This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Kottwitz conjecture for unitary PEL type Rapoport–Zink spaces

Alexander Bertoloni Meli, Kieu Hieu Nguyen
Abstract.

In this paper we study the cohomology of PEL-type Rapoport–Zink spaces associated to unramified unitary similitude groups over p\mathbb{Q}_{p} in an odd number of variables. We extend the results of Kaletha–Minguez–Shin–White to construct a local Langlands correspondence for these groups and prove an averaging formula relating the cohomology of Rapoport–Zink spaces to this correspondence. We use this formula to prove the Kottwitz conjecture for the groups we consider.

1. Introduction

Shimura varieties play an important role in the global Langlands program, which predicts a link between automorphic representations of linear algebraic groups and Galois representations. Rapoport and Zink ([RZ96]) introduced pp-adic analogues of Shimura varieties defined as moduli spaces of pp-divisible groups with additional structures. The \ell-adic (p)(\ell\neq p) cohomology of these spaces should provide local incarnations of the Langlands correspondences and this is the subject of the Kottwitz conjecture ([RV14, Conjecture 7.3]). The goal of this paper is to prove the Kottwitz conjecture in the case of PEL type Rapoport–Zink spaces associated to unramified unitary similitude groups over p\mathbb{Q}_{p} in an odd number of variables. Prior to our work, the conjecture was proven for Lubin-Tate spaces by [Boy99], [HT01] and [Boy09]. By duality [Fal02], [FGL08], [SW20], the conjecture is also known in the Drinfeld case. The case of basic unramified EL type Rapoport–Zink spaces was proven by [Shi12a], [Far04] and the case of basic unramified PEL of unitary type of signature (1,n1)(1,n-1) by [Ngu19]. Kaletha and Weinstein ([KHW17]) have proven, for all local Shimura varieties, a weakened form of the Kottwitz conjecture where, in particular, they do not consider the WEμW_{E_{\mu}}-action.

We now describe our results in more detail. One considers triples (G,b,μ)(\mathrm{G},b,\mu) such that G\mathrm{G} is a connected reductive group over p\mathbb{Q}_{p} and μ\mu is a minuscule cocharacter of G\mathrm{G} and bb is an element of the Kottwitz set 𝐁(p,G,μ)\mathbf{B}(\mathbb{Q}_{p},\mathrm{G},-\mu). Then Rapoport–Zink attach to triples (G,b,μ)(\mathrm{G},b,\mu) of PEL-type a tower of rigid spaces Kp\mathcal{M}_{K_{p}} indexed by compact open subgroups KpG(p)K_{p}\subset\mathrm{G}(\mathbb{Q}_{p}).

Attached to the group G\mathrm{G} and the element bb is a connected reductive group Jb\mathrm{J}_{b} that is an inner form of a Levi subgroup of G\mathrm{G}. The element bb is said to be basic when Jb\mathrm{J}_{b} is in fact an inner form of G\mathrm{G}. The tower (Kp)KpG(p)(\mathcal{M}_{K_{p}})_{K_{p}\subset\mathrm{G}(\mathbb{Q}_{p})} carries an action of G(p)×Jb(p)×WEμ\mathrm{G}(\mathbb{Q}_{p})\times\mathrm{J}_{b}(\mathbb{Q}_{p})\times W_{E_{\mu}} where EμE_{\mu} is the field of definition of the conjugacy class of μ\mu. For each i0i\geq 0 one can take the compactly supported \ell-adic cohomology Hci(Kp,¯)H^{i}_{c}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}) of Kp\mathcal{M}_{K_{p}} and hence consider the cohomology space

Hi,j(G,b,μ)[ρ]:=limKpExtJb(p)j(Hci(Kp,¯),ρ).H^{i,j}(\mathrm{G},b,\mu)[\rho]:=\mathop{\mathrm{lim}}_{\overrightarrow{K_{p}}}\mathrm{Ext}^{j}_{J_{b}(\mathbb{Q}_{p})}(H_{c}^{i}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}),\rho).

Then the Kottwitz conjecture describes the homomorphism of Grothendieck groups MantG,b,μ:Groth(Jb(p))Groth(G(p)×WEμ)\mathrm{Mant}_{\mathrm{G},b,\mu}:\mathrm{Groth}(\mathrm{J}_{b}(\mathbb{Q}_{p}))\to\mathrm{Groth}(G(\mathbb{Q}_{p})\times W_{E_{\mu}}) given by

MantG,b,μ(ρ):=i,j(1)i+jHi,j(G,b,μ)[ρ](diman),\mathrm{Mant}_{\mathrm{G},b,\mu}(\rho):=\sum_{i,j}(-1)^{i+j}H^{i,j}(\mathrm{G},b,\mu)[\rho](-\dim\mathcal{M}^{\mathrm{an}}),

in the case when bb is basic and ρ\rho is an irreducible admissible representation of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) with supercuspidal LL-parameter. This means that under the local Langlands correspondence, the LL-parameter ψρ:Wp×SL2()JbL\psi_{\rho}:W_{\mathbb{Q}_{p}}\times\mathrm{SL}_{2}(\mathbb{C})\to{}^{L}\mathrm{J}_{b} is trivial when restricted to the SL2()\mathrm{SL}_{2}(\mathbb{C}) factor and ψρ\psi_{\rho} does not factor through a proper Levi subgroup of JbL{}^{L}\mathrm{J}_{b}.

The Kottwitz conjecture states that

Conjecture 1.1.

For irreducible admissible representations ρ\rho of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) with supercuspidal LL-parameter, we have the following equality in Groth(G(p)×WEμ)\mathrm{Groth}(\mathrm{G}(\mathbb{Q}_{p})\times W_{E_{\mu}}):

MantG,b,μ(ρ)=πΠψρ(G)[π][Hom𝒮¯ψρ(ι𝔴(ρ)ι𝔴(π),rμψρ)||ρG,μ],\mathrm{Mant}_{\mathrm{G},b,\mu}(\rho)=\sum\limits_{\pi\in\Pi_{\psi_{\rho}}(\mathrm{G})}[\pi][\mathrm{Hom}_{\overline{\mathcal{S}}_{\psi_{\rho}}}(\iota_{\mathfrak{w}}(\rho)\otimes\iota_{\mathfrak{w}}(\pi)^{\vee},r_{-\mu}\circ\psi_{\rho})\otimes|\cdot|^{-\langle\rho_{\mathrm{G}},\mu\rangle}],

where Πψρ(G)\Pi_{\psi_{\rho}}(\mathrm{G}) is the LL-packet of irreducible admissible representations of G(p)\mathrm{G}(\mathbb{Q}_{p}) attached to ψρ\psi_{\rho}.

We have not defined all the notation appearing in this conjecture, but this is described in detail in §5.

The main goal of this paper is to prove Conjecture 1.1 when G=GU\mathrm{G}=\mathrm{GU} is an unramified unitary similitude group over p\mathbb{Q}_{p} in an odd number of variables and the datum (GU,b,μ)(\mathrm{GU},b,\mu) is basic and of PEL-type. Of course, to make sense of the Kottwitz conjecture for GU\mathrm{GU}, one needs to establish the local Langlands correspondence for this group and show it satisfies an expected list of desiderata. In particular, one needs to check that the LL-packet Πψρ\Pi_{\psi_{\rho}} has the expected structure determined by finite group 𝒮¯ψρ\overline{\mathcal{S}}_{\psi_{\rho}} related to the centralizer group of ψρ\psi_{\rho} in Jb^\widehat{\mathrm{J}_{b}} and satisfies the endoscopic character identities.

Prior to this work, such a local Langlands correspondence was known for unitary groups by the works [Mok15, Theorem 2.5.1, Theorem 3.2.1] and [Kal+14, Theorem 1.6.1]. These authors work with the arithmetic normalization of the local Langlands correspondence whereby the Artin map is normalized so that uniformizers correspond to arithmetic Frobenius morphisms. However, it is more convenient for us to work with the opposite normalization. In Theorem 2.5 we use Kaletha’s results in [Kal13] on the compatibility of local Langlands correspondence and the contragredient to define a local Langlands correspondence for unitary groups under the geometric normalization whereby the Artin map takes uniformizers to geometric Frobenius morphisms.

We next construct a local Langlands correspondence for our groups GU\mathrm{GU} by lifting the result for unitary groups to the group U×Z(GU)\mathrm{U}\times Z(\mathrm{GU}) and then descending it to GU\mathrm{GU}. We can carry out such an analysis because the map U×Z(GU)GU\mathrm{U}\times Z(\mathrm{GU})\to\mathrm{GU} is a surjection on p\mathbb{Q}_{p} points for odd unitary groups. This property fails in the even case and is in fact the main reason we consider odd unitary similitude groups. We get

Theorem 1.2 (Theorem 2.5, Theorem 2.9, §3.2).

The local Langlands correspondence for odd unitary similitude groups is known and satisfies the properties of [Kal+14, Theorem 1.6.1], in particular, the endoscopic character identities.

With the local Langlands correspondence in hand, we can describe our proof of Conjecture 1.1 for the groups we consider. Our method of proof is similar to that of [Shi12a] and crucially uses the endoscopic averaging formulas of [BM21]. We briefly describe these formulas. Suppose that 𝔢=(H,s,ηL)\mathcal{H}^{\mathfrak{e}}=(\mathrm{H},s,{}^{L}\eta) is an elliptic endoscopic datum for GU\mathrm{GU}. Then there exists a complicated map

Redb𝔢:Grothst(H(p))Groth(Jb(p)),\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}:\mathrm{Groth}^{st}(\mathrm{H}(\mathbb{Q}_{p}))\to\mathrm{Groth}(J_{b}(\mathbb{Q}_{p})),

whose precise definition is given in §5.2. We remark that Grothst(H(p))\mathrm{Groth}^{st}(\mathrm{H}(\mathbb{Q}_{p})) denotes the subgroup of Groth(H(p))\mathrm{Groth}(\mathrm{H}(\mathbb{Q}_{p})) with stable virtual character. Associated to each tempered LL-parameter ψH\psi^{\mathrm{H}} of H\mathrm{H}, we have a stable character denoted by SΘψHS\Theta_{\psi^{\mathrm{H}}}. Suppose that ψ\psi is an LL-parameter of GU\mathrm{GU} with parameter ψH\psi^{\mathrm{H}} of H\mathrm{H} such that ψ=ηLψH\psi={}^{L}\eta\circ\psi^{\mathrm{H}}. Then the endoscopic averaging formula is the following identity in Groth(GU(p)×WEμ\mathrm{Groth}(\mathrm{GU}(\mathbb{Q}_{p})\times W_{E_{\mu}}:

(1.1) b𝐁(p,GU,μ)MantGU,b,μ(Redb𝔢(SΘψH))={}\sum\limits_{b\in\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},-\mu)}\mathrm{Mant}_{\mathrm{GU},b,\mu}(\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}_{b}}(S\Theta_{\psi^{\mathrm{H}}}))=
ρπpΠψ(GU,ϱ)πp,η(s)tr(η(s)Vρ)dimρπp[ρ||ρGU,μ],\sum\limits_{\rho}\sum\limits_{\pi_{p}\in\Pi_{\psi}(\mathrm{GU},\varrho)}\langle\pi_{p},\eta(s)\rangle\frac{\mathrm{tr}(\eta(s)\mid V_{\rho})}{\dim\rho}\pi_{p}\boxtimes[\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}],

where the first sum on the right-hand side is over irreducible factors of the representation rμψr_{-\mu}\circ\psi and VρV_{\rho} is the ρ\rho-isotypic part of rμψr_{-\mu}\circ\psi. The averaging formula is derived in [BM21] under a substantial list of assumptions. In this paper, we verify these assumptions for supercuspidal parameters and hence prove:

Theorem 1.3.

For supercuspidal parameters ψ\psi of GU\mathrm{GU}, the endoscopic averaging formulas hold.

For the sake of completeness, we briefly recall the strategy of the proof of this result as well as explain the important assumptions. The proof is via global methods. Thus we consider a global unitary similitude group 𝐆𝐔\mathbf{GU} defined over \mathbb{Q} and a Shimura variety Sh\mathrm{Sh} attached to 𝐆𝐔\mathbf{GU} which “globalizes” our Rapoport–Zink space. In particular, we have 𝐆𝐔p=GU\mathbf{GU}_{\mathbb{Q}_{p}}=\mathrm{GU}. We deduce the averaging formula by combining the Mantovan formula ([Man05, Theorem 22], [LS18, Theorem 6.26])

(1.2) Hc(Sh,ξ)=b𝐁(p,GU,μ)MantGU,b,μ(Hc(Igb,ξ))H^{*}_{c}(\mathrm{Sh},\mathcal{L}_{\xi})=\sum\limits_{b\in\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},-\mu)}\mathrm{Mant}_{\mathrm{GU},b,\mu}(H_{c}^{*}(\mathrm{Ig}_{b},\mathcal{L}_{\xi}))

and the trace formulas for Shimura and Igusa varieties ([Kot90, Theorem 7.2], [Shi09, Theorem 13.1], [Shi10, Theorem 7.2]). We denote respectively by Hc(Sh,ξ)H^{*}_{c}(\mathrm{Sh},\mathcal{L}_{\xi}) and Hc(Igb,ξ)H_{c}^{*}(\mathrm{Ig}_{b},\mathcal{L}_{\xi}) the alternating sums of the compactly supported cohomology of Shimura and Igusa varieties evaluated at the \ell-adic sheaf ξ\mathcal{L}_{\xi} associated to some irreducible algebraic representation ξ\xi of 𝐆𝐔\mathbf{GU}.

To carry out this approach, we need to define global AA-parameters of 𝐆𝐔\mathbf{GU} without referring to the conjectural global Langlands group. We do so by adapting Arthur’s approach (also used in [Mok15] and [Kal+14]) where global parameters correspond to self-dual formal sums of cuspidal automorphic representations of GLn\mathrm{GL}_{n}. For us, a parameter ψ\mathbf{\psi} of 𝐆𝐔\mathbf{GU} consists of a pair (ψ˙,χ)(\dot{\psi},\chi) such that ψ˙\dot{\psi} is a global parameter of 𝐔\mathbf{U}^{*} in the sense of [Mok15] and χ\chi is an automorphic character of Z(𝐆𝐔)(𝔸)Z(\mathbf{GU})(\mathbb{A}). We attach global AA-packets to these parameters in the generic case and prove they satisfy the global multiplicity formula (Proposition 2.23).

One important step in the proof of the averaging formula is the process of stabilisation and destabilisation of the trace formula for the cohomology of Shimura and Igusa varieties following [Kot90] and [Shi10]. The goal is to relate both sides of the equality (1.2) to the global multiplicity formula. In order to achieve this, we need to prove a technical hypothesis concerning stable orbital integrals. More precisely, let H\mathrm{H} be an endoscopic group of GU\mathrm{GU} and fHf^{\mathrm{H}} a test function satisfying some local “cuspidality” conditions. We want to show that STellH(fH)=STdiscH(fH)ST^{\mathrm{H}}_{\mathrm{ell}}(f^{\mathrm{H}})=ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}) where STellH(fH)ST^{\mathrm{H}}_{\mathrm{ell}}(f^{\mathrm{H}}) is a sum of stable orbital integrals of H\mathrm{H} with respect to fHf^{\mathrm{H}} and STdiscH(fH)ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}) is, loosely speaking, the traces of all automorphic representations of H(𝔸)\mathrm{H}(\mathbb{A}) evaluated against fHf^{\mathrm{H}}. This hypothesis is proven in Section §4.2.

Once we have done the destabilisation step, we can put everything into Equation (1.2) and derive the averaging formula. However, at this point the equality (1.2) is still quite complicated and we need to solve a lifting problem in order to extract the desired information. More precisely, for our choice of connected reductive group 𝐆𝐔\mathbf{GU} over \mathbb{Q} such that 𝐆𝐔p=GU\mathbf{GU}_{\mathbb{Q}_{p}}=\mathrm{GU} and a cuspidal LL-parameter ψ\mathbf{\psi} of 𝐆𝐔p\mathbf{GU}_{\mathbb{Q}_{p}}, we need to construct global LL-parameters ψ˙\dot{\mathbf{\psi}} lifting ψ\psi and satisfying a number of conditions. For instance, we need to precisely control the centralizer group of ψ\mathbf{\psi} in 𝐆𝐔^p\widehat{\mathbf{GU}}_{\mathbb{Q}_{p}}. These lifting problems are studied in [Art13a], [Kal+14] and we adapt their arguments to the unitary similitude case (Section §4.3).

With the endoscopic averaging formula in hand, we prove the Kottwitz conjecture in §6. To do so, we observe that Redb𝔢(SΘψH)=0\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}(S\Theta_{\psi^{\mathrm{H}}})=0 whenever bb is non-basic and ψ\psi is supercuspidal. Hence, in this case, the only term on the left-hand side of the endoscopic averaging formula is the one for bb basic. We then combine the formulas for each elliptic 𝔢\mathcal{H}^{\mathfrak{e}} to deduce the conjecture.

1.1. Acknowledgements

We would like to thank Tasho Kaletha for helpful discussions related to the arithmetic and geometric normalizations of the local Langlands correspondence. We are also grateful to Pascal Boyer, Laurent Fargues, and Sug Woo Shin for many helpful conversations regarding this paper. The first author was partially supported by NSF RTG grants DMS-1646385 and DMS-1840234. The second author was supported by ERC Consolidator Grant 770936: NewtonStrat.

2. Automorphic representations

2.1. The groups

Let FF be a field of characteristic 0, EE a quadratic extension of FF and fix an algebraic closure F¯\overline{F}. Let JGLn(F)J\in\mathrm{GL}_{n}(F) be the anti-diagonal matrix defined by J=(Ji,j)J=(J_{i,j}) such that Ji,j=(1)i+1δi,n+1jJ_{i,j}=(-1)^{i+1}\delta_{i,n+1-j}. We now define quasi-split groups UE/F(n)\mathrm{U}^{*}_{E/F}(n) and GUE/F(n)\mathrm{GU}^{*}_{E/F}(n) over FF as follows. We define UE/F(n)(F¯)=GLn(F¯)\mathrm{U}^{*}_{E/F}(n)(\overline{F})=\mathrm{GL}_{n}(\overline{F}) and GUE/F(n)(F¯)=GLn(F¯)×GL1(F¯)\mathrm{GU}^{*}_{E/F}(n)(\overline{F})=\mathrm{GL}_{n}(\overline{F})\times\mathrm{GL}_{1}(\overline{F}). Then we give GUE/F(n)(F¯)\mathrm{GU}^{*}_{E/F}(n)(\overline{F}) an action of ΓF:=Gal(F¯/F)\Gamma_{F}:=\mathrm{Gal}(\overline{F}/F) whereby σGal(F¯/F)\sigma\in\mathrm{Gal}(\overline{F}/F) acts by

σGU:{(g,c)(σ(g),σ(c))σΓE(g,c)(cJσ(g)tJ1,σ(c))σΓE.\sigma_{\mathrm{GU}}:\begin{cases}(g,c)\mapsto(\sigma(g),\sigma(c))&\sigma\in\Gamma_{E}\\ (g,c)\mapsto(cJ\sigma(g)^{-t}J^{-1},\sigma(c))&\sigma\notin\Gamma_{E}\end{cases}.

We get an action of ΓF\Gamma_{F} on UE/F(n)(F¯)\mathrm{U}^{*}_{E/F}(n)(\overline{F}) by restriction.

We also need to define slightly more general groups G(U1××Uk)\mathrm{G}(\mathrm{U}_{1}\times\dots\times\mathrm{U}_{k})^{*} defined by

G(U(n1)××U(nk)):={(g1,,gk)GU1××GUk|c(g1)==c(gk)}.\mathrm{G}(\mathrm{U}^{*}(n_{1})\times...\times\mathrm{U}^{*}(n_{k})):=\left\{(g_{1},\cdots,g_{k})\in\mathrm{GU}^{*}_{1}\times\cdots\times\mathrm{GU}^{*}_{k}|c(g_{1})=\cdots=c(g_{k})\right\}.

In this paper, we only need to consider the case where FF is one of v\mathbb{Q}_{v} or \mathbb{Q}. We now fix for once and for all a prime pp and a quadratic imaginary extension E/E/\mathbb{Q} that is inert at pp. At each place vv of \mathbb{Q} we get a rank two etale algebra EvE_{v} over v\mathbb{Q}_{v}. Since we will not change EE, we can unambiguously use the notations U(n)\mathrm{U}^{*}(n) and GUn\mathrm{GU}^{*}_{n} for the global groups we have defined and Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) and GUv(n)\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n) for the local groups (for vv that do not split over EE).

The global groups we consider in this paper will be inner forms of GUn\mathrm{GU}^{*}_{n} coming from hermitian forms. Namely, let VV be an nn-dimensional EE-vector space equipped with a hermitian form ,\langle\bullet,\bullet\rangle. Let GU(V)\mathrm{GU}(V), (resp. U(V)\mathrm{U}(V)) be the algebraic groups defined over \mathbb{Q} by

GU(V)(R)={(g,c(g))GL(VR)×𝔾m(R)gx,gy=c(g)x,y,x,yVR}\mathrm{GU}(V)(R)=\{(g,c(g))\in\mathrm{GL}(V\otimes_{\mathbb{Q}}R)\times{\mathbb{G}_{m}}(R)\mid\langle gx,gy\rangle=c(g)\langle x,y\rangle,x,y\in V\otimes_{\mathbb{Q}}R\}
U(V)(R)={gGL(VR)gx,gy=x,y,x,yVR}\mathrm{U}(V)(R)=\{g\in\mathrm{GL}(V\otimes_{\mathbb{Q}}R)\mid\langle gx,gy\rangle=\langle x,y\rangle,x,y\in V\otimes_{\mathbb{Q}}R\}

for any \mathbb{Q}-algebra RR.

In this paper we will assume that nn is an odd number and that the localization GU(V)v\mathrm{GU}(V)_{\mathbb{Q}_{v}} at every finite place vv is quasi-split. Such groups exist and the quasi-split condition we impose at the finite places does not constrain the isomorphism class of the group at the archimedean place. Indeed we can define

Ir,s:=(Ir00Is),I_{r,s}:=\begin{pmatrix}I_{r}&0\\ 0&-I_{s}\end{pmatrix},

where IrI_{r} is the r×rr\times r identity matrix. Then for VV an nn-dimensional EE-vector space,

x,y:=σ(x)tIr,sy,\langle x,y\rangle:=\sigma(x)^{t}I_{r,s}y,

for r+sr+s odd and σΓE/\sigma\in\Gamma_{E/\mathbb{Q}} the nontrivial element, gives a unitary similitude group of type (r,s)(r,s) at the archimedean place that is quasi-split at the finite places.

We need to verify that the groups GU(V)\mathrm{GU}(V) and U(V)\mathrm{U}(V) arise as extended pure inner twists of GU(n)\mathrm{GU}^{*}(n) and U(n)\mathrm{U}^{*}(n) respectively. Recall that a group GG over FF arises as an extended pure inner twist of GG^{*} if there exists a tuple (ϱ,z)(\varrho,z) such that ϱ:GG\varrho:G^{*}\to G is an isomorphism over some finite extension K/FK/F and zZbas1(3(K/F),G(K))z\in Z^{1}_{\mathrm{bas}}(\mathcal{E}_{3}(K/F),G^{*}(K)) is such that for each σΓK/F\sigma\in\Gamma_{K/F} and each e3(K/F)e\in\mathcal{E}_{3}(K/F) projecting to σ\sigma, we have

ϱ1σ(ϱ)=Int(z(e)).\varrho^{-1}\circ\sigma(\varrho)=\mathrm{Int}(z(e)).

The set Zbas1(3(K/F),G(K))Z^{1}_{\mathrm{bas}}(\mathcal{E}_{3}(K/F),G^{*}(K)) is defined as in [Kot14]. In the case that GG^{*} has connected center, it is known by [Kot14, Proposition 10.4] that all inner twists of GG^{*} come from extended pure inner twists. In our case, we have Z(U(n))=U(1)Z(\mathrm{U}^{*}(n))=\mathrm{U}(1) and Z(GU(n))=ResE/𝔾mZ(\mathrm{GU}^{*}(n))=\mathrm{Res}_{E/\mathbb{Q}}{\mathbb{G}_{m}} so this is indeed the case. We can also consider extended pure inner twists for connected reductive groups over F=vF=\mathbb{Q}_{v}. The definition is the same except for we have zZbas1(iso(K/F),G(K))z\in Z^{1}_{\mathrm{bas}}(\mathcal{E}_{\mathrm{iso}}(K/F),G^{*}(K)) (where iso(K/F)\mathcal{E}_{\mathrm{iso}}(K/F) is the local gerb (K/F)\mathcal{E}(K/F) in [Kot14]). As in [Kot14], we define:

𝐁(F,G):=limKHbas1(3(K/F),G(K))\mathbf{B}(F,G):=\varprojlim\limits_{K}H^{1}_{\mathrm{bas}}(\mathcal{E}_{3}(K/F),G(K))

for FF a number field and

𝐁(F,G):=limKHbas1(iso(K/F),G(K)),\mathbf{B}(F,G):=\varprojlim\limits_{K}H^{1}_{\mathrm{bas}}(\mathcal{E}_{\mathrm{iso}}(K/F),G(K)),

for FF a finite extension of v\mathbb{Q}_{v}.

A maximal torus TT defined over v\mathbb{Q}_{v} of GUv(n)\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n) and with maximal split rank is given by the diagonal subgroup. We have

T(v)={(t1,,tn)(Ev×)n|cv×,i{1,,n},tiσ(tn+1i)=c}.T(\mathbb{Q}_{v})=\left\{(t_{1},\cdots,t_{n})\in(E_{v}^{\times})^{n}|\exists c\in\mathbb{Q}_{v}^{\times},\forall i\in\{1,\cdots,n\},t_{i}\sigma(t_{n+1-i})=c\right\}.

The maximal split subtorus of TT is isomorphic to (v×)n12×v×(\mathbb{Q}_{v}^{\times})^{\frac{n-1}{2}}\times\mathbb{Q}_{v}^{\times}. The relative Weyl group is Wre=(/2)n12Sn12W_{\mathrm{re}}=(\mathbb{Z}/2\mathbb{Z})^{\frac{n-1}{2}}\rtimes S_{\frac{n-1}{2}} where Sn12S_{\frac{n-1}{2}} is the permutation group of {1,,n12}\{1,\cdots,\frac{n-1}{2}\}. The normalizer of AA inside GU(n)(v)\mathrm{GU}^{*}(n)(\mathbb{Q}_{v}) is generated by AA and the following elements:

Si,j=(In12i,j1In12n+12i,n+12j),Ak=Inn+12k,n+12+kS_{i,j}=\left(\begin{array}[]{ccc}I^{i,j}_{\frac{n-1}{2}}&&\\ &1&\\ &&I^{\frac{n+1}{2}-i,\frac{n+1}{2}-j}_{\frac{n-1}{2}}\end{array}\right),\qquad A_{k}=I^{\frac{n+1}{2}-k,\frac{n+1}{2}+k}_{n}

where 1i,j,kn121\leq i,j,k\leq\frac{n-1}{2} and Ini,jI_{n}^{i,j} is the matrix with 11 in the positions (i,j),(j,i)(i,j),(j,i) and (k,k)(k,k) for ki,jk\neq i,j and 0 elsewhere.

A minimal parabolic subgroup of GUv(n)\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n) is

Pmin={(t1tn12xcσ(tn121)0cσ(t11))|ti,xEv×,xσ(x)=c}GU(n)(v).P_{\text{min}}=\left\{\left(\begin{array}[]{ccccccc}t_{1}&&&&&&*\\ &\ddots&&&&\\ &&t_{\frac{n-1}{2}}&&&\\ &&&x\\ &&&&c\sigma(t_{\frac{n-1}{2}}^{-1})\\ &&&&&\ddots\\ 0&&&&&&c\sigma(t_{1}^{-1})\end{array}\right)|t_{i},x\in E_{v}^{\times},x\sigma(x)=c\right\}\bigcap\mathrm{GU}^{*}(n)(\mathbb{Q}_{v}).

From the description of unitary similitude groups, we see that there is an embedding Ev×Z(GU)(v)E_{v}^{\times}\hookrightarrow Z({\mathrm{GU}})(\mathbb{Q}_{v}) given by tdiag(t,,t)t\longmapsto\mathrm{diag}(t,\cdots,t). The tuple (Pmin,T,{Ei,i+1}1in1)(P_{\min},T,\{E_{i,i+1}\}_{1\leq i\leq n-1}) gives a Γv\Gamma_{\mathbb{Q}_{v}}-stable splitting of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n).

We can identify GUv(n)^\widehat{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)} with GLn()××\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times} and Uv(n)^\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)} with GLn()\mathrm{GL}_{n}(\mathbb{C}). We fix the standard FF-splittings of GLn()××\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times} and GLn()\mathrm{GL}_{n}(\mathbb{C}) consisting of the (T^,B^,{Ei,i+1}1in1)(\widehat{T},\widehat{B},\{E_{i,i+1}\}_{1\leq i\leq n-1}) where T^\widehat{T} and B^\widehat{B} are the diagonal subgroup and upper triangular subgroup respectively. The action of the Weil group WvW_{\mathbb{Q}_{v}} on these dual groups factors through Gal(Ev/v)\mathrm{Gal}(E_{v}/\mathbb{Q}_{v}) and the non-trivial element σ\sigma of WEv/vW_{E_{v}/\mathbb{Q}_{v}} acts via

σ((g,c))=(JgtJ1,cdet(g))\sigma((g,c))=(J{g}^{-t}J^{-1},c\det(g))

and

σ(g)=(JgtJ)\sigma(g)=(J{g}^{-t}J)

respectively (see [Mor10, pg 38] for details).

A maximal torus defined over v\mathbb{Q}_{v} of G(U1××Uk)v\mathrm{G}(\mathrm{U}_{1}\times\cdots\times\mathrm{U}_{k})^{*}_{\mathbb{Q}_{v}} with maximal split rank is given by

T={((t1,1,,t1,n1),,(tk,1,,tk,nk))(Ev×)n1+nk|cv×,i{1,,k},j{1,,ni}ti,jσ(ti,ni+1j)=c}.T=\left\{\begin{matrix}((t_{1,1},\cdots,t_{1,n_{1}}),\cdots,(t_{k,1},\cdots,t_{k,n_{k}}))\\ \in(E_{v}^{\times})^{n_{1}+\cdots n_{k}}\end{matrix}\biggm{|}\begin{matrix}\exists c\in\mathbb{Q}_{v}^{\times},\forall i\in\{1,\cdots,k\},\forall j\in\{1,\cdots,n_{i}\}\\ t_{i,j}\sigma(t_{i,n_{i}+1-j})=c\end{matrix}\right\}.

If we denote II, resp. JJ the set of indexes ii such that nin_{i} is odd, resp. even, then a maximal split sub-torus of TT is isomorphic to

A=p××(iI(p×)ni12)×(jJ(p×)nj2).\displaystyle A=\mathbb{Q}_{p}^{\times}\times(\prod_{i\in I}(\mathbb{Q}_{p}^{\times})^{\frac{n_{i}-1}{2}})\times(\prod_{j\in J}(\mathbb{Q}_{p}^{\times})^{\frac{n_{j}}{2}}).

And the relative Weyl group is

Wre=(iI(/2)ni12Sni12)×(jJ(/2)nj2Snj2).W_{\mathrm{re}}=\displaystyle(\prod_{i\in I}(\mathbb{Z}/2\mathbb{Z})^{\frac{n_{i}-1}{2}}\rtimes S_{\frac{n_{i}-1}{2}})\times(\prod_{j\in J}(\mathbb{Z}/2\mathbb{Z})^{\frac{n_{j}}{2}}\rtimes S_{\frac{n_{j}}{2}}).
Lemma 2.1.

We have the equality G(U(n1)××U(nk))(v)=(U(n1)××U(nk))(v)Ev×\mathrm{G}(\mathrm{U}^{*}(n_{1})\times\cdots\times\mathrm{U}^{*}(n_{k}))(\mathbb{Q}_{v})=(\mathrm{U}^{*}(n_{1})\times\cdots\times\mathrm{U}^{*}(n_{k}))(\mathbb{Q}_{v})E_{v}^{\times} where Ev×E^{\times}_{v} embeds into G(U(n1)××U(nk))\mathrm{G}(\mathrm{U}^{*}(n_{1})\times...\times\mathrm{U}^{*}(n_{k}))^{*} via the diagonal embedding.

Proof.

For simplicity, we prove the equality when k=1k=1. The general case follows by the same argument.

We just need to show that c(Ev×)=c(GU(n)(v))c(E_{v}^{\times})=c(\mathrm{GU}^{*}(n)(\mathbb{Q}_{v})). Because GU(n)(v)\mathrm{GU}^{*}(n)(\mathbb{Q}_{v}) is quasi-split, we have the Bruhat decomposition GU(n)(v)=wWrePminwPmin\displaystyle\mathrm{GU}^{*}(n)(\mathbb{Q}_{v})=\coprod_{w\in W_{\text{re}}}P_{\text{min}}\cdot w\cdot P_{\text{min}}. We see that c(PminwPmin)=c(Pminw)c(P_{\text{min}}\cdot w\cdot P_{\text{min}})=c(P_{\text{min}}\cdot w) and c(w)=1c(w)=1 by the above description of the normalizer of AA. Hence, c(GU(n)(p))=c(Pmin)c(\mathrm{GU}^{*}(n)(\mathbb{Q}_{p}))=c(P_{\text{min}}) and then c(GU(n)(p))=c(T)c(\mathrm{GU}^{*}(n)(\mathbb{Q}_{p}))=c(T) since c(UPmin)=1c(\mathrm{U}_{P_{\text{min}}})=1 where UPmin\mathrm{U}_{P_{\text{min}}} is the unipotent radical of Pmin{P_{\text{min}}}. By the assumption nn is odd and the description of TT, we have c(GU(n)(v))={xσ(x)|xEv×}c(\mathrm{GU}^{*}(n)(\mathbb{Q}_{v}))=\{x\sigma(x)|x\in E_{v}^{\times}\}. Moreover, by the above injection Ev×Z(GU(n))(v)E_{v}^{\times}\hookrightarrow Z({\mathrm{GU}^{*}(n)})(\mathbb{Q}_{v}), we also see that c(Ev×)={xσ(x)|xEv×}c(E_{v}^{\times})=\{x\sigma(x)|x\in E_{v}^{\times}\}. Therefore c(Ev×)=c(GU(n)(v))c(E_{v}^{\times})=c(\mathrm{GU}^{*}(n)(\mathbb{Q}_{v})). ∎

We now recall some facts from the theory of endoscopy.

Definition 2.2.

(cf. [BM21, Definition 2.1]) A refined endoscopic datum for GG a connected reductive group over FF is a triple (H,s,η)(\mathrm{H},s,\eta) such that

  • H\mathrm{H} is a quasisplit reductive group over FF.

  • sZ(H^)ΓFs\in Z(\widehat{\mathrm{H}})^{\Gamma_{F}}

  • η:H^G^\eta:\widehat{\mathrm{H}}\to\widehat{\mathrm{G}} such that the conjugacy class of η\eta is ΓF\Gamma_{F}-stable and η(H^)=ZG^(η(s))\eta(\widehat{\mathrm{H}})=Z_{\widehat{G}}(\eta(s))^{\circ}.

Suppose that (H,s,η),(H,s,η)(\mathrm{H},s,\eta),(\mathrm{H}^{\prime},s^{\prime},\eta^{\prime}) are refined endoscopic data. Then we say that an isomorphism α:HH\alpha:\mathrm{H}\to\mathrm{H}^{\prime} is an isomorphism of endoscopic data if α^(s)=s\widehat{\alpha}(s^{\prime})=s and ηα^\eta\circ\widehat{\alpha} and η\eta^{\prime} are conjugate in G^\widehat{\mathrm{G}}.

We say that a refined endoscopic datum (H,s,η)(\mathrm{H},s,\eta) is elliptic if (Z(H^)ΓF)Z(G^)(Z(\widehat{\mathrm{H}})^{\Gamma_{F}})^{\circ}\subset Z(\widehat{\mathrm{G}}).

We denote the set of isomorphism classes of refined endoscopic data of G\mathrm{G} by r(G)\mathcal{E}^{r}(\mathrm{G}).

We record a set of representatives for the isomorphism classes of refined elliptic endoscopic data for U(n1)××U(nk)\mathrm{U}^{*}(n_{1})\times...\times\mathrm{U}^{*}(n_{k}) and G(U(n1)××U(nk))\mathrm{G}(\mathrm{U}^{*}(n_{1})\times...\times\mathrm{U}^{*}(n_{k})). The description will be analogous in the local case. Compare with [Mor10, Proposition 2.3.1] but note that we have more isomorphism classes because we consider refined endoscopic data. For each ii, choose non-negative natural numbers ni+n^{+}_{i} and nin^{-}_{i} such that ni++ni=nin^{+}_{i}+n^{-}_{i}=n_{i}.

Then, in the unitary case, let H\mathrm{H} be the group U(n1+)×U(n1)××U(nk+)×U(nk)\mathrm{U}^{*}(n^{+}_{1})\times\mathrm{U}^{*}(n^{-}_{1})\times...\times\mathrm{U}^{*}(n^{+}_{k})\times\mathrm{U}^{*}(n^{-}_{k}), let η\eta be the block diagonal embedding of dual groups and let
s=(In1+,In1,,Ink+,Ink)s=(I_{n^{+}_{1}},-I_{n^{-}_{1}},...,I_{n^{+}_{k}},-I_{n^{-}_{k}}). These elliptic endoscopic data are all non-isomorphic and give a representative of each elliptic isomorphism class.

In the unitary similitude case we let H\mathrm{H} be G(U(n1+)×U(n1)××U(nk+)×U(nk))G(\mathrm{U}^{*}(n^{+}_{1})\times\mathrm{U}^{*}(n^{-}_{1})\times...\times\mathrm{U}^{*}(n^{+}_{k})\times\mathrm{U}^{*}(n^{-}_{k})), let η\eta be the block diagonal embedding of dual groups, and let s=(In1+,In1,,Ink+,Ink,1)s=(I_{n^{+}_{1}},-I_{n^{-}_{1}},...,I_{n^{+}_{k}},-I_{n^{-}_{k}},1). We further require that n1++nkn^{-}_{1}+...+n^{-}_{k} is even.

In each case, we can extend η\eta to get a map ηL{}^{L}\eta of LL-groups. This is done explicitly in [Mor10, Proposition 2.3.2] (c.f [Kal+14, pg52]).

2.2. Automorphic representations of unitary groups

We start by considering a local field v{\mathbb{Q}_{v}} for vv any place of \mathbb{Q}. The local Langlands group is defined by v:=W\mathcal{L}_{\mathbb{Q}_{v}}:=W_{\mathbb{R}} if v=v=\infty and by Wp×SU(2)W_{\mathbb{Q}_{p}}\times\mathrm{SU}(2) if v=pv=p is a prime. We also set GL=G^Wv\prescript{L}{}{\mathrm{G}}=\widehat{\mathrm{G}}\rtimes W_{\mathbb{Q}_{v}} as a topological group where G^\widehat{\mathrm{G}} is the Langlands dual group of G\mathrm{G}. In our case we see that UvL(n)=GLn()Wv\prescript{L}{}{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)}=\mathrm{GL}_{n}(\mathbb{C})\ltimes W_{\mathbb{Q}_{v}} and the group WEvW_{E_{v}} acts trivially on GLn()\mathrm{GL}_{n}(\mathbb{C}).

Definition 2.3.

A local LL-parameter for a connected reductive group G\mathrm{G} defined over v\mathbb{Q}_{v} is a continuous morphism ϕ:vGL\phi:\mathcal{L}_{\mathbb{Q}_{v}}\longrightarrow\prescript{L}{}{\mathrm{G}} which commutes with the canonical projections of v\mathcal{L}_{\mathbb{Q}_{v}} and GL\prescript{L}{}{\mathrm{G}} to WvW_{\mathbb{Q}_{v}} and such that ϕ\phi sends semisimple elements to semisimple elements.

We denote Φ(G)\Phi(\mathrm{G}) the set of G^\widehat{\mathrm{G}}-conjugacy classes of LL-parameters. An LL-parameter ϕ\phi is called bounded, resp. discrete, if its image in GL\prescript{L}{}{\mathrm{G}} projects to a relatively compact subset of G^\widehat{\mathrm{G}}, resp. if its image is not contained in any proper parabolic subgroup of GL\prescript{L}{}{\mathrm{G}}. We denote by Φbdd(G)\Phi_{\text{bdd}}(\mathrm{G}), resp. Φ2(G)\Phi_{2}(\mathrm{G}) the subsets of Φ(G)\Phi(\mathrm{G}) consisting of bounded LL-parameters (resp. discrete parameters).

For global classifications, we will also need the notion of a local Arthur parameter.

Definition 2.4.

A local AA-parameter for a connected reductive group G\mathrm{G} defined over v\mathbb{Q}_{v} is a continuous morphism ψ:v×SU(2)GL\psi:\mathcal{L}_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\longrightarrow\prescript{L}{}{\mathrm{G}} such that the image of ψ|v\psi|_{\mathcal{L}_{\mathbb{Q}_{v}}} is a bounded LL -parameter.

We denote by Ψ(G)\Psi(\mathrm{G}) the set of equivalence classes of AA-parameters. We also denote the set Ψ+(G)\Psi^{+}(\mathrm{G}) of the equivalence classes of continuous morphisms ψ\psi as above but where ψ|v\psi|_{\mathcal{L}_{\mathbb{Q}_{v}}} is not necessarily bounded . An AA-parameter ψ\psi (or ψΨ+(G)\psi\in\Psi^{+}(\mathrm{G})) is said to be generic if ψ|SU(2)\psi|_{\mathrm{SU}(2)} is trivial.

We also have a “base change” morphism of LL-groups ([Mok15, page 9]):

ηB:UvL(n)ResEv/vL(GLn,Ev),\eta_{B}:\prescript{L}{}{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)}\longrightarrow\prescript{L}{}{\mathrm{Res}_{E_{v}/\mathbb{Q}_{v}}(\mathrm{GL}_{n,E_{v}})},

which allows us to identify the LL-parameters of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) with self-dual LL-parameters of GLn,Ev\mathrm{GL}_{n,E_{v}}. In particular, if ϕΦ(G)\phi\in\Phi(\mathrm{G}) is an LL-parameter then its image by the base change map is just Φ|Ev\Phi_{|\mathcal{L}_{E_{v}}}.

For each AA-parameter ψΨ+(G)\psi\in\Psi^{+}(\mathrm{G}) we define centralizer groups as below, which play an important role in the local and global theory:

Sψ:=Cent(Imψ,G^),S¯ψ:=Sψ/Z(G^)Γ,𝒮¯ψ:=π0(S¯ψ),S_{\psi}:=\text{Cent}(\text{Im}\psi,\widehat{\mathrm{G}}),\quad\overline{S}_{\psi}:=S_{\psi}/Z(\widehat{\mathrm{G}})^{\Gamma},\quad\overline{\mathcal{S}}_{\psi}:=\pi_{0}(\overline{S}_{\psi}),
Sψrad:=(SψG^der),Sψ:=Sψ/Sψrad.S_{\psi}^{\text{rad}}:=(S_{\psi}\cap\widehat{\mathrm{G}}_{\text{der}})^{\circ},\quad S_{\psi}^{\natural}:=S_{\psi}/S_{\psi}^{\text{rad}}.

