This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The log Grothendieck ring of varieties

Andreas Gross Leo Herr David Holmes Pim Spelier  and  Jesse Vogel Addresses: Goethe University Frankfurt, Virginia Tech, Leiden University, Utrecht University, formerly Leiden University herr@vt.edu
(Date: July 30, 2025)
Abstract.

We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “PP” over the usual Grothendieck ring.

We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.

1. Introduction

This article

  • Defines a Grothendieck group of varieties K0(LogSchk)K_{0}({\rm LogSch}_{k}) for log schemes over a base field kk.

  • Provides a presentation of K0(LogSchk)K_{0}({\rm LogSch}_{k}) in terms of the usual Grothendieck group of varieties with one generator PP and one relation.

  • Deduces consequences for log Hodge numbers.

Overview

The mixed Hodge structure MHS(X)\operatorname{MHS}(X) of a scheme XX over \mathbb{C} is an invariant that generalises many classical invariants such as Euler characteristics, Betti numbers, and Hodge numbers. This is a motivic invariant, meaning that a nice closed embedding ZXZ\to X gives rise to an exact triangle

MHS(Z)MHS(X)MHS(XZ)+1\operatorname{MHS}(Z)\to\operatorname{MHS}(X)\to\operatorname{MHS}(X\setminus Z)\xrightarrow{+1}

in the derived category of mixed Hodge structures. On the level of classical invariants such as the Euler characteristic, this simply means χ(X)=χ(Z)+χ(XZ)\chi(X)=\chi(Z)+\chi(X\setminus Z).

When working with a family of schemes XSX\to S, one obtains a family of mixed Hodge structures MHS(X/S)\operatorname{MHS}(X/S) (also called a variation) over SS [Gri68]. The moduli space of all (polarised) Hodge structures was first constructed by Griffiths, and forms an analytic, highly non-compact space. In [Gri70] he presented the dream of (partially) compactifying this period domain. The answer was given by [KU08], where a full compactification is constructed using logarithmic Hodge structures.

Unfortunately, the question of how to obtain families of logarithmic Hodge structures from families of schemes is still open even in simple situations [FN20, Remark 2.6.1] such as non-compact varieties.

As a precursor to a future logarithmic mixed Hodge theory, we study logarithmic Hodge numbers dimHq(pΩXlog)\dim_{\mathbb{C}}H^{q}(\wedge^{p}\Omega^{\rm log}_{X}), where ΩXlog\Omega^{\rm log}_{X} is the sheaf of log differentials [Ogu18, IV.1]. Classically, the Hodge numbers of a smooth projective variety XX are defined by hp,q(X)dimHq(pΩX)h^{p,q}(X)\coloneqq\dim_{\mathbb{C}}H^{q}(\wedge^{p}\Omega_{X}). These are invariants of the Hodge structure of XX. As the Hodge structure is a motivic invariant of XX, the Hodge numbers only depend on the class [X][X] in the Grothendieck ring K0(Var)K_{0}({\rm Var}_{\mathbb{C}}), the free abelian group on varieties modulo the scissors relations [X]=[Z]+[XZ][X]=[Z]+[X\setminus Z] for a closed embedding ZXZ\to X.

This in particular helps compute Hodge numbers hp,q(Y)h^{p,q}(Y) for non-projective or singular varieties YY.

This paper defines the logarithmic Grothendieck ring K0(LogSch)K_{0}({\rm LogSch}_{\mathbb{C}}). In Section 2 we compute a presentation for this ring in terms of the classical ring K0(Var)K_{0}({\rm Var}_{\mathbb{C}}). This allows the computation of logarithmic motivic invariants as in the classical case.

In Section 3 we show that the logarithmic Hodge numbers do not give motivic invariants. We prove that the Euler characteristics χ(pΩXlog)\chi(\wedge^{p}\Omega^{\rm log}_{X}) are in fact motivic invariants.

