilinear terms involving commutators in the right hand side of energy inequalities (4.16) and (4.17). More precisely, we will prove the following.

Proposition 4.15.

There exist some small positive parameters δk\delta_{k} with σδkδk+1κ\sigma\ll\delta_{k}\ll\delta_{k+1}\ll\kappa and δkκσ\delta_{k}\ll\kappa-\sigma for k=0,,Nk=0,\dots,N such that, under the assumptions of Proposition 4.1 we have the following inequalities for all s[s0,S0)s\in[s_{0},S_{0}):

for multi-indexes KK of type (N+1,k)(N+1,k) with kNk\leq N

(4.80) [s0,s]|[ZK,H1,μνμν]hαβ1||tZKhαβ1|𝑑x𝑑y𝑑t(C02+C12)C22ϵ3(i=14s1+γi+ζki+ζk+s1+2ζk),\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{|}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}{\Big{(}\sum_{i=1}^{4}s^{1+\gamma_{i}+\zeta_{k-i}+\zeta_{k}}+s^{1+2\zeta_{k}}\Big{)}},

for multi-indexes KK of type (N,k)(N,k)

(4.81) [s0,s]|([ZK,H1,μνμν]hαβ1)||tZKhαβ1,|𝑑x𝑑t+[s0,s]|((H1,μν)μνZKhαβ1,)||tZKhαβ1,|𝑑x𝑑t(C02+C12)C22ϵ3(i=14sγi+ζki+ζk+s2ζk)\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\\ +\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}{\Big{(}\sum_{i=1}^{4}s^{\gamma_{i}+\zeta_{k-i}+\zeta_{k}}+s^{2\zeta_{k}}\Big{)}}

for multi-indexes KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.82) [s0,s]|[ZK,H1,μνμν]hαβ1||tZKhαβ1|𝑑x𝑑y𝑑t(C02+C12)C22ϵ3s2δk\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{|}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{2\delta_{k}}

and for multi-indexes KK of type (N1,k)(N-1,k) with kN1k\leq N_{1}

(4.83) [s0,s]|([ZK,H1,μνμν]hαβ1)||tZKhαβ1,|𝑑x𝑑t+[s0,s]|((H1,μν)μνZKhαβ1,)||tZKhαβ1,|𝑑x𝑑t(C02+C12)C22ϵ3.\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\\ +\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}.

We postpone the proof of the above proposition and first observe that, because of (4.48), we will need to estimate quadratic terms (in fact, commutators) that are either pure products of zero modes, or pure products of non-zero modes, or mixed products. We proceed to the analysis of those separately, in the lemmas that follow.

Lemma 4.16.

There exists 0<η2δN10<\eta\leq 2\delta_{N}\ll 1, linearly depending on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k}, such that for any multi-index KK of type (N,k)(N,k) we have

(4.84) [iZK,(H1,𝝁𝝂)𝝁𝝂]hαβ1,|K1|+|K2||K||K2||K|/2ZK1HLL1,t2iZK2hαβ1,Lx2(s)\displaystyle\big{\|}[\partial^{i}Z^{K},(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\flat}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{\alpha\beta}-\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|\leq\lfloor|K|/2\rfloor\end{subarray}}Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}\partial^{i}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}_{x}(\mathscr{H}_{s})}
C1C2ϵ2{s1+ηif i=1 and |K|=Ns32+ηif i=0\displaystyle\lesssim C_{1}C_{2}\epsilon^{2}\begin{cases}s^{-1+\eta}&\text{if }i=1\text{ and }|K|=N\\ s^{-\frac{3}{2}+\eta}&\text{if }i=0\end{cases}
Proof.

The proof is based on inequality (3.25) applied to π=H1,\pi=H^{1,\flat} and ϕ=hαβ1,\phi=h^{1,\flat}_{\alpha\beta}. We will focus on discussing only the following terms, the remaining ones being simpler:

|K1|+|K2||K||K1||K|/2,|K2|<|K|ZK1HLL1,t2iZK2hαβ1,L2(s)\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor,|K_{2}|<|K|\end{subarray}}\big{\|}Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}\partial^{i}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}

and

|K1|+|K2||K|ZK1HLL1,t2ZK2hαβ1,L2(s).\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\end{subarray}}\big{\|}\partial Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}.

We remark that the latter sum only appears in the case i=1i=1.

Concerning the first sum with i=0i=0, pointwise bound (4.47) and L2L^{2} bound (4.67) yield

|K1|+|K2||K||K1||K|/2,|K2|<|K|ZK1HLL1,t2ZK2hαβ1,L2(s)C1ϵs12+η|K|<|K|(s/t)2t2ZKhαβ1,L2\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor,\,|K_{2}|<|K|\end{subarray}}\big{\|}Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{-\frac{1}{2}+\eta}\sum_{|K^{\prime}|<|K|}\|(s/t)^{2}\partial^{2}_{t}Z^{K^{\prime}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}}
C12ϵ2s32+η.\displaystyle\lesssim C_{1}^{2}\epsilon^{2}s^{-\frac{3}{2}+\eta}.

When i=1i=1, the L2L^{2} bound (4.68) gives

|K1|+|K2||K||K1||K|/2,|K2|<|K|ZK1HLL1,t2ZK2hαβ1,L2(s)C1C2ϵ2s1+η.\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor,\,|K_{2}|<|K|\end{subarray}}\big{\|}Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}\partial Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}C_{2}\epsilon^{2}s^{-1+\eta}.

The second sum is estimated using (4.19) and (4.46) whenever |K1|N2|K_{1}|\leq N-2, and using (4.38) and (4.49) otherwise

|K1|+|K2||K|ZK1HLL1,t2ZK2hαβ1,L2(s)C12ϵs1+η.\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\end{subarray}}\big{\|}\partial Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon s^{-1+\eta}.

Lemma 4.17.

For any fixed fixed multi-index KK and any smooth function ϕ\phi, we have

(4.85) |K1|+|K2||K||K2||K|/2[s0,s]|ZK1HLL1,||t2ZK2hαβ1,||tϕ|𝑑x𝑑t(C02+C12)C22ϵ3sκϕ\displaystyle\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|\leq\lfloor|K|/2\rfloor\end{subarray}}\iint_{\mathscr{H}_{[s_{0},s]}}|Z^{K_{1}}H^{1,\flat}_{LL}||\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}||\partial_{t}\phi|dxdt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{\kappa_{\phi}}

with

(4.86) κϕ={1,if ϕ=ZKhαβ1 and K is of type (N+1,k),kN0,if ϕ=ZKhαβ1, and K is of type (N,k)0,if ϕ=ZKhαβ1 and K is of type (N,k),kN1\kappa_{\phi}=\begin{cases}1,\quad&\text{if }\phi=Z^{K}h^{1}_{\alpha\beta}\text{ and K is of type }(N+1,k),\ k\leq N\\[2.0pt] 0,\quad&\text{if }\phi=Z^{K}h^{1,\flat}_{\alpha\beta}\text{ and K is of type }(N,k)\\[2.0pt] 0,\quad&\text{if }\phi=Z^{K}h^{1}_{\alpha\beta}\text{ and K is of type }(N,k),\ k\leq N_{1}\end{cases}
Proof.

We restrict our attention to the case where ZK1=ΓK1Z^{K_{1}}=\Gamma^{K_{1}}, as the ones where ZK1=I1ΓJ1Z^{K_{1}}=\partial^{I_{1}}\Gamma^{J_{1}} with |I1|1|I_{1}|\geq 1 can be estimated as in the proof of lemma 4.16.

For any K1K_{1}, K2K_{2} in the selected range of indexes and any fixed ν\nu such that 2δk<ν12\delta_{k}<\nu\ll 1, we write the following

[s0,s]|ZK1HLL1,||t2ZK2hαβ1,||tϕ|𝑑x𝑑ts0sEi(τ,ϕ)12ZK1HLL1,t2ZK2hαβ1,L2(τ)𝑑τ\displaystyle\iint_{\mathscr{H}_{[s_{0},s]}}|Z^{K_{1}}H^{1,\flat}_{LL}||\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}||\partial_{t}\phi|dxdt\leq\int_{s_{0}}^{s}E^{\text{i}}(\tau,\phi)^{\frac{1}{2}}\big{\|}Z^{K_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}(\mathscr{H}_{\tau})}d\tau
s0sϵτ1νEi(τ,ϕ)𝑑τ+1ϵs0sττ1+ν|ZK1HLL1,|2|t2ZK2hαβ1,|2𝑑x𝑑τ\displaystyle\lesssim\int_{s_{0}}^{s}\epsilon\tau^{-1-\nu}E^{\text{i}}(\tau,\phi)d\tau+\frac{1}{\epsilon}\int_{s_{0}}^{s}\int_{\mathscr{H}_{\tau}}\tau^{1+\nu}|Z^{K_{1}}H^{1,\flat}_{LL}|^{2}|\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}|^{2}dxd\tau
C12ϵ3sκϕ+1ϵs0ts𝒞t|ZK1HLL1,|2|t2ZK2hαβ1,|2t1+ν𝑑x𝑑t\displaystyle\lesssim C_{1}^{2}\epsilon^{3}s^{\kappa_{\phi}}+\frac{1}{\epsilon}\int_{s_{0}}^{t_{s}}\int_{\mathscr{C}_{t}}|Z^{K_{1}}H^{1,\flat}_{LL}|^{2}|\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}|^{2}t^{1+\nu}dxdt

where 𝒞t={x3:(t2s2)+|x|(t1)21}\mathscr{C}_{t}=\{x\in{\mathbb{R}}^{3}:\sqrt{(t^{2}-s^{2})^{+}}\leq|x|\leq\sqrt{(t-1)^{2}-1}\} and ts=s2/2t_{s}=s^{2}/2. The latter inequality is obtained by injecting the energy assumptions (4.3), (4.4), (4.5) in the first integral on the second line and by performing a change of coordinates in the second one.

We use (4.61) and the Hardy inequality of corollary B.8 with μ=1η\mu=1-\eta and α=1ην\alpha=1-\eta-\nu to estimate the above integral. For any fixed μ>0\mu^{\prime}>0, we get that

1ϵs0ts𝒞t|ZK1HLL1,|2|t2ZK2hαβ1,|2t1+ν𝑑x𝑑t\displaystyle\frac{1}{\epsilon}\int_{s_{0}}^{t_{s}}\int_{\mathscr{C}_{t}}|Z^{K_{1}}H^{1,\flat}_{LL}|^{2}|\partial^{2}_{t}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}|^{2}t^{1+\nu}dxdt
C22ϵs0ts𝒞t|ZK1HLL1,|2(1+tr)2+(1η)dxdt(1+t+r)1ην\displaystyle\lesssim C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\mathscr{C}_{t}}\frac{|Z^{K_{1}}H^{1,\flat}_{LL}|^{2}}{(1+t-r)^{2+(1-\eta)}}\frac{dxdt}{(1+t+r)^{1-\eta-\nu}}
C22ϵs0tsτ|rZK1HLL1,|2τ2(1ην)𝑑x𝑑τ+C22ϵs0tsΣte|rZK1HLL1,|2(1+|rt|)1+μ(1+t+r)1ην𝑑x𝑑t.\displaystyle\lesssim C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\mathscr{H}_{\tau}}\frac{|\partial_{r}Z^{K_{1}}H^{1,\flat}_{LL}|^{2}}{\tau^{2(1-\eta-\nu)}}dxd\tau+C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}|\partial_{r}Z^{K_{1}}H^{1,\flat}_{LL}|^{2}\frac{(1+|r-t|)^{1+\mu^{\prime}}}{(1+t+r)^{1-\eta-\nu}}dxdt.

We estimate the first integral using (4.49):

C22ϵs0tsτ|rZK1HLL1,|2τ2(1ην)𝑑x𝑑τs0tsC12C22ϵ3τ2(1ην)+4δk1𝑑τC12C22ϵ3.C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\mathscr{H}_{\tau}}\frac{|\partial_{r}Z^{K_{1}}H^{1,\flat}_{LL}|^{2}}{\tau^{2(1-\eta-\nu)}}dxd\tau\lesssim\int_{s_{0}}^{t_{s}}C_{1}^{2}C_{2}^{2}\epsilon^{3}\tau^{-2(1-\eta-\nu)+4\delta_{k_{1}}}d\tau\lesssim C_{1}^{2}C_{2}^{2}\epsilon^{3}.

For the latter one, we pick 2δkνκ2\delta_{k}\leq\nu\ll\kappa and μ:=2κη2ν\mu^{\prime}:=2\kappa-\eta-2\nu so that μ>0\mu^{\prime}>0. From inequality (2.9) we get

C22ϵs0tsΣte|rZK1HLL1,|2(1+|rt|)1+μ(1+t+r)1ην𝑑x𝑑t\displaystyle C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}|\partial_{r}Z^{K_{1}}H^{1,\flat}_{LL}|^{2}\frac{(1+|r-t|)^{1+\mu^{\prime}}}{(1+t+r)^{1-\eta-\nu}}dxdt
C22ϵ|K||K1|s0tsΣtetν(2+rt)2κ|¯ZKH1,|2𝑑x𝑑t+s0tsΣtetνr1(2+rt)2κ1|ZKH1,|2𝑑x𝑑t\displaystyle\lesssim C_{2}^{2}\epsilon\sum_{|K^{\prime}|\leq|K_{1}|}\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}t^{-\nu}(2+r-t)^{2\kappa}|\overline{\partial}Z^{K^{\prime}}H^{1,\flat}|^{2}dxdt+\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}t^{-\nu}r^{-1}(2+r-t)^{2\kappa-1}|Z^{K^{\prime}}H^{1,\flat}|^{2}dxdt
+|K1|+|K2||K1|C22ϵs0tsΣtetν(2+rt)2κ|(ZK1H1ZK2H1)|2𝑑x𝑑t\displaystyle+\sum_{|K^{\prime}_{1}|+|K^{\prime}_{2}|\leq|K_{1}|}C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}t^{-\nu}(2+r-t)^{2\kappa}|\big{(}Z^{K^{\prime}_{1}}H^{1}\cdot\partial Z^{K^{\prime}_{2}}H^{1}\big{)}^{\flat}|^{2}dxdt
+C22ϵs0tsΣte(2+rt)2κM2χ02(1/2r/t3/4)r4ν𝑑x𝑑t.\displaystyle+C_{2}^{2}\epsilon\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}(2+r-t)^{2\kappa}M^{2}\chi_{0}^{2}(1/2\leq r/t\leq 3/4)r^{-4-\nu}dxdt.

The above right hand side is bounded by C22C02ϵ3C_{2}^{2}C_{0}^{2}\epsilon^{3}. For the first integral, this follows using (3.6) and the fact that ν>2δk>σ\nu>2\delta_{k}>\sigma; for the second one, it follows from the weighted Hardy inequality (B.4) and (3.5); for the third one, from the pointwise bounds (3.12), (3.14), the weighed Hardy inequality (B.4) and the energy bounds (3.5), (3.6); for the last one, from the fact that the domain of integration of the latter one is uniformly bounded in (t,x)(t,x). ∎

We now estimate the different contributions to the commutator [ZK,(H1,μν)μν]hαβ1,[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}, which appear in the equation satisfied by ZKhαβ1Z^{K}h^{1}_{\alpha\beta}.

Lemma 4.18.

For any fixed multi-index KK of type (N+1,k)(N+1,k) with kNk\leq N, one has

(4.87) [ZK,(H1,μν)μν]hαβ1,L2(s)C1C2ϵ2(i=14s12+γi+ζki+s12+ζk)\|[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}C_{2}\epsilon^{2}\left(\sum_{i=1}^{4}s^{-\frac{1}{2}+\gamma_{i}+\zeta_{k-i}}+s^{-\frac{1}{2}+\zeta_{k}}\right)

and for KK of type (N,k)(N,k) with kN1k\leq N_{1}

(4.88) [ZK,(H1,μν)μν]hαβ1,L2(s)C1C2ϵ2s1+δk.\|[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}C_{2}\epsilon^{2}s^{-1+\delta_{k}}.
Proof.

The terms in the commutator are of the form

ZK1H1,2ZK2hαβ1,Z^{K_{1}}{H}^{1,\flat}\,\partial^{2}Z^{K_{2}}h^{1,\natural}_{\alpha\beta}

with each KjK_{j} of type (|Kj|,kj)(|K_{j}|,k_{j}) and such that |K1|+|K2||K||K_{1}|+|K_{2}|\leq|K|, |K2|<|K||K_{2}|<|K|. We focus on the case where |K1|=k1|K_{1}|=k_{1}, that is where ZK1=ΓK1Z^{K_{1}}=\Gamma^{K_{1}}, the remaining ones being simpler, and also recall that N=N1+5N=N_{1}+5.

In the case where |K1|N1|K_{1}|\leq N_{1}, we estimate ΓK1H1,\Gamma^{K_{1}}{H}^{1,\flat} in LL^{\infty} with (4.6). Together with the energy bounds (4.21) and (4.24), and the relation (4.2), this yields

ΓK1H1,2ZK2hαβ1,L2(s)C1C2ϵ2{s1+δk,if |k2|N1i=04s12+γi+ζki,if N1<|k2|N\displaystyle\|\Gamma^{K_{1}}{H}^{1,\flat}\,\partial^{2}Z^{K_{2}}h^{1,\natural}_{\alpha\beta}\|_{L^{2}(\mathscr{H}_{s})}\lesssim C_{1}C_{2}\epsilon^{2}\begin{cases}s^{-1+\delta_{k}},\ &\text{if }|k_{2}|\leq N_{1}\\ \sum_{i=0}^{4}s^{-\frac{1}{2}+\gamma_{i}+\zeta_{k-i}},\ &\text{if }N_{1}<|k_{2}|\leq N\end{cases}

In the case where N1<|K1|NN_{1}<|K_{1}|\leq N, we estimate 2ZK2hαβ1,\partial^{2}Z^{K_{2}}h^{1,\natural}_{\alpha\beta} in LL^{\infty} with (4.7) and ΓK1H1,\Gamma^{K_{1}}H^{1,\flat} in L2L^{2} using (4.28)

ΓK1H1,2ZK2hαβ1,L2(s)\displaystyle\|\Gamma^{K_{1}}{H}^{1,\flat}\,\partial^{2}Z^{K_{2}}h^{1,\natural}_{\alpha\beta}\|_{L^{2}(\mathscr{H}_{s})} ϵ2C1C2(s12+ζk+i=14s12+γi+ζki)\displaystyle\lesssim\epsilon^{2}C_{1}C_{2}\left(s^{-\frac{1}{2}+\zeta_{k}}+\sum_{i=1}^{4}s^{-\frac{1}{2}+\gamma_{i}+\zeta_{k-i}}\right)

The conclusion of the proof follows from relation (4.2) and the observation that, if KK is a multi-index of type (N,k)(N,k) with kN1k\leq N_{1} and |K1|>N1|K_{1}|>N_{1}, then ΓK1\Gamma^{K_{1}} contains at least one usual derivative. ∎

We conclude this subsection with some estimates on commutator terms involving H1,H^{1,\natural}.

Lemma 4.19.