We also need to introduce some notation for representations. We denote the set of isomorphism classes of irreducible admissible representations of a connected reductive group G\mathrm{G} by Π(G)\Pi(\mathrm{G}). We denote the set of tempered, essentially square integrable, and unitary representations by Πtemp(G)\Pi_{\mathrm{temp}}(\mathrm{G}), Π2(G)\Pi_{2}(\mathrm{G}), and Πunit(G)\Pi_{\mathrm{unit}}(\mathrm{G}) respectively. We denote Πtemp(G)Π2(G)\Pi_{\mathrm{temp}}(\mathrm{G})\cap\Pi_{2}(\mathrm{G}) by Π2,temp(G)\Pi_{2,\mathrm{temp}}(\mathrm{G}).

The following theorem gives the local Langlands correspondence for extended pure inner twists of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). We first fix some more notation.

Fix an odd natural number nn and let U\mathrm{U} and (ϱ,z)(\varrho,z) be an extended pure inner twist of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Fix a Γv\Gamma_{\mathbb{Q}_{v}} invariant splitting of U^\widehat{\mathrm{U}}. Then (ϱ,z)(\varrho,z) induces a unique isomorphism U^Uv(n)^\widehat{\mathrm{U}}\cong\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)} preserving the chosen Γv\Gamma_{\mathbb{Q}_{v}}-splittings. The cocycle zz and the map

𝐁(v,U)X(Z(U^)Γv)\mathbf{B}(\mathbb{Q}_{v},\mathrm{U})\to X^{*}(Z(\widehat{\mathrm{U}})^{\Gamma_{\mathbb{Q}_{v}}})

defines a character χzX(Z(U^)Γv)\chi_{z}\in X^{*}(Z(\widehat{\mathrm{U}})^{\Gamma_{\mathbb{Q}_{v}}}) by zχzz\mapsto\chi_{z}. Fix a non-trivial character φ:v×\varphi:\mathbb{Q}_{v}\to\mathbb{C}^{\times}. Together with our chosen splitting of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n), this gives a Whittaker datum 𝔴\mathfrak{w} of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Attached to each refined endoscopic datum (H,s,η)(\mathrm{H},s,\eta) of U\mathrm{U} we have a canonical local transfer factor Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z] normalized as in [BM21, §4.1]. These transfer factors correspond to the ΔD\Delta_{D} factors of [KS12, §5]. Since U\mathrm{U} is simply connected, we can extend η\eta to a map ηL{}^{L}\eta of LL-groups.

We stress that in this paper, we are using the geometric normalization of the Langlands correspondence. This means that our Artin map is normalized to map a geometric Frobenius morphism to a uniformizer and explains why we normalize our transfer factors using the ΔD\Delta_{D} normalization. This normalization is consistent with [HT01] and [BM21] but is the inverse of the normalization in [Kal+14].

Theorem 2.5.

([Kal+14, Theorem. 1.6.1], [Mok15, Theorem. 2.5.1, Theorem. 3.2.1])

Fix an odd natural number nn and let U\mathrm{U} and (ϱ,z)(\varrho,z) be an extended pure inner twist of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Fix a non-trivial character φ:v×\varphi:\mathbb{Q}_{v}\to\mathbb{C}^{\times}. Together with our chosen splitting of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n), this gives a Whittaker datum 𝔴\mathfrak{w} of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Then,

  1. (1)

    For each generic ψΨ(Uv(n))\psi\in\Psi(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)), there exists a finite set Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho) endowed with a morphism to Πunit(U)\Pi_{\text{unit}}(\mathrm{U}). Our choice of 𝔴\mathfrak{w} defines a map

    ι𝔴:Πψ(U,ϱ)Irr(Sψ,χz),ππ,,\iota_{\mathfrak{w}}:\Pi_{\psi}(\mathrm{U},\varrho)\longrightarrow\mathrm{Irr}(S^{\natural}_{\psi},\chi_{z}),\qquad\pi\mapsto\langle\pi,-\rangle,

    where Irr(Sψ,χz)\mathrm{Irr}(S^{\natural}_{\psi},\chi_{z}) denotes the set of irreducible representations of SψS^{\natural}_{\psi} restricting on Z(U^)ΓvZ(\widehat{U})^{\Gamma_{\mathbb{Q}_{v}}} to χz\chi_{z}.

  2. (2)

    The morphism Πψ(U,ϱ)Πunit(U)\Pi_{\psi}(\mathrm{U},\varrho)\longrightarrow\Pi_{\text{unit}}(\mathrm{U}) is injective and its image is contained in Πtemp(U)\Pi_{\text{temp}}(\mathrm{U}). If v\mathbb{Q}_{v} is non-Archimedean then the map Πψ(U,ϱ)Irr(Sψ)\Pi_{\psi}(\mathrm{U},\varrho)\longrightarrow\mathrm{Irr}(S^{\natural}_{\psi}) is a bijection.

  3. (3)

    For each πΠunit(U)\pi\in\Pi_{\text{unit}}(\mathrm{U}) in the image of Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho), the central character ωπ:Z(U)×\omega_{\pi}:Z(\mathrm{U})\longrightarrow\mathbb{C}^{\times} has a Langlands parameter given by the composition

    vϕψULdetid×Wv.\mathcal{L}_{\mathbb{Q}_{v}}\xrightarrow{\phi_{\psi}}\prescript{L}{}{\mathrm{U}}\xrightarrow{\det\rtimes\mathrm{id}}\mathbb{C}^{\times}\rtimes W_{{\mathbb{Q}_{v}}}.
  4. (4)

    Let (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) be a refined endoscopic datum and let ψHΨ(H)\psi^{\mathrm{H}}\in\Psi(\mathrm{H}) be a generic parameter such that ηLψH=ψ{}^{L}\eta\circ\psi^{\mathrm{H}}=\psi. If fH(H)f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}) and f(U)f\in\mathcal{H}(\mathrm{U}) are two Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching functions then we have

    πHΠψH(H)πH,sψHtr(πHfH)=e(U)πΠψ(U,ϱ)π,ηL(s)sψtr(πf),\displaystyle\sum_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}})=e(\mathrm{U})\sum_{\pi\in\Pi_{\psi}(\mathrm{U},\varrho)}\langle\pi,{}^{L}\eta(s)\cdot s_{\psi}\rangle\mathrm{tr}(\pi\mid f),

    where e()e(\cdot) is the Kottwitz sign.

  5. (5)

    We have

    Πtemp(U)=ψΦbdd(Uv(n))Πψ(U,ϱ)\Pi_{\text{temp}}(\mathrm{U})=\coprod_{\psi\in\Phi_{\text{bdd}}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n))}\Pi_{\psi}(\mathrm{U},\varrho)

    and

    Π2, temp(U)=ψΦ2, bdd(Uv(n))Πψ(U,ϱ).\Pi_{\text{2, temp}}(\mathrm{U})=\coprod_{\psi\in\Phi_{\text{2, bdd}}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n))}\Pi_{\psi}(\mathrm{U},\varrho).
Proof.

The contents of this theorem appear in the works of Mok ([Mok15, Theorem 2.5.1]) and Kaletha–Minguez–Shin–White ([Kal+14, Theorem 1.6.1]) except using the arithmetic normalization of the Langlands correspondence. Hence our main task is to explain how we can use these arithmetically normalized correspondences to define a geometrically normalized correspondence.

For ψΨ(Uv(n))\psi\in\Psi(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) a generic parameter, we let ΠψA(U,ϱ)\Pi^{A}_{\psi}(\mathrm{U},\varrho) denote the packet of representations assigned to ψ\psi by [Kal+14, Theorem 1.6.1] (the letter AA stands for arithmetic normalization) and define Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho) to consist of the contragredients of the representations in ΠψA(U,ϱ)\Pi^{A}_{\psi}(\mathrm{U},\varrho). By the compatibility of the local Langlands correspondence with contragredients (proven in our case in Proposition 2.7, cf. [Kal13, Equation (1.2)]), this is the same as saying that the packet Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho) of [Kal+14] is assigned to the parameter CLψ{}^{L}C\circ\psi where CL{}^{L}C is the extension to UvL{}^{L}\mathrm{U}^{*}_{\mathbb{Q}_{v}} of the Chevalley involution, C^\widehat{C}, of G^\widehat{G} as described in [Kal13, p. 3-4].

We now define ι𝔴\iota_{\mathfrak{w}}. For convenience, we will denote by ι𝔴A\iota^{A}_{\mathfrak{w}} the maps given by the arithmetic normalization. Then we define for πΠψ(U,ϱ)\pi^{\vee}\in\Pi_{\psi}(\mathrm{U},\varrho) that

ι𝔴(π)=ι𝔴1A(π),\iota_{\mathfrak{w}}(\pi^{\vee})=\iota^{A}_{\mathfrak{w}^{-1}}(\pi)^{\vee},

where if 𝔴\mathfrak{w} is the Whittaker datum (B,ψv)(B,\psi_{\mathbb{Q}_{v}}), then 𝔴1\mathfrak{w}^{-1} is the datum (B,ψv1)(B,\psi^{-1}_{\mathbb{Q}_{v}}). Equivalently by taking the contragredient, we have

ι𝔴(π)=ι𝔴A(π)C^1.\iota_{\mathfrak{w}}(\pi)=\iota^{A}_{\mathfrak{w}}(\pi)\circ\widehat{C}^{-1}.

We now verify the endoscopy character identity which is (4) in the theorem. Fix f(U)f\in\mathcal{H}(\mathrm{U}) and fH(H)f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}) a Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching function.

By Lemma 3.5, we have that if iU:U(p)U(p)i_{\mathrm{U}}:\mathrm{U}(\mathbb{Q}_{p})\to\mathrm{U}(\mathbb{Q}_{p}) is the inverse map, then fHiHf^{\mathrm{H}}\circ i_{\mathrm{H}} and fiUf\circ i_{\mathrm{U}} are matching for the transfer factors Δ[𝔴1,ϱ,z]\Delta^{\prime}[\mathfrak{w}^{-1},\varrho,z] with respect to the endoscopic datum (H,s1,ηL)(\mathrm{H},s^{-1},{}^{L}\eta). We use the letter Δ\Delta (=ΔD=\Delta_{D}) resp. Δ\Delta^{\prime} to denote the transfer factors that are compatible with the geometric normalization resp. arithmetic normalization of the local Artin reciprocity map. Then we will show in Proposition 2.6 that

πHΠψH(H)πH,sψHtr(πHfH)\displaystyle\sum_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}}) =πHΠCHLψHA(H)πH,sψHtr(πHfH)\displaystyle=\sum_{\pi^{\mathrm{H}}\in\Pi^{A}_{{}^{L}C_{\mathrm{H}}\circ\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}})
=πHΠψHA(H)πH,sψHtr(πHfHiH).\displaystyle=\sum_{\pi^{\mathrm{H}}\in\Pi^{A}_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}}\circ i_{\mathrm{H}}).

We now apply the endoscopic character identity proven in [Kal+14, Theorem 1.6.1] to get that the above equals

e(U)πΠψA(U,ϱ)tr(ι𝔴1A(π)ηL(s1)sψ)tr(πfi)\displaystyle e(\mathrm{U})\sum_{\pi\in\Pi^{A}_{\psi}(\mathrm{U},\varrho)}\mathrm{tr}(\iota^{A}_{\mathfrak{w}^{-1}}(\pi)\mid{}^{L}\eta(s^{-1})\cdot s_{\psi})\mathrm{tr}(\pi\mid f\circ i)
=\displaystyle= e(U)πΠψ(U,ϱ)tr(ι𝔴(π)ηL(s1)sψ)tr(πfi).\displaystyle e(\mathrm{U})\sum_{\pi\in\Pi_{\psi}(\mathrm{U},\varrho)}\mathrm{tr}(\iota_{\mathfrak{w}}(\pi)^{\vee}\mid{}^{L}\eta(s^{-1})\cdot s_{\psi})\mathrm{tr}(\pi^{\vee}\mid f\circ i).

Now, since tr(πf)=tr(πfi)\mathrm{tr}(\pi^{\vee}\mid f)=\mathrm{tr}(\pi\mid f\circ i) (by Lemma 2.8), we get that the above equals

e(U)πΠψ(U,ϱ)tr(ι𝔴(π)ηL(s)sψ)tr(πf),e(\mathrm{U})\sum_{\pi\in\Pi_{\psi}(\mathrm{U},\varrho)}\mathrm{tr}(\iota_{\mathfrak{w}}(\pi)\mid{}^{L}\eta(s)\cdot s_{\psi})\mathrm{tr}(\pi\mid f),

as desired. ∎

Proposition 2.6.

Let ψΨ(Uv(n))\psi\in\Psi(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) be a tempered Langlands parameter. Then we have an equality of linear forms on (Uv(n))\mathcal{H}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n))

πΠψA(U)π,sψtr(πf)=πΠCULψA(U)π,sψtr(πfiU).\sum_{\pi\in\Pi^{A}_{\psi}(\mathrm{U})}\langle\pi,s_{\psi}\rangle\mathrm{tr}(\pi\mid f)=\sum_{\pi\in\Pi^{A}_{{}^{L}C_{\mathrm{U}}\circ\psi}(\mathrm{U})}\langle\pi,s_{\psi}\rangle\mathrm{tr}(\pi\mid f\circ i_{\mathrm{U}}).
Proof.

Thanks to the results in [Mok15], [Kal+14], the arguments in [Kal13, Theorem 4.8] also work in our case. Indeed, the group Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) can be extended to an endoscopic datum 𝔢=(Uv(n),𝒰,s,ξ)\mathfrak{e}=(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n),\mathcal{U},s,\xi) of the triple (GLn,θ,1)(\mathrm{GL}_{n},\theta,1) for a suitable outer automorphism of GLn\mathrm{GL}_{n} preserving the standard splitting. Then ξψ\xi\circ\psi is a Langlands parameter of GLn\mathrm{GL}_{n} and denote by ρ\rho the representation of GLn(p)\mathrm{GL}_{n}(\mathbb{Q}_{p}) assigned to ξψ\xi\circ\psi by the local Langlands correspondence. There is a unique isomorphism X:ρρθX:\rho\longrightarrow\rho\circ\theta which preserves the 𝔴\mathfrak{w}-Whittaker functionals. Then we have the distribution

fnTΘξψ𝔴(fn)=tr(vGLn(p)fn(g)ρ(g)Xv𝑑g).f^{n}\longmapsto T\Theta^{\mathfrak{w}}_{\xi\circ\psi}(f^{n})=\mathrm{tr}\Big{(}v\longmapsto\int_{\mathrm{GL}_{n}(\mathbb{Q}_{p})}f^{n}(g)\rho(g)Xvdg\Big{)}.

Then by [Mok15, Theorem 3.2.1] and [Kal+14, Theorem 1.6.1 (4)] the linear form fSΘψ(f)=πΠψA(U)π,sψtr(πf)\displaystyle f\longmapsto S\Theta_{\psi}(f)=\sum_{\pi\in\Pi^{A}_{\psi}(\mathrm{U})}\langle\pi,s_{\psi}\rangle\mathrm{tr}(\pi\mid f) is the unique distribution on (Uv(n))\mathcal{H}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) having the properties that

SΘψ(f)=TΘξψ𝔴(fn)S\Theta_{\psi}(f)=T\Theta^{\mathfrak{w}}_{\xi\circ\psi}(f^{n})

for all f(Uv(n))f\in\mathcal{H}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) and fn(GLn(p))f^{n}\in\mathcal{H}(\mathrm{GL}_{n}(\mathbb{Q}_{p})) such that the (θ,ω)(\theta,\omega)-twisted orbital integrals of fnf^{n} match the stable integrals of ff with respect to Δ[𝔴,𝔢,z𝔢]\Delta^{\prime}[\mathfrak{w},\mathfrak{e},z_{\mathfrak{e}}].

Once we have this characterization, the proof of [Kal13, Theorem 4.8] works without any change since Proposition 4.4, Corollary 4.5 and Corollary 4.7 in loc. cit. are valid for quasi-split unitary groups. ∎

Proposition 2.7.

Let ψΨ(Uv(n))\psi\in\Psi(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) be a tempered Langlands parameter and 𝔴\mathfrak{w} be a Whittaker datum. Let π\pi be a representation in ΠψA(U)\Pi^{A}_{\psi}(\mathrm{U}) and denote ι𝔴A(π)=ρ\iota^{A}_{\mathfrak{w}}(\pi)=\rho. Then

  1. \bullet

    The contragredient representation π\pi^{\vee} belongs to the LL-packet ΠCLψA(U)\Pi^{A}_{\prescript{L}{}{C}\circ\psi}(\mathrm{U}),

  2. \bullet

    ι𝔴1A(π)=(ρC1)\iota^{A}_{\mathfrak{w}^{-1}}(\pi^{\vee})=(\rho\circ C^{-1})^{\vee}.

Proof.

These results are completely analogous to [Kal13, Theorem 4.9]. The same arguments carry over to our case since an analogue of Theorem 4.8 in loc.cit. is still valid for unitary groups (Proposition 2.6). ∎

We also have the following basic fact.

Lemma 2.8.

For (π,V)(\pi,V) an admissible representation of G(p)\mathrm{G}(\mathbb{Q}_{p}) for G\mathrm{G} a reductive group and f(G)f\in\mathcal{H}(\mathrm{G}), we have

tr(πf)=tr(πfi).\mathrm{tr}(\pi^{\vee}\mid f)=\mathrm{tr}(\pi\mid f\circ i).
Proof.

Pick some compact open KG(p)K\subset\mathrm{G}(\mathbb{Q}_{p}) such that ff is KK-bi-invariant. Let (π,V)(\pi^{\vee},V^{\vee}) denote the contragredient of π\pi so that VVV^{\vee}\subset V^{*} is the subspace of smooth vectors in the dual vector space VV^{*} of VV. Then we note that (V)K=(VK)(V^{\vee})^{K}=(V^{K})^{*} since each vector in (V)K(V^{*})^{K} is by definition smooth.

The operator π(f)\pi^{\vee}(f) acts on (VK)(V^{K})^{*} as the dual of the operator π(fi)\pi(f\circ i). Indeed for v(VK)v^{*}\in(V^{K})^{*} and wVKw\in V^{K}

π(f)v(w)\displaystyle\pi^{\vee}(f)v^{*}(w) =G(p)f(g)π(g)v(w)𝑑g\displaystyle=\int\limits_{\mathrm{G}(\mathbb{Q}_{p})}f(g)\pi^{\vee}(g)v^{*}(w)dg
=G(p)(fi)(g1)v(π(g1)w)𝑑g\displaystyle=\int\limits_{\mathrm{G}(\mathbb{Q}_{p})}(f\circ i)(g^{-1})v^{*}(\pi(g^{-1})w)dg
=v(G(p)(fi)(g)π(g)w𝑑g)\displaystyle=v^{*}\left(\int\limits_{\mathrm{G}(\mathbb{Q}_{p})}(f\circ i)(g)\pi(g)wdg\right)
=π(fi)v(w),\displaystyle=\pi(f\circ i)^{*}v^{*}(w),

where the third equality uses that G\mathrm{G} is unimodular. This implies the desired equality of traces. ∎

When we consider global parameters, we will also need a version of Theorem 2.5 for ψΨ+(Uv(n))\psi\in\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)). The following theorem is essentially contained within the union of the remarks in [Mok15, pg33] and [Kal+14, §1.6.4].

Theorem 2.9.

Fix an odd natural number nn and let U\mathrm{U} and (ϱ,z)(\varrho,z) be an extended pure inner twist of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Fix a non-trivial character φ:v×\varphi:\mathbb{Q}_{v}\to\mathbb{C}^{\times}. Together with our chosen splitting of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n), this gives a Whittaker datum 𝔴\mathfrak{w} of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Then,

  1. (1)

    For each generic ψΨ+(Uv(n))\psi\in\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)), there exists a finite set Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho) of possibly reducible or non-unitary representations of U\mathrm{U}. Our choice of 𝔴\mathfrak{w} defines a map

    ι𝔴:Πψ(U,ϱ)Irr(Sψ,χz),ππ,,\iota_{\mathfrak{w}}:\Pi_{\psi}(\mathrm{U},\varrho)\longrightarrow\mathrm{Irr}(S^{\natural}_{\psi},\chi_{z}),\qquad\pi\mapsto\langle\pi,-\rangle,

    where Irr(Sψ,χz)\mathrm{Irr}(S^{\natural}_{\psi},\chi_{z}) denotes the set of irreducible representations of SψS^{\natural}_{\psi} with central character χz\chi_{z}. Each πΠψ(U,ϱ)\pi\in\Pi_{\psi}(\mathrm{U},\varrho) has a central character ωπ\omega_{\pi}, these characters are the same for each element of Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho).

  2. (2)

    Let (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) be a refined endoscopic datum and let ψHΨ+(H)\psi^{\mathrm{H}}\in\Psi^{+}(\mathrm{H}) be a generic parameter such that ηLψH=ψ{}^{L}\eta\circ\psi^{\mathrm{H}}=\psi. If fH(H)f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}) and f(U)f\in\mathcal{H}(\mathrm{U}) are two Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching functions then we have

    πHΠψH(H)πH,sψHtr(πHfH)=e(U)πΠψ(U,ϱ)π,ηL(s)sψtr(πf),\displaystyle\sum_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}})=e(\mathrm{U})\sum_{\pi\in\Pi_{\psi}(\mathrm{U},\varrho)}\langle\pi,{}^{L}\eta(s)\cdot s_{\psi}\rangle\mathrm{tr}(\pi\mid f),

    where e()e(\cdot) is the Kottwitz sign.

Proof.

We sketch the proof following ideas in [Kal+14] and [Mok15]. The proof of (1) is in [Kal+14, §1.6.4]. They choose a standard parabolic subgroup P=MNPP^{*}=M^{*}N_{P^{*}} of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) that transfers to U\mathrm{U}, a parameter ψMΨ(M)\psi_{M^{*}}\in\Psi(M^{*}) and a character λHomv(M,𝔾m)\lambda\in\mathrm{Hom}_{\mathbb{Q}_{v}}(M^{*},{\mathbb{G}_{m}}) such that the induced central parameter ϕλ:WvML\phi_{\lambda}:W_{\mathbb{Q}_{v}}\to{}^{L}M^{*} satisfies that ψMϕλ\psi_{M^{*}}\cdot\phi_{\lambda} agrees with ψ\psi under the LL-embedding MLUvL(n){}^{L}M^{*}\hookrightarrow{}^{L}\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n). Choose a representative (ϱ,z)(\varrho,z) in its equivalence class so that the restriction (ϱM,zM)(\varrho_{M^{*}},z_{M^{*}}) to MM^{*} is also an extended pure inner twist.

They then define Πψ(U,ϱM)\Pi_{\psi}(\mathrm{U},\varrho_{M^{*}}) by

Πψ(U,ϱ):={IPU(πMχλ)πMΠψM(M,ϱM)},\Pi_{\psi}(\mathrm{U},\varrho):=\{I^{\mathrm{U}}_{P}(\pi_{M}\otimes\chi_{\lambda})\mid\pi_{M}\in\Pi_{\psi_{M^{*}}}(M,\varrho_{M^{*}})\},

where IPGI^{G}_{P} denotes normalized parabolic induction and χλ\chi_{\lambda} is the character of M(v)M(\mathbb{Q}_{v}) corresponding to λ\lambda. Note that by definition of parabolic induction, if πM\pi_{M} has central character ωπM\omega_{\pi_{M}}, then IPU(πM)I^{\mathrm{U}}_{P}(\pi_{M}) will have central character δP12ωπM\delta^{\frac{1}{2}}_{P}\omega_{\pi_{M}}. Since each element of ΠψM(M,ϱM)\Pi_{\psi_{M^{*}}}(M,\varrho_{M^{*}}) has the same central character, this will also be true of Πψ(U,ϱ)\Pi_{\psi}(\mathrm{U},\varrho).

From the explicit description of SψS_{\psi} given in [Kal+14, pg 62], it follows that Sψ=SψMS_{\psi}=S_{\psi_{M^{*}}}. In [Kal+14, §1.6.4] they show that SψradZ(Uv(n)^)Γv=SψradZ(M^)ΓvS^{\mathrm{rad}}_{\psi}Z(\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}}=S^{\mathrm{rad}}_{\psi}Z(\widehat{M^{*}})^{\Gamma_{\mathbb{Q}_{v}}} and that χz\chi_{z} and χzM\chi_{z_{M^{*}}} both extend uniquely to give the same character χ~z\tilde{\chi}_{z} of SψradZ(Uv(n)^)ΓvS^{\mathrm{rad}}_{\psi}Z(\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}} that is trivial on SψradS^{\mathrm{rad}}_{\psi}. Now, we have an identification

Irr(Sψ,χz)=Irr(SψM,χzM),\mathrm{Irr}(S^{\natural}_{\psi},\chi_{z})=\mathrm{Irr}(S^{\natural}_{\psi_{M^{*}}},\chi_{z_{M^{*}}}),

since both parametrize irreducible representations of SψS_{\psi} that restrict to χ~z\tilde{\chi}_{z} on SψradZ(Uv(n)^)ΓvS^{\mathrm{rad}}_{\psi}Z(\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}}. One can now define

π,s=πM,sM\langle\pi,s\rangle=\langle\pi_{M},s_{M^{*}}\rangle

for sSψs\in S^{\natural}_{\psi}.

It remains to verify the endoscopic character identity. Fix a refined endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) for Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) such that ψ=ηLψH\psi={}^{L}\eta\circ\psi^{\mathrm{H}} for some ψHΨ+(H)\psi^{\mathrm{H}}\in\Psi^{+}(\mathrm{H}). Then ηL(s)SψM^{}^{L}\eta(s)\in S_{\psi}\subset\widehat{M}. By [BM21, Proposition 3.10], there exists a refined endoscopic datum (HM,sM,ηML)(\mathrm{H}_{M^{*}},s_{M^{*}},{}^{L}\eta_{M^{*}}) and parameter ψHMΨ(HM)\psi^{\mathrm{H}_{M^{*}}}\in\Psi(\mathrm{H}_{M^{*}}) corresponding to the pair (ψM,ηL(s))(\psi_{M^{*}},{}^{L}\eta(s)). It is clear from construction that under the map Y:r(M)r(Uv)Y:\mathcal{E}^{r}(M^{*})\to\mathcal{E}^{r}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}) of [BM21, §2.5], the image of the class of (HM,sM,ηML)(\mathrm{H}_{M^{*}},s_{M^{*}},{}^{L}\eta_{M^{*}}) equals the class of (H,s,ηL)(\mathrm{H},s,{}^{L}\eta). Now by [BM21, Proposition 2.20], we can choose a refined datum equivalent to (HM,sM,ηML)(\mathrm{H}_{M^{*}},s_{M^{*}},{}^{L}\eta_{M^{*}}) fitting into an embedded datum (H,HM,s,ηL)(\mathrm{H},\mathrm{H}_{M^{*}},s,{}^{L}\eta). We observe that HM\mathrm{H}_{M^{*}} is a Levi subgroup of H\mathrm{H}.

Now, ηL|M{}^{L}\eta|_{M^{*}} induces a map Z(M^)Z(HM^)Z(\widehat{M^{*}})\hookrightarrow Z(\widehat{\mathrm{H}_{M^{*}}}) and hence ϕλ\phi_{\lambda} yields a central parameter ψλH\psi_{\lambda_{\mathrm{H}}} of HML{}^{L}\mathrm{H}_{M^{*}}. It is easy to see that by definition ψHMϕλH=ψH\psi^{\mathrm{H}_{M^{*}}}\cdot\phi_{\lambda_{\mathrm{H}}}=\psi^{\mathrm{H}} under the natural inclusion HMLHL{}^{L}\mathrm{H}_{M^{*}}\hookrightarrow{}^{L}\mathrm{H}. Hence, we can define a packet ΠψH(H)\Pi_{\psi^{\mathrm{H}}}(\mathrm{H}) and pairing

,:ΠΨH(H)×SψH×,\langle\cdot,\cdot\rangle:\Pi_{\Psi^{\mathrm{H}}}(\mathrm{H})\times S^{\natural}_{\psi^{\mathrm{H}}}\to\mathbb{C}^{\times},

using the above procedure.

We need to verify that the resulting pairing satisfy the endoscopic character identity. Let f,fHf,f^{\mathrm{H}} be Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching functions. Let fP(M)f_{P}\in\mathcal{H}(M^{*}) and fPHH(HM)f^{\mathrm{H}}_{P^{*}_{\mathrm{H}}}\in\mathcal{H}(\mathrm{H}_{M^{*}}) be the corresponding constant term functions. By the paragraph at the top of page 237237 and the remark on page 239239 of [Dij72] it follows that

tr(IPU(πM)f)=tr(πMfP),\mathrm{tr}(I^{\mathrm{U}}_{P}(\pi_{M})\mid f)=\mathrm{tr}(\pi_{M}\mid f_{P}),

and similarly for fPHHf^{\mathrm{H}}_{P^{*}_{\mathrm{H}}}. We can restrict the splitting of Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) to MM^{*} and together with the character ϕ\phi, this gives a Whittaker datum 𝔴M\mathfrak{w}_{M^{*}}. By [BM21, Proposition 5.3], the corresponding canonical transfer factor Δ[𝔴M,ϱM,zM]\Delta[\mathfrak{w}_{M^{*}},\varrho_{M^{*}},z_{M^{*}}] satisfies

Δ[𝔴M,ϱM,zM](γH,γ)=|DMUv(n)(γ)|12|DHMH(γH)|12Δ[𝔴,ϱ,z](γH,γ)\Delta[\mathfrak{w}_{M^{*}},\varrho_{M^{*}},z_{M^{*}}](\gamma_{\mathrm{H}},\gamma)=|D^{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)}_{M^{*}}(\gamma)|^{-\frac{1}{2}}|D^{\mathrm{H}}_{\mathrm{H}_{M^{*}}}(\gamma^{\mathrm{H}})|^{\frac{1}{2}}\Delta[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma)

for regular γM(v),γHHM(v)\gamma\in M^{*}(\mathbb{Q}_{v}),\gamma^{\mathrm{H}}\in\mathrm{H}_{M^{*}}(\mathbb{Q}_{v}) and where we recall that DMG(γ)D^{G}_{M}(\gamma) is defined to equal det(1ad(m))|Lie(G)Lie(M)\mathrm{det}(1-\mathrm{ad}(m))|_{\mathrm{Lie}(G)\setminus\mathrm{Lie}(M)}.

We now claim that fPf_{P} and fPHHf^{\mathrm{H}}_{P^{*}_{\mathrm{H}}} are Δ[𝔴M,ϱM,zM]\Delta[\mathfrak{w}_{M^{*}},\varrho_{M^{*}},z_{M^{*}}]-matching. If we can show this then we will have

πHΠψH(H)πH,sψHtr(πHfH)\displaystyle\sum_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}}) =πHMΠψHM(HM)πHM,sψtr(πHMfPHH)\displaystyle=\sum_{\pi_{\mathrm{H}_{M^{*}}}\in\Pi_{\psi^{\mathrm{H}_{M^{*}}}}(\mathrm{H}_{M^{*}})}\langle\pi_{\mathrm{H}_{M^{*}}},s_{\psi}\rangle\mathrm{tr}(\pi_{\mathrm{H}_{M^{*}}}\mid f^{\mathrm{H}}_{P^{*}_{\mathrm{H}}})
=e(M)πMΠψM(M,ϱM)πM,ηL(s)sψMtr(πMfP)\displaystyle=e(M)\sum_{\pi_{M}\in\Pi_{\psi_{M^{*}}}(M,\varrho_{M^{*}})}\langle\pi_{M},{}^{L}\eta(s)\cdot s_{\psi_{M^{*}}}\rangle\mathrm{tr}(\pi_{M}\mid f_{P})
=e(U)πΠψ(U,ϱ)π,ηL(s)sψtr(πf),\displaystyle=e(\mathrm{U})\sum_{\pi\in\Pi_{\psi}(\mathrm{U},\varrho)}\langle\pi,{}^{L}\eta(s)\cdot s_{\psi}\rangle\mathrm{tr}(\pi\mid f),

as desired. Note that in the above we use that e(M)=e(U)e(M)=e(\mathrm{U}) which is part of the proposition on page 292292 of [Kot83].

Suppose γHHM(v)\gamma_{\mathrm{H}}\in\mathrm{H}_{M^{*}}(\mathbb{Q}_{v}) and γM(v)\gamma\in M(\mathbb{Q}_{v}) are strongly regular elements that transfer to each other. Then by [Dij72, Lemma 9], we have the following equality of orbital integrals (and analogously for fHf^{\mathrm{H}}):

OγU(f)=|DMU(γ)|12OγM(fP),O^{\mathrm{U}}_{\gamma}(f)=|D^{\mathrm{U}}_{M}(\gamma)|^{-\frac{1}{2}}O^{M}_{\gamma}(f_{P}),

and hence, since ff and fHf^{\mathrm{H}} are Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching:

SOγHHM(fPHH)\displaystyle SO^{\mathrm{H}_{M^{*}}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}}_{P^{*}_{\mathrm{H}}}) =|DHMH(γH)|12SOγHH(fH)\displaystyle=|D^{\mathrm{H}}_{\mathrm{H}_{M^{*}}}(\gamma_{\mathrm{H}})|^{\frac{1}{2}}SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}})
=|DHMH(γH)|12γstγΔ[𝔴,ϱ,z](γH,γ)OγU(f)\displaystyle=|D^{\mathrm{H}}_{\mathrm{H}_{M^{*}}}(\gamma_{\mathrm{H}})|^{\frac{1}{2}}\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{U}}_{\gamma^{\prime}}(f)
=|DHMH(γH)|12|DMU(γ)|12γst,UγΔ[𝔴,ϱ,z](γH,γ)OγM(fP)\displaystyle=|D^{\mathrm{H}}_{\mathrm{H}_{M^{*}}}(\gamma_{\mathrm{H}})|^{\frac{1}{2}}|D^{\mathrm{U}}_{M}(\gamma)|^{-\frac{1}{2}}\sum\limits_{\gamma^{\prime}\sim_{st,\mathrm{U}}\gamma}\Delta[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})O^{M}_{\gamma^{\prime}}(f_{P})
=γst,MγΔ[𝔴M,ϱM,zM](γH,γ)OγM(fP),\displaystyle=\sum\limits_{\gamma^{\prime}\sim_{st,M}\gamma}\Delta[\mathfrak{w}_{M^{*}},\varrho_{M^{*}},z_{M^{*}}](\gamma_{\mathrm{H}},\gamma^{\prime})O^{M}_{\gamma^{\prime}}(f_{P}),

as desired. Note that we use that the number of conjugacy classes of γ\gamma in the stable class is the same for U\mathrm{U} and MM (this follows from the injection H1(v,M)H1(v,U)H^{1}(\mathbb{Q}_{v},M)\hookrightarrow H^{1}(\mathbb{Q}_{v},\mathrm{U})).

The global classification

We now consider the global situation. Recall that we have fixed a quadratic imaginary extension E/E/\mathbb{Q} and are considering global unitary groups U=U(V)\mathrm{U}=\mathrm{U}(V) that are quasi-split at the finite places and with fixed quasi-split inner form U(n)\mathrm{U}^{*}(n). Due to the lack of global LL-group, we rely on the cuspidal automorphic representations of GLn(𝔸E)\mathrm{GL}_{n}(\mathbb{A}_{E}) to define the notion of global parameters as in [Art13a] (cf. [Kal+14]). Let Ψ(N)\Psi(N) denote the set of all formal sums

ψn=1(π1ν1)r(πrνr),\psi^{n}=\ell_{1}(\pi_{1}\boxtimes\nu_{1})\boxplus\cdots\boxplus\ell_{r}(\pi_{r}\boxtimes\nu_{r}),

where i\ell_{i} are positive integers, πi\pi_{i} are cuspidal automorphic representations of GLn(𝔸E)\mathrm{GL}_{n}(\mathbb{A}_{E}) and νi\nu_{i} are algebraic representations of SLn()\mathrm{SL}_{n}(\mathbb{C}) such that πiνi\pi_{i}\boxtimes\nu_{i} are pairwise disjoint.

We denote (πν)=πν(\pi\boxtimes\nu)^{*}=\pi^{*}\boxtimes\nu where π=(πc)\pi^{*}=(\pi^{c})^{\vee} the conjugate dual representation of π\pi. Now for ψ=1(π1ν1)r(πrνr)\psi=\ell_{1}(\pi_{1}\boxtimes\nu_{1})\boxplus\cdots\boxplus\ell_{r}(\pi_{r}\boxtimes\nu_{r}), we say that ψ\psi is self-dual if there exists an involution iii\longmapsto i^{*} of {1,,r}\{1,\cdots,r\} such that (πiνi)=πiνi(\pi_{i}\boxtimes\nu_{i})^{*}=\pi_{i^{*}}\boxtimes\nu_{i^{*}} and i=i\ell_{i}=\ell_{i^{*}}. From a self-dual formal sum ψn\psi^{n}, we can construct a group ψn\mathcal{L}_{\psi^{n}} and a map ([Mok15, p. 22, 23; definition 2.4.3])

ψ~n:ψn×SL2()GLn,EL.\widetilde{\psi}^{n}:\mathcal{L}_{\psi^{n}}\times\mathrm{SL}_{2}(\mathbb{C})\longrightarrow\prescript{L}{}{\mathrm{GL}_{n,E}}.

Recall that we have a base change map ηB:UL(n)GLn,EL\eta_{B}:\prescript{L}{}{\mathrm{U}^{*}(n)}\longrightarrow\prescript{L}{}{\mathrm{GL}_{n,E}}.

Definition 2.10.

The set of global LL-parameters Ψ(U(n),ηB)\Psi(\mathrm{U}^{*}(n),\eta_{B}) of U(n)\mathrm{U}^{*}(n) is the set consisting of pairs (ψn,ψ~)(\psi^{n},\widetilde{\psi}) where ψn\psi^{n} is a self-dual formal sum and ψ~:ψn×SL2()UL(n)\widetilde{\psi}:\mathcal{L}_{\psi^{n}}\times\mathrm{SL}_{2}(\mathbb{C})\longrightarrow\prescript{L}{}{\mathrm{U}^{*}(n)} is a map such that ψn~=ηBψ~\widetilde{\psi^{n}}=\eta_{B}\circ\widetilde{\psi}.

We remark that ψ~\widetilde{\psi} is determined by the base change map ηB\eta_{B} and ψ~n\widetilde{\psi}^{n}, and as in the local case, from the map ψ~\widetilde{\psi}, we can define various centralizer groups Sψ~S_{\widetilde{\psi}}, S¯ψ~\overline{S}_{\widetilde{\psi}}, 𝒮¯ψ~\overline{\mathcal{S}}_{\widetilde{\psi}}, Sψ~S^{\natural}_{\widetilde{\psi}}.

There is a localization morphism ψψv\psi\longmapsto\psi_{v} from Ψ(U(n))\Psi(\mathrm{U}^{*}(n)) to Ψ+(Uv(n))\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) [Mok15, p. 18,19]. More precisely, if vv is a place of \mathbb{Q} that splits in EE then Ev=Ew×Ew¯E_{v}=E_{w}\times E_{\overline{w}} and Uv(n)GLn,Ew\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)\cong\mathrm{GL}_{n,E_{w}} where ww, w¯\overline{w} are the primes of EE above vv. Moreover, there is an identification v=Ew\mathbb{Q}_{v}=E_{w} and therefore we can define ψv=ψwn\psi_{v}=\psi^{n}_{w}. If vv is a place of \mathbb{Q} that does not split in EE then EvE_{v} is a quadratic extension of v\mathbb{Q}_{v}. By [Mok15, Theorem. 2.4.10] the localization ψvn\psi^{n}_{v} of ψn\psi^{n} factors through the base change map ηB\eta_{B} so that it defines a parameter ψv\psi_{v} in Ψ+(Uv(n))\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)).

According to Theorem 2.5 and Theorem 2.9, for each ψvΨ+(Uv)\psi_{v}\in\Psi^{+}(\mathrm{U}_{v}) we have a packet Πψv(Uv)\Pi_{\psi_{v}}(\mathrm{U}_{v}) together with a map

Πψv(Uv)Irr(Sψv),πvπv,.\Pi_{\psi_{v}}(\mathrm{U}_{v})\longrightarrow\text{Irr}(S^{\natural}_{\psi_{v}}),\qquad\pi_{v}\mapsto\langle\pi_{v},-\rangle.

We denote

Πψ(U,ϱ):={vπv:πvΠψv(Uv,ϱv)|πv,=1for almost all v}.\Pi_{\psi}(\mathrm{U},\varrho):=\left\{\bigotimes_{v}\pi_{v}:\pi_{v}\in\Pi_{\psi_{v}}(\mathrm{U}_{v},\varrho_{v})\ |\ \langle\pi_{v},-\rangle=1\quad\text{for almost all $v$}\right\}.

Since the localization maps ψψv\psi\longmapsto\psi_{v} induce the localization maps SψSψvS^{\natural}_{\psi}\longrightarrow S^{\natural}_{\psi_{v}} for centralizer groups ([Kal+14, pg 71]), we can associate to each vπvΠψ(U,ϱ)\bigotimes_{v}\pi_{v}\in\Pi_{\psi}(\mathrm{U},\varrho) a character of SψS^{\natural}_{\psi} by the following formula

π,s:=vπv,sv,sSψ\langle\pi,s\rangle:=\prod_{v}\langle\pi_{v},s_{v}\rangle,\quad s\in S^{\natural}_{\psi}

where svs_{v} is the image of ss by the localization morphism SψSψvS^{\natural}_{\psi}\longrightarrow S^{\natural}_{\psi_{v}}. The global pairing π,\langle\pi,\cdot\rangle descends to a character of 𝒮¯ψ\overline{\mathcal{S}}_{\psi} (see [Kal+14, pg 89]).

Definition 2.11.

Let Πψ(U,ϱ,ϵψ):={πΠψ(U,ϱ):π,ϱ=ϵψ}\Pi_{\psi}(\mathrm{U},\varrho,\epsilon_{\psi}):=\left\{\pi\in\Pi_{\psi}(\mathrm{U},\varrho):\langle\pi,-\rangle_{\varrho}=\epsilon_{\psi}\right\} where ϵψ\epsilon_{\psi} is the Arthur character of 𝒮¯ψ\overline{\mathcal{S}}_{\psi}. If ψ\psi is a generic parameter then ϵψ1\epsilon_{\psi}\equiv 1.

Theorem 2.12.

([Kal+14] theorem 1.7.1)1.7.1) There is an isomorphism of U(𝔸)\mathrm{U}(\mathbb{A})-modules

Ldisc2(U()U(𝔸))ψΨ(U(n))Ldisc,ψ2(U()U(𝔸)).L^{2}_{\text{disc}}(\mathrm{U}(\mathbb{Q})\setminus\mathrm{U}(\mathbb{A}))\simeq\bigoplus_{\psi\in\Psi(\mathrm{U}^{*}(n))}L^{2}_{\text{disc},\psi}(\mathrm{U}(\mathbb{Q})\setminus\mathrm{U}(\mathbb{A})).

If ψ=ϕ\psi=\phi is generic then

  1. \bullet

    Ldisc,ϕ2(U()U(𝔸))=0L^{2}_{\text{disc},\phi}(\mathrm{U}(\mathbb{Q})\setminus\mathrm{U}(\mathbb{A}))=0 if ψΨ2(U(n))\psi\notin\Psi_{2}(\mathrm{U}^{*}(n)).

  2. \bullet

    Ldisc,ϕ2(U()U(𝔸))πΠϕ(U,ϵψ)πL^{2}_{\text{disc},\phi}(\mathrm{U}(\mathbb{Q})\setminus\mathrm{U}(\mathbb{A}))\simeq\bigoplus_{\pi\in\Pi_{\phi}(\mathrm{U},\epsilon_{\psi})}\pi if ψΨ2(U(n))\psi\in\Psi_{2}(\mathrm{U}^{*}(n)).

