This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The KSVZ Axion and Pseudo-Nambu-Goldstone Boson Models for the XENON1T Excess

Tianjun Li CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract

The XENON1T excess can be explained by the Axion Like Particle (ALP) dark matter with mass around 2.5 keV. However, there are three problems needed to be solved: suppressing the coupling gaγg_{a\gamma} between the ALP and photon, and generating the proper coupling gaeg_{ae} between the ALP and electron as well as the correct ALP mass. We propose three models to solve these problems. In our models, the gaeg_{ae} couplings are produced by integrating out the vector-like leptons, and the correct ALP masses arise from high-dimensional operators. In the KSVZ axion model, the coupling gaγg_{a\gamma} can be suppressed by choosing proper sets of vector-like fermions, but we need some fine-tunings to obtain the ALP mass. Similarly, one can study the DFSZ axion model. In the Z8Z_{8} and U(1)XU(1)_{X} models with approximate Pseudo-Nambu-Goldstone Bosons (PNGBs), the coupling gaγg_{a\gamma} is suppressed due to SU(3)C×U(1)EMSU(3)_{C}\times U(1)_{\rm EM} anomaly free. In the Z8Z_{8} model, the PNGB mass can be generated naturally at the keV scale via the dimension-8 operator. To solve the PNGB quality problem in the Z8Z_{8} model, we embed it into the model with U(1)XU(1)_{X} gauge symmetry.

Introduction.– Using the low-energy electronic recoil data with an exposure of 0.65 ton-years, the XENON Collaboration recently reported the results for new physics search Aprile et al. (2020). They have oberseved 285 events over an expected background of 232±\pm15 events, and found an excess for the electron recoil energies below 7 keV, rising towards lower energies and prominent between 2 and 3 keV. Also, they showed that the solar axion and the solar neutrino with magnetic moment can provide 3.5σ3.5\sigma and 3.2σ3.2\sigma significance fits to the excess, respectively. Unfortunately, the correponding parameter spaces are in tension with stellar cooling bounds Córsico et al. (2014); Giannotti et al. (2017); Díaz et al. (2019). With an unconstrained tritium component in the fitting, both the solar axion and the solar neutrino magnetic moment hypotheses no longer have the substantial statistical significance, and their significance levels are respectively reduced to 2.1σ2.1\sigma and 0.9σ0.9\sigma. This excess has been studied extensively via solar axion, Axion Like Particles (ALPs), the non-standard neutrino-electron interactions with light mediators, and dark photon, etc Takahashi et al. (2020); Kannike et al. (2020); Amaral et al. (2020); Boehm et al. (2020); Bally et al. (2020); Aristizabal Sierra et al. (2020); Khan (2020); An et al. (2020); Lindner et al. (2020); Di Luzio et al. (2020); Gao et al. (2020); Alonso-Álvarez et al. (2020); Nakayama and Tang (2020); Bloch et al. (2020); Fornal et al. (2020); Chen et al. (2020); Cao et al. (2020); Jho et al. (2020); Harigaya et al. (2020); Su et al. (2020); Lee (2020); Bramante and Song (2020); Baryakhtar et al. (2020); Du et al. (2020); Choi et al. (2020); Buch et al. (2020); Dey et al. (2020); Bell et al. (2020); Paz et al. (2020); Dent et al. (2020); McKeen et al. (2020); Robinson (2020); Primulando et al. (2020); DeRocco et al. (2020); An and Yang (2020); Ko and Tang (2020); Delle Rose et al. (2020); Chao et al. (2020); Bhattacherjee and Sengupta (2020); Gao and Li (2020); Dessert et al. (2020); Alhazmi et al. (2020); Cacciapaglia et al. (2020); Baek et al. (2020); Zioutas et al. (2020); Sun and He (2020).

It is well-known that the Peccei-Quinn mechanism Peccei and Quinn (1977a, b) provides a natural solution to the strong CP problem in the Quantum Chromodynamics (QCD), and predicts a light Pseudo-Nambu-Goldstone Boson (PNGB), dubbed as axion aa from QCD anomalous U(1)PQU(1)_{PQ} global symmetry breaking. The electrwoeak axion Peccei and Quinn (1977a, b); Weinberg (1978); Wilczek (1978) was ruled out by the KπaK\to\pi a and J/ΨaγJ/\Psi\to a\gamma experiments. And there are two viable invisible axion models: the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model Dine et al. (1981); Zhitnitsky (1980) and Kim-Shifman-Vainshtein-Zakharov (KSVZ) model Kim (1979); Shifman et al. (1980) with U(1)PQU(1)_{PQ} symmetry breaking scale from about 101010^{10} GeV to 101210^{12} GeV. Interestingly, the ALPs, which are the generalizations of axion, may be intrinsic the structure of string theory. The ALP dark matter can explain the XENON1T excess via the electron absorption Takahashi et al. (2020); Bloch et al. (2020), and let us study its properties before our model building. The Lagrangian between axion and photon/fermions is