We have that

(4.89) ZK((H1,μν)μνhαβ1,)L2(s)C1C2ϵ2{i=14s1+γi+ζki+s1+ζkif K of type (N,k)s32+δkif K of type (N1,k) with kN1\big{\|}Z^{K}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{\|}_{L^{2}(\mathscr{H}_{s})}\\ \lesssim C_{1}C_{2}\epsilon^{2}\begin{cases}\sum_{i=1}^{4}s^{-1+\gamma_{i}+\zeta_{k-i}}+s^{-1+\zeta_{k}}\ &\text{if }K\text{ of type }(N,k)\\ s^{-\frac{3}{2}+\delta_{k}}\ &\text{if }K\text{ of type }(N-1,k)\text{ with }k\leq N_{1}\end{cases}

and

(4.90) [ZK,(H1,μν)μν]hαβ1,Lxy2(s)C1C2ϵ2{i=14s1+γi+ζki+s1+ζkif K of type (N+1,k) with kNs32+δkif K of type (N,k) with kN1\big{\|}\big{[}Z^{K},(H^{1,\mu\nu})^{\natural}\partial_{\mu}\partial_{\nu}\big{]}h^{1,\natural}_{\alpha\beta}\big{\|}_{L^{2}_{xy}(\mathscr{H}_{s})}\\ \qquad\\ \lesssim C_{1}C_{2}\epsilon^{2}\begin{cases}\sum_{i=1}^{4}s^{-1+\gamma_{i}+\zeta_{k-i}}+s^{-1+\zeta_{k}}\ &\text{if }K\text{ of type }(N+1,k)\text{ with }k\leq N\\ s^{-\frac{3}{2}+\delta_{k}}\ &\text{if }K\text{ of type }(N,k)\text{ with }k\leq N_{1}\end{cases}
Proof.

We observe that if KK is a multi-index of type (N1,k)(N-1,k) then ZK=ZK\partial Z^{K}=Z^{K^{\prime}} with KK^{\prime} of type (N,k)(N,k). The first bound (resp. the second) in (4.89) simply follows from (4.2), (4.7), (4.21) (resp. (4.25)) and the fact that N/2+2N1\lfloor N/2\rfloor+2\leq N_{1}. Similarly, the first bound (resp. the second) in (4.90) follows from (4.19) (resp. (4.25)) and (4.41). ∎

Lemma 4.20.

We have that

(4.91) [ZK,(H1,𝝁𝝂)𝝁𝝂]hαβ1,Lxy2(s)C12ϵ2{s1+2δNif K of type (N+1,k) with kNs32+2δNif K of type (N,k) with kN1.\big{\|}\big{[}Z^{K},(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\natural}\partial_{\bm{\mu}}\partial_{\bm{\nu}}\big{]}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}^{2}\epsilon^{2}\begin{cases}s^{-1+2\delta_{N}}\quad&\text{if }K\text{ of type }(N+1,k)\text{ with }k\leq N\\ s^{-\frac{3}{2}+2\delta_{N}}\quad&\text{if }K\text{ of type }(N,k)\text{ with }k\leq N_{1}.\end{cases}
Proof.

We begin by writing that

|[ZK,(H1,𝝁𝝂)𝝁𝝂]hαβ1,||K1|+|K2||K||K2|<|K||ZK1H1,||2ZK2hαβ1,|.\big{|}\big{[}Z^{K},(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\natural}\partial_{\bm{\mu}}\partial_{\bm{\nu}}\big{]}h^{1,\flat}_{\alpha\beta}\big{|}\lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|<|K|\end{subarray}}|Z^{K_{1}}H^{1,\natural}||\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}|.

For any multi-index KK of type (N+1,k)(N+1,k) with kNk\leq N, energy bound (4.20) and pointwise bound (4.30) yield

|K1|+|K2||K||K1||K|/2,|K2|<|K|ZK1H1,2ZK2hαβ1,Lxy2|K1|+|K2||K||K1||K|/2,|K2|<|K|(t/s)ZK1H1,LxLy2(s/t)2ZK2hαβ1,Lx2C12ϵ2s32+2δN\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor,|K_{2}|<|K|\end{subarray}}\big{\|}Z^{K_{1}}H^{1,\natural}\cdot\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}_{xy}}\\ \lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{1}|\leq\lfloor|K|/2\rfloor,|K_{2}|<|K|\end{subarray}}\big{\|}(t/s)Z^{K_{1}}H^{1,\natural}\big{\|}_{L^{\infty}_{x}L^{2}_{y}}\big{\|}(s/t)\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}_{x}}\lesssim C_{1}^{2}\epsilon^{2}s^{-\frac{3}{2}+2\delta_{N}}

while energy bound (4.19) and pointwise bound (4.42) yield

|K1|+|K2||K||K2||K|/2ZK1H1,2ZK2hαβ1,Lxy2|K1|+|K2||K||K2||K|/22ZK2hαβ1,LxZK1H1,Lxy2C12ϵ2s1+2δN.\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|\leq\lfloor|K|/2\rfloor\end{subarray}}\big{\|}Z^{K_{1}}H^{1,\natural}\cdot\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{2}_{xy}}\\ \lesssim\sum_{\begin{subarray}{c}|K_{1}|+|K_{2}|\leq|K|\\ |K_{2}|\leq\lfloor|K|/2\rfloor\end{subarray}}\big{\|}\partial^{2}Z^{K_{2}}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{\infty}_{x}}\big{\|}Z^{K_{1}}H^{1,\natural}\big{\|}_{L^{2}_{xy}}\lesssim C_{1}^{2}\epsilon^{2}s^{-1+2\delta_{N}}.

If KK is instead a multi-index of type (N,k)(N,k) with kN1k\leq N_{1}, the above estimate can be improved to C12ϵ2s32+2δNC_{1}^{2}\epsilon^{2}s^{-\frac{3}{2}+2\delta_{N}} using energy bound (4.25).

Proof of Proposition 4.15.

We decompose H1,μνH^{1,\mu\nu} and hαβ1h^{1}_{\alpha\beta} appearing in the commutator terms into their zero mode and their zero-average component and express all commutators involving (H1,μν)(H^{1,\mu\nu})^{\flat} with respect to the null framework.

From (4.84), (4.85) and the energy bounds (4.19), (4.20) and (4.24) we derive that

[s0,s]|[ZK,(H1,𝝁𝝂)𝝁𝝂]hαβ1,||tϕ|𝑑x𝑑y𝑑t(C13+C02)ϵ3sκϕ\iint_{\mathscr{H}_{[s_{0},s]}}|[Z^{K},(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\flat}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{\alpha\beta}||\partial_{t}\phi|dxdydt\lesssim(C_{1}^{3}+C_{0}^{2})\epsilon^{3}s^{\kappa_{\phi}}

with κϕ\kappa_{\phi} given by (4.86), while from (4.89) and (4.20)

[s0,s]|ZK((H1,μν)μνhαβ1,)||tZKhαβ1,|𝑑x𝑑tC13ϵ2(i=04sμ(γi+ζki+ζk)+s2μζk)\iint_{\mathscr{H}_{[s_{0},s]}}|Z^{K}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\lesssim C_{1}^{3}\epsilon^{2}\Big{(}\sum_{i=0}^{4}s^{\mu(\gamma_{i}+\zeta_{k-i}+\zeta_{k})}+s^{2\mu\zeta_{k}}\Big{)}

where μ=0\mu=0 if KK is of type (N1,k)(N-1,k) with kN1k\leq N_{1}, μ=1\mu=1 otherwise. These two estimates together imply (4.81) and (4.83).

Additionally, for KK of type (N+1,k)(N+1,k) with kNk\leq N we get from (4.87) and (4.19) that

[s0,s]|[ZK,(H1,μν)μν]hαβ1,||tZKhαβ1|𝑑x𝑑y𝑑t(C13+C02)ϵ3s(i=04s(γi+ζki+ζk)+s2ζk)\iint_{\mathscr{H}_{[s_{0},s]}}|[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim(C_{1}^{3}+C_{0}^{2})\epsilon^{3}s\Big{(}\sum_{i=0}^{4}s^{(\gamma_{i}+\zeta_{k-i}+\zeta_{k})}+s^{2\zeta_{k}}\Big{)}

while for multi-indexes of type (N,k)(N,k) with kN1k\leq N_{1}, estimates (4.88) and (4.24) yield

[s0,s]|[ZK,(H1,μν)μν]hαβ1,||tZKhαβ1|𝑑x𝑑y𝑑t(C13+C02)ϵ3s2δk.\iint_{\mathscr{H}_{[s_{0},s]}}|[Z^{K},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim(C_{1}^{3}+C_{0}^{2})\epsilon^{3}s^{2\delta_{k}}.

Finally, from (4.91) and the energy bounds (4.19), (4.24) we get

[s0,s]|[ZK,(H1,𝝁𝝂)𝝁𝝂]hαβ1,||tZKhαβ1|𝑑x𝑑y𝑑tC13ϵ3sμ\iint_{[s_{0},s]}|[Z^{K},(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\natural}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim C_{1}^{3}\epsilon^{3}s^{\mu}

with μ=1\mu=1 if KK is of type (N+1,k)(N+1,k) with kNk\leq N, μ=1\mu=1 if KK is of type (N,k)(N,k) with kN1k\leq N_{1}. This concludes the proof of (4.80) and (4.82). ∎

4.7. Propagation of the pointwise bound (4.7)

This section is devoted to the propagation of the pointwise estimates (4.7) on the zero-average component hαβ1,h^{1,\natural}_{\alpha\beta} of the solution. The equation satisfied by ZKhαβ1,Z^{K}h^{1,\natural}_{\alpha\beta} is obtained from the subtraction of (4.15) from (4.13):

(4.92) xyZKhαβ1,+(Hμν)μνZKhαβ1,=\displaystyle\Box_{xy}Z^{K}h^{1,\natural}_{\alpha\beta}+(H^{\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}= FαβK,(H1,μν)μνZKhαβ1,((Hμν)μνZKhαβ1,)\displaystyle F^{K,\natural}_{\alpha\beta}-(H^{1,\mu\nu})^{\natural}\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\flat}_{\alpha\beta}-\big{(}(H^{\mu\nu})^{\natural}\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\natural}

where FαβK,=FαβKFαβK,F^{K,\natural}_{\alpha\beta}=F^{K}_{\alpha\beta}-F^{K,\flat}_{\alpha\beta} and FαβKF^{K}_{\alpha\beta} is defined in (4.14). We observe that, after (4.48), pure zero-mode interactions do not appear in the above right hand side.

The proof relies on the following result, which is motivated by the early work of Klainerman [29] and can be found in slightly different forms in the works of LeFloch-Ma [37], Dong-Wyatt [14] and Huneau-Stingo [21].

Proposition 4.21.

Suppose that ϕ\phi is a solution of the equation

(4.93) xyϕ+(Hμν)μνϕ=F,(t,x,y)1+3×𝕊1\Box_{xy}\phi+(H^{\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}\phi=F,\quad(t,x,y)\in\mathbb{R}^{1+3}\times\mathbb{S}^{1}

such that 𝕊1ϕ𝑑y=0\int_{\mathbb{S}^{1}}\phi\,dy=0. For each (t,x)(t,x) in the cone {t>r}\{t>r\}, let s=t2r2s=\sqrt{t^{2}-r^{2}} and Ytx,Atx,BtxY_{tx},A_{tx},B_{tx} be functions defined as follows

Ytx2(λ)\displaystyle Y^{2}_{tx}(\lambda) :=𝕊1λ|32ϕλ+(𝒮ϕ)λ|2+λ3|yϕλ|2dy\displaystyle:=\int_{\mathbb{S}^{1}}\lambda\left|\frac{3}{2}\phi_{\lambda}+(\mathscr{S}\phi)_{\lambda}\right|^{2}+\lambda^{3}|\partial_{y}\phi_{\lambda}|^{2}dy
Atx(λ)\displaystyle A_{tx}(\lambda) :=sup𝕊1|λ1(𝒮((t/s)2(H1,UV)cUV00))λ|+sup𝕊1|λ1(𝒮(H1,44))λ|\displaystyle:=\sup_{\mathbb{S}^{1}}\left|\lambda^{-1}\left(\mathscr{S}\left((t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\right)\right)_{\lambda}\right|+\sup_{\mathbb{S}^{1}}\left|\lambda^{-1}(\mathscr{S}(H^{1,44})^{\flat})_{\lambda}\right|
+sup𝕊1|λ1(χ(t/r)χ(r)(t/s)2M)λ|\displaystyle\quad+\sup_{\mathbb{S}^{1}}\left|\lambda^{-1}(\chi(t/r)\chi^{\prime}(r)(t/s)^{2}M)_{\lambda}\right|
Btx2(λ)\displaystyle B^{2}_{tx}(\lambda) :=𝕊1λ1|(R[ϕ])λ|2𝑑y,\displaystyle:=\int_{\mathbb{S}^{1}}\lambda^{-1}|(R[\phi])_{\lambda}|^{2}dy,

where fλ(t,x,y)=f(λts,λxs,y)f_{\lambda}(t,x,y)=f(\tfrac{\lambda t}{s},\tfrac{\lambda x}{s},y) and R[ϕ]:=R0[ϕ]+i=12Ri0[ϕ]+i=13Ri1[ϕ]s2FR[\phi]:=R_{0}[\phi]+\sum_{i=1}^{2}R^{0}_{i}[\phi]+\sum_{i=1}^{3}R^{1}_{i}[\phi]-s^{2}F with

R0[ϕ]\displaystyle R_{0}[\phi] :=s2¯𝒂¯𝒂ϕ+x𝒂x𝒃¯𝒂¯𝒃ϕ+34ϕ+3x𝒂¯𝒂ϕ\displaystyle:=s^{2}\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}\phi+x^{\bm{a}}x^{\bm{b}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{b}}\phi+\tfrac{3}{4}\phi+3x^{\bm{a}}\underline{\partial}_{\bm{a}}\phi
R10[ϕ]\displaystyle R^{0}_{1}[\phi] :=s2χ(t/r)χ(r)Mr((x𝒂/t)t¯𝒂ϕ+(x𝒂/t)¯𝒂tϕ¯𝒂¯𝒂ϕ+(3/t)tϕ)\displaystyle:=s^{2}\chi(t/r)\chi(r)\frac{M}{r}\left((x^{\bm{a}}/t)\partial_{t}\underline{\partial}_{\bm{a}}\phi+(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}\phi-\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}\phi+(3/t)\partial_{t}\phi\right)
R20[ϕ]\displaystyle R^{0}_{2}[\phi] :=χ(t/r)χ(r)Mrt2+r2s2Q[ϕ]\displaystyle:=\chi(t/r)\chi(r)\frac{M}{r}\frac{t^{2}+r^{2}}{s^{2}}\cdot Q[\phi]
R11[ϕ]\displaystyle R^{1}_{1}[\phi] :=s2(H1,UV)(cUV𝒂β¯𝒂¯βϕ+cUVα𝒃¯α¯𝒃ϕ+cUV4𝒂y¯𝒂ϕ+dUVμ¯μϕ)\displaystyle:=s^{2}(H^{1,UV})^{\flat}\left(c_{UV}^{{\bm{a}}\beta}\underline{\partial}_{\bm{a}}\underline{\partial}_{\beta}\phi+c_{UV}^{\alpha{\bm{b}}}\underline{\partial}_{\alpha}\underline{\partial}_{\bm{b}}\phi+c_{UV}^{4{\bm{a}}}\partial_{y}\underline{\partial}_{\bm{a}}\phi+d_{UV}^{\mu}\underline{\partial}_{\mu}\phi\right)
R21[ϕ]\displaystyle R^{1}_{2}[\phi] :=(t/s)(H1,UV)cUV40s(32yϕ+x𝒂y¯𝒂ϕ)\displaystyle:=-(t/s)(H^{1,UV})^{\flat}c^{40}_{UV}\cdot s\left(\tfrac{3}{2}\partial_{y}\phi+x^{\bm{a}}\partial_{y}\underline{\partial}_{\bm{a}}\phi\right)
R31[ϕ]\displaystyle R^{1}_{3}[\phi] :=(t/s)2(H1,UV)cUV00Q[ϕ]\displaystyle:=-(t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\cdot Q[\phi]

and

Q[ϕ]=(34+s2(2(x𝒂/t)¯𝒂t+s2x𝒂x𝒃¯𝒂¯𝒃+(r2/t3)t+(3/t)t+3s2x𝒂¯𝒂))ϕ.Q[\phi]=\left(\tfrac{3}{4}+s^{2}\left(2(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}+s^{-2}x^{\bm{a}}x^{\bm{b}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{b}}+(r^{2}/t^{3})\partial_{t}+(3/t)\partial_{t}+3s^{-2}x^{\bm{a}}\underline{\partial}_{\bm{a}}\right)\right)\phi.

Then, in the hyperbolic region [s0,S0)\mathscr{H}_{[s_{0},S_{0})}, the following inequality holds

s32(ϕL2(𝕊1)+yϕL2(𝕊1))+s12𝒮ϕL2(𝕊1)(Ytx(s0)+s0sBtx(λ)𝑑λ)exps0sAtx(λ)𝑑λ.s^{\frac{3}{2}}\left(\|\phi\|_{L^{2}(\mathbb{S}^{1})}+\|\partial_{y}\phi\|_{L^{2}(\mathbb{S}^{1})}\right)+s^{\frac{1}{2}}\|\mathscr{S}\phi\|_{L^{2}(\mathbb{S}^{1})}\lesssim\left(Y_{tx}(s_{0})+\int_{s_{0}}^{s}B_{tx}(\lambda)d\lambda\right)\exp^{\int_{s_{0}}^{s}A_{tx}(\lambda)d\lambda}.
Proof.

The wave operator in question writes in terms of the t\partial_{t} and ¯𝒂\underline{\partial}_{\bm{a}} derivatives as follows

xy=(s/t)2t2+2(x𝒂/t)¯𝒂t¯𝒂¯𝒂+(r2/t3)t+(3/t)tΔy.-\Box_{xy}=(s/t)^{2}\partial^{2}_{t}+2(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}-\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}+(r^{2}/t^{3})\partial_{t}+(3/t)\partial_{t}-\Delta_{y}.

For some λ>0\lambda>0 and fixed (t,x,y)(t,x,y), we define ωtxy(λ):=λ3/2ϕ(λts,λxs,y)\omega_{txy}(\lambda):=\lambda^{3/2}\phi(\tfrac{\lambda t}{s},\tfrac{\lambda x}{s},y) to be the evaluation of ϕ\phi on the hyperboloid λ\mathscr{H}_{\lambda} dilated by λ3/2\lambda^{3/2}. We compute

ω˙txy\displaystyle\dot{\omega}_{txy} =λ1/2(32ϕ+(𝒮ϕ))λ\displaystyle=\lambda^{1/2}\left(\tfrac{3}{2}\phi+(\mathscr{S}\phi)\right)_{\lambda}
ω¨txy\displaystyle\ddot{\omega}_{txy} =λ1/2(Pϕ)λ:=λ1/2(34ϕ+3(𝒮ϕ)+(t2t2+2tx𝒂𝒂t+x𝒂x𝒃𝒂𝒃)ϕ)λ.\displaystyle=\lambda^{-1/2}(P\phi)_{\lambda}:=\lambda^{-1/2}\left(\tfrac{3}{4}\phi+3(\mathscr{S}\phi)+(t^{2}\partial_{t}^{2}+2tx^{\bm{a}}\partial_{\bm{a}}\partial_{t}+x^{\bm{a}}x^{\bm{b}}\partial_{\bm{a}}\partial_{\bm{b}})\phi\right)_{\lambda}.

A calculation shows that

(4.94) Pϕ\displaystyle P\phi =s2(txy+¯𝒂¯𝒂+Δy)ϕ+x𝒂x𝒃¯𝒂¯𝒃ϕ+3x𝒂¯𝒂ϕ+34ϕ.\displaystyle=s^{2}\left(-\Box_{txy}+\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}+\Delta_{y}\right)\phi+x^{\bm{a}}x^{\bm{b}}\underline{\partial}_{\bm{a}}\underline{\partial}_{\bm{b}}\phi+3x^{\bm{a}}\underline{\partial}_{\bm{a}}\phi+\tfrac{3}{4}\phi.

Using equation (4.93) we derive that ωtxy(λ)\omega_{txy}(\lambda) satisfies

ω¨txyΔyωtxy=λ1/2(s2(Hμν)μνϕ)λ+λ1/2R0[ϕ]λλ3/2Fλ.\ddot{\omega}_{txy}-\Delta_{y}\omega_{txy}=\lambda^{-1/2}(s^{2}(H^{\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}\phi)_{\lambda}+\lambda^{-1/2}R_{0}[\phi]_{\lambda}-\lambda^{3/2}F_{\lambda}.