1.1. The log Grothendieck ring

Write Vark{\rm Var}_{k} for the category of finite type, separated kk-schemes and LogSchk{\rm LogSch}_{k} for the category of fine and saturated (f.s.) kk-log schemes with underlying scheme in Vark{\rm Var}_{k}.

Definition 1.1.

The log Grothendieck ring

K0(LogSchk)K_{0}({\rm LogSch}_{k})

is the free abelian group generated by isomorphism classes [X][X] for XLogSchkX\in{\rm LogSch}_{k}, modulo the strict scissor relations

[X]=[Z]+[XZ][X]=[Z]+[X\setminus Z] (1)

for all strict closed immersions ZXZ\to X, and the log blowup relations

[X~]=[X][\widetilde{X}]=[X] (2)

for all log blowups X~X\widetilde{X}\to X. The ring structure is induced by the product on LogSchk{\rm LogSch}_{k}.

Take k=k=\mathbb{C}. We want to define and compute log Hodge numbers using K0(LogSch)K_{0}({\rm LogSch}_{\mathbb{C}}).

If XX is a smooth, projective variety, its Hodge numbers hp,q(X)h^{p,q}(X) are

hp,q(X)dimHq(pΩX).h^{p,q}(X)\coloneqq\dim_{\mathbb{C}}H^{q}(\wedge^{p}\Omega_{X})\qquad\in{\mathbb{N}}.

The ee-polynomial of XX is the generating function111Warning: there are two common sign conventions found in literature, namely e(u,v)e(u,v) and e(u,v)e(-u,-v).

e(X)hp,q(X)upvq[u,v].e(X)\coloneqq\sum h^{p,q}(X)u^{p}v^{q}\qquad\in\mathbb{Z}[u,v].

Both factor through the Grothendieck ring

hp,q:K0(Var),e:K0(Var)[u,v],h^{p,q}:K_{0}({\rm Var}_{\mathbb{C}})\to{\mathbb{N}},\qquad e:K_{0}({\rm Var}_{\mathbb{C}})\to\mathbb{Z}[u,v], (3)

and ee is even a ring homomorphism. For schemes XX which are not projective or smooth, Hodge numbers may be defined by the maps (3) or using mixed Hodge structures.

For a log smooth, projective XX over \mathbb{C}, define its log Hodge numbers

hlogp,q(X)dimHq(pΩXlog)h^{p,q}_{\rm log}(X)\coloneqq\dim_{\mathbb{C}}H^{q}(\wedge^{p}\Omega^{\rm log}_{X})\qquad\in{\mathbb{N}}

and log ee-polynomial

Elog(X)hlogp,q(X)upvq[u,v].{E^{\rm log}}(X)\coloneqq\sum h^{p,q}_{\rm log}(X)u^{p}v^{q}\qquad\in\mathbb{Z}[u,v].

We want to define these log Hodge numbers and ee-polynomials, in a motivic way, for log schemes which are not projective or log smooth. This is impossible.

Proposition 1.2 (Proposition 3.4).

There is no map

ϕ:LogSch[u,v]\phi:{\rm LogSch}_{\mathbb{C}}\to\mathbb{Z}[u,v]

that satisfies the strict scissor equation ϕ(X)=ϕ(Z)+ϕ(XZ)\phi(X)=\phi(Z)+\phi(X\setminus Z) and that agrees with Elog{E^{\rm log}} on smooth, log smooth, projective log schemes.

Example 3.3 is an explicit counterexample.

How can we fix this problem? Write

E¯1log(X)Elog(X)(u,1)\overline{E}^{\rm log}_{1}(X)\coloneqq{E^{\rm log}}(X)(u,-1)

for the image of Elog(X){E^{\rm log}}(X) in the polynomial ring

[u,v]/(v+1)=[u].\mathbb{Z}[u,v]/(v+1)=\mathbb{Z}[u].