aint\displaystyle\mathcal{L}^{\rm int}_{a} \displaystyle\supset αEM8πCaγfaaFF~+Cafμa2faf¯γμγ5f,\displaystyle\frac{\alpha_{\rm EM}}{8\pi}\frac{C_{a\gamma}}{f_{a}}aF\tilde{F}+C_{af}\frac{\partial_{\mu}a}{2f_{a}}\bar{f}\gamma^{\mu}\gamma_{5}f\,, (1)

where αEM\alpha_{\rm EM} is structure constant, faf_{a} is the axion decay constant, and CaγC_{a\gamma} and CafC_{af} are the couplings. The above Lagragian can be rewritten as

aint14gaγaFF~igafaf¯γ5f,\displaystyle\mathcal{L}^{\rm int}_{a}\supset\frac{1}{4}g_{a\gamma}aF\tilde{F}-ig_{af}a\bar{f}\gamma_{5}f~{},~{} (2)

where

gaγ=αEM2πCaγfa,gaf=Cafmffa.\displaystyle g_{a\gamma}=\frac{\alpha_{\rm EM}}{2\pi}\frac{C_{a\gamma}}{f_{a}}\,,\qquad g_{af}=C_{af}\frac{m_{f}}{f_{a}}\,.

The best fit for the XENON1T excess gives Bloch et al. (2020)

ma=2.5 keV,gae=2.5×1014.m_{a}=2.5\text{ keV}~{},~{}~{}g_{ae}=2.5\times 10^{-14}~{}.~{} (3)

In particular, the cooling constraint gae<2.5×1013g_{ae}<2.5\times 10^{-13} can be satisfied Giannotti et al. (2017); Díaz et al. (2019). The stronger constraint on the decay width for the axion decay into diphoton arises from the observation of the cosmic X-ray backgroud (CXB) gives Hill et al. (2018)

CaγCae2.9×103(2.5keVma)3/2(2.5×1014gae).\displaystyle\frac{C_{a\gamma}}{C_{ae}}\lesssim 2.9\times 10^{-3}\left(\frac{2.5~{}{\rm keV}}{m_{a}}\right)^{3/2}\left(\frac{2.5\times 10^{-14}}{g_{ae}}\right)\,. (4)

And then we obtain

Caγ2.9×103(fa2×1010GeV).\displaystyle C_{a\gamma}\lesssim 2.9\times 10^{-3}\left(\frac{f_{a}}{2\times 10^{10}~{}{\rm GeV}}\right)~{}.~{}\, (5)

For the QCD axion models, we have

Caγ\displaystyle C_{a\gamma} =\displaystyle= EN1.92(4).\displaystyle\frac{E}{N}-1.92(4).~{}\, (6)

where EE and NN are respectively the electromagnetic and QCD anomaly factors, and 1.92(4)1.92(4) is generated by the mixing of the axion with the QCD mesons below the confinement scale.

Next, let us discuss the properites of the ALP dark matter particle, which can explain the XENON1T excess. First, we shall show fa2×1010GeVf_{a}\simeq 2\times 10^{10}~{}{\rm GeV} later, and then the traditional QCD axion will have a mass around 2.85×1042.85\times 10^{-4} eV. Thus, the ALP dark matter particle cannot be the traditional QCD axion. Second, from Eq. (5), we obtain Caγ2.9×103C_{a\gamma}\lesssim 2.9\times 10^{-3}. In general, there exists about 0.1%0.1\% fine-tuning for Eq. (6), and the natural solution to it is that both the first term and the second term on the right-handed side vanish: the first condition implies that we do not have [U(1)EM]2U(1)PQ[U(1)_{\rm EM}]^{2}U(1)_{PQ} anomaly, while the second condition means no mixing between axion and QCD mesons and thus we do not have [SU(3)]2U(1)PQ[SU(3)]^{2}U(1)_{PQ} anomaly. Therefore, the ALP dark matter particle, which can explain the XENON1T excess, might arise from breaking of a SU(3)C×U(1)EMSU(3)_{C}\times U(1)_{\rm EM} anomaly free U(1)XU(1)_{X} symmetry (or its discrete subgroup) and is a PNGB.

In short, to explain the XENON1T excess via a PNGB dark matter, we need to address three problems: how to suppress the coupling gaγg_{a\gamma}, and how to generate the coupling gaeg_{ae} as well as the correct ALP mass. We shall propose three models to solve these problems: the KSVZ axion model with U(1)PQU(1)_{PQ} symmetry, the model with Z8Z_{8} discrete symmetry, and the model with U(1)XU(1)_{X} gauge symmetry. In our models, assuming that the right-handed electron is charged under U(1)PQU(1)_{PQ}, Z8Z_{8}, and U(1)XU(1)_{X} symmetries, we can produce the gaeg_{ae} couplings by integrating out the vector-like leptons. In the KSVZ axion model, the coupling gaγg_{a\gamma} can be suppressed by choosing proper sets of vector-like fermions. And with some fine-tuning, we can obtain the correct axion mass from high-dimensional operators via quantum gravity effects. Similarly, one can study the DFSZ model, where the coupling gaeg_{ae} is present and thus we do not need to generate it. In the Z8Z_{8} and U(1)XU(1)_{X} models, we do not have SU(3)C×U(1)EMSU(3)_{C}\times U(1)_{\rm EM} anomaly, so the coupling gaγg_{a\gamma} is suppressed. In the SU(3)C×SU(2)L×U(1)Y×Z8SU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times Z_{8} model, we obtain the decay constant around 2×10102\times 10^{10} GeV for the best fit. The correct PNGB aa mass around 2.5 keV can be generated from dimension-8 operator naturally. We also show that aa has a lifetime long enough to be a dark matter candidate. Moreover, the PNGB dark matter density around the observed value can be generated via the misaligment mechanism, while its thermal density is negligible. Furthermore, to solve the PNGB quality problem via quantum gravity effects in the Z8Z_{8} model, we embed it into a SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} model. The U(1)XU(1)_{X} gauge symmetry is broken down to a Z8Z_{8} discrete symmetry around the string scale 101710^{17} GeV, and then the Z8Z_{8} model can be realized.