For the curved part in the above expression, we expand (Hμν)=(H1,μν)+H0,μν(H^{\mu\nu})^{\flat}=(H^{1,\mu\nu})^{\flat}+H^{0,\mu\nu} where H0H^{0} is defined in (1.12). Starting with the H0H^{0} piece, we compute

H0,μνμνϕ=H0,𝝁𝝂𝝁𝝂ϕ=a(t,x)(1+(r/t)2)t2ϕ+s2R01[ϕ].H^{0,\mu\nu}\partial_{\mu}\partial_{\nu}\phi=H^{0,{\bm{\mu}}{\bm{\nu}}}\partial_{\bm{\mu}}\partial_{\bm{\nu}}\phi=-a(t,x)\left(1+(r/t)^{2}\right)\partial_{t}^{2}\phi+s^{-2}R^{0}_{1}[\phi].

where for simplicity we put a(t,x):=χ(r/t)χ(r)Mra(t,x):=\chi(r/t)\chi(r)\tfrac{M}{r}. Using the calculation for PϕP\phi given in (4.94), we find

λ1/2(s2a(t,x)(1+(r/t)2)t2ϕ)λ\displaystyle-\lambda^{-1/2}(s^{2}a(t,x)\left(1+(r/t)^{2}\right)\partial_{t}^{2}\phi)_{\lambda} =λ1/2(a(t,x)(t/s)2(1+r2/t2)s2(s/t)2t2ϕ)λ\displaystyle=-\lambda^{-1/2}\left(a(t,x)(t/s)^{2}(1+r^{2}/t^{2})\cdot s^{2}(s/t)^{2}\partial_{t}^{2}\phi\right)_{\lambda}
=(a(t,x)(t/s)2(1+r2/t2))λω¨txy+λ1/2R02[ϕ]λ.\displaystyle=-\left(a(t,x)(t/s)^{2}(1+r^{2}/t^{2})\right)_{\lambda}\ddot{\omega}_{txy}+\lambda^{-1/2}R^{0}_{2}[\phi]_{\lambda}.

For the H1,H^{1,\flat} part, we use (1.16) and (1.19). We find

(H1,μν)μνϕ=[(H1,UV)cUV00t2+(H1,UV)cUV04ty+(H1,44)y2]ϕ+s2R11[ϕ].(H^{1,{\mu\nu}})^{\flat}\partial_{\mu}\partial_{\nu}\phi=\big{[}(H^{1,UV})^{\flat}c_{UV}^{00}\partial_{t}^{2}+(H^{1,UV})^{\flat}c_{UV}^{04}\partial_{t}\partial_{y}+(H^{1,44})^{\flat}\partial_{y}^{2}\big{]}\phi+s^{-2}R^{1}_{1}[\phi].

Since we can write ω˙txy=λ1/2(32ϕ+(s2/t)tϕ+x𝒂¯𝒂ϕ)λ\dot{\omega}_{txy}=\lambda^{1/2}\left(\tfrac{3}{2}\phi+(s^{2}/t)\partial_{t}\phi+x^{\bm{a}}\underline{\partial}_{\bm{a}}\phi\right)_{\lambda}, we find

λ1/2(s2(H1,UV)c04UVtyϕ)λ\displaystyle\lambda^{-1/2}(s^{2}(H^{1,UV})^{\flat}c^{04}_{UV}\partial_{t}\partial_{y}\phi)_{\lambda} =((t/s)(H1,UV)c04UVy(λ1/2s2ttϕ))λ\displaystyle=\left((t/s)(H^{1,UV})^{\flat}c^{04}_{UV}\partial_{y}(\lambda^{1/2}\tfrac{s^{2}}{t}\partial_{t}\phi)\right)_{\lambda}
=((t/s)(H1,UV)c04UV)λyω˙txy+λ1/2R12[ϕ]λ.\displaystyle=\left((t/s)(H^{1,UV})^{\flat}c^{04}_{UV}\right)_{\lambda}\partial_{y}\dot{\omega}_{txy}+\lambda^{-1/2}R^{1}_{2}[\phi]_{\lambda}.

In a similar way, using also the calculation for PϕP\phi given in (4.94), we find

λ1/2(s2(H1,UV)c00UVt2ϕ)λ\displaystyle\lambda^{-1/2}(s^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\partial_{t}^{2}\phi)_{\lambda} =((t/s)2(H1,UV)c00UV)λω¨txy+λ1/2R13[ϕ]λ.\displaystyle=\left((t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\right)_{\lambda}\ddot{\omega}_{txy}+\lambda^{-1/2}R^{1}_{3}[\phi]_{\lambda}.

For simplicity, we henceforth write ωtxy=ω(λ)\omega_{txy}=\omega(\lambda) and suppress also the |λ|_{\lambda} notation. Putting the above computations together, we have

(4.95) b(t,x)ω¨\displaystyle b(t,x)\ddot{\omega} (1+(H1,44))Δyω(t/s)(H1,UV)c04UVyω˙=λ1/2R[ϕ]\displaystyle-(1+(H^{1,44})^{\flat})\Delta_{y}\omega-(t/s)(H^{1,UV})^{\flat}c^{04}_{UV}\partial_{y}\dot{\omega}=\lambda^{-1/2}R[\phi]

where

(4.96) b(t,x):=1(t/s)2(H1,UV)c00UV+χ(t/r)χ(r)Mr(t/s)2(1+r2/t2).b(t,x):=1-(t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}+\chi(t/r)\chi(r)\frac{M}{r}(t/s)^{2}(1+r^{2}/t^{2}).

We multiply (4.95) by λω\partial_{\lambda}\omega, integrate over 𝕊1\mathbb{S}^{1} and integrate by parts to get:

𝕊1λω(bλ2ω(1+(H1,44))Δyω(t/s)(H1,UV)c04UVyλω)dy\displaystyle\int_{\mathbb{S}^{1}}\partial_{\lambda}\omega\Big{(}b\partial_{\lambda}^{2}\omega-(1+(H^{1,44})^{\flat})\Delta_{y}\omega-(t/s)(H^{1,UV})^{\flat}c^{04}_{UV}\partial_{y}\partial_{\lambda}\omega\Big{)}dy
=ddλ(12𝕊1b|λω|2dy+(1+(H1,44))|yω|2)12𝕊1(λb)|λω|2dy.\displaystyle=\frac{d}{d\lambda}\Big{(}\frac{1}{2}\int_{\mathbb{S}^{1}}b|\partial_{\lambda}\omega|^{2}dy+(1+(H^{1,44})^{\flat})|\partial_{y}\omega|^{2}\Big{)}-\frac{1}{2}\int_{{\mathbb{S}}^{1}}(\partial_{\lambda}b)|\partial_{\lambda}\omega|^{2}dy.

Recalling the definition of bb in (4.96), we obtain

ddλ(𝕊1b|λω|2+(1+(H44))|yω|2dy)\displaystyle\frac{d}{d\lambda}\Big{(}\int_{\mathbb{S}^{1}}b|\partial_{\lambda}\omega|^{2}+\left(1+(H^{44})^{\flat}\right)|\partial_{y}\omega|^{2}dy\Big{)}
=𝕊1λ((t/s)2(H1,UV)c00UV)|λω|2dy+𝕊1λ(χ(t/r)χ(r)(t/s)2(1+r2/t2))Mr|λω|2dy\displaystyle=-\int_{\mathbb{S}^{1}}\partial_{\lambda}\left((t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\right)|\partial_{\lambda}\omega|^{2}dy+\int_{\mathbb{S}^{1}}\partial_{\lambda}\left(\chi(t/r)\chi(r)(t/s)^{2}(1+r^{2}/t^{2})\right)\tfrac{M}{r}|\partial_{\lambda}\omega|^{2}dy
+𝕊1χ(t/r)χ(r)(t/s)2(1+r2/t2)λ(Mr)|λω|2dy+2𝕊1λ1/2R[ϕ]λωdy.\displaystyle+\int_{\mathbb{S}^{1}}\chi(t/r)\chi(r)(t/s)^{2}(1+r^{2}/t^{2})\partial_{\lambda}\left(\tfrac{M}{r}\right)|\partial_{\lambda}\omega|^{2}dy+2\int_{\mathbb{S}^{1}}\lambda^{-1/2}R[\phi]\partial_{\lambda}\omega dy.

We crucially can drop the third term on the RHS above using the fact that χ0\chi\geq 0, M>0M>0 and the identity λ(Mr)λ=(Msr)λ\partial_{\lambda}(\tfrac{M}{r})_{\lambda}=-(\tfrac{M}{sr})_{\lambda}. Note also that the cut-off function χ\chi is supported for 2r>t>22r>t>2 and so in the region {tr+1}\{t\geq r+1\} we have |χ(t/r)χ(r)Mr(t2/s2)|ϵ|\chi(t/r)\chi(r)\tfrac{M}{r}(t^{2}/s^{2})|\lesssim\epsilon.

By relation (1.18) with π=H1,\pi=H^{1,\flat}, the estimates (1.17), (4.43), and (4.47), and the fact that t/s21t/s^{2}\leq 1 in the interior of the light cone, we find

sup𝕊1|(t/s)2(H1,UV)c00UV|+|(H1,44)|ε.\sup_{\mathbb{S}^{1}}|(t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}|+|(H^{1,44})^{\flat}|\lesssim\varepsilon.

All together, we obtain

ddλY2tx(λ)Atx(λ)Y2tx(λ)+Btx(λ)Ytx(λ)\frac{d}{d\lambda}Y^{2}_{tx}(\lambda)\lesssim A_{tx}(\lambda)Y^{2}_{tx}(\lambda)+B_{tx}(\lambda)Y_{tx}(\lambda)

with Atx,Btx,YtxA_{tx},B_{tx},Y_{tx} as in the statement. From Grönwall’s lemma, we have

(4.97) Ytx(s)(Ytx(s0)+s0sBtx(λ)dλ)exp(s0sAtx(λ)dλ),Y_{tx}(s)\lesssim\left(Y_{tx}(s_{0})+\int_{s_{0}}^{s}B_{tx}(\lambda)d\lambda\right)\exp\left(\int_{s_{0}}^{s}A_{tx}(\lambda)d\lambda\right),

and the conclusion follows from the Poincaré inequality. ∎

Proposition 4.22.

There exists a constant C2C_{2} sufficiently large, a finite and increasing sequence of parameters 0<γk,δk,ζk10<\gamma_{k},\delta_{k},\zeta_{k}\ll 1 satisfying (4.2), and 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small such that, under the assumptions of Proposition 4.1, we have (4.12).

Proof.

Throughout the proof, 0<η2δN10<\eta\leq 2\delta_{N}\ll 1 will denote a constant that linearly depends on ζk,γk,δk\zeta_{k},\gamma_{k},\delta_{k}. We apply Proposition 4.21 to the variable 𝐖=IΓJh1,αβ\mathbf{W}=\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta} with |I|+|J|N1+1=N4|I|+|J|\leq N_{1}+1=N-4 and |J|N1|J|\leq N_{1}, governed by the PDE (4.92).

1. The Atx(λ)A_{tx}(\lambda) term: this is the same for all values of 𝐖\mathbf{W}. Bound (4.40) gives that

sup𝕊1λ1|(𝒮(H1,44))λ|ϵλ32+δ2.\sup_{\mathbb{S}^{1}}\lambda^{-1}|(\mathscr{S}(H^{1,44})^{\flat})_{\lambda}|\lesssim\epsilon\lambda^{-\frac{3}{2}+\delta_{2}}.

For the other piece of Atx(λ)A_{tx}(\lambda) we use (1.18) with π=H1,\pi=H^{1,\flat}, the identities 𝒮(s)=s\mathscr{S}(s)=s and 𝒮(t+r)=t+r\mathscr{S}(t+r)=t+r, the pointwise bounds (4.40), (4.45), (4.47) and the fact that t/s21t/s^{2}\leq 1 in the interior of the lightcone, to derive

|𝒮((t/s)2(H1,UV)c00UV)|\displaystyle|\mathscr{S}\left((t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\right)| |(s/t)2𝒮H1L¯L¯|+|(t/s)2𝒮(H1LL)|+|𝒮H1LL¯|ϵs12+γ1.\displaystyle\lesssim|(s/t)^{2}\mathscr{S}H^{1}_{\underline{L}\underline{L}}|+|(t/s)^{2}\mathscr{S}(H^{1}_{LL})^{\flat}|+|\mathscr{S}H^{1}_{L\underline{L}}|\lesssim\epsilon s^{-\frac{1}{2}+\gamma_{1}}.

Note that the estimate of the second term in the above right hand side is obtained using also the following decomposition of the scaling vector field

(4.98) 𝒮=(tr)t+(rt)r+(x𝒂/r)Ω0𝒂.\mathscr{S}=(t-r)\partial_{t}+(r-t)\partial_{r}+(x^{\bm{a}}/r)\Omega_{0{\bm{a}}}.

Consequently

λ1|(𝒮((t/s)2(H1,UV)c00UV))λ|\displaystyle\lambda^{-1}|\left(\mathscr{S}\left((t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\right)\right)_{\lambda}| ϵλ32+γ1.\displaystyle\lesssim\epsilon\lambda^{-\frac{3}{2}+\gamma_{1}}.

Finally, we use that χ(r)=O(1)\chi(r)=O(1) on its support, so that we can bound |χ(r)|r2|\chi^{\prime}(r)|\lesssim r^{-2} and thus get

λ1|(χ(t/r)χ(r)(t/s)2M)λ|ϵλ2.\lambda^{-1}\left|(\chi(t/r)\chi^{\prime}(r)(t/s)^{2}M)_{\lambda}\right|\lesssim\epsilon\lambda^{-2}.

Bringing all this together gives

(4.99) s0sAtx(λ)dλϵ.\int_{s_{0}}^{s}A_{tx}(\lambda)d\lambda\lesssim\epsilon.

2. The Ytx(s0)Y_{tx}(s_{0}) term: We evaluate all the expressions here on the hyperboloid s0\mathscr{H}_{s_{0}} for s0s_{0} close to 2. We observe that 1+t+r=O(1)1+t+r=O(1) on s0\mathscr{H}_{s_{0}}, so by (4.98) and lemma B.5

(4.100) |Ytx(s0)|𝐖s0L2y+(𝒮𝐖)s0L2y+(y𝐖)s0L2y(st)32Ei(s0,Z2𝐖)12.|Y_{tx}(s_{0})|\lesssim\|\mathbf{W}_{s_{0}}\|_{L^{2}_{y}}+\|(\mathscr{S}\mathbf{W})_{s_{0}}\|_{L^{2}_{y}}+\|(\partial_{y}\mathbf{W})_{s_{0}}\|_{L^{2}_{y}}\lesssim\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}E^{\text{i}}(s_{0},Z^{\leq 2}\mathbf{W})^{\frac{1}{2}}.

3.a. The R0R_{0} term in Btx(λ)B_{tx}(\lambda): By (4.30), (4.31), and (4.32) we obtain

(4.101) λ1/2(R0[𝐖])λL2yC1ϵλ32+ζk+4(st)32.\|\lambda^{-1/2}(R_{0}[\mathbf{W}])_{\lambda}\|_{L^{2}_{y}}\lesssim C_{1}\epsilon\lambda^{-\frac{3}{2}+\zeta_{k+4}}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}.

3.b. The R11R^{1}_{1} term in Btx(λ)B_{tx}(\lambda): First note that in the region {r<t}\{r<t\} we have |c𝒂βUV|1|c^{{\bm{a}}\beta}_{UV}|\lesssim 1 using (1.17) and straightforward computations. Thus, by (4.6), (4.30) and (4.31),

(4.102) λ1/2(R11[𝐖])λL2y\displaystyle\|\lambda^{-1/2}(R^{1}_{1}[\mathbf{W}])_{\lambda}\|_{L^{2}_{y}} λ32|H1,|(¯𝐖L2y+t1𝐖L2y)\displaystyle\lesssim\lambda^{\frac{3}{2}}\left|H^{1,\flat}\right|\Big{(}\left\|\partial\underline{\partial}\mathbf{W}\right\|_{L^{2}_{y}}+t^{-1}\|\mathbf{W}\|_{L^{2}_{y}}\Big{)}
C12ϵ2λ32+γ0+ζk+3(st)52.\displaystyle\lesssim C_{1}^{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\gamma_{0}+\zeta_{k+3}}\Big{(}\frac{s}{t}\Big{)}^{\frac{5}{2}}.

3.c The R12R^{1}_{2} term in Btx(λ)B_{tx}(\lambda): using (4.6), (4.30), (4.31) we get

λ1/2(R12[𝐖])λL2y\displaystyle\|\lambda^{-1/2}(R^{1}_{2}[\mathbf{W}])_{\lambda}\|_{L^{2}_{y}} λ12|((t/s)((H1,UV)c40UV)λ|(y𝐖L2y+ty¯𝐖L2y)\displaystyle\lesssim\lambda^{\frac{1}{2}}\big{|}\big{(}(t/s)((H^{1,UV})^{\flat}c^{40}_{UV}\big{)}_{\lambda}\big{|}\big{(}\left\|\partial_{y}\mathbf{W}\right\|_{L^{2}_{y}}+t\left\|\partial_{y}\underline{\partial}\mathbf{W}\right\|_{L^{2}_{y}}\Big{)}
C12ϵ2λ32+γ0+ζk+3(st)32.\displaystyle\lesssim C_{1}^{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\gamma_{0}+\zeta_{k+3}}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}.

3.d.i The R13R^{1}_{3} term in Btx(λ)B_{tx}(\lambda): we observe that from (4.30), (4.31), (4.32)

Q[𝐖]L2y\displaystyle\|Q[\mathbf{W}]\|_{L^{2}_{y}} (𝐖L2y+x2¯2𝐖L2y+x¯𝐖L2y)+(s2¯𝐖L2y+(s2/t)𝐖L2y)\displaystyle\lesssim\big{(}\|\mathbf{W}\|_{L^{2}_{y}}+\left\|x^{2}\underline{\partial}^{2}\mathbf{W}\right\|_{L^{2}_{y}}+\left\|x\underline{\partial}\mathbf{W}\right\|_{L^{2}_{y}}\big{)}+\big{(}\left\|s^{2}\underline{\partial}\partial\mathbf{W}\right\|_{L^{2}_{y}}+\left\|(s^{2}/t)\partial\mathbf{W}\right\|_{L^{2}_{y}}\big{)}
C1ϵt32s12+ζk+4+C1ϵt52s52+ζk+3\displaystyle\lesssim C_{1}\epsilon t^{-\frac{3}{2}}s^{\frac{1}{2}+\zeta_{k+4}}+C_{1}\epsilon t^{-\frac{5}{2}}s^{\frac{5}{2}+\zeta_{k+3}}

which, coupled to (4.6) and the fact that s2t1s^{-2}\lesssim t^{-1} yields again

λ1/2(R13[𝐖])λL2y\displaystyle\|\lambda^{-1/2}(R^{1}_{3}[\mathbf{W}])_{\lambda}\|_{L^{2}_{y}} |(s12(t/s)2(H1,UV)c00UV)λ|Q[𝐖]λL2yC12ϵ2λ32+γ0+ζk+3(st)32.\displaystyle\lesssim\big{|}\big{(}s^{-\frac{1}{2}}(t/s)^{2}(H^{1,UV})^{\flat}c^{00}_{UV}\big{)}_{\lambda}\big{|}\|Q[\mathbf{W}]_{\lambda}\|_{L^{2}_{y}}\lesssim C_{1}^{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\gamma_{0}+\zeta_{k+3}}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}.

3.e The R01R^{0}_{1} and R02R^{0}_{2} terms in Btx(λ)B_{tx}(\lambda): satisfy the same bounds as R11R^{1}_{1} and R13R^{1}_{3} respectively.

