This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The integer point transform as a complete invariant

Sinai Robins
Abstract

The integer point transform σ𝒫\sigma_{\mathcal{P}} is an important invariant of a rational polytope 𝒫\mathcal{P}, and here we show that it is a complete invariant. We prove that it is only necessary to evaluate σ𝒫\sigma_{\mathcal{P}} at one algebraic point in order to uniquely determine 𝒫\mathcal{P}, by employing the Lindemann-Weierstrass theorem. Similarly, we prove that it is only necessary to evaluate the Fourier transform of a rational polytope 𝒫\mathcal{P} at a single algebraic point, in order to uniquely determine 𝒫\mathcal{P}. We prove that identical uniqueness results also hold for integer cones.

In addition, by relating the integer point transform to finite Fourier transforms, we show that a finite number of integer point evaluations of σ𝒫\sigma_{\mathcal{P}} suffice in order to uniquely determine 𝒫\mathcal{P}. We also give an equivalent condition for central symmetry of a finite point set, in terms of the integer point transform, and prove some facts about its local maxima. Most of the results are proven for arbitrary finite sets of integer points in d\mathbb{R}^{d}.

keywords:
Integer point transform, integer points, rational polytope, lattices, complete invariant, finite Fourier analysis, Lindemann-Weierstrass theorem
\authorinfo

[Sinai Robins]Instituto de Matemática e Estatística, Universidade de São Paulo
Rua do Matão 1010, 05508-090 São Paulo/SP, Brazilsrobins@ime.usp.br
The author gratefully acknowledges the support of FAPESP 2020/08343-8 \mscAMS classification 52C07, 11H06, 11P21 \VOLUME31 \NUMBER2 \YEAR2023 \DOIhttps://doi.org/10.46298/cm.11218

1 Introduction

A polytope 𝒫d\mathcal{P}\subset\mathbb{R}^{d} is called an integer polytope (respectively, a rational polytope) if the coordinates of all its vertices are integers (respectively, rationals). Given a rational polytope 𝒫d\mathcal{P}\subset\mathbb{R}^{d}, we define its integer point transform by

σ𝒫(ξ):=nd𝒫e2πin,ξ,\sigma_{\mathcal{P}}(\xi):=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\langle n,\xi\rangle}, (1)

for all ξd\xi\in\mathbb{R}^{d}. Throughout, the word polytope refers to a convex set, by definition. We observe that more generally, Definition (1) makes sense for an arbitrary finite set of integer points SdS\subset\mathbb{Z}^{d}:

σS(ξ):=nSe2πin,ξ.\sigma_{S}(\xi):=\sum_{n\in S}e^{2\pi i\langle n,\xi\rangle}. (2)

Indeed, we will often develop general principles for any finite set of integer points in d\mathbb{R}^{d}, and then later pass to polytopes, using the assumption of convexity.

One of the main utilities of the integer point transform is the special evaluation at the origin:

σ𝒫(0):=nd𝒫1=|d𝒫|,\sigma_{\mathcal{P}}(0):=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}1=\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|, (3)

the number of integer points in 𝒫\mathcal{P}. So we see that if 𝒫\mathcal{P} is a polytope, then the integer point transform discretizes the volume of 𝒫\mathcal{P} in this sense. In fact, the integer point transform was so named because, by using a lattice, it discretizes the Fourier transform of 𝒫\mathcal{P}, which is defined by 𝒫e2πiξ,x𝑑x\int_{\mathcal{P}}e^{2\pi i\langle\xi,x\rangle}dx (see [7], for example). We already know from (3) that if we have any two rational polytopes 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d}, then σ𝒫(0)=σ𝒬(0)|𝒫d|=|𝒬d|\sigma_{\mathcal{P}}(0)=\sigma_{\mathcal{Q}}(0)\implies|\mathcal{P}\cap\mathbb{Z}^{d}|=|\mathcal{Q}\cap\mathbb{Z}^{d}|. But is it possible that knowledge of σ𝒫(ξ)\sigma_{\mathcal{P}}(\xi), for some finite collection of points ξd\xi\in\mathbb{R}^{d}, might help us to uniquely identify 𝒫\mathcal{P}? This is our main motivating question.

Historically, the importance of the integer point transform σ𝒫\sigma_{\mathcal{P}} for a rational polytope 𝒫\mathcal{P} surfaced naturally in combinatorial geometry, namely in Ehrhart’s theory of integer point enumeration in polytopes ([2][7]). In particular, Ehrhart’s main theorem follows quickly from Brion’s theorem, which enables us to write σ𝒫\sigma_{\mathcal{P}} as a finite linear combination of exponential-rational functions [7] (see Remark 4). The work of Fink, Mészáros, and Dizier [4] gives applications of integer point transforms to Schubert polynomials. The recent work of Katharina Jochemko [6] shows that the sequence of integer point transforms σkP+Q|k0{\sigma_{kP+Q}}\big{|}_{k\geq 0} satisfies a multivariate linear recursion, where 𝒫\mathcal{P} is an integer polytope, and QQ is any polytope. Here we do not assume knowledge of Ehrhart theory, and rather proceed from first principles.

The integer point transform (1) clearly lives on the torus - in other words, σ𝒫\sigma_{\mathcal{P}} is periodic on d\mathbb{R}^{d}, with a fundamental domain [0,1)d[0,1)^{d}. We will therefore often restrict attention to the torus, or equivalently to the half-open cube [0,1)d[0,1)^{d}.

It is elementary that given any positive integer NN, there are infinitely many distinct dd-dimensional integer polytopes 𝒫\mathcal{P} with |d𝒫|=N\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|=N. Even after we mod out by the action of the modular group GLd()GL_{d}(\mathbb{Z}), there are in general many (though finitely many) distinct integer polytopes 𝒫\mathcal{P} with |d𝒫|=N\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|=N. It is very natural to ask: “What extra information do we need in order to uniquely determine 𝒫\mathcal{P}?” To make this question more rigorous, we formulate it as follows.

Question 1.

Given any two integer polytopes 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d}, is there a finite set SdS\subset\mathbb{R}^{d} such that

σ𝒫(ξ)=σ𝒬(ξ) for all ξS𝒫=𝒬?\sigma_{\mathcal{P}}(\xi)=\sigma_{\mathcal{Q}}(\xi)\text{ for all }\xi\in S\iff\mathcal{P}=\mathcal{Q}?
Question 2.

More generally, given any two finite sets of integer points A,BdA,B\subset\mathbb{Z}^{d}, is there a finite set SdS\subset\mathbb{R}^{d} such that

σA(ξ)=σB(ξ) for all ξSA=B?\sigma_{A}(\xi)=\sigma_{B}(\xi)\text{ for all }\xi\in S\iff A=B?

We will answer both of these Questions in the affirmative. Somewhat surprisingly, it turns out that just one point suffices for both questions. We also prove a similar, but slightly weaker result, for rational polytopes (Theorem 1.1, part 3 below). Because the direction ()(\Longleftarrow) is trivial, it suffices to always prove the ()(\Longrightarrow) direction. Throughout the paper, we will use the special point

ξ:=1π(2,,pd)d,\xi^{*}:=\tfrac{1}{\pi}\left(\sqrt{2},\dots,\sqrt{p}_{d}\right)\in\mathbb{R}^{d}, (4)

where we have picked the first dd primes 2,3,5,7,pd2,3,5,7,\dots p_{d} to ensure that 2,,pd\sqrt{2},\dots,\sqrt{p}_{d} are algebraically independent over \mathbb{Q}, and therefore all integer linear combinations of the coordinates of ξ\xi^{*} are distinct.