 XQiXQ_{i}  (𝟑,𝟐,𝟏/𝟔,𝟏)(\mathbf{3},\mathbf{2},\mathbf{1/6},\mathbf{1}) XQicXQ_{i}^{c}  (𝟑¯,𝟐,𝟏/𝟔,𝟏)(\mathbf{\overline{3}},\mathbf{2},\mathbf{-1/6},\mathbf{1})
 XUiXU_{i}  (𝟑,𝟏,𝟐/𝟑,𝟏)(\mathbf{3},\mathbf{1},\mathbf{2/3},\mathbf{1}) XUicXU_{i}^{c}  (𝟑¯,𝟏,𝟐/𝟑,𝟏)(\mathbf{\overline{3}},\mathbf{1},\mathbf{-2/3},\mathbf{1})
 XDiXD_{i}  (𝟑,𝟏,𝟏/𝟑,𝟏)(\mathbf{3},\mathbf{1},\mathbf{-1/3},\mathbf{1}) XDicXD_{i}^{c}  (𝟑¯,𝟏,𝟏/𝟑,𝟏)(\mathbf{\overline{3}},\mathbf{1},\mathbf{1/3},\mathbf{1})
XLiXL_{i}  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{1}) XLicXL_{i}^{c} (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{1/2},\mathbf{1})
XEiXE_{i}  (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{-1},\mathbf{1}) XEicXE_{i}^{c} (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1})
 SS (𝟏,𝟏,𝟎,𝟐)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{-2})
Table 1: The particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×U(1)PQSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{PQ} gauge and global symmetries.

The KSVZ Axion Model.– First, we construct the KSVZ axion model which can explain the XENON1T excess. We introduce the vector-like fermions (XQic,XQic)(XQ^{c}_{i},~{}XQ^{c}_{i}), (XUic,XUic)(XU^{c}_{i},~{}XU^{c}_{i}), (XDic,XDic)(XD^{c}_{i},~{}XD^{c}_{i}), (XLic,XLi)(XL^{c}_{i},~{}XL_{i}), and (XEic,XEic)(XE^{c}_{i},~{}XE^{c}_{i}), as well as a SM singlet axion field SS. For simplicity, we assme the vector-like fermions have U(1)PQU(1)_{PQ} charge +1+1, while SS has U(1)PQU(1)_{PQ} charge 2-2 These particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×U(1)PQSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{PQ} gauge and global symmetries are summarized in Table 1.

The Lagrangian is given by

\displaystyle-{\cal L} =\displaystyle= mS2|S|2+λS|S|4+(yijXQSXQiXQjc\displaystyle-m_{S}^{2}|S|^{2}+\lambda_{S}|S|^{4}+\left(y^{XQ}_{ij}SXQ_{i}XQ_{j}^{c}\right. (7)
+yijXUSXUiXUjc+yijXDSXDiXDjc\displaystyle\left.+y^{XU}_{ij}SXU_{i}XU_{j}^{c}+y^{XD}_{ij}SXD_{i}XD_{j}^{c}\right.
+yijXLSXLiXLjc+yijXUSXEiXEjc+H.C.).\displaystyle\left.+y^{XL}_{ij}SXL_{i}XL_{j}^{c}+y^{XU}_{ij}SXE_{i}XE_{j}^{c}+{\rm H.C.}\right)~{}.~{}\,

To have small CaγC_{a\gamma}, we need to find the sets of vector-like fermions which gives E/NE/N close to 1.92(4). Because the contribution to the electromagnetic anomaly factor from (XLic,XLi)(XL^{c}_{i},~{}XL_{i}) is the same as the (XEic,XEic)(XE^{c}_{i},~{}XE^{c}_{i}), we do not consider (XEic,XEi)(XE^{c}_{i},~{}XE_{i}) for simplicity. Of course, any (XLic,XLic)(XL^{c}_{i},~{}XL^{c}_{i}) can be replaced by a (XEic,XEi)(XE^{c}_{i},~{}XE_{i}) in the following discussions. For nn pairs of (XQic,XQic)(XQ^{c}_{i},~{}XQ^{c}_{i}), mm pairs of (XUic,XUic)(XU^{c}_{i},~{}XU^{c}_{i}), kk pairs of (XDic,XDic)(XD^{c}_{i},~{}XD^{c}_{i}), and ll pairs of (XLic,XLic)(XL^{c}_{i},~{}XL^{c}_{i}), we obtain the condition Caγ0C_{a\gamma}\simeq 0