This is the generating function of the Euler characteristics of the wedge powers pΩXlog\wedge^{p}\Omega^{\rm log}_{X}

E¯1log(X)=χ(pΩXlog)up.\overline{E}^{\rm log}_{1}(X)=\sum\chi(\wedge^{p}\Omega^{\rm log}_{X})u^{p}.
Theorem 1.3 (Theorems 3.13, 3.14).

There exists a ring homomorphism t¯1:K0(LogSch)[u]\overline{t}\vphantom{t}_{1}:K_{0}({\rm LogSch}_{\mathbb{C}})\to\mathbb{Z}[u] that satisfies t¯1([X])=E¯1log(X)\overline{t}\vphantom{t}_{1}([X])=\overline{E}^{\rm log}_{1}(X) for all XX with smooth, projective underlying scheme that are either

  1. (1)

    log smooth log scheme, or

  2. (2)

    constant free log schemes (see Definition 2.3).

In particular, the polynomial E¯1log\overline{E}^{\rm log}_{1} is invariant under sufficiently fine log modifications X~X\widetilde{X}\to X where XX belongs to (1) or (2) and X,X~X,\widetilde{X} have smooth, projective underlying scheme:

E¯1log(X~)=E¯1log(X).\overline{E}^{\rm log}_{1}(\widetilde{X})=\overline{E}^{\rm log}_{1}(X).

The log Hodge numbers hlogp,qh^{p,q}_{\rm log} are not well-defined for log schemes which are not log smooth or projective, but their alternating sums (1)qhlogp,q\sum(-1)^{q}h^{p,q}_{\mathrm{l}og}, which should be thought of as the holomorphic Euler characteristics χ(pΩXlog)\chi(\wedge^{p}\Omega^{\rm log}_{X}), are.

We construct t¯1\overline{t}\vphantom{t}_{1} using a presentation of K0(LogSch)K_{0}({\rm LogSch}_{\mathbb{C}}) as a K0(Var)K_{0}({\rm Var}_{\mathbb{C}})-algebra. Write P(Spec,)P\coloneqq({\rm{Spec}\>}\mathbb{C},\mathbb{C}^{*}\oplus{\mathbb{N}}) for the standard log point with rank-one log structure, and also P[P]K0(LogSch)P\coloneqq[P]\in K_{0}({\rm LogSch}_{\mathbb{C}}) for its class.

Theorem 1.4 (Theorem 2.1).

The Grothendieck ring of log varieties is generated over the ordinary Grothendick ring by PP, subject to a single relation

K0(LogSch)K0(Var)[P]P2+P[𝔾m].K_{0}({\rm LogSch}_{\mathbb{C}})\simeq\dfrac{K_{0}({\rm Var}_{\mathbb{C}})[P]}{P^{2}+P[\mathbb{G}_{m}]}. (4)

The relation P2+P[𝔾m]=0P^{2}+P[\mathbb{G}_{m}]=0 is derived in Example 2.2. Define two K0(Var)K_{0}({\rm Var}_{\mathbb{C}})-algebra homomorphisms

τ,ρ:K0(LogSch)K0(Var)\tau,\rho:K_{0}({\rm LogSch}_{\mathbb{C}})\to K_{0}({\rm Var}_{\mathbb{C}})

by

τ(P)=0,ρ(P)=[𝔾m].\tau(P)=0,\qquad\rho(P)=-[\mathbb{G}_{m}].

Then the map t¯1\overline{t}\vphantom{t}_{1} from Theorem 3.13 is precisely the composite

K0(LogSch)𝜌K0(Var)𝑒[u,v]v=1[u].K_{0}({\rm LogSch}_{\mathbb{C}})\overset{\rho}{\longrightarrow}K_{0}({\rm Var}_{\mathbb{C}})\overset{e}{\longrightarrow}\mathbb{Z}[u,v]\overset{v=-1}{\longrightarrow}\mathbb{Z}[u].