Theorem 1.1.
  1. 1.

    Fix any two finite sets of integer points A,BdA,B\subset\mathbb{Z}^{d}. Then:

    σA(ξ)=σB(ξ)A=B.\sigma_{A}(\xi^{*})=\sigma_{B}(\xi^{*})\iff A=B.
  2. 2.

    Let 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d} be integer polytopes. Then:

    σ𝒫(ξ)=σ𝒬(ξ)𝒫=𝒬.\sigma_{\mathcal{P}}(\xi^{*})=\sigma_{\mathcal{Q}}(\xi^{*})\iff\mathcal{P}=\mathcal{Q}. (5)
  3. 3.

    Let 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d} be rational polytopes. Then:

    σk𝒫(ξ)=σk𝒬(ξ)𝒫=𝒬,\sigma_{k\mathcal{P}}(\xi^{*})=\sigma_{k\mathcal{Q}}(\xi^{*})\iff\mathcal{P}=\mathcal{Q}, (6)

    for any k>0k\in\mathbb{Z}_{>0} such that k𝒫k\mathcal{P} and k𝒬k\mathcal{Q} are both integer polytopes.

Proof 1.2.

We suppose that σA(ξ)=σB(ξ)\sigma_{A}(\xi^{*})=\sigma_{B}(\xi^{*}). Then we have:

0\displaystyle 0 =nAe2πin,ξnBe2πin,ξ\displaystyle=\sum_{n\in A}e^{2\pi i\langle n,\xi^{*}\rangle}-\sum_{n\in B}e^{2\pi i\langle n,\xi^{*}\rangle} (7)
=nAe2i(n12++ndpd)nBe2i(n12++ndpd).\displaystyle=\sum_{n\in A}e^{2i(n_{1}\sqrt{2}+\cdots+n_{d}\sqrt{p_{d}})}-\sum_{n\in B}e^{2i(n_{1}\sqrt{2}+\cdots+n_{d}\sqrt{p_{d}})}. (8)

To prove part 1, suppose to the contrary, that ABA\not=B. Then (8) gives us a finite nontrivial vanishing sum of an integer linear combination of exponentials, all of which have the form eαe^{\alpha}, with α\alpha algebraic. But this contradicts the celebrated Lindemann–Weierstrass theorem: if α1,,αn\alpha_{1},\dots,\alpha_{n} are distinct algebraic numbers, then eα1,,eαne^{\alpha_{1}},\dots,e^{\alpha_{n}} are algebraically independent over \mathbb{Q} ([1], Theorem 1.4).

To prove part 2, suppose that 𝒫\mathcal{P} and 𝒬\mathcal{Q} are integer polytopes. Part 1 applies to the two sets of integer points A:=𝒬dA:=\mathcal{Q}\cap\mathbb{Z}^{d} and B:=𝒫dB:=\mathcal{P}\cap\mathbb{Z}^{d}, and therefore 𝒬d=𝒫d\mathcal{Q}\cap\mathbb{Z}^{d}=\mathcal{P}\cap\mathbb{Z}^{d}. By invoking the very simple Lemma 2.1 below, we conclude that 𝒫=𝒬\mathcal{P}=\mathcal{Q}.

To prove part 3, suppose that 𝒫\mathcal{P} and 𝒬\mathcal{Q} are any rational polytopes that enjoy the hypothesis σk𝒫(ξ)=σk𝒬(ξ)\sigma_{k\mathcal{P}}(\xi^{*})=\sigma_{k\mathcal{Q}}(\xi^{*}). The positive integer dilate kk allows us to conclude that k𝒫k\mathcal{P} and k𝒬k\mathcal{Q} are both integer polytopes. By part 2, σk𝒫(ξ)=σk𝒬(ξ)k𝒫=k𝒬\sigma_{k\mathcal{P}}(\xi^{*})=\sigma_{k\mathcal{Q}}(\xi^{*})\implies k\mathcal{P}=k\mathcal{Q}, which in turn implies that 𝒫=𝒬\mathcal{P}=\mathcal{Q}.

We note that no assumption had to be made about the dimensions of 𝒫\mathcal{P} or 𝒬\mathcal{Q}. Furthermore, it is important to remark that the proof shows that more is true: we may pick any algebraic numbers in the exponents of our exponentials in equation (8), so in choosing ξ\xi^{*}, there is clearly a dense set of vectors to choose from.

2 Passing from finite point sets to polytopes

Let us start with a non-example, which will show the importance of convexity when passing from arbitrary sets of integer points in d\mathbb{Z}^{d} to the family of integer polytopes. Suppose we have two non-convex polytopes 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d}. It would be nice to say that if 𝒫d=𝒬d\mathcal{P}\cap\mathbb{Z}^{d}=\mathcal{Q}\cap\mathbb{Z}^{d}, then 𝒫=𝒬\mathcal{P}=\mathcal{Q}. Unfortunately, even in 2\mathbb{R}^{2} we have simple counterexamples, as Figure 1 shows.

Fortunately, we have the very easy fact (Lemma 2.1 below) that in the context of convex polytopes we do have such an implication, as follows.

Refer to caption
Figure 1: Bottom: a finite set of 55 integer points.  Top: two distinct, nonconvex polygons built on the same set of 55 integer points.
Lemma 2.1.

Let 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d} be two convex integer polyhedra.

If 𝒫d=𝒬d, then 𝒫=𝒬.\text{If }\mathcal{P}\cap\mathbb{Z}^{d}=\mathcal{Q}\cap\mathbb{Z}^{d},\text{ then }\mathcal{P}=\mathcal{Q}.
Proof 2.2.

Each vertex of 𝒫\mathcal{P} is an integer point, say vdv\in\mathbb{Z}^{d}, and is by assumption also a point of 𝒬\mathcal{Q}. Therefore, the convex hull of the vertices (extreme points) of 𝒫\mathcal{P} (which is 𝒫\mathcal{P} itself, using the convexity of 𝒫\mathcal{P}) must be contained in 𝒬\mathcal{Q}, using the convexity of 𝒬\mathcal{Q}. So we have 𝒫𝒬\mathcal{P}\subseteq\mathcal{Q}. By using an identical argument, we also have 𝒬𝒫\mathcal{Q}\subseteq\mathcal{P} and therefore 𝒫=𝒬\mathcal{P}=\mathcal{Q}.

We will use Lemma 2.1 repeatedly in the sequel, when moving from a formal result about finite sets of integer points to results about polyhedra (and in particular polytopes).

3 Some examples

Example 3.1.

Let 𝒫:=conv{(1,0),(1,0),(0,1)}\mathcal{P}:=\mathrm{conv}\{(-1,0),(1,0),(0,1)\}. Its integer point transform is

σ𝒫(ξ1,ξ2)=e2πi(ξ1)+e2πiξ1+e2πiξ2.\sigma_{\mathcal{P}}(\xi_{1},\xi_{2})=e^{2\pi i(-\xi_{1})}+e^{2\pi i\xi_{1}}+e^{2\pi i\xi_{2}}\in\mathbb{C}.