In particular, if π\pi is an automorphic representation of the unitary group U\mathrm{U} belonging to a generic global packet then mπ=1m_{\pi}=1.

Remark 2.13.

We remark that the theorem as we have stated it here is proved unconditionally in [Kal+14]. The careful reader will note that the theorem of [Kal+14] requires that U\mathrm{U} arises as a pure inner twist of U(n)\mathrm{U}^{*}(n). Indeed, this will be true since we are assuming U\mathrm{U} comes from a hermitian form (see [Kal+14, pg 18]).

2.3. Automorphic representations of unitary similitude groups

In this section, we want to transfer the results about automorphic representations from unitary groups to unitary similitude groups (with an odd number of variables). We begin with the local case.

Let vv be a finite place of \mathbb{Q} that does not split over EE, let nn be an odd positive integer, and let GU\mathrm{GU} be an inner form of GUv(n)\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n) and denote the corresponding unitary group by U\mathrm{U}. Fix a Γv\Gamma_{\mathbb{Q}_{v}}-invariant splitting of GU\mathrm{GU} and restrict to get a Γv\Gamma_{\mathbb{Q}_{v}}-invariant splitting of U\mathrm{U}. Fix also a character φ:v×\varphi:\mathbb{Q}_{v}\to\mathbb{C}^{\times}. This data gives us Whittaker data 𝔴GU\mathfrak{w}_{\mathrm{GU}} and 𝔴U\mathfrak{w}_{\mathrm{U}} of GU\mathrm{GU} and U\mathrm{U} respectively.

We give GU\mathrm{GU} the structure of an extended pure inner twist (ϱGU,zGU)(\varrho_{\mathrm{GU}},z_{\mathrm{GU}}). We can restrict ϱ\varrho to U\mathrm{U} to get an inner twist ϱU:Uv(n)U\varrho_{\mathrm{U}}:\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)\to\mathrm{U}. We give this the structure of an extended pure inner twist (ϱU,zU)(\varrho_{\mathrm{U}},z_{\mathrm{U}}). Note that since we are assuming nn is odd, GU\mathrm{GU} will automatically be quasi-split. By Lemma 2.1, we have GU(v)=U(v)Ev×\mathrm{GU}(\mathbb{Q}_{v})=\mathrm{U}(\mathbb{Q}_{v})E_{v}^{\times} and then the following result:

Corollary 2.14.

There is a natural bijection between the set Π(GU)\Pi(\mathrm{GU}) and the set of pairs (π,χ)(\pi,\chi) such that πΠ(U)\pi\in\Pi(\mathrm{U}) and χ\chi is a character of Ev×E^{\times}_{v} such that χ|Ev×U(v)=ωπ|Ev×U(v)\chi|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})}=\omega_{\pi}|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})} where ωπ\omega_{\pi} is the central character of π\pi.

We use this corollary to define AA-packets of representations for GU\mathrm{GU} and the associated AA-parameters. Fix χ\chi a character of Z(GU)Z(\mathrm{GU}) corresponding to a morphism χ~:vGUv(n)^abWv=(×××)Wv\tilde{\chi}:\mathcal{L}_{\mathbb{Q}_{v}}\longrightarrow\widehat{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)}_{\mathrm{ab}}\rtimes W_{\mathbb{Q}_{v}}=(\mathbb{C}^{\times}\times\mathbb{C}^{\times})\rtimes W_{\mathbb{Q}_{v}}, and a parameter ψΨ+(Uv(n))\psi\in\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)) given by ψ:v×SU(2)UL=GLn()Wv\psi:\mathcal{L}_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\to{}^{L}\mathrm{U}=\mathrm{GL}_{n}(\mathbb{C})\rtimes W_{\mathbb{Q}_{v}} such that ωπ|Ev×U(v)=χ|Ev×U(v)\omega_{\pi}|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})}=\chi|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})} for each πΠψ(U,ϱU)\pi\in\Pi_{\psi}(\mathrm{U},\varrho_{\mathrm{U}}).

We can view GUL=GLn()××Wv{}^{L}\mathrm{GU}=\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}} as a product of UL=GLn()Wv{}^{L}\mathrm{U}=\mathrm{GL}_{n}(\mathbb{C})\rtimes W_{\mathbb{Q}_{v}} and GUv(n)^abWv=(×××)Wv\widehat{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)}_{\mathrm{ab}}\rtimes W_{\mathbb{Q}_{v}}=(\mathbb{C}^{\times}\times\mathbb{C}^{\times})\rtimes W_{\mathbb{Q}_{v}} over ×Wv\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}} where the first projection is given by gαdetgαg\rtimes\alpha\longmapsto\det g\rtimes\alpha and the second is given by (x,y)αxα(x,y)\rtimes\alpha\longmapsto x\rtimes\alpha. The above pair (ψ,χ)(\psi,\chi) then defines a unique morphism ψ~:v×SU(2)GLn()××Wv\tilde{\psi}:\mathcal{L}_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\longrightarrow\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}}. Conversely, each ψ~Ψ+(GUv(n))\tilde{\psi}\in\Psi^{+}(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)) gives rise to a pair (ψ,χ)(\psi,\chi). We summarize these relationships in the following commutative diagram:

v×SU(2)\mathcal{L}_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\squareGLn()××Wv\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}}×××Wv\mathbb{C}^{\times}\times\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}}GLn()Wv\mathrm{GL}_{n}(\mathbb{C})\rtimes W_{\mathbb{Q}_{v}}×Wv\mathbb{C}^{\times}\rtimes W_{\mathbb{Q}_{v}}ψ~\tilde{\psi}ψ\psiχ~\tilde{\chi}(det×Id)Id(\det\times\mathrm{Id})\rtimes\mathrm{Id}detId\det\rtimes\mathrm{Id}pr1\text{pr}_{1}pr1\text{pr}_{1}

We define the associated AA-packet of representations for GU(v)\mathrm{GU}({\mathbb{Q}_{v}}) to be the set

Πψ~(GU,ϱGU):={(π,χ)|πΠψ(U,ϱ),ωπ|Ev×U(v)=χ|Ev×U(v)}.\Pi_{\tilde{\psi}}(\mathrm{GU},\varrho_{\mathrm{GU}}):=\left\{(\pi,\chi)|\pi\in\Pi_{\psi}(\mathrm{U},\varrho),\omega_{\pi}|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})}=\chi|_{E_{v}^{\times}\bigcap\mathrm{U}(\mathbb{Q}_{v})}\right\}.

We now use the internal structure of Πψ(U,ϱU)\Pi_{\psi}(\mathrm{U},\varrho_{\mathrm{U}}) to describe that of Πψ~(GU,ϱGU)\Pi_{\tilde{\psi}}(\mathrm{GU},\varrho_{\mathrm{GU}}). Let us first describe the relations between the various centralizer groups for ψ\psi and ψ~\tilde{\psi}.

Lemma 2.15.

With ψ\psi and ψ~\tilde{\psi} as above, we have

Sψ~=Sψ+××,𝒮¯ψ=𝒮¯ψ~,Sψ~=π0(Sψ+)××,S_{\tilde{\psi}}=S_{\psi}^{+}\times\mathbb{C}^{\times},\qquad\overline{\mathcal{S}}_{\psi}=\overline{\mathcal{S}}_{\tilde{\psi}},\qquad S^{\natural}_{\tilde{\psi}}=\pi_{0}(S^{+}_{\psi})\times\mathbb{C}^{\times},

where Sψ+={gSψ|detg=1}S_{\psi}^{+}=\{g\in S_{\psi}|\det g=1\}.

Proof.

For (g,c)(g,c) and (x,t)(x,t) in GLn()××\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times} and σWv\sigma\in W_{\mathbb{Q}_{v}} projecting to the nontrivial element of Gal(Ev,v)\mathrm{Gal}(E_{v},\mathbb{Q}_{v}), we have

(g,c)(x,t)σ(g1,c1)\displaystyle(g,c)\cdot(x,t)\rtimes\sigma\cdot(g^{-1},c^{-1}) =(gx,ct)σ(g1,c1)\displaystyle=(gx,ct)\rtimes\sigma\cdot(g^{-1},c^{-1})
=(gx(JgtJ1),tdetg1)σ,\displaystyle=\big{(}gx(Jg^{t}J^{-1}),t\det g^{-1}\big{)}\rtimes\sigma,

where the second equality comes from the action of σ\sigma on (g1×c1)(g^{-1}\times c^{-1}). In particular, (g,c)Sψ~(g,c)\in S_{\tilde{\psi}} if and only if gSψg\in S_{\psi} and detg=1\det g=1. In other words, Sψ+××=Sψ~S_{\psi}^{+}\times\mathbb{C}^{\times}=S_{\tilde{\psi}}.

We now prove that 𝒮¯ψ=𝒮¯ψ~\overline{\mathcal{S}}_{\psi}=\overline{\mathcal{S}}_{\tilde{\psi}}. By a direct calculation, we see that Z(Uv(n)^)Γv={±Idn}/2Z(\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}}=\big{\{}\pm\mathrm{Id}_{n}\big{\}}\simeq\mathbb{Z}/2\mathbb{Z} and Z(GUv(n)^)Γv=Idn××Z(\widehat{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}}=\mathrm{Id}_{n}\times\mathbb{C}^{\times} (because nn odd). Hence 𝒮¯ψ~=π0(Sψ+)\overline{\mathcal{S}}_{\tilde{\psi}}=\pi_{0}(S_{\psi}^{+}). We also remark that the equality gx(JgtJ1)=xgx(Jg^{t}J^{-1})=x implies (detg)2=1(\det g)^{2}=1. Therefore, for every gSψg\in S_{\psi} we have (detg)2=1(\det g)^{2}=1. Moreover, since det(Idn)=1\det(-\mathrm{Id}_{n})=-1, we have Sψ+Sψ/Z(Uv(n)^)ΓvS^{+}_{\psi}\cong S_{\psi}/Z(\widehat{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)})^{\Gamma_{\mathbb{Q}_{v}}}. Thus, 𝒮¯ψ~=𝒮¯ψ\overline{\mathcal{S}}_{\tilde{\psi}}=\overline{\mathcal{S}}_{\psi} as desired.

Finally, we have Sψ~rad=(Sψ~(SLn()×1))=(Sψ+)S^{\mathrm{rad}}_{\tilde{\psi}}=(S_{\tilde{\psi}}\cap(\mathrm{SL}_{n}(\mathbb{C})\times 1))^{\circ}=(S^{+}_{\psi})^{\circ} which implies the description of Sψ~S^{\natural}_{\tilde{\psi}} in the statement of the lemma. ∎

We now construct a pairing:

,GU:Πψ~(GU,ϱGU)×Sψ~×.\langle\cdot,\cdot\rangle_{\mathrm{GU}}:\Pi_{\tilde{\psi}}(\mathrm{GU},\varrho_{\mathrm{GU}})\times S^{\natural}_{\tilde{\psi}}\longrightarrow\mathbb{C}^{\times}.

Let (π,χ)Πψ~(GU,ρGU)(\pi,\chi)\in\Pi_{\tilde{\psi}}(\mathrm{GU},\rho_{\mathrm{GU}}). Then πΠψ(U,ϱU)\pi\in\Pi_{\psi}(\mathrm{U},\varrho_{\mathrm{U}}) and by Theorems 2.5 and 2.9 there is an associated character π,U:Sψ×\langle\pi,\cdot\rangle_{\mathrm{U}}:S^{\natural}_{\psi}\longrightarrow\mathbb{C}^{\times}. Note that since Sψrad=(Sψ+)S^{\mathrm{rad}}_{\psi}=(S^{+}_{\psi})^{\circ}, we can restrict this character to Sψ+/SψradS^{+}_{\psi}/S^{\mathrm{rad}}_{\psi}, and this restricted character factors to give a character of π0(Sψ+)\pi_{0}(S^{+}_{\psi}). Via zGUz_{\mathrm{GU}} and the map

κ:𝐁(v,GU)X(Z(GU^)Γv)=X(1××),\kappa:\mathbf{B}(\mathbb{Q}_{v},\mathrm{GU})\longrightarrow X^{*}(Z(\widehat{\mathrm{GU}})^{\Gamma_{\mathbb{Q}_{v}}})=X^{*}(1\times\mathbb{C}^{\times}),

we get a character χzGU\chi_{z_{\mathrm{GU}}} of 1××1\times\mathbb{C}^{\times}. Then in Lemma 2.15, we showed that Sψ~=π0(Sψ+)××S^{\natural}_{\tilde{\psi}}=\pi_{0}(S^{+}_{\psi})\times\mathbb{C}^{\times}. Hence we define

(π,χ),(s,c)GU=π,sUχzGU(c).\langle(\pi,\chi),(s,c)\rangle_{\mathrm{GU}}=\langle\pi,s\rangle_{\mathrm{U}}\chi_{z_{\mathrm{GU}}}(c).

Suppose that ψ~Ψ(GUv(n))\tilde{\psi}\in\Psi(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)) is generic. We show that (π,χ)(π,χ),GU(\pi,\chi)\mapsto\langle(\pi,\chi),\cdot\rangle_{\mathrm{GU}} is bijective onto Irr(Sψ~,χzGU)\mathrm{Irr}(S^{\natural}_{\tilde{\psi}},\chi_{z_{\mathrm{GU}}}) by constructing an inverse. Pick a character μGU\mu_{\mathrm{GU}} of Sψ~S^{\natural}_{\tilde{\psi}} which restricts on Z(GU^)ΓvZ(\widehat{\mathrm{GU}})^{\Gamma_{\mathbb{Q}_{v}}} to the character χzGU\chi_{z_{\mathrm{GU}}}. Since π0(Sψ+)\pi_{0}(S^{+}_{\psi}) and Z(U^)ΓvZ(\widehat{\mathrm{U}})^{\Gamma_{\mathbb{Q}_{v}}} generate SψS^{\natural}_{\psi} and have trivial intersection, there is then a unique character μU\mu_{\mathrm{U}} of SψS^{\natural}_{\psi} that restricts to χzU\chi_{z_{\mathrm{U}}} on Z(U^)ΓvZ(\widehat{\mathrm{U}})^{\Gamma_{\mathbb{Q}_{v}}} and μGU\mu_{\mathrm{GU}} on π0(Sψ+)\pi_{0}(S^{+}_{\psi}). By (2)(2) of Theorem 2.5, there then exists a πΠψ(U,ϱU)\pi\in\Pi_{\psi}(\mathrm{U},\varrho_{\mathrm{U}}) that gets mapped to μU\mu_{\mathrm{U}}, and by construction, (π,χ)(\pi,\chi) maps to μGU\mu_{\mathrm{GU}}. Hence μGU(π,χ)\mu_{\mathrm{GU}}\mapsto(\pi,\chi) is our desired inverse.

We have now proven

Theorem 2.16.

Parts (1)(1) and (2)(2) of Theorem 2.5 and Part (1)(1) of Theorem 2.9 hold for GU\mathrm{GU} for nonarchimedean vv.

In the archimedean case, these results are known by work of Langlands and Shelstad.

In the next section, we will prove that this pairing also satisfies the endoscopic character identities.

We record the following proposition for later use.

Proposition 2.17.

[Mg07, section 8.4.4] Let ϕ:Wv×SU(2)UvL(n)\phi:W_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\longrightarrow\prescript{L}{}{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)} be a discrete LL-parameter which is trivial over SU(2)\mathrm{SU}(2). Then the packet Πϕ(U,ϱU)\Pi_{\phi}(\mathrm{U},\varrho_{\mathrm{U}}) contains only supercuspidal representations. These LL-parameters are called supercuspidal.

Corollary 2.18.

From the above description of local LL-packets of GU\mathrm{GU}, it follows that the LL-packet of a supercuspidal LL-parameter of GU\mathrm{GU} will consist entirely of supercuspidal representations.

Remark 2.19.

Suppose that ϕ\phi is as above and (H,s,ηL)(H,s,{}^{L}\eta) is an elliptic endoscopic datum and ϕH:Wv×SU(2)HL\phi^{\mathrm{H}}:W_{\mathbb{Q}_{v}}\times\mathrm{SU}(2)\longrightarrow\prescript{L}{}{\mathrm{H}} an LL-parameter such that ηLϕH=ϕ{}^{L}\eta\circ\phi^{\mathrm{H}}=\phi. Then ϕH\phi^{\mathrm{H}} is also supercuspidal and hence the packet ΠϕH(H)\Pi_{\phi^{\mathrm{H}}}(\mathrm{H}) contains only supercuspidal representations.

2.4. The global classification for unitary similitude groups

Fix a Hermitian form VV and global group U=U(V)\mathrm{U}=\mathrm{U}(V) and GU=GU(V)\mathrm{GU}=\mathrm{GU}(V). As in the local case, we give GU\mathrm{GU} and U\mathrm{U} the structure of extended pure inner twists (ϱGU,zGU)(\varrho_{\mathrm{GU}},z_{\mathrm{GU}}) and (ϱU,zU)(\varrho_{\mathrm{U}},z_{\mathrm{U}}).

We begin by recalling the following result which relates automorphic representations of U(𝔸)\mathrm{U}(\mathbb{A}) and of GU(𝔸)\mathrm{GU}(\mathbb{A}).

Proposition 2.20.

([Clo+11, Section. CHL.IV.C, Proposition 1.1.4]). Fix nn\in\mathbb{N} odd. Let π\pi be an irreducible automorphic representation of GU(𝔸)\mathrm{GU}(\mathbb{A}) whose restriction to U(𝔸)\mathrm{U}(\mathbb{A}) contains an irreducible automorphic representation σ\sigma. If σ\sigma has multiplicity 11 in the discrete spectrum of U(𝔸)\mathrm{U}(\mathbb{A}) then π\pi has multiplicity 11 in the discrete spectrum of GU(𝔸)\mathrm{GU}(\mathbb{A}). Moreover, π\pi is the unique automorphic representation of GU(𝔸)\mathrm{GU}(\mathbb{A}) with central character χ\chi and containing σ\sigma in its restriction.

Let χ\chi be an automorphic central character of GU(𝔸)\mathrm{GU}(\mathbb{A}) and χU:=χ|Z(U(𝔸))\chi_{\mathrm{U}}:=\chi|_{Z(\mathrm{U}(\mathbb{A}))} its restriction to the center of U(𝔸)\mathrm{U}(\mathbb{A}). Consider ψ˙\dot{\psi} a generic AA-parameter for a global unitary group whose automorphic representations have χU\chi_{\mathrm{U}} as central character. The generic condition ensures the multiplicity one property of these automorphic representations by Theorem 2.12. As in the local case, a pair (ψ˙,χ)(\dot{\psi},\chi) satisfying the above conditions determines a generic AA-parameter for GU\mathrm{GU}. In the following, we will denote such an AA-parameter by ψ˙~\widetilde{\dot{\psi}} if χ\chi is clear from the context. We define the associated AA-packet Πψ˙~(GU,ϱGU,ϵψ˙~)\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}},\epsilon_{\widetilde{\dot{\psi}}}) to consist of the π\pi whose central character is χ\chi and whose restriction to U(𝔸)\mathrm{U}(\mathbb{A}) belongs to Πψ˙(U,ϱU,ϵψ˙)\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}},\epsilon_{\dot{\psi}}).

Now, by the proof of [Clo+11, Section. CHL.IV.C, Proposition 1.1.4], we have

L2(ΣU(𝔸),χU)=ResU(𝔸)GU(𝔸)L2(ΓGU(𝔸),χ),L^{2}(\Sigma\setminus\mathrm{U}(\mathbb{A}),\chi_{\mathrm{U}})=\mathrm{Res}^{\mathrm{GU}(\mathbb{A})}_{\mathrm{U}(\mathbb{A})}L^{2}(\Gamma\setminus\mathrm{GU}(\mathbb{A}),\chi),

where Γ=GU()Z(GU)(𝔸)\Gamma=\mathrm{GU}(\mathbb{Q})Z(\mathrm{GU})(\mathbb{A}) and Σ=ΓU(𝔸)\Sigma=\Gamma\cap\mathrm{U}(\mathbb{A}). In particular, it follows from Theorem 2.12 that we can lift every representation σΠψ˙(U,ϱU,ϵψ˙)\sigma\in\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}},\epsilon_{\dot{\psi}}) to a representation of GU(𝔸)\mathrm{GU}(\mathbb{A}) whose central character is χ\chi. Combining with Proposition 2.20, we see that there is a bijection between Πψ˙(U,ϱU,ϵψ˙)\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}},\epsilon_{\dot{\psi}}) and Πψ˙~(GU,ϱGU,ϵψ˙~)\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}},\epsilon_{\widetilde{\dot{\psi}}}).

We now give a description of Πψ˙~(GU,ϱGU,ϵψ˙~)\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}},\epsilon_{\widetilde{\dot{\psi}}}) in the spirit of Definition 2.11. We have defined global generic AA-parameters of GU\mathrm{GU} in terms of their counterpart for U\mathrm{U}. We define the centralizer groups for such parameters of GU\mathrm{GU} using the analogous groups for U\mathrm{U} and using Lemma 2.15 as our guide.

Remark 2.21.

It would perhaps be possible to define these parameters and their centralizer groups in analogy with our definitions for U\mathrm{U} using cuspidal automorphic representations and the methods of [Art13a], [Mok15], and [Kal+14]. For simplicity, we choose not to do this in the present paper.

Definition 2.22.

Let ψ˙~=(ψ˙,χ)Ψ(GU(n))\widetilde{\dot{\psi}}=(\dot{\psi},\chi)\in\Psi(\mathrm{GU}^{*}(n)) be a generic parameter. We define:

Sψ˙~:=Sψ˙+××,𝒮¯ψ˙~:=𝒮¯ψ˙,Sψ˙~:=π0(Sψ˙+)××S_{\widetilde{\dot{\psi}}}:=S_{\dot{\psi}}^{+}\times\mathbb{C}^{\times},\qquad\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}:=\overline{\mathcal{S}}_{\dot{\psi}},\qquad S^{\natural}_{\widetilde{\dot{\psi}}}:=\pi_{0}(S^{+}_{\dot{\psi}})\times\mathbb{C}^{\times}

We now discuss localization. First, by the localization map for algebraic cocycles (see [Kot14, §7]), the extended pure inner twists (ϱGU,zGU)(\varrho_{\mathrm{GU}},z_{\mathrm{GU}}) and (ϱU,zU)(\varrho_{\mathrm{U}},z_{\mathrm{U}}) give rise to local extended pure inner twists (ϱGUv,zGUv)(\varrho_{\mathrm{GU}_{\mathbb{Q}_{v}}},z_{\mathrm{GU}_{\mathbb{Q}_{v}}}) and (ϱUv,zUv)(\varrho_{U_{\mathbb{Q}_{v}}},z_{\mathrm{U}_{\mathbb{Q}_{v}}}) for each place vv of \mathbb{Q}.

Let (ψ˙,χ)(\dot{\psi},\chi) be a generic AA-parameter. At each place vv of \mathbb{Q}, we get a local parameter ψ˙v\dot{\psi}_{v} as well as a local character χv\chi_{v}. We define the localization of (ψ˙,χ)(\dot{\psi},\chi) at vv to be (ψ˙v,χv)(\dot{\psi}_{v},\chi_{v}). The localization map Sψ˙Sψ˙vS^{\natural}_{\dot{\psi}}\longrightarrow S^{\natural}_{\dot{\psi}_{v}} restricts to give a map Sψ˙+Sψ˙v+S^{+}_{\dot{\psi}}\to S^{+}_{\dot{\psi}_{v}} and hence we get a localization map

Sψ˙~Sψ˙~v.S^{\natural}_{\widetilde{\dot{\psi}}}\longrightarrow S^{\natural}_{\widetilde{\dot{\psi}}_{v}}.

Similarly, we get a localization map 𝒮¯ψ˙~𝒮¯ψ˙~v\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}\longrightarrow\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}_{v}}.

We now define:

Πψ˙~(GU,ϱGU):={vπv:πvΠψ˙~v(GUv,ϱGUv)πv,GUv=1for almost all v}.\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}}):=\left\{\bigotimes_{v}\pi_{v}:\pi_{v}\in\Pi_{\widetilde{\dot{\psi}}_{v}}(\mathrm{GU}_{\mathbb{Q}_{v}},\varrho_{\mathrm{GU}_{\mathbb{Q}_{v}}})\mid\langle\pi_{v},-\rangle_{\mathrm{GU}_{\mathbb{Q}_{v}}}=1\quad\text{for almost all $v$}\right\}.

We associate to each π=vπvΠψ˙~(GU,ϱGU)\pi=\bigotimes_{v}\pi_{v}\in\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}}) a character of Sψ˙~S^{\natural}_{\widetilde{\dot{\psi}}}. Each πv\pi_{v} corresponds to a pair (πv,χv)(\pi^{\prime}_{v},\chi_{v}) where πvΠ(U)\pi^{\prime}_{v}\in\Pi(\mathrm{U}). We then define a global pairing by the formula

π,(s,c)GU:=v(πv,χv),(sv,cv)GUv,(s,c)Sϕ˙~,\langle\pi,(s,c)\rangle_{\mathrm{GU}}:=\prod_{v}\langle(\pi^{\prime}_{v},\chi_{v}),(s_{v},c_{v})\rangle_{\mathrm{GU}_{\mathbb{Q}_{v}}},\quad(s,c)\in S^{\natural}_{\widetilde{\dot{\phi}}},

where (sv,cv)(s_{v},c_{v}) is the image of (s,c)(s,c) under the localization map defined above. We claim that π,\langle\pi,\cdot\rangle descends to a character on 𝒮¯ψ˙~\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}. Indeed, by definition we have

π,(s,c)GU=vπv,svUvχzGUv(cv).\langle\pi,(s,c)\rangle_{\mathrm{GU}}=\prod_{v}\langle\pi^{\prime}_{v},s_{v}\rangle_{\mathrm{U}_{\mathbb{Q}_{v}}}\chi_{z_{\mathrm{GU}_{\mathbb{Q}_{v}}}}(c_{v}).

We showed previously that vπv,svUv\prod\limits_{v}\langle\pi^{\prime}_{v},s_{v}\rangle_{\mathrm{U}_{\mathbb{Q}_{v}}} descends to 𝒮¯ψ˙~=𝒮¯ψ˙\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}=\overline{\mathcal{S}}_{\dot{\psi}} and vχzGUv(cv)\prod\limits_{v}\chi_{z_{\mathrm{GU}_{\mathbb{Q}_{v}}}}(c_{v}) is trivial by [Kot14, Proposition 15.6].

Proposition 2.23.

For ψ˙~\widetilde{\dot{\psi}} a generic AA-parameter of GU\mathrm{GU}, we have the following equality of sets:

Πψ˙~(GU,ϱGU,ϵψ˙~)={πΠψ˙~(GU,ϱGU)π,GUϵψ˙~}.\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}},\epsilon_{\widetilde{\dot{\psi}}})=\left\{\pi\in\Pi_{\widetilde{\dot{\psi}}}(\mathrm{GU},\varrho_{\mathrm{GU}})\mid\langle\pi,\cdot\rangle_{\mathrm{GU}}\equiv\epsilon_{\widetilde{\dot{\psi}}}\right\}.

We note that since we are assuming ψ˙~\widetilde{\dot{\psi}} is generic, we in fact have ϵψ˙~=1\epsilon_{\widetilde{\dot{\psi}}}=1.

Proof.

The left-hand side consists of all pairs (π,χ)(\pi,\chi) such that πΠψ˙(U,ϱU,ϵψ˙)\pi\in\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}},\epsilon_{\dot{\psi}}). By definition, we have

Πψ˙(U,ϱU,ϵψ˙)={πΠψ˙(U,ϱU)π,Uϵψ˙}.\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}},\epsilon_{\dot{\psi}})=\left\{\pi\in\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}})\mid\langle\pi,\cdot\rangle_{\mathrm{U}}\equiv\epsilon_{\dot{\psi}}\right\}.

Hence we just need to show that π,U\langle\pi,\cdot\rangle_{\mathrm{U}} is trivial if and only if (π,χ),GU\langle(\pi,\chi),\cdot\rangle_{\mathrm{GU}} is. But this is clear since these are the same character of 𝒮¯ψ˙~=𝒮¯ψ˙\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}=\overline{\mathcal{S}}_{\dot{\psi}}. ∎

Remark 2.24.

For our purposes, we also need to generalise the above description of automorphic representations to the groups G(U1××Uk)(𝔸)\mathrm{G}(\mathrm{U}_{1}\times\cdots\times\mathrm{U}_{k})(\mathbb{A}) with n1++nk=nn_{1}+\cdots+n_{k}=n odd. In this case, Proposition 2.20 still holds true ([Clo+11, Section. CHL.IV.C, Proposition 1.3.5]) and then the above process can be applied without any major change.

3. Endoscopic character identities

Let E/pE/\mathbb{Q}_{p} be a quadratic extension and nn an odd natural number. Our goal in this section is to prove the endoscopic character identities for elliptic endoscopic groups of G(U(n1)××U(nr))\mathrm{G}(\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})) with n1++nr=nn_{1}+\cdots+n_{r}=n and U(ni)\mathrm{U}(n_{i}) is an inner form of Up(ni)\mathrm{U}^{*}_{\mathbb{Q}_{p}}(n_{i}). We prove this using the fact that these identities hold for U(n1)××U(nr)\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r}) as in [Mok15], [Kal+14].

  • We first show that if the endoscopic character identities hold for U(n1)××U(nr)\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r}), then they also hold for U(n1)××U(nr)×ResE/p𝔾m\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} where we note that ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} is the center of G(U(n1)××U(nr))\mathrm{G}(\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})).

  • We then show that if the endoscopic character identities hold for U(n1)××U(nr)×ResE/p𝔾m\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}, then they hold for G(U(n1)××U(nr))\mathrm{G}(\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})).

We recall the statement of the endoscopic character identity for an extended pure inner twist G,(ϱ,z)\mathrm{G},(\varrho,z) of a quasi-split reductive group G\mathrm{G}^{*} over p\mathbb{Q}_{p} with refined endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta). Fix a local Whittaker datum 𝔴\mathfrak{w} of G\mathrm{G}^{*} giving a Whittaker normalized transfer factor Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z] (as in [KT18, §4.3]) between (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) and G\mathrm{G}. Suppose that f(G)f\in\mathcal{H}(\mathrm{G}) and fH(H)f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}) are Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z]-matching functions.

Now, let ψΨ+(G)\psi\in\Psi^{+}(\mathrm{G}^{*}) and ψHΨ+(H)\psi^{\mathrm{H}}\in\Psi^{+}(\mathrm{H}) be such that ψ=ηLψH\psi={}^{L}\eta\circ\psi^{\mathrm{H}}. Let ΠψH(H),Πψ(G,ϱ)\Pi_{\psi^{\mathrm{H}}}(\mathrm{H}),\Pi_{\psi}(\mathrm{G},\varrho) denote the respective AA-packets for the parameters. Then the endoscopic character identity states that

(3.1) πHΠψH(H)πH,sψHtr(πHfH)=e(G)πΠψπ,ssψtr(πf),\sum\limits_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f^{\mathrm{H}})=e(\mathrm{G})\sum\limits_{\pi\in\Pi_{\psi}}\langle\pi,s\cdot s_{\psi}\rangle\mathrm{tr}(\pi\mid f),

where π,s\langle\pi,s\rangle is as defined in Theorem 2.5 and Theorem 2.9. The elements sψs_{\psi} and sψHs_{\psi^{\mathrm{H}}} are defined to be the image of (1,I)(1,-I) under ψ\psi and ψH\psi^{\mathrm{H}} respectively and e(G)e(G) is the Kottwitz sign.

According to a theorem of Harish-Chandra, the trace distribution ftr(πf)f\mapsto\mathrm{tr}(\pi\mid f) is given by integrating against the Harish-Chandra character, which is a locally constant function π\mathcal{F}_{\pi} of G(p)sr\mathrm{G}(\mathbb{Q}_{p})_{sr} (where G(p)sr\mathrm{G}(\mathbb{Q}_{p})_{sr} denotes the strongly regular semisimple elements of G(p)\mathrm{G}(\mathbb{Q}_{p})). Then the above identity is equivalent to the equality

H(p)srπHΠψH(H)πH,sψHfH(g)πH(g)dg\displaystyle\int\limits_{\mathrm{H}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}(\mathrm{H})}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle f^{\mathrm{H}}(g)\mathcal{F}_{\pi^{\mathrm{H}}}(g)dg
=\displaystyle= e(G)G(p)srπΠψ(G,ϱ)π,ssψf(g)π(g)dg.\displaystyle e(\mathrm{G})\int\limits_{\mathrm{G}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{G},\varrho)}\langle\pi,s\cdot s_{\psi}\rangle f(g)\mathcal{F}_{\pi}(g)dg.

We remark that a Harish-Chandra character exists for representations IPG(π)I^{G}_{P}(\pi) by [Dij72, Theorem 3] and that this holds even in the case where the induction is not irreducible. Hence, πΠψ(G,ϱ)\pi\in\Pi_{\psi}(\mathrm{G},\varrho) have Harish-Chandra characters even in the case where ψΨ+(G)\psi\in\Psi^{+}(\mathrm{G}^{*}).

3.1. Endoscopic Identities for U(n1)××U(nr)×ResE/p𝔾m\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}

In this section we use the notation U\mathrm{U} to denote the group U(n1)××U(nr)\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r}). Our goal is to prove the endoscopic character identities for U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} using the fact that these identities are known for U\mathrm{U} by [Kal+14] (Theorems 2.5 and 2.9 in this paper).

In fact, we will prove the following stronger result. Fix quasi-split reductive groups Gi\mathrm{G}^{*}_{i} for i{1,2}i\in\{1,2\}. Let Gi,(ϱi,zi)\mathrm{G}_{i},(\varrho_{i},z_{i}) be extended pure inner twists of Gi\mathrm{G}^{*}_{i}. Let (Hi,si,ηiL)(\mathrm{H}_{i},s_{i},{}^{L}\eta_{i}) be refined endoscopic for Gi\mathrm{G}_{i}. We denote by (H1×H2,s1×s2,η1L×η2L)(\mathrm{H}_{1}\times\mathrm{H}_{2},s_{1}\times s_{2},{}^{L}\eta_{1}\times{}^{L}\eta_{2}) the corresponding endoscopic datum of G1×G2\mathrm{G}_{1}\times\mathrm{G}_{2}. Fix a character φ:p×\varphi:\mathbb{Q}_{p}\to\mathbb{C}^{\times} and p\mathbb{Q}_{p}-splittings of Gi\mathrm{G}^{*}_{i}. This induces a Whittaker datum 𝔴i\mathfrak{w}_{i} of Gi\mathrm{G}^{*}_{i} as well as the Whittaker datum 𝔴1×𝔴2\mathfrak{w}_{1}\times\mathfrak{w}_{2} of G1×G2\mathrm{G}^{*}_{1}\times\mathrm{G}^{*}_{2}.

We will prove that if the endoscopic character identities are satisfied for Gi\mathrm{G}_{i} and (Hi,si,ηiL)(\mathrm{H}_{i},s_{i},{}^{L}\eta_{i}) then they are also satisfied for G1×G2\mathrm{G}_{1}\times\mathrm{G}_{2} and (H1×H2,s1×s2,η1L×η2L)(\mathrm{H}_{1}\times\mathrm{H}_{2},s_{1}\times s_{2},{}^{L}\eta_{1}\times{}^{L}\eta_{2}).

Fix ψG1×G2Ψ+(G1×G2)\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}\in\Psi^{+}(\mathrm{G}^{*}_{1}\times\mathrm{G}^{*}_{2}) and suppose ψH1×H2Ψ+(H1×H2)\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}\in\Psi^{+}(\mathrm{H}_{1}\times\mathrm{H}_{2}) is such that ψG1×G2=(η1L×η2L)ψH1×H2\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}=({}^{L}\eta_{1}\times{}^{L}\eta_{2})\circ\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}. Then ψH1×H2\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}} factors as a product of parameters ψH1\psi^{\mathrm{H}_{1}} of H1\mathrm{H}_{1} and ψH2\psi^{\mathrm{H}_{2}} of H2\mathrm{H}_{2}. As a result, ψG1×G2\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}} factors as a product of parameters ψG1\psi^{\mathrm{G}_{1}} of G1\mathrm{G}_{1} and ψG2\psi^{\mathrm{G}_{2}} of G2\mathrm{G}_{2} such that ψGi=ηiLψHi\psi^{G_{i}}={}^{L}\eta_{i}\circ\psi^{\mathrm{H}_{i}}.

We need to show that for Δ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z2]\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{2}]-matching functions f(G1×G2)f\in\mathcal{H}(\mathrm{G}_{1}\times\mathrm{G}_{2}) and f(H1×H2)f^{\prime}\in\mathcal{H}(\mathrm{H}_{1}\times\mathrm{H}_{2}), the following identity holds:

(3.2) (H1×H2)(p)srπΠψH1×H2π,sψH1×H2f(g)π(g)dg\int\limits_{(\mathrm{H}_{1}\times\mathrm{H}_{2})(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\prime}\in\Pi_{\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}}}\langle\pi^{\prime},s_{\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}}\rangle f^{\prime}(g)\mathcal{F}_{\pi^{\prime}}(g)dg
=e(G1×G2)(G1×G2)(p)srπΠψG1×G2π,ssψG1×G2f(g)π(g)dg.=e(\mathrm{G}_{1}\times\mathrm{G}_{2})\int\limits_{(\mathrm{G}_{1}\times\mathrm{G}_{2})(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi\in\Pi_{\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}}}\langle\pi,s\cdot s_{\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}}\rangle f(g)\mathcal{F}_{\pi}(g)dg.

The packets ΠψH1×H2(H1×H2)\Pi_{\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}}(\mathrm{H}_{1}\times\mathrm{H}_{2}) resp. ΠψG1×G2(G1×G2,ϱ1×ϱ2)\Pi_{\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}}(\mathrm{G}_{1}\times\mathrm{G}_{2},\varrho_{1}\times\varrho_{2}) consist of representations of the form πH1πH2\pi^{\mathrm{H}_{1}}\boxtimes\pi^{\mathrm{H}_{2}} resp. πG1πG2\pi^{\mathrm{G}_{1}}\boxtimes\pi^{\mathrm{G}_{2}} where πHi\pi^{\mathrm{H}_{i}} resp. πGi\pi^{\mathrm{G}_{i}} are representations in ΠψHi(Hi)\Pi_{\psi^{\mathrm{H}_{i}}}(\mathrm{H}_{i}) resp. ΠψGi(Gi,ϱi)\Pi_{\psi^{\mathrm{G}_{i}}}(\mathrm{G}_{i},\varrho_{i}). The pairings πH1πH2,\langle\pi^{\mathrm{H}_{1}}\boxtimes\pi^{\mathrm{H}_{2}},\bullet\rangle resp. πG1πG2,\langle\pi^{\mathrm{G}_{1}}\boxtimes\pi^{\mathrm{G}_{2}},\bullet\rangle are defined as πH1,πH2,\langle\pi^{\mathrm{H}_{1}},\bullet\rangle\cdot\langle\pi^{\mathrm{H}_{2}},\bullet\rangle resp. πG1,πG2,\langle\pi^{\mathrm{G}_{1}},\bullet\rangle\cdot\langle\pi^{\mathrm{G}_{2}},\bullet\rangle. It is not difficult to see that πG1πG2=πG1πG2\mathcal{F}_{\pi^{\mathrm{G}_{1}}\boxtimes\pi^{\mathrm{G}_{2}}}=\mathcal{F}_{\pi^{\mathrm{G}_{1}}}\boxtimes\mathcal{F}_{\pi^{\mathrm{G}_{2}}}. It is also a basic property of the Kottwitz sign that e(G1×G2)=e(G1)e(G2)e(\mathrm{G}_{1}\times\mathrm{G}_{2})=e(\mathrm{G}_{1})e(\mathrm{G}_{2}).

Moreover, a function f(G1×G2)f\in\mathcal{H}(\mathrm{G}_{1}\times\mathrm{G}_{2}) can be written as a sum of functions of the form f1f2f_{1}\boxtimes f_{2} where f1(G1)f_{1}\in\mathcal{H}(\mathrm{G}_{1}) and f2(G2)f_{2}\in\mathcal{H}(\mathrm{G}_{2}). Hence, for every such f1f2f_{1}\boxtimes f_{2} we have an equality between the following quantities

e(G1×G2)(G1×G2)(p)srπΠψG1×G2π,ssψG1×G2(f1f2)(x)π(x)dx,e(\mathrm{G}_{1}\times\mathrm{G}_{2})\int\limits_{(\mathrm{G}_{1}\times\mathrm{G}_{2})(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi\in\Pi_{\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}}}\langle\pi,s\cdot s_{\psi^{\mathrm{G}_{1}\times\mathrm{G}_{2}}}\rangle(f_{1}\boxtimes f_{2})(x)\mathcal{F}_{\pi}(x)dx,

and

e(G1)G1(p)srπG1ΠψG1πG1,ssψG1f1(x)πG1(x)dxe(\mathrm{G}_{1})\int\limits_{\mathrm{G}_{1}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\mathrm{G}_{1}}\in\Pi_{\psi^{\mathrm{G}_{1}}}}\langle\pi^{\mathrm{G}_{1}},s\cdot s_{\psi^{\mathrm{G}_{1}}}\rangle f_{1}(x)\mathcal{F}_{\pi^{\mathrm{G}_{1}}}(x)dx
e(G2)G2(p)srπG2ΠψG2πG2,ssψG2f2(y)πG2(y)dy.\cdot e(\mathrm{G}_{2})\int\limits_{\mathrm{G}_{2}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\mathrm{G}_{2}}\in\Pi_{\psi^{\mathrm{G}_{2}}}}\langle\pi^{\mathrm{G}_{2}},s\cdot s_{\psi^{\mathrm{G}_{2}}}\rangle f_{2}(y)\mathcal{F}_{\pi^{\mathrm{G}_{2}}}(y)dy.

Similarly, for every f1H1f2H2f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2} with f1H1(H1)f^{\mathrm{H}_{1}}_{1}\in\mathcal{H}(\mathrm{H}_{1}) a matching function of f1f_{1} and f2H2(H2)f^{\mathrm{H}_{2}}_{2}\in\mathcal{H}(\mathrm{H}_{2}) a matching function of f2f_{2} we have an equality between

(H1×H2)(p)srπΠψH1×H2π,sψH1×H2(f1H1f2H2)(x)π(x)dx\int\limits_{(\mathrm{H}_{1}\times\mathrm{H}_{2})(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\prime}\in\Pi_{\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}}}\langle\pi^{\prime},s_{\psi^{\mathrm{H}_{1}\times\mathrm{H}_{2}}}\rangle(f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2})(x)\mathcal{F}_{\pi^{\prime}}(x)dx

and

H1(p)srπH1ΠψH1πH1,sψH1f1H1(x)πH1(x)dxH2(p)srπH2ΠψH2πH2,sψH2f2H2(y)πH2(y)dy.\int\limits_{\mathrm{H}_{1}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\mathrm{H}_{1}}\in\Pi_{\psi^{\mathrm{H}_{1}}}}\langle\pi^{\mathrm{H}_{1}},s_{\psi^{\mathrm{H}_{1}}}\rangle f^{\mathrm{H}_{1}}_{1}(x)\mathcal{F}_{\pi^{\mathrm{H}_{1}}}(x)dx\int\limits_{\mathrm{H}_{2}(\mathbb{Q}_{p})_{sr}}\sum\limits_{\pi^{\mathrm{H}_{2}}\in\Pi_{\psi^{\mathrm{H}_{2}}}}\langle\pi^{\mathrm{H}_{2}},s_{\psi^{\mathrm{H}_{2}}}\rangle f_{2}^{\mathrm{H}_{2}}(y)\mathcal{F}_{\pi^{\mathrm{H}_{2}}}(y)dy.