We construct another invariant of log schemes using the presentation (4). Write χc\chi_{c} for the (compactly supported) Euler characteristic

χc(X)(1)qdimHcq(X,)\chi_{c}(X)\coloneqq\sum(-1)^{q}\dim_{\mathbb{Q}}H^{q}_{c}(X,{\mathbb{Q}})

and for its extension χc:K0(Var)\chi_{c}:K_{0}({\rm Var}_{\mathbb{C}})\to\mathbb{Z} to the Grothendieck group.

Proposition 1.5 (Proposition 2.17).

The composite

χlog:K0(LogSch)𝜏K0(Var)𝜒\chi^{\rm log}:K_{0}({\rm LogSch}_{\mathbb{C}})\overset{\tau}{\longrightarrow}K_{0}({\rm Var}_{\mathbb{C}})\overset{\chi}{\longrightarrow}\mathbb{Z}

is the unique extension of the ring homomorphism χc\chi_{c} to K0(LogSch)K_{0}({\rm LogSch}_{\mathbb{C}}).

We compute the class [X]K0(LogSchk)[X]\in K_{0}({\rm LogSch}_{k}) of any toric variety XX, which gives all the above invariants.

Proposition 1.6 (Proposition 2.11).

Let Σn\Sigma\subseteq\mathbb{R}^{n} be a fan and XX the associated nn-dimensional toric variety. Its class in K0(LogSchk)K_{0}({\rm LogSch}_{k}) is

[X]=[𝔾m]n+(1χc(Σ))P[𝔾m]n1,[{X}]=[{\mathbb{G}_{m}}]^{n}+(1-\chi_{c}(\Sigma))\cdot P[{\mathbb{G}_{m}}]^{n-1},

where χc()\chi_{c}(\cdot) is the Euler characteristic with compact support.

The E¯1log\overline{E}^{\rm log}_{1}-polynomial and log Euler characteristic χlog\chi^{\rm log} of such a toric variety XX are then

E¯1log(X)=χc(Σ)e(𝔾m)n=χc(Σ)(u1)n\overline{E}^{\rm log}_{1}(X)=\chi_{c}(\Sigma)\cdot e(\mathbb{G}_{m})^{n}=\chi_{c}(\Sigma)\cdot(-u-1)^{n}
χlog(X)=χc(𝔾m)n=0.\chi^{\rm log}(X)=\chi_{c}(\mathbb{G}_{m})^{n}=0.

Acknowledgments

We are grateful to Yagna Dutta, Tommaso de Fernex, Márton Hablicsek, Karl Schwede, Y.P. Lee, and Alexander Zotine for conversations on the present paper. Appendix A is due to Mike Roth, who generously allowed the authors to include his arguments.

During the writing of this article, the NSF RTG grant #1840190 supported L.H., the NWO grant VI.Vidi.193.006 supported L.H., D.H., and P.S., and the ERC Consolidator Grant FourSurf 101087365 supported P.S. A.G. has received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) TRR 326 Geometry and Arithmetic of Uniformized Structures, project number 444845124, and from the Marie-Skłodowska-Curie-Stipendium Hessen (as part of the HESSEN HORIZON initiative).

1.2. Conventions

All our log schemes and log algebraic stacks are f.s.  (fine and saturated, [Ogu18, Chapter 2.1]).

We work over a field kk of any characteristic, not necessarily algebraically closed, except for Section 3 where we take k=k=\mathbb{C}.

We write LogSchk{\rm LogSch}_{k} for the category of finite type, separated log schemes over Speck{\rm{Spec}\>}k, where Speck{\rm{Spec}\>}k has the trivial log structure. All fiber squares in this paper are both log fiber squares and scheme-theoretic fiber squares.

An s.n.c. pair is a pair (X,D)(X,D) of a smooth scheme XX and a strict normal crossings divisor DD, with its natural divisorial log structure. We endow a toric variety TT like 𝔸n,n{\mathbb{A}}^{n},\mathbb{P}^{n} with its natural toric log structure by default, which comes from the toric divisors.