Evaluation at the special value ξ:=(2π,3π)\xi^{*}:=~{}\left(\tfrac{\sqrt{2}}{\pi},\tfrac{\sqrt{3}}{\pi}\right) gives us a unique ‘signature’ for this polygon 𝒫\mathcal{P}. Namely, Theorem 1.1 tells us that 𝒫\mathcal{P} is the only integer polygon associated to the special value σ𝒫(2π,3π)=ei22+2ei23\sigma_{\mathcal{P}}\left(\tfrac{\sqrt{2}}{\pi},\tfrac{\sqrt{3}}{\pi}\right)=e^{-i2\sqrt{2}}+2e^{i2\sqrt{3}}. \square

Refer to caption
Figure 2: The polygons 𝒫\mathcal{P} and 2𝒫2\mathcal{P}, of Example 3.2
Example 3.2.

Let 𝒫\mathcal{P} be the symmetric parallelogram whose vertices are given by

{(1,0),(1,1),(1,0),(1,1)},\{(1,0),(1,1),(-1,0),(-1,-1)\},

as in Figure 2. Its integer point transform is

σ𝒫(ξ1,ξ2)\displaystyle\sigma_{\mathcal{P}}(\xi_{1},\xi_{2}) =1+e2πi(ξ1)+e2πi(ξ1)+e2πi(ξ1+ξ2)+e2πi(ξ1ξ2)\displaystyle=1+e^{2\pi i(\xi_{1})}+e^{2\pi i(-\xi_{1})}+e^{2\pi i(\xi_{1}+\xi_{2})}+e^{2\pi i(-\xi_{1}-\xi_{2})}
=1+2cos(2πξ1)+2cos(2π(ξ1+ξ2)).\displaystyle=1+2\cos(2\pi\xi_{1})+2\cos(2\pi(\xi_{1}+\xi_{2})). \displaystyle\square
Example 3.3.

Let 𝒫\mathcal{P} be the integer tetrahedron in 3\mathbb{R}^{3} whose vertices are given by

(0,0,0),(1,1,0),(0,1,1),(1,0,1).(0,0,0),(1,1,0),(0,1,1),(1,0,1).

The integer point transform of 𝒫\mathcal{P} is

σ𝒫(ξ)=1+e2πi(ξ1+ξ2)+e2πi(ξ2+ξ3)+e2πi(ξ1+ξ3).\sigma_{\mathcal{P}}(\xi)=1+e^{2\pi i(\xi_{1}+\xi_{2})}+e^{2\pi i(\xi_{2}+\xi_{3})}+e^{2\pi i(\xi_{1}+\xi_{3})}.

In Example 5.8 of Section 5, we will use the same tetrahedron.

The graph belies a symmetry, as follows. If we replace any coordinate ξk\xi_{k} by 1ξk1-\xi_{k}, the integer point transform in this example stays invariant. For example, when k=1k=1:

σ𝒫(1ξ1,ξ2,ξ3,ξd)\displaystyle\sigma_{\mathcal{P}}(1-\xi_{1},\xi_{2},\xi_{3},\cdots\xi_{d}) =nd𝒫e2πi(n1(1ξ1)+n2ξ2+ndξd)\displaystyle=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\big{(}n_{1}(1-\xi_{1})+n_{2}\xi_{2}+\cdots n_{d}\xi_{d}\big{)}}
=nd𝒫e2πi(n1ξ1+n2ξ2+ndξd).\displaystyle=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\big{(}-n_{1}\xi_{1}+n_{2}\xi_{2}+\cdots n_{d}\xi_{d}\big{)}}. \displaystyle\square

4 The Fourier transform and integer point transform of a general polyhedron, as complete invariants

Here we extend Theorem 1.1 to show that the Fourier transform of a rational polytope 𝒫\mathcal{P} uniquely determines 𝒫\mathcal{P} by evaluating the Fourier transform at a single algebraic point. Given a dd-dimensional compact set SdS\subset\mathbb{R}^{d}, we define the continuous Fourier transform of SS by

(S)(ξ):=Se2πiξ,x𝑑x,\mathcal{F}(S)(\xi):=\int_{S}e^{-2\pi i\langle\xi,x\rangle}dx, (9)

for each ξd\xi\in\mathbb{R}^{d}. The present notation \mathcal{F} is used to distinguish the Fourier transform (9) from the notation that we used for the Fourier transform over a finite abelian group, namely G\mathcal{F}_{G}.

Theorem 4.1.

We are given two rational polytopes 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d}, and the algebraic point ξ\xi^{*} from (4). Then we have:

(1𝒫)(ξ)=(1𝒬)(ξ)𝒫=𝒬.\mathcal{F}(1_{\mathcal{P}})(\xi^{*})=\mathcal{F}(1_{\mathcal{Q}})(\xi^{*})\iff\mathcal{P}=\mathcal{Q}.
Proof 4.2.

We first recall Brion’s theorem ([7], Theorem 8.3):

𝒫e2πiu,ξ𝑑u=vVe2πiv,ξ(2πi)dj=1M(v)det𝒦j(v)k=1dwj,k(v),ξ,\int_{\mathcal{P}}e^{-2\pi i\langle u,\xi\rangle}\,du=\sum_{v\in V}\frac{e^{-2\pi i\langle v,\xi\rangle}}{(2\pi i)^{d}}\sum_{j=1}^{M(v)}\frac{\det\mathcal{K}_{j}(v)}{\prod_{k=1}^{d}\langle w_{j,k}(v),\xi\rangle},

for all ξd\xi\in\mathbb{R}^{d} such that none of the denominators vanish: k=1dwj,k(v),ξ0\prod_{k=1}^{d}\langle w_{j,k}(v),\xi\rangle\not=0. At each vertex v𝒫v\in\mathcal{P}, the vertex tangent cone 𝒦v\mathcal{K}_{v} is triangulated into simplicial cones, using the notation 𝒦v=𝒦1(v)𝒦M(v)(v)\mathcal{K}_{v}=\mathcal{K}_{1}(v)\cup\dots\cup\mathcal{K}_{M(v)}(v).

By assumption, all of the edge vectors wj,k(v)w_{j,k}(v) are integer vectors, the vertices vv are rational vectors (for all vertices of both 𝒫\mathcal{P} and 𝒬\mathcal{Q}), and all the determinants det𝒦j(v)\det\mathcal{K}_{j}(v) are polynomial functions of the vertices vv, and are therefore rational numbers. If we have (1𝒫)(ξ)=(1𝒬)(ξ)\mathcal{F}(1_{\mathcal{P}})(\xi^{*})=\mathcal{F}(1_{\mathcal{Q}})(\xi^{*}), then

vV(𝒫)e2πiv,ξ(2πi)dj=1M(v)det𝒦j(v)k=1dwj,k(v),ξ=vV(𝒬)e2πiv,ξ(2πi)dj=1M(v)det𝒦j(v)k=1dwj,k(v),ξ\sum_{v\in V(\mathcal{P})}\frac{e^{-2\pi i\langle v,\xi^{*}\rangle}}{(2\pi i)^{d}}\sum_{j=1}^{M(v)}\frac{\det\mathcal{K}_{j}(v)}{\prod_{k=1}^{d}\langle w_{j,k}(v),\xi^{*}\rangle}=\sum_{v\in V(\mathcal{Q})}\frac{e^{-2\pi i\langle v,\xi^{*}\rangle}}{(2\pi i)^{d}}\sum_{j=1}^{M(v)}\frac{\det\mathcal{K}_{j}(v)}{\prod_{k=1}^{d}\langle w_{j,k}(v),\xi^{*}\rangle}