Therefore, in order to prove the equation (3.2), it suffices to prove that for each f1f2(G1×G2)f_{1}\boxtimes f_{2}\in\mathcal{H}(\mathrm{G}_{1}\times\mathrm{G}_{2}), we may choose a Δ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z1]\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{1}]-matching function f1H1f2H2(H1×H2)f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2}\in\mathcal{H}(\mathrm{H}_{1}\times\mathrm{H}_{2}) such that fiH(Hi)f^{\mathrm{H}}_{i}\in\mathcal{H}(\mathrm{H}_{i}) and fi(Gi)f_{i}\in\mathcal{H}(\mathrm{G}_{i}) are Δ[𝔴i,ϱi,zi]\Delta[\mathfrak{w}_{i},\varrho_{i},z_{i}]-matching. This follows from the following lemma.

Lemma 3.1.

If fiHi(Hi)f^{\mathrm{H}_{i}}_{i}\in\mathcal{H}(\mathrm{H}_{i}) and fi(Gi)f_{i}\in\mathcal{H}(\mathrm{G}_{i}) are Δ[𝔴i,ϱi,zi]\Delta[\mathfrak{w}_{i},\varrho_{i},z_{i}]-matching functions then f1H1f2H2(H1×H2)f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2}\in\mathcal{H}(\mathrm{H}_{1}\times\mathrm{H}_{2}) and f1f2(G1×G2)f_{1}\boxtimes f_{2}\in\mathcal{H}(\mathrm{G}_{1}\times\mathrm{G}_{2}) are Δ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z2]\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{2}]-matching functions.

Proof.

Pick γH=(γH1,γH2)(H1×H2)(p)\gamma_{\mathrm{H}}=(\gamma_{\mathrm{H}_{1}},\gamma_{\mathrm{H}_{2}})\in(\mathrm{H}_{1}\times\mathrm{H}_{2})(\mathbb{Q}_{p}) such that γH\gamma_{\mathrm{H}} is strongly regular and transfers to a strongly regular γ=(γ1,γ2)(G1×G2)(p)\gamma=(\gamma_{1},\gamma_{2})\in(\mathrm{G}_{1}\times\mathrm{G}_{2})(\mathbb{Q}_{p}). Then we need to show that

(3.3) SOγHH1×H2(f1H1f2H2)=γstγΔ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z1](γH,γ)OγG1×G2(f1f2).SO^{\mathrm{H}_{1}\times\mathrm{H}_{2}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2})=\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{1}](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{G}_{1}\times\mathrm{G}_{2}}_{\gamma^{\prime}}(f_{1}\boxtimes f_{2}).

where the sum is taken over the set of γ\gamma^{\prime} that are stably conjugate to γ\gamma.

By definition, for γiGi\gamma_{i}\in\mathrm{G}_{i} and fiCc(Gi)f_{i}\in C_{c}^{\infty}(\mathrm{G}_{i}) we have

Oγ1×γ2G1×G2(f1f2)=Oγ1G1(f1)Oγ2G2(f2).O^{\mathrm{G}_{1}\times\mathrm{G}_{2}}_{\gamma_{1}\times\gamma_{2}}(f_{1}\boxtimes f_{2})=O^{\mathrm{G}_{1}}_{\gamma_{1}}(f_{1})O^{\mathrm{G}_{2}}_{\gamma_{2}}(f_{2}).

Moreover, an element (γ1,γ2)H1×H2(\gamma^{\prime}_{1},\gamma^{\prime}_{2})\in\mathrm{H}_{1}\times\mathrm{H}_{2} is stable conjugate to (γ1,γ2)H1×H2(\gamma_{1},\gamma_{2})\in\mathrm{H}_{1}\times\mathrm{H}_{2} if and only if γ1\gamma^{\prime}_{1} is stable conjugate to γ1\gamma_{1} in H1\mathrm{H}_{1} and γ2\gamma^{\prime}_{2} is stable conjugate in γ2\gamma_{2} in H2\mathrm{H}_{2}. Therefore we have

SOγHH1×H2(f1H1f2H2)=SOγH1H1(f1H1)SOγH2H2(f2H2).SO^{\mathrm{H}_{1}\times\mathrm{H}_{2}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}_{1}}_{1}\boxtimes f^{\mathrm{H}_{2}}_{2})=SO^{\mathrm{H}_{1}}_{\gamma_{\mathrm{H}_{1}}}(f^{\mathrm{H}_{1}}_{1})SO^{\mathrm{H}_{2}}_{\gamma_{\mathrm{H}_{2}}}(f^{\mathrm{H}_{2}}_{2}).

and similarly

(3.4) γstγΔ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z1](γH,γ)OγG1×G2(f1f2)\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{1}](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{G}_{1}\times\mathrm{G}_{2}}_{\gamma^{\prime}}(f_{1}\boxtimes f_{2})
=γ1stγ1,γ2stγ2Δ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z1](γH,γ)Oγ1G1(f1)Oγ2G2(f2).=\sum\limits_{\gamma_{1}^{\prime}\sim_{st}\gamma_{1},\gamma_{2}^{\prime}\sim_{st}\gamma_{2}}\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{1}](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{G}_{1}}_{\gamma_{1}}(f_{1})O^{\mathrm{G}_{2}}_{\gamma_{2}}(f_{2}).

We will prove in Lemma 3.4 that

Δ[𝔴1×𝔴2,ϱ1×ϱ2,z1×z1](γH,γ)=Δ[𝔴1,ϱ1,z1](γH1,γ1)Δ[𝔴2,ϱ2,z2](γH2,γ2).\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{2},\varrho_{1}\times\varrho_{2},z_{1}\times z_{1}](\gamma_{\mathrm{H}},\gamma^{\prime})=\Delta[\mathfrak{w}_{1},\varrho_{1},z_{1}](\gamma_{\mathrm{H}_{1}},\gamma_{1}^{\prime})\Delta[\mathfrak{w}_{2},\varrho_{2},z_{2}](\gamma_{\mathrm{H}_{2}},\gamma_{2}^{\prime}).

We can then rewrite the right hand side of (3.4) as

(γ1stγ1Δ[𝔴1,ϱ1,z1](γH1,γ1)Oγ1G1(f1))(γ2stγ2Δ[𝔴2,ϱ2,z2](γH2,γ2)Oγ2G2(f2)),\big{(}\sum\limits_{\gamma_{1}^{\prime}\sim_{st}\gamma_{1}}\Delta[\mathfrak{w}_{1},\varrho_{1},z_{1}](\gamma_{\mathrm{H}_{1}},\gamma_{1}^{\prime})O^{\mathrm{G}_{1}}_{\gamma_{1}}(f_{1})\big{)}\big{(}\sum\limits_{\gamma_{2}^{\prime}\sim_{st}\gamma_{2}}\Delta[\mathfrak{w}_{2},\varrho_{2},z_{2}](\gamma_{\mathrm{H}_{2}},\gamma_{2}^{\prime})O^{\mathrm{G}_{2}}_{\gamma_{2}}(f_{2})\big{)},

and because fiHif_{i}^{\mathrm{H}_{i}} and fif_{i} are Δ[𝔴i,ϱi,zi]\Delta[\mathfrak{w}_{i},\varrho_{i},z_{i}] matching functions, this is exactly

SOγH1H1(f1H)SOγH2H2(f2H).SO^{\mathrm{H}_{1}}_{\gamma_{\mathrm{H}_{1}}}(f^{\mathrm{H}}_{1})SO^{\mathrm{H}_{2}}_{\gamma_{\mathrm{H}_{2}}}(f^{\mathrm{H}}_{2}).

In other words, Equation (3.3) is true. ∎

3.2. Endoscopic Identities for G(U(n1)××U(nr))\mathrm{G}(\mathrm{U}(n_{1})\times...\times\mathrm{U}(n_{r}))

We now have the endoscopic character identities for U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} and need to show they also hold for GU\mathrm{GU} where we use the letter GU\mathrm{GU} to denote the group G(U(n1)××U(nr))\mathrm{G}(\mathrm{U}(n_{1})\times\cdots\times\mathrm{U}(n_{r})) till the end of this section. Recall that we have a surjection of algebraic groups

(3.5) P:U×ResE/p𝔾mGU,{}P:\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\twoheadrightarrow\mathrm{GU},

with kernel U(1)\mathrm{U}(1).

We fix quasi-split groups U×ResE/p𝔾m\mathrm{U}^{*}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} and GU\mathrm{GU}^{*} as well as extended pure inner twists (ϱU,zU)(\varrho_{\mathrm{U}},z_{\mathrm{U}}) and (ϱGU,zGU)(\varrho_{\mathrm{GU}},z_{\mathrm{GU}}) for U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} and GU\mathrm{GU} respectively. The extended pure inner twist (ϱU,zU)(\varrho_{\mathrm{U}},z_{\mathrm{U}}) restricts to give extended pure inner twists (ϱU,zU)(\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}) and (ϱ𝔾m,z𝔾m)(\varrho_{{\mathbb{G}_{m}}},z_{{\mathbb{G}_{m}}}) of U\mathrm{U} and 𝔾m{\mathbb{G}_{m}} respectively. We can choose these extended pure inner twists such that the projection PP takes ϱU\varrho_{\mathrm{U}} to ϱGU\varrho_{\mathrm{GU}} and such that zUz_{\mathrm{U}} and zGUz_{\mathrm{GU}} coincide under the map 𝐁(p,U×ResE/p𝔾m)𝐁(p,GU)\mathbf{B}(\mathbb{Q}_{p},\mathrm{U}^{*}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})\longrightarrow\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU}^{*}). We fix compatible Γp\Gamma_{\mathbb{Q}_{p}}-splittings of these groups as well as a character φ:p×\varphi:\mathbb{Q}_{p}\to\mathbb{C}^{\times}. Hence we get compatible Whittaker data which we denote by 𝔴U\mathfrak{w}_{\mathrm{U}} and 𝔴GU\mathfrak{w}_{\mathrm{GU}} respectively.

A crucial input in the case we consider (where n=n1++nrn=n_{1}+\cdots+n_{r} is odd) is that the projection PP is also a surjection on p\mathbb{Q}_{p}-points. This follows from Lemma 2.1. Hence we get a map

Irr(GU(p))Irr((U×ResE/p𝔾m)(p)),\mathrm{Irr}(\mathrm{GU}(\mathbb{Q}_{p}))\hookrightarrow\mathrm{Irr}((\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p})),

given by pullback. The image of this map is the set of irreducible representations πχ\pi\boxtimes\chi such π|U(1)(p)=χ|U(1)(p)\pi|_{\mathrm{U}(1)(\mathbb{Q}_{p})}=\chi|_{\mathrm{U}(1)(\mathbb{Q}_{p})}. If this is satisfied by a single member of an AA-packet of U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}, then it will be satisfied by the entire packet since elements of an AA-packet have the same central character ([Kal+14, Theorem 1.6.1] and Theorem 2.9). In light of Theorem 2.16, the AA-packets of GU\mathrm{GU} are in a natural way a subset of the AA-packets of U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}.

Since the kernel of PP is compact, any f(GU)f\in\mathcal{H}(\mathrm{GU}) lifts to an element f(U×ResE/p𝔾m)f^{\prime}\in\mathcal{H}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}). Suppose π\pi is an admissible representation of GU(p)\mathrm{GU}(\mathbb{Q}_{p}) and π\pi^{\prime} is the lift to Irr(U×ResE/p𝔾m)\mathrm{Irr}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}). Then to prove the endoscopic character identities for GU\mathrm{GU} it will be necessary to relate tr(πf)\mathrm{tr}(\pi\mid f) and tr(πf)\mathrm{tr}(\pi^{\prime}\mid f^{\prime}). We have

π(f)v\displaystyle\pi^{\prime}(f^{\prime})v =(U×ResE/p𝔾m)(p)f(g)π(g)v𝑑g=GU(p)f(g)π(g)v𝑑gUF(1)(p)𝑑z\displaystyle=\int\limits_{(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p})}f^{\prime}(g)\pi^{\prime}(g)vdg=\int\limits_{\mathrm{GU}(\mathbb{Q}_{p})}f(g)\pi(g)vdg\int\limits_{\mathrm{U}_{F}(1)(\mathbb{Q}_{p})}dz
=Vol(U(1)(p))π(f)v,\displaystyle=\mathrm{Vol}(\mathrm{U}(1)(\mathbb{Q}_{p}))\pi(f)v,

where the middle equality holds by [PR94, (3.21)].

Analogously in the endoscopic case, we have a map

(3.6) PH:H×ResE/p𝔾mG(H),{}P^{\mathrm{H}}:\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\twoheadrightarrow\mathrm{G}(\mathrm{H}),

with kernel U(1)\mathrm{U}(1) where H=i=1rU(ni+)×U(ni)\mathrm{H}=\displaystyle\prod_{i=1}^{r}\mathrm{U}(n_{i}^{+})\times\mathrm{U}(n_{i}^{-}) such that ni=ni++nin_{i}=n_{i}^{+}+n_{i}^{-} is an endoscopic group of U\mathrm{U} and G(H)\mathrm{G}(\mathrm{H}) is the associated similitude group. Suppose n=n1++nrn=n_{1}+\cdots+n_{r} is odd. By Lemma 2.1, the map is a surjection on p\mathbb{Q}_{p}-points.

We fix a refined endoscopic datum (G(H),s,ηL)(\mathrm{G}(\mathrm{H}),s,{}^{L}\eta) for GU\mathrm{GU} as in Section 11. The map ResE/p𝔾mZ(GU)GU\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\cong Z(\mathrm{GU})\hookrightarrow\mathrm{GU} induces a map of LL-groups GUL(ResE/p𝔾m)L{}^{L}\mathrm{GU}\longrightarrow{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}). We get an analogous map for G(H)\mathrm{G}(\mathrm{H}) and since ResE/p𝔾m^\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}} is the abelianization of G(H)^\widehat{\mathrm{G}(\mathrm{H})}, we get a commutative diagram

GL(H){{}^{L}\mathrm{G}(\mathrm{H})}GUL{{}^{L}\mathrm{GU}}(ResE/p𝔾m)L{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}(ResE/p𝔾m)L.{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}).}ηL\scriptstyle{{}^{L}\eta}λL\scriptstyle{{}^{L}\lambda}

We now fix an endoscopic datum of U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} which we denote by (H×ResE/p,s,ηL)(\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}},s^{\prime},{}^{L}\eta^{\prime}). We fix ηL{}^{L}\eta^{\prime} such that the restriction to H^\widehat{\mathrm{H}} induces an elliptic endoscopic datum for U\mathrm{U} as in Section 11 and compatible with our datum for GU\mathrm{GU} and such that ηL{}^{L}\eta^{\prime} restricted to ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} is just λL{}^{L}\lambda. In particular, we have a commutative diagram:

(3.7) (H×ResE/p𝔾m)L{{}^{L}(\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}(U×ResE/p𝔾m)L{{}^{L}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}GL(H){{}^{L}\mathrm{G}(\mathrm{H})}GUL.{{}^{L}\mathrm{GU}.}ηL\scriptstyle{{}^{L}\eta^{\prime}}PHL\scriptstyle{{}^{L}P^{\mathrm{H}}}ηL\scriptstyle{{}^{L}\eta}PL\scriptstyle{{}^{L}P}

We now prove the following lemma.

Lemma 3.2.

Using the above normalizations, if f(GU)f\in\mathcal{H}(\mathrm{GU}) and fH(G(H))f^{\mathrm{H}}\in\mathcal{H}(\mathrm{G}(\mathrm{H})) are Δ[𝔴GU,ϱGU,zGU]\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}]-matching, then the pullbacks f(U×ResE/p𝔾m)f^{\prime}\in\mathcal{H}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}) and fH(H×ResE/p𝔾m)f^{\prime\mathrm{H}}\in\mathcal{H}(\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}) are Δ[𝔴U,ϱU,zU]\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]-matching.

We begin by proving an auxiliary lemma.

Lemma 3.3.

For (γ,z)U×ResE/p𝔾m(p)(\gamma,z)\in\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}), the map PP gives a bijection between conjugacy classes in U×ResE/p𝔾m(p)\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}) that are stably conjugate to (γ,z)(\gamma,z) and conjugacy classes in GU(p)\mathrm{GU}(\mathbb{Q}_{p}) that are stably conjugate to γz\gamma z. The analogous result also holds for the map PHP^{\mathrm{H}}.

Proof.

Clearly, if (γ,z)(\gamma^{\prime},z^{\prime}) is conjugate or stable conjugate to (γ,z)(\gamma,z) in U×Res𝔾m(p)\mathrm{U}\times\mathrm{Res}{\mathbb{G}_{m}}(\mathbb{Q}_{p}), then γz\gamma^{\prime}z and γz\gamma z are conjugate or stably conjugate in GU(p)\mathrm{GU}(\mathbb{Q}_{p}). Now, suppose that g,γzGU(p)g,\gamma z\in\mathrm{GU}(\mathbb{Q}_{p}) are conjugate or stably conjugate. Then they must have the same similitude factor. In particular, this means that gz1gz^{-1} has trivial similitude factor and so (gz1,z)U×ResE/p𝔾m(p)(gz^{-1},z)\in\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}) and clearly P(gz1,z)=gP(gz^{-1},z)=g.

We now aim to show that (gz1,z)(gz^{-1},z) is conjugate or stably conjugate to (γ,z)(\gamma,z). To simplify the notation, we just show that (gz1,z)(gz^{-1},z) and (γ,z)(\gamma,z) are conjugate (although the argument to show stable conjugacy is similar).

Let xGU(p)x\in\mathrm{GU}(\mathbb{Q}_{p}) be such that xgx1=γzxgx^{-1}=\gamma z. We want to show that xx can be chosen to be an element of U(p)\mathrm{U}(\mathbb{Q}_{p}). Since the map PP is surjective on p\mathbb{Q}_{p} points, we can write x=urx=ur such that uU(p)u\in\mathrm{U}(\mathbb{Q}_{p}) and rResE/p𝔾m(p)r\in\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}). Then rr lies in the center of GU(p)\mathrm{GU}(\mathbb{Q}_{p}) and hence we have ugu1=γzugu^{-1}=\gamma z as desired. Finally, we finish the argument by observing that that (u,1)(gz1,z)(u,1)1=(γ,z)(u,1)(gz^{-1},z)(u,1)^{-1}=(\gamma,z) since the restriction of PP to the first component is an injection. ∎

We now prove Lemma 3.2.

Proof.

Choose a strongly regular semisimple (γH,z)H×ResE/p𝔾m(p)(\gamma_{\mathrm{H}},z)\in\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}) that transfers to a strongly regular (γ,z)U×ResE/p𝔾m(p)(\gamma,z)\in\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p}). Then we need to show that

SO(γH,z)(fH)=(γ,z)st(γ,z)Δ[𝔴U,ϱU,zU]((γH,z),(γ,z))O(γ,z)(f).SO_{(\gamma_{\mathrm{H}},z)}({f^{\prime\mathrm{H}}})=\sum\limits_{(\gamma^{\prime},z)\sim_{st}(\gamma,z)}\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z),(\gamma^{\prime},z))O_{(\gamma,z)}(f^{\prime}).

Expanding, this is equivalent to showing that

(γH,z)st(γH,z)H×ResE/p𝔾m/T(γH,z)fH(h(γH,z)h1)𝑑h\sum\limits_{(\gamma^{\prime}_{\mathrm{H}},z)\sim_{st}(\gamma_{\mathrm{H}},z)}\int\limits_{\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}/T_{(\gamma^{\prime}_{\mathrm{H}},z)}}{f^{\mathrm{H}}}^{\prime}(h(\gamma^{\prime}_{\mathrm{H}},z)h^{-1})dh

equals

(γ,z)st(γ,z)Δ[𝔴U,ϱU,zU]((γH,z),(γ,z))U×ResE/p𝔾m/T(γ,z)f(g(γ,z)g1)𝑑g.\sum\limits_{(\gamma^{\prime},z)\sim_{st}(\gamma,z)}\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z),(\gamma^{\prime},z))\int\limits_{\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}/T_{(\gamma,z)}}f^{\prime}(g(\gamma,z)g^{-1})dg.

Note that the kernels of PH,PP^{\mathrm{H}},P are contained within T(γH,z)T_{(\gamma_{\mathrm{H}},z)} and T(γ,z)T_{(\gamma^{\prime},z)} respectively. Hence we have (U×ResE/p𝔾m)(p)/T(γ,z)(p)=GU(p)/Tγz(p)(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p})/T_{(\gamma,z)}(\mathbb{Q}_{p})=\mathrm{GU}(\mathbb{Q}_{p})/T_{\gamma z}(\mathbb{Q}_{p}) and the analogous statement also holds for PHP^{\mathrm{H}}.

By Lemma 3.3, we can rewrite the equation above as

γHzstγHzG(H)/TγHzfH(hγHzh1)𝑑h\sum\limits_{\gamma^{\prime}_{\mathrm{H}}z\sim_{st}\gamma_{\mathrm{H}}z}\int\limits_{\mathrm{G}(\mathrm{H})/T_{\gamma^{\prime}_{\mathrm{H}}z}}f^{\mathrm{H}}(h\gamma^{\prime}_{\mathrm{H}}zh^{-1})dh

equals

γzstγzΔ[𝔴U,ϱU,zU]((γH,z),(γ,z))GU/Tγzf(gγzg1)𝑑g.\sum\limits_{\gamma^{\prime}z\sim_{st}\gamma z}\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z),(\gamma^{\prime},z))\int\limits_{\mathrm{GU}/T_{\gamma^{\prime}z}}f(g\gamma^{\prime}zg^{-1})dg.

In Lemma 3.8 we prove that there is an equality of transfer factors:

Δ[𝔴U,ϱU,zU]((γH,z),(γ,z))=Δ[𝔴GU,ϱGU,zGU](γHz,γz).\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z),(\gamma^{\prime},z))=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{\mathrm{H}}z,\gamma^{\prime}z).

Hence, the above equation reduces to

SOγHz(fH)=γzstγzΔ[𝔴GU,ϱGU,zGU](γHz,γz)Oγz(f),SO_{\gamma_{\mathrm{H}}z}(f^{\mathrm{H}})=\sum\limits_{\gamma^{\prime}z\sim_{st}\gamma z}\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{\mathrm{H}}z,\gamma^{\prime}z)O_{\gamma^{\prime}z}(f),

which is true by assumption. ∎

With this lemma in hand, we now prove the endoscopic character identities. Pick a parameter ψΨ+(GUp(n))\psi\in\Psi^{+}(\mathrm{GU}^{*}_{\mathbb{Q}_{p}}(n)) and let ψΨ+(Up(n)×ResE/p𝔾m)\psi^{\prime}\in\Psi^{+}(\mathrm{U}^{*}_{\mathbb{Q}_{p}}(n)\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}) be the composition of ψ\psi with the map GUL(Up(n)×ResE/p𝔾m)L{}^{L}\mathrm{GU}\to{}^{L}(\mathrm{U}^{*}_{\mathbb{Q}_{p}}(n)\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}). We suppose ψ\psi factors through GL(H){}^{L}\mathrm{G}(\mathrm{H}) and pick ψG(H)\psi_{\mathrm{G}(\mathrm{H})} so that ψ=ηLψG(H)\psi={}^{L}\eta\circ\psi_{\mathrm{G}(\mathrm{H})}. We can write ψ=ψU×ψ𝔾m\psi^{\prime}=\psi_{\mathrm{U}}\times\psi_{{\mathbb{G}_{m}}} where ψU\psi_{\mathrm{U}} is the image of ψ\psi under the map GULUL{}^{L}\mathrm{GU}\to{}^{L}\mathrm{U}. Diagram 3.7 implies there is a parameter ψH\psi^{\prime}_{\mathrm{H}} such that ψ=ηLψH\psi^{\prime}={}^{L}\eta^{\prime}\circ\psi^{\prime}_{\mathrm{H}}.

For a packet Πψ(GU,ϱGU,zGU)\Pi_{\psi}(\mathrm{GU},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}), and matching functions f(GU)f\in\mathcal{H}(\mathrm{GU}), fH(G(H))f^{\mathrm{H}}\in\mathcal{H}(\mathrm{G}(\mathrm{H})) we have by definition

e(GU)πΠψπ,ssψGUtr(πf)=e(GU)(π,χ)Πψπ,ssψUUχzGU(c)tr((π,χ)f).e(\mathrm{GU})\sum\limits_{\pi\in\Pi_{\psi}}\langle\pi,s\cdot s_{\psi}\rangle_{\mathrm{GU}}\mathrm{tr}(\pi\mid f)=e(\mathrm{GU})\sum\limits_{(\pi,\chi)\in\Pi_{\psi}}\langle\pi,s\cdot s_{\psi_{\mathrm{U}}}\rangle_{\mathrm{U}}\chi_{z_{\mathrm{GU}}}(c)\mathrm{tr}((\pi,\chi)\mid f).

We showed above that there is a natural bijection between Πψ(GU,ϱGU)\Pi_{\psi}(\mathrm{GU},\varrho_{\mathrm{GU}}) and Πψ(U×ResE/p𝔾m,ϱU)\Pi_{\psi^{\prime}}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}},\varrho_{\mathrm{U}}) and we related the traces of corresponding representations. The pairing ,U×ResE/p𝔾m:Πψ(U×ResE/p𝔾m)×Sψ×\langle\cdot,\cdot\rangle_{\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}:\Pi_{\psi^{\prime}}(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})\times S^{\natural}_{\psi^{\prime}}\longrightarrow\mathbb{C}^{\times} is given as a product of the pairing for U\mathrm{U} and ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}. Hence we have the above equals

e(GU)1Vol(U(1)(p))πΠψπ,ssψU×ResE/p𝔾mtr(πf).e(\mathrm{GU})\frac{1}{\mathrm{Vol}(\mathrm{U}(1)(\mathbb{Q}_{p}))}\sum\limits_{\pi^{\prime}\in\Pi_{\psi^{\prime}}}\langle\pi^{\prime},s\cdot s_{\psi^{\prime}}\rangle_{\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}\mathrm{tr}(\pi^{\prime}\mid f^{\prime}).

Now, using that e(GU)=e(U)=e(U×ResE/p𝔾m)e(\mathrm{GU})=e(\mathrm{U})=e(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}) (see [Kot83, pg. 292]) we can apply the previously established endoscopic character identity for U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} to get that the above equals

1Vol(U(1)(p))πHΠψHπH,sψHH×ResE/p𝔾mtr(πHfH).\frac{1}{\mathrm{Vol}(\mathrm{U}(1)(\mathbb{Q}_{p}))}\sum\limits_{\pi^{\prime}_{\mathrm{H}}\in\Pi_{\psi^{\prime}_{\mathrm{H}}}}\langle\pi^{\prime}_{\mathrm{H}},s_{\psi^{\prime}_{\mathrm{H}}}\rangle_{\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}\mathrm{tr}(\pi^{\prime}_{\mathrm{H}}\mid f^{\prime\mathrm{H}}).

Finally we relate this to G(H)\mathrm{G}(\mathrm{H}) using that G(H)\mathrm{G}(\mathrm{H}) and H×ResE/p𝔾m\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} are both assumed to be trivial extended pure inner forms so that the pairings are especially simple. We get:

πG(H)ΠψG(H)πG(H),sψG(H)G(H)tr(πG(H)fH),\sum\limits_{\pi_{\mathrm{G}(\mathrm{H})}\in\Pi_{\psi_{\mathrm{G}(\mathrm{H})}}}\langle\pi_{\mathrm{G}(\mathrm{H})},s_{\psi_{\mathrm{G}(\mathrm{H})}}\rangle_{\mathrm{G}(\mathrm{H})}\mathrm{tr}(\pi_{\mathrm{G}(\mathrm{H})}\mid f^{\mathrm{H}}),

which is the desired formula.

3.3. Transfer factor identities

In this subsection, we prove a number of identities relating various transfer factors. These identities are used in the previous subsections. Remark that we use the letter Δ\Delta resp. Δ\Delta^{\prime} to denote the transfer factors that are compatible with the geometric normalization resp. arithmetic normalization of the local Artin reciprocity map.

3.3.1. Transfer factors of a product

We temporarily return to the notation of §3.1. We denote by G\mathrm{G} the group G1×G2\mathrm{G}_{1}\times\mathrm{G}_{2} and by G\mathrm{G}^{*} the group G1×G2\mathrm{G}^{*}_{1}\times\mathrm{G}^{*}_{2}.

We prove the following lemma

Lemma 3.4.

Let (γ1,γ2)(H1×H2)(p)sr(\gamma_{1},\gamma_{2})\in(\mathrm{H}_{1}\times\mathrm{H}_{2})(\mathbb{Q}_{p})_{sr} and (δ1,δ2)(G1×G2)(p)sr(\delta_{1},\delta_{2})\in(\mathrm{G}_{1}\times\mathrm{G}_{2})(\mathbb{Q}_{p})_{sr} be related elements. We have

Δ[𝔴1×𝔴1,ϱ1×ϱ2,z1×z2]((γ1,γ2),(δ1,δ2))=Δ[𝔴1,ϱ1,z1](γ1,δ1)Δ[𝔴2,ϱ2,z2](γ2,δ2).\Delta[\mathfrak{w}_{1}\times\mathfrak{w}_{1},\varrho_{1}\times\varrho_{2},z_{1}\times z_{2}]((\gamma_{1},\gamma_{2}),(\delta_{1},\delta_{2}))=\Delta[\mathfrak{w}_{1},\varrho_{1},z_{1}](\gamma_{1},\delta_{1})\Delta[\mathfrak{w}_{2},\varrho_{2},z_{2}](\gamma_{2},\delta_{2}).
Proof.

Each transfer factor is a product of terms

ϵLGi(VGi,φ)ΔIGiΔIIGiΔIII2,DGiΔIVGiinv[zi](δi,δi),si1.\epsilon^{\mathrm{G}^{*}_{i}}_{L}(V^{\mathrm{G}^{*}_{i}},\varphi){\Delta^{\mathrm{G}^{*}_{i}}_{I}}\Delta^{\mathrm{G}^{*}_{i}}_{II}\Delta^{\mathrm{G}^{*}_{i}}_{III_{2,D}}\Delta^{\mathrm{G}^{*}_{i}}_{IV}\langle\mathrm{inv}[z_{i}](\delta_{i},\delta^{*}_{i}),s_{i}\rangle^{-1}.

We state everything for Gi\mathrm{G}_{i} but the definitions are analogous for G\mathrm{G}. We now explain the terms in the above formula. Notably, all the terms except the last only depend on Gi\mathrm{G}^{*}_{i} and Hi\mathrm{H}_{i} (as opposed to Gi\mathrm{G}_{i}). Fix a δiGi(p)\delta^{*}_{i}\in\mathrm{G}^{*}_{i}(\mathbb{Q}_{p}) such that δi\delta^{*}_{i} is stably conjugate to ϱi1(δ)\varrho^{-1}_{i}(\delta). Recall that we have fixed p\mathbb{Q}_{p}-splittings (Ti,Bi,{Xi,α})(T_{i},B_{i},\{X_{i,\alpha}\}) for Gi\mathrm{G}^{*}_{i} as well as the p\mathbb{Q}_{p}-splitting (T=T1×T2,B=B1×B2,{Xα}={X1,α}{X2,α})(T=T_{1}\times T_{2},B=B_{1}\times B_{2},\{X_{\alpha}\}=\{X_{1,\alpha}\}\coprod\{X_{2,\alpha}\}) of G\mathrm{G}^{*}.

Now, ViV^{i} is the degree 0 virtual Galois representation X(Ti)X(TiHi)X^{*}(T_{i})\otimes\mathbb{C}-X^{*}(T_{i}^{\mathrm{H}_{i}})\otimes\mathbb{C} and φ\varphi is the additive character we fixed in order to define our Whittaker datum. The term ϵLGi(Vi,φ)\epsilon^{\mathrm{G}^{*}_{i}}_{L}(V^{i},\varphi) is the local ϵ\epsilon-factor of this representation normalized as in [Tat79, §3.6]. We also know that ϵL(V,φ)\epsilon_{L}(V,\varphi) is additive for degree 0 virtual representations VV (see [Tat79, Theorem. 3.4.1]), therefore ϵLG(VG,φ)=ϵLG1(VG1,φ)ϵLG2(VG2,φ)\epsilon^{\mathrm{G}^{*}}_{L}(V^{\mathrm{G}^{*}},\varphi)=\epsilon^{\mathrm{G}^{*}_{1}}_{L}(V^{\mathrm{G}^{*}_{1}},\varphi)\epsilon^{\mathrm{G}^{*}_{2}}_{L}(V^{\mathrm{G}^{*}_{2}},\varphi).

We denote by SiS_{i} the centralizer of δi\delta^{*}_{i} and SiHiS_{i}^{\mathrm{H}_{i}} the centralizer of γi\gamma_{i} so that S=S1×S2S=S_{1}\times S_{2} and SH=S1H1×S2H2S^{\mathrm{H}}=S_{1}^{\mathrm{H}_{1}}\times S_{2}^{\mathrm{H}_{2}} are the centralizers of (δ1,δ2)(\delta_{1},\delta_{2}) resp. (γ1,γ2)(\gamma_{1},\gamma_{2}).

We put DG((δ1,δ2))=|α(α(δ1,δ2)1)|1/2D_{\mathrm{G}}((\delta_{1},\delta_{2}))=|\prod\limits_{\alpha}(\alpha(\delta_{1},\delta_{2})-1)|^{1/2} where the product is over all roots of SS in G\mathrm{G}. Similarly DGi(δi)=|α(α(δi)1)|1/2D_{\mathrm{G}_{i}}(\delta_{i})=|\prod\limits_{\alpha}(\alpha(\delta_{i})-1)|^{1/2} where the product is over all roots of SiS_{i} in Gi\mathrm{G}_{i}. In particular we have

DG((δ1,δ2))=DG1(δ1)DG2(δ2).D_{\mathrm{G}}((\delta_{1},\delta_{2}))=D_{\mathrm{G}_{1}}(\delta_{1})D_{\mathrm{G}_{2}}(\delta_{2}).

We define DH(γ1,γ2)D_{\mathrm{H}}(\gamma_{1},\gamma_{2}) and DHi(γi)D_{\mathrm{H}_{i}}(\gamma_{i}) analogously and we also have the equality

DH(γ1,γ2)=DH1(γ1)DH2(γ2).D_{\mathrm{H}}(\gamma_{1},\gamma_{2})=D_{\mathrm{H}_{1}}(\gamma_{1})D_{\mathrm{H}_{2}}(\gamma_{2}).

By definition ΔIV=DGDH1\Delta_{IV}=D_{\mathrm{G}}D_{\mathrm{H}}^{-1} so that we have

ΔIVG((γ1,γ2),(δ1,δ2))=ΔIVG1(γ1,δ1)ΔIVG2(γ2,δ2).\Delta_{IV}^{\mathrm{G}^{*}}((\gamma_{1},\gamma_{2}),(\delta_{1},\delta_{2}))=\Delta_{IV}^{\mathrm{G}^{*}_{1}}(\gamma_{1},\delta_{1})\Delta_{IV}^{\mathrm{G}^{*}_{2}}(\gamma_{2},\delta_{2}).

For the other terms in the definition of the transfer factors, we need to explain the notions of aa-data and χ\chi-data. A set of aa-data for the set R(T,G)R(\mathrm{T},\mathrm{G}) of absolute roots of SS in G\mathrm{G} is a function

R(T,G)¯p×,αaαR(\mathrm{T},\mathrm{G})\longrightarrow\overline{\mathbb{Q}}_{p}^{\times},\quad\alpha\longmapsto a_{\alpha}

which satisfies aλ=aλa_{-\lambda}=-a_{\lambda} and aσλ=σ(aλ)a_{\sigma\lambda}=\sigma(a_{\lambda}) for σΓp\sigma\in\Gamma_{\mathbb{Q}_{p}}. We recall the notion of χ\chi-data. For αR(T,G)\alpha\in R(\mathrm{T},\mathrm{G}), we set Γα=Stab(α,Γ)\Gamma_{\alpha}=\mathrm{Stab}(\alpha,\Gamma) and Γ±α=Stab({α,α},Γ)\Gamma_{\pm\alpha}=\mathrm{Stab}(\{\alpha,-\alpha\},\Gamma) and denote Fα\mathrm{F}_{\alpha}, F±α\mathrm{F}_{\pm\alpha} the fixed fields of Γα\Gamma_{\alpha} resp. Γ±α\Gamma_{\pm\alpha}. A set of χ\chi-data is then a set of characters

χα:Fα××\chi_{\alpha}:\mathrm{F}_{\alpha}^{\times}\longrightarrow\mathbb{C}^{\times}

satisfying the conditions χσα=χασ1,χα=χα1\chi_{\sigma\alpha}=\chi_{\alpha}\circ\sigma^{-1},\chi_{-\alpha}=\chi_{\alpha}^{-1} and if [Fα:F±α]=2[\mathrm{F}_{\alpha}:\mathrm{F}_{\pm\alpha}]=2 then χα|F±α×\chi_{\alpha}|_{\mathrm{F}_{\pm\alpha}^{\times}} is non-trivial but trivial on the subgroup of norms from Fα×\mathrm{F}^{\times}_{\alpha}.

Since Γp\Gamma_{\mathbb{Q}_{p}} acts on G¯p\mathrm{G}^{*}_{\overline{\mathbb{Q}}_{p}} and preserves (Gi)¯p(\mathrm{G}^{*}_{i})_{\overline{\mathbb{Q}}_{p}}, we see that if (aα)αR(Si,Gi)(a_{\alpha})_{\alpha\in R(S_{i},\mathrm{G}^{*}_{i})} and (χα)αR(Si,Gi)(\chi_{\alpha})_{\alpha\in R(S_{i},\mathrm{G}^{*}_{i})} are aa-data resp χ\chi-data of (Si,Gi)(S_{i},\mathrm{G}^{*}_{i}) then (aα)αR(S,G)(a_{\alpha})_{\alpha\in R(S,\mathrm{G}^{*})} and (χα)αR(S,G)(\chi_{\alpha})_{\alpha\in R(S,\mathrm{G})} are aa-data resp χ\chi-data of (S,G)(S,\mathrm{G}^{*}).

Now, we define

ΔIIGi=αχα(α(δi)1aα)\Delta_{II}^{\mathrm{G}^{*}_{i}}=\prod_{\alpha}\chi_{\alpha}\left(\dfrac{\alpha(\delta_{i})-1}{a_{\alpha}}\right)

where the product is taken over the set R(Si,Gi)φγ,δ,1R(SiHi,Hi)R(S_{i},\mathrm{G}_{i})\setminus\varphi_{\gamma,\delta}^{*,-1}R(S^{\mathrm{H}_{i}}_{i},\mathrm{H}_{i}). We have a similar formula for ΔIIG\Delta_{II}^{\mathrm{G}^{*}} in which the product runs over the set R(S,G)φγ,δ,1R(SH,H)=R(S1,G1)φγ,δ,1R(S1H1,H1)R(S2,G2)φγ,δ,1R(S2H2,H2)R(S,\mathrm{G}^{*})\setminus\varphi_{\gamma,\delta}^{*,-1}R(S^{\mathrm{H}},\mathrm{H})=R(S_{1},\mathrm{G}^{*}_{1})\setminus\varphi_{\gamma,\delta}^{*,-1}R(S^{\mathrm{H}_{1}}_{1},\mathrm{H}_{1})\bigsqcup R(S_{2},\mathrm{G}^{*}_{2})\setminus\varphi_{\gamma,\delta}^{*,-1}R(S^{\mathrm{H}_{2}}_{2},\mathrm{H}_{2}). In particular we have

ΔIIG=ΔIIG1ΔIIG2.\Delta_{II}^{\mathrm{G}^{*}}=\Delta_{II}^{\mathrm{G}^{*}_{1}}\Delta_{II}^{\mathrm{G}^{*}_{2}}.

Next, we want to show that

ΔIG=ΔIG1ΔIG2.\Delta_{I}^{\mathrm{G}^{*}}=\Delta_{I}^{\mathrm{G}^{*}_{1}}\Delta_{I}^{\mathrm{G}^{*}_{2}}.

First, for i{1,2}i\in\{1,2\} one constructs an element λiH1(Γp,(Si)sc)\lambda_{i}\in H^{1}(\Gamma_{\mathbb{Q}_{p}},(S_{i})_{sc}) and then uses the Tate-Nakayama duality for tori in order to get a pairing ,\langle\cdot,\cdot\rangle between H1(Γp,(Si)sc)H^{1}(\Gamma_{\mathbb{Q}_{p}},(S_{i})_{sc}) and π0([Si^/Z(Gi^)]Γp)\pi_{0}([\widehat{S_{i}}/Z(\widehat{\mathrm{G}^{*}_{i}})]^{\Gamma_{\mathbb{Q}_{p}}}). One can view sis_{i} as an element of [Z(H^i)/Z(Gi^)]Γp[Z(\widehat{\mathrm{H}}_{i})/Z(\widehat{\mathrm{G}^{*}_{i}})]^{\Gamma_{\mathbb{Q}_{p}}}, embed the latter into SiH^/Z(Gi^)\widehat{S^{\mathrm{H}}_{i}}/Z(\widehat{\mathrm{G}^{*}_{i}}), and transport it to Si^/Z(Gi^)\widehat{S_{i}}/Z(\widehat{\mathrm{G}^{*}_{i}}) by the admissible isomorphism φγ,δ\varphi_{\gamma,\delta}. We then define

ΔIGi=λi,si.\Delta_{I}^{\mathrm{G}^{*}_{i}}=\langle\lambda_{i},s_{i}\rangle.

Because S=S1×S2S=S_{1}\times S_{2} and Ssc=(S1)sc×(S2)scS_{sc}=(S_{1})_{sc}\times(S_{2})_{sc}, to show the necessary product relation for this term, it is enough to show that λ=λ1×λ2\lambda=\lambda_{1}\times\lambda_{2}.

We recall the construction of λ\lambda for G\mathrm{G}^{*} and SS. Write Ω(T,G)\Omega(T,\mathrm{G}^{*}) for the absolute Weyl group and let gGg\in\mathrm{G}^{*} be such that gTg1=SgTg^{-1}=S. For each σΓp\sigma\in\Gamma_{\mathbb{Q}_{p}} there exists ω(σ)Ω(T,G)\omega(\sigma)\in\Omega(T,\mathrm{G}^{*}) such that for all tTt\in T

ω(σ)σ(t)=g1σ(gtg1)g.\omega(\sigma)\sigma(t)=g^{-1}\sigma(gtg^{-1})g.

Let ω(σ)=sα1sαk\omega(\sigma)=s_{\alpha_{1}}\cdots s_{\alpha_{k}} be a reduced expression and let nin_{i} be the image of (0110)\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right) under the homomorphism SL2G\mathrm{SL}_{2}\longrightarrow\mathrm{G}^{*} attached to the simple root vector XαiX_{\alpha_{i}}. Then n(α)=n1nkn(\alpha)=n_{1}\cdots n_{k} is independent of the choice of the reduced expression. So λH1(Γp,Ssc)\lambda\in H^{1}(\Gamma_{\mathbb{Q}_{p}},S_{sc}) is defined by the following 11-cocycle

σg(αα(aα)n(σ)[g1σ(g)]1)g1\sigma\longmapsto g(\prod_{\alpha}\alpha^{\vee}(a_{\alpha})n(\sigma)[g^{-1}\sigma(g)]^{-1})g^{-1}

where the product runs over the subset {α>0,σ1α<0}\{\alpha>0,\sigma^{-1}\alpha<0\} of R(S,G)R(S,\mathrm{G}^{*}) where positivity is determined by the Borel subgroup gBg1gBg^{-1}. The construction is analogous for Gi\mathrm{G}^{*}_{i}.