In summary, for 𝐖=IΓJh1,αβ\mathbf{W}=\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta} with |I|+|J|N4=N1+1|I|+|J|\leq N-4=N_{1}+1

(4.103) λ1/2(R[𝐖]+s2F)λL2(𝕊1)C1ϵλ32+η(st)32.\|\lambda^{-1/2}(R[\mathbf{W}]+s^{2}F)_{\lambda}\|_{L^{2}({\mathbb{S}}^{1})}\lesssim C_{1}\epsilon\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}.

4.a The source term FF: we simply distribute derivatives and vector fields across the nonlinearities given in (4.92). We begin by analyzing the quadratic interactions of zero-average component with itself, which are of the form

|I1|+|I2|=|I||J1|+|J2||J|((I1ΓJ1h1,)(I2ΓJ2h1,))+((I1ΓJ1h1,)2(I2ΓJ2h1,))\sum_{\begin{subarray}{c}|I_{1}|+|I_{2}|=|I|\\ |J_{1}|+|J_{2}|\leq|J|\end{subarray}}\Big{(}\partial(\partial^{I_{1}}\Gamma^{J_{1}}h^{1,\natural})\cdot\partial(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural})\Big{)}^{\natural}+\Big{(}(\partial^{I_{1}}\Gamma^{J_{1}}h^{1,\natural})\cdot\partial^{2}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural})\Big{)}^{\natural}

and recall that there must exist an index l=1,2l=1,2 such that |Il|+|Jl|N1+1/2|I_{l}|+|J_{l}|\leq\lfloor N_{1}+1/2\rfloor.

To estimate the first sum, we use (4.7) and (4.41) to obtain that

|I1|+|I2|=|I||J1|+|J2||J|λ32((I1ΓJ1h1,)(I2ΓJ2h1,))L2y\displaystyle\sum_{\begin{subarray}{c}|I_{1}|+|I_{2}|=|I|\\ |J_{1}|+|J_{2}|\leq|J|\end{subarray}}\lambda^{\frac{3}{2}}\left\|\Big{(}\partial(\partial^{I_{1}}\Gamma^{J_{1}}h^{1,\natural})\cdot\partial(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural})\Big{)}^{\natural}\right\|_{L^{2}_{y}} λ32ZN11h1,LyZN1h1,L2y\displaystyle\lesssim\lambda^{\frac{3}{2}}\left\|\partial Z^{\leq N_{1}-1}h^{1,\natural}\right\|_{L^{\infty}_{y}}\left\|\partial Z^{\leq N_{1}}h^{1,\natural}\right\|_{L^{2}_{y}}
C12ϵ2λ32+η(st)2.\displaystyle\lesssim C_{1}^{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2}.

All terms in the second sum are estimated in the same way, besides the one corresponding to |I2|+|J2|=|I|+|J|=N1+1|I_{2}|+|J_{2}|=|I|+|J|=N_{1}+1. For this one we use (4.30) and (4.41), together with the assumption (4.2) on the parameters (i.e. ζiγj\zeta_{i}\ll\gamma_{j} for any i,ji,j), and derive that

λ32(h1,2(IΓJh1,))L2yλ32h1,Ly2(IΓJh1,)L2yC1C2ϵ2λ1+γk(st)2.\lambda^{\frac{3}{2}}\left\|\Big{(}h^{1,\natural}\cdot\partial^{2}(\partial^{I}\Gamma^{J}h^{1,\natural})\Big{)}^{\natural}\right\|_{L^{2}_{y}}\lesssim\lambda^{\frac{3}{2}}\|h^{1,\natural}\|_{L^{\infty}_{y}}\left\|\partial^{2}(\partial^{I}\Gamma^{J}h^{1,\natural})\right\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-1+\gamma_{k}}\Big{(}\frac{s}{t}\Big{)}^{2}.

Let us note that this term is highly specific to the Kaluza–Klein problem and is absent in the Einstein-Klein Gordon equations. We also observe that, in the case where |I|+|J|=N1+1|I|+|J|=N_{1}+1 but |J|N12|J|\leq N_{1}-2 we can use (4.33) instead of (4.41) to obtain

λ32(h1,2(IΓJh1,))L2yC1C2ϵ2λ32+η(st)2.\lambda^{\frac{3}{2}}\left\|\Big{(}h^{1,\natural}\cdot\partial^{2}(\partial^{I}\Gamma^{J}h^{1,\natural})\Big{)}^{\natural}\right\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2}.

Next we turn to the mixed interactions between the zero mode and the zero-average component. We begin with the commutator terms [IΓJ,(H1,μν)μν]h1,αβ[\partial^{I}\Gamma^{J},(H^{1,\mu\nu})^{\flat}\partial_{\mu}\partial_{\nu}]h^{1,\natural}_{\alpha\beta}, which we rewrite using (3.25) with π=H1,\pi=H^{1,\flat}. We focus on treating the following products

(4.104) I1ΓJ1H1,LL2t(I2ΓJ2h1,αβ),I1ΓJ1H1,4Lty(I2ΓJ2h1,αβ),I1ΓJ1H1,442y(I2ΓJ2h1,αβ)\displaystyle\partial^{I_{1}}\Gamma^{J_{1}}H^{1,\flat}_{LL}\cdot\partial^{2}_{t}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta}),\quad\partial^{I_{1}}\Gamma^{J_{1}}H^{1,\flat}_{4L}\cdot\partial_{t}\partial_{y}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta}),\quad\partial^{I_{1}}\Gamma^{J_{1}}H^{1,\flat}_{44}\cdot\partial^{2}_{y}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta})
for |I1|+|I2|=|I|,|J1|+|J2||J|,|I2|+|J2|<|I|+|J|\displaystyle\text{for }|I_{1}|+|I_{2}|=|I|,\quad|J_{1}|+|J_{2}|\leq|J|,\quad|I_{2}|+|J_{2}|<|I|+|J|

the remaining ones being simpler. The latter term can be rewritten using the equation, i.e.

y2(I2ΓJ2h1,αβ)=((s/t)22t+2(x𝒂/t)¯𝒂t¯𝒂¯𝒂+(r2/t3)t+(3/t)t)(I2ΓJ2h1,αβ)\displaystyle\partial_{y}^{2}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta})=\Big{(}(s/t)^{2}\partial^{2}_{t}+2(x^{\bm{a}}/t)\underline{\partial}_{\bm{a}}\partial_{t}-\underline{\partial}^{\bm{a}}\underline{\partial}_{\bm{a}}+(r^{2}/t^{3})\partial_{t}+(3/t)\partial_{t}\Big{)}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta})
+xy(I2ΓJ2h1,αβ).\displaystyle+\Box_{xy}(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta}).

If |I1|>0|I_{1}|>0, we estimate the first two terms in (4.104) using (4.7) and (4.46) and the latter one using (4.38) and (4.7), hence getting that they are all bounded by C1C2ϵ2λ32+η(s/t)2C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}(s/t)^{2}. If |I1|=0|I_{1}|=0 and |J1|>0|J_{1}|>0, we use (4.6) and (4.7) for all terms, together with the algebraic relation (4.2), obtaining

λ32|ΓJ1h1,|2(IΓJ2h1,αβ)L2yC22ϵ2(st)32λ1+γk.\lambda^{\frac{3}{2}}\left|\Gamma^{J_{1}}h^{1,\flat}\right|\left\|\partial^{2}(\partial^{I}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta})\right\|_{L^{2}_{y}}\lesssim C_{2}^{2}\epsilon^{2}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}\lambda^{-1+\gamma_{k}}.

Turning now to the semilinear interactions between the zero-mode and the zero-average component, we immediately obtain from (4.7) and (4.38) that

λ32|(I1ΓJ1h1,)|(I2ΓJ2h1,)L2yC1C2ϵ2λ32+η(st)2,|I2|+|J2|N1.\lambda^{\frac{3}{2}}|\partial(\partial^{I_{1}}\Gamma^{J_{1}}h^{1,\flat})|\left\|\partial(\partial^{I_{2}}\Gamma^{J_{2}}h^{1,\natural})\right\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2},\quad|I_{2}|+|J_{2}|\leq N_{1}.

When |I2|+|J2|=|I|+|J|=N1+1|I_{2}|+|J_{2}|=|I|+|J|=N_{1}+1, (4.7) does not provide us with the right power of (s/t)(s/t), which we instead get using the structure of the semilinear terms. On the one hand, using (4.57) together with (4.7), relation ¯𝒂=(1/t)Ω0𝒂\underline{\partial}_{\bm{a}}=(1/t)\Omega_{0{\bm{a}}}, (4.37) and (4.38), we easily derive that

λ32𝐐(h1,,(IΓJh1,))L2yC1C2ϵ2λ32+η(st)2.\lambda^{\frac{3}{2}}\left\|\mathbf{Q}(\partial h^{1,\flat},\partial(\partial^{I}\Gamma^{J}h^{1,\natural}))\right\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2}.

The cubic terms also satisfy the same estimate as above, we leave the details to the reader.

On the other hand, using lemma 3.13 we see that

Pαβ(h1,,(IΓJh1,))L2y|h1,TU|(IΓJh1,)TUL2y+|h1,LL|(IΓJh1,)L¯L¯L2y+|h1,L¯L¯|(IΓJh1,)LLL2y.\left\|P_{\alpha\beta}(\partial h^{1,\flat},\partial(\partial^{I}\Gamma^{J}h^{1,\natural}))\right\|_{L^{2}_{y}}\\ \lesssim|\partial h^{1,\flat}_{TU}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{TU}\|_{L^{2}_{y}}+|\partial h^{1,\flat}_{LL}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{\underline{L}\underline{L}}\|_{L^{2}_{y}}+|\partial h^{1,\flat}_{\underline{L}\underline{L}}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{LL}\|_{L^{2}_{y}}.

From (4.7) and (4.71)

λ32|h1,TU|(IΓJh1,)TUL2yC1C2λ1+γk(st)32;\lambda^{\frac{3}{2}}|\partial h^{1,\flat}_{TU}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{TU}\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\lambda^{-1+\gamma_{k}}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}};

from (4.7) and (4.46)

λ32|h1,LL|(IΓJh1,)L¯L¯L2yC1C2ϵ2λ32+η(st)2;\lambda^{\frac{3}{2}}|\partial h^{1,\flat}_{LL}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{\underline{L}\underline{L}}\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2};

finally, since

|(IΓJh1,)LL||(IΓJh1)LL|+|(IΓJh1,)LL||\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{LL}|\leq|\partial(\partial^{I}\Gamma^{J}h^{1})_{LL}|+|\partial(\partial^{I}\Gamma^{J}h^{1,\flat})_{LL}|

from lemma 2.2 and pointwise estimates (4.6), (4.7), (4.38), (4.46) we deduce that

(IΓJh1,)LLL2yC2ϵt32sγk\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{LL}\|_{L^{2}_{y}}\lesssim C_{2}\epsilon t^{-\frac{3}{2}}s^{\gamma_{k}}

and consequently that

|h1,L¯L¯|(IΓJh1,)LLL2yC1C2ϵ2λ32+η(st)2.|\partial h^{1,\flat}_{\underline{L}\underline{L}}|\|\partial(\partial^{I}\Gamma^{J}h^{1,\natural})_{LL}\|_{L^{2}_{y}}\lesssim C_{1}C_{2}\epsilon^{2}\lambda^{-\frac{3}{2}+\eta}\Big{(}\frac{s}{t}\Big{)}^{2}.

In summary,

λ32FλL2yC22ϵ2(st)32{λ32+η,if |I|N1,|J|=0λ1+γk,if |I|+|J|N1+1,|J|=kN1\lambda^{\frac{3}{2}}\|F_{\lambda}\|_{L^{2}_{y}}\lesssim C_{2}^{2}\epsilon^{2}\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}\begin{cases}\lambda^{-\frac{3}{2}+\eta},\ &\text{if }|I|\leq N_{1},\ |J|=0\\ \lambda^{-1+\gamma_{k}},\ &\text{if }|I|+|J|\leq N_{1}+1,\ |J|=k\leq N_{1}\\ \end{cases}

and

s0sBtx(λ)dλ(C1ϵ+C22ϵ2)(st)32{1if |I|N1,|J|=0sγk,if |I|+|J|N1+1,|J|=kN1\int_{s_{0}}^{s}B_{tx}(\lambda)d\lambda\lesssim(C_{1}\epsilon+C_{2}^{2}\epsilon^{2})\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}\begin{cases}1\ &\text{if }|I|\leq N_{1},\ |J|=0\\ s^{\gamma_{k}},\ &\text{if }|I|+|J|\leq N_{1}+1,|J|=k\leq N_{1}\\ \end{cases}

Finally, from Proposition 4.21 we obtain that there exists a constant C>0C>0 such that

s32y1(IΓJh1,)L2+s12𝒮(IΓJh1,)L2C(st)32Ei(s0,Z2(IΓJh1,))12\displaystyle s^{\frac{3}{2}}\|\partial_{y}^{\leq 1}(\partial^{I}\Gamma^{J}h^{1,\natural})\|_{L^{2}}+s^{\frac{1}{2}}\|\mathscr{S}(\partial^{I}\Gamma^{J}h^{1,\natural})\|_{L^{2}}\leq C\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}E^{\text{i}}(s_{0},Z^{\leq 2}(\partial^{I}\Gamma^{J}h^{1,\natural}))^{\frac{1}{2}}
+C(C1ϵ+C22ϵ2)(st)32{1if |I|N1,|J|=0sγk,if |I|+|J|N1+1,|J|=kN1\displaystyle+C(C_{1}\epsilon+C_{2}^{2}\epsilon^{2})\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}\begin{cases}1\ &\text{if }|I|\leq N_{1},\ |J|=0\\ s^{\gamma_{k}},\ &\text{if }|I|+|J|\leq N_{1}+1,|J|=k\leq N_{1}\\ \end{cases}

The conclusion of the proof then follows from the following relation

t=ts2𝒮tx𝒋s2¯𝒋,𝒋=¯𝒋x𝒋s2𝒮+x𝒋x𝒌s2¯𝒌\partial_{t}=\frac{t}{s^{2}}\mathscr{S}-\frac{tx^{\bm{j}}}{s^{2}}\underline{\partial}_{\bm{j}},\quad\partial_{\bm{j}}=\underline{\partial}_{\bm{j}}-\frac{x_{\bm{j}}}{s^{2}}\mathscr{S}+\frac{x_{\bm{j}}x^{\bm{k}}}{s^{2}}\underline{\partial}_{\bm{k}}

and by choosing C2C_{2} sufficiently large so that CC1C2CC_{1}\ll C_{2} and CEi(s0,Z2(IΓJh1,))12(C2ϵ)CE^{\text{i}}(s_{0},Z^{\leq 2}(\partial^{I}\Gamma^{J}h^{1,\natural}))^{\frac{1}{2}}\ll(C_{2}\epsilon), together with ϵ0\epsilon_{0} sufficiently small so that CC2ϵ1CC_{2}\epsilon\ll 1. ∎

Remark 4.23.

It will be useful in view of Proposition 4.32 to observe that the loss sγks^{\gamma_{k}} in the estimate of IΓJh1,αβ\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta} when |I|+|J|N1|I|+|J|\leq N_{1} and |J|=k|J|=k is only due to the following contributions, which arise from the commutator term between zero modes and zero-average components

ΓJ1h1,2(IΓJ2h1,αβ),|J1|>0.\Gamma^{J_{1}}h^{1,\flat}\cdot\partial^{2}(\partial^{I}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta}),\quad|J_{1}|>0.

4.8. Enhanced energy bounds for the zero modes

The goal of this subsection is to show that the lower order energies of the zero-modes enjoy enhanced energy estimates compared to (4.4).

Proposition 4.24.

Under the assumptions of Proposition 4.1, we have that for any fixed s[s0,S0)s\in[s_{0},S_{0}) and any multi-index KK of type (N1,N1)(N-1,N_{1})

(4.105) Ei(s,ZKh1,)1/2C1ϵs3σE^{\text{i}}(s,Z^{K}h^{1,\flat})^{1/2}\lesssim C_{1}\epsilon s^{3\sigma}

where 0<σγ00<\sigma\ll\gamma_{0} is the rate of growth of the exterior energies.

The proof of the above statement is based on energy inequality (4.17). We recall the estimates already obtained in the previous subsections on the quadratic null terms (4.54), on quadratic weak null terms (4.78) and on the cubic terms (4.55) appearing in FK,αβF^{K,\flat}_{\alpha\beta}, as well as on the commutator terms (4.83) and on the contributions coming from F0,KαβF^{0,K}_{\alpha\beta} (4.69). We complete the picture with the estimates of the remaining trilinear terms appearing in the right hand side of (4.17).

Lemma 4.25.

For any multi-index KK of type (N,k)(N,k) we have that

(4.106) [s0,s]|μHμσσZKh1αβ||tZKh1αβ|+12|tHμσσZKh1αβμZKh1αβ|dtdxC13ϵ3s12+3δN\displaystyle\iint_{\mathscr{H}_{[s_{0},s]}}|{\partial^{\mu}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|+\frac{1}{2}|{\partial_{t}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}\cdot\partial^{\mu}Z^{K}h^{1}_{\alpha\beta}|\,dtdx\lesssim C_{1}^{3}\epsilon^{3}s^{\frac{1}{2}+3\delta_{N}}
(4.107) [s0,s]|μHμσσZKh1,αβ||tZKh1,αβ|+12|tHμσσZKh1,αβμZKh1,αβ|dtdxC13ϵ3,\displaystyle\iint_{\mathscr{H}_{[s_{0},s]}}|{\partial^{\mu}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1,\flat}_{\alpha\beta}||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|+\frac{1}{2}|{\partial_{t}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1,\flat}_{\alpha\beta}\cdot\partial^{\mu}Z^{K}h^{1,\flat}_{\alpha\beta}|\,dtdx\lesssim C_{1}^{3}\epsilon^{3},

and for multi-indexes KK of type (N1,k)(N_{1},k)

(4.108) [s0,s]|μHμσσZKh1αβ||tZKh1αβ|+12|tHμσσZKh1αβμZKh1αβ|dtdxC13ϵ3.\iint_{\mathscr{H}_{[s_{0},s]}}|{\partial^{\mu}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}||\partial_{t}Z^{K}h^{1}_{\alpha\beta}|+\frac{1}{2}|{\partial_{t}H_{\mu}}^{\sigma}\cdot\partial_{\sigma}Z^{K}h^{1}_{\alpha\beta}\cdot\partial^{\mu}Z^{K}h^{1}_{\alpha\beta}|\,dtdx\lesssim C_{1}^{3}\epsilon^{3}.
Proof.

It is a straightforward consequence of (3.37), (3.38) applied to ϕ=ZKh1αβ\phi=Z^{K}h^{1}_{\alpha\beta} and ϕ=ZKh1,αβ\phi=Z^{K}h^{1,\flat}_{\alpha\beta} respectively, coupled with the pointwise bounds (3.11), (4.38), (4.46) and with the energy bounds (4.19) to get (4.106), with (4.20) to get (4.107) and with (4.24) to get (4.108).

Proof of Proposition 4.24.