A log blowup X~X\widetilde{X}\to X of a log scheme XX in a log ideal IMXI\subseteq M_{X} is the universal log scheme over XX such that the pullback of II is invertible, see [Ogu18, Section III.2.6]. For an s.n.c. pair (X,D)(X,D), this is an iterated blowup X~X\widetilde{X}\to X in boundary strata. For a toric variety, this is a toric blowup, which can be described by subdivision of the fan. Log blowups are always proper, log étale log monomorphisms.

A log modification X~X\widetilde{X}\to X is a map such that there is some log blowup X^X~\widehat{X}\to\widetilde{X} such that the composite X^X~X\widehat{X}\to\widetilde{X}\to X is also a log blowup.

2. The log Grothendieck ring and its presentation

In this section we will prove the following simple presentation of the log Grothendieck ring.

Theorem 2.1.

The log Grothendieck ring is generated by PP with one relation:

K0(LogSchk)=K0(Vark)[P]P2+P[𝔾m].K_{0}({\rm LogSch}_{k})=\dfrac{K_{0}({\rm Var}_{k})[P]}{P^{2}+P[\mathbb{G}_{m}]}. (5)

We first show the relation P2+P[𝔾m]P^{2}+P[\mathbb{G}_{m}] holds.

Example 2.2.

We take XX to be 𝔸2\mathbb{A}^{2} with its toric log structure given by the toric boundary, and X~X\widetilde{X}\to X the blowup in (0,0)(0,0). If we write PP for the class in K0(LogSchk)K_{0}({\rm LogSch}_{k}) of the origin with point, then we find [X]=[𝔾m]2+2[𝔾m]P+P2[X]=[\mathbb{G}_{m}]^{2}+2[\mathbb{G}_{m}]\cdot P+P^{2}, and [X~]=[𝔾m]2+3[𝔾m]P+2P2[\widetilde{X}]=[\mathbb{G}_{m}]^{2}+3[\mathbb{G}_{m}]\cdot P+2P^{2}, as illustrated in Figure 1. The equality [X]=[X~][X]=[\widetilde{X}] then gives rise to the relation

P([𝔾m]+P)=0P([\mathbb{G}_{m}]+P)=0 (6)

in K0(LogSchk)K_{0}({\rm LogSch}_{k}).

𝔸2{\mathbb{A}}^{2}==++++Bl0𝔸2Bl_{\vec{0}}{\mathbb{A}}^{2}==++++
Figure 1. Decompose the plane 𝔸2{\mathbb{A}}^{2} and its blowup Bl0𝔸2Bl_{\vec{0}}{\mathbb{A}}^{2} at the origin into locally closed strata on which the log structure is constant. Obtain [𝔸2]=[𝔾m]2+2[𝔾m]P+P2[{\mathbb{A}}^{2}]=[\mathbb{G}_{m}]^{2}+2[\mathbb{G}_{m}]\cdot P+P^{2} and [Bl0𝔸2]=[𝔾m]2+3[𝔾m]P+2P2[Bl_{\vec{0}}{\mathbb{A}}^{2}]=[\mathbb{G}_{m}]^{2}+3[\mathbb{G}_{m}]\cdot P+2P^{2}.

Next we will prove K0(LogSchk)K_{0}({\rm LogSch}_{k}) is generated by log schemes with constant free log structure.

Definition 2.3.

A log scheme XX is constant if its log structure decomposes as a direct sum

MX=𝒪XQ¯M_{X}=\mathcal{O}_{X}^{*}\oplus\underline{Q}

for a sharp f.s. monoid QQ. Write (X,Q)(X,Q) for the resulting constant log scheme.

A log scheme XX is constant free if it is constant X=(X,Q)X=(X,Q) and QrQ\simeq{\mathbb{N}}^{r} is free. Say XX is locally constant free if it admits a locally closed stratification X=XσX=\bigsqcup X_{\sigma} with XσX_{\sigma} constant free.