holds, and this may be rewritten as

0=vV(𝒫)c𝒫(v,ξ)e2πiv,ξvV(𝒬)c𝒬(v,ξ)e2πiv,ξ,0=\sum_{v\in V(\mathcal{P})}\mathrm{c_{\mathcal{P}}}(v,\xi^{*})e^{-2\pi i\langle v,\xi^{*}\rangle}-\sum_{v\in V(\mathcal{Q})}\mathrm{c_{\mathcal{Q}}}(v,\xi^{*})e^{-2\pi i\langle v,\xi^{*}\rangle}, (10)

where the coefficients c𝒫(v,ξ)\mathrm{c_{\mathcal{P}}}(v,\xi^{*}) and c𝒬(v,ξ)\mathrm{c_{\mathcal{Q}}}(v,\xi^{*}) are polynomial functions of the coordinates of the rational vertices vv, with algebraic coefficients, due to the appearance of ξ\xi^{*}. Supposing that 𝒫𝒬\mathcal{P}\not=\mathcal{Q}, we have arrived at a nontrivial linear combination of exponentials of the form eα1,,eαne^{\alpha_{1}},\dots,e^{\alpha_{n}}, with algebraic coefficients, and with α1,,αn\alpha_{1},\dots,\alpha_{n} distinct algebraic numbers, by our choice of ξ\xi^{*}. But this contradicts the Lindemann–Weierstrass theorem ([1], Theorem 1.4).

5 Integer sublattices generated by the integer points in a polytope, and absolute maxima of integer point transforms

Let 𝒫d\mathcal{P}\subset\mathbb{R}^{d} be an integer polytope. We define

𝒫d\mathcal{L}_{\mathcal{P}}\subset\mathbb{Z}^{d}

to be the integer sublattice of d\mathbb{Z}^{d} that is generated by the integer span of all the points in |d𝒫||\mathbb{Z}^{d}\cap\mathcal{P}|. We’ll call 𝒫\mathcal{L}_{\mathcal{P}} the spanning lattice of the set 𝒫d\mathcal{P}\cap\mathbb{Z}^{d}. It is a trivial fact—perhaps as old as the hills themselves—that for 22-dimensional integer polygons, we always have 𝒫=2\mathcal{L}_{\mathcal{P}}=\mathbb{Z}^{2}. The proof is easy: we can always triangulate any integer polygon into unimodular triangles, and the vertices of any such unimodular triangle already generate 2\mathbb{Z}^{2}.

Whenever 𝒫=d\mathcal{L}_{\mathcal{P}}=\mathbb{Z}^{d}, 𝒫\mathcal{P} is called a spanning polytope. In dimensions d3d\geq 3, there are integer polytopes that are not spanning polytopes, because a unimodular triangulation is not always available for an arbitrary integer polytope.

Example 5.1.

Given any positive integer hh, the Reeve tetrahedron Th3T_{h}\subset\mathbb{R}^{3} has vertices (0,0,0),(1,0,0),(0,1,0),(1,1,h)\left(0,0,0\right),\left(1,0,0\right),\left(0,1,0\right),\left(1,1,h\right). It is an exercise that ThT_{h} is not a spanning polytope, for any h2h\geq 2. \square

In the recent work [5], Hofscheier, Katthän, and Nill develop an Ehrhart-type theory for spanning lattice polytopes. Here we may ask another natural question about the integer point transform:

Question 5.2.

Which values of ξd\xi\in\mathbb{R}^{d} give us the absolute maxima of |σ𝒫(ξ)|\left|\sigma_{\mathcal{P}}(\xi)\right|?

It turns out that the dual lattice 𝒫\mathcal{L}_{\mathcal{P}}^{*} comes in naturally here, and it satisfactorily answers Question 5.2.

Theorem 5.3.

For an integer polytope 𝒫d\mathcal{P}\subset\mathbb{R}^{d} that contains the origin, we have:

|σ𝒫(ξ)|=|d𝒫|ξ𝒫,\left|\sigma_{\mathcal{P}}(\xi)\right|=\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|\iff\xi\in\mathcal{L}_{\mathcal{P}}^{*},

the dual of the spanning lattice.

Proof 5.4.

The triangle inequality for complex numbers tells us that

|σ𝒫(ξ)|nd𝒫|e2πin,ξ|=nd𝒫1=|d𝒫|,\left|\sigma_{\mathcal{P}}(\xi)\right|\leq\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}\left|e^{2\pi i\langle n,\xi\rangle}\right|=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}1=\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|, (11)

for all ξd\xi\in\mathbb{R}^{d}. Let us fix ξd\xi\in\mathbb{R}^{d} such that |σ𝒫(ξ)|=|d𝒫|\left|\sigma_{\mathcal{P}}(\xi)\right|=\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|. By (11), the latter equality means

|nd𝒫e2πin,ξ|=nd𝒫|e2πin,ξ|,\left|\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\langle n,\xi\rangle}\right|=\sum_{n\in\mathbb{Z}^{d}\cap\mathcal{P}}\left|e^{2\pi i\langle n,\xi\rangle}\right|, (12)

which in turn occurs exactly when all of the complex numbers e2πin,ξe^{2\pi i\langle n,\xi\rangle} point in the same direction:

(12)\displaystyle\eqref{modsumeq} e2πin,ξ=e2πix0,ξ for some x0𝒫, and for all nd𝒫\displaystyle\iff e^{2\pi i\langle n,\xi\rangle}=e^{2\pi i\langle x_{0},\xi\rangle}\ \text{ for some }x_{0}\in\mathcal{P},\text{ and for all }n\in\mathbb{Z}^{d}\cap\mathcal{P} (13)
nx0,ξ for all nd𝒫.\displaystyle\iff\langle n-x_{0},\xi\rangle\in\mathbb{Z}\text{ for all }n\in\mathbb{Z}^{d}\cap\mathcal{P}. (14)

We recall that by definition 𝒫\mathcal{L}_{\mathcal{P}} is generated by the integer span of all nd𝒫n\in\mathbb{Z}^{d}\cap\mathcal{P}. So the condition (14) holds if and only if n,ξ\langle n,\xi\rangle\in\mathbb{Z} for all n𝒫n\in\mathcal{L}_{\mathcal{P}}, by the linearity of the inner product. By definition, this means that ξ𝒫\xi\in\mathcal{L}_{\mathcal{P}}^{*}, the dual lattice.

We notice that if replace the polytope 𝒫\mathcal{P} by any finite subset of integer points SdS\subset\mathbb{Z}^{d}, then the proof of Theorem 5.3 remains valid, with the following definition. We define Sd\mathcal{L}_{S}\subset\mathbb{Z}^{d} to be the lattice generated by the integer span of all nSn\in S. We obtain the following immediate consequence from the proof of Theorem 5.3.

Corollary 5.5.

Given any finite set of integer points SdS\subset\mathbb{Z}^{d}, we have

  1. 1.

    |σS(ξ)||S|\left|\sigma_{S}(\xi)\right|\leq|S| for all ξd\xi\in\mathbb{R}^{d}.

  2. 2.

    |σS(ξ)|=|S|ξS\left|\sigma_{S}(\xi)\right|=|S|\iff\xi\in\mathcal{L}_{S}^{*}.