This follows by plugging the estimates obtained so far in the energy inequality (4.17). In fact, from Lemma 4.6, estimates (4.54), (4.55), (4.78), (4.83) and the a-priori energy bound (4.20) there exists a constant C>0C>0 such that for any fixed multi-index KK of type (N11,k)(N_{1}-1,k) we have

[s0,s]|FK,αβ(h)(h,h)||tZKh1,αβ|dxdt+[s0,s]|(H1,μν)μνZKh1,αβ)||tZKh1,αβ|dxdt\displaystyle\iint_{\mathscr{H}_{[s_{0},s]}}|F^{K,\flat}_{\alpha\beta}(h)(\partial h,\partial h)||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt+\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt
s0sCC1ϵτ1KEi(τ,ZKh1,)1/2Ei(τ,ZKh1,αβ)1/2dτ\displaystyle\leq\int_{s_{0}}^{s}CC_{1}\epsilon\tau^{-1}\sum_{K^{\prime}}E^{\text{i}}(\tau,Z^{K^{\prime}}h^{1,\flat})^{1/2}E^{\text{i}}(\tau,Z^{K}h^{1,\flat}_{\alpha\beta})^{1/2}d\tau
+s0sCC1ϵτ1+CϵKEi(τ,ZKh1,)1/2Ei(τ,ZKh1,αβ)1/2dτ+(C02+C12)C22ϵ3\displaystyle+\int_{s_{0}}^{s}CC_{1}\epsilon\tau^{-1+C\epsilon}\sum_{K^{\prime\prime}}E^{\text{i}}(\tau,Z^{K^{\prime\prime}}h^{1,\flat})^{1/2}E^{\text{i}}(\tau,Z^{K}h^{1,\flat}_{\alpha\beta})^{1/2}d\tau+(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}

where KK^{\prime} denote multi-indexes of type (|K|,k)(|K|,k) and KK^{\prime\prime} multi-indexes of type (|K|1,k1)(|K|-1,k-1). Furthermore, from (3.11)

[s0s]|[ZK,H0,𝝁𝝂𝝁𝝂]h1,αβ||tZKh1,αβ|dxdts0sCϵτ1KEi(τ,ZKh1,)1/2Ei(τ,ZKh1,αβ)1/2dτ.\iint_{\mathscr{H}_{[s_{0}s]}}|[Z^{K},H^{0,{\bm{\mu}}{\bm{\nu}}}\partial_{\bm{\mu}}\partial_{\bm{\nu}}]h^{1,\flat}_{\alpha\beta}||\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\\ \leq\int_{s_{0}}^{s}C\epsilon\tau^{-1}\sum_{K^{\prime}}E^{\text{i}}(\tau,Z^{K^{\prime}}h^{1,\flat})^{1/2}E^{\text{i}}(\tau,Z^{K}h^{1,\flat}_{\alpha\beta})^{1/2}d\tau.

Summing the above estimates up together with (4.18), (4.69) and (4.107) we get that there exists some positive constant C>0C>0 such that

Ei(s,ZKh1,αβ)CEi(s0,ZKh1,αβ)+CC02ϵ2s2σ+Cϵ+C(C02+C12)C22ϵ3+s0sCC1ϵτ1KEi(τ,ZKh1,)1/2Ei(τ,ZKh1,)1/2dτ+s0sCC1ϵτ1+CϵKEi(τ,ZKh1,)1/2Ei(τ,ZKh1,)1/2dτ.E^{\text{i}}(s,Z^{\leq K}h^{1,\flat}_{\alpha\beta})\leq CE^{\text{i}}(s_{0},Z^{\leq K}h^{1,\flat}_{\alpha\beta})+CC_{0}^{2}\epsilon^{2}s^{2\sigma+C\epsilon}+C(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}\\ +\int_{s_{0}}^{s}CC_{1}\epsilon\tau^{-1}\sum_{K^{\prime}}E^{\text{i}}(\tau,Z^{K^{\prime}}h^{1,\flat})^{1/2}E^{\text{i}}(\tau,Z^{\leq K}h^{1,\flat})^{1/2}d\tau\\ +\int_{s_{0}}^{s}CC_{1}\epsilon\tau^{-1+C\epsilon}\sum_{K^{\prime\prime}}E^{\text{i}}(\tau,Z^{K^{\prime\prime}}h^{1,\flat})^{1/2}E^{\text{i}}(\tau,Z^{\leq K}h^{1,\flat})^{1/2}d\tau.

Performing an induction argument on kk, it then follows that there exist some positive constants c1<c2<<cNc_{1}<c_{2}<\dots<c_{N} such that

Ei(s,ZKh1,αβ)C(Ei(s0,ZKh1,αβ)+CC02ϵ2+(C02+C12)C22ϵ3)s2σ+ckϵE^{\text{i}}(s,Z^{\leq K}h^{1,\flat}_{\alpha\beta})\leq C\big{(}E^{\text{i}}(s_{0},Z^{\leq K}h^{1,\flat}_{\alpha\beta})+CC_{0}^{2}\epsilon^{2}+(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}\big{)}s^{2\sigma+c_{k}\epsilon}

so the end of the proof follows from the smallness assumptions on the data and after choosing 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small so that cNϵ0σc_{N}\epsilon_{0}\leq\sigma. ∎

The improved lower-order energy estimate (4.105) leads to the following improved sup-norm estimates. These are obtained following the proofs of their analogues with sδks^{\delta_{k}} losses and using the energy bound (4.105) in place of (4.20). For any multi-index KK of type (N3,N1)(N-3,N_{1}), bounds (4.38) and (4.43) are enhanced to the following ones

(4.109) st12ZKh1,αβL(s)+t32¯ZKh1,αβL(s)+t12ZKh1,αβL(s)\displaystyle\big{\|}st^{\frac{1}{2}}\partial Z^{K}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{\infty}(\mathscr{H}_{s})}+\big{\|}t^{\frac{3}{2}}\underline{\partial}Z^{K}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{\infty}(\mathscr{H}_{s})}+\big{\|}t^{\frac{1}{2}}Z^{K}h^{1,\flat}_{\alpha\beta}\big{\|}_{L^{\infty}(\mathscr{H}_{s})} C1ϵs3σ\displaystyle\lesssim C_{1}\epsilon s^{3\sigma}

and bounds (4.46), (4.47) are improved to

(4.110) t32ZK(H1LT)L(s)+t12(t/s)2ZK(H1LT)L(s)C1ϵs3σ.\displaystyle\|t^{\frac{3}{2}}\partial Z^{K}(H^{1}_{LT})^{\flat}\|_{L^{\infty}(\mathscr{H}_{s})}+\|t^{\frac{1}{2}}(t/s)^{2}Z^{K}(H^{1}_{LT})^{\flat}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{3\sigma}.

Furthermore, for multi-indexes KK of type (N4,k)(N-4,k) we can also improve (4.61) to the following

(4.111) t32(s/t)22tZKh1,αβL(s)C1ϵs1+6σ.\|t^{\frac{3}{2}}(s/t)^{2}\partial^{2}_{t}Z^{K}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{-1+6\sigma}.

4.9. Propagation of pointwise bound (4.6)

This section is dedicated to the proof of the enhanced pointwise bound (4.6), see proposition 4.31. We will make use of the following lemmas, which are due respectively to Alinhac [1], Asakura [3] and Katayama-Yokoyama [28].

Lemma 4.26.

Let u=u(t,x)u=u(t,x) be the solution to the inhomogeneous wave equation txu=F\Box_{tx}u=F on the flat space 1+3{\mathbb{R}}^{1+3} with zero initial data. Suppose that FF is spatially compacted supported and that there exist some constants C0>0C_{0}>0, μ,ν0\mu,\nu\geq 0 such that the following pointwise bound is satisfied

|F(t,x)|C0tν(tr)μ.|F(t,x)|\leq C_{0}t^{-\nu}(t-r)^{-\mu}.

Defining Φμ(s)=1,logs,s1μ/(1μ)\Phi_{\mu}(s)=1,\log s,s^{1-\mu}/(1-\mu) according to μ>1,=1,<1\mu>1,=1,<1 respectively, we then have

  • (i)

    If ν>2\nu>2,

    |u(t,x)|CC0Φμ(tr)trν2ν2(1+t)1|u(t,x)|\leq CC_{0}\Phi_{\mu}\big{(}\langle t-r\rangle\big{)}\frac{\langle t-r\rangle^{\nu-2}}{\nu-2}(1+t)^{-1}
  • (ii)

    If ν=2\nu=2,

    |u(t,x)|CC0Φμ(tr)(1+t)1log(1+t)|u(t,x)|\leq CC_{0}\Phi_{\mu}\big{(}\langle t-r\rangle\big{)}(1+t)^{-1}\log(1+t)
  • (iii)

    If ν<2\nu<2,

    |u(t,x)|CC0Φμ(tr)(1+t)1ν2ν.|u(t,x)|\leq CC_{0}\Phi_{\mu}\big{(}\langle t-r\rangle\big{)}\frac{(1+t)^{1-\nu}}{2-\nu}.
Lemma 4.27.

Let ϕ,ψ\phi,\psi be smooth functions on 3{\mathbb{R}}^{3} such that

|ϕ|C(1+|x|)1κ,|ϕ|+|ψ|C(1+|x|)2κ|\phi|\leq C(1+|x|)^{-1-\kappa},\qquad|\nabla\phi|+|\psi|\leq C(1+|x|)^{-2-\kappa}

for some constant C>0C>0 and some fixed 0<κ<10<\kappa<1. Let uu be the solution to the homogeneous wave equation u=0\Box u=0 with initial (u,tu)|t=0=(ϕ,ψ)(u,\partial_{t}u)|_{t=0}=(\phi,\psi). There exists a constant C~>0\tilde{C}>0 such that uu satisfies the following inequality

|u(t,x)|CC~(1+t+|x|)(1+|tr|)κ.|u(t,x)|\leq\frac{C\tilde{C}}{(1+t+|x|)(1+|t-r|)^{\kappa}}.
Lemma 4.28.

Let uu be the solution to the inhomogeneous wave equation u=F\Box u=F with zero data and FF be a smooth function on 1+3{\mathbb{R}}^{1+3}. Let μ,ν>1\mu,\nu>1 be fixed constants. Provided the following right hand side is finite, uu satisfies the following inequality

t+|x|t|x|μ1|u(t,x)|supτ[0,t]sup|xy||tτ||y|τ+|y|μτ|y|ν|F(τ,y)|.\langle t+|x|\rangle\langle t-|x|\rangle^{\mu-1}|u(t,x)|\lesssim\sup_{\tau\in[0,t]}\sup_{|x-y|\leq|t-\tau|}|y|\langle\tau+|y|\rangle^{\mu}\langle\tau-|y|\rangle^{\nu}|F(\tau,y)|.

The idea of the proof of Proposition 4.31 is to look at u=ΓJh1,αβu=\Gamma^{J}h^{1,\flat}_{\alpha\beta}, for any fixed JJ with |J|=jN1|J|=j\leq N_{1}, as the solution to a Cauchy problem of the following form

{txu=F(u,tu)|t=2=(ϕ,ψ)\begin{cases}\Box_{tx}u=F\\ (u,\partial_{t}u)|_{t=2}=(\phi,\psi)\end{cases}

for some given smooth initial data ϕ,ψ\phi,\psi and source term FF, and to successively decompose uu as the sum of three waves v1,v2,v3v_{1},v_{2},v_{3} such that

{txv1=χ((r+1/2)/t)F(v1,tv1)|t=0=(0,0)and{txv2=(1χ((r+1/2)/t))F(v2,tv2)|t=0=(0,0)\begin{cases}\Box_{tx}v_{1}=\chi((r+1/2)/t)F\\ (v_{1},\partial_{t}v_{1})|_{t=0}=(0,0)\end{cases}\quad\text{and}\qquad\begin{cases}\Box_{tx}v_{2}=(1-\chi((r+1/2)/t))F\\ (v_{2},\partial_{t}v_{2})|_{t=0}=(0,0)\end{cases}

and v3v_{3} is the solution to the homogeneous wave equation with data (ϕ,ψ)(\phi,\psi).

In the above systems, χ\chi is a cut-off function equal to 1 on the ball B1/2(0)B_{1/2}(0) and supported in B1(0)¯\overline{B_{1}(0)}, so that the source term in the equation of v1v_{1} is supported in the interior of the cone t=r+1/2t=r+1/2, while the source term in the equation of v2v_{2} is supported in the portion of exterior region such that tr+1/2t\leq r+1/2.

The solutions v1,v2,v3v_{1},v_{2},v_{3} are estimated using lemma 4.26, 4.27 and 4.28 respectively. The combination of such estimates will provide us with the desired estimate on u=ZKh1,αβu=Z^{K}h^{1,\flat}_{\alpha\beta}.

Let us denote by DJαβD^{J}_{\alpha\beta} the nonlinearity in equation (4.15) satisfied by ΓJh1,αβ\Gamma^{J}h^{1,\flat}_{\alpha\beta}, i.e.

DJ,αβ:=(H𝝁𝝂)𝝁𝝂ΓJh1,αβ+FJ,αβ+F0,Jαβ((Hμν)μνΓJh1,αβ).D^{J,\flat}_{\alpha\beta}:=-(H^{{\bm{\mu}}{\bm{\nu}}})^{\flat}\cdot\partial_{\bm{\mu}}\partial_{\bm{\nu}}\Gamma^{J}h^{1,\flat}_{\alpha\beta}+F^{J,\flat}_{\alpha\beta}+F^{0,J}_{\alpha\beta}-\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}\Gamma^{J}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}.

We start by estimating the source term DJ,αβD^{J,\flat}_{\alpha\beta} in the interior of the cone t=r+1/2t=r+1/2. Since the intersection of this cone with the exterior region 𝒟e\mathscr{D}^{\text{e}} is non-empty, we will make use of some estimates obtained in Section 3.

Lemma 4.29.

For any multi-index JJ with |J|=kN1|J|=k\leq N_{1}, any s[s0,S0)s\in[s_{0},S_{0}) and any (t,x)(t,x) with t2r2=s2t^{2}-r^{2}=s^{2} and t>r+1/2t>r+1/2 we have that

|DJ,αβ(t,x)|\displaystyle|D^{J,\flat}_{\alpha\beta}(t,x)| (C2ϵ)2t1s2+γk\displaystyle\lesssim(C_{2}\epsilon)^{2}t^{-1}s^{-2+\gamma_{k}}
Proof.

From the pointwise bounds (3.11), (3.12) and (3.14) we get that for any (t,x,y)𝒟e(t,x,y)\in\mathscr{D}^{\text{e}} such that t>r+1/2t>r+1/2 and t2r2=s2t^{2}-r^{2}=s^{2}

|J1|+|J2|k|ΓJ1hΓJ2h|C02ϵ2t2+2σ(2+rt)22κC02ϵ2t1s2+4σ|J1|+|J2|k|ΓJ1H2ΓJ2h|C02ϵ2t2+2σ(2+rt)322κC02ϵ2t1s2+4σ.\begin{gathered}\sum_{|J_{1}|+|J_{2}|\leq k}|\partial\Gamma^{J_{1}}h\cdot\partial\Gamma^{J_{2}}h|\lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}(2+r-t)^{-2-2\kappa}\lesssim C_{0}^{2}\epsilon^{2}t^{-1}s^{-2+4\sigma}\\ \sum_{|J_{1}|+|J_{2}|\leq k}|\Gamma^{J_{1}}H\cdot\partial^{2}\Gamma^{J_{2}}h|\lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}(2+r-t)^{-\frac{3}{2}-2\kappa}\lesssim C_{0}^{2}\epsilon^{2}t^{-1}s^{-2+4\sigma}.\end{gathered}

In the interior region, we recall the pointwise decay estimates already obtained in lemma 4.6 for the quadratic and cubic terms involving at least one h0h^{0}.

Turning next to the pure quadratic zero-mode interactions, we derive from (4.109) that

|J1|+|J2|k|ΓJ1h1,ΓJ2h1,|C12ϵ2t1s2+6σ\sum_{|J_{1}|+|J_{2}|\leq k}\big{|}\partial\Gamma^{J_{1}}h^{1,\flat}\cdot\partial\Gamma^{J_{2}}h^{1,\flat}\big{|}\lesssim C_{1}^{2}\epsilon^{2}t^{-1}s^{-2+6\sigma}

and from (3.25) and bounds (4.109), (4.111) that

|ΓJ((H1,𝝁𝝂)𝝁𝝂h1,αβ)||J1|+|J2|k|ΓJ1H1,LL||2tΓJ2h1,αβ|+(st)2|ΓJ1H1,||2tΓJ2h1,αβ|\displaystyle\big{|}\Gamma^{J}\big{(}(H^{1,{\bm{\mu}}{\bm{\nu}}})^{\flat}\cdot\partial_{\bm{\mu}}\partial_{\bm{\nu}}h^{1,\flat}_{\alpha\beta}\big{)}\big{|}\lesssim\sum_{\begin{subarray}{c}|J_{1}|+|J_{2}|\leq k\end{subarray}}|\Gamma^{J_{1}}H^{1,\flat}_{LL}|\,|\partial^{2}_{t}\Gamma^{J_{2}}h^{1,\flat}_{\alpha\beta}|+\Big{(}\frac{s}{t}\Big{)}^{2}|\Gamma^{J_{1}}H^{1,\flat}|\,|\partial^{2}_{t}\Gamma^{J_{2}}h^{1,\flat}_{\alpha\beta}|
+|J1|+|J2|j(1+t+r)1|ΓJ1H1,||ΓJ2h1,αβ|C12ϵ2t1s2+9σ.\displaystyle+\sum_{\begin{subarray}{c}|J_{1}|+|J_{2}|\leq j\end{subarray}}(1+t+r)^{-1}|\Gamma^{J_{1}}H^{1,\flat}|\,|\partial\Gamma^{J_{2}}h^{1,\flat}_{\alpha\beta}|\lesssim C_{1}^{2}\epsilon^{2}t^{-1}s^{-2+9\sigma}.

As concerns instead the pure interaction of the zero-average components, we derive from (4.7) and the algebraic relation (4.2) that

|J1|+|J2|=k|(ΓJ1h1,ΓJ2h1,)|+|((Hμν)μνΓJh1,αβ)|C22ϵ2t3sγk.\sum_{|J_{1}|+|J_{2}|=k}|(\partial\Gamma^{J_{1}}h^{1,\natural}\cdot\partial\Gamma^{J_{2}}h^{1,\natural})^{\flat}|+\big{|}\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}\Gamma^{J}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}\lesssim C_{2}^{2}\epsilon^{2}t^{-3}s^{\gamma_{k}}.

The conclusion of the proof follows from the fact that 9σγ09\sigma\ll\gamma_{0}. ∎

Remark 4.30.

It is important to observe, in view of Proposition 4.32, that the loss sγks^{\gamma_{k}} in the above estimate for DJαβD^{J}_{\alpha\beta} is only caused by the pure interactions of the zero-average components of the metric perturbations. All other interactions cause a smaller loss s9σs^{9\sigma}.

We are now able to propagate the a-priori pointwise bound (4.6).

Proposition 4.31.

There exist two constants 1C1C21\ll C_{1}\ll C_{2} sufficiently large, a finite and increasing sequence of parameters 0<ζk,γk,δk10<\zeta_{k},\gamma_{k},\delta_{k}\ll 1 satisfying (4.2) and 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small such that, under the assumptions of Proposition 4.1, the enhanced estimate (4.11) is satisfied.

Proof.