Now, we have

  1. (1)

    B=B1×B2B=B_{1}\times B_{2},

  2. (2)

    T=T1×T2T=T_{1}\times T_{2}, S=S1×S2S=S_{1}\times S_{2},

  3. (3)

    R(S,G)=R(S1,G1)R(S2,G2)R(S,\mathrm{G}^{*})=R(S_{1},\mathrm{G}^{*}_{1})\bigsqcup R(S_{2},\mathrm{G}^{*}_{2}) so that (Xα)G=(Xα)G1(Xα)G2(X_{\alpha})_{\mathrm{G}^{*}}=(X_{\alpha})_{\mathrm{G}^{*}_{1}}\bigsqcup(X_{\alpha})_{\mathrm{G}^{*}_{2}}.

We see that Ω(T,G)=Ω(T1,G1)×Ω(T2,G2)\Omega(T,\mathrm{G}^{*})=\Omega(T_{1},\mathrm{G}^{*}_{1})\times\Omega(T_{2},\mathrm{G}^{*}_{2}) and we can take g=g1×g2g=g_{1}\times g_{2} so that ω(σ)G=ω(σ)G1×ω(σ)G2\omega(\sigma)_{\mathrm{G}^{*}}=\omega(\sigma)_{\mathrm{G}^{*}_{1}}\times\omega(\sigma)_{\mathrm{G}^{*}_{2}}. Therefore, n(σ)G=n(σ)G1×n(σ)G2n(\sigma)_{\mathrm{G}^{*}}=n(\sigma)_{\mathrm{G}^{*}_{1}}\times n(\sigma)_{\mathrm{G}^{*}_{2}}. We conclude that λ=λ1×λ2\lambda=\lambda_{1}\times\lambda_{2}.

We are now going to show that

ΔIII2,DG=ΔIII2,DG1ΔIII2,DG2.\Delta_{III_{2,D}}^{\mathrm{G}^{*}}=\Delta_{III_{2,D}}^{\mathrm{G}^{*}_{1}}\Delta_{III_{2,D}}^{\mathrm{G}^{*}_{2}}.

The construction is as follows. First, we associate to the fixed χ\chi-datum a G^\widehat{\mathrm{G}^{*}}-embedding ξG:SLGL\xi_{\mathrm{G}^{*}}:\prescript{L}{}{S}\longrightarrow\prescript{L}{}{\mathrm{G}^{*}} ([LS87], 2.6). Next via the admissible isomorphism φγ,δ\varphi_{\gamma,\delta} the χ\chi-datum can be transferred to SHS^{\mathrm{H}} and gives an LL-embedding ξH:SHLHL\xi^{\mathrm{H}}:\prescript{L}{}{S}^{\mathrm{H}}\longrightarrow{}^{L}\mathrm{H}. The admissible isomorphism φγ,δ\varphi_{\gamma,\delta} also provides dually an LL-isomorphism φγ,δL:SLSHL\prescript{L}{}{\varphi}_{\gamma,\delta}:\prescript{L}{}{S}\longrightarrow\prescript{L}{}{S}^{\mathrm{H}}. The composition ξ=ηLξHφγ,δL\xi^{\prime}=\prescript{L}{}{\eta}\circ\xi^{\mathrm{H}}\circ\prescript{L}{}{\varphi}_{\gamma,\delta} gives another LL-embedding SLGL\prescript{L}{}{S}\longrightarrow\prescript{L}{}{\mathrm{G}^{*}}. Via conjugation by an element of G^\widehat{\mathrm{G}^{*}}, we can arrange that ξG\xi_{\mathrm{G}^{*}} and ξ\xi^{\prime} coincide on S^\widehat{S} so that ξ=aξG\xi^{\prime}=a\cdot\xi_{\mathrm{G}} for some aZ1(Wp,S^)a\in Z^{1}(W_{\mathbb{Q}_{p}},\widehat{S}).

The term ΔIII2,DG\Delta^{\mathrm{G}^{*}}_{III_{2,D}} is given by a,δ\langle a,\delta\rangle where the paring ,\langle\cdot,\cdot\rangle is the Langlands duality for tori under the geometric normalization. More precisely, the element aa of Z1(WF,S^)Z^{1}(W_{\mathrm{F}},\widehat{S}) is an LL-parameter of SS. By the local Langland correspondence for tori, aa gives rise to a character a,\langle a,\cdot\rangle of SS.

In our case, we have S=S1×S2S=S_{1}\times S_{2} and δ=(δ1,δ2)\delta=(\delta_{1},\delta_{2}) so it suffices to show that a=a1×a2a=a_{1}\times a_{2}. In order to verify that, we need to review carefully the formation of the LL-embedding ξ:SLGL\xi:\prescript{L}{}{S}\longrightarrow\prescript{L}{}{\mathrm{G}} associated to a χ\chi-datum [LS87, §2.6].

Fix a Borel pair (B^,T^)(\widehat{B},\widehat{T}) of G^\widehat{\mathrm{G}^{*}} as well as a Borel subgroup BSB_{S} (possibly not defined over p\mathbb{Q}_{p}) of G\mathrm{G}^{*} containing SS. The pair (BS,S)(B_{S},S) yields a set of positive coroots of SS and equivalently a set of elements of X(S^)X^{*}(\widehat{S}). Then ξ\xi is defined so that the restriction to S^\widehat{S} maps S^\widehat{S} to T^\widehat{T} by the unique isomorphism mapping our chosen subset of X(S^)X^{*}(\widehat{S}) to the set of positive roots of T^\widehat{T} determined by T^\widehat{T}.

Then, to specify ξ\xi we have only to give a homomorphism wξ(w)=ξ0(w)×ww\mapsto\xi(w)=\xi_{0}(w)\times w where ξ0(w)Norm(T^,G^)\xi_{0}(w)\in\mathrm{Norm}(\widehat{T},\widehat{\mathrm{G}^{*}}). We require that if wσw\mapsto\sigma under WpΓpW_{\mathbb{Q}_{p}}\longrightarrow\Gamma_{\mathbb{Q}_{p}} then Int(ξ(w))\mathrm{Int}(\xi(w)) acts on T^\widehat{\mathrm{T}} as the transport by ξ\xi of the action of σΓp\sigma\in\Gamma_{\mathbb{Q}_{p}} on S^\widehat{S}.

We then define

ξ(w)=rp(w)n(σ)×w\xi(w)=r_{p}(w)n(\sigma)\times w

for wWpw\in W_{\mathbb{Q}_{p}} and wσw\mapsto\sigma under WpΓpW_{\mathbb{Q}_{p}}\longrightarrow\Gamma_{\mathbb{Q}_{p}}. The term n(σ)n(\sigma) is defined above, in the definition of ΔI\Delta_{I} and we have already seen that n(σ)=n(σ)G1×n(σ)G2n(\sigma)=n(\sigma)_{\mathrm{G}_{1}}\times n(\sigma)_{\mathrm{G}_{2}}.

We recall briefly the construction of rp(w)r_{p}(w). We denote by \mathcal{R} the set R(G,S)R^{\vee}(\mathrm{G}^{*},S) and define Σ\Sigma to be the group of automorphisms of \mathcal{R} generated by Γp\Gamma_{\mathbb{Q}_{p}} and ϵ\epsilon where ϵ\epsilon acts on X(S)X_{*}(S) by ϵ(t)=t\epsilon(t)=-t (as in[LS87, Lemma 2.1A]). The group Σ\Sigma acts on \mathcal{R} and divides it into Σ\Sigma-orbits =1k\mathcal{R}=\mathcal{R}_{1}\bigsqcup\cdots\bigsqcup\mathcal{R}_{k}. For each Σ\Sigma-orbit i\mathcal{R}_{i}, we define an element rpi(w)r_{p}^{i}(w) and then take the product over the orbits to obtain rp(w)r_{p}(w). Since G=G1G2\mathcal{R}_{\mathrm{G}^{*}}=\mathcal{R}_{\mathrm{G}^{*}_{1}}\bigsqcup\mathcal{R}_{\mathrm{G}^{*}_{2}} and the group Σ\Sigma preserves G1\mathcal{R}_{\mathrm{G}^{*}_{1}}, G1\mathcal{R}_{\mathrm{G}^{*}_{1}}, we have that rp(w)G=rp(w)G1×rp(w)G2r_{p}(w)_{\mathrm{G}^{*}}=r_{p}(w)_{\mathrm{G}^{*}_{1}}\times r_{p}(w)_{\mathrm{G}^{*}_{2}}. This implies the desired product identity for ΔIII2,DG\Delta^{\mathrm{G}^{*}}_{III_{2,D}}.

Finally, we show that

inv[z1×z2]((δ1,δ2),(δ1,δ2),s1×s2=inv[z1](δ1,δ1),s1inv[z2](δ2,δ2),s2.\langle\mathrm{inv}[z_{1}\times z_{2}]((\delta_{1},\delta_{2}),(\delta^{*}_{1},\delta^{*}_{2}),s_{1}\times s_{2}\rangle=\langle\mathrm{inv}[z_{1}](\delta_{1},\delta^{*}_{1}),s_{1}\rangle\langle\mathrm{inv}[z_{2}](\delta_{2},\delta^{*}_{2}),s_{2}\rangle.

We have a natural isomorphism 𝐁(p,S)=𝐁(p,S1×S2)\mathbf{B}(\mathbb{Q}_{p},S)=\mathbf{B}(\mathbb{Q}_{p},S_{1}\times S_{2}) that maps the class of g1(z1×z2)σ(g)g^{-1}(z_{1}\times z_{2})\sigma(g) to the product of the classes of g11z1σ(g1)g^{-1}_{1}z_{1}\sigma(g_{1}) and g21z2σ(g2)g^{-1}_{2}z_{2}\sigma(g_{2}). Moreover, this product decomposition respects the Kottwitz maps κi:𝐁(p,Si)X(Si^)Γp\kappa_{i}:\mathbf{B}(\mathbb{Q}_{p},S_{i})\to X^{*}(\widehat{S_{i}})^{\Gamma_{\mathbb{Q}_{p}}} defining the above pairings. This implies the desired product formula. ∎

3.3.2. Transfer factor and changing the normalization

Lemma 3.5.

Let f(U)f\in\mathcal{H}(\mathrm{U}) and fH(H)f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}) be Δ[𝔴1,ϱ,z]\Delta[\mathfrak{w}^{-1},\varrho,z]-matching functions for an endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) of U\mathrm{U}. If iU:U(p)U(p)i_{\mathrm{U}}:\mathrm{U}(\mathbb{Q}_{p})\to\mathrm{U}(\mathbb{Q}_{p}) and iH:H(p)H(p)i_{\mathrm{H}}:\mathrm{H}(\mathbb{Q}_{p})\to\mathrm{H}(\mathbb{Q}_{p}) are the inverse functions, then fHiHf^{\mathrm{H}}\circ i_{\mathrm{H}} and fiUf\circ i_{\mathrm{U}} are matching for the transfer factors Δ[𝔴,ϱ,z]\Delta^{\prime}[\mathfrak{w},\varrho,z] with respect to the endoscopic datum (H,s1,ηL)(\mathrm{H},s^{-1},{}^{L}\eta).

Proof.

We consider first the ordinary endoscopic case. Suppose γHH(p)\gamma_{\mathrm{H}}\in\mathrm{H}(\mathbb{Q}_{p}) is strongly regular and transfers to a strongly regular element γU(p)\gamma\in\mathrm{U}(\mathbb{Q}_{p}). By hypothesis, we have

SOγHH(fH)=γstγΔ[𝔴1,ϱ,z](γH,γ)OγU(f).SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}})=\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta[\mathfrak{w}^{-1},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{U}}_{\gamma^{\prime}}(f).

Then we need to show that

SOγHH(fHiH)=γstγΔ[𝔴,ϱ,z](γH,γ)OγU(fiU).SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}}\circ i_{\mathrm{H}})=\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{U}}_{\gamma^{\prime}}(f\circ i_{\mathrm{U}}).

Since SOγHH(fHiH)=SOγH1H(fH)SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}}\circ i_{\mathrm{H}})=SO^{\mathrm{H}}_{\gamma^{-1}_{\mathrm{H}}}(f^{\mathrm{H}}) and OγU(fiU)=O(γ)1U(f)O^{\mathrm{U}}_{\gamma^{\prime}}(f\circ i_{\mathrm{U}})=O^{\mathrm{U}}_{(\gamma^{\prime})^{-1}}(f), it suffices to show that the transfer factor Δ[𝔴1,ϱ,z](γH1,(γ)1)\Delta[\mathfrak{w}^{-1},\varrho,z](\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}) with respect to the endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) is the same as the transfer factor Δ[𝔴,ϱ,z](γH,γ)\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime}) with respect to the endoscopic datum (H,s1,ηL)(\mathrm{H},s^{-1},{}^{L}\eta).

Recall that the transfer factor Δ[𝔴,ϱ,z]\Delta^{\prime}[\mathfrak{w},\varrho,z] is a product of terms

ϵL(V,φ)ΔI1ΔIIΔIII2ΔIVinv[z](γ,γ),s\epsilon_{L}(V,\varphi){\Delta^{-1}_{I}}\Delta_{II}\Delta_{III_{2}}\Delta_{IV}\langle\mathrm{inv}[z](\gamma,\gamma^{*}),s\rangle

which we need to use χ\chi-data and aa-data in order to define and moreover the transfer factors do not depend on the choices of χ\chi-data and aa-data.

By [KS12, Section 5.1], the transfer factor Δ[𝔴,ϱ,z]\Delta[\mathfrak{w},\varrho,z] is defined by the same formula, except that one replaces the term ΔIII2\Delta_{III_{2}} by ΔIII2,D\Delta_{III_{2},D}, inverts ΔI\Delta_{I} and inverts inv[z](δ,δ),s\langle\mathrm{inv}[z](\delta,\delta^{*}),s\rangle. If one keeps track of the dependence on χ\chi-data and aa-data, then ΔIII2,D,χ1(γH1,(γ)1)=ΔIII2,χ(γH,γ)\Delta_{III_{2},D,\chi^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})=\Delta_{III_{2},\chi}(\gamma_{\mathrm{H}},\gamma^{\prime}).

By using the definitions of the terms appearing in the transfer factors which we recalled in Lemma 3.4, we have

ϵL(V,φ)ΔI,a1[s1]ΔIV(γH,γ)=ϵL(V,φ)ΔI,a[s]ΔIV(γH1,(γ)1),\epsilon_{L}(V,\varphi)\Delta^{-1}_{I,a}[s^{-1}]\Delta_{IV}(\gamma_{\mathrm{H}},\gamma^{\prime})=\epsilon_{L}(V,\varphi)\Delta_{I,a}[s]\Delta_{IV}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}),

since these terms do not depend on χ\chi-data and where the ΔI,a[s]\Delta_{I,a}[s] notation keeps track of whether we plug in ss or s1s^{-1} into the pairing defining ΔI\Delta_{I}. Moreover ΔII,χ1,a1(γH1,(γ)1)=ΔII,χ,a(γH,γ)\Delta_{II,\chi^{-1},a^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})=\Delta_{II,\chi,a}(\gamma_{\mathrm{H}},\gamma^{\prime}). Thus we have

Δ[𝔴,ϱ,z](γH,γ)\displaystyle\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})
=\displaystyle= ϵL(V,φ)ΔI,a1[s1]ΔIV(γH,γ)ΔII,χ,a(γH,γ)ΔIII2,χ(γH,γ)inv[z](γ,γ),s1\displaystyle\epsilon_{L}(V,\varphi)\Delta^{-1}_{I,a}[s^{-1}]\Delta_{IV}(\gamma_{\mathrm{H}},\gamma^{\prime})\Delta_{II,\chi,a}(\gamma_{\mathrm{H}},\gamma^{\prime})\Delta_{III_{2},\chi}(\gamma_{\mathrm{H}},\gamma^{\prime})\langle\mathrm{inv}[z](\gamma,\gamma^{*}),s^{-1}\rangle
=\displaystyle= ϵL(V,φ)ΔI,a[s]ΔIV(γH1,(γ)1)ΔII,χ1,a1(γH1,(γ)1)\displaystyle\epsilon_{L}(V,\varphi)\Delta_{I,a}[s]\Delta_{IV}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})\Delta_{II,\chi^{-1},a^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})
ΔIII2,D,χ1(γH1,(γ)1)inv[z](γ1,(γ1)),s1.\displaystyle\cdot\Delta_{III_{2},D,\chi^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})\langle\mathrm{inv}[z](\gamma^{-1},(\gamma^{-1})^{*}),s\rangle^{-1}.

Therefore Δ[𝔴,ϱ,z](γH1,(γ)1)\Delta[\mathfrak{w},\varrho,z](\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}) with respect to the endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) is nearly the same as Δ[𝔴,ϱ,z](γH,γ)\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime}) with respect to the endoscopic datum (H,s1,ηL)(\mathrm{H},s^{-1},{}^{L}\eta). The only difference is that in the above second product, the term ΔI\Delta_{I} is defined with respect to aa-data and the term ΔII\Delta_{II} is defined with respect to the a1a^{-1}-data. However, the ΔI\Delta_{I} and ϵL(V,φ)\epsilon_{L}(V,\varphi) terms also depend on the Whittaker datum. According to [Kal13, page 16], we have ϵL(V,φ)ΔI,a(γH1,(γ)1)=ϵL(V,φ1)ΔI,a1(γH1,(γ)1)\epsilon_{L}(V,\varphi)\cdot\Delta_{I,a}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})=\epsilon_{L}(V,\varphi^{-1})\cdot\Delta_{I,a^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}).

Since inverting the character φ\varphi leads to the inverse Whittaker datum 𝔴1\mathfrak{w}^{-1}, the second product is actually the transfer factor Δ[𝔴1,ϱ,z](γH1,(γ)1)\Delta[\mathfrak{w}^{-1},\varrho,z](\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}) with respect to the endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta).

For the twisted endoscopic case, the same arguments still work. Indeed, in this case H=GθH=G\rtimes\theta and we need to show that

SOγHH(fHiH)=γstγΔ[𝔴,ϱ,z](γH,γ)OγU(fiU).SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}}\circ i_{\mathrm{H}})=\sum\limits_{\gamma^{\prime}\sim_{st}\gamma}\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})O^{\mathrm{U}}_{\gamma^{\prime}}(f\circ i_{\mathrm{U}}).

Since SOγHH(fHiH)=SOγH1H(fH)SO^{\mathrm{H}}_{\gamma_{\mathrm{H}}}(f^{\mathrm{H}}\circ i_{\mathrm{H}})=SO^{\mathrm{H}}_{\gamma^{-1}_{\mathrm{H}}}(f^{\mathrm{H}}) and OγU(fiU)=O(γ)1U(f)O^{\mathrm{U}}_{\gamma^{\prime}}(f\circ i_{\mathrm{U}})=O^{\mathrm{U}}_{(\gamma^{\prime})^{-1}}(f), it suffices to show that the transfer factor Δ[𝔴1,ϱ,z](γH1,(γ)1)\Delta[\mathfrak{w}^{-1},\varrho,z](\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}) with respect to the endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) is the same as the transfer factor Δ[𝔴,ϱ,z](γH,γ)\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime}) with respect to the endoscopic datum (H,s1,ηL)(\mathrm{H},s^{-1},{}^{L}\eta). By the results in [KS12, Sections 5.3, 5.4], we know that the twisted transfer factor Δ[𝔴,ϱ,z]\Delta^{\prime}[\mathfrak{w},\varrho,z] is a product of terms

ϵL(V,φ)(ΔInew)1ΔIIΔIII21ΔIVinv[z](δ,δ),s\epsilon_{L}(V,\varphi){(\Delta^{\text{new}}_{I})^{-1}}\Delta_{II}\Delta^{-1}_{III_{2}}\Delta_{IV}\langle\mathrm{inv}[z](\delta,\delta^{*}),s\rangle

and the twisted transfer factor ΔD[𝔴,ϱ,z]\Delta_{D}[\mathfrak{w},\varrho,z] is a product of terms

ϵL(V,φ)ΔInewΔIIΔIII2newΔIVinv[z](δ,δ),s1.\epsilon_{L}(V,\varphi){\Delta^{\text{new}}_{I}}\Delta_{II}\Delta^{\text{new}}_{III_{2}}\Delta_{IV}\langle\mathrm{inv}[z](\delta,\delta^{*}),s\rangle^{-1}.

Since ΔIII2new\Delta^{\text{new}}_{III_{2}} is the term ΔIII2\Delta_{III_{2}} computed for the inverse set of χ\chi-data, we see that ΔIII2,χ1new(γH1,(γ)1)=ΔIII2,χ(γH,γ)\Delta^{\text{new}}_{III_{2},\chi^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})=\Delta_{III_{2},\chi}(\gamma_{\mathrm{H}},\gamma^{\prime}). Moreover (ΔInew)1(γH,γ)[s1]=ΔInew(γH,γ)[s](\Delta^{\text{new}}_{I})^{-1}(\gamma_{\mathrm{H}},\gamma^{\prime})[s^{-1}]=\Delta^{\text{new}}_{I}(\gamma_{\mathrm{H}},\gamma^{\prime})[s]. Thus we have

Δ[𝔴,ϱ,z](γH,γ)\displaystyle\Delta^{\prime}[\mathfrak{w},\varrho,z](\gamma_{\mathrm{H}},\gamma^{\prime})
=\displaystyle= ϵL(V,φ)(ΔI,anew)1[s1]ΔIV(γH,γ)ΔII,χ,a(γH,γ)ΔIII2,χ1(γH,γ)inv[z](γ,γ),s1\displaystyle\epsilon_{L}(V,\varphi)(\Delta^{\text{new}}_{I,a})^{-1}[s^{-1}]\Delta_{IV}(\gamma_{\mathrm{H}},\gamma^{\prime})\Delta_{II,\chi,a}(\gamma_{\mathrm{H}},\gamma^{\prime})\Delta^{-1}_{III_{2},\chi}(\gamma_{\mathrm{H}},\gamma^{\prime})\langle\mathrm{inv}[z](\gamma,\gamma^{*}),s^{-1}\rangle
=\displaystyle= ϵL(V,φ)ΔI,anew[s]ΔIV(γH1,(γ)1)ΔII,χ1,a1(γH1,(γ)1)\displaystyle\epsilon_{L}(V,\varphi)\Delta^{\text{new}}_{I,a}[s]\Delta_{IV}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})\Delta_{II,\chi^{-1},a^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})
ΔIII2,χ1new(γH1,(γ)1)inv[z](γ1,(γ1)),s1.\displaystyle\cdot\Delta^{\text{new}}_{III_{2},\chi^{-1}}(\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1})\langle\mathrm{inv}[z](\gamma^{-1},(\gamma^{-1})^{*}),s\rangle^{-1}.

As in the standard endoscopy case, the second product is actually the twisted transfer factor Δ[𝔴1,ϱ,z](γH1,(γ)1)\Delta[\mathfrak{w}^{-1},\varrho,z](\gamma^{-1}_{\mathrm{H}},(\gamma^{\prime})^{-1}) with respect to the endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta). ∎

3.3.3. Endoscopy for ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}

We now study the endoscopy of ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}.

We must have H=ResE/p𝔾m\mathrm{H}=\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} and pick sH^Γps\in\widehat{\mathrm{H}}^{\Gamma_{\mathbb{Q}_{p}}}. We will be most interested in the case where ηL|H^{}^{L}\eta|_{\widehat{\mathrm{H}}} is the identity map and so we assume this is the case. Then ηL{}^{L}\eta is determined up to conjugacy by an element of H1(Wp,ResE/p𝔾m^)H^{1}(W_{\mathbb{Q}_{p}},\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}). By the Langlands correspondence for tori, this cocycle corresponds to a character λ\lambda of ResE/p𝔾m(p)=E×\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}(\mathbb{Q}_{p})=E^{\times}.

We now study transfer factors for the endoscopic datum (H,s,λL)(\mathrm{H},s,{}^{L}\lambda) of ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}. Recall we have fixed an extended pure inner twist (ϱ𝔾m,z𝔾m)(\varrho_{{\mathbb{G}_{m}}},z_{{\mathbb{G}_{m}}}) of ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} such that ϱ𝔾m:(ResE/p𝔾m)ResE/p𝔾m\varrho_{{\mathbb{G}_{m}}}:(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})^{*}\to\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}. Consider zHH(p)z_{\mathrm{H}}\in\mathrm{H}(\mathbb{Q}_{p}) which transfers to zResE/p𝔾mz\in\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} and z(ResE/p𝔾m)z^{*}\in(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})^{*}. Our goal is to compute the transfer factor Δ[𝔴𝔾m,ϱ𝔾m,z𝔾m](zH,z)\Delta[\mathfrak{w}_{{\mathbb{G}_{m}}},\varrho_{{\mathbb{G}_{m}}},z_{{\mathbb{G}_{m}}}](z_{\mathrm{H}},z).

Lemma 3.6.

We have

Δ[𝔴𝔾m,ϱ𝔾m,z𝔾m](zH,z)=λ(z)inv[z𝔾m](z,z),s1.\Delta[\mathfrak{w}_{{\mathbb{G}_{m}}},\varrho_{{\mathbb{G}_{m}}},z_{{\mathbb{G}_{m}}}](z_{\mathrm{H}},z)=\lambda(z^{*})\langle\mathrm{inv}[z_{{\mathbb{G}_{m}}}](z,z^{*}),s\rangle^{-1}.
Proof.

We will calculate each term in the definition of transfer factor. The virtual representation VV in this case is 0 so that the factor ϵ(V,φ)=1\epsilon(V,\varphi)=1. The terms ΔIV\Delta_{IV}, ΔII\Delta_{II} are trivial since ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} has no absolute roots. The term ΔI\Delta_{I} is trivial since the group S^/Z(ResE/p𝔾m^)\widehat{S}/Z(\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}) is trivial.

We now compute ΔIII2\Delta_{III_{2}}. The LL-maps ξ(ResE/p𝔾m)\xi_{(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})^{*}}, ξH\xi_{\mathrm{H}} and φz,zL\prescript{L}{}{\varphi_{z^{*},z^{*}}} are all the identity. Hence, by comparing ξ=ηξeφz,zL\xi^{\prime}=\eta\circ\xi_{e}\circ\prescript{L}{}{\varphi_{z^{*},z^{*}}} with ξResE/p𝔾m\xi_{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}, we see that ΔIII2=λ(z)\Delta_{III_{2}}=\lambda(z^{*}).

The final term then contributes the factor inv[z𝔾m](z,z),s1\langle\mathrm{inv}[z_{{\mathbb{G}_{m}}}](z,z^{*}),s\rangle^{-1}, completing the argument. ∎

3.3.4. Transfer factors for GU\mathrm{GU} and U×ResE/p𝔾m\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}

We use the notation of §3.2. We denote the Whittaker datum and extended pure inner twists of U\mathrm{U} induced by restriction from GU\mathrm{GU} by 𝔴U\mathfrak{w}^{\prime}_{\mathrm{U}} and (ϱU,zU)(\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}). We record the following lemma:

Lemma 3.7.

Suppose that γHH(p)\gamma_{H}\in\mathrm{H}(\mathbb{Q}_{p}) and γU(p)\gamma\in\mathrm{U}(\mathbb{Q}_{p}) are strongly regular and related. Then we have the following equality

Δ[𝔴U,ϱU,zU](γH,γ)=Δ[𝔴GU,ϱGU,zGU](γH,γ)inv[zGU](γ,γ),sinv[zU](γ,γ),s1.\Delta[\mathfrak{w}^{\prime}_{\mathrm{U}},\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}](\gamma_{H},\gamma)=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{\mathrm{H}},\gamma)\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma,\gamma^{*}),s\rangle\langle\mathrm{inv}[z^{\prime}_{\mathrm{U}}](\gamma,\gamma^{*}),s\rangle^{-1}.
Proof.

This is [Xu16, Lemma 3.6] adapted to the non-quasisplit setting. ∎

Finally, we prove the following lemma:

Lemma 3.8.

Suppose (γ,z)(U×ResE/p𝔾m)(p)sr(\gamma,z)\in(\mathrm{U}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p})_{sr} and (γH,zH)(H×ResE/p𝔾m)(p)sr(\gamma_{\mathrm{H}},z_{\mathrm{H}})\in(\mathrm{H}\times\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p})_{sr} are related. Then we have an equality of transfer factors

Δ[𝔴U,ϱU,zU]((γH,zH),(γ,z))=Δ[𝔴GU,ϱGU,zGU](γHzH,γz).\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z_{\mathrm{H}}),(\gamma,z))=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{H}z_{\mathrm{H}},\gamma z).
Proof.

First of all, by Lemma 3.4 we have

Δ[𝔴U,ϱU,zU]((γH,zH),(γ,z))=Δ[𝔴U,ϱU,zU](γH,γ)Δ[𝔴𝔾m,ϱ𝔾m,z𝔾m](zH,z).\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z_{\mathrm{H}}),(\gamma,z))=\Delta[\mathfrak{w}^{\prime}_{\mathrm{U}},\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}](\gamma_{H},\gamma)\cdot\Delta[\mathfrak{w}_{{\mathbb{G}_{m}}},\varrho_{{\mathbb{G}_{m}}},z_{{\mathbb{G}_{m}}}](z_{\mathrm{H}},z).

By Lemma 3.6, this equals

Δ[𝔴U,ϱU,zU](γH,γ)λ(z)inv[z𝔾m](z,z),s1,\Delta[\mathfrak{w}^{\prime}_{\mathrm{U}},\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}](\gamma_{H},\gamma)\cdot\lambda(z^{*})\langle\mathrm{inv}[z_{{\mathbb{G}_{m}}}](z,z^{*}),s\rangle^{-1},

and by Lemma 3.7 we have

Δ[𝔴U,ϱU,zU](γH,γ)=Δ[𝔴GU,ϱGU,zGU](γH,γ)inv[zGU](γ,γ),sinv[zU](γ,γ),s1.\Delta[\mathfrak{w}^{\prime}_{\mathrm{U}},\varrho^{\prime}_{\mathrm{U}},z^{\prime}_{\mathrm{U}}](\gamma_{H},\gamma)=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{H},\gamma)\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma,\gamma^{*}),s\rangle\langle\mathrm{inv}[z^{\prime}_{\mathrm{U}}](\gamma,\gamma^{*}),s\rangle^{-1}.

Since the Kottwitz set and the Kottwitz map κ\kappa respect products, we get that

inv[zU](γ,γ),sinv[z𝔾m](z,z),s=inv[zU]((γ,z),(γ,z)),s.\langle\mathrm{inv}[z^{\prime}_{\mathrm{U}}](\gamma,\gamma^{*}),s\rangle\langle\mathrm{inv}[z_{{\mathbb{G}_{m}}}](z,z^{*}),s\rangle=\langle\mathrm{inv}[z_{\mathrm{U}}]((\gamma,z),(\gamma^{*},z^{*})),s\rangle.

By the functoriality of the Kottwitz map,

inv[zU]((γ,z),(γ,z)),s=inv[zGU](γz,γz),s.\langle\mathrm{inv}[z_{\mathrm{U}}]((\gamma,z),(\gamma^{*},z^{*})),s\rangle=\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma z,\gamma^{*}z^{*}),s\rangle.

Hence we get

Δ[𝔴U,ϱU,zU]((γH,zH),(γ,z))\Delta[\mathfrak{w}_{\mathrm{U}},\varrho_{\mathrm{U}},z_{\mathrm{U}}]((\gamma_{\mathrm{H}},z_{\mathrm{H}}),(\gamma,z))
=Δ[𝔴GU,ϱGU,zGU](γH,γ)inv[zGU](γ,γ),sinv[zGU](γz,γz),s1.=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{H},\gamma)\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma,\gamma^{*}),s\rangle\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma z,\gamma^{*}z^{*}),s\rangle^{-1}.

On the other hand, by [LS87, Lemma 4.4A], there is a character λ\lambda^{\prime} on (ResE/p𝔾m)(p)(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})(\mathbb{Q}_{p}) such that

Δ[𝔴GU,ϱGU,zGU](γHzH,γz)\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{\mathrm{H}}z_{\mathrm{H}},\gamma z)
=Δ[𝔴GU,ϱGU,zGU](γH,γ)λ(z)inv[zGU](γ,γ),sinv[zGU](γz,γz),s1.=\Delta[\mathfrak{w}_{\mathrm{GU}},\varrho_{\mathrm{GU}},z_{\mathrm{GU}}](\gamma_{\mathrm{H}},\gamma)\lambda^{\prime}(z^{*})\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma,\gamma^{*}),s\rangle\langle\mathrm{inv}[z_{\mathrm{GU}}](\gamma z,\gamma^{*}z^{*}),s\rangle^{-1}.

Hence, it remains to show that λ(z)=λ(z)\lambda^{\prime}(z^{*})=\lambda(z^{*}). We recall that λ\lambda is the character arising from the construction of the ΔIII2\Delta_{III_{2}}-term of the transfer factor for ResE/p𝔾m\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}. From the description in [LS87, Lemma 4.4A], λ\lambda^{\prime} is the restriction to Z(GU)=ResE/p𝔾mZ(\mathrm{GU})=\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}} of the character arising from the ΔIII2\Delta_{III_{2}}-term of the transfer factor for GU\mathrm{GU}.

The characters λ\lambda and λ\lambda^{\prime} are determined by the failure of the following diagram to commute:

(ResE/p𝔾m)L{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}(ResE/p𝔾m)L{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}SG(H)L{{}^{L}S^{\mathrm{G}(\mathrm{H})}}SL{{}^{L}S}GL(H){{}^{L}\mathrm{G}(\mathrm{H})}GUL{{}^{L}\mathrm{GU}}(ResE/p𝔾m)L{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}(ResE/p𝔾m)L{{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})}ξG(H)\scriptstyle{\xi^{\mathrm{G}(\mathrm{H})}}ξGU\scriptstyle{\xi^{\mathrm{GU}}}φz,zL\scriptstyle{{}^{L}\varphi_{z^{*},z^{*}}}ηL\scriptstyle{{}^{L}\eta}λL\scriptstyle{{}^{L}\lambda}

We explain this diagram. The objects SG(H)S^{\mathrm{G}(\mathrm{H})} and SS are maximal tori in their respective groups that are isomorphic by an admissible embedding φz,zL{}^{L}\varphi_{z^{*},z^{*}}. The maps ξG(H)\xi^{\mathrm{G}(\mathrm{H})} and ξGU\xi^{\mathrm{GU}} are the LL-embeddings constructed in [LS87, §(2.6)] from a choice of χ\chi-data. The lower two diagonal maps are induced by the embeddings ResE/p𝔾mZ(GU)GU\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\cong Z(\mathrm{GU})\hookrightarrow\mathrm{GU} and ResE/p𝔾mZ(G(H))G(H)\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\cong Z(\mathrm{G}(\mathrm{H}))\hookrightarrow\mathrm{G}(\mathrm{H}). Since the images of these embeddings lie in the image of the embeddings SGS\hookrightarrow G and SG(H)G(H)S^{\mathrm{G}(\mathrm{H})}\hookrightarrow\mathrm{G}(\mathrm{H}) respectively, we get induced maps ResE/p𝔾mSG(H)\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\hookrightarrow S^{\mathrm{G}(\mathrm{H})} and ResE/p𝔾mS\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}\hookrightarrow S. These induce the upper diagonal maps in the above diagram. The outer vertical arrows are then defined so that the left and right trapezoids commute. Note that by definition of n(w)n(w) and rp(w)r_{p}(w) the vertical maps (ResE/p𝔾m)L(ResE/p𝔾m)L{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}})\to{}^{L}(\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}) are both the identity. The bottom trapezoid commutes by construction. Finally the top map is defined so that the top trapezoid commutes and will agree with ηL{}^{L}\eta on ResE/p𝔾m^\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}} and map (1,w)(1,w) to (1,w)(1,w).

Then the outer square fails to commute by the cocycle λZ1(Wp,ResE/p𝔾m^)\lambda\in Z^{1}(W_{\mathbb{Q}_{p}},\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}) and the inner square fails to commute by λZ1(Wp,T^)\lambda^{\prime}\in Z^{1}(W_{\mathbb{Q}_{p}},\widehat{T}). Since the trapezoids all commute, these cocycles agree under the natural map Z1(Wp,T^)Z1(Wp,ResE/p𝔾m^)Z^{1}(W_{\mathbb{Q}_{p}},\widehat{T})\longrightarrow Z^{1}(W_{\mathbb{Q}_{p}},\widehat{\mathrm{Res}_{E/\mathbb{Q}_{p}}{\mathbb{G}_{m}}}). This is the desired result. ∎

4. Properties of the local and global correspondences

In this section we prove a number of properties and compatibilities of the local and global Langlands correspondences. These properties are needed to derive our main theorem.

4.1. Unramified representations

In this subsection we suppose that vv is a finite place of \mathbb{Q} and that Ev/vE_{v}/\mathbb{Q}_{v} is unramified. We let GU,(id,1)\mathrm{GU},(\mathrm{id},1) and U,(id,1)\mathrm{U},(\mathrm{id},1) be the trivial extended pure inner twists of GUv(n)\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n) and Uv(n)\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n) respectively. Let GU(p)\mathrm{GU}(\mathbb{Z}_{p}) be the standard hyperspecial subgroup. Then we say that π\pi is GU(p)\mathrm{GU}(\mathbb{Z}_{p})-spherical if it has nontrivial GU(p)\mathrm{GU}(\mathbb{Z}_{p})-invariants.

Proposition 4.1.

Let ψ:LvGUvL(n)Ψ+(GUv(n))\psi:L_{\mathbb{Q}_{v}}\longrightarrow\prescript{L}{}{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)}\in\Psi^{+}(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)) be a generic parameter. Then Πψ(GU,id)\Pi_{\psi}(\mathrm{GU},\mathrm{id}) contains a GU(v)\mathrm{GU}(\mathbb{Z}_{v})-spherical representation if and only if ψ\psi is unramified. In that case, Πψ(GU,id)\Pi_{\psi}(\mathrm{GU},\mathrm{id}) contains a unique GU(p)\mathrm{GU}(\mathbb{Z}_{p})-spherical representation π\pi, which satisfies π,=1\langle\pi,\cdot\rangle=1. The same results hold true for U\mathrm{U}.

Proof.

We first consider the case where ψΨ(GUv(n))\psi\in\Psi(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)) (or Ψ(Uv(n))\Psi(\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n))). By Corollary 2.14, we see that a spherical representation π\pi of U(v)\mathrm{U}(\mathbb{Q}_{v}) lifts to a spherical representation π~\widetilde{\pi} of GU(v)\mathrm{GU}(\mathbb{Q}_{v}) and vice versa. Moreover, by the construction local packets for GU(v)\mathrm{GU}(\mathbb{Q}_{v}), we have that π,=1\langle\pi,\cdot\rangle=1 if and only if π~,=1\langle\widetilde{\pi},\cdot\rangle=1. Therefore it suffices to prove the proposition for unitary groups.

We mimic the proof of Lemma 4.1.14.1.1 in [Tai17]. Denote ff the characteristic function of the standard special maximum compact subgroup of U(v)\mathrm{U}(\mathbb{Q}_{v}). If ψ\psi is unramified then by proposition [Mok15, Proposition 7.4.3] we have

1=πΠψtr(πf).1=\sum_{\pi\in\Pi_{\psi}}\mathrm{tr}(\pi\mid f).

In other words, the packet Πψ\Pi_{\psi} contains an unramified representation. The uniqueness comes from Theorem 2.5.1a2.5.1a in [Mok15].

Suppose now that ψ\psi is ramified. Then the base change LL-parameter ηBψ\eta_{B}\circ\psi is also ramified. By the local Langlands correspondence for GLn(Ev)\mathrm{GL}_{n}(E_{v}), one gets a representation π\pi of GLn(Ev)\mathrm{GL}_{n}(E_{v}) corresponding to ηBψ\eta_{B}\circ\psi. Then, as in [Mok15, §3.2], one lifts π\pi to a representation π~\tilde{\pi} of GLn(Ev)θGLn(Ev)θ\mathrm{GL}_{n}(E_{v})\rtimes\theta\subset\mathrm{GL}_{n}(E_{v})\rtimes\langle\theta\rangle, where θ\theta is the automorphism gJnσ(g)tJn1g\mapsto J_{n}\sigma(g)^{-t}J^{-1}_{n} of ResEv/vGLn,Ev\mathrm{Res}_{E_{v}/\mathbb{Q}_{v}}\mathrm{GL}_{n,E_{v}}. Hence the corresponding representation of GLn(𝒪Ev)θ\mathrm{GL}_{n}(\mathcal{O}_{E_{v}})\rtimes\theta is ramified. We want to show that πΠψπ,xtr(πf)=0\sum\limits_{\pi\in\Pi_{\psi}}\langle\pi,x\rangle\mathrm{tr}(\pi\mid\ f)=0 for every x𝒮¯ψx\in\overline{\mathcal{S}}_{\psi}. If we denote fNf_{N} the characteristic function of GLn(𝒪Ev)θ\mathrm{GL}_{n}(\mathcal{O}_{E_{v}})\rtimes\theta then fN(ηBψ)=0f_{N}(\eta_{B}\circ\psi)=0. The twisted fundamental lemma implies that fNf_{N} is the twisted transfer of ff and hence by [Mok15, Theorem 3.2.1 a] we have

πΠψtr(πf)=πΠψπ,1tr(πf)=fN(ηBψ)=0.\sum_{\pi\in\Pi_{\psi}}\mathrm{tr}(\pi\mid f)=\sum_{\pi\in\Pi_{\psi}}\langle\pi,1\rangle\mathrm{tr}(\pi\mid f)=f_{N}(\eta_{B}\circ\psi)=0.

By the same argument we have πHΠϕHπH,1tr(πHfH)=0\displaystyle\sum_{\pi^{\mathrm{H}}\in\Pi_{\phi^{\mathrm{H}}}}\langle\pi^{\mathrm{H}},1\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f_{\mathrm{H}})=0 for every refined endoscopic datum (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) of U\mathrm{U} where fHf_{\mathrm{H}} is the characteristic function of a hyperspecial subgroup (v)\mathcal{H}(\mathbb{Z}_{v}) of H\mathrm{H}. By the fundamental lemma, fHf_{\mathrm{H}} is the transfer of ff. Then, again by [Mok15, Theorem 3.2.1 ] we have

πΠψπ,xtr(πf)=πHΠψHπH,1tr(πHfH)=0.\sum_{\pi\in\Pi_{\psi}}\langle\pi,x\rangle\mathrm{tr}(\pi\mid f)=\sum_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}}\langle\pi^{\mathrm{H}},1\rangle\mathrm{tr}(\pi^{\mathrm{H}}\mid f_{\mathrm{H}})=0.

where (ψ,x)(\psi,x) corresponds to (H,s,ηL,ψH)(\mathrm{H},s,{}^{L}\eta,\psi^{\mathrm{H}}) under [BM21, Proposition 3.10]. Hence we conclude that tr(πf)=0\mathrm{tr}(\pi\mid f)=0 for every πΠψ(U,id)\pi\in\Pi_{\psi}(\mathrm{U},\mathrm{id}). Therefore the packet Πψ(U,id)\Pi_{\psi}(\mathrm{U},\mathrm{id}) does not contain any unramified representations.