10n+8m+2k+6l6n+3m+3k\displaystyle\frac{10n+8m+2k+6l}{6n+3m+3k} \displaystyle\simeq 1.92(4).\displaystyle 1.92(4)~{}.~{}\, (8)

It is not difficult to find the approximate solution to the above equation, for example 10n+8m+2k+6l6n+3m+3k=2\frac{10n+8m+2k+6l}{6n+3m+3k}=2 for n=m=0n=m=0, k=6k=6, and l=4l=4. In addition, assuming that the right-handed electron and muon are charged under U(1)PQU(1)_{PQ} symmetry and introducing the vector-like fermions (XL1,XL1c)(XL_{1},~{}XL_{1}^{c}) and (XL2,XL2c)(XL_{2},~{}XL_{2}^{c}), we can generate the coupling gaeeg_{aee} as we discuss in the following Z8Z_{8} and U(1)XU(1)_{X} models. If the QCD axion only obtains mass via instanton effect, its mass will be too small since the decay constant is around 101010^{10} GeV as in the following discussions. Therefore, the key question is how to generate the correct axion mass around 2.52.5 keV. As we know, the global U(1)PQU(1)_{PQ} symmetry can be broken by the quantum gravity effects. To be concrete, we consider the following effective operator with dimension d=2m+nd=2m+n that violates the PQ symmetry by nn units Irastorza and Redondo (2018)

V\displaystyle V λnm|S|2m(eiδnmSn+eiδnmSn)MPld4\displaystyle\supset\frac{\lambda^{m}_{n}|S|^{2m}\left(e^{-i\delta^{m}_{n}}S^{n}+e^{i\delta^{m}_{n}}{S^{\dagger}}^{n}\right)}{{\rm M_{Pl}}^{d-4}}
m2fa2(θ22θntanδnm),\displaystyle\approx m^{2}_{*}f^{2}_{a}\left(\frac{\theta^{2}}{2}-\frac{\theta}{n}\tan\delta^{m}_{n}\right)\,,

where we have expanded for θ=afa1\theta=\frac{a}{f_{a}}\ll 1 by neglecting an irrelevant constant. Here, MPlM_{\rm Pl} is the reduced Planck scale, λnm\lambda^{m}_{n} is real and δnm\delta^{m}_{n} the phase of the coupling, S=12(fa+s)eia/faS=\frac{1}{\sqrt{2}}(f_{a}+s)e^{ia/f_{a}}, and m2=λnmfa22(fa/(2MPl))d4cosδnmm^{2}_{*}=\frac{\lambda^{m}_{n}f^{2}_{a}}{2}\left(f_{a}/(\sqrt{2}{\rm M_{Pl}})\right)^{d-4}\!\!\cos\delta^{m}_{n}. In particular, the linear term or tadpole term will shift the QCD vacuum from θ=0\langle\theta\rangle=0. Therefore, if we have multiple high-dimensional operators, we can find the fine-tuned solution where the sum of the linear terms is zero or so small that the solution to the strong CP problem can be preserved. And the condition is

m,ntanδnmn\displaystyle\sum_{m,n}\frac{\tan\delta^{m}_{n}}{n} \displaystyle\simeq 0.\displaystyle 0~{}.~{}\, (9)

Also, the axion mass is given by

ma\displaystyle m_{a} =\displaystyle= m,nλnmfa22(fa/(2MPl))d4cosδnm.\displaystyle\sqrt{\sum_{m,n}\frac{\lambda^{m}_{n}f^{2}_{a}}{2}\left(f_{a}/(\sqrt{2}{\rm M_{Pl}})\right)^{d-4}\!\!\cos\delta^{m}_{n}}~{}.~{}\, (10)

Therefore, with some fine-tuning, we have shown that the KSVZ axion model can explain the XENON1T excess. Similarly, one can study the DFSZ model, where the coupling gaeg_{ae} is present, and then we do not need to generate it.

The Z8Z_{8} Model.– We shall propose a SU(3)C×SU(2)L×U(1)Y×Z8SU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times Z_{8} model where Z8Z_{8} is a global discrete symmetry. First, let us explain our convention, which is the same as the supersymmetric Standard Model (SM). The SM quark doublets, right-handed up-type quarks, right-handed down-type quarks, lepton doublets, right-handed charged leptons, right-handed neutrinos, and the SM Higgs doublet are denoted as QiQ_{i}, UicU_{i}^{c}, DicD_{i}^{c}, LiL_{i}, EicE_{i}^{c}, NicN_{i}^{c}, and HH, respectively. We shall construct the models where the masses and mixings for the SM quarks and neutrinos are generated in a traditional way. Thus, QiQ_{i}, UicU_{i}^{c}, DicD_{i}^{c}, LiL_{i}, NicN_{i}^{c}, and HH are not charged under Z8Z_{8} discrete symmetry. Also, we assume that the Z8Z_{8} quantum numbers for right-handed electron E1cE_{1}^{c}, muon E2cE_{2}^{c}, and tau E3cE_{3}^{c} are +1+1, 1-1, and 0, respectively. To break the Z8Z_{8} gauge symmetry and have a approximate PNGB, we introduce a SM singlet scalar SS with charge 1-1 under Z8Z_{8}. Moreover, to generate the electron and mun Yukawa couplings, we introduce two pairs of vector-like fermions (XL1,XL1c)(XL_{1},~{}XL_{1}^{c}) and (XL2,XL2c)(XL_{2},~{}XL_{2}^{c}). These particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×Z8SU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times Z_{8} gauge and discrete symmetries are summarized in Table 2.