We split ΓJh1,αβ\Gamma^{J}h^{1,\flat}_{\alpha\beta} into the sum of three waves vJ1,αβv^{J}_{1,\alpha\beta}, vJ2,αβv^{J}_{2,\alpha\beta} and vJ3,αβv^{J}_{3,\alpha\beta}, where

{txvJ1,αβ=χ((r+1/2)/t)DJ,αβ(vJ1,αβ,tvJ1,αβ)|t=2=(0,0){txvJ2,αβ=(1χ((r+1/2)/t))DJ,αβ(vJ2,αβ,tvJ2,αβ)|t=2=(0,0)|t=2\begin{cases}\Box_{tx}v^{J}_{1,\alpha\beta}=\chi((r+1/2)/t)D^{J,\flat}_{\alpha\beta}\\ (v^{J}_{1,\alpha\beta},\partial_{t}v^{J}_{1,\alpha\beta})|_{t=2}=(0,0)\end{cases}\begin{cases}\Box_{tx}v^{J}_{2,\alpha\beta}=\big{(}1-\chi((r+1/2)/t)\big{)}D^{J,\flat}_{\alpha\beta}\\ (v^{J}_{2,\alpha\beta},\partial_{t}v^{J}_{2,\alpha\beta})|_{t=2}=(0,0)|_{t=2}\end{cases}

and

{txvJ3,αβ=0(vJ3,αβ,tvJ3,αβ)|t=2=(ΓJh1,αβ,tΓJh1,αβ)|t=2.\begin{cases}\Box_{tx}v^{J}_{3,\alpha\beta}=0\\ (v^{J}_{3,\alpha\beta},\partial_{t}v^{J}_{3,\alpha\beta})|_{t=2}=(\Gamma^{J}h^{1,\flat}_{\alpha\beta},\partial_{t}\Gamma^{J}h^{1,\flat}_{\alpha\beta})|_{t=2}.\end{cases}

From Lemma 4.29, we get that in the interior of the cone t=r+1/2t=r+1/2

(4.112) |DJ,αβ(t,x)|C22ϵ2t1s2+γkC22ϵ2t2+γk2tr1+γk2.|D^{J,\flat}_{\alpha\beta}(t,x)|\lesssim C_{2}^{2}\epsilon^{2}t^{-1}s^{-2+\gamma_{k}}\lesssim C_{2}^{2}\epsilon^{2}t^{-2+\frac{\gamma_{k}}{2}}\langle t-r\rangle^{-1+\frac{\gamma_{k}}{2}}.

Then, Lemma 4.26 with ν=2γk2\nu=2-\frac{\gamma_{k}}{2} and μ=1γk2\mu=1-\frac{\gamma_{k}}{2} yields

(4.113) |vJαy(t,x)|C22ϵ2(1+t)1+γk2trγk2.|v^{J}_{\alpha y}(t,x)|\lesssim C_{2}^{2}\epsilon^{2}(1+t)^{-1+\frac{\gamma_{k}}{2}}\langle t-r\rangle^{\frac{{\gamma_{k}}}{2}}.

As concerns the region exterior to the cone t=r+1/2t=r+1/2, we recall the estimates (3.22) for the quadratic null terms, (3.23) for the cubic interactions, (3.29) for the commutator terms and (3.48) for the weak null interactions. For any (t,x)(t,x) with t<r+1/2t<r+1/2, we at least have

|DJ,αβ(t,x)|C02ϵ2t2+2σ(2+rt)32|D^{J,\flat}_{\alpha\beta}(t,x)|\lesssim C_{0}^{2}\epsilon^{2}t^{-2+2\sigma}(2+r-t)^{-\frac{3}{2}}

so that

supτ[0,t]sup|xz||tτ||z|τ+|z|μτ|z|ν|DJ,αβ(z,τ)|C02ϵ2t+|x|3σ\sup_{\tau\in[0,t]}\sup_{|x-z|\leq|t-\tau|}|z|\langle\tau+|z|\rangle^{\mu}\langle\tau-|z|\rangle^{\nu}|D^{J,\flat}_{\alpha\beta}(z,\tau)|\lesssim C_{0}^{2}\epsilon^{2}\langle t+|x|\rangle^{3\sigma}

provided that μ,ν>1\mu,\nu>1 are chosen so that μ=1+σ\mu=1+\sigma and 1<ν<3/21<\nu<3/2. From Lemma 4.28 we then have

|vJ2,αβ(t,x)|C02ϵ2t+r1+3σtrσ.|v^{J}_{2,\alpha\beta}(t,x)|\lesssim C_{0}^{2}\epsilon^{2}\langle t+r\rangle^{-1+3\sigma}\langle t-r\rangle^{-\sigma}.

Finally, the initial data satisfy

|ΓJh1,αβ(2,x)|C0ϵ(1+|x|)1κ,|txΓJh1,αβ(2,x)|C0(1+|x|)2κ|\Gamma^{J}h^{1,\flat}_{\alpha\beta}(2,x)|\lesssim C_{0}\epsilon(1+|x|)^{-1-\kappa},\qquad|\nabla_{tx}\Gamma^{J}h^{1,\flat}_{\alpha\beta}(2,x)|\lesssim C_{0}(1+|x|)^{-2-\kappa}

as a consequence of the assumptions on the initial data (1.10) and the pointwise bounds (3.12) and (3.14), so that Lemma 4.27 implies

|vJ3,αβ(t,x)|C0ϵ(1+t+|x|)(1+|tr|)κ.|v^{J}_{3,\alpha\beta}(t,x)|\lesssim\frac{C_{0}\epsilon}{(1+t+|x|)(1+|t-r|)^{\kappa}}.

Summing all up, we find that there exists a constant C>0C>0 such that

|ΓJhαβ(t,x)|C(C0ϵ+C02ϵ2)t+r1+3σtrσ+CC22ϵ2t+r1+γk2trγk2|\Gamma^{J}h^{\flat}_{\alpha\beta}(t,x)|\leq C(C_{0}\epsilon+C_{0}^{2}\epsilon^{2})\langle t+r\rangle^{-1+3\sigma}\langle t-r\rangle^{-\sigma}+CC_{2}^{2}\epsilon^{2}\langle t+r\rangle^{-1+\frac{\gamma_{k}}{2}}\langle t-r\rangle^{\frac{\gamma_{k}}{2}}

so the result of the statement follows from the fact that σγ0\sigma\ll\gamma_{0} and by choosing C21C_{2}\gg 1 sufficiently large so that C(C0+C0ϵ)<(C2ϵ)/2C(C_{0}+C_{0}\epsilon)<(C_{2}\epsilon)/2 and 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small so that CC2ϵ0<1/2CC_{2}\epsilon_{0}<1/2. ∎

Following Remarks 4.23 and 4.30, we conclude this section with enhanced pointwise bounds for the metric perturbation.

Proposition 4.32.

There exists a constant c>9c>9 such that the metric perturbation satisfies the following

(4.114) tΓJh1,αβLx(s)C2ϵscσif |J|=kN11,\|t\,\Gamma^{J}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\lesssim C_{2}\epsilon s^{c\sigma}\quad\text{if }|J|=k\leq N_{1}-1,
(4.115) t12stx(IΓJh1,αβ)LxL2y(s)\displaystyle\|t^{\frac{1}{2}}s\,\partial_{tx}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})} +t321y(IΓJh1,αβ)LxL2y(s)\displaystyle+\|t^{\frac{3}{2}}\partial^{\leq 1}_{y}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}
{2C2ϵ,if |I|N1,|J|=02C2ϵscσ,if |I|+|J|N1,|J|=kN11.\displaystyle\leq\begin{cases}2C_{2}\epsilon,\ &\text{if }|I|\leq N_{1},|J|=0\\ 2C_{2}\epsilon s^{c\sigma},\ &\text{if }|I|+|J|\leq N_{1},|J|=k\leq N_{1}-1.\end{cases}
Proof.

The proof proceeds by induction. We assume that there exists a finite increasing sequence ckc_{k} with 9ckck+19\leq c_{k}\ll c_{k+1} and ci+cj<ckc_{i}+c_{j}<c_{k} whenever i,j<ki,j<k, such that

tΓJh1,αβLx(s)2C2ϵsckσif |J|=kN11,\|t\,\Gamma^{J}h^{1,\flat}_{\alpha\beta}\|_{L^{\infty}_{x}(\mathscr{H}_{s})}\lesssim 2C_{2}\epsilon s^{c_{k}\sigma}\quad\text{if }|J|=k\leq N_{1}-1,
t12stx(IΓJh1,αβ)LxL2y(s)\displaystyle\|t^{\frac{1}{2}}s\,\partial_{tx}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})} +t321y(IΓJh1,αβ)LxL2y(s)\displaystyle+\|t^{\frac{3}{2}}\partial^{\leq 1}_{y}(\partial^{I}\Gamma^{J}h^{1,\natural}_{\alpha\beta})\|_{L^{\infty}_{x}L^{2}_{y}(\mathscr{H}_{s})}
{2C2ϵ,if |I|N1,|J|=02C2ϵsckσ,if |I|+|J|N1,|J|=kN11\displaystyle\leq\begin{cases}2C_{2}\epsilon,\ &\text{if }|I|\leq N_{1},|J|=0\\ 2C_{2}\epsilon s^{c_{k}\sigma},\ &\text{if }|I|+|J|\leq N_{1},|J|=k\leq N_{1}-1\end{cases}

We then have that, whenever |I|+|J1|+|J2|N1|I|+|J_{1}|+|J_{2}|\leq N_{1} with |J1|=k1>0|J_{1}|=k_{1}>0 and |J2|=k2N12|J_{2}|=k_{2}\leq N_{1}-2,

|ΓJ1h1,|2IΓJ2h1,αβL2yC22ϵ2t32s1+(ck1+ck2)σC22ϵ2t32s1+ckσ.|\Gamma^{J_{1}}h^{1,\flat}|\|\partial^{2}\partial^{I}\Gamma^{J_{2}}h^{1,\natural}_{\alpha\beta}\|_{L^{2}_{y}}\lesssim C_{2}^{2}\epsilon^{2}t^{-\frac{3}{2}}s^{-1+(c_{k_{1}}+c_{k_{2}})\sigma}\lesssim C_{2}^{2}\epsilon^{2}t^{-\frac{3}{2}}s^{-1+c_{k}\sigma}.

The arguments in the proof of Proposition 4.22 show that

s32y1(IΓJh1,)L2+s12𝒮(IΓJh1,)L2C(st)32Ei(s0,Z2(IΓJh1,))12\displaystyle s^{\frac{3}{2}}\|\partial_{y}^{\leq 1}(\partial^{I}\Gamma^{J}h^{1,\natural})\|_{L^{2}}+s^{\frac{1}{2}}\|\mathscr{S}(\partial^{I}\Gamma^{J}h^{1,\natural})\|_{L^{2}}\leq C\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}E^{\text{i}}(s_{0},Z^{\leq 2}(\partial^{I}\Gamma^{J}h^{1,\natural}))^{\frac{1}{2}}
+C(C1ϵ+C22ϵ2)(st)32{1if |I|N1,|J|=0sckσ,if |I|+|J|N1+1,|J|=kN1\displaystyle+C(C_{1}\epsilon+C_{2}^{2}\epsilon^{2})\Big{(}\frac{s}{t}\Big{)}^{\frac{3}{2}}{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}\begin{cases}1\ &\text{if }|I|\leq N_{1},\ |J|=0\\ s^{c_{k}\sigma},\ &\text{if }|I|+|J|\leq N_{1}+1,|J|=k\leq N_{1}\\ \end{cases}}

and an appropriate choice of constants allows us to get (4.115). Furthermore, whenever |J1|+|J2||J|N11|J_{1}|+|J_{2}|\leq|J|\leq N_{1}-1

|J1|+|J2|=k|(ΓJ1h1,ΓJ2h1,)|+|((Hμν)μνΓJh1,αβ)|C22ϵ2t3sckσ\sum_{|J_{1}|+|J_{2}|=k}|(\partial\Gamma^{J_{1}}h^{1,\natural}\cdot\partial\Gamma^{J_{2}}h^{1,\natural})^{\flat}|+\big{|}\big{(}(H^{\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}\Gamma^{J}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}\lesssim C_{2}^{2}\epsilon^{2}t^{-3}s^{c_{k}\sigma}

which implies, following the proof of Lemma 4.29, that

|DJαβ|(C12+C22)ϵ2t1s2+ckσ.|D^{J}_{\alpha\beta}|\lesssim(C_{1}^{2}+C_{2}^{2})\epsilon^{2}t^{-1}s^{-2+c_{k}\sigma}.

Using lemma 4.26 with ν=2ckσ2\nu=2-\frac{c_{k}\sigma}{2} and μ=1ckσ2\mu=1-\frac{c_{k}\sigma}{2}, we can then replace (4.113) with

|vJαy(t,x)|C22ϵ2(1+t)1+ck2trck2|v^{J}_{\alpha y}(t,x)|\lesssim C_{2}^{2}\epsilon^{2}(1+t)^{-1+\frac{{\color[rgb]{1,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,1}\pgfsys@color@cmyk@stroke{0}{1}{0}{0}\pgfsys@color@cmyk@fill{0}{1}{0}{0}c_{k}}}{2}}\langle t-r\rangle^{\frac{{c_{k}}}{2}}

and the arguments in the proof of Proposition 4.31 yield (4.114). ∎

4.10. Propagation of the energy bounds.

In this section we propagate the a-priori energy bounds (4.3)-(4.5) and hence conclude the proof of Proposition 4.1.

Proof of Proposition 4.1.

We note first that, using bound (4.115) instead of (4.7) and the fact that σζ0\sigma\ll\zeta_{0} so that cσ+ζj<ζkc\sigma+\zeta_{j}<\zeta_{k} whenever j<kj<k in the proof of Lemma 4.14 and Proposition 4.15, allows us to replace the loss sγi+ζkis^{\gamma_{i}+\zeta_{k-i}} for i=1,4¯i=\overline{1,4} in (4.78), (4.80) and (4.81) with sζks^{\zeta_{k}}, hence having

(4.116) ZKPαβ(h,h)L2xy(s)C1ϵs1KEi(s,ZKh1,)1/2+C1ϵs1+CϵKEi(s,ZKh1,)1/2+C12ϵ2s32+2δN+C12ϵ2δk>N1s1+ζk\left\|Z^{K}P^{\flat}_{\alpha\beta}(\partial h,\partial h)\right\|_{L^{2}_{xy}(\mathscr{H}_{s})}\lesssim C_{1}\epsilon s^{-1}\sum_{K^{\prime}}E^{\text{i}}(s,Z^{K^{\prime}}h^{1,\flat})^{1/2}\\ +C_{1}\epsilon s^{-1+C\epsilon}\sum_{K^{\prime\prime}}E^{\text{i}}(s,Z^{K^{\prime\prime}}h^{1,\flat})^{1/2}+C_{1}^{2}\epsilon^{2}s^{-\frac{3}{2}+2\delta_{N}}+C_{1}^{2}\epsilon^{2}\delta_{k>N_{1}}s^{-1+\zeta_{k}}

for multi-index KK of type (N,k)(N,k),

(4.117) [s0,s]|[ZK,H1,μνμν]h1αβ||tZKh1αβ|dxdydt(C02+C12)C22ϵ3s1+2ζk\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{|}|\partial_{t}Z^{K}h^{1}_{\alpha\beta}|dxdydt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{1+2\zeta_{k}}

for multi-indexes KK of type (N+1,k)(N+1,k) with kNk\leq N, and

(4.118) [s0,s]|([ZK,H1,μνμν]h1αβ)||tZKh1,αβ|dxdt+[s0,s]|((H1,μν)μνZKh1,αβ)||tZKh1,αβ|dxdt(C02+C12)C22ϵ3s2ζk\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}[Z^{K},H^{1,\mu\nu}\partial_{\mu}\partial_{\nu}]h^{1}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\\ +\iint_{\mathscr{H}_{[s_{0},s]}}\big{|}\big{(}(H^{1,\mu\nu})^{\natural}\cdot\partial_{\mu}\partial_{\nu}Z^{K}h^{1,\natural}_{\alpha\beta}\big{)}^{\flat}\big{|}|\partial_{t}Z^{K}h^{1,\flat}_{\alpha\beta}|dxdt\lesssim(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{2\zeta_{k}}

for multi-indexes KK of type (N,k)(N,k).

For multi-indexes KK of type (N+1,k)(N+1,k), we substitute (4.18), (4.52), (4.53), (4.69), (4.76), (4.106), (4.117), together with the energy bound (4.19), into (4.16) and hence deduce the existence of a constant C~>0\tilde{C}>0 such that for all s[s0,S0)s\in[s_{0},S_{0})

Ei(s,ZKh1)C~(Ei(s0,ZKh1)+ϵ2s2σ+Cϵ+(C02+C12)C22ϵ3s1+2ζk).E^{\text{i}}(s,Z^{K}h^{1})\leq\tilde{C}\big{(}E^{\text{i}}(s_{0},Z^{K}h^{1})+\epsilon^{2}s^{2\sigma+C\epsilon}+(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{1+2\zeta_{k}}\Big{)}.

The enhanced energy estimate (4.8) is obtained by picking C11C_{1}\gg 1 sufficiently large so that 3C~Ei(s0,ZKh1)C12ϵ23\tilde{C}E^{\text{i}}(s_{0},Z^{K}h^{1})\leq C_{1}^{2}\epsilon^{2} and 3C~C13\tilde{C}\leq C_{1}, and 0<ϵ010<\epsilon_{0}\ll 1 sufficiently small so that 3(C02+1)C22ϵ0C13(C_{0}^{2}+1)C_{2}^{2}\epsilon_{0}\leq C_{1} and 2σ+Cϵ<2δk2\sigma+C\epsilon<2\delta_{k}.

Analogously, if KK is of type (N,k)(N,k) with kN1k\leq N_{1}, we derive from (4.18), (4.54), (4.55), (4.69), (4.77), (4.82), (4.108), together with the energy bound (4.25) that there exists another constant C~>0\tilde{C}>0 such that for all s[s0,S0)s\in[s_{0},S_{0})

Ei(s,ZKh1)C~(Ei(s0,ZKh1)+ϵ2s2σ+Cϵ+(C02+C12)C22ϵ3s2δk).E^{\text{i}}(s,Z^{K}h^{1})\leq\tilde{C}\big{(}E^{\text{i}}(s_{0},Z^{K}h^{1})+\epsilon^{2}s^{2\sigma+C\epsilon}+(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{2\delta_{k}}\Big{)}.

Choosing accordingly C1C_{1} and ϵ0\epsilon_{0} yields (4.10).

Finally, for any multi-index KK of type (N,k)(N,k), we have the following estimate for the energy of ZKh1,αβZ^{K}h^{1,\flat}_{\alpha\beta}, which is obtained by plugging (4.18), (4.53), (4.56), (4.69), (4.107), (4.116), (4.118) and the energy bound (4.20) into (4.17)

Ei(s,ZKh1,)C~(Ei(s0,ZKh1,)+ϵ2s2σ+Cϵ+(C02+C12)C22ϵ3s2ζk),E^{\text{i}}(s,Z^{K}h^{1,\flat})\leq\tilde{C}\big{(}E^{\text{i}}(s_{0},Z^{K}h^{1,\flat})+\epsilon^{2}s^{2\sigma+C\epsilon}+(C_{0}^{2}+C_{1}^{2})C_{2}^{2}\epsilon^{3}s^{2\zeta_{k}}\Big{)},

for a new constant C~\tilde{C}. Again, the enhanced energy bound (4.9) follows by choosing C1,ϵ0C_{1},\epsilon_{0} appropriately.

Appendix A Energy Inequalities

In this section we group together different energy inequalities that are useful in the paper. We denote by 𝐖\mathbf{W} the solution of the following linear inhomogeneous wave equation

gμνμν𝐖=𝐅g^{\mu\nu}\partial_{\mu}\partial_{\nu}\mathbf{W}=\mathbf{F}

which can be also written

(A.1) (2t+Δx+2y)𝐖+Hμνμν𝐖=𝐅,(t,x,y)1+3×𝕊1(-\partial^{2}_{t}+\Delta_{x}+\partial^{2}_{y})\mathbf{W}+H^{\mu\nu}\partial_{\mu}\partial_{\nu}\mathbf{W}=\mathbf{F},\qquad(t,x,y)\in{\mathbb{R}}^{1+3}\times{\mathbb{S}}^{1}

where the tensor components HμνH^{\mu\nu} are assumed to be sufficiently small functions and 𝐅\mathbf{F} is some source term.

In this section, a particular attention will be given to the energy flux on hyperboloids. These are spacelike hypersurfaces in Minkowski spacetime, but have a degeneracy caused by the fact that they are asymptotically null. This is something which could be destroyed by perturbations of the metric. We take advantage of the Schwarzschild component of HH, introduced in (1.12), to show that the hyperboloids remain spacelike everywhere.

Proposition A.1 (Exterior energy inequality).