We now consider the case of general ψΨ(GUv(n),id)\psi\in\Psi(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n),\mathrm{id}). This follows from the fact that IPGU(π)I^{\mathrm{GU}}_{P}(\pi) is GU(v)\mathrm{GU}(\mathbb{Q}_{v})-spherical if and only if π\pi is M(v)M(\mathbb{Q}_{v})-spherical for MM a standard Levi subgroup with parabolic subgroup PP. ∎

4.2. On the hypothesis STellH(fH)=STdiscH(fH)ST^{\mathrm{H}}_{\mathrm{ell}}(f^{\mathrm{H}})=ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}})

In this section, we prove that for (H,s,η)(\mathrm{H},s,\eta) a refined elliptic endoscopic datum of GU=GU(V)\mathrm{GU}=\mathrm{GU}(V) and fHCc(GU(𝔸))f^{\mathrm{H}}\in C^{\infty}_{c}(\mathrm{GU}(\mathbb{A})) that is stable cuspidal at infinity and cuspidal at a finite place vv, we have an equality of traces:

STellH(fH)=STdiscH(fH).ST^{\mathrm{H}}_{\mathrm{ell}}(f^{\mathrm{H}})=ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}).

We begin with some preparatory notation and lemmas. Let G\mathrm{G} be a connected reductive group defined over \mathbb{Q} and let ν\nu be a sufficiently regular (in the sense of Lemma 5.11) quasi-character of AG()0A_{\mathrm{G}}(\mathbb{R})^{0} and Cc(G(),ν1)C_{c}^{\infty}(G(\mathbb{R}),\nu^{-1}) be the set of functions f:G()f_{\infty}:G(\mathbb{R})\longrightarrow\mathbb{C} smooth, with compact support modulo AG()0A_{G}(\mathbb{R})^{0} and such that for every (z,g)AG()0×G(),f(zg)=ν1(z)f(g)(z,g)\in A_{G}(\mathbb{R})^{0}\times G(\mathbb{R}),f_{\infty}(zg)=\nu^{-1}(z)f_{\infty}(g). Fix KGK_{\mathrm{G}} a maximal compact subgroup of G()\mathrm{G}(\mathbb{R}).

Definition 4.2.

(Stable cuspidal function at infinity) We say that fCc(G(),ν1)f_{\infty}\in C_{c}^{\infty}(\mathrm{G}(\mathbb{R}),\nu^{-1}) is stable cuspidal if ff_{\infty} is left and right KGK_{\mathrm{G}}-finite and if the function

Πtemp(G(),ν),πtr(πf)\Pi_{\text{temp}}(\mathrm{G}(\mathbb{R}),\nu)\longrightarrow\mathbb{C},\quad\pi\longmapsto\mathrm{tr}(\pi\mid f_{\infty})

vanishes outside Πdisc(G())\Pi_{\text{disc}}(\mathrm{G}(\mathbb{R})) and is constant in the LL-packets of Πdisc(G(),ν)\Pi_{\text{disc}}(\mathrm{G}(\mathbb{R}),\nu).

Definition 4.3.

(cuspidal function) We say that fvCc(Gv(v),ν1)f_{v}\in C_{c}^{\infty}(\mathrm{G}_{v}(\mathbb{Q}_{v}),\nu^{-1}) is cuspidal if fvf_{v} if for each proper Levi subgroup we have that the constant term, fv,Mf_{v,M}, vanishes (as defined in [GKM97, (7.13.2)]).

We record the following well-known lemma

Lemma 4.4.

If fCc(G(),ν1)f_{\infty}\in C_{c}^{\infty}(\mathrm{G}(\mathbb{R}),\nu^{-1}) is a stable cuspidal function and (H,s,η)(\mathrm{H},s,\eta) is an endoscopic triple of G\mathrm{G} then there exists a stable cuspidal transfer function fHCc(H(),ν1)f^{\mathrm{H}}_{\infty}\in C_{c}^{\infty}(\mathrm{H}(\mathbb{R}),\nu^{-1}) of ff_{\infty}.

Proof sketch.

By [She82] we can find a function fHCc(H(),ν1)f^{\mathrm{H}}_{\infty}\in C^{\infty}_{c}(\mathrm{H}(\mathbb{R}),\nu^{-1}) that transfers to ff_{\infty}. Define the function FF on the set of unitary tempered representations of H()\mathrm{H}(\mathbb{R}) by setting

F(π)=1|Πϕ(H())|πΠϕ(H())tr(π|fH),\displaystyle F(\pi)=\dfrac{1}{|\Pi_{\phi}(\mathrm{H}(\mathbb{R}))|}\sum_{\pi^{\prime}\in\Pi_{\phi}(\mathrm{H}(\mathbb{R}))}\mathrm{tr}(\pi^{\prime}|f^{\mathrm{H}}_{\infty}),

for πΠϕ(H())\pi\in\Pi_{\phi}(\mathrm{H}(\mathbb{R})). Then FF must be supported on finitely many discrete series packets since ff_{\infty} is stable cuspidal and (H,s,η)(\mathrm{H},s,\eta) is elliptic. Hence, by [CD90, Theorem 1] there exists a function fHCc(H(),ν1)f^{\prime\mathrm{H}}_{\infty}\in C^{\infty}_{c}(\mathrm{H}(\mathbb{R}),\nu^{-1}) that is stable cuspidal and F(π)=tr(π|fH)F(\pi)=\mathrm{tr}(\pi|f^{\prime\mathrm{H}}_{\infty}). Thus, fHf^{\prime\mathrm{H}}_{\infty} has the same stable orbital integrals as fHf^{\mathrm{H}}_{\infty}. This implies that fHf^{\prime\mathrm{H}}_{\infty} is a stable cuspidal transfer of ff_{\infty}. ∎

We recall that STellH(fH)ST^{\mathrm{H}}_{\mathrm{ell}}(f^{\mathrm{H}}) is defined by the formula

(4.1) STellH(h):=γHτ(H)SOγH(h),ST^{\mathrm{H}}_{\mathrm{ell}}(h):=\sum\limits_{\gamma_{\mathrm{H}}}\tau(\mathrm{H})SO_{\gamma_{\mathrm{H}}}(h),

where the sum is over a set of representatives of the (GU,H)(\mathrm{GU},\mathrm{H})-regular, semisimple, \mathbb{Q}-elliptic, stable conjugacy classes in H()\mathrm{H}(\mathbb{Q}).

Definition 4.5.

We define the term STdiscH(fH)ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}) to equal

ψΨ2(H)1|𝒮¯ψ|πΠψ(H,ν)1,πtr(πfH).\sum\limits_{\psi\in\Psi_{2}(\mathrm{H})}\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{H},\nu)}\langle 1,\pi\rangle\mathrm{tr}(\pi\mid f^{\mathrm{H}}).

Note that we have suppressed the term ϵψ(sψ)\epsilon_{\psi}(s_{\psi}) from this expression because our assumption on ν\nu implies that all ψ\psi are generic by Lemma 5.11.

Separately, we have for every Levi subgroup M\mathrm{M} of H\mathrm{H} the term STMHST^{\mathrm{H}}_{\mathrm{M}} defined in [Mor10, pg 86] as well as the term STHST^{\mathrm{H}} defined by

STH:=M(nMH)1STMH,ST^{\mathrm{H}}:=\sum\limits_{\mathrm{M}}(n^{\mathrm{H}}_{\mathrm{M}})^{-1}ST^{\mathrm{H}}_{\mathrm{M}},

for certain constants (nMH)1(n^{\mathrm{H}}_{\mathrm{M}})^{-1}.

We prove the following standard result.

Lemma 4.6.

Suppose hH(𝔸)h\in\mathrm{H}(\mathbb{A}) is stable cuspidal at infinity and cuspidal at a finite place. Then

  • For any MH\mathrm{M}\neq\mathrm{H} we have

    STMH(h)=0.ST^{\mathrm{H}}_{\mathrm{M}}(h)=0.
  • If M=H\mathrm{M}=\mathrm{H} then

    STHH(h)=STellH(h).ST^{\mathrm{H}}_{\mathrm{H}}(h)=ST^{\mathrm{H}}_{\mathrm{ell}}(h).
Proof.

To prove the first part, we note that by definition, for M\mathrm{M} a proper Levi subgroup, the “constant term” hMh^{\infty}_{\mathrm{M}} is 0 (for instance see the definition before [Art88, Theorem 7.1]). This implies that STMH(h)=0ST^{\mathrm{H}}_{\mathrm{M}}(h)=0.

We now prove the second part. We first show that SΦH(γH,h)=SOγH(h)S\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty})=SO_{\gamma_{\mathrm{H}}}(h_{\infty}). By [Art89, Theorem 5.1], we have that

OγH(h)=ΦH(γH,h)=v(IγH)1ΠΦH(γH1,Π)tr(πh),O_{\gamma_{\mathrm{H}}}(h_{\infty})=\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty})=v(I_{\gamma_{\mathrm{H}}})^{-1}\sum\limits_{\Pi}\Phi_{\mathrm{H}}(\gamma^{-1}_{\mathrm{H}},\Pi)\mathrm{tr}(\pi\mid h_{\infty}),

where the sum is over discrete series LL-packets of H()\mathrm{H}(\mathbb{R}) with central character νH\nu_{\mathrm{H}} (the unique character of AH()0A_{\mathrm{H}}(\mathbb{R})^{0} such that if a parameter ΨH\Psi_{\mathrm{H}} has central character restricting to νH\nu_{\mathrm{H}} then ηLΨH{}^{L}\eta\circ\Psi_{\mathrm{H}} has central character ν\nu). The representation π\pi is some representative of Π\Pi, and the value of tr(πh)\mathrm{tr}(\pi\mid h_{\infty}) does not depend on the choice of representative since hh_{\infty} is stable cuspidal. The γ1\gamma^{-1} in this formula that is seemingly at odds with the formula of Arthur is explained by [GKM97, 7.19].

Therefore we have

SOγH(h)=γHstγHe(IγH)ΦH(γH,h).SO_{\gamma_{\mathrm{H}}}(h_{\infty})=\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}e(I_{\gamma^{\prime}_{\mathrm{H}}})\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty}).

Now by definition,

SΦH(γH,h)=v¯(IγH)1ΠΦH(γH1,Π)tr(Πh).S\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty})=\overline{v}(I_{\gamma_{\mathrm{H}}})^{-1}\sum\limits_{\Pi}\Phi_{\mathrm{H}}(\gamma^{-1}_{\mathrm{H}},\Pi)\mathrm{tr}(\Pi\mid h_{\infty}).

Since hh_{\infty} is stable cuspidal, we have tr(Πh)=|Π|tr(πh)\mathrm{tr}(\Pi\mid h_{\infty})=|\Pi|\mathrm{tr}(\pi\mid h_{\infty}). Furthermore, it follows from the definitions and basic properties of the Kottwitz sign, that

e(IγH)v¯(IγH)=(1)q(IγH)Vol(IγH¯()/AH()0)=v(IγH)d(IγH),e(I_{\gamma_{\mathrm{H}}})\overline{v}(I_{\gamma_{\mathrm{H}}})=(-1)^{q(I_{\gamma_{\mathrm{H}}})}\mathrm{Vol}(\overline{I_{\gamma_{\mathrm{H}}}}(\mathbb{R})/A_{\mathrm{H}}(\mathbb{R})^{0})=v(I_{\gamma_{\mathrm{H}}})d(I_{\gamma_{\mathrm{H}}}),

where d(IγH)=|ker(H1(,T)H1(,IγH)|d(I_{\gamma_{\mathrm{H}}})=|\ker(H^{1}(\mathbb{R},T)\to H^{1}(\mathbb{R},I_{\gamma_{\mathrm{H}}})| for TT an elliptic maximal torus of IγHI_{\gamma_{\mathrm{H}}}.

Finally, we put everything together to get

SOγH(h)\displaystyle SO_{\gamma_{\mathrm{H}}}(h_{\infty}) =γHstγHe(IγH)ΦH(γH,h)\displaystyle=\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}e(I_{\gamma^{\prime}_{\mathrm{H}}})\Phi_{\mathrm{H}}(\gamma^{\prime}_{\mathrm{H}},h_{\infty})
=γHstγHd(IγH)v¯(IγH)ΠΦH(γH1,Π)tr(πh)\displaystyle=\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}\frac{d(I_{\gamma^{\prime}_{\mathrm{H}}})}{\overline{v}(I_{\gamma^{\prime}_{\mathrm{H}}})}\sum\limits_{\Pi}\Phi_{\mathrm{H}}({\gamma^{\prime}}^{-1}_{\mathrm{H}},\Pi)\mathrm{tr}(\pi\mid h_{\infty})
=γHstγHd(IγH)|Π|SΦH(γH,h)\displaystyle=\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}\frac{d(I_{\gamma^{\prime}_{\mathrm{H}}})}{|\Pi|}S\Phi_{\mathrm{H}}(\gamma^{\prime}_{\mathrm{H}},h_{\infty})
=SΦH(γH,h).\displaystyle=S\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty}).

The last equality follows from the fact that SΦH(γH,h)S\Phi_{\mathrm{H}}(\gamma_{\mathrm{H}},h_{\infty}) only depends on the stable class of γH\gamma_{\mathrm{H}} and

γHstγHd(IγH)|Π|=1.\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}\frac{d(I_{\gamma^{\prime}_{\mathrm{H}}})}{|\Pi|}=1.

Indeed, |Π||\Pi| is well known to equal |ker(H1(,T)H1(,H))||\ker(H^{1}(\mathbb{R},T)\to H^{1}(\mathbb{R},\mathrm{H}))| for TT an elliptic maximal torus of H\mathrm{H}. Hence, it suffices to show that

γHstγHd(IγH)=|ker(H1(,T)H1(,H))|.\sum\limits_{\gamma^{\prime}_{\mathrm{H}}\sim_{st}\gamma_{\mathrm{H}}}d(I_{\gamma^{\prime}_{\mathrm{H}}})=|\ker(H^{1}(\mathbb{R},T)\to H^{1}(\mathbb{R},\mathrm{H}))|.

To see this, first note that the set of conjugacy classes that are stably conjugate to γH\gamma_{\mathrm{H}} is in natural bijection with ker(H1(,IγH)H1(,H))\ker(H^{1}(\mathbb{R},I_{\gamma_{\mathrm{H}}})\to H^{1}(\mathbb{R},\mathrm{H})). For each such conjugacy class, we can choose a representative γHT\gamma^{\prime}_{\mathrm{H}}\in T. This follows from the fact that since H\mathrm{H} contains an elliptic maximal torus, any elliptic element of H()\mathrm{H}(\mathbb{R}) is contained in an elliptic maximal torus and all elliptic maximal tori are conjugate in H()H(\mathbb{R}). Then the set of classes in H1(,T)H^{1}(\mathbb{R},T) mapping to the class of γH\gamma^{\prime}_{\mathrm{H}} in H1(,IγH)H^{1}(\mathbb{R},I_{\gamma_{\mathrm{H}}}) is in bijection with ker(H1(,T)H1(,IγH))\ker(H^{1}(\mathbb{R},T)\to H^{1}(\mathbb{R},I_{\gamma^{\prime}_{\mathrm{H}}})).

It then follows that

STHH(h)=τ(H)γHSOγH(h),ST^{\mathrm{H}}_{\mathrm{H}}(h)=\tau(\mathrm{H})\sum\limits_{\gamma_{\mathrm{H}}}SO_{\gamma_{\mathrm{H}}}(h),

where the sum is over stable conjugacy classes in H()\mathrm{H}(\mathbb{Q}) that are semisimple and elliptic in H()\mathrm{H}(\mathbb{R}).

Since hh_{\infty} is stable cuspidal, its orbital integrals vanish on γH\gamma_{\mathrm{H}} that are not elliptic at \mathbb{R}, so we may as well impose this condition. By [Mor10, Proposition 3.3.4, Remark 3.3.5] we may also restrict the sum to γH\gamma_{\mathrm{H}} that are (GU,H)(\mathrm{GU},\mathrm{H})-regular. We then see that this is equal to STellH(h)ST^{\mathrm{H}}_{\mathrm{ell}}(h). ∎

Suppose now that f(GU(𝔸))f\in\mathcal{H}(\mathrm{GU}(\mathbb{A})) is stable cuspidal at infinity and cuspidal at a finite place. Then by the above Lemma 4.4 and [Art96, Lemma 3.4], for each elliptic endoscopic datum (H,s,η)(\mathrm{H},s,\eta), we can find a function fHf^{\mathrm{H}} that is stable cuspidal at infinity, cuspidal at a finite place, and a transfer of ff.

Our proof of the main result of this section will be by induction. We now state the key formulas we will need.

First, we have the following theorem of Morel:

Theorem 4.7.

See [Mor10, Theorem 5.4.1] Let G\mathrm{G} be a connected reductive group. Let f=fff=f^{\infty}f_{\infty} where fCc(G(),)f_{\infty}\in C_{c}^{\infty}(\mathrm{G}(\mathbb{R}),\mathbb{C}) and fCc(G(𝔸f),)f^{\infty}\in C_{c}^{\infty}(\mathrm{G}(\mathbb{A}_{f}),\mathbb{C}). Assume that ff_{\infty} is stable cuspidal and that for every (H,s,η)(G)(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G}), there exists a transfer fHf^{\mathrm{H}} of ff. Then:

TG(f)=(H,s,η)(G)ι(G,H)STH(fH)T^{\mathrm{G}}(f)=\sum_{(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G})}\iota(\mathrm{G},\mathrm{H})ST^{\mathrm{H}}(f^{\mathrm{H}})

where (G)\mathcal{E}(\mathrm{G}) is the set of isomorphism classes of elliptic endoscopic triples in the sense of Kottwitz and we recall that TG(f)T^{\mathrm{G}}(f) is defined to be the trace of ff on Ldisc2(G()G(𝔸))L^{2}_{\mathrm{disc}}(\mathrm{G}(\mathbb{Q})\setminus\mathrm{G}(\mathbb{A})).

Now we fix an odd positive integer nn. By Proposition 2.20 and Remark 2.24 we have the following formula for each group G\mathrm{G}^{\prime} of the form G(U(n1)××U(nk))\mathrm{G}(\mathrm{U}^{*}(n_{1})\times...\times\mathrm{U}^{*}(n_{k})) such that i=1kni=n\sum\limits^{k}_{i=1}n_{i}=n. We note that all such groups are quasisplit.

For a function fG(G(𝔸))f^{\mathrm{G}^{\prime}}\in\mathcal{H}(\mathrm{G}^{\prime}(\mathbb{A})):

TG(fG)=ψΨ2(G)πΠψ(G,ξ,1)tr(πfG),T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=\sum\limits_{\psi\in\Psi_{2}(\mathrm{G}^{\prime})}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{G}^{\prime},\xi,1)}\mathrm{tr}(\pi\mid f^{\mathrm{G}^{\prime}}),

where Πψ(G,ξ,1)\Pi_{\psi}(\mathrm{G}^{\prime},\xi,1) is the subset of Πψ(G,ξ)\Pi_{\psi}(\mathrm{G}^{\prime},\xi) containing those π\pi with trivial character ,π\langle\cdot,\pi\rangle.

We now prove by induction that for each group G\mathrm{G}^{\prime} that we consider and for each fG(G(𝔸))f^{\mathrm{G}^{\prime}}\in\mathcal{H}(\mathrm{G}^{\prime}(\mathbb{A})) stable cuspidal at infinity, we have

(4.2) STG(fG)=STdiscG(fG).ST^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}_{\mathrm{disc}}(f^{\mathrm{G}^{\prime}}).

We induct on i=1kni2\sum\limits^{k}_{i=1}n^{2}_{i}. Hence, the base case is when each ni=1n_{i}=1. Such a group G\mathrm{G}^{\prime} is a torus and hence has no non-trivial elliptic endoscopy. In particular, by Theorem 4.7 we have that

(4.3) TG(fG)=STG(fG)T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})

and hence it suffices to show that TG(fG)=STdiscG(fG)T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}_{\mathrm{disc}}(f^{\mathrm{G}^{\prime}}). By 5 since there is no non-trivial endoscopy, each 𝒮¯ψ=1\overline{\mathcal{S}}_{\psi}=1 and hence ,π\langle\cdot,\pi\rangle is the trivial character for all π\pi. The result follows.

We now settle the inductive step. Suppose we have shown STG(fG)=STdiscG(fG)ST^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}_{\mathrm{disc}}(f^{\mathrm{G}^{\prime}}) for each G\mathrm{G}^{\prime} satisfying i=1kni2N\sum\limits^{k}_{i=1}n^{2}_{i}\leq N. Suppose that G\mathrm{G}^{\prime} satisfies i=1kni2=N+1\sum\limits^{k}_{i=1}n^{2}_{i}=N+1. Pick a function fG(G(𝔸))f^{\mathrm{G}^{\prime}}\in\mathcal{H}(\mathrm{G}^{\prime}(\mathbb{A})) that is stable cuspidal at infinity and for each elliptic endoscopic datum (H,s,η)(\mathrm{H},s,\eta) of G\mathrm{G}^{\prime} we pick by Lemma 4.4 a transfer fH(H(𝔸))f^{\mathrm{H}}\in\mathcal{H}(\mathrm{H}(\mathbb{A})) that is stable cuspidal at infinity.

Then we can write Theorem 4.7 in the form

TG(fG)=STG(fG)+(H,s,η)(G)ι(G,H)STH(fH),T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})+\sum_{(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G}^{\prime})}\iota(\mathrm{G}^{\prime},\mathrm{H})ST^{\mathrm{H}}(f^{\mathrm{H}}),

where for each nontrivial elliptic endoscopic group H\mathrm{H} appearing in the sum on right-hand side, we have verified STH(fH)=STdiscH(fH)ST^{\mathrm{H}}(f^{\mathrm{H}})=ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}) by inductive assumption.

To conclude, it suffices to show that we have an equality

TG(fG)=STdiscG(fG)+(H,s,η)(G)ι(G,H)STdiscH(fH).T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}})=ST^{\mathrm{G}^{\prime}}_{\mathrm{disc}}(f^{\mathrm{G}^{\prime}})+\sum_{(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G}^{\prime})}\iota(\mathrm{G}^{\prime},\mathrm{H})ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}}).

We prove this by arguing as in [Tai19, pg30] (cf [Kot84, §12]). Indeed, we have

(H,s,η)(G)ι(G,H)STdiscH(fH)=(H,s,η)(G)ι(G,H)ψΨ2(H)1|𝒮¯ψ|πΠψ(H,ν)1,πtr(πfH).\sum_{(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G}^{\prime})}\iota(\mathrm{G}^{\prime},\mathrm{H})ST^{\mathrm{H}}_{\mathrm{disc}}(f^{\mathrm{H}})=\sum_{(\mathrm{H},s,\eta)\in\mathcal{E}(\mathrm{G}^{\prime})}\iota(\mathrm{G}^{\prime},\mathrm{H})\sum\limits_{\psi\in\Psi_{2}(\mathrm{H}^{*})}\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{H},\nu)}\langle 1,\pi\rangle\mathrm{tr}(\pi\mid f^{\mathrm{H}}).

Now, we apply at each place the endoscopic character identity we proved in Section 3 and argue as for the equation [Tai19, (11), pg30] to get that the above equals

ψΨ2(G)s𝒮¯ψ1|𝒮¯ψ|πΠψ(G,ν)s,πtr(πfG).\sum\limits_{\psi\in\Psi_{2}(\mathrm{G}^{\prime*})}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{G}^{\prime},\nu)}\langle s,\pi\rangle\mathrm{tr}(\pi\mid f^{\mathrm{G}^{\prime}}).

Now we use that

s𝒮¯ψ1|𝒮¯ψ|s,π\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\langle s,\pi\rangle

is 11 if πΠψ(G,ν,1)\pi\in\Pi_{\psi}(\mathrm{G},\nu,1) and 0 otherwise to get that the above equals

ψΨ2(G)πΠψ(G,ν,1)tr(πfG),\sum\limits_{\psi\in\Psi_{2}(\mathrm{G}^{\prime*})}\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{G}^{\prime},\nu,1)}\mathrm{tr}(\pi\mid f^{\mathrm{G}^{\prime}}),

which equals TG(fG)T^{\mathrm{G}^{\prime}}(f^{\mathrm{G}^{\prime}}) as desired.

4.3. Some special global liftings

We remind that parameters with a dot above are global parameters. Now consider ψ~:WvGUvL(n)=(GLn()××)Wv\widetilde{\psi}:W_{\mathbb{Q}_{v}}\longrightarrow\prescript{L}{}{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)}=\big{(}\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times}\big{)}\rtimes W_{\mathbb{Q}_{v}} a supercuspidal LL-parameter. We denote ψ\psi the LL-parameter of Uv(n)\mathrm{U}^{*}_{{\mathbb{Q}_{v}}}(n) obtained from ψ~\widetilde{\psi} by the projection GUvL(n)UvL(n)\prescript{L}{}{\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n)}\longrightarrow\prescript{L}{}{\mathrm{U}^{*}_{\mathbb{Q}_{v}}(n)}. There is a (standard) base change morphism :

(4.4) ηB:Φ(GUv(n))Φ(GLEv(n)×𝔾m).\eta_{B}:\Phi(\mathrm{GU}^{*}_{\mathbb{Q}_{v}}(n))\longrightarrow\Phi(\mathrm{GL}_{E_{v}}(n)\times{\mathbb{G}_{m}}).

Denote by ψ~n\widetilde{\psi}^{n} the image of ψ~\widetilde{\psi} by this morphism. Then ψ~n\widetilde{\psi}^{n} is just the restriction of ψ~\widetilde{\psi} to WEvW_{E_{v}}. Since WEvW_{E_{v}} acts trivially on GLn()××\mathrm{GL}_{n}(\mathbb{C})\times\mathbb{C}^{\times}, if we denote ψn\psi^{n} the projection of ψ~n\widetilde{\psi}^{n} to GLn()\mathrm{GL}_{n}(\mathbb{C}), then it is an nn dimensional representation of WEvW_{E_{v}} and moreover ψn\psi^{n} is the the image of ψ\psi by the (standard) base change morphism.

Since ψ\psi is a supercuspidal LL-parameter (in particular, a discrete LL-parameter), the group SψS_{\psi} is finite (see [Kot84, Lemma 10.3.1]) and we can write ψn=ψ1n1ψrnr\psi^{n}=\psi^{n_{1}}_{1}\oplus\cdots\oplus\psi^{n_{r}}_{r} where the ψini\psi^{n_{i}}_{i} are irreducible and pairwise distinct. By the computation in [Kal+14, page 62, 63], all the ψini\psi^{n_{i}}_{i} are conjugate-orthogonal and we have

SψSψi=1rO(1,)i=1r/2.S_{\psi}\simeq S^{\natural}_{\psi}\simeq\prod_{i=1}^{r}O(1,\mathbb{C})\simeq\prod_{i=1}^{r}\mathbb{Z}/2\mathbb{Z}.

Moreover, the group Z(U^v(n))Γ={±Id}Z(\widehat{\mathrm{U}}_{\mathbb{Q}_{v}}(n))^{\Gamma}=\big{\{}\pm\mathrm{Id}\big{\}} embeds diagonally into SψS_{\psi}. Furthermore det(Id)=1\det(-\mathrm{Id})=-1 and Sψ={±Id}×Sψ+S_{\psi}=\big{\{}\pm\mathrm{Id}\big{\}}\times S^{+}_{\psi}. By Lemma 2.15 we have

𝒮¯ψ~𝒮¯ψ=Sψ/{±Id}i=1r1/2,\overline{\mathcal{S}}_{\widetilde{\psi}}\simeq\overline{\mathcal{S}}_{\psi}=S_{\psi}/\big{\{}\pm\mathrm{Id}\big{\}}\simeq\prod_{i=1}^{r-1}\mathbb{Z}/2\mathbb{Z},

and

Sψ~Sψ~Sψ+××(i=1r1/2×)××.S_{\widetilde{\psi}}\simeq S^{\natural}_{\widetilde{\psi}}\simeq S^{+}_{\psi}\times\mathbb{C}^{\times}\simeq\Big{(}\prod_{i=1}^{r-1}\mathbb{Z}/2\mathbb{Z}\times\Big{)}\times\mathbb{C}^{\times}.

Let ψ˙~=(ψ˙,χ)\widetilde{\dot{\psi}}=(\dot{\psi},\chi) be a discrete global LL-parameter of GU(𝔸)\mathrm{GU}(\mathbb{A}). The corresponding LL-packet consists of automorphic representations of GU(𝔸)\mathrm{GU}(\mathbb{A}) whose central character is χ\chi and whose restriction to U(𝔸)\mathrm{U}(\mathbb{A}) is an automorphic representation in the LL-packet of ψ˙\dot{\psi}. Again, we denote by ψ˙n=Π1Πm\dot{\psi}^{n}=\Pi_{1}\boxplus\cdots\boxplus\Pi_{m} the isobaric sum of automorphic representations of GLn(𝔸E)\mathrm{GL}_{n}(\mathbb{A}_{E}) corresponding to ψ˙\dot{\psi}. As in the local case, we see that Sψ˙S_{\dot{\psi}} is finite and by [Kal+14, page 69] we have then

Sψ˙Sψ˙=i=1mO(1,)i=1m/2S_{\dot{\psi}}\simeq S^{\natural}_{\dot{\psi}}=\prod_{i=1}^{m}O(1,\mathbb{C})\simeq\prod_{i=1}^{m}\mathbb{Z}/2\mathbb{Z}

with the group Z(U^(n))Γ={±Id}Z(\widehat{\mathrm{U}}_{\mathbb{Q}}(n))^{\Gamma}=\big{\{}\pm\mathrm{Id}\big{\}} embedded diagonally into Sψ˙S_{\dot{\psi}} and an isomorphism Sψ˙{±Id}×Sψ˙+S_{\dot{\psi}}\cong\big{\{}\pm\mathrm{Id}\big{\}}\times S^{+}_{\dot{\psi}}. Thus

𝒮¯ψ˙~=𝒮¯ψ˙=Sψ˙/{±Id}i=1m1/2,\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}=\overline{\mathcal{S}}_{\dot{\psi}}=S_{\dot{\psi}}/\big{\{}\pm\mathrm{Id}\big{\}}\simeq\prod_{i=1}^{m-1}\mathbb{Z}/2\mathbb{Z},
Sψ˙~Sψ˙~Sψ˙+××(i=1m1/2)××.S_{\widetilde{\dot{\psi}}}\simeq S^{\natural}_{\widetilde{\dot{\psi}}}\simeq S^{+}_{\dot{\psi}}\times\mathbb{C}^{\times}\simeq\Big{(}\prod_{i=1}^{m-1}\mathbb{Z}/2\mathbb{Z}\Big{)}\times\mathbb{C}^{\times}.

We say that a global parameter ψ˙~=(ψ˙,χ)\widetilde{\dot{\psi}}=(\dot{\psi},\chi) is a global lifting of ψ~\widetilde{\psi} if we have (ψ˙v,χv)(\dot{\psi}_{v},\chi_{v}) = ψ~\widetilde{\psi} where (ψ˙v,χv)(\dot{\psi}_{v},\chi_{v}) is the localization at vv. In this case, there exist morphisms λ:Sψ˙Sψ\lambda:S_{\dot{\psi}}\longrightarrow S_{\psi}, λ~:Sψ˙~Sψ~\widetilde{\lambda}:S_{\widetilde{\dot{\psi}}}\longrightarrow S_{\widetilde{\psi}} and λ¯:𝒮¯ψ˙𝒮¯ψ\overline{\lambda}:\overline{\mathcal{S}}_{\dot{\psi}}\longrightarrow\overline{\mathcal{S}}_{\psi}. Since the the local and global parameters ψ\psi and ψ˙\dot{\psi} are discrete, these maps are injective (see [Mok15, page 28-31] for more details). In this section, we construct some global liftings ψ˙~=(ψ˙,χ)\widetilde{\dot{\psi}}=(\dot{\psi},\chi) such that the above maps λ\lambda, λ~\widetilde{\lambda} and λ¯\overline{\lambda} have some special properties.

4.3.1. First construction

(c.f. Lemma 4.2.1 in [Kal+14])

We choose an auxiliary place uu of \mathbb{Q} which splits over EE as u=ww¯u=w\overline{w}. Therefore U(u)\mathrm{U}(\mathbb{Q}_{u}) is isomorphic to GLn(Ew)\mathrm{GL}_{n}(E_{w}). By [Shi12, Theorem 5.7], there exists a cuspidal automorphic representation Π\Pi of U(𝔸)\mathrm{U}(\mathbb{A}) satisfying the following properties

  1. \bullet

    Π\Pi_{\infty} is discrete series corresponding to a regular highest weight and with sufficiently regular infinitesimal character in the sense of [Ngu19, Def. 2.2.10],

  2. \bullet

    Πv\Pi_{v} belongs to the packet Πψ(U(v),ϱU)\Pi_{\psi}(\mathrm{U}(\mathbb{Q}_{v}),\varrho_{\mathrm{U}}),

  3. \bullet

    Πu\Pi_{u} is a supercuspidal representation of GLn(Ew)\mathrm{GL}_{n}(E_{w}).

Note that such a Π\Pi will be cohomological by the first condition and the remark at the end of §22 of [Kot92].

By Lemma 4.1.2 of [GL16], we can extend Π\Pi to an algebraic cuspidal automorphic representation Π¯\overline{\Pi} of GU(𝔸)\mathrm{GU}(\mathbb{A}). Furthermore, we can assume that Π¯\overline{\Pi} is cohomological since Π\Pi is.

Consider the exact sequence

1UGU𝑐𝔾m1.1\longrightarrow\mathrm{U}\longrightarrow\mathrm{GU}\xrightarrow{c}{\mathbb{G}_{m}}\longrightarrow 1.

Since Πv\Pi_{v} belongs to the packet Πψ(U(v),ϱU)\Pi_{\psi}(\mathrm{U}(\mathbb{Q}_{v}),\varrho_{\mathrm{U}}), the central character ωΠ¯v\omega_{\overline{\Pi}_{v}} and the central character ωψ~\omega_{\widetilde{\psi}} of any representation in Πψ~(GU(v),ϱGU)\Pi_{\widetilde{\psi}}(\mathrm{GU}(\mathbb{Q}_{v}),\varrho_{\mathrm{GU}}) must agree on Z(GU)UZ(\mathrm{GU})\cap\mathrm{U}. The map cc restricted to Z(GU)Z(\mathrm{GU}) has kernel equal to Z(GU)UZ(\mathrm{GU})\cap\mathrm{U} so that ωΠ¯vωψ~1\omega_{\overline{\Pi}_{v}}\omega^{-1}_{\widetilde{\psi}} factors to give a character of im(c)\mathrm{im}(c) which (since nn is odd) is the norm subgroup NEv×/v×v×N_{E^{\times}_{v}/\mathbb{Q}^{\times}_{v}}\subset\mathbb{Q}^{\times}_{v}. We can choose a lift of this character to v×\mathbb{Q}^{\times}_{v} and hence we conclude that there is some character ω:v××\omega:\mathbb{Q}^{\times}_{v}\to\mathbb{C}^{\times} such that Π¯v(ωc)\overline{\Pi}_{v}\otimes(\omega\circ c) belongs to the packet Πψ~(GU(v),ϱGU)\Pi_{\widetilde{\psi}}(\mathrm{GU}(\mathbb{Q}_{v}),\varrho_{\mathrm{GU}}).

There is an isomorphism of topological groups

××>0×p×\displaystyle\mathbb{Q}^{\times}\times\mathbb{R}_{>0}\times\prod\mathbb{Z}_{p}^{\times} 𝔾m(𝔸)\displaystyle\longrightarrow{\mathbb{G}_{m}}(\mathbb{A})
(r,t,(up))\displaystyle(r,t,(u_{p})) (rt,ru2,ru3,).\displaystyle\longmapsto(rt,ru_{2},ru_{3},\cdots).

Then there is a character Ω¯\overline{\Omega} of ××>0×p×\mathbb{Q}^{\times}\times\mathbb{R}_{>0}\times\prod\mathbb{Z}_{p}^{\times} such that Ω¯\overline{\Omega} is trivial on ××>0\mathbb{Q}^{\times}\times\mathbb{R}_{>0}, Ω¯|v×ω|v×\overline{\Omega}_{|\mathbb{Z}_{v}^{\times}}\equiv\omega_{|\mathbb{Z}_{v}^{\times}} and Ω¯(1,1,(1))=1\overline{\Omega}(-1,1,(-1))=1. This character descends to a Hecke character Ω\Omega of 𝔾m()\𝔾m(𝔸){\mathbb{G}_{m}}(\mathbb{Q})\backslash{\mathbb{G}_{m}}(\mathbb{A}) such that Ωv=ωκ\Omega_{v}=\omega\otimes\kappa where κ:v××\kappa:\mathbb{Q}^{\times}_{v}\longrightarrow\mathbb{C}^{\times} is an unramified character and Ω\Omega_{\infty} is trivial. In particular if we denote Π~:=Π¯(Ωc)\widetilde{\Pi}:=\overline{\Pi}\otimes(\Omega\circ c) then it is still cohomological (since Π¯\overline{\Pi} is) and the local representation Π~v\widetilde{\Pi}_{v} belongs to the packet Πψ~(GU(v),ϱGU)\Pi_{\widetilde{\psi}}(\mathrm{GU}(\mathbb{Q}_{v}),\varrho_{\mathrm{GU}}) up to an unramified character twist.

Therefore the global parameter ψ˙~=(ψ˙,χ)\widetilde{\dot{\psi}}=(\dot{\psi},\chi) is a globalisation of ψ~\widetilde{\psi}, up to an unramified twist (where ψ˙\dot{\psi} is the global parameter of Π\Pi and χ\chi corresponds to the central character of Π~\widetilde{\Pi}). Since Π\Pi_{\infty} has sufficiently regular infinitesimal character, ψ˙\dot{\psi} is generic (Lemma 5.11). The last condition implies that ψ˙n\dot{\psi}^{n} is a cuspidal automorphic representation of GLn(𝔸E)\mathrm{GL}_{n}(\mathbb{A}_{E}) which is self-dual and conjugate orthogonal. Therefore we have Sψ˙={±Id}S_{\dot{\psi}}=\{\pm\mathrm{Id}\} ([Kal+14, page 69]) so 𝒮¯ψ˙={Id}\overline{\mathcal{S}}_{\dot{\psi}}=\big{\{}\mathrm{Id}\big{\}}. The above second condition implies that ψ˙\dot{\psi} is a global lift of ψ\psi. Since the map λ\lambda is injective, we see that λ\lambda is the diagonal embedding of {±Id}\big{\{}\pm\mathrm{Id}\big{\}} into SψS_{\psi}.

Moreover since 𝒮¯ψ~=𝒮¯ψ={Id}\overline{\mathcal{S}}_{\widetilde{\psi}}=\overline{\mathcal{S}}_{\psi}=\big{\{}\mathrm{Id}\big{\}} and 𝒮¯ψ˙~=𝒮¯ψ˙\overline{\mathcal{S}}_{\widetilde{\dot{\psi}}}=\overline{\mathcal{S}}_{\dot{\psi}}, the map λ¯\overline{\lambda} is the trivial map. The group Sψ˙+S^{+}_{\dot{\psi}} is also trivial and the map λ~\tilde{\lambda} is given by

Sψ˙~×\displaystyle S_{\widetilde{\dot{\psi}}}\simeq\mathbb{C}^{\times} Sψ~Sψ+××\displaystyle\longrightarrow S_{\widetilde{\psi}}\simeq S^{+}_{\psi}\times\mathbb{C}^{\times}
t\displaystyle t\quad (Id,t).\displaystyle\longmapsto\quad\quad(\mathrm{Id},t).

4.3.2. Second construction

. (We adapt the proof of Lemma 4.4.1 in [Kal+14])

Consider an element s=(xi)i=1rSψ=i=1r/2\displaystyle s=\big{(}x_{i}\big{)}_{i=1}^{r}\in S_{\psi}=\prod_{i=1}^{r}\mathbb{Z}/2\mathbb{Z} whose image in 𝒮ψ¯\overline{\mathcal{S}_{\psi}} is denoted by s¯\overline{s}. We can suppose that xi=1x_{i}=1 for iX{1,,r}i\in X\subset\{1,\cdots,r\} and xi=1x_{i}=-1 for iY{1,,r}i\in Y\subset\{1,\cdots,r\}. Denote ψXnX=iXψini\displaystyle\psi^{n_{X}}_{X}=\bigoplus_{i\in X}\psi^{n_{i}}_{i} and ψYnY=iYψini\displaystyle\psi^{n_{Y}}_{Y}=\bigoplus_{i\in Y}\psi^{n_{i}}_{i} (where nX=iXni\displaystyle n_{X}=\sum_{i\in X}n_{i} and nY=iYni\displaystyle n_{Y}=\sum_{i\in Y}n_{i}). Since all the ψini\psi^{n_{i}}_{i} are conjugate orthogonal, by [Mok15, Lemma 2.2.1], the LL-parameters ψXnX\psi^{n_{X}}_{X} resp. ψYnY\psi^{n_{Y}}_{Y} come from LL-parameters ψX\psi_{X} resp. ψY\psi_{Y} of unitary groups Uv(nX)\mathrm{U}_{\mathbb{Q}_{v}}(n_{X}) resp. Uv(nY)\mathrm{U}_{\mathbb{Q}_{v}}(n_{Y}) by the base change map ηB\eta_{B} (see (4.4)). Now as in the first construction, for these LL-parameters we can construct cuspidal automorphic representations ΠXnX\Pi^{n_{X}}_{X} resp. ΠYnY\Pi^{n_{Y}}_{Y}, of GLnX(𝔸E)\mathrm{GL}_{n_{X}}(\mathbb{A}_{E}) resp. GLnY(𝔸E)\mathrm{GL}_{n_{Y}}(\mathbb{A}_{E}). Since these automorphic representations are self-dual and conjugate-orthogonal, the isobaric sum ΠXnXΠYnY\Pi^{n_{X}}_{X}\boxplus\Pi^{n_{Y}}_{Y} factors through the base change map ηB\eta_{B} ([Kal+14, Proposition 1.3.1], [Mok15, page 27]). Denote this global LL-parameter of U(𝔸)\mathrm{U}(\mathbb{A}) by ψ˙\dot{\psi}. Again by [Kal+14, page 69] we know that Sψ˙i{X,Y}/2\displaystyle S_{\dot{\psi}}\simeq\prod_{i\in\{X,Y\}}\mathbb{Z}/2\mathbb{Z}. As in the first construction, the LL-parameter ψ˙\dot{\psi} is generic (Lemma 5.11) and is a global lift of ψ\psi. Moreover the localization map λ\lambda is defined as follows

Sψ˙\displaystyle S_{\dot{\psi}}\quad\quad Sψ\displaystyle\longrightarrow\quad\quad\quad S_{\psi}
(x1,x2)\displaystyle(x_{1},x_{2})\quad (x1,x1iX,x2,,x2iY).\displaystyle\longmapsto(\underbrace{x_{1},\cdots x_{1}}_{i\in X},\underbrace{x_{2},\cdots,x_{2}}_{i\in Y}).

Now, taking the quotient by {±Id}\big{\{}\pm\mathrm{Id}\big{\}} we see that 𝒮¯ψ˙=Sψ˙/{±Id}/2\overline{\mathcal{S}}_{\dot{\psi}}=S_{\dot{\psi}}/\big{\{}\pm\mathrm{Id}\big{\}}\simeq\mathbb{Z}/2\mathbb{Z} and the map λ¯\overline{\lambda} is given by :

𝒮¯ψ˙\displaystyle\overline{\mathcal{S}}_{\dot{\psi}}\quad\quad 𝒮¯ψ\displaystyle\longrightarrow\quad\overline{\mathcal{S}}_{\psi}
(1)\displaystyle(-1)\quad s¯\displaystyle\longmapsto\quad\overline{s}

Now take an automorphic representation Π\Pi of U(𝔸)\mathrm{U}(\mathbb{A}) in the packet Πψ˙(U,ϱU)\Pi_{\dot{\psi}}(\mathrm{U},\varrho_{\mathrm{U}}). By the same argument as in the first construction, we can extend it to an automorphic representation Π~\widetilde{\Pi} of GU(𝔸)\mathrm{GU}(\mathbb{A}) such that Π~v\widetilde{\Pi}_{v} belongs to the packet Πψ~(GU(v),ϱGU)\Pi_{\widetilde{\psi}}(\mathrm{GU}(\mathbb{Q}_{v}),\varrho_{\mathrm{GU}}) up to an un-ramified twist. Thus the global parameter ψ˙~\widetilde{\dot{\psi}} of Π~\widetilde{\Pi} is a globalisation of ψ~\widetilde{\psi}. We have then Sψ˙+/2S^{+}_{\dot{\psi}}\simeq\mathbb{Z}/2\mathbb{Z} and Sψ˙~=Sψ˙+××S_{\widetilde{\dot{\psi}}}=S^{+}_{\dot{\psi}}\times\mathbb{C}^{\times}.