 QiQ_{i}  (𝟑,𝟐,𝟏/𝟔,𝟎)(\mathbf{3},\mathbf{2},\mathbf{1/6},\mathbf{0}) UicU_{i}^{c}  (𝟑¯,𝟏,𝟐/𝟑,𝟎)(\mathbf{\overline{3}},\mathbf{1},\mathbf{-2/3},\mathbf{0})
 DicD_{i}^{c}  (𝟑¯,𝟏,𝟏/𝟑,𝟎)(\mathbf{\overline{3}},\mathbf{1},\mathbf{1/3},\mathbf{0})  LiL_{i}  (𝟏,𝟐,𝟏/𝟐,𝟎)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{0})
E1cE_{1}^{c} (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1}) E2cE_{2}^{c} (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{-1})
E3cE_{3}^{c} (𝟏,𝟏,𝟏,𝟎)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{0})  NicN_{i}^{c} (𝟏,𝟏,𝟎,𝟎)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{0})
XL1XL_{1}  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{-1}) XL1cXL_{1}^{c} (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{1/2},\mathbf{1})
XL2XL_{2}  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{1}) XL2cXL_{2}^{c} (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{1/2},\mathbf{-1})
HH  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{1})  SS (𝟏,𝟏,𝟎,𝟏)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{-1})
Table 2: The particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×Z8SU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times Z_{8} gauge and discrete symmetries.

The scalar potential in our model is given by

V\displaystyle V =\displaystyle= mS2|S|2mH2|H|2+λS|S|4+λSH|S|2|H|2\displaystyle-m_{S}^{2}|S|^{2}-m_{H}^{2}|H|^{2}+\lambda_{S}|S|^{4}+\lambda_{SH}|S|^{2}|H|^{2} (11)
+λH|H|4+yMPl4|S|8+1MPl4(yS8+H.C.).\displaystyle+\lambda_{H}|H|^{4}+\frac{y}{M^{4}_{\rm Pl}}|S|^{8}+\frac{1}{M^{4}_{\rm Pl}}\left(y^{\prime}S^{8}+{\rm H.C.}\right)~{}.~{}

For simplicity, we assume y>|y|y>|y^{\prime}| so that the potential is stabilized. From the the dimension-8 operator yS8/MPl4y^{\prime}S^{8}/M^{4}_{\rm Pl}, we obtain the mass of the PNGB aa is at the order of |S|6/MPl4|\langle S\rangle|^{6}/M_{\rm Pl}^{4}.

The Lagrangian for the Yukawa couplings and vector-like fermion masses is

\displaystyle-{\cal L} =\displaystyle= yijUQiUjcH¯+yijDQiDjcH+yi3ELiE3cH+yijνLiNjcH¯\displaystyle y_{ij}^{U}Q_{i}U_{j}^{c}\overline{H}+y_{ij}^{D}Q_{i}D_{j}^{c}H+y_{i3}^{E}L_{i}E_{3}^{c}H+y_{ij}^{\nu}L_{i}N_{j}^{c}\overline{H} (12)
+y1XLXL1E1cH+y2XLXL2E2cH+yiSSLiXL1c\displaystyle+y^{XL}_{1}XL_{1}E_{1}^{c}H+y^{XL}_{2}XL_{2}E_{2}^{c}H+y^{S}_{i}SL_{i}XL_{1}^{c}
+yiS¯S¯LiXL2c+MijNNicNjc+M1XLXL1XL1c\displaystyle+y^{\overline{S}}_{i}\overline{S}L_{i}XL_{2}^{c}+M^{N}_{ij}N_{i}^{c}N_{j}^{c}+M^{XL}_{1}XL_{1}XL_{1}^{c}
+M2XLXL2XL2c+H.C.,\displaystyle+M^{XL}_{2}XL_{2}XL_{2}^{c}+{\rm H.C.}~{},~{}\,

Using yijνLiNjcH¯y_{ij}^{\nu}L_{i}N_{j}^{c}\overline{H} and MijNNicNjcM_{ij}^{N}N_{i}^{c}N_{j}^{c} terms, we can generate the neutrino masses and mixings via Type I seesaw mechanism. For simplicity, we choose y1S0y^{S}_{1}\not=0 and y2S¯=0y^{\overline{S}}_{2}=0, while y2S=y3S=y1S¯=y3S¯=0y^{S}_{2}=y^{S}_{3}=y^{\overline{S}}_{1}=y^{\overline{S}}_{3}=0. After integrating out the vector-like particles (XL1,XL1c)(XL_{1},XL_{1}^{c}) and (XL2,XL2c)(XL_{2},XL_{2}^{c}), we obtain