Using the definition of a spanning polytope, together with Theorem 5.3, we immediately obtain the following consequence as well.

Corollary 5.6.

For an integer polytope 𝒫d\mathcal{P}\subset\mathbb{Z}^{d}, the following are equivalent:

  1. 1.

    𝒫\mathcal{P} is a spanning polytope.

  2. 2.

    |σ𝒫(ξ)|=|d𝒫|ξd.\left|\sigma_{\mathcal{P}}(\xi)\right|=\left|\mathbb{Z}^{d}\cap\mathcal{P}\right|\iff\xi\in\mathbb{Z}^{d}.

Given the nice structure of the aboslute maxima given by Theorem 5.3, it is also natural to ask:

Question 5.7.

How many inequivalent absolute maxima are there, modulo d\mathbb{Z}^{d}?

We have the sublattice containments 𝒫d𝒫\mathcal{L}_{\mathcal{P}}\subseteq\mathbb{Z}^{d}\subseteq\mathcal{L}_{\mathcal{P}}^{*}. Question 5.7 asks for the value of [𝒫:d][\mathcal{L}_{\mathcal{P}}^{*}:\mathbb{Z}^{d}], which has a simple answer:

[𝒫:d]=detddet𝒫=1(1/det𝒫)=det𝒫.[\mathcal{L}_{\mathcal{P}}^{*}:\mathbb{Z}^{d}]=\frac{\det\mathbb{Z}^{d}}{\det\mathcal{L}_{\mathcal{P}}^{*}}=\frac{1}{\left(1/\det\mathcal{L}_{\mathcal{P}}\right)}=\det\mathcal{L}_{\mathcal{P}}. (15)
Example 5.8.

Let us use Theorem 5.3 to find all of the absolute maxima of the integer point transform for the tetrahedron in Example 3.3. We recall that

𝒫:=conv{(0,0,0),(1,1,0),(0,1,1),(1,0,1)},\mathcal{P}:=\mathrm{conv}\{(0,0,0),(1,1,0),(0,1,1),(1,0,1)\},

had σ𝒫(ξ)=1+e2πi(ξ1+ξ2)+e2πi(ξ2+ξ3)+e2πi(ξ1+ξ3).\sigma_{\mathcal{P}}(\xi)=1+e^{2\pi i(\xi_{1}+\xi_{2})}+e^{2\pi i(\xi_{2}+\xi_{3})}+e^{2\pi i(\xi_{1}+\xi_{3})}. Here the integer span of the 44 integer points that comprise 𝒫3\mathcal{P}\cap\mathbb{Z}^{3} gives us the sublattice 𝒫:=M(3)\mathcal{L}_{\mathcal{P}}:=M(\mathbb{Z}^{3}), with

M:=(110101011).M:=\begin{pmatrix}1&1&0\\ 1&0&1\\ 0&1&1\end{pmatrix}.

This is a sublattice of index 22 in 3\mathbb{Z}^{3}, because detc=detM=2\det c=\det M=2. Here the dual lattice \mathcal{L}^{*} has a generator matrix:

MT:=(121212121212121212).M^{-T}:=\begin{pmatrix}\ \ \ \frac{1}{2}&\ \ \ \frac{1}{2}&-\frac{1}{2}\\ \ \ \ &\ \ \ &\\ \ \ \ \frac{1}{2}&\ -\frac{1}{2}&\ \ \frac{1}{2}\\ \ \ \ &\ \ \ &\\ -\frac{1}{2}&\ \ \frac{1}{2}&\ \ \frac{1}{2}\end{pmatrix}.

Let us check Corollary 5.5, part 2 concerning the locations of absolute maxima. First, one of the absolute maxima of σ𝒫\sigma_{\mathcal{P}} is |σ𝒫(0)|=4|\sigma_{\mathcal{P}}(0)|=4. Now, we have

v:=(121212)𝒫,v:=\begin{pmatrix}\frac{1}{2}\\ \\ \frac{1}{2}\\ \\ \frac{1}{2}\end{pmatrix}\in\mathcal{L}_{\mathcal{P}}^{*},

because vv equals the sum of the three columns of MTM^{-T}. Let us check if vv gives us another absolute maxima, as predicted by Corollary 5.5, part 2:

|σ𝒫(v)|=|1+e2πi(12+12)+e2πi(1212)+e2πi(1212)|=4,|\sigma_{\mathcal{P}}(v)|=\left|1+e^{2\pi i\left(\tfrac{1}{2}+\tfrac{1}{2}\right)}+e^{2\pi i\left(\tfrac{1}{2}-\tfrac{1}{2}\right)}+e^{2\pi i\left(\tfrac{1}{2}-\tfrac{1}{2}\right)}\right|=4,

so indeed it does. Due to the relation (15), we know that the total number of inequivalent absolute maxima in [0,1)d[0,1)^{d} is equal to det𝒫=2\det\mathcal{L}_{\mathcal{P}}=2, so we found both of them. \square

6 Integer point transforms on a finite abelian group

The finite sum of exponentials that defines σ𝒫(ξ)\sigma_{\mathcal{P}}(\xi) lends the feeling that we should be studying a connection to the finite Fourier transform of some finite abelian group. To make this feeling rigorous, we develop this connection here. Although there are many possible choices for our finite abelian group, we first choose a box

B:=[k12,k12]××[kd2,kd2],B:=\left[-\frac{k_{1}}{2},\frac{k_{1}}{2}\right]\times\cdots\times\left[-\frac{k_{d}}{2},\frac{k_{d}}{2}\right], (16)

and then consider the set of integers points in it, namely dB\mathbb{Z}^{d}\cap B. Clearly, any integer polytope 𝒫\mathcal{P} is contained in the interior of the box BB, for some appropriately chosen integers k1,,kdk_{1},\dots,k_{d}. To avoid ambiguities when we take the quotient, we assume that each vertex of 𝒫\mathcal{P} is contained in the slightly smaller box [k12+12,k1212]××[kd2+12,kd212][-\frac{k_{1}}{2}+\frac{1}{2},\frac{k_{1}}{2}-\frac{1}{2}]\times\cdots\times[-\frac{k_{d}}{2}+\frac{1}{2},\frac{k_{d}}{2}-\frac{1}{2}].

Now we consider the finite abelian group G:=/k1×/kdG:=\mathbb{Z}/k_{1}\mathbb{Z}\times\cdots\mathbb{Z}/k_{d}\mathbb{Z}, which we identify with the integer points in the torus /k1××/kd\mathbb{R}/k_{1}\mathbb{Z}\times\cdots\times\mathbb{R}/k_{d}\mathbb{Z}, and which can also be thought of as the box BB after identifying its opposite facets. Although the choice of integers k1,kdk_{1},\dots k_{d} is not canonical, such an embedding of the integer points of 𝒫\mathcal{P} into a finite abelian group will prove to be worthwhile. In other words, we have, by definition:

𝒫d:= the domain of 1P, as a function on G.\mathcal{P}\cap\mathbb{Z}^{d}:=\text{ the domain of }1_{P},\text{ as a~{}function on }G.