Let 𝐖\mathbf{W} be a solution of equation (A.1) decaying sufficiently fast as |x||x|\rightarrow\infty and assume that there exist ϵ>0\epsilon>0 small such that tensor HH satisfies the following bounds

|H(t,x,y)|ϵ(1+t+r)34,|HLL+χ(rt)χ(r)2Mr|ϵ(1+t+r)1+δ,|H(t,x,y)|\lesssim\frac{\epsilon}{(1+t+r)^{\frac{3}{4}}},\quad\Big{|}H_{LL}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{2M}{r}\Big{|}\lesssim\frac{\epsilon}{(1+t+r)^{1+\delta}},

where χ\chi is a cut-off function such that χ(s)=0\chi(s)=0 for s1/2s\leq 1/2, χ(s)=1\chi(s)=1 for s3/4s\geq 3/4 and δ\delta is any fixed positive constant. Let w(q)w(q) be a smooth function that only depends on the distance q=rtq=r-t from the light cone and such that w(q),w(q)0w(q),w^{\prime}(q)\geq 0. For any 2t1<t22\leq t_{1}<t_{2}, let ~t1t2\tilde{\mathscr{H}}_{t_{1}t_{2}} denote the portion of ~\tilde{\mathscr{H}} in the time interval [t1,t2][t_{1},t_{2}] and dμd\mu_{\mathscr{H}} be its surface element. We have the following inequality

(A.2) Σet2w(q)|txy𝐖|2dxdy+~t1t2w(q)[12(1+r2)+χ(rt)χ(r)M2r]|t𝐖|2+w(q)|~¯𝐖|2dxdy\displaystyle\int_{\Sigma^{\text{e}}_{t_{2}}}w(q)|\nabla_{txy}\mathbf{W}|^{2}dxdy+\int_{\tilde{\mathscr{H}}_{t_{1}t_{2}}}w(q)\Big{[}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{]}|\partial_{t}\mathbf{W}|^{2}+w(q)|\underline{\tilde{\nabla}}\mathbf{W}|^{2}dxdy
+𝒟e[t1,t2]w(q)(|L𝐖|2+|∇̸𝐖|2)dtdxdyΣet1w(q)|txy𝐖|2dxdy\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w^{\prime}(q)\big{(}|L\mathbf{W}|^{2}+|\not{\nabla}\mathbf{W}|^{2}\big{)}dtdxdy\lesssim\int_{\Sigma^{\text{e}}_{t_{1}}}w(q)|\nabla_{txy}\mathbf{W}|^{2}dxdy
+𝒟e[t1,t2]w(q)|(𝐅+μHμνν𝐖)t𝐖|+w(q)|tHμνμ𝐖ν𝐖|dtdxdy\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w(q)|(\mathbf{F}+\partial_{\mu}H^{\mu\nu}\,\partial_{\nu}\mathbf{W})\partial_{t}\mathbf{W}|+w(q)|\partial_{t}H^{\mu\nu}\,\partial_{\mu}\mathbf{W}\,\partial_{\nu}\mathbf{W}|\,dtdxdy
+𝒟e[t1,t2]w(q)|Hρσρ𝐖σ𝐖|dtdxdy+𝒟e[t1,t2]w(q)|(H0ν+ω𝒋H𝒋ν)ν𝐖t𝐖|dtdxdy\displaystyle+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w^{\prime}(q)|H^{\rho\sigma}\partial_{\rho}\mathbf{W}\partial_{\sigma}\mathbf{W}|\ dtdxdy+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w^{\prime}(q)|(-H^{0\nu}+\omega_{\bm{j}}H^{{\bm{j}}\nu})\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}|\ dtdxdy

where ~¯=(¯~1,,¯~4)\underline{\tilde{\nabla}}=(\tilde{\underline{\partial}}_{1},\dots,\tilde{\underline{\partial}}_{4}) is the tangent gradient to ~\tilde{\mathscr{H}}, i.e. ¯~𝐢=𝐢+x𝐢t1t\tilde{\underline{\partial}}_{{\bm{i}}}=\partial_{{\bm{i}}}+\frac{x^{{\bm{i}}}}{t-1}\partial_{t} for 𝐢=1,2,3{\bm{i}}=1,2,3 and ¯~4=y\tilde{\underline{\partial}}_{4}=\partial_{y}, and ω𝐣=x𝐣/r\omega_{\bm{j}}=x_{\bm{j}}/r.

Proof.

We start with the following computation

(A.3) t𝐖(gμνμν𝐖)=μ(gμνν𝐖t𝐖)12t(gμνμ𝐖ν𝐖)(μHμν)μ𝐖t𝐖+12(tHμν)μ𝐖ν𝐖.\begin{split}\partial_{t}\mathbf{W}\left(g^{\mu\nu}\partial_{\mu}\partial_{\nu}\mathbf{W}\right)=&\partial_{\mu}\left(g^{\mu\nu}\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}\right)-\frac{1}{2}\partial_{t}\left(g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}\right)\\ &-(\partial_{\mu}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}+\frac{1}{2}(\partial_{t}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}.\end{split}

Multiplying by w(q)w(q) we obtain

(A.4) w(q)t𝐖(gμνμν𝐖)=μ(w(q)gμνν𝐖t𝐖)12t(w(q)gμνμ𝐖ν𝐖)w(q)(μHμν)μ𝐖t𝐖+12w(q)(tHμν)μ𝐖ν𝐖(μw(q))(gμνν𝐖t𝐖)+12(tw(q))(gμνμ𝐖ν𝐖)\begin{split}w(q)\partial_{t}\mathbf{W}\left(g^{\mu\nu}\partial_{\mu}\partial_{\nu}\mathbf{W}\right)=&\partial_{\mu}\left(w(q)g^{\mu\nu}\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}\right)-\frac{1}{2}\partial_{t}\left(w(q)g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}\right)\\ &-w(q)(\partial_{\mu}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}+\frac{1}{2}w(q)(\partial_{t}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}\\ &-(\partial_{\mu}w(q))\left(g^{\mu\nu}\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}\right)+\frac{1}{2}(\partial_{t}w(q))\left(g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}\right)\end{split}

We integrate (A.4) in the spacetime portion of the exterior region included between the two spacelike hypersurfaces Σet1\Sigma^{\text{e}}_{t_{1}} and Σet2\Sigma^{\text{e}}_{t_{2}}, denoted by 𝒟e[t1,t2]\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}. We treat the divergence term via Stokes’ theorem, meaning

𝒟e[t1,t2](μXμ)dtdxdy=Σet2X0dxdyΣet1X0dxdy+~t1t2(X0x𝒊t1X𝒊)dxdy.\int_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}(\partial_{\mu}X^{\mu})dtdxdy=\int_{\Sigma^{e}_{t_{2}}}X^{0}dxdy-\int_{\Sigma^{e}_{t_{1}}}X^{0}dxdy+\int_{\tilde{\mathscr{H}}_{t_{1}t_{2}}}\Big{(}X^{0}-\frac{x_{\bm{i}}}{t-1}X^{\bm{i}}\Big{)}dxdy.

Applying this to (A.4) we obtain

Σet2w(q)ecurvΣdxdy+~t1t2w(q)ecurv~dxdy+𝒟e[t1,t2]w(q)Bdtdxdy\displaystyle\int_{\Sigma^{e}_{t_{2}}}w(q)e^{curv}_{\Sigma}dxdy+\int_{\tilde{\mathscr{H}}_{t_{1}t_{2}}}w(q)e^{curv}_{\tilde{\mathscr{H}}}dxdy+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w^{\prime}(q)B\,dtdxdy
=Σet1w(q)ecurvΣdx+𝒟e[t1,t2]w(q)(C𝐅)dxdt,\displaystyle=\int_{\Sigma^{e}_{t_{1}}}w(q)e^{curv}_{\Sigma}dx+\iint_{\mathscr{D}^{\text{e}}_{[t_{1},t_{2}]}}w(q)(C-\mathbf{F})dxdt,

where the curved energy densities are defined by

(A.5) ecurvΣ\displaystyle e^{curv}_{\Sigma} =gμ0μ𝐖t𝐖+12gμνμ𝐖ν𝐖\displaystyle=-g^{\mu 0}\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}+\frac{1}{2}g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}
(A.6) ecurv~\displaystyle e^{curv}_{\tilde{\mathscr{H}}} =gμ0μ𝐖t𝐖+12gμνμ𝐖ν𝐖+x𝒊t1g𝒊μμ𝐖t𝐖\displaystyle=-g^{\mu 0}\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}+\frac{1}{2}g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}+\frac{x_{\bm{i}}}{t-1}g^{{\bm{i}}\mu}\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}

and the bulk terms are given by

(A.7) B\displaystyle B =(μq)(gμνν𝐖t𝐖)+12(tq)(gμνμ𝐖ν𝐖)\displaystyle=-(\partial_{\mu}q)\left(g^{\mu\nu}\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}\right)+\frac{1}{2}(\partial_{t}q)\left(g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}\right)
(A.8) C\displaystyle C =(μHμν)μ𝐖ν𝐖+12(tHμν)μ𝐖ν𝐖.\displaystyle=-(\partial_{\mu}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}+\frac{1}{2}(\partial_{t}H^{\mu\nu})\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}.

We have

ecurvΣ=12((t𝐖)2+|x𝐖|2+(y𝐖)2)+O(H|𝐖|2),e^{curv}_{\Sigma}=\frac{1}{2}\left((\partial_{t}\mathbf{W})^{2}+|\nabla_{x}\mathbf{W}|^{2}+(\partial_{y}\mathbf{W})^{2}\right)+O\left(H|\nabla\mathbf{W}|^{2}\right),

so with the hypothesis |H|1100|H|\leq\frac{1}{100} we easily obtain

14((t𝐖)2+|x𝐖|2+(y𝐖)2)ecurvΣ4((t𝐖)2+|𝐖x|2+(y𝐖)2).\frac{1}{4}\left((\partial_{t}\mathbf{W})^{2}+|\nabla_{x}\mathbf{W}|^{2}+(\partial_{y}\mathbf{W})^{2}\right)\leq e^{curv}_{\Sigma}\leq 4\left((\partial_{t}\mathbf{W})^{2}+|\nabla\mathbf{W}_{x}|^{2}+(\partial_{y}\mathbf{W})^{2}\right).

We have to be a little more careful with ecurv~e^{curv}_{\tilde{\mathscr{H}}}. We have

ecurv~=\displaystyle e^{curv}_{\tilde{\mathscr{H}}}= 12((t𝐖)2+|x𝐖|2+(y𝐖)2)+rt1r𝐖t𝐖14HLL(t𝐖)2\displaystyle\frac{1}{2}\left((\partial_{t}\mathbf{W})^{2}+|\nabla_{x}\mathbf{W}|^{2}+(\partial_{y}\mathbf{W})^{2}\right)+\frac{r}{t-1}\partial_{r}\mathbf{W}\partial_{t}\mathbf{W}-\frac{1}{4}H_{LL}(\partial_{t}\mathbf{W})^{2}
+O(H𝐖¯~𝐖)+(1rt1)O(H|𝐖|2)+O(H|~¯𝐖|2)\displaystyle+O(H\cdot\partial\mathbf{W}\cdot\tilde{\underline{\partial}}\mathbf{W})+\left(1-\frac{r}{t-1}\right)O(H|\nabla\mathbf{W}|^{2})+O(H|\underline{\tilde{\nabla}}\mathbf{W}|^{2})
=\displaystyle= 12(1(t1)2(t𝐖)2+𝒊=13(𝒊𝐖+x𝒊t1t𝐖)2+(y𝐖)2)14HLL(t𝐖)2\displaystyle\frac{1}{2}\left(\frac{1}{(t-1)^{2}}(\partial_{t}\mathbf{W})^{2}+\sum_{{\bm{i}}=1}^{3}\left(\partial_{\bm{i}}\mathbf{W}+\frac{x_{\bm{i}}}{t-1}\partial_{t}\mathbf{W}\right)^{2}+(\partial_{y}\mathbf{W})^{2}\right)-\frac{1}{4}H_{LL}(\partial_{t}\mathbf{W})^{2}
+O(H𝐖¯~𝐖)+(1rt1)O(H|𝐖|2)+O(H|~¯𝐖|2)\displaystyle+O(H\cdot\partial\mathbf{W}\cdot\tilde{\underline{\partial}}\mathbf{W})+\left(1-\frac{r}{t-1}\right)O(H|\nabla\mathbf{W}|^{2})+O(H|\underline{\tilde{\nabla}}\mathbf{W}|^{2})

We note that on \mathscr{H} we have (t1)2=1+r2(t-1)^{2}=1+r^{2}. Using the decomposition (1.12) of HH we write

(12(t1)214HLL)(t𝐖)2=(12(1+r2)+χ(rt)χ(r)M2r14H1LL)(t𝐖)2\left(\frac{1}{2(t-1)^{2}}-\frac{1}{4}H_{LL}\right)(\partial_{t}\mathbf{W})^{2}=\left(\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}-\frac{1}{4}H^{1}_{LL}\right)(\partial_{t}\mathbf{W})^{2}

so that

(12(t1)214HLL)(t𝐖)2+O(H𝐖¯𝐖)+(1rt1)O(H|𝐖|2)\displaystyle\left(\frac{1}{2(t-1)^{2}}-\frac{1}{4}H_{LL}\right)(\partial_{t}\mathbf{W})^{2}+O(H\cdot\partial\mathbf{W}\cdot\underline{\partial}\mathbf{W})+\left(1-\frac{r}{t-1}\right)O(H|\nabla\mathbf{W}|^{2})
=(12(1+r2)+χ(rt)χ(r)M2r+O(H1LL)+O(ϵ12|H|2))(t𝐖)2\displaystyle=\left(\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}+O(H^{1}_{LL})+O(\epsilon^{-\frac{1}{2}}|H|^{2})\right)(\partial_{t}\mathbf{W})^{2}
+(1rt1)O(H(𝐖)2)+O(ϵ12|¯𝐖𝐖|2).\displaystyle+\left(1-\frac{r}{t-1}\right)O(H(\partial\mathbf{W})^{2})+O(\epsilon^{\frac{1}{2}}|\underline{\nabla}\mathbf{W}\nabla\mathbf{W}|^{2}).

Under the hypothesis

|H1LL|ϵ(1+t+r)1+δ|H^{1}_{LL}|\lesssim\frac{\epsilon}{(1+t+r)^{1+\delta}}

we obtain that for not too large values of rr (e.g. r1/(2ϵ)r\ll 1/(2\epsilon)), H1LLH^{1}_{LL} is small in front of 12(1+r2)\frac{1}{2(1+r^{2})}, while for r1/(2ϵ)r\gtrsim 1/(2\epsilon) it is small compared to the then dominant term M2r\frac{M}{2r}.

Under the hypothesis on HH we obtain

|h1LL+ϵ12|H|2|ϵ(1+r)1δ.|h^{1}_{LL}+\epsilon^{-\frac{1}{2}}|H|^{2}|\lesssim\frac{\epsilon}{(1+r)^{-1-\delta}}.

Consequently for not too large values of rr (e.g. r1/(2ϵ)r\ll 1/(2\epsilon)) we have that

|h1LL+ϵ12|H|2|1100(1+r2);|h^{1}_{LL}+\epsilon^{-\frac{1}{2}}|H|^{2}|\leq\frac{1}{100(1+r^{2})};

on the other hand, when r1/(2ϵ)r\gtrsim 1/(2\epsilon) the dominant term is M/(2r)M/(2r) and for ϵ\epsilon sufficiently small

|h1LL+ϵ12|H|2|M100r|h^{1}_{LL}+\epsilon^{-\frac{1}{2}}|H|^{2}|\leq\frac{M}{100r}

Consequently, we can bound

14((12(1+r2)+χ(rt)χ(r)M2r)|t𝐖|2+|~¯𝐖|2)ecurv4((12(1+r2)+χ(rt)χ(r)M2r)|t𝐖|2+|~¯𝐖|2).\frac{1}{4}\left(\left(\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\right)|\partial_{t}\mathbf{W}|^{2}+|\underline{\tilde{\nabla}}\mathbf{W}|^{2}\right)\\ \leq e^{curv}_{\mathscr{H}}\leq 4\left(\left(\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\right)|\partial_{t}\mathbf{W}|^{2}+|\underline{\tilde{\nabla}}\mathbf{W}|^{2}\right).

Finally, a simple computation shows that

B=|L𝐖|2+|∇̸𝐖|2+12Hμνμ𝐖ν𝐖+(H0ν+x𝒊rH𝒊ν)ν𝐖t𝐖B=|L\mathbf{W}|^{2}+|\not{\nabla}\mathbf{W}|^{2}+\frac{1}{2}H^{\mu\nu}\partial_{\mu}\mathbf{W}\cdot\partial_{\nu}\mathbf{W}+\Big{(}-H^{0\nu}+\frac{x^{\bm{i}}}{r}H^{{\bm{i}}\nu}\Big{)}\partial_{\nu}\mathbf{W}\partial_{t}\mathbf{W}

Proposition A.2 (Energy inequality on hyperboloids).

Let 𝐖\mathbf{W} be a solution of (A.1) and Ei(s,𝐖)E^{\text{i}}(s,\mathbf{W}) be the energy functional defined in (4.1). We assume that HH satisfies the same hypothesis of proposition A.1 For any 2<s1<s22<s_{1}<s_{2}, let ~s1s2\tilde{\mathscr{H}}_{s_{1}s_{2}} denote the portion of ~\tilde{\mathscr{H}} bounded by the hyperboloids si\mathscr{H}_{s_{i}} with i=1,2i=1,2. We have the following inequality

Ei(s2,𝐖)\displaystyle E^{\text{i}}(s_{2},\mathbf{W}) Ei(s1,𝐖)+~s1s2[12(1+r2)+χ(rt)χ(r)M2r]|t𝐖|2+|~¯𝐖|2dxdy\displaystyle\lesssim E^{\text{i}}(s_{1},\mathbf{W})+\int_{\tilde{\mathscr{H}}_{s_{1}s_{2}}}\Big{[}\frac{1}{2(1+r^{2})}+\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{2r}\Big{]}|\partial_{t}\mathbf{W}|^{2}+|\underline{\tilde{\nabla}}\mathbf{W}|^{2}dxdy
+[s1,s2]|(𝐅+μHμνσ𝐖)t𝐖|+|tHμνμ𝐖ν𝐖|dtdxdy.\displaystyle+\iint_{\mathscr{H}_{[s_{1},s_{2}]}}|(\mathbf{F}+\partial_{\mu}H^{\mu\nu}\,\partial_{\sigma}\mathbf{W})\partial_{t}\mathbf{W}|+|\partial_{t}H^{\mu\nu}\,\partial_{\mu}\mathbf{W}\,\partial_{\nu}\mathbf{W}|\,dtdxdy.

The implicit constant in the above inequality is a universal constant.
An analogue inequality holds true for solutions 𝐖\mathbf{W} to (A.1) on 1+3{\mathbb{R}}^{1+3}.

Proof.

The proof is analogous to that of proposition A.1 except that we integrate (A.4) with w1w\equiv 1 in the portion of interior region bounded above by s2\mathscr{H}_{s_{2}}, below by s1\mathscr{H}_{s_{1}} and laterally by ~s1s2\tilde{\mathscr{H}}_{s_{1}s_{2}}, which we denote by [s1,s2]\mathscr{H}_{[s_{1},s_{2}]}. This yields

s2𝐞curvdxdy=s1𝐞curvdxdy+s1s2ecurvdxdy+[s1,s2](C𝐅)dtdxdy,\int_{\mathscr{H}_{s_{2}}}\mathbf{e}^{curv}_{\mathscr{H}}dxdy=\int_{\mathscr{H}_{s_{1}}}\mathbf{e}^{curv}_{\mathscr{H}}dxdy+\int_{\mathscr{H}_{s_{1}s_{2}}}e^{curv}_{\mathscr{H}}dxdy+\iint_{\mathscr{H}_{[s_{1},s_{2}]}}(C-\mathbf{F})dtdxdy,

where ecurve^{curv}_{\mathscr{H}} and CC have been defined in (A.6) and (A.8) respectively and

𝐞curv=gμ0μ𝐖t𝐖+12gμνμ𝐖ν𝐖+x𝒊tg𝒊μμ𝐖t𝐖.\mathbf{e}^{curv}_{\mathscr{H}}=-g^{\mu 0}\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}+\frac{1}{2}g^{\mu\nu}\partial_{\mu}\mathbf{W}\partial_{\nu}\mathbf{W}+\frac{x_{\bm{i}}}{t}g^{{\bm{i}}\mu}\partial_{\mu}\mathbf{W}\partial_{t}\mathbf{W}.