\displaystyle-{\cal L} \displaystyle\supset 1M1XLy1XLy1SSL1E1cH\displaystyle-\frac{1}{M^{XL}_{1}}y_{1}^{XL}y_{1}^{S}SL_{1}E_{1}^{c}H (13)
1M2XLy2XLy2S¯S¯L2E2cH+H.C..\displaystyle-\frac{1}{M^{XL}_{2}}y_{2}^{XL}y_{2}^{\overline{S}}\overline{S}L_{2}E_{2}^{c}H+{\rm H.C.}~{}.~{}\,

Thus, we obtain

faS\displaystyle f_{a}~{}\equiv~{}\langle S\rangle =\displaystyle= megae=2×1010GeV×(2.5×1014gae).\displaystyle\frac{m_{e}}{g_{ae}}~{}=~{}2\times 10^{10}~{}{\rm GeV}\times\left(\frac{2.5\times 10^{-14}}{g_{ae}}\right)~{}.~{}\,

Therefore, for the best fit, we have fa=2×1010f_{a}=2\times 10^{10} GeV. And then the mass of the PNGB aa is around keV scale from the dimension-8 operator yS8/MPl4y^{\prime}S^{8}/M^{4}_{\rm Pl} in Eq.(11), and we can indeed take it as 2.5 keV.

After integrating out the electron and muon, we obtain the effective Lagrangian between the PNGB aa and photon Nakayama et al. (2014)

eff\displaystyle{\cal L}_{\rm eff} =\displaystyle= αemma248πfa(1me21mμ2)aFμνF~μν.\displaystyle\frac{\alpha_{\rm em}m_{a}^{2}}{48\pi f_{a}}\left(\frac{1}{m_{e}^{2}}-\frac{1}{m_{\mu}^{2}}\right)aF_{\mu\nu}\tilde{F}^{\mu\nu}\,. (14)

And then we get

Caγ\displaystyle C_{a\gamma} =\displaystyle= 16(ma2me2ma2mμ2)4.17×106,\displaystyle\frac{1}{6}\left(\frac{m_{a}^{2}}{m_{e}^{2}}-\frac{m_{a}^{2}}{m_{\mu}^{2}}\right)\simeq 4.17\times 10^{-6}~{},~{}\, (15)

which is much smaller than 2.9×1032.9\times 10^{-3} and is negligible. The PNGB aa can decay into two photons via the above effective interaction, and the decay rate is Nakayama et al. (2014)

Γaγγαem2qe29216π3ma7me4fa2\displaystyle\Gamma_{a\to\gamma\gamma}~{}\simeq~{}\frac{\alpha_{\rm em}^{2}q_{e}^{2}}{9216\pi^{3}}\frac{m_{a}^{7}}{m_{e}^{4}f_{a}^{2}}\,
4.17×1057GeV(ma2keV)7(2×1010GeVfa)2.\displaystyle\simeq~{}4.17\times 10^{-57}\,{\rm GeV}~{}\left(\frac{m_{a}}{2~{}{\rm keV}}\right)^{7}\left(\frac{2\times 10^{10}~{}{\rm GeV}}{f_{a}}\right)^{2}\,.

So the constraint on the flux of the X-ray photons produced by the PNGB decay can be satisfied Takahashi et al. (2020); Caputo et al. (2020).

In our model, the relativistic PNGBs can be produced from the scatterings between electron/muon and the Higgs bosons in the thermal bath. The resulting abundance is Nakayama et al. (2014)

Ωa(th)h2\displaystyle\Omega_{a}^{\rm(th)}h^{2}\sim 3.28×104(TR3×105GeV)(ma2.5keV)\displaystyle 3.28\times 10^{-4}\left(\frac{T_{R}}{3\times 10^{5}~{}{\rm GeV}}\right)\left(\frac{m_{a}}{2.5~{}{\rm keV}}\right) (16)
×(2×1010GeVfa)2,\displaystyle\times\left(\frac{2\times 10^{10}~{}{\rm GeV}}{f_{a}}\right)^{2}~{},~{}\,

where TRT_{R} is the reheating temperature. Thus, the thermal relic density of aa is negligible.

The PNGB aa can be produced by the misalignment mechanism as well. When the Hubble parameter is smaller than the mass of aa, it begins to oscillate around its potential minimum. The temperature ToscT_{\rm osc} at the onset of the PNGB oscillation is Takahashi et al. (2020); Nakayama et al. (2014)

Tosc1.12×106GeV(ma2.5keV)1/2.\displaystyle T_{\rm osc}\sim 1.12\times 10^{6}~{}{\rm GeV}\left(\frac{m_{a}}{2.5~{}{\rm keV}}\right)^{1/2}\,. (17)

For the temperature higher than ToscT_{\rm osc}, the PNGB field aa has a field value which is not the potential minimum in general. We define the initial oscillation amplitude as aInitialθmisfaa_{\rm Initial}\equiv\theta_{\rm mis}f_{a} with θmis\theta_{\rm mis} the misalignment angle, and obtain the oscillation energy of the PNGB aa Takahashi et al. (2020); Nakayama et al. (2014)

Ωa(mis)h2\displaystyle\Omega_{a}^{\rm(mis)}h^{2}\sim  0.1(θ4)2(fa2×1010GeV)2\displaystyle\,0.1\left(\frac{\theta_{*}}{4}\right)^{2}\left(\frac{f_{a}}{2\times 10^{10}~{}{\rm GeV}}\right)^{2} (20)
×{(TR106GeV)forTRTosc(ma2.5keV)1/2forTRTosc.\displaystyle\times\left\{\begin{array}[]{ll}\left(\frac{T_{R}}{10^{6}~{}{\rm GeV}}\right)&{\rm for}~{}~{}T_{R}\lesssim T_{\rm osc}\vspace{0.1cm}\\ \left(\frac{m_{a}}{2.5~{}{\rm keV}}\right)^{1/2}&{\rm for}~{}~{}T_{R}\gtrsim T_{\rm osc}\end{array}\right.\,.