We will freely use the usual fact that the Pontryagin dual G^\hat{G} (simply the group of characters of GG) is in this case isomorphic to GG. Even though the full geometry of 𝒫\mathcal{P} may not be immediately apparent in this discrete setting, we will be able to shed some additional light on the integer points 𝒫dB.\mathcal{P}\cap\mathbb{Z}^{d}\subset B. It is now natural to consider the indicator function 1𝒫1_{\mathcal{P}} as a function on GG, and therefore expand it into its finite Fourier series. Precisely, each element ξG\xi\in G gives us a character χξ:GS1\chi_{\xi}:G\rightarrow S^{1} defined by

χξ(n):=e2πi(ξ1n1k1++ξdndkd).\chi_{\xi}(n):=e^{2\pi i\left(\frac{\xi_{1}n_{1}}{k_{1}}+\cdots+\frac{\xi_{d}n_{d}}{k_{d}}\right)}.

The first theorem of finite Fourier analysis gives us:

1𝒫(n)=ξGcξχξ(n),1_{\mathcal{P}}(n)=\sum_{\xi\in G}c_{\xi}\chi_{\xi}(n),

where the (finite) Fourier coefficients have the form

cξ=gG1𝒫(g)χξ(g)¯,c_{\xi}=\sum_{g\in G}1_{\mathcal{P}}(g)\overline{\chi_{\xi}(g)},

and where we have used the isomorphism GG^G\cong\hat{G}. So by definition we have the finite Fourier transform

G(1P)(ξ):=cξ.\mathcal{F}_{G}(1_{P})(\xi):=c_{\xi}.

Let us “massage” cξc_{\xi} a bit. For each ξG\xi\in G, we have:

G(1P)(ξ)=cξ\displaystyle\mathcal{F}_{G}(1_{P})(\xi)=c_{\xi} =gG1𝒫(g)χξ(g)¯\displaystyle=\sum_{g\in G}1_{\mathcal{P}}(g)\overline{\chi_{\xi}(g)} (17)
=gG1𝒫(g)e2πi(g1ξ1k1++gdξdkd)\displaystyle=\sum_{g\in G}1_{\mathcal{P}}(g)e^{-2\pi i\left(\frac{g_{1}\xi_{1}}{k_{1}}+\cdots+\frac{g_{d}\xi_{d}}{k_{d}}\right)} (18)
=m𝒫de2πi(m1ξ1k1++mdξdkd)\displaystyle=\sum_{m\in\mathcal{P}\cap\mathbb{Z}^{d}}e^{-2\pi i\left(\frac{m_{1}\xi_{1}}{k_{1}}+\cdots+\frac{m_{d}\xi_{d}}{k_{d}}\right)} (19)
:=σ𝒫(ξ1k1,,ξdkd),\displaystyle:=\sigma_{\mathcal{P}}\left(-\frac{\xi_{1}}{k_{1}},\dots,-\frac{\xi_{d}}{k_{d}}\right), (20)

by definition of the integer point transform. We will also use the latter identification in Section 7 below, by giving an equivalent condition for central symmetry in terms of finite Fourier transforms—or equivalently the integer point transform.

We now notice that we have never required 𝒫\mathcal{P} to be a polytope in the theory above, but merely that we have:

any finite subset of the integer lattice.\text{\emph{any finite subset of the integer lattice}}.

One reason for initially using the integer points that belong to a polytope, as opposed to just any finite set of integer points, is that the applications that use polytopes are perhaps the most naturally occurring.

Next, suppose that we want an analogue of Theorem 1.1, but we want to evaluate the integer point transform at integer lattice points, rather than evaluating it at the algebraic point ξ:=1π(2,,pd)\xi^{*}:=\tfrac{1}{\pi}\left(\sqrt{2},\dots,\sqrt{p_{d}}\right). Then we need to evaluate at more points, and the next result, namely Theorem 6.1, part 2, gives a sufficient condition to choose such points.

Theorem 6.1.

Suppose that SdS\subset\mathbb{Z}^{d} is a finite subset of the half-open box

B:=[k12,k12)××[kd2,kd2).B:=\left[-\frac{k_{1}}{2},\frac{k_{1}}{2}\right)\times\cdots\times\left[-\frac{k_{d}}{2},\frac{k_{d}}{2}\right).

With the notation above, the following hold:

  1. 1.
    G(1S)(ξ)=σS(ξ1k1,,ξdkd).\displaystyle\mathcal{F}_{G}(1_{S})(\xi)=\sigma_{S}\left(-\frac{\xi_{1}}{k_{1}},\dots,-\frac{\xi_{d}}{k_{d}}\right).
  2. 2.

    SS is uniquely determined by the finite set of special values

    {σS(ξ1k1,,ξdkd)ξBd}.\left\{\sigma_{S}\left(\frac{\xi_{1}}{k_{1}},\dots,\frac{\xi_{d}}{k_{d}}\right)\mid\ \xi\in B\cap\mathbb{Z}^{d}\right\}.
Proof 6.2.

Part 1 follows from the definition of σS\sigma_{S} and our discussion of finite Fourier transforms above. For part 2, we will use the uniqueness of the inverse Fourier transform over the finite abelian group GG defined above. In particular, suppose that we have two sets S1,S2BS_{1},S_{2}\subset B, or equivalently S1,S2GS_{1},S_{2}\subset G. Then we have G(1S1)(ξ)=G(1S2(ξ)\mathcal{F}_{G}(1_{S_{1}})(\xi)=\mathcal{F}_{G}(1_{S_{2}}(\xi) for all ξG\xi\in G. By Fourier inversion, we have

1S1(ξ)\displaystyle 1_{S_{1}}(\xi) =G(G(1S1))(ξ)=G(G(1S2))(ξ)\displaystyle=\mathcal{F}_{G}\left(\mathcal{F}_{G}(1_{S_{1}})\right)(-\xi)=\mathcal{F}_{G}\left(\mathcal{F}_{G}(1_{S_{2}})\right)(-\xi)
=1S2(ξ),\displaystyle=1_{S_{2}}(\xi),

for all ξG\xi\in G. Therefore 1S1=1S21_{S_{1}}=1_{S_{2}}, and so S1=S2S_{1}=S_{2}.

7 Centrally symmetric sets of integer points and centrally symmetric polytopes

In this brief section we give an equivalence for central symmetry in terms of the integer point transform, for any finite set AdA\subset\mathbb{Z}^{d} of integer points. As a consequence, we get an equivalence for the central symmetry of any integer polytope (of arbitrary codimension) in terms of special evaluations of the integer point transform. We will use here the machinery of Section 6.

In this section we will use the box B:=[k2,k2)dB:=\left[-\frac{k}{2},\frac{k}{2}\right)^{d}, for any positive integer kk. We will suppose that AdBA\subset\mathbb{Z}^{d}\cap B is any centrally symmetric set of integer points that is contained in BB.