We write LogSchk𝖼,LogSchk𝖼𝖿{\rm LogSch}_{k}^{\mathsf{c}},{\rm LogSch}_{k}^{\mathsf{cf}} and LogSchk𝗅𝖼𝖿{\rm LogSch}_{k}^{\mathsf{lcf}} for the full subcategories of LogSchk{\rm LogSch}_{k} consisting of constant, constant free, and locally constant free log schemes.

Constant log schemes are exactly the log schemes that admit strict maps to constant points (pt,Q)({\rm pt},Q). To prove that the log Grothendieck ring is generated by PP over K0(Vark)K_{0}({\rm Var}_{k}), we first need the following lemma.

Lemma 2.4.

Let (Li)(L_{i}) be a finite set of line bundles on a noetherian scheme XX. There is a locally closed stratification X=XiX=\bigsqcup X_{i} on which all the LiL_{i}’s are trivial.

Corollary 2.5.

If XX is a locally constant log scheme with stalks M¯X,x¯N\overline{M}\vphantom{M}_{X,\overline{x}\vphantom{x}}\simeq N, write X=(X,N)X^{\prime}=(X,N) for the same scheme with constant log structure. Then XX admits a locally closed stratification X=XiX=\bigsqcup X_{i} with Xi(Xi,N)X_{i}\cong(X_{i},N), and we have an equality of classes [X]=[X][X]=[X^{\prime}] in K0(LogSchk)K_{0}({\rm LogSch}_{k}).

This says [X][X] only depends on XX^{\circ} and the sheaf M¯X\overline{M}\vphantom{M}_{X}.

Proposition 2.6.

A log scheme XLogSchkX\in{\rm LogSch}_{k} admits a locally constant free log blowup X~LogSchk𝗅𝖼𝖿\widetilde{X}\in{\rm LogSch}_{k}^{\mathsf{lcf}}.

Proof.

Take a log blowup of XX that admits charts Zariski locally [Niz06, Theorem 5.4]. Refine this log blowup by a log blowup X~\widetilde{X} on which the cones are free as in the proof of [KKMSD06, Theorem 11], so the stalks M¯X~,xr\overline{M}\vphantom{M}_{\widetilde{X},x}\simeq{\mathbb{N}}^{r} are free monoids. There is a locally closed stratification on which its characteristic monoid is constant. We are done by Corollary 2.5.

Corollary 2.7.

The map

Ψ:K0(Vark)[P]K0(LogSchk)\Psi:K_{0}({\rm Var}_{k})[P]\to K_{0}({\rm LogSch}_{k}) (7)

sending [X]Pk[X]P^{k} to the constant log scheme (X,k)=X×Pk(X,{\mathbb{N}}^{k})=X\times P^{k} is surjective.

It remains to show that kerΨ\ker\Psi is generated by P(P+[𝔾m])P(P+[{\mathbb{G}_{m}}]). For this, we need two final propositions.

Definition 2.8.

Let XX be a locally constant free log scheme. Take the locally closed stratification X=i0XiX=\bigsqcup_{i\geq 0}X_{i} where XiX_{i} is the locus where the rank of M¯X\overline{M}\vphantom{M}_{X} is ii. We define

[X]𝗅𝖼𝖿=i[Xi]PiK0(Vark)[P].[X]_{\mathsf{lcf}}=\sum_{i}[X_{i}]\cdot P^{i}\in K_{0}({\rm Var}_{k})[P].
Proposition 2.9.

Let IK0(Vark)[P]I\subset K_{0}({\rm Var}_{k})[P] be the ideal generated by elements

[X]𝗅𝖼𝖿[X~]𝗅𝖼𝖿[X]_{\mathsf{lcf}}-[\widetilde{X}]_{\mathsf{lcf}}

for every log blowup X~X\widetilde{X}\to X of a constant free log scheme XX by a locally constant free log scheme X~\widetilde{X}. Then II is precisely the kernel of (7).