Thus, to realize the observed dark matter relic density, we need large initial misalignment angle. We consider the reheating temperature is higher than the oscillation temperature, and the Z8Z_{8} symmetry breaking is after inflation. Thus, the decays of the topological defects such as cosmic string and domain wall might contribute to the relic density of the PNGB aa as well.

The U(1)XU(1)_{X} Model.– In the above model, Z8Z_{8} is a discrete symmetry, and can be broken via the quantum gravity effects. Thus, the above discussions might not be valid in general if we consider quantum gravity corrections, which is called the PNGB quality problem. Because we do not solve the strong CP problem, in principle we are fine with quantum gravity corrections since we can fine-tune some parameters in our models. To solve the PNGB quality problem, we propose the SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} model where the U(1)XU(1)_{X} gauge symmetry is broken down to the Z8Z_{8} discrete symmetry around the string scale 101710^{17} GeV. In addition to the particles in the Z8Z_{8} model, we shall introduce two pairs of vector-like particles (XE1,XE1c)(XE_{1},XE^{c}_{1}) and (XE2,XE2c)(XE_{2},XE^{c}_{2}), as well as a SM singlet Higgs scalar field TT with U(1)XU(1)_{X} charge 8. The particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} gauge symmetry are given in Table 3. And one can easily show that our model is anomaly free.

 QiQ_{i}  (𝟑,𝟐,𝟏/𝟔,𝟎)(\mathbf{3},\mathbf{2},\mathbf{1/6},\mathbf{0}) UicU_{i}^{c}  (𝟑¯,𝟏,𝟐/𝟑,𝟎)(\mathbf{\overline{3}},\mathbf{1},\mathbf{-2/3},\mathbf{0})
 DicD_{i}^{c}  (𝟑¯,𝟏,𝟏/𝟑,𝟎)(\mathbf{\overline{3}},\mathbf{1},\mathbf{1/3},\mathbf{0})  LiL_{i}  (𝟏,𝟐,𝟏/𝟐,𝟎)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{0})
E1cE_{1}^{c} (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1}) E2cE_{2}^{c} (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{-1})
E3cE_{3}^{c} (𝟏,𝟏,𝟏,𝟎)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{0})  NicN_{i}^{c} (𝟏,𝟏,𝟎,𝟎)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{0})
XL1XL_{1}  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{-1}) XL1cXL_{1}^{c} (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{1/2},\mathbf{1})
XL2XL_{2}  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{1}) XL2cXL_{2}^{c} (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{1/2},\mathbf{-1})
XE1XE_{1}  (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{-1},\mathbf{-1}) XE1cXE_{1}^{c} (𝟏,𝟏,𝟏,𝟎)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{0})
XE2XE_{2}  (𝟏,𝟏,𝟏,𝟏)(\mathbf{1},\mathbf{1},\mathbf{-1},\mathbf{1}) XE2cXE_{2}^{c} (𝟏,𝟏,𝟏,𝟎)(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{0})
HH  (𝟏,𝟐,𝟏/𝟐,𝟏)(\mathbf{1},\mathbf{2},\mathbf{-1/2},\mathbf{1})  SS (𝟏,𝟏,𝟎,𝟏)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{-1})
TT (𝟏,𝟏,𝟎,𝟖)(\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{8})
Table 3: The particles and their quantum numbers under the SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} gauge symmetry.

The scalar potential is given by

V\displaystyle V =\displaystyle= mS2|S|2mT2|T|2mH2|H|2+λS|S|4\displaystyle-m_{S}^{2}|S|^{2}-m_{T}^{2}|T|^{2}-m_{H}^{2}|H|^{2}+\lambda_{S}|S|^{4} (21)
+λT|T|4+λH|H|4+λST|S|2|T|2\displaystyle+\lambda_{T}|T|^{4}+\lambda_{H}|H|^{4}+\lambda_{ST}|S|^{2}|T|^{2}
+λSH|S|2|H|2+λTH|T|2|H|2\displaystyle+\lambda_{SH}|S|^{2}|H|^{2}+\lambda_{TH}|T|^{2}|H|^{2}
+yMPl6|T2||S|8+1MPl5(yTS8+H.C.).\displaystyle+\frac{y}{M^{6}_{\rm Pl}}|T^{2}||S|^{8}+\frac{1}{M^{5}_{\rm Pl}}\left(y^{\prime}TS^{8}+{\rm H.C.}\right)~{}.~{}