Furthermore, if the element ss belongs to Sψ+S^{+}_{\psi} then (x1,x2)(x_{1},x_{2}) belongs to Sψ˙+S^{+}_{\dot{\psi}} since the map λ\lambda is injective and restricts to a map from Sψ˙+S^{+}_{\dot{\psi}} to Sψ+S^{+}_{\psi}. Therefore, we have the following description of the map λ~\widetilde{\lambda}

Sψ˙~/2××\displaystyle S_{\widetilde{\dot{\psi}}}\simeq\mathbb{Z}/2\mathbb{Z}\times\mathbb{C}^{\times}\quad\quad Sψ~Sψ+××\displaystyle\longrightarrow\quad\quad\quad S_{\widetilde{\psi}}\simeq S^{+}_{\psi}\times\mathbb{C}^{\times}
1×t\displaystyle 1\times t\quad\quad\quad 1×t\displaystyle\longmapsto\quad\quad\quad\quad\quad\quad 1\times t
1×t\displaystyle-1\times t\quad\quad\quad (x1,x1iX,x2,,x2iY)×t.\displaystyle\longmapsto\quad\quad(\underbrace{x_{1},\cdots x_{1}}_{i\in X},\underbrace{x_{2},\cdots,x_{2}}_{i\in Y})\times t.

4.4. Galois representations associated to global cohomological generic parameters

We have fixed a quadratic imaginary extension EE of \mathbb{Q}. In this subsection, we associate representations of ΓE\Gamma_{E} to certain global parameters.

Let (ψ˙,χ)(\dot{\psi},\chi) be a global parameter of a global unitary similitude group GU\mathrm{GU}. In particular ψ˙\dot{\psi} is a global parameter for the corresponding unitary group U\mathrm{U}. We suppose further that the localization at infinity (ψ˙,χ)(\dot{\psi}_{\infty},\chi_{\infty}) is regular and sufficiently regular so that ψ˙\dot{\psi} will be generic.

We first associate a ΓE\Gamma_{E} representation to ψ˙\dot{\psi}. Associated to ψ˙\dot{\psi}, we have the quadratic base change, ϕ˙n\dot{\phi}^{n}, which is an automorphic representation of GLn(𝔸E)\mathrm{GL}_{n}(\mathbb{A}_{E}). Since the global parameter is generic, the representation ψ˙n\dot{\psi}^{n} is of the form Π1Πk\Pi_{1}\boxplus\cdots\boxplus\Pi_{k} where Πi\Pi_{i} are self dual cuspidal generic and cohomological automorphic. Now, fix a place \ell of \mathbb{Q} and an isomorphism ι:¯\iota_{\ell}:\overline{\mathbb{Q}_{\ell}}\to\mathbb{C}. Then by [Shi11, Theorem 1.2], for each representation Πi\Pi_{i} there is a unique \ell-adic ΓE\Gamma_{E}-representation ρi\rho^{i} such that for each place 𝒫\mathcal{P} of EE not dividing \ell, we have the following isomorphism of Weil-Deligne representations

WD(ρi|ΓE𝒫)Fssι1((Πi)𝒫),\mathrm{WD}(\rho^{i}|_{\Gamma_{E_{\mathcal{P}}}})^{F-ss}\cong\iota^{-1}_{\ell}\mathcal{L}((\Pi_{i})_{\mathcal{P}}),

where ((Πi)𝒫)\mathcal{L}((\Pi_{i})_{\mathcal{P}}) is the local parameter associated to (Πi)𝒫(\Pi_{i})_{\mathcal{P}} under the local Langlands correspondence.

Similarly, if we denote ρ=ρ1ρk\rho=\rho_{1}\oplus\cdots\oplus\rho_{k}, then for each place 𝒫\mathcal{P} dividing qq and not dividing \ell, we have that

WD(ρ|ΓE𝒫)Fss=ι1((Π1Πk)𝒫).\mathrm{WD}(\rho|_{\Gamma_{E_{\mathcal{P}}}})^{F-ss}=\iota^{-1}_{\ell}\mathcal{L}((\Pi_{1}\boxplus\cdots\boxplus\Pi_{k})_{\mathcal{P}}).

Denote by ψ˙𝒫\dot{\psi}_{\mathcal{P}} the localization of ψ˙\dot{\psi} at 𝒫\mathcal{P}. By the definition of localization map of global parameters ([Mok15, p. 18, 19]), we see that the local LL-parameter (not necessarily bounded) corresponding to WD(ρ|ΓE𝒫)Fss\mathrm{WD}(\rho|_{\Gamma_{E_{\mathcal{P}}}})^{F-ss} is ψ˙𝒫\dot{\psi}_{\mathcal{P}} if qq is split in EE. If qq is inert in EE then q=𝒫q=\mathcal{P} and E𝒫E_{\mathcal{P}} is a quadratic extension of q\mathbb{Q}_{q}. In this case WD(ρ|ΓE𝒫)Fss\mathrm{WD}(\rho|_{\Gamma_{E_{\mathcal{P}}}})^{F-ss} corresponds to the image of ψ˙𝒫\dot{\psi}_{\mathcal{P}} via the base change map ηB\eta_{B} and equals ψ˙𝒫|E𝒫\dot{\psi}_{\mathcal{P}|_{\mathcal{L}_{E_{\mathcal{P}}}}}.

The central character χ\chi gives rise to a character of GL1(𝔸E)\mathrm{GL}_{1}(\mathbb{A}_{E}) and hence an \ell-adic character χ\chi^{\prime}. The pair (ρ,χ)(\rho,\chi^{\prime}) then gives us a morphism

ρ~:ΓEGLn(¯)ׯ×.\widetilde{\rho}:\Gamma_{E}\longrightarrow\mathrm{GL}_{n}(\overline{\mathbb{Q}}_{\ell})\times\overline{\mathbb{Q}}^{\times}_{\ell}.

From the local-global compatibility properties of ρ\rho, we conclude that for every place 𝒫\mathcal{P} dividing a prime qq\neq\ell, the restriction ρ~|WE𝒫\widetilde{\rho}_{|W_{E_{\mathcal{P}}}} equals (ψq,χq)|WE𝒫(\psi_{q},\chi_{q})_{|W_{E_{\mathcal{P}}}} where (ψq,χq)(\psi_{q},\chi_{q}) is the localization of the global parameter (ψ˙,χ)(\dot{\psi},\chi) at the prime qq.

5. Rapoport–Zink spaces and an averaging formula

5.1. Rapoport–Zink spaces

We continue with our fixed prime number pp as before. Let ˘p:=pnr^=FracW(𝔽¯p)\breve{\mathbb{Q}}_{p}:=\widehat{\mathbb{Q}_{p}^{\text{nr}}}=\text{Frac}W(\overline{\mathbb{F}}_{p}) the completion of the maximal unramified extension of p\mathbb{Q}_{p} and σ\sigma the geometric Frobenius automorphism of ˘p/p\breve{\mathbb{Q}}_{p}/\mathbb{Q}_{p}.

We will be interested in the subset 𝐁(p.G,μ)\mathbf{B}(\mathbb{Q}_{p}.\mathrm{G},\mu) of 𝐁(p,G)\mathbf{B}(\mathbb{Q}_{p},\mathrm{G}) associated with a minuscule cocharacter μ:𝔾m/¯pG¯p\mu:{\mathbb{G}_{m}}_{/\overline{\mathbb{Q}}_{p}}\longrightarrow\mathrm{G}_{\overline{\mathbb{Q}}_{p}}as defined in [Kot97, §6.2]. The Bruhat ordering on the image of the Newton map induces a partial order on 𝐁(p,G,μ)\mathbf{B}(\mathbb{Q}_{p},\mathrm{G},\mu).

Definition 5.1.

A Rapoport–Zink data of simple unramified unitary PEL type (Ep,,V,|,GU,μ,b)(E_{p},*,V,\langle\cdot|\cdot\rangle,\mathrm{GU},\mu,b) consists of the following

  1. \bullet

    an unramifed extension EpE_{p} of degree 22 of p\mathbb{Q}_{p} with a non trivial involution *,

  2. \bullet

    a EpE_{p}-vector space VV of dimension nn,

  3. \bullet

    a symplectic Hermitian form |:V×Vp\langle\cdot|\cdot\rangle:V\times V\longrightarrow\mathbb{Q}_{p} for which there is a self-dual lattice Λ\Lambda,

  4. \bullet

    a conjugacy class of minuscule cocharacters μ:𝔾m¯pGU¯p\mu:{\mathbb{G}_{m}}_{\overline{\mathbb{Q}}_{p}}\longrightarrow\mathrm{GU}_{\overline{\mathbb{Q}}_{p}} where GU\mathrm{GU} is the similitude unitary group defined over \mathbb{Q} by

    GU(R)={gGL(VR)|gv,gw=c(g)v,w,v,wVR}\mathrm{GU}(R)=\big{\{}g\in\mathrm{GL}(V\otimes R)|\langle gv,gw\rangle=c(g)\langle v,w\rangle,\ v,w\in V\otimes R\big{\}}

    for all \mathbb{Q}-algebra RR and c(g)R×c(g)\in R^{\times}.

  5. \bullet

    a σ\sigma-conjugacy class b𝐁(p,GU,μ)b\in\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},-\mu). We also suppose that cμ(z)=zc\circ\mu(z)=z where cc is the similitude factor of GU\mathrm{GU}.

Denote IEp:=Homp(Ep,¯p)\mathrm{I}_{E_{p}}:=\mathrm{Hom}_{\mathbb{Q}_{p}}(E_{p},\overline{\mathbb{Q}}_{p}) then the cocharacter μ\mu is determined by the integral couples (pτ,qτ)τIEp(p_{\tau},q_{\tau})_{\tau\in\mathrm{I}_{E_{p}}} such that pτ+qτ=np_{\tau}+q_{\tau}=n and (pτ,qτ)=(qτ,pτ)(p_{\tau},q_{\tau})=(q_{\tau^{*}},p_{\tau^{*}}).

To such a data, we associate the isocrystal N=(Vp˘p,b(Idσ))N=\Big{(}V\otimes_{\mathbb{Q}_{p}}\breve{\mathbb{Q}}_{p},b\circ(\mathrm{Id}\otimes\sigma)\Big{)} with an action ι:𝒪EpEnd(N)\iota:\mathcal{O}_{E_{p}}\longrightarrow\mathrm{End}(N) and an alternating non degenerate form |:N×N˘p(n)\langle\cdot|\cdot\rangle:N\times N\longrightarrow\breve{\mathbb{Q}}_{p}(n) where n=valp(c(b))n=val_{p}(c(b)). By Dieudonne’s theory, the isocrystal NN corresponds to a pp-divisible group (𝕏,ι,λ)(\mathbb{X},\iota,\lambda) defined over 𝔽¯p\overline{\mathbb{F}}_{p} provided with an action of 𝒪Ep\mathcal{O}_{E_{p}} and a polarization λ\lambda.

Theorem 5.2.

[RZ96, Theorem 3.25] Let \mathcal{M} be the functor associating to each 𝒪˘p\mathcal{O}_{\breve{\mathbb{Q}}_{p}} scheme SS on which pp is locally nilpotent the set of pairs (X,ρ)(X,\rho) where:

  1. -

    XX is a pp-divisible group over SS with a pp-principle polarization λX\lambda_{X} and an action ιX\iota_{X} such as the Rosati involution inducing by λX\lambda_{X} induces * on 𝒪Ep\mathcal{O}_{E_{p}}.

  2. -

    A 𝒪Ep\mathcal{O}_{E_{p}}-linear quasi-isogeny ρ:X×SS¯𝕏×Spec(𝔽¯p)S¯\rho:X\times_{S}\overline{S}\longrightarrow\mathbb{X}\times_{Spec(\overline{\mathbb{F}}_{p})}\overline{S} such that ρVλXρ\rho^{V}\circ\lambda_{X}\circ\rho is a p\mathbb{Q}_{p}-multiple of λX\lambda_{X} in Hom𝒪Ep(X,XV)\mathop{\mathrm{Hom}}\nolimits_{\mathcal{O}_{E_{p}}}(X,X^{V})\otimes_{\mathbb{Z}}\mathbb{Q}. (here, S¯\overline{S} is the modulo pp reduction of SS).

We also require that (X,ιX)(X,\iota_{X}) satisfies the Kottwitz determinant condition. More precisely, under the action of EpE_{p}, we have a decomposition: Lie(X)=τLie(X)τ\mathrm{Lie}(X)=\bigoplus_{\tau}\mathrm{Lie}(X)_{\tau} then Lie(X)τ\mathrm{Lie}(X)_{\tau} is locally free of rank pτp_{\tau}. This functor is then represented by a formal scheme defined over Spf(𝒪˘p)\mathrm{Spf}(\mathcal{O}_{\breve{\mathbb{Q}}_{p}}).

In order to introduce the usual level structures, we work with the rigid generic fiber an\mathcal{M}^{\text{an}} of \mathcal{M} over ˘p\breve{\mathbb{Q}}_{p}. We set C0={gGU(p)|gΛ=Λ}C_{0}=\{g\in\mathrm{GU}(\mathbb{Q}_{p})\ |\ g\Lambda=\Lambda\}, a maximal compact subgroup of GU(p)\mathrm{GU}(\mathbb{Q}_{p}).

Definition 5.3.

Let 𝒯/an\mathcal{T}/\mathcal{M}^{\text{an}} be the local system defined by the pp-adic Tate module of the universal pp-divisible group on \mathcal{M}. For KC0K\subset C_{0} we define K\mathcal{M}_{K} as the etale covering of an\mathcal{M}^{\text{an}} which classifies the 𝒪Ep\mathcal{O}_{E_{p}}- trivializations modulo KK of 𝒯\mathcal{T} by Λ\Lambda. We also require that the trivialization preserves the alternating form up to p×\mathbb{Q}_{p}^{\times}.

We have, in particular, that an=C0\mathcal{M}^{an}=\mathcal{M}_{C_{0}}. We then get a tower (Kp)Kp(\mathcal{M}_{K_{p}})_{K_{p}} of analytic spaces on ˘p\breve{\mathbb{Q}}_{p} provided with finite étale transition maps ΦKp,Kp:KpKp\Phi_{K_{p}^{{}^{\prime}},K_{p}}:\ \mathcal{M}_{K^{{}^{\prime}}_{p}}\ \longrightarrow\ \mathcal{M}_{K_{p}} (for KpKpK_{p}^{{}^{\prime}}\subset K_{p}) which forget the level structure. The map ΦKp,Kp\Phi_{K_{p}^{{}^{\prime}},K_{p}} is Galois of Galois group Kp/KpK_{p}/K_{p}^{{}^{\prime}} if KpK_{p}^{{}^{\prime}} is normal in KpK_{p}.

Let Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) be the group of 𝒪Ep\mathcal{O}_{E_{p}}-linear quasi-isogenies gg of 𝕏\mathbb{X} such that λg\lambda\circ g is a ×\mathbb{Q}^{\times}- multiple of gλg^{\vee}\circ\lambda. The group Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) acts on the left on \mathcal{M} by the formula

gJb(p)(X,ρ),(X,ρ)g=(X,ρg1).\forall g\in\mathrm{J}_{b}(\mathbb{Q}_{p})\ \forall(X,\rho)\in\ \mathcal{M},\quad(X,\rho)\cdot g=(X,\rho\circ g^{-1}).

We say that a simple unramified unitary Rapoport–Zink datum (Ep,,V,|,GU,μ,b)(E_{p},*,V,\langle\cdot|\cdot\rangle,\mathrm{GU},\mu,b) is basic if the associated group Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) is an inner form of GU\mathrm{GU}. The above datum is basic if and only if bb is the unique minimal element in 𝐁(p,GU,μ)\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},\mu). In this case, we also say that bb is basic.

Let p\ell\neq p be a prime number. Let KpC0K_{p}\subset C_{0} be a level. As in [Far04, remark 2.6.3] we denote:

Hc(Kp,¯):=limVlimnHc(V˘pp,/n)¯H_{c}^{\bullet}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}):=\mathop{\mathrm{lim}}_{\overrightarrow{V}}\mathop{\mathrm{lim}}_{\overleftarrow{n}}H_{c}^{\bullet}(V\otimes_{\breve{\mathbb{Q}}_{p}}\mathbb{C}_{p},\mathbb{Z}/\ell^{n}\mathbb{Z})\otimes\overline{\mathbb{Q}}_{\ell}

where VV runs through the relatively compact open subsets of Kp\mathcal{M}_{K_{p}}.

The group Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) acts on C0\mathcal{M}_{C_{0}} and this action extends to Kp\mathcal{M}_{K_{p}} so that Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) acts on Hc(Kp,¯)H_{c}^{\bullet}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}). Since nn is odd, the reflex field of the conjugacy class of μ\mu is EpE_{p}. We can also define an action of the Weil group WEpW_{E_{p}} on these cohomology groups thanks to the Rapoport–Zink descent data defined as below.

Let σEp:˘p˘p\sigma_{E_{p}}:\breve{\mathbb{Q}}_{p}\xrightarrow{\sim}\breve{\mathbb{Q}}_{p} the relative Frobenius automorphism with respect to EpE_{p}. We denote by σ¯Ep\overline{\sigma}_{E_{p}} the Frobenius morphism induced on 𝔽¯p\overline{\mathbb{F}}_{p}. For 𝕏\mathbb{X} a pp-divisible group defined over 𝔽¯p\overline{\mathbb{F}}_{p}, we note FEp:𝕏σ¯Ep𝕏F_{E_{p}}:\mathbb{X}\longrightarrow\overline{\sigma}_{E_{p}}^{*}\mathbb{X} the relative Frobenius morphism. We construct a functor isomorphism α:σEp\alpha:\mathcal{M}\longrightarrow\sigma_{E_{p}}^{*}\mathcal{M} as follows.

For SS a 𝒪˘p\mathcal{O}_{\breve{\mathbb{Q}}_{p}} scheme on which pp is nilpotent as well as a point (X,ρ)(S)(X,\rho)\in\mathcal{M}(S), the point (Xα,ρα)(X^{\alpha},\rho^{\alpha}) associated in σEp(S)\sigma_{E_{p}}^{*}\mathcal{M}(S) is defined as follows: Xα:=XX^{\alpha}:=X with the action of ιXα:=ιX\iota_{X^{\alpha}}:=\iota_{X}, with the polarization λXα:=λX\lambda_{X^{\alpha}}:=\lambda_{X} and ρα:=ρFEp1\rho^{\alpha}:=\rho\circ F_{E_{p}}^{-1}. The isomorphism of functors α:σEp\alpha:\mathcal{M}\longrightarrow\sigma_{E_{p}}^{*}\mathcal{M} is the Rapoport–Zink descent data associated with \mathcal{M}. Since the descent data commute with the action of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}), the groups Hc(Kp,¯)H_{c}^{\bullet}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}) has an action of Jb(p)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times W_{E_{p}}. In addition, when KpK_{p} varies, the system (Hc(Kp,¯))Kp(H_{c}^{\bullet}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}))_{K_{p}} has an action of GU(p)\mathrm{GU}(\mathbb{Q}_{p}). Thus, this system has an action of GU(p)×Jb(p)×WEp\mathrm{GU}(\mathbb{Q}_{p})\times\mathrm{J}_{b}(\mathbb{Q}_{p})\times W_{E_{p}}. Let ρ\rho be an admissible \ell-adic representation of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}), we define

Hi,j(GU,b,μ)[ρ]:=limKpExtJb(p)j(Hci(Kp,¯),ρ).H^{i,j}(\mathrm{GU},b,\mu)[\rho]:=\mathop{\mathrm{lim}}_{\overrightarrow{K_{p}}}\mathrm{Ext}^{j}_{J_{b}(\mathbb{Q}_{p})}(H_{c}^{i}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell}),\rho).

By [Man08, Theorem 8], the Hi,j(GU,b,μ)[ρ]H^{i,j}(\mathrm{GU},b,\mu)[\rho] are admissible and are zero for almost all i,j0i,j\geq 0. Finally, we define the homomorphism of Grothendieck groups MantGU,b,μ:Groth(Jb(p))Groth(G(p)×WEμ\mathrm{Mant}_{\mathrm{GU},b,\mu}:\mathrm{Groth}(\mathrm{J}_{b}(\mathbb{Q}_{p}))\to\mathrm{Groth}(G(\mathbb{Q}_{p})\times W_{E_{\mu}} by

MantGU,b,μ(ρ):=i,j(1)i+jHi,j(GU,b,μ)[ρ](diman).\mathrm{Mant}_{\mathrm{GU},b,\mu}(\rho):=\sum_{i,j}(-1)^{i+j}H^{i,j}(\mathrm{GU},b,\mu)[\rho](-\dim\mathcal{M}^{\mathrm{an}}).

5.2. An averaging formula for the cohomology of Rapoport–Zink spaces

In this section we deduce an averaging formula for the cohomology of Rapoport–Zink spaces using the results of [BM21].

We begin with some endoscopic preliminaries. To state the formula, we need the following notion of endoscopic data for Levi subgroups.

Definition 5.4.

(cf. [BM21, Definition 2.18]) Let MG\mathrm{M}\subset\mathrm{G} be a Levi subgroup. We say that (H,HM,s,η)(\mathrm{H},{\mathrm{H}}_{\mathrm{M}},s,\eta) is an embedded endoscopic datum of G\mathrm{G} relative to M\mathrm{M} if (H,s,η)(\mathrm{H},s,\eta) is a refined endoscopic datum of G\mathrm{G} and the restriction (HM,s,η|HM^)({\mathrm{H}}_{\mathrm{M}},s,\eta|_{\widehat{{\mathrm{H}}_{\mathrm{M}}}}) gives a refined endoscopic datum of M\mathrm{M}.

We say that two embedded endoscopic data (H,HM,s,η)(\mathrm{H},{\mathrm{H}}_{\mathrm{M}},s,\eta) and (H,HM,s,η)(\mathrm{H}^{\prime},{\mathrm{H}^{\prime}}_{\mathrm{M}},s^{\prime},\eta^{\prime}) are isomorphic if there exists an isomorphism α:HH\alpha:\mathrm{H}\to\mathrm{H}^{\prime} of refined endoscopic data (H,s,η)(\mathrm{H},s,\eta) and (H,s,η)(\mathrm{H}^{\prime},s^{\prime},\eta^{\prime}) whose restriction αM\alpha_{\mathrm{M}} to HM{\mathrm{H}}_{\mathrm{M}} gives an isomorphism of (HM,s,η)({\mathrm{H}}_{\mathrm{M}},s,\eta) and (HM,s,η)(\mathrm{H}^{\prime}_{\mathrm{M}},s^{\prime},\eta^{\prime}). We denote the set of isomorphism classes of embedded endoscopic data of G\mathrm{G} relative to M\mathrm{M} by e(M,G)\mathcal{E}^{e}(\mathrm{M},\mathrm{G}).

We now fix a refined elliptic endoscopic datum (H,s,η)(\mathrm{H},s,\eta) of GU\mathrm{GU}. Note that for each standard Levi subgroup MG\mathrm{M}\subset\mathrm{G}, there is a natural forgetful map

Ye:e(M,GU)r(GU).Y^{e}:\mathcal{E}^{e}(\mathrm{M},\mathrm{GU})\to\mathcal{E}^{r}(\mathrm{GU}).

We define i(M,GU;H)\mathcal{E}^{i}(\mathrm{M},\mathrm{GU};\mathrm{H}) to be the set of embedded endoscopic data (H,HM,s,η)(\mathrm{H}^{\prime},\mathrm{H}^{\prime}_{\mathrm{M}},s^{\prime},\eta^{\prime}) such that H=H\mathrm{H}^{\prime}=\mathrm{H} and whose class lies in the fiber (Ye)1((H,s,η))(Y^{e})^{-1}((\mathrm{H},s,\eta)) modulo the relation that two data (H,HM,s,η)(\mathrm{H},\mathrm{H}_{\mathrm{M}},s,\eta) and (H,HM,s,η)(\mathrm{H},\mathrm{H}^{\prime}_{\mathrm{M}},s^{\prime},\eta^{\prime}) are equivalent if there exists an inner automorphism α\alpha of H\mathrm{H} inducing an isomorphism of the embedded endoscopic data.

Fix a maximal torus TH^H^\widehat{\mathrm{T}_{\mathrm{H}}}\subset\widehat{\mathrm{H}} and define T^:=η(TH^)GU^\widehat{\mathrm{T}}:=\eta(\widehat{\mathrm{T}_{\mathrm{H}}})\subset\widehat{\mathrm{GU}}. By the comment before [BM21, Proposition 2.27], we have that the set i(M,GU;H)\mathcal{E}^{i}(\mathrm{M},\mathrm{GU};\mathrm{H}) is parametrized by the set of double cosets W(T^,M^)\W(M,H)/W(TH^,H^)W(\widehat{\mathrm{T}},\widehat{\mathrm{M}})\backslash W(\mathrm{M},\mathrm{H})/W(\widehat{{\mathrm{T}}_{\mathrm{H}}},\widehat{\mathrm{H}}) where W(T^,M^)W(\widehat{\mathrm{T}},\widehat{\mathrm{M}}) and W(TH^,H^)W(\widehat{\mathrm{T}_{\mathrm{H}}},\widehat{\mathrm{H}}) are the Weyl groups of M^\widehat{\mathrm{M}} and H^\widehat{\mathrm{H}} respectively and W(M,H)W(\mathrm{M},\mathrm{H}) is defined in [BM21, Definition 2.23].

Finally, for an inner form J\mathrm{J} of M\mathrm{M}, we define the subset effi(J,GU;H)i(M,GU;H)\mathcal{E}^{i}_{\mathrm{eff}}(\mathrm{J},\mathrm{GU};\mathrm{H})\subset\mathcal{E}^{i}(\mathrm{M},\mathrm{GU};\mathrm{H}) to consist of those equivalence class of endoscopic data (H,HM,s,η)(\mathrm{H},\mathrm{H}_{\mathrm{M}},s,\eta) such that there exists a maximal torus THH\mathrm{T}_{\mathrm{H}}\subset\mathrm{H} that transfers to J\mathrm{J}.

We now fix b𝐁(p,GU,μ)b\in\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},\mu) and let b~GU(˘p)\tilde{b}\in\mathrm{GU}(\breve{\mathbb{Q}}_{p}) be a decent lift. We get a standard Levi subgroup Mb\mathrm{M}_{b} of GU\mathrm{GU} and an extended pure inner twist Jb\mathrm{J}_{b} of Mb\mathrm{M}_{b}. Let νb:𝔻AMb\nu_{b}:\mathbb{D}\to A_{\mathrm{M}_{b}} (where AMbA_{\mathrm{M}_{b}} is the maximal split torus in the center of Mb\mathrm{M}_{b}) denote the image of the Newton map applied to bb. Fix (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) an elliptic endoscopic group of GU\mathrm{GU} and a set, XJb𝔢X^{\mathfrak{e}}_{\mathrm{J}_{b}}, of representatives of effi(Jb,GU;H)\mathcal{E}^{i}_{\mathrm{eff}}(\mathrm{J}_{b},\mathrm{GU};\mathrm{H}). Furthermore, for each (H,HMb,s,η)XJb𝔢(\mathrm{H},\mathrm{H}_{\mathrm{M}_{b}},s,\eta)\in X^{\mathfrak{e}}_{\mathrm{J}_{b}} we may choose an extension ηL:HLGUL{}^{L}\eta:{}^{L}\mathrm{H}\to{}^{L}\mathrm{GU} of η\eta. We also get a natural map AMbAHMbA_{\mathrm{M}_{b}}\hookrightarrow A_{\mathrm{H}_{\mathrm{M}_{b}}}. Then we define ν\nu to be the composition of νb\nu_{b} with this map.

We then make the following definition.

Definition 5.5.

We define

(5.1) Redb𝔢:Grothst(H(p))Groth(Jb(p))\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}:\mathrm{Groth}^{st}(\mathrm{H}(\mathbb{Q}_{p}))\to\mathrm{Groth}(\mathrm{J}_{b}(\mathbb{Q}_{p}))

by

(5.2) πXJb𝔢TransJbHMb(JacP(ν)opH(π))δ¯P(νb)1/2,\pi\mapsto\sum\limits_{X^{\mathfrak{e}}_{\mathrm{J}_{b}}}\mathrm{Trans}^{\mathrm{H}_{\mathrm{M}_{b}}}_{\mathrm{J}_{b}}(\mathrm{Jac}^{\mathrm{H}}_{P(\nu)^{op}}(\pi))\otimes\overline{\delta}^{1/2}_{P(\nu_{b})},

where TransJbHMb\mathrm{Trans}^{\mathrm{H}_{\mathrm{M}_{b}}}_{\mathrm{J}_{b}} denotes the transfer of distributions from HMb(p)\mathrm{H}_{\mathrm{M}_{b}}(\mathbb{Q}_{p}) to Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) and Groth(Jb(p))\mathrm{Groth}(\mathrm{J}_{b}(\mathbb{Q}_{p})) denotes the Grothendieck group of admissible representations of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) and Grothst(H(p))\mathrm{Groth}^{st}(\mathrm{H}(\mathbb{Q}_{p})) is the subgroup of Groth(H(p))\mathrm{Groth}(\mathrm{H}(\mathbb{Q}_{p})) consisting of those elements with stable distribution character.

Our aim in this subsection is to establish the theorem below using the results of [BM21].

Theorem 5.6.

Let (H,s,ηL)(\mathrm{H},s,{}^{L}\eta) be a refined elliptic endoscopic datum of GU\mathrm{GU}. Let ψ:WpGUL\psi:W_{\mathbb{Q}_{p}}\to{}^{L}\mathrm{GU} be a supercuspidal Langlands parameter such that there exists a Langlands parameter ψH\psi^{\mathrm{H}} of H\mathrm{H} with ψ=ηLϕH\psi={}^{L}\eta\circ\phi^{\mathrm{H}}. Then we have the following equality in Groth(GU(p)×WEμ)\mathrm{Groth}(\mathrm{GU}(\mathbb{Q}_{p})\times W_{E_{\mu}}):

b𝐁(p,GU,μ)MantGU,b,μ(Redb𝔢(SΘψH))=\sum\limits_{b\in\mathbf{B}(\mathbb{Q}_{p},\mathrm{GU},-\mu)}\mathrm{Mant}_{\mathrm{GU},b,\mu}(\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}_{b}}(S\Theta_{\psi^{\mathrm{H}}}))=
ρπpΠψ(GU,ϱ)πp,η(s)tr(η(s)Vρ)dimρπp[ρ||ρGU,μ],\sum\limits_{\rho}\sum\limits_{\pi_{p}\in\Pi_{\psi}(\mathrm{GU},\varrho)}\langle\pi_{p},\eta(s)\rangle\frac{\mathrm{tr}(\eta(s)\mid V_{\rho})}{\dim\rho}\pi_{p}\boxtimes[\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}],

where the first sum on the right-hand side is over irreducible factors of the representation rμψr_{-\mu}\circ\psi and VρV_{\rho} is the ρ\rho-isotypic part of rμψr_{-\mu}\circ\psi.

This theorem is [BM21, Theorem 6.4]. To verify this theorem we essentially just need to check a number of hypotheses from [BM21].

First, we need a global group 𝐆𝐔\bm{\mathrm{GU}} such that 𝐆𝐔pGU\bm{\mathrm{GU}}_{\mathbb{Q}_{p}}\cong\mathrm{GU} and such that there exists a Shimura variety (𝐆𝐔,X)(\bm{\mathrm{GU}},X) of PEL type such that the global conjugacy class of cocharacters {𝝁}\{\bm{\mu}\} of 𝐆𝐔^\widehat{\bm{\mathrm{GU}}} associated to XX localizes to the conjugacy class of μ\mu. Since μ\mu is assumed minuscule, its weights are equal to 11 and 0. In particular, μ\mu is determined by a pair (p,q)(p,q) such that p+q=np+q=n and pp denotes the number of 11 weights and qq denotes the number of 0 weights.

We fix nn an odd positive integer and define 𝐆𝐔\bm{\mathrm{GU}} to be the group 𝐆𝐔(p,q)\mathbf{GU}(p,q) coming from the hermitian form Ip,qI_{p,q} as in Section 2. Following [Mor10, §2.1], we have a PEL Shimura (𝐆𝐔,X)(\mathbf{GU},X) for this group (in Morel’s notation, this is the datum (𝐆𝐔,𝒳,h)(\bm{\mathrm{GU}},\mathcal{X},h)). As we observed in Section 2, the group 𝐆𝐔\bm{\mathrm{GU}} can be equipped with the structure of an extended pure inner twist (ϱ,z)(\varrho,z). As in [BM21a], this twist gives us for each refined endoscopic datum (𝐇,s,η)(\mathbf{H},s,\eta) of 𝐆𝐔\mathbf{GU} a normalized transfer factor at each place vv.

We observe that, in accordance with [BM21, §4.1, §5.1 ], we have 𝐆𝐔der\mathbf{GU}_{\mathrm{der}} is simply connected and 𝐆𝐔p\mathbf{GU}_{\mathbb{Q}_{p}} is unramified. The center Z(𝐆𝐔)Z(\mathbf{GU}) is isomorphic to ResE/𝔾m\mathrm{Res}_{E/\mathbb{Q}}{\mathbb{G}_{m}} which has split rank equal to 11. Since E/E/\mathbb{Q} is an imaginary quadratic extension, the split rank of (𝐆𝐔)\mathbb{Z}(\mathbf{GU})_{\mathbb{R}} also equals 11.

We verify that 𝐆𝐔\mathbf{GU} satisfies the Hasse principle. By [Kot84, Lemma 4.3.1] it suffices to show that ker1(,𝐆𝐔/𝐆𝐔der)=ker1(,𝔾m)\ker^{1}(\mathbb{Q},\mathbf{GU}/\mathbf{GU}_{\mathrm{der}})=\ker^{1}(\mathbb{Q},{\mathbb{G}_{m}}) vanishes but this latter group is trivial.

We now note an important difference between the exposition in [BM21, §4] and our current situation. This is that the group 𝐆𝐔\mathbf{GU} will not in general be anisotropic modulo center. For this reason, the stabilization of the trace formula carried out in that paper does not carry over exactly to our case. Instead, we use Morel’s work on the cohomology of these Shimura varieties to establish the desired stabilization. However, Morel’s work is on the intersection cohomology of Shimura varieties whereas we need to study compactly supported cohomology. We introduce some necessary notation.

Let K𝐆𝐔(𝔸f)K\subset\mathbf{GU}(\mathbb{A}_{f}) be a compact open subgroup that factors as KpKpK^{p}K_{p} where KpK_{p} is a hyperspecial subgroup of 𝐆𝐔(p)\mathbf{GU}(\mathbb{Q}_{p}). Following the notation of [Mor10], we let MK(𝐆𝐔,𝒳)M^{K}(\mathbf{GU},\mathcal{X})^{*} be the Baily-Borel-Satake compactification of the Shimura variety MK(𝐆𝐔,𝒳)M^{K}(\mathbf{GU},\mathcal{X}). Fix primes pp and \ell and an algebraic representation VV of 𝐆𝐔\mathbf{GU}. Choose the highest weight of VV to be ‘sufficiently regular’ in the sense of [Ngu19, Def. 2.2.10]. Let LL\subset\mathbb{C} be a number field containing the field of definition of VV and let λ\lambda be a place of LL over \ell. Then let ICKVIC^{K}V denote the intersection complex on MK(𝐆𝐔,𝒳)M^{K}(\mathbf{GU},\mathcal{X})^{*} with coefficients in VV. Then we define an element WλIW^{I}_{\lambda} in the Grothendieck group of K×Gal(¯/E𝝁)\mathcal{H}_{K}\times\mathrm{Gal}(\overline{\mathbb{Q}}/E_{\bm{\mu}}) representations by

WλI:=i0(1)i[Hi(MK(𝐆𝐔,𝒳)¯,ICKV¯)].W^{I}_{\lambda}:=\sum\limits_{i\geq 0}(-1)^{i}[H^{i}(M^{K}(\mathbf{GU},\mathcal{X})^{*}_{\overline{\mathbb{Q}}},IC^{K}V_{\overline{\mathbb{Q}}})].

Similarly, we let \mathcal{F} be the local system on MK(𝐆𝐔,𝒳)M^{K}(\mathbf{GU},\mathcal{X}) associated to VV and define the element WλCW^{C}_{\lambda} in the Grothendieck group of K×Gal(¯/E𝝁)\mathcal{H}_{K}\times\mathrm{Gal}(\overline{\mathbb{Q}}/E_{\bm{\mu}}) representations by

WλC:=i0(1)i[Hci(MK(𝐆𝐔,𝒳)¯,)].W^{C}_{\lambda}:=\sum\limits_{i\geq 0}(-1)^{i}[H^{i}_{c}(M^{K}(\mathbf{GU},\mathcal{X})_{\overline{\mathbb{Q}}},\mathcal{F})].

Let fKf^{\infty}\in\mathcal{H}_{K} and assume that ff^{\infty} factors as f=fp,1Kpf^{\infty}=f^{p,\infty}1_{K_{p}}. Fix a place 𝔭\mathfrak{p} of E𝝁E_{\bm{\mu}} above pp and let Φ𝔭\Phi_{\mathfrak{p}} be a lift of of the geometric Frobenius at 𝔭\mathfrak{p}. We will often consider functions f𝐆𝐔(𝔸)f\in\mathbf{GU}(\mathbb{A}) such that f=fff=f^{\infty}f_{\infty} where ff_{\infty} is stable cuspidal and at some finite place vv, we have f=fv,fvf=f^{v,\infty}f_{v} and fvf_{v} is cuspidal. For instance, fvf_{v} could be a coefficient for a supercuspidal representation. Recall that these terms were defined in Section 4.2.

Lemma 5.7.

Suppose that ff is cuspidal at a finite place. Then we have tr(WλCf×ϕ𝔭j)=tr(WλIf×ϕ𝔭j)\mathrm{tr}(W^{C}_{\lambda}\mid f^{\infty}\times\phi^{j}_{\mathfrak{p}})=\mathrm{tr}(W^{I}_{\lambda}\mid f^{\infty}\times\phi^{j}_{\mathfrak{p}}).

Proof.

Indeed, this follows from the fact we have a natural Γ\Gamma-equivariant morphism for each ii

(5.3) Hci(MK(𝐆𝐔,𝒳)¯,)Hi(MK(𝐆𝐔,𝒳)¯,ICKV¯)H^{i}_{c}(M^{K}(\mathbf{GU},\mathcal{X})_{\overline{\mathbb{Q}}},\mathcal{F})\to H^{i}(M^{K}(\mathbf{GU},\mathcal{X})^{*}_{\overline{\mathbb{Q}}},IC^{K}V_{\overline{\mathbb{Q}}})

and the cuspidal part of Hi(MK(𝐆𝐔,𝒳)¯,ICKV¯)H^{i}(M^{K}(\mathbf{GU},\mathcal{X})^{*}_{\overline{\mathbb{Q}}},IC^{K}V_{\overline{\mathbb{Q}}}) lies in the image of this map (see, for instance, [Ngu19, Proposition 3.2]). ∎

We now remark on the definitions of the functions f𝐇,f𝐇(j)(H(𝔸))f^{\mathbf{H}},f^{(j)}_{\mathbf{H}}\in\mathcal{H}(H(\mathbb{A})) defined in [BM21, §4] and [Mor10, §6.2] respectively. Morel’s normalization of transfer factors away from pp and \infty is arbitrary up to the global constaint given by [Kot86, 6.10b]. At vp,v\neq p,\infty the definitions of f𝐇f^{\mathbf{H}} and f𝐇(j)f^{(j)}_{\mathbf{H}} coincide up to differences in transfer factor normalization. At pp, Morel normalizes her transfer factors as in [Kot90, pg180]. If one chooses a different normalization at pp, then Kottwitz explains ([Kot90, pg180-181]) how to modify the function f𝐇,p(j)f^{(j)}_{\mathbf{H},p} by a constant such that it satisfies and analogous fundamental lemma formula. At v=v=\infty, Morel uses the normalization given on [Kot90, pg184]. We can again modify the function f𝐇,(j)f^{(j)}_{\mathbf{H},\infty} by a constant so that it satisfies the same formulas. Hence, so long as one modifies the normalizations of the transfer factors at each place in such as way that the global constraint is still satisfied, one gets an analogous modification of the function f𝐇(j)f^{(j)}_{\mathbf{H}} such that it satisfies the same transfer formulas. By examining the constructions at each place, it is clear that if f𝐇(j)f^{(j)}_{\mathbf{H}} is modified to be compatible with our chosen normalization of transfer factors, then the functions f𝐇(j)f^{(j)}_{\mathbf{H}} and f𝐇f^{\mathbf{H}} can be chosen to be equal.

Since the transfer of a cuspidal function is cuspidal [Art96, Lemma 3.4] and f𝐇f^{\mathbf{H}}_{\infty} is stable cuspidal by definition, we have that f𝐇f^{\mathbf{H}} satisfies the hypotheses of Lemma 5.7 and Lemma 4.6. In particular, we have the following proposition.

Proposition 5.8.

Suppose ff^{\infty} is a cuspidal at a finite place and factors as fp,1Kpf^{p,\infty}1_{K_{p}}. Then

tr(WλCf×ϕ𝔭j)=(𝐇,s,η)(𝐆𝐔)ι(𝐆𝐔,𝐇)STell𝐇(bHf𝐇).\mathrm{tr}(W^{C}_{\lambda}\mid f^{\infty}\times\phi^{j}_{\mathfrak{p}})=\sum\limits_{(\mathbf{H},s,\eta)\in\mathcal{E}(\mathbf{GU})}\iota(\mathbf{GU},\mathbf{H})ST^{\mathbf{H}}_{ell}(b_{H}f^{\mathbf{H}}).
Proof.

By Lemma 5.7 and [Mor10, Theorem 7.1.7] (keeping in mind her remark that the result holds for general pp) we have

tr(WλCf×ϕ𝔭j)=(𝐇,s,η)(𝐆𝐔)ι(𝐆𝐔,𝐇)ST𝐇(f𝐇).\mathrm{tr}(W^{C}_{\lambda}\mid f^{\infty}\times\phi^{j}_{\mathfrak{p}})=\sum\limits_{(\mathbf{H},s,\eta)\in\mathcal{E}(\mathbf{GU})}\iota(\mathbf{GU},\mathbf{H})ST^{\mathbf{H}}(f^{\mathbf{H}}).

Now, we apply Lemma 4.6 to the righthand side to get the desired equality. ∎

At this point, we have finished using the work of Morel and have arrived at the formula [BM21, Equation (4.17)]. We now need to show that we can perform the destabilization procedure as in [BM21, §4.7]. To do so we need to prove that we have a sufficiently good theory of the Langlands correspondence for 𝐆𝐔\mathbf{GU} and its localizations. Globally, we will work with “automorphic parameters” in the style of [Kal+14] and [Art13a] and as we defined in 2.4. Since our ultimate goal is to prove a local formula, these parameters are sufficient for our purpose. We list the following properties we need and where these facts have been proven.