It is immediate that for such a set AA, its integer point transform is real-valued for any ξd\xi\in\mathbb{R}^{d}:

σA(ξ):=nAe2πin,ξ\displaystyle\sigma_{A}(\xi):=\sum_{n\in A}e^{2\pi i\langle n,\xi\rangle} :=1+12mAm0e2πim,ξ+12mAm0e2πim,ξ\displaystyle:=1+\frac{1}{2}\sum_{\genfrac{}{}{0.0pt}{}{m\in A}{m\not=0}}e^{2\pi i\langle m,\xi\rangle}+\frac{1}{2}\sum_{\genfrac{}{}{0.0pt}{}{m\in-A}{m\not=0}}e^{2\pi i\langle m,\xi\rangle} (21)
:=1+12mAm0e2πim,ξ+12mAm0e2πim,ξ\displaystyle:=1+\frac{1}{2}\sum_{\genfrac{}{}{0.0pt}{}{m\in A}{m\not=0}}e^{2\pi i\langle m,\xi\rangle}+\frac{1}{2}\sum_{\genfrac{}{}{0.0pt}{}{m\in A}{m\not=0}}e^{2\pi i\langle-m,\xi\rangle} (22)
=1+mAm0cos(2πm,ξ).\displaystyle=1+\sum_{\genfrac{}{}{0.0pt}{}{m\in A}{m\not=0}}\cos\left(2\pi\langle m,\xi\rangle\right)\in\mathbb{R}. (23)

In particular, for centrally symmetric polytopes, their minima and maxima may be studied without having to take norms.

Theorem 7.1.

Let AdA\subset\mathbb{Z}^{d} be a finite collection of integer points. The following are equivalent:

  1. 1.

    AA is centrally symmetric.

  2. 2.

    σA(1kξ)\sigma_{A}(\frac{1}{k}\xi)\in\mathbb{R} for all ξA\xi\in A.

Proof 7.2.

For the easy direction that (1) \implies (2), we have already seen the proof in (23). Now suppose that σA(1kξ)\sigma_{A}(\frac{1}{k}\xi)\in\mathbb{R} for all ξA\xi\in A, and we must show that A=AA=-A. We therefore have σA(1kξ)=σA(1kξ)¯\sigma_{A}(\frac{1}{k}\xi)=\overline{\sigma_{A}(\frac{1}{k}\xi)}, and using equation (20) (with all kj=kk_{j}=k) we may rewrite this condition in terms of the finite Fourier transform as

G(1A)(ξ)\displaystyle\mathcal{F}_{G}(1_{A})\left(\xi\right) =G(1A)¯(ξ)\displaystyle=\overline{\mathcal{F}_{G}(1_{A})}\left(\xi\right) (24)
=mAe2πi(m1ξ1k++mdξdk)\displaystyle=\sum_{m\in A}e^{2\pi i\left(\frac{m_{1}\xi_{1}}{k}+\cdots+\frac{m_{d}\xi_{d}}{k}\right)} (25)
=m(A)e2πi(m1ξ1k++mdξdk)\displaystyle=\sum_{m\in(-A)}e^{-2\pi i\left(\frac{m_{1}\xi_{1}}{k}+\cdots+\frac{m_{d}\xi_{d}}{k}\right)} (26)
=G(1{A})(ξ),\displaystyle=\mathcal{F}_{G}(1_{\{-A\}})\left(\xi\right), (27)

for all ξA\xi\in A. Finally, we now take the inverse Fourier transform of both sides, to conclude that 1A(ξ)=1{A}(ξ)1_{A}\left(\xi\right)=1_{\{-A\}}\left(\xi\right) for all ξA\xi\in A. Therefore A=AA=-A.

8 Integer point transforms and Fourier transforms of integer cones are also complete invariants

Using exactly the same proof ideas of Theorem 1.1 and Theorem 4.1, we also obtain the following corollaries.

Corollary 8.1.

Given any two integer cones 𝒦1,𝒦2d\mathcal{K}_{1},\mathcal{K}_{2}\subset\mathbb{R}^{d}, we have:

(1𝒦1)(ξ)=(1𝒦2)(ξ)𝒦1=𝒦2,\mathcal{F}(1_{\mathcal{K}_{1}})(\xi^{*})=\mathcal{F}(1_{\mathcal{K}_{2}})(\xi^{*})\iff\mathcal{K}_{1}=\mathcal{K}_{2},

where F(1𝒦)F(1_{\mathcal{K}}) is the Fourier-Laplace transform of the cone 𝒦\mathcal{K}.

Proof 8.2.

A standard and known computation [7, Corollary 8.1] gives us the Fourier transform of a cone 𝒦\mathcal{K}:

F(1𝒦)(ξ)=𝒦e2πiu,ξ𝑑u=j=1Me2πiv,ξ(2πi)ddet𝒦jk=1dwj,k,ξ,F(1_{\mathcal{K}})(\xi)=\int_{\mathcal{K}}e^{-2\pi i\langle u,\xi\rangle}\,du=\sum_{j=1}^{M}\frac{e^{-2\pi i\langle v,\xi\rangle}}{(-2\pi i)^{d}}\frac{\det\mathcal{K}_{j}}{\prod_{k=1}^{d}\langle w_{j,k},\xi\rangle}, (28)

for all ξd\xi\in\mathbb{R}^{d} such that none of the denominators vanish. Here we’ve triangulated the cone 𝒦\mathcal{K} into simplicial cones 𝒦1,,𝒦M\mathcal{K}_{1},\dots,\mathcal{K}_{M}.

We note that, initially, formula (28) holds for a complex vector ξ\xi that allows the defining integral over 𝒦\mathcal{K} to converge. However, by meromorphic continuation, we may later plug in any real ξd\xi\in\mathbb{R}^{d}, as long as the denominators in (28) do not vanish. The rest of the proof is identical to the proof of Theorem 4.1.

Corollary 8.3.

Given any two integer cones 𝒦1,𝒦2d\mathcal{K}_{1},\mathcal{K}_{2}\subset\mathbb{R}^{d}, we have

σ𝒦1(ξ)=σ𝒦2(ξ)𝒦1=𝒦2.\sigma_{\mathcal{K}_{1}}(\xi^{*})=\sigma_{\mathcal{K}_{2}}(\xi^{*})\iff\mathcal{K}_{1}=\mathcal{K}_{2}.
Proof 8.4.

We recall an elementary lemma (for example [7, Theorem 10.2]), which tells us that the integer point transform σ𝒦\sigma_{\mathcal{K}} of a simplicial integer cone 𝒦\mathcal{K} has the following finite form, as a rational function:

σ𝒦(ξ)=σΠ(ξ)k=1d(1ewk,ξ),\sigma_{\mathcal{K}}(\xi)=\frac{\sigma_{\Pi}(\xi)}{\prod_{k=1}^{d}\left(1-e^{\langle w_{k},\xi\rangle}\right)}, (29)

where Π:={λ1w1++λdwd all 0λj<1}\Pi:=\{\lambda_{1}w_{1}+\cdots+\lambda_{d}w_{d}\,\mid\text{ all }0\leq\lambda_{j}<1\}, and where w1,,wddw_{1},\dots,w_{d}\in\mathbb{Z}^{d} are the integer edge vectors of 𝒦\mathcal{K}. Here, σΠ(ξ)\sigma_{\Pi}(\xi) is the integer point transform of a finite set of integer points, and hence a (Laurent) polynomial. For any (possibly non-simplicial) integer cone 𝒦\mathcal{K}, it is also a fact that its integer point transform is a finite linear combination over \mathbb{Z}, of rational functions identical to (29).

If σ𝒦1(ξ)=σ𝒦2(ξ)\sigma_{\mathcal{K}_{1}}(\xi^{*})=\sigma_{\mathcal{K}_{2}}(\xi^{*}), then using (29) we arrive at an identical equation to (10), and the rest of the proof is identical to the proof of Theorem 4.1.

9 Further remarks and questions

For further rumination, we mention a few threads that appeared naturally in this line of research which remain open.

  1. 1.