To stabilize the potential after U(1)XU(1)_{X} gauge symmetry breaking, we require

yMPl6|T|2>1MPl5|yT|.\displaystyle\frac{y}{M^{6}_{\rm Pl}}|\langle T\rangle|^{2}~{}>~{}\frac{1}{M^{5}_{\rm Pl}}|y^{\prime}\langle T\rangle|~{}.~{}\, (22)

The Lagrangian for the Yukawa couplings and vector-like fermion masses is

\displaystyle-{\cal L} =\displaystyle= yijUQiUjcH¯+yijDQiDjcH+yi3ELiE3cH+yijνLiNjcH¯\displaystyle y_{ij}^{U}Q_{i}U_{j}^{c}\overline{H}+y_{ij}^{D}Q_{i}D_{j}^{c}H+y_{i3}^{E}L_{i}E_{3}^{c}H+y_{ij}^{\nu}L_{i}N_{j}^{c}\overline{H} (23)
+y1XLXL1E1cH+y2XLXL2E2cH+yikXELiXEkcH\displaystyle+y^{XL}_{1}XL_{1}E_{1}^{c}H+y^{XL}_{2}XL_{2}E_{2}^{c}H+y^{XE}_{ik}L_{i}XE^{c}_{k}H
+yiSSLiXL1c+yiS¯S¯LiXL2c+ykS¯S¯XE1XEkc\displaystyle+y^{S}_{i}SL_{i}XL_{1}^{c}+y^{\overline{S}}_{i}\overline{S}L_{i}XL_{2}^{c}+y^{\prime\overline{S}}_{k}\overline{S}XE_{1}XE_{k}^{c}
+yiSSXE2XEkc+MijNNicNjc+M1XLXL1XL1c\displaystyle+y^{\prime S}_{i}SXE_{2}XE_{k}^{c}+M^{N}_{ij}N_{i}^{c}N_{j}^{c}+M^{XL}_{1}XL_{1}XL_{1}^{c}
+M2XLXL2XL2c+H.C.,\displaystyle+M^{XL}_{2}XL_{2}XL_{2}^{c}+{\rm H.C.}~{},~{}\,

where i,j=1,2,3i,~{}j=1,~{}2,~{}3, and k=1,2k=1,~{}2.

We assume that TT acquires a Vacuum Expectation Value (VEV) around string scale 101710^{17} GeV, and then the U(1)XU(1)_{X} gauge symmetry is broken down to a discrete Z8Z_{8} symmetry. To realize the Lagrangian in Eq. (12), we require the Yukawa couplings yikXEy^{XE}_{ik} to be zero or very small. This can be done in two ways. First, we introduce a Z2Z_{2} symmetry under which (XE1,XE1c)(XE_{1},XE^{c}_{1}) and (XE2,XE2c)(XE_{2},XE^{c}_{2}) are odd while all the other particles are even. So, the yikXELiXEkcHy^{XE}_{ik}L_{i}XE^{c}_{k}H terms will be forbidden. Because (XE1,XE1c)(XE_{1},XE^{c}_{1}) and (XE2,XE2c)(XE_{2},XE^{c}_{2}) cannot decay into the SM particles completely and they are charged particles, we need to require that the reheating temperature is smaller than their masses, for example, around 101010^{10} GeV. Second, we consider the five-dimensional space-time on S1/Z2S^{1}/Z_{2}, and assume that the SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} gauge bosons, SS, TT, (XE1,XE1c)(XE_{1},XE^{c}_{1}) and (XE2,XE2c)(XE_{2},XE^{c}_{2}) are in the bulk, while all the rest particles are on the 3-brane at y=0y=0. In addition, we assume that the wave functions for (XE1,XE1c)(XE_{1},XE^{c}_{1}) and (XE2,XE2c)(XE_{2},XE^{c}_{2}) are highly suppressed on the 3-brane at y=0y=0, and then the Yukawa couplings yikXEy^{XE}_{ik} will be very small. The rest discussions are similar to the above Section, so we shall not repeat it here. In short, we can sovle the PNGB quality problem in the SU(3)C×SU(2)L×U(1)Y×U(1)XSU(3)_{C}\times SU(2)_{L}\times U(1)_{Y}\times U(1)_{X} model.

Conclusion.– We proposed three models to explain the XENON1T excess. In our models, the gaeg_{ae} couplings are generated by integrating out the vector-like leptons, and the correct PNGB mass arises from high-dimensional operators. In the KSVZ axion model, the coupling gaγg_{a\gamma} can be suppressed by choosing proper sets of vector-like fermions, but we need some fine-tuning to obtain the ALP mass. In the Z8Z_{8} model, the coupling gaγg_{a\gamma} is suppressed due to SU(3)C×U(1)EMSU(3)_{C}\times U(1)_{\rm EM} anomaly free, and the PNGB mass can be generated naturally at the keV scale via the dimension-8 operator. To solve the PNGB quality problem in the Z8Z_{8} model, we embedded it into the model with U(1)XU(1)_{X} gauge symmetry.

Acknowledgments.– This research is supported in part by the Projects 11875062 and 11947302 supported by the National Natural Science Foundation of China, and by the Key Research Program of Frontier Science, CAS.

References