Furthermore, II is also generated by relations [T]𝗅𝖼𝖿[T~]𝗅𝖼𝖿[T]_{\mathsf{lcf}}-[\widetilde{T}]_{\mathsf{lcf}} for a smooth toric blowup T~T\widetilde{T}\to T of a smooth toric variety.

Proof.

By Proposition 2.6, for the first part it suffices to show that for all triples of log modifications YX,X~X,Y~YY\to X,\widetilde{X}\to X,\widetilde{Y}\to Y with X,YLogSchk,X~,Y~LogSchk𝗅𝖼𝖿X,Y\in{\rm LogSch}_{k},\widetilde{X},\widetilde{Y}\in{\rm LogSch}_{k}^{\mathsf{lcf}} we have [Y~]𝗅𝖼𝖿[X~]𝗅𝖼𝖿I[{\widetilde{Y}}]_{\mathsf{lcf}}-[{\widetilde{X}}]_{\mathsf{lcf}}\in I.

By refining Y~\widetilde{Y}, we can reduce to the case that there is a log blowup Y~X~\widetilde{Y}\to\widetilde{X}. Now, stratify X~=iX~i\widetilde{X}=\bigsqcup_{i}\widetilde{X}_{i} into constant free log schemes, which induces by pullback a stratification Y~=iY~i\widetilde{Y}=\bigsqcup_{i}\widetilde{Y}_{i}. By definition of II, we have [Y~i]𝗅𝖼𝖿[X~i]𝗅𝖼𝖿I[{\widetilde{Y}_{i}}]_{\mathsf{lcf}}-[{\widetilde{X}_{i}}]_{\mathsf{lcf}}\in I, and hence [Y~]𝗅𝖼𝖿[X~]𝗅𝖼𝖿I[{\widetilde{Y}}]_{\mathsf{lcf}}-[{\widetilde{X}}]_{\mathsf{lcf}}\in I.

Now let X~X\widetilde{X}\to X be a log blowup of a constant free log scheme XX by a locally constant free log scheme X~\widetilde{X}. There is a further log blowup X~X~\widetilde{X}^{\prime}\to\widetilde{X} fitting into a pullback diagram

X~{\widetilde{X}^{\prime}{}}T0{T_{0}{}}T{T}X{X}0{\vec{0}}𝔸r{{\mathbb{A}}^{r}}{\ulcorner}{\ulcorner}

where T𝔸rT\to{\mathbb{A}}^{r} is a smooth toric blowup. The ideal II is then generated by relations of the form [T0]𝗅𝖼𝖿=Pr[{T_{0}}]_{\mathsf{lcf}}=P^{r}. This relation is itself the difference of the log blowup relation [T]𝗅𝖼𝖿[T~]𝗅𝖼𝖿[T]_{\mathsf{lcf}}-[\widetilde{T}]_{\mathsf{lcf}} for T=𝔸rT={\mathbb{A}}^{r} and T=𝔸r0T={\mathbb{A}}^{r}\setminus 0. ∎

Now it remains to compute classes of smooth toric varieties, as per the following proposition.

Proposition 2.10.

Let XX be a smooth toric variety of dimension nn, with fan Σ\Sigma. Then

[X]𝗅𝖼𝖿[𝔾m]𝗅𝖼𝖿n+(1χc(Σ))P[𝔾m]𝗅𝖼𝖿n1(modP(P+[𝔾m])),[{X}]_{\mathsf{lcf}}\equiv[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+(1-\chi_{c}(\Sigma))P[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n-1}\pmod{P(P+[{\mathbb{G}_{m}}]}),

where χc\chi_{c} is the compactly supported Euler characteristic.

Proof.