  1. (1)

    We need a construction of local Arthur packets of generic parameters at all localizations of 𝐆𝐔\mathbf{GU} and descriptions of the elements in each local AA-packet in terms of representations of the various centralizer groups (Theorem 2.16).

  2. (2)

    The local packets must satisfy the endoscopic character identities (Section 3).

  3. (3)

    A local generic AA-packet contains a KK-unramified representation if and only if the parameter is unramified. In the case that an AA-parameter is unramified, this KK-unramified representation is unique (Subsection 4.1).

  4. (4)

    We need a construction for global Arthur packets for generic “vv-cuspidal” parameters. These consist of parameters that are supercuspidal at some fixed local place vv. We need a description of the global AA-packet in terms of the local packets (Section 2.4).

  5. (5)

    We need vv-cuspidal parameters to satisfy a version of [BM21, Proposition 3.10] (this is discussed in [Art13a, pg 36]).

  6. (6)

    We need a decomposition of the generic vv-cuspidal part of Ldisc2(𝐆𝐔()𝐆𝐔(𝔸))L^{2}_{\mathrm{disc}}(\mathbf{GU}(\mathbb{Q})\setminus\mathbf{GU}(\mathbb{A})) in terms of global Arthur packets and this decomposition should satisfy the global multiplicity formula (Section 2.4).

  7. (7)

    We need to attach to a global generic parameter a global Galois representation whose localizations at each place are compatible with the corresponding localization of the global parameter (Subsection 4.4).

With these properties in hand, we can now apply the results of Section 4.2 (which is analogous to [BM21, Assumption 4.8]) to get

tr(WλCf×ϕ𝔭j)=(𝐇,s,η)(𝐆𝐔)ι(𝐆𝐔,𝐇)STdisc𝐇(f𝐇).\mathrm{tr}(W^{C}_{\lambda}\mid f^{\infty}\times\phi^{j}_{\mathfrak{p}})=\sum\limits_{(\mathbf{H},s,\eta)\in\mathcal{E}(\mathbf{GU})}\iota(\mathbf{GU},\mathbf{H})ST^{\mathbf{H}}_{\mathrm{disc}}(f^{\mathbf{H}}).

Following the argument of [BM21, §4.7], we derive the formula

(5.4) tr(WλCfϕ𝔭j)=[ψ]νπΠψ(𝐆𝐔,ziso,)m(π,ν)ν(sψ)(1)q(𝐆𝐔)tr(πf)V(ψ,ν)λ,\mathrm{tr}(W^{C}_{\lambda}\mid f^{\infty}\phi^{j}_{\mathfrak{p}})=\sum\limits_{[\psi]}\,\sum\limits_{\nu}\sum\limits_{\pi^{\infty}\in\Pi_{\psi^{\infty}}(\mathbf{GU},z^{iso,\infty})}m(\pi^{\infty},\nu)\nu(s_{\psi})(-1)^{q(\mathbf{GU})}\mathrm{tr}(\pi^{\infty}\mid f^{\infty})\boxtimes V(\psi,\nu)_{\lambda},

in the Grothendieck group of 𝐆(𝔸f)×Γ𝐄\mathbf{G}(\mathbb{A}_{f})\times\Gamma_{\mathbf{E}}-modules where the first sum is over equivalence classes of vv-cuspidal parameters.

Suppose πf\pi_{f} is a representation of 𝐆𝐔(𝔸f)\mathbf{GU}(\mathbb{A}_{f}) appearing in the cohomology of Shimura varieties whose associated automorphic AA-parameter is vv-cuspidal. We need to compute the πf\pi_{f}-isotypic part, WλC(πf)W^{C}_{\lambda}(\pi_{f}), of WλCW^{C}_{\lambda}. To do so, we apply the argument at the end of [BM21, §4.7] along with the following lemma.

Lemma 5.9.

Suppose πf\pi_{f} is an admissible representation of 𝐆𝐔(𝔸f)\mathbf{GU}(\mathbb{A}_{f}) such that the AA-parameter at vv is supercuspidal. There exists a compact open K𝐆𝐔(𝔸f)K\subset\mathbf{GU}(\mathbb{A}_{f}) such that πfK\pi^{K}_{f}\neq\emptyset and KK factors as KvKvK^{v}K_{v} and there exists a vv-cuspidal function f(𝐆𝐔(𝔸f),K)f^{\infty}\in\mathcal{H}(\mathbf{GU}(\mathbb{A}_{f}),K) such that tr(πff)0\mathrm{tr}(\pi_{f}\mid f^{\infty})\neq 0 and for any πf\pi^{\prime}_{f} with nontrivial KK-invariants and appearing in either WλCW^{C}_{\lambda} or

[ψ]νπΠψ(𝐆,ziso,)m(π,ν)ν(sψ)(1)q(𝐆)(π)V(ψ,ν)λ,\sum\limits_{[\psi]}\,\sum\limits_{\nu}\sum\limits_{\pi^{\infty}\in\Pi_{\psi^{\infty}}(\mathbf{G},z^{iso,\infty})}m(\pi^{\infty},\nu)\nu(s_{\psi})(-1)^{q(\mathbf{G})}(\pi^{\infty})\boxtimes V(\psi,\nu)_{\lambda},

we have

tr(πff)=0.\mathrm{tr}(\pi^{\prime}_{f}\mid f^{\infty})=0.
Proof.

The set RR^{\prime} of isomorphism classes of πf\pi^{\prime}_{f} satisfying the above conditions is finite. Hence we can find a function fv,f^{v,\infty} such that tr((πf)vfv,)=0\mathrm{tr}((\pi^{\prime}_{f})^{v}\mid f^{v,\infty})=0 for all πfR\pi^{\prime}_{f}\in R^{\prime} unless (πf)vπfv(\pi^{\prime}_{f})^{v}\cong\pi^{v}_{f} in which case the trace is nonzero. Now, at vv we have that (πf)v(\pi_{f})_{v} is supercuspidal and so we choose fv(𝐆𝐔(v),Kv)f_{v}\in\mathcal{H}(\mathbf{GU}(\mathbb{Q}_{v}),K_{v}) to be a coefficient for (πf)v(\pi_{f})_{v}. Then fv,fvf^{v,\infty}f_{v} has the desired properties. Indeed any πf\pi^{\prime}_{f} not isomorphic to πf\pi_{f} will differ from πf\pi_{f} either at vv or away from it, and hence tr(πffv,fv)=0\mathrm{tr}(\pi^{\prime}_{f}\mid f^{v,\infty}f_{v})=0. ∎

Following the argument at the end of [BM21, §4.7] we conclude that

(5.5) WλC(πf)=([ψ]νπΠψ(𝐆,ziso,)m(π,ν)ν(sψ)(1)q(𝐆)(π)V(ψ,ν)λ)(πf)W^{C}_{\lambda}(\pi_{f})=(\sum\limits_{[\psi]}\,\sum\limits_{\nu}\sum\limits_{\pi^{\infty}\in\Pi_{\psi^{\infty}}(\mathbf{G},z^{iso,\infty})}m(\pi^{\infty},\nu)\nu(s_{\psi})(-1)^{q(\mathbf{G})}(\pi^{\infty})\boxtimes V(\psi,\nu)_{\lambda})(\pi_{f})

in Groth(𝐆𝐔(𝔸f)×WEμ)\mathrm{Groth}(\mathbf{GU}(\mathbb{A}_{f})\times W_{E_{\mathbf{\mu}}}).

We now need to show that a similar result holds for the compactly supported cohomology of Igusa varieties. In this case the stabilization in [BM21, §5] does not require that 𝐆𝐔\mathbf{GU} is anisotropic modulo center and so that argument goes through essentially unchanged. The only difference is that we only prove the equality of STell𝐇(f𝐇)ST^{\mathbf{H}}_{ell}(f^{\mathbf{H}}) and STdisc𝐇(f𝐇)ST^{\mathbf{H}}_{\mathrm{disc}}(f^{\mathbf{H}}) in the case that f𝐇f^{\mathbf{H}}_{\infty} is cuspidal at a finite place. In particular, this means that when we compute the πf\pi_{f}-isotypic part of the cohomology of Igusa varieties, we need the following lemma.

Lemma 5.10.

Suppose πf\pi_{f} is an irreducible admissible representation of 𝐆𝐔(𝔸fp)×Jb(p)\mathbf{GU}(\mathbb{A}^{p}_{f})\times J_{b}(\mathbb{Q}_{p}) such that the corresponding local AA-parameter at vv is supercuspidal. Let K𝐆𝐔(𝔸fp)×Jb(p)K\subset\mathbf{GU}(\mathbb{A}^{p}_{f})\times J_{b}(\mathbb{Q}_{p}) be a compact open subgroup such that πfK\pi^{K}_{f}\neq\emptyset and KK factors as Kv,pKvKpK^{v,p}K_{v}K_{p}. Let RR be a finite set of isomorphism classes of irreducible admissible 𝐆𝐔(𝔸fp)×Jb(p)\mathbf{GU}(\mathbb{A}^{p}_{f})\times J_{b}(\mathbb{Q}_{p}) representations such that πfR\pi_{f}\in R. Then there exists a vv-cuspidal function f(𝐆𝐔(𝔸fp)×Jb(p),K)f^{\infty}\in\mathcal{H}(\mathbf{GU}(\mathbb{A}^{p}_{f})\times J_{b}(\mathbb{Q}_{p}),K) that is acceptable in the sense of [Shi09, Definition 6.2] such that ff^{\infty} factors as fp,v,fpfvf^{p,v,\infty}f_{p}f_{v} and tr(πff)0\mathrm{tr}(\pi^{\prime}_{f}\mid f^{\infty})\neq 0 for πfR\pi^{\prime}_{f}\in R if and only if πfπf\pi^{\prime}_{f}\cong\pi_{f}.

Proof.

Consider the linear map from vv-cuspidal functions to |R|\mathbb{C}^{|R|} given by f(tr(π1f),,tr(πnf))f^{\infty}\mapsto(\mathrm{tr}(\pi_{1}\mid f^{\infty}),...,\mathrm{tr}(\pi_{n}\mid f^{\infty})) where R={π1,,πn}R=\{\pi_{1},...,\pi_{n}\}. It suffices to show this map is surjective. If the map is not surjective, then its image is a proper subspace and hence lies in a hyperplane of |R|\mathbb{C}^{|R|}. Hence we can find some element c1,,cn[R]c_{1},...,c_{n}\in\mathbb{C}[R] such that for all vv-cuspidal ff^{\infty}, we have c1tr(π1f)++cntr(πnf)=0c_{1}\mathrm{tr}(\pi_{1}\mid f^{\infty})+...+c_{n}\mathrm{tr}(\pi_{n}\mid f^{\infty})=0.

Now, by the argument of [Shi09, Lemma 6.4] and also [Shi09, Lemma 6.3] it follows that every f=fp,v,fpfvf^{\infty}=f^{p,v,\infty}f_{p}f_{v} that is cuspidal at vv satisfies

tr(c1π1++cnπnf)=0.\mathrm{tr}(c_{1}\pi_{1}+...+c_{n}\pi_{n}\mid f^{\infty})=0.

By the argument of Lemma 5.9, we can find an ff^{\infty} that does not vanish at c1π1++cnπnc_{1}\pi_{1}+...+c_{n}\pi_{n}. This is a contradiction and implies our desired result. ∎

At this point, we have verified the assumptions of §44 and §55 of [BM21]. It remains to check those of §66. We first note that the Mantovan formula is known for the PEL type Shimura varieties we consider. Indeed this is [LS18, Theorem 6.32].

It remains to check Assumptions 6.26.2 and 6.36.3 of [BM21]. We record some useful lemmas.

Lemma 5.11.

Suppose π\pi is a discrete automorphic representation of 𝐆𝐔(𝔸)\mathbf{GU}(\mathbb{A}) contained in an AA-packet Π\Pi. Suppose further that the infinitesimal character of π\pi_{\infty} is sufficiently regular in the sense of [Ngu19, Def. 2.2.10]. Then the AA-parameter associated to Π\Pi is generic.

Proof.

Standard. For instance see [Kal+14, Lemma 4.3.1]. ∎

Lemma 5.12.

Suppose π\pi is a discrete automorphic representation of 𝐆𝐔(𝔸)\mathbf{GU}(\mathbb{A}) contained in an AA-packet and such that π\pi_{\infty} has sufficiently regular infinitesimal character. Then this is the unique AA-packet containing π\pi_{\infty}. Moreover, if π~\widetilde{\pi} is another discrete automorphic representation of 𝐆𝐔(𝔸)\mathbf{GU}(\mathbb{A}) such that π~\widetilde{\pi}_{\infty} has sufficiently regular infinitesinal character and such that ππ~\pi^{\infty}\cong\widetilde{\pi}^{\infty} then π\pi and π~\widetilde{\pi} are in the same AA-packet.

Proof.

Suppose that π\pi belongs to two AA-packets with associated AA-parameters (ψ˙1,χ1)(\dot{\psi}_{1},\chi_{1}) and (ψ˙2,χ2)(\dot{\psi}_{2},\chi_{2}). Since χ1\chi_{1} and χ2\chi_{2} correspond to the central character of π\pi, they are equal. We need to show that ψ˙1\dot{\psi}_{1}, ψ˙2\dot{\psi}_{2} are also equal. At almost all finite unramified places vv where πv\pi_{v} is unramified, the localizations (ψ˙1)v(\dot{\psi}_{1})_{v} and (ψ˙2)v(\dot{\psi}_{2})_{v} are equal. Indeed, our sufficiently regular assumption implies that these parameters are generic. Following [Mok15, pg 189], these local parameters factor through ML\prescript{L}{}{M} where MM is the minimal Levi subgroup of UEv/v(n)U_{E_{v}/\mathbb{Q}_{v}}(n) and correspond to the same spherical parameter of MM (for more details, see [Mok15], page 189189). This implies that ψ˙1n\dot{\psi}^{n}_{1} and ψ˙2n\dot{\psi}^{n}_{2} give rise to the same Hecke string. Then, by [JS81], [Art13, Theorem 4.3] we see that ψ˙1\dot{\psi}_{1} and ψ˙2\dot{\psi}_{2} are equal. It is clear that the second statement also follows from exactly the same argument. ∎

Before verifying Assumptions on 6.26.2 and 6.36.3 of [BM21], we need to understand the effect of an unramified twist on the MantGU,b,μ\mathrm{Mant}_{\mathrm{GU},b,\mu} map. Let c:GU(p)p×c:\mathrm{GU}(\mathbb{Q}_{p})\longrightarrow\mathbb{Q}_{p}^{\times} be the similitude factor character. For bb non-basic, the group Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) is an inner form of a Levi subgroup Mb(p)\mathrm{M}_{b}(\mathbb{Q}_{p}) of GU(p)\mathrm{GU}(\mathbb{Q}_{p}). Then the similitude character cc restricted to Mb(p)\mathrm{M}_{b}(\mathbb{Q}_{p}) can be transferred to Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}). Hence by abuse of language, we also denote cc the corresponding character on Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}).

Lemma 5.13.

Let (Ep,,V,|,GU,μ,b)(E_{p},*,V,\langle\cdot|\cdot\rangle,\mathrm{GU},\mu,b) be an unramified unitary Rapoport–Zink PEL datum and suppose ω:pׯ×\omega:\mathbb{Q}_{p}^{\times}\longrightarrow\overline{\mathbb{Q}}^{\times}_{\ell} is an unramified character. Then the following holds in Groth(GU(p)×WEp)\mathrm{Groth}(\mathrm{GU}(\mathbb{Q}_{p})\times W_{E_{p}})

MantGU,b,μ(ρ(ωc))=MantGU,b,μ(ρ)(ωc)(ωArtEp1).\mathrm{Mant}_{\mathrm{GU},b,\mu}(\rho\otimes(\omega\circ c))=\mathrm{Mant}_{\mathrm{GU},b,\mu}(\rho)\otimes(\omega\circ c)\otimes(\omega\circ Art^{-1}_{E_{p}}).
Proof.

This lemma is an analogue of [Shi12a, Lemma 4.9] and the same proof applies in our situation. Thus we just briefly give an idea of how to proceed.

Define a character χ\chi of Jb(p)×GU(p)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times\mathrm{GU}(\mathbb{Q}_{p})\times W_{E_{p}} by

χ:=(ωc)(ωc)(ωArtEp1).\chi:=(\omega\circ c)\otimes(\omega\circ c)\otimes(\omega\circ Art^{-1}_{E_{p}}).

Then we prove that there is an isomorphism of ¯\overline{\mathbb{Q}}_{\ell}-vector spaces

Hcj(Kp,¯)Hcj(Kp,¯)χH_{c}^{j}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell})\simeq H_{c}^{j}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell})\otimes\chi

compatible with the action of Jb(p)×(Kp\GU(p)/Kp)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash\mathrm{GU}(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}}.

Notice there is a Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p})-equivariant map ι:KpΔ:=Hom(X(GU),)\iota:\mathcal{M}_{K_{p}}\longrightarrow\Delta:=\mathrm{Hom}_{\mathbb{Z}}(X^{*}(\mathrm{GU}),\mathbb{Z}) ([RZ96, sec. 3.52]) and moreover there is a natural way to define an action of Jb(p)×GU(p)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times\mathrm{GU}(\mathbb{Q}_{p})\times W_{E_{p}} on Δ\Delta such that the map ι\iota is equivariant with respect to Jb(p)×(Kp\GU(p)/Kp)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash\mathrm{GU}(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}} ([Far04, remark 2.6.11]).

We can prove the lemma by using the fact that χ\chi acts trivially on (Jb(p)×(Kp\GU(p)/Kp)×WEp)1(\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash\mathrm{GU}(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}})^{1} and

limKpHcj(Kp,¯)cind(Jb(p)×(Kp\GU(p)/Kp)×WEp)1Jb(p)×(Kp\GU(p)/Kp)×WEp(limKpHcj(Kp(0),¯))\mathop{\mathrm{lim}}_{\overrightarrow{K_{p}}}H_{c}^{j}(\mathcal{M}_{K_{p}},\overline{\mathbb{Q}}_{\ell})\simeq c-\mathrm{ind}^{\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash GU(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}}}_{(\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash GU(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}})^{1}}\Big{(}\mathop{\mathrm{lim}}_{\overrightarrow{K_{p}}}H_{c}^{j}(\mathcal{M}^{(0)}_{K_{p}},\overline{\mathbb{Q}}_{\ell})\Big{)}

where Kp(0)\mathcal{M}^{(0)}_{K_{p}} is the inverse image of 0 by ι\iota and (Jb(p)×(Kp\GU(p)/Kp)×WEp)1(\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash\mathrm{GU}(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}})^{1} is the subgroup of Jb(p)×(Kp\GU(p)/Kp)×WEp\mathrm{J}_{b}(\mathbb{Q}_{p})\times(K_{p}\backslash\mathrm{GU}(\mathbb{Q}_{p})/K_{p})\times W_{E_{p}} that acts trivially on Δ\Delta.

We can now settle Assumption 6.26.2 in the cases we need. Let πp\pi_{p} be a representation of 𝐆𝐔(p)\mathbf{GU}(\mathbb{Q}_{p}) and π1\pi_{1} a discrete automorphic representation of 𝐆𝐔(𝔸)\mathbf{GU}(\mathbb{A}) such that (π1)pπp(\pi_{1})_{p}\cong\pi_{p}. Suppose further that π1\pi_{1}^{\infty} appears in either the formula for the cohomology of Igusa varieties or WλCW^{C}_{\lambda}. Then since VV has sufficiently regular infinitesimal character, it follows that the same is true of (π1)(\pi_{1})_{\infty}. Now suppose π2\pi_{2} is a discrete automorphic representation of 𝐆𝐔(𝔸)\mathbf{GU}(\mathbb{A}) appearing in either of the above formulas and such that π1π2\pi^{\infty}_{1}\cong\pi^{\infty}_{2}. We then have by Lemma 5.12 that π2\pi_{2} and π1\pi_{1} are in the same packet.

We now tackle Assumption 6.3 of [BM21]. For a fixed supercuspidal representation πp\pi_{p} with local parameter ϕp\phi_{p}, we have the local centralizer group SϕpS_{\phi_{p}}. For any global AA-parameter ψ\psi such that ψp=ϕp\psi_{p}=\phi_{p}, we have a natural embedding SψSϕpS_{\psi}\hookrightarrow S_{\phi_{p}}. The formula immediately before Assumption 6.3 of [BM21] includes a sum indexed over a set of representatives XψX_{\psi} of S¯ψ\overline{S}_{\psi}. We must show that we can pick different globalizations, ψ\psi, of ϕp\phi_{p} to derive the formula below assumption 6.2 for each element of SψpS_{\psi_{p}}.

Suppose first that sSϕps\in S_{\phi_{p}} projects to the identity element of S¯ϕp\overline{S}_{\phi_{p}}. Then by Construction 4.3.1 we can choose ψ\psi so that the image of SψS_{\psi} in SψpS_{\psi_{p}} is {±s}\{\pm s\} and the packet Πψp(GU(p),ρGU)\Pi_{\psi_{p}}(\mathrm{GU}(\mathbb{Q}_{p}),\rho_{\mathrm{GU}}) differs from the packet Πϕp(GU(p),ρGU)\Pi_{\phi_{p}}(\mathrm{GU}(\mathbb{Q}_{p}),\rho_{\mathrm{GU}}) by an unramified twist of the form ωc\omega\circ c. Then we simply pick XψX_{\psi} to contain the unique element of SψS_{\psi} mapping to ss. This establishes the formula for ss projecting to the identity of S¯ψp\overline{S}_{\psi_{p}}. By Lemma 5.13, we obtain the formula for ss projecting to the identity of S¯ϕp\overline{S}_{\phi_{p}}.

Now suppose pick sSϕps\in S_{\phi_{p}} that projects to a non-identity element. By Construction 4.3.2, we may choose ψ\psi such that the image of SψS_{\psi} in SψpS_{\psi_{p}} is precisely {±s,±Id}\{\pm s,\pm\mathrm{Id}\} and the packet Πψp(GU(p),ρGU)\Pi_{\psi_{p}}(\mathrm{GU}(\mathbb{Q}_{p}),\rho_{\mathrm{GU}}) differs from the packet Πϕp(GU(p),ρGU)\Pi_{\phi_{p}}(\mathrm{GU}(\mathbb{Q}_{p}),\rho_{\mathrm{GU}}) by an unramified twist of the form ωc\omega\circ c. Choose XψX_{\psi} to contain the unique elements mapping to s,Ids,\mathrm{Id} and denote these xsx_{s} and xIdx_{\mathrm{Id}} respectively. Then each side of the formula before Assumption 6.2 for the parameter ψp\psi_{p} has two terms indexed by xsx_{s} and xIdx_{\mathrm{Id}} respectively. Again, by Lemma 5.13, we can draw the same formula for ϕp\phi_{p}. The xIdx_{\mathrm{Id}} terms are already known to be equal by the previous paragraph. It therefore follows that the xsx_{s} terms are equal as well.

This completes the verification of Theorem 5.6.

6. Proof of the main theorem

To prove the Kottwitz conjecture for the groups we consider, we use Theorem 5.6.

First of all, we show that

Redb𝔢(πHΠψHπH,sψHπH))=0\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}(\sum\limits_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\pi^{\mathrm{H}}))=0

for bb non basic, (H,s,η)(\mathrm{H},s,\eta) an elliptic endoscopic datum of GU\mathrm{GU} and ψ\psi a supercuspidal parameter.

Indeed, the parameter ψH\psi^{\mathrm{H}} is again a supercuspidal LL-parameter. In particular, the representations πH\pi^{\mathrm{H}} are supercuspidal. Now by definition we have

Redb𝔢=XJb𝔢δP(νb)12¯TransJbHMbJacP(ν)opH\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}=\sum\limits_{X^{\mathfrak{e}}_{J_{b}}}\overline{\delta^{\frac{1}{2}}_{P(\nu_{b})}}\otimes\mathrm{Trans}^{\mathrm{H}_{\mathrm{M}_{b}}}_{\mathrm{J}_{b}}\mathrm{Jac}^{\mathrm{H}}_{P(\nu)^{op}}

As bb is non-basic, the group Jb\mathrm{J}_{b} is an inner form of a proper Levi subgroup of GU\mathrm{GU}. Suppose that P(ν)opP(\nu)^{op} = H\mathrm{H}. In this case H\mathrm{H} equals HM\mathrm{H}_{\mathrm{M}} and is isomorphic to an endoscopic group of Jb\mathrm{J}_{b}. This is a contradiction because by the classification of the endoscopic groups of GU\mathrm{GU} and its Levi subgroups, we know that the elliptic endoscopic groups of GU\mathrm{GU} are not endoscopic groups of any proper Levi subgroup of GU\mathrm{GU}. We conclude that P(ν)opP(\nu)^{op} is a proper parabolic subgroup of H\mathrm{H} so that

Redb𝔢(πHΠψHπH,sψHπH))=0,\mathrm{Red}^{\mathcal{H}^{\mathfrak{e}}}_{b}(\sum\limits_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}}\langle\pi^{\mathrm{H}},s_{\psi^{\mathrm{H}}}\rangle\pi^{\mathrm{H}}))=0,

as desired.

Now, for bb basic, the main formula of Theorem 5.6 becomes

MantGU,b,μ(TransJbH(πHΠψHπH,1πH))=ρπΠψ(GU,ϱ)π,η(s)tr(η(s)Vρ)dimρ[π][ρ||ρGU,μ].\mathrm{Mant}_{\mathrm{GU},b,\mu}(\mathrm{Trans}^{\mathrm{H}}_{\mathrm{J}_{b}}(\sum\limits_{\pi^{\mathrm{H}}\in\Pi_{\psi^{\mathrm{H}}}}\langle\pi^{\mathrm{H}},1\rangle\pi^{\mathrm{H}}))=\sum\limits_{\rho}\,\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{GU},\varrho)}\langle\pi,\eta(s)\rangle\frac{\mathrm{tr}(\eta(s)\mid V_{\rho})}{\dim\rho}[\pi][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

Simplifying the left-hand side using the endoscopic character identities gives

MantGU,b,μ(πJbΠψ(Jb,ϱb)πJb,η(s)πJb)=ρπΠψπ,η(s)tr(η(s)Vρ)dimρ[π][ρ||ρGU,μ].\mathrm{Mant}_{\mathrm{GU},b,\mu}(\sum\limits_{\pi_{\mathrm{J}_{b}}\in\Pi_{\psi}(\mathrm{J}_{b},\varrho_{b})}\langle\pi_{\mathrm{J}_{b}},\eta(s)\rangle\pi_{\mathrm{J}_{b}})=\sum\limits_{\rho}\,\sum\limits_{\pi\in\Pi_{\psi}}\langle\pi,\eta(s)\rangle\frac{\mathrm{tr}(\eta(s)\mid V_{\rho})}{\dim\rho}[\pi][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

Now, fix πJbΠψ(Jb,ϱb)\pi_{\mathrm{J}_{b}}\in\Pi_{\psi}(\mathrm{J}_{b},\varrho_{b}) and multiply the above equation by πJb,η(s)1\langle\pi_{\mathrm{J}_{b}},\eta(s)\rangle^{-1}. Then one can check that both sides only depend on the projection η(s)¯𝒮¯ψ\overline{\eta(s)}\in\overline{\mathcal{S}}_{\psi}. We then average over 𝒮¯ψ\overline{\mathcal{S}}_{\psi}. This gives equality between

MantGU,b,μ(1|𝒮¯ψ|s𝒮¯ψπJbΠψ(Jb)πJb,s1πJb,sπJb)\mathrm{Mant}_{\mathrm{GU},b,\mu}\left(\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\sum\limits_{\pi^{\prime}_{\mathrm{J}_{b}}\in\Pi_{\psi}(\mathrm{J}_{b})}\langle\pi_{\mathrm{J}_{b}},s\rangle^{-1}\langle\pi^{\prime}_{\mathrm{J}_{b}},s\rangle\pi^{\prime}_{\mathrm{J}_{b}}\right)

and

1|𝒮¯ψ|s𝒮¯ψρπΠψ(GU,ϱ)πJb,s1π,str(sVρ)dimρ[π][ρ||ρGU,μ].\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\sum\limits_{\rho}\,\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{GU},\varrho)}\langle\pi_{\mathrm{J}_{b}},s\rangle^{-1}\langle\pi,s\rangle\frac{\mathrm{tr}(s\mid V_{\rho})}{\dim\rho}[\pi][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

Now, for any irreducible representation χ\chi of 𝒮¯ψ\overline{\mathcal{S}}_{\psi}, we have 1|𝒮¯ψ|s𝒮¯ψχ(s)\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\chi(s) is 11 if χ\chi is trivial and 0 otherwise. Hence we get the equality

MantGU,b,μ(πJb)=1|𝒮¯ψ|s𝒮¯ψρπΠψ(GU,ϱ)πJb,s1π,str(sVρ)dimρ[π][ρ||ρGU,μ].\mathrm{Mant}_{\mathrm{GU},b,\mu}(\pi_{\mathrm{J}_{b}})=\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\sum\limits_{\rho}\,\sum\limits_{\pi\in\Pi_{\psi}(\mathrm{GU},\varrho)}\langle\pi_{\mathrm{J}_{b}},s\rangle^{-1}\langle\pi,s\rangle\frac{\mathrm{tr}(s\mid V_{\rho})}{\dim\rho}[\pi][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

We now isolate the term for a fixed πGUΠψ(GU,ϱ)\pi_{\mathrm{GU}}\in\Pi_{\psi}(\mathrm{GU},\varrho) and representation ρ\rho. It is

1|𝒮¯ψ|s𝒮¯ψπJb,s1πGU,str(sVρ)dimρ[πGU][ρ||ρGU,μ],\frac{1}{|\overline{\mathcal{S}}_{\psi}|}\sum\limits_{s\in\overline{\mathcal{S}}_{\psi}}\langle\pi_{\mathrm{J}_{b}},s\rangle^{-1}\langle\pi_{\mathrm{GU}},s\rangle\frac{\mathrm{tr}(s\mid V_{\rho})}{\dim\rho}[\pi_{\mathrm{GU}}][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}],

which equals

dimHom𝒮¯ψ(ι𝔴(πJb)ι𝔴(πGU),Vρ)dimρ[πGU][ρ||ρGU,μ].\frac{\dim\mathrm{Hom}_{\overline{\mathcal{S}}_{\psi}}(\iota_{\mathfrak{w}}(\pi_{\mathrm{J}_{b}})\otimes\iota_{\mathfrak{w}}(\pi_{\mathrm{GU}})^{\vee},V_{\rho})}{\dim\rho}[\pi_{\mathrm{GU}}][\rho\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

This equals

[πGU][Hom𝒮¯ψ(ι𝔴(πJb)ι𝔴(πGU),Vρ)||ρGU,μ].[\pi_{\mathrm{GU}}][\mathrm{Hom}_{\overline{\mathcal{S}}_{\psi}}(\iota_{\mathfrak{w}}(\pi_{\mathrm{J}_{b}})\otimes\iota_{\mathfrak{w}}(\pi_{\mathrm{GU}})^{\vee},V_{\rho})\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

Hence summing over ρ\rho, we get

MantGU,b,μ(πJb)=πGUΠψ(GU,ϱ)[πGU][Hom𝒮¯ψ(ι𝔴(πJb)ι𝔴(πGU),rμψ)||ρGU,μ].\mathrm{Mant}_{\mathrm{GU},b,\mu}(\pi_{\mathrm{J}_{b}})=\sum\limits_{\pi_{\mathrm{GU}}\in\Pi_{\psi}(\mathrm{GU},\varrho)}[\pi_{\mathrm{GU}}][\mathrm{Hom}_{\overline{\mathcal{S}}_{\psi}}(\iota_{\mathfrak{w}}(\pi_{\mathrm{J}_{b}})\otimes\iota_{\mathfrak{w}}(\pi_{\mathrm{GU}})^{\vee},r_{-\mu}\circ\psi)\otimes|\cdot|^{-\langle\rho_{\mathrm{GU}},\mu\rangle}].

In conclusion we have proven

Theorem 6.1 (Kottwitz Conjecture).

For irreducible admissible representations πJb\pi_{\mathrm{J}_{b}} of Jb(p)\mathrm{J}_{b}(\mathbb{Q}_{p}) with supercuspidal LL-parameter ψ\psi, we have the following equality in Groth(G(p)×WEμ)\mathrm{Groth}(\mathrm{G}(\mathbb{Q}_{p})\times W_{E_{\mu}}):

MantG,b,μ(ρ)=πGUΠψρ(G)[πGU][Hom𝒮¯ψρ(ι𝔴(πJb)ι𝔴(πGU),rμψ)||ρG,μ].\mathrm{Mant}_{\mathrm{G},b,\mu}(\rho)=\sum\limits_{\pi_{\mathrm{GU}}\in\Pi_{\psi_{\rho}}(\mathrm{G})}[\pi_{\mathrm{GU}}][\mathrm{Hom}_{\overline{\mathcal{S}}_{\psi_{\rho}}}(\iota_{\mathfrak{w}}(\pi_{\mathrm{J}_{b}})\otimes\iota_{\mathfrak{w}}(\pi_{\mathrm{GU}})^{\vee},r_{-\mu}\circ\psi)\otimes|\cdot|^{-\langle\rho_{\mathrm{G}},\mu\rangle}].

References

  • [Art13] James Arthur “Classifying automorphic representations” In Current developments in mathematics 2012 Int. Press, Somerville, MA, 2013, pp. 1–58
  • [Art13a] James Arthur “The endoscopic classification of representations” Orthogonal and symplectic groups 61, American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI, 2013, pp. xviii+590 DOI: 10.1090/coll/061
  • [Art88] James Arthur “The invariant trace formula. II. Global theory” In J. Amer. Math. Soc. 1.3, 1988, pp. 501–554 DOI: 10.2307/1990948
  • [Art89] James Arthur “The L2L^{2}-Lefschetz numbers of Hecke operators” In Invent. Math. 97.2, 1989, pp. 257–290 DOI: 10.1007/BF01389042
  • [Art96] James Arthur “On local character relations” In Selecta Math. (N.S.) 2.4, 1996, pp. 501–579 DOI: 10.1007/PL00001383
  • [BM21] Alexander Bertoloni Meli “An averaging formula for Rapoport-Zink spaces”, 2021
  • [BM21a] Alexander Bertoloni Meli “Global B(G) with adelic coefficents and transfer factors at non-regular elements”, 2021
  • [Boy09] Pascal Boyer “Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples” In Invent. Math. 177.2, 2009, pp. 239–280 DOI: 10.1007/s00222-009-0183-9
  • [Boy99] P. Boyer “Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale” In Invent. Math. 138.3, 1999, pp. 573–629 DOI: 10.1007/s002220050354
  • [CD90] Laurent Clozel and Patrick Delorme “Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II” In Ann. Sci. École Norm. Sup. (4) 23.2, 1990, pp. 193–228 URL: http://www.numdam.org/item?id=ASENS_1990_4_23_2_193_0
  • [Clo+11] “On the stabilization of the trace formula” 1, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications International Press, Somerville, MA, 2011, pp. xiv+527
  • [Dij72] G. Dijk “Computation of certain induced characters of pp-adic groups” In Math. Ann. 199, 1972, pp. 229–240 DOI: 10.1007/BF01429876
  • [Fal02] Gerd Faltings “A relation between two moduli spaces studied by V. G. Drinfeld” In Algebraic number theory and algebraic geometry 300, Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, pp. 115–129 DOI: 10.1090/conm/300/05145
  • [Far04] Laurent Fargues “Cohomologie des espaces de modules de groupes pp-divisibles et correspondances de Langlands locales” Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales In Astérisque, 2004, pp. 1–199
  • [FGL08] Laurent Fargues, Alain Genestier and Vincent Lafforgue “L’isomorphisme entre les tours de Lubin-Tate et de Drinfeld” 262, Progress in Mathematics Birkhäuser Verlag, Basel, 2008, pp. xxii+406
  • [GKM97] M. Goresky, R. Kottwitz and R. MacPherson “Discrete series characters and the Lefschetz formula for Hecke operators” In Duke Math. J. 89.3, 1997, pp. 477–554 DOI: 10.1215/S0012-7094-97-08922-5
  • [GL16] L. Guerberoff and J. Lin “Galois Equivariance of critical values of L-Functions for Unitary groups”, 2016
  • [HT01] Michael Harris and Richard Taylor “The geometry and cohomology of some simple Shimura varieties” With an appendix by Vladimir G. Berkovich 151, Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 2001, pp. viii+276
  • [JS81] H. Jacquet and J. A. Shalika “On Euler products and the classification of automorphic representations. II” In Amer. J. Math. 103, 1981, pp. 777–815
  • [Kal13] Tasho Kaletha “Genericity and contragredience in the local Langlands correspondence” In Algebra Number Theory 7.10, 2013, pp. 2447–2474 DOI: 10.2140/ant.2013.7.2447
  • [Kal+14] Tasho Kaletha, Alberto Minguez, Sug Woo Shin and Paul-James White “Endoscopic Classification of Representations: Inner Forms of Unitary Groups”, 2014 arXiv:1409.3731 [math.NT]
  • [KHW17] Tasho Kaletha, David Hansen and Jared Weinstein “On the Kottwitz conjecture for local Shimura varieties” In arXiv e-prints, 2017, pp. arXiv:1709.06651 arXiv:1709.06651 [math.NT]
  • [Kot14] Robert Kottwitz “B(G) for all local and global fields” In arXiv e-prints, 2014, pp. arXiv:1401.5728 arXiv:1401.5728 [math.RT]
  • [Kot83] Robert E. Kottwitz “Sign changes in harmonic analysis on reductive groups” In Trans. Amer. Math. Soc. 278.1, 1983, pp. 289–297 URL: https://doi.org/10.2307/1999316
  • [Kot84] Robert E. Kottwitz “Stable trace formula: cuspidal tempered terms” In Duke Math. J. 51.3, 1984, pp. 611–650 DOI: 10.1215/S0012-7094-84-05129-9
  • [Kot86] Robert E. Kottwitz “Stable trace formula: elliptic singular terms” In Math. Ann. 275.3, 1986, pp. 365–399 DOI: 10.1007/BF01458611
  • [Kot90] Robert E. Kottwitz “Shimura varieties and λ\lambda-adic representations” In Automorphic forms, Shimura varieties, and LL-functions, Vol. I (Ann Arbor, MI, 1988) 10, Perspect. Math. Academic Press, Boston, MA, 1990, pp. 161–209
  • [Kot92] Robert E. Kottwitz “On the λ\lambda-adic representations associated to some simple Shimura varieties” In Invent. Math. 108.3, 1992, pp. 653–665 URL: https://doi.org/10.1007/BF02100620
  • [Kot97] Robert E. Kottwitz “Isocrystals with additional structure. II” In Compositio Math. 109.3, 1997, pp. 255–339 URL: https://doi.org/10.1023/A:1000102604688
  • [KS12] R. Kottwitz and D. Shelstad “On Splitting Invariants and Sign Conventions in Endoscopic Transfer” In arXiv e-prints, 2012, pp. arXiv:1201.5658 arXiv:1201.5658 [math.RT]
  • [KT18] Tasho Kaletha and Olivier Taibi “Global Rigid Inner Forms vs Isocrystals.”, 2018 URL: https://arxiv.org/abs/1812.11373
  • [LS18] Kai-Wen Lan and Benoît Stroh “Nearby cycles of automorphic étale sheaves” In Compos. Math. 154.1, 2018, pp. 80–119 DOI: 10.1112/S0010437X1700745X
  • [LS87] R. P. Langlands and D. Shelstad “On the definition of transfer factors” In Math. Ann. 278.1-4, 1987, pp. 219–271 DOI: 10.1007/BF01458070
  • [Man05] Elena Mantovan “On the cohomology of certain PEL-type Shimura varieties” In Duke Math. J. 129.3, 2005, pp. 573–610 URL: https://doi.org/10.1215/S0012-7094-05-12935-0
  • [Man08] Elena Mantovan “On non-basic Rapoport-Zink spaces” In Ann. Sci. Éc. Norm. Supér. (4) 41.5, 2008, pp. 671–716 URL: https://doi.org/10.24033/asens.2079
  • [Mg07] Colette Mœ glin “Classification et changement de base pour les séries discrètes des groupes unitaires pp-adiques” In Pacific J. Math. 233.1, 2007, pp. 159–204 DOI: 10.2140/pjm.2007.233.159
  • [Mok15] Chung Pang Mok “Endoscopic classification of representations of quasi-split unitary groups” In Mem. Amer. Math. Soc. 235.1108, 2015, pp. vi+248 DOI: 10.1090/memo/1108
  • [Mor10] Sophie Morel “On the cohomology of certain noncompact Shimura varieties” With an appendix by Robert Kottwitz 173, Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 2010, pp. xii+217 DOI: 10.1515/9781400835393
  • [Ngu19] Kieu Hieu Nguyen “Un cas PEL de la conjecture de Kottwitz”, 2019 arXiv:1903.11505 [math.NT]
  • [PR94] Vladimir Platonov and Andrei Rapinchuk “Algebraic groups and number theory” Translated from the 1991 Russian original by Rachel Rowen 139, Pure and Applied Mathematics Academic Press, Boston, MA, 1994, pp. xii+614
  • [RV14] Michael Rapoport and Eva Viehmann “Towards a theory of local Shimura varieties” In Münster J. Math. 7.1, 2014, pp. 273–326
  • [RZ96] M. Rapoport and Th. Zink “Period spaces for pp-divisible groups” 141, Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 1996, pp. xxii+324 URL: https://doi.org/10.1515/9781400882601
  • [She82] D. Shelstad LL-indistinguishability for real groups” In Math. Ann. 259.3, 1982, pp. 385–430 DOI: 10.1007/BF01456950
  • [Shi09] Sug Woo Shin “Counting points on Igusa varieties” In Duke Math. J. 146.3, 2009, pp. 509–568 DOI: 10.1215/00127094-2009-004
  • [Shi10] Sug Woo Shin “A stable trace formula for Igusa varieties” In J. Inst. Math. Jussieu 9.4, 2010, pp. 847–895 DOI: 10.1017/S1474748010000046
  • [Shi11] Sug Woo Shin “Galois representations arising from some compact Shimura varieties” In Ann. of Math. (2) 173.3, 2011, pp. 1645–1741 URL: https://doi.org/10.4007/annals.2011.173.3.9
  • [Shi12] Sug Woo Shin “Automorphic Plancherel density theorem” In Israel J. Math. 192.1, 2012, pp. 83–120 DOI: 10.1007/s11856-012-0018-z
  • [Shi12a] Sug Woo Shin “On the cohomology of Rapoport-Zink spaces of EL-type” In Amer. J. Math. 134.2, 2012, pp. 407–452 URL: https://doi.org/10.1353/ajm.2012.0009
  • [SW20] Peter Scholze and Jared Weinstein “Berkeley lectures on pp-adic geometry”, 2020
  • [Tai17] Olivier Taibi “Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula” In Ann. Sci. Éc. Norm. Supér. (4) 50.2, 2017, pp. 269–344 DOI: 10.24033/asens.2321
  • [Tai19] Olivier Taibi “Arthur’s multiplicity formula for certain inner forms of special orthogonal and symplectic groups” In J. Eur. Math. Soc. (JEMS) 21.3, 2019, pp. 839–871 DOI: 10.4171/JEMS/852
  • [Tat79] J. Tate “Number theoretic background” In Automorphic forms, representations and LL-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26
  • [Xu16] Bin Xu “On a lifting problem of L-packets” In Compos. Math. 152.9, 2016, pp. 1800–1850 DOI: 10.1112/S0010437X16007545