    Perhaps the most fascinating question now is how to find the unique polytope (or set of integer points) that is guaranteed by the uniqueness property of Theorem 1.1.

    For example, suppose we seek to discover the 11-dimensional polytope 𝒫:=[0,N]\mathcal{P}:=[0,N], and suppose its integer point transform σ𝒫(ξ)=C\sigma_{\mathcal{P}}(\xi^{*})=C is given to us, with ξ\xi^{*} as in (4). Then we have

    C=k=0Ne2πikξ=e2πi(N+1)ξ1e2πiξ1.C=\sum_{k=0}^{N}e^{2\pi ik\xi^{*}}=\frac{e^{2\pi i(N+1)\xi^{*}}-1}{e^{2\pi i\xi^{*}}-1}.

    Here, it is easy to solve this equation with respect to the vertex NN of 𝒫\mathcal{P}, by taking complex logs, with some care being taken for picking the principal branch. However, even for an arbitrary finite set 𝒫\mathcal{P} of integer points in \mathbb{Z}, or for example an integer triangle in 2\mathbb{R}^{2}, the problem already appears to become formidable.

  2. 2.

    Similarly, it would be important to reconstruct a rational polytope from the uniqueness guaranteed by the 1-point evaluation of its continuous Fourier transform, as in Theorem 4.1. This direction for future research, as well as the previous problem, involves transcendental equations. It would be very interesting to solve them over the integers, namely the coordinates of the vertices of 𝒫\mathcal{P}.

    A similar open problem is to solve for the unique integer cone that Corollary 8.1 and Corollary 8.3 guarantee, respectively.

  3. 3.

    Is it possible to strengthen Theorem 1.1, part 2, so that we can eliminate the dilation factor kk, as follows?

    Conjecture 1.

    If 𝒫,𝒬d\mathcal{P},\mathcal{Q}\subset\mathbb{R}^{d} are any rational polytopes, then we have:

    σ𝒫(ξ)=σ𝒬(ξ)𝒫=𝒬,\sigma_{\mathcal{P}}(\xi^{*})=\sigma_{\mathcal{Q}}(\xi^{*})\implies\mathcal{P}=\mathcal{Q},

    with ξ\xi^{*} as in (4). \square

  4. 4.

    Historically, the integer point transform σ𝒫\sigma_{\mathcal{P}} for a rational polytope 𝒫\mathcal{P} appeared in the work of Brion [3] in 1988, who proved the important result that we may write σ𝒫\sigma_{\mathcal{P}} as a finite linear combination of exponential-rational functions of the vertex tangent cones 𝒦v\mathcal{K}_{v} of 𝒫\mathcal{P}:

    σ𝒫(ξ)=vertexvof𝒫σ𝒦v(ξ),\sigma_{\mathcal{P}}(\xi)=\sum_{\mathrm{vertex}\,v\,{\rm of}\,\mathcal{P}}\sigma_{\mathcal{K}_{v}}(\xi), (30)

    valid for almost all ξd\xi\in\mathbb{R}^{d} (see [2][7] for more details). We have slightly abused notation in (30) by writing σ𝒦v(ξ)\sigma_{\mathcal{K}_{v}}(\xi) to mean the meromorphic continuation of these integer point transforms, which are initially defined by σ𝒦v(ξ):=n𝒦vde2πiξ,n\sigma_{\mathcal{K}_{v}}(\xi):=\sum_{n\in\mathcal{K}_{v}\cap\mathbb{Z}^{d}}e^{2\pi i\langle\xi,n\rangle}. By an elementary lemma (for example [7, Theorem 10.2]), each such σ𝒦v\sigma_{\mathcal{K}_{v}} for a simplicial cone 𝒦\mathcal{K} also has the following finite form, as a rational-exponential function:

    σ𝒦v(ξ)=σΠ+v(ξ)k=1d(1ewk,ξ),\sigma_{\mathcal{K}_{v}}(\xi)=\frac{\sigma_{\Pi+v}(\xi)}{\prod_{k=1}^{d}\left(1-e^{\langle w_{k},\xi\rangle}\right)},

    where Π+v:={λ1w1++λdwd+v all 0λj<1}\Pi+v:=\{\lambda_{1}w_{1}+\cdots+\lambda_{d}w_{d}+v\,\mid\text{ all }0\leq\lambda_{j}<1\}, and where w1,,wdw_{1},\dots,w_{d} are the edge vectors of the vertex tangent cone 𝒦v\mathcal{K}_{v}.

  5. 5.

    Regarding possible extensions, it is tempting extend the integer point transform to arbitrary lattices, as follows. Suppose we are given any full-rank lattice :=M(d)\mathcal{L}:=M(\mathbb{Z}^{d}), and we define the integer point transform of a given rational polytope 𝒫d\mathcal{P}\subset\mathbb{R}^{d}, relative to \mathcal{L}, by

    σ𝒫,(ξ):=n𝒫e2πin,ξ,\sigma_{\mathcal{P},\mathcal{L}}(\xi):=\sum_{n\in\mathcal{L}\cap\mathcal{P}}e^{2\pi i\langle n,\xi\rangle},

    for all ξd\xi\in\mathbb{R}^{d}. Offhand, it may seem like we have a new extension, but in fact we may easily rewrite it as follows:

    σ𝒫,(ξ)\displaystyle\sigma_{\mathcal{P},\mathcal{L}}(\xi) :=nM(d)𝒫e2πin,ξ=kd𝒫e2πiMk,ξ=kd𝒫e2πik,MTξ:=σ𝒫(MTξ).\displaystyle:=\sum_{n\in M(\mathbb{Z}^{d})\cap\mathcal{P}}e^{2\pi i\langle n,\xi\rangle}=\sum_{k\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\langle Mk,\xi\rangle}=\sum_{k\in\mathbb{Z}^{d}\cap\mathcal{P}}e^{2\pi i\langle k,M^{T}\xi\rangle}:=\sigma_{\mathcal{P}}(M^{T}\xi).

    Since MM is invertible (\mathcal{L} has full-rank), and ξ\xi varies over all of d\mathbb{R}^{d}, there is nothing really new in this particular extension, so we may use the usual integer point transform to sum over any lattice.

References

  • [1] A. Baker. Transcendental number theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2022. With an introduction by David Masser, Reprint of the 1975 original [0422171].
  • [2] M. Beck and S. Robins. Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York, second edition, 2015. Integer-point enumeration in polyhedra, With illustrations by David Austin.
  • [3] M. Brion. Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. (4), 21(4):653–663, 1988.
  • [4] A. Fink, K. Mészáros, and A. St. Dizier. Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math., 332:465–475, 2018.
  • [5] J. Hofscheier, L. Katthän, and B. Nill. Ehrhart theory of spanning lattice polytopes. Int. Math. Res. Not. IMRN, (19):5947–5973, 2018.
  • [6] K. Jochemko. Linear recursions for integer point transforms. In Interactions with lattice polytopes, volume 386 of Springer Proc. Math. Stat., pages 221–231. Springer, Cham, [2022] ©2022.
  • [7] S. Robins. A friendly introduction to fourier analysis on polytopes, and the geometry of numbers. In The Student Mathematical Library, pages 1–440. American Math. Society, to appear, 2023, https://arxiv.org/abs/2104.06407.
\EditInfo

April 19, 2023May 21, 2023Camilla Hollanti and Lenny Fukshansky