In the region [s1,s2]\mathscr{H}_{[s_{1},s_{2}]} we have

14(s2t2|t𝐖|2+|¯𝐖|2)𝐞curv4(s2t2|t𝐖|2+|¯𝐖|2).\frac{1}{4}\left(\frac{s^{2}}{t^{2}}|\partial_{t}\mathbf{W}|^{2}+|\underline{\nabla}\mathbf{W}|^{2}\right)\leq\mathbf{e}^{curv}_{\mathscr{H}}\leq 4\left(\frac{s^{2}}{t^{2}}|\partial_{t}\mathbf{W}|^{2}+|\underline{\nabla}\mathbf{W}|^{2}\right).

In fact, we have that rt1r\leq t-1 and the mass term can be absorbed in the following way

χ(rt)χ(r)Mr(tr)(t+r)100(t+r)2=s2100t2.\chi\left(\frac{r}{t}\right)\chi(r)\frac{M}{r}\leq\frac{(t-r)(t+r)}{100(t+r)^{2}}=\frac{s^{2}}{100t^{2}}.

Appendix B Sobolev and Hardy inequalities

We start by listing some weighted inequalities that are used in section 3. Their proofs can be found in Huneau-Stingo [21].

Lemma B.1 (Weighted Sobolev inequalities).

Let β\beta\in\mathbb{R}. For any sufficiently smooth function uu we have the following inequalities

(B.1) supΣet(2+rt)2βr2|u(t,x,y)|2Σet(2+rt)1+2β(rZ2u)2+(2+rt)2β1(Z2u)2dxdy,\sup_{\Sigma^{\text{e}}_{t}}\,(2+r-t)^{2\beta}r^{2}|u(t,x,y)|^{2}\\ \lesssim\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\beta}(\partial_{r}Z^{\leq 2}u)^{2}+(2+r-t)^{2\beta-1}(Z^{\leq 2}u)^{2}\,dxdy,
(B.2) supΣet(2+rt)2βr2|u(t,x,y)|2Σet(2+rt)2β((rZ2u)2+(Z2u)2)dxdy,\sup_{\Sigma^{\text{e}}_{t}}\,(2+r-t)^{2\beta}r^{2}|u(t,x,y)|^{2}\lesssim\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{2\beta}\Big{(}(\partial_{r}Z^{\leq 2}u)^{2}+(Z^{\leq 2}u)^{2}\Big{)}dxdy,
(B.3) supΣet(2+rt)2βr2u(t,r)2L2(𝕊2×𝕊1)Σet(2+rt)1+2β(ru)2+(2+rt)1+2βu2dxdy.\begin{split}&\sup_{\Sigma^{\text{e}}_{t}}\,(2+r-t)^{2\beta}r^{2}\|u(t,r)\|^{2}_{L^{2}(\mathbb{S}^{2}\times\mathbb{S}^{1})}\lesssim\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{1+2\beta}(\partial_{r}u)^{2}+(2+r-t)^{-1+2\beta}u^{2}\,dxdy.\end{split}
Lemma B.2 (Weighted Hardy inequality).

Let β>1\beta>-1. For any sufficiently regular function uu for which the left-hand side of the following inequality is finite we have

(B.4) Σet(2+rt)βu2dxdyΣet(2+rt)β+2(u)2dxdy.\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{\beta}u^{2}dxdy\lesssim\iint_{\Sigma^{\text{e}}_{t}}(2+r-t)^{\beta+2}(\partial u)^{2}dxdy.
Corollary B.3.

Let β>0\beta>0. For any sufficiently regular function uu we have the following inequalities

(B.5) (2+rt)βr|u(t,x,y)|(2+rt)1/2+βZ2u(t)L2(Σet)\displaystyle(2+r-t)^{\beta}r|u(t,x,y)|\lesssim\|(2+r-t)^{1/2+\beta}\partial Z^{\leq 2}u(t)\|_{L^{2}(\Sigma^{\text{e}}_{t})}
(B.6) (2+rt)βru(t,r)L2(𝕊2×𝕊1)(2+rt)1/2+βu(t)L2(Σet)\displaystyle(2+r-t)^{\beta}r\|u(t,r)\|_{L^{2}({\mathbb{S}}^{2}\times{\mathbb{S}}^{1})}\lesssim\|(2+r-t)^{1/2+\beta}\partial u(t)\|_{L^{2}(\Sigma^{\text{e}}_{t})}
Proof.

Inequality (B.5) (resp. (B.6)) is a straight consequence of the combination of (B.1) (resp. (B.3)) and (B.4). ∎

Below are some Sobolev and Hardy inequalities that are useful in section 4. Lemma B.4 is standard while lemma B.5 is a simple adaptation of a result in [18]. The result of lemma B.7 can be also obtained with small modifications from the one in [40].

Lemma B.4.

For any sufficiently smooth function uu we have the following Sobolev inequality

uLp(s)¯u323pL2(s)u3p12L2(s)+s(323p)uL2(s),2p6\|u\|_{L^{p}(\mathscr{H}_{s})}\lesssim\|\underline{\nabla}u\|^{\frac{3}{2}-\frac{3}{p}}_{L^{2}(\mathscr{H}_{s})}\|u\|^{\frac{3}{p}-\frac{1}{2}}_{L^{2}(\mathscr{H}_{s})}+s^{-\big{(}\frac{3}{2}-\frac{3}{p}\big{)}}\|u\|_{L^{2}(\mathscr{H}_{s})},\quad 2\leq p\leq 6

as well as the trace inequality

uL4(Ss,r)¯uL2(s)+s1uL2(s).\|u\|_{L^{4}(S_{s,r})}\lesssim\|\underline{\nabla}u\|_{L^{2}(\mathscr{H}_{s})}+s^{-1}\|u\|_{L^{2}(\mathscr{H}_{s})}.
Lemma B.5.

Let B={Ω0j:j=1,2,3}B=\{\Omega_{0j}:j=1,2,3\}. For any sufficiently smooth function u=u(t,x)u=u(t,x) we have

sups|t32u|B2uL2x(s).\sup_{\mathscr{H}_{s}}|t^{\frac{3}{2}}u|\lesssim\|B^{\leq 2}u\|_{L^{2}_{x}(\mathscr{H}_{s})}.
Lemma B.6.

Let s>0s>0, rs:=max{r|Srs}r_{s}:=\max\{r\,|\,S_{r}\subset\mathscr{H}_{s}\} and ts=s2+rst_{s}=\sqrt{s^{2}+r_{s}}. For any sufficiently smooth function u=u(t,x)u=u(t,x) we have that

(B.7) r1uL2(s)¯uL2(s)+u(ts)L2(Σts)\|r^{-1}u\|_{L^{2}(\mathscr{H}_{s})}\lesssim\|\underline{\partial}u\|_{L^{2}(\mathscr{H}_{s})}+\|\partial u(t_{s})\|_{L^{2}(\Sigma_{t_{s}})}
Proof.

It is a straightforward consequence of the classical Hardy inequality applied to

v(x)={u(s2+r2,x),if |x|<rsu(ts,x),if |x|>rs.v(x)=\begin{cases}u(\sqrt{s^{2}+r^{2}},x),\quad&\text{if }|x|<r_{s}\\ u(t_{s},x),\quad&\text{if }|x|>r_{s}.\end{cases}

Lemma B.7.

Let 0α20\leq\alpha\leq 2, 1+μ>01+\mu>0 and γ>0\gamma>0. For any function u𝒞0([0,))u\in\mathscr{C}^{\infty}_{0}([0,\infty)), any arbitrary time t>0t>0 and s>0s>0 there exists a constant CC, depending on a lower bound for γ\gamma and 1+μ1+\mu, such that

(B.8) r(s,t)tu2(1+tr)2+μr2dr(1+t+r)α+tu2(1+rt)1γr2dr(1+t+r)α\displaystyle\int_{r(s,t)}^{t}\frac{u^{2}}{(1+t-r)^{2+\mu}}\,\frac{r^{2}dr}{(1+t+r)^{\alpha}}+\int_{t}^{\infty}\frac{u^{2}}{(1+r-t)^{1-\gamma}}\frac{r^{2}dr}{(1+t+r)^{\alpha}}
Cr(s,t)t|ru|2(1+tr)μr2dr(1+t+r)α+Ct|ru|2(1+rt)1+γ(1+t+r)αr2dr\displaystyle\leq C\int_{r(s,t)}^{t}\frac{|\partial_{r}u|^{2}}{(1+t-r)^{\mu}}\frac{r^{2}dr}{(1+t+r)^{\alpha}}\,+C\int_{t}^{\infty}|\partial_{r}u|^{2}\frac{(1+r-t)^{1+\gamma}}{(1+t+r)^{\alpha}}\ r^{2}dr

where r(s,t)=(t2s2)+r(s,t)=\sqrt{(t^{2}-s^{2})^{+}}.

Corollary B.8.

Under the same assumptions of Lemma B.7, we have that

s0ts𝒞t|u|2(1+tr)2+μdxdt(1+t+r)αs0sτ|ru|2(1+t(τ)r)μ(1+t(τ)+r)αdxdτ+s0tsΣet|ru|2(1+|rt|)1+γ(1+t+r)αdxdt\int_{s_{0}}^{t_{s}}\int_{\mathscr{C}_{t}}\frac{|u|^{2}}{(1+t-r)^{2+\mu}}\frac{dxdt}{(1+t+r)^{\alpha}}\\ \lesssim\int_{s_{0}}^{s}\int_{\mathscr{H}_{\tau}}\frac{|\partial_{r}u|^{2}}{(1+t(\tau)-r)^{\mu}(1+t(\tau)+r)^{\alpha}}dxd\tau+\int_{s_{0}}^{t_{s}}\int_{\Sigma^{\text{e}}_{t}}|\partial_{r}u|^{2}\frac{(1+|r-t|)^{1+\gamma}}{(1+t+r)^{\alpha}}dxdt
Proof.

The proof is a simple application of inequality (B.8) and of a change of coordinates. ∎

References

  • [1] S. Alinhac. Semilinear hyperbolic systems with blowup at infinity. Indiana Univ. Math. J., 55(3):1209–1232, 2006.
  • [2] L. Andersson, P. Blue, Z. Wyatt, and S.-T. Yau. Global stability of spacetimes with supersymmetric compactifications. Preprint, arXiv:2006.00824v1, 2020.
  • [3] F. Asakura. Existence of a global solution to a semilinear wave equation with slowly decreasing initial data in three space dimensions. Comm. Partial Differential Equations, 11(13):1459–1487, 1986.
  • [4] A. Bachelot. Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon. Ann. Inst. H. Poincaré Phys. Théor., 48(4):387–422, 1988.
  • [5] L. Bieri and N. Zipser. Extensions of the stability theorem of the Minkowski space in general relativity, volume 45 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2009.
  • [6] L. Bigorgne, D. Fajman, J. Joudioux, J. Smulevici, and M. Thaller. Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter. Arch. Ration. Mech. Anal., 242(1):1–147, 2021.
  • [7] V. Branding, D. Fajman, and K. Kröncke. Stable cosmological kaluza–klein spacetimes. Communications in Mathematical Physics, 368(3):1087–1120, 2019.
  • [8] Y. Choquet-Bruhat. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math., 88:141–225, 1952.
  • [9] Y. Choquet-Bruhat, P. T. Chruściel, and J. Loizelet. Global solutions of the Einstein-Maxwell equations in higher dimensions. Classical Quantum Gravity, 23(24):7383–7394, 2006.
  • [10] Y. Choquet-Bruhat and R. Geroch. Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys., 14:329–335, 1969.
  • [11] D. Christodoulou and S. Klainerman. The global nonlinear stability of the Minkowski space, volume 41 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.
  • [12] X. Dai. A positive mass theorem for spaces with asymptotic SUSY compactification. Comm. Math. Phys., 244(2):335–345, 2004.
  • [13] S. Dong, P. G. LeFloch, and Z. Wyatt. Global evolution of the U(1)\rm U(1) Higgs Boson: nonlinear stability and uniform energy bounds. Ann. Henri Poincaré, 22(3):677–713, 2021.
  • [14] S. Dong and Z. Wyatt. Stability of a coupled wave-Klein-Gordon system with quadratic nonlinearities. J. Differ. Equations, 269(9):7470–7497, 2020.
  • [15] S. Dong and Z. Wyatt. Two dimensional wave–Klein-Gordon equations with semilinear nonlinearities. Preprint, 2020.
  • [16] B. Ettinger. Well-posedness of the equation for the three-form field in eleven-dimensional supergravity. Trans. Amer. Math. Soc., 367(2):887–910, 2015.
  • [17] D. Fajman, J. Joudioux, and J. Smulevici. The stability of the Minkowski space for the Einstein-Vlasov system. Anal. PDE, 14(2):425–531, 2021.
  • [18] A. Fang, Q. Wang, and S. Yang. Global solution for massive Maxwell-Klein-Gordon equations with large Maxwell field. Ann. PDE, 7(1):Paper No. 3, 69, 2021.
  • [19] V. Georgiev. Global solution of the system of wave and Klein-Gordon equations. Math. Z., 203(4):683–698, 1990.
  • [20] P. Hintz and A. Vasy. Stability of Minkowski space and polyhomogeneity of the metric. Ann. PDE, 6(1):Paper No. 2, 146, 2020.
  • [21] C. Huneau and A. Stingo. Global well-posedness for a system of quasilinear wave equations on a product space. Preprint, arXiv:2110.13982. To appear in Analysis & PDE, 2021.
  • [22] C. Huneau and C. Vâlcu. Einstein constraint equations for Kaluza-Klein spacetimes. Preprint, arXiv:2111.14395, 2021.
  • [23] M. Ifrim and A. Stingo. Almost global well-posedness for quasilinear strongly coupled wav-Klein-Gordon systems in two space dimensions. Preprint, arXiv:1910.12673v1, 2019.
  • [24] A. D. Ionescu and B. Pausader. On the global regularity for a wave-Klein-Gordon coupled system. Acta Math. Sin. (Engl. Ser.), 35(6):933–986, 2019.
  • [25] A. D. Ionescu and B. Pausader. The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, volume 213 of Ann. Math. Stud. Princeton, NJ: Princeton University Press, 2022.
  • [26] T. Kaluza. Zum Unitätsproblem der Physik. Int. J. Mod. Phys. D, 27(14):1870001, 2018.
  • [27] S. Katayama. Global existence for coupled systems of nonlinear wave and Klein-Gordon equations in three space dimensions. Math. Z., 270(1-2):487–513, 2012.
  • [28] S. Katayama and K. Yokoyama. Global small amplitude solutions to systems of nonlinear wave equations with multiple speeds. Osaka J. Math., 43(2):283–326, 2006.
  • [29] S. Klainerman. Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math., 38(5):631–641, 1985.
  • [30] S. Klainerman. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38(3):321–332, 1985.
  • [31] S. Klainerman. The null condition and global existence to nonlinear wave equations. In Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pages 293–326. Amer. Math. Soc., Providence, RI, 1986.
  • [32] S. Klainerman and F. Nicolò. The evolution problem in general relativity, volume 25 of Progress in Mathematical Physics. Birkhäuser Boston, Inc., Boston, MA, 2003.
  • [33] S. Klainerman, Q. Wang, and S. Yang. Global solution for massive Maxwell-Klein-Gordon equations. Comm. Pure Appl. Math., 73(1):63–109, 2020.
  • [34] O. Klein. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys., 37:895–906, 1926.
  • [35] P. LeFloch and M. Yue. Nonlinear stability of self-gravitating massive fields. Preprint, arXiv:1712.10045, 2022.
  • [36] P. G. LeFloch and Y. Ma. The hyperboloidal foliation method, volume 2 of Series in Applied and Computational Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.
  • [37] P. G. LeFloch and Y. Ma. The global nonlinear stability of minkowski space for self-gravitating massive fields. Communications in Mathematical Physics, 346(2):603–665, 2016.
  • [38] H. Lindblad and I. Rodnianski. The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris, 336(11):901–906, 2003.
  • [39] H. Lindblad and I. Rodnianski. Global existence for the Einstein vacuum equations in wave coordinates. Comm. Math. Phys., 256(1):43–110, 2005.
  • [40] H. Lindblad and I. Rodnianski. The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 171(3):1401–1477, 2010.
  • [41] H. Lindblad and M. Taylor. Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge. Arch. Ration. Mech. Anal., 235(1):517–633, 2020.
  • [42] Y. Ma. Global solutions of non-linear wave-Klein-Gordon system in two space dimension: semi-linear interactions. Preprint, arXiv:1712.05315, 2017.
  • [43] Y. Ma. Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension: completion of the proof. J. Hyperbolic Differ. Equ., 14(4):627–670, 2017.
  • [44] Y. Ma. Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension: technical tools. J. Hyperbolic Differ. Equ., 14(4):591–625, 2017.
  • [45] Y. Ma. Global solutions of nonlinear wave-Klein-Gordon system in one space dimension. Nonlinear Anal., 191:111641, 57, 2020.
  • [46] Y. Ma. Global solutions of nonlinear wave-Klein-Gordon system in two spatial dimensions: a prototype of strong coupling case. J. Differential Equations, 287:236–294, 2021.
  • [47] T. Ozawa, K. Tsutaya, and Y. Tsutsumi. Normal form and global solutions for the Klein-Gordon-Zakharov equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(4):459–503, 1995.
  • [48] C. Pope. Lectures on Kaluza-Klein. http://people.tamu.edu/ c-pope/ihplec.pdf.
  • [49] H. Ringström. The Cauchy problem in general relativity. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich, 2009.
  • [50] J. Speck. The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates. Anal. PDE, 7(4):771–901, 2014.
  • [51] A. Stingo. Global existence of small amplitude solutions for a model quadratic quasi-linear coupled wave-Klein-Gordon system in two space dimension, with mildly decaying Cauchy data. To appear in Memoirs of the AMS.
  • [52] D. Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Amer. Math. Soc., 15(2):419–442, 2002.
  • [53] K. Tsutaya. Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations. Nonlinear Anal., 27(12):1373–1380, 1996.
  • [54] Y. Tsutsumi. Global solutions for the Dirac-Proca equations with small initial data in 3+13+1 space time dimensions. J. Math. Anal. Appl., 278(2):485–499, 2003.
  • [55] Y. Tsutsumi. Stability of constant equilibrium for the Maxwell-Higgs equations. Funkcial. Ekvac., 46(1):41–62, 2003.
  • [56] J. Wang. Nonlinear wave equation in a cosmological Kaluza Klein spacetime. J. Math. Phys., 62(6):Paper No. 062504, 15, 2021.
  • [57] Q. Wang. Global existence for the Einstein equations with massive scalar fields. 2015. Lecture at the workshop Mathematical Problems in General Relativity.
  • [58] Q. Wang. An intrinsic hyperboloid approach for Einstein Klein-Gordon equations. J. Differential Geom., 115(1):27–109, 2020.
  • [59] E. Witten. Instability of the Kaluza-Klein vacuum. Nuclear Physics B, 195(3):481 – 492, 1982.
  • [60] Z. Wyatt. The weak null condition and Kaluza-Klein spacetimes. J. Hyperbolic Differ. Equ., 15(2):219–258, 2018.