Recall that the cones of Σ\Sigma correspond exactly to the toric strata of XX. Here the cone 0 corresponds to the torus 𝔾mn\mathbb{G}_{m}^{n}, and a cone σ\sigma of dimension r=r(σ)r=r(\sigma) corresponds to a stratum XσX_{\sigma} isomorphic to 𝔾mnr\mathbb{G}_{m}^{n-r} with log structure constant of rank rr. All in all we find

[X]𝗅𝖼𝖿\displaystyle[{X}]_{\mathsf{lcf}} =[𝔾m]𝗅𝖼𝖿n+σ0[Xσ]𝗅𝖼𝖿\displaystyle=[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+\sum_{\sigma\neq 0}[{X_{\sigma}}]_{\mathsf{lcf}}
=[𝔾m]𝗅𝖼𝖿n+σ0[𝔾m]nr(σ)Pr(σ)\displaystyle=[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+\sum_{\sigma\neq 0}[\mathbb{G}_{m}]^{n-r(\sigma)}P^{r(\sigma)}
[𝔾m]𝗅𝖼𝖿n+σ0(1)r1[𝔾m]n1P\displaystyle\equiv[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+\sum_{\sigma\neq 0}(-1)^{r-1}[\mathbb{G}_{m}]^{n-1}P (modP(P+[𝔾m]))\displaystyle\pmod{P(P+[{\mathbb{G}_{m}}])}
=[𝔾m]𝗅𝖼𝖿n+[𝔾m]n1Pσ0(1)r(σ)1\displaystyle=[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+[\mathbb{G}_{m}]^{n-1}P\sum_{\sigma\neq 0}(-1)^{r(\sigma)-1}
=[𝔾m]𝗅𝖼𝖿n+χc(Σ0)P[𝔾m]n1\displaystyle=[{\mathbb{G}_{m}}]_{\mathsf{lcf}}^{n}+\chi_{c}(\Sigma\setminus 0)P[{\mathbb{G}_{m}}]^{n-1}

as required. ∎

Proof of Theorem 2.1.

By Corollary 2.7, we have a surjective map

Ψ:K0(Vark)[P]K0(LogSchk).\Psi:K_{0}({\rm Var}_{k})[P]\to K_{0}({\rm LogSch}_{k}).

By Proposition 2.9 the kernel II of Ψ\Psi is generated by [X~]𝗅𝖼𝖿[X]𝗅𝖼𝖿[{\widetilde{X}}]_{\mathsf{lcf}}-[{X}]_{\mathsf{lcf}} for toric blowup X~X\widetilde{X}\to X of smooth toric varieties. The fans of X~\widetilde{X} and XX have the same underlying topological space and hence the same Euler characteristic. By Proposition 2.10, we find IP(P+[𝔾m])I\subseteq\langle P(P+[{\mathbb{G}_{m}}])\rangle.

We have P(P+[𝔾m])IP(P+[{\mathbb{G}_{m}}])\in I by Example 2.2, and we conclude

K0(LogSchk)=K0(Vark)[P]/(P(P+[𝔾m])).K_{0}({\rm LogSch}_{k})=K_{0}({\rm Var}_{k})[P]/(P(P+[{\mathbb{G}_{m}}])).\qed

As a main example, we can compute the class of any toric variety.

Proposition 2.11.

Let XX be a toric variety of dimension nn, with fan Σ\Sigma. Then

[X]=[𝔾m]n+(1χc(Σ))P[𝔾m]n1.[{X}]=[{\mathbb{G}_{m}}]^{n}+(1-\chi_{c}(\Sigma))P[{\mathbb{G}_{m}}]^{n-1}.
Proof.

The smooth case is Proposition 2.10. The general case follows as both sides are invariant under log blowups. ∎

Example 2.12.

Let XX be a proper toric variety of dimension nn. Then the fan Σ\Sigma is a complete subdivision of n\mathbb{R}^{n}. The Euler characteristic χc\chi_{c} is multiplicative and χc()=1\chi_{c}(\mathbb{R})=-1, χc(Σ)=(1)n\chi_{c}(\Sigma)=(-1)^{n}.

So

[X]=[𝔾m]n+(1(1)n)P[𝔾m]n1.[{X}]=[{\mathbb{G}_{m}}]^{n}+(1-(-1)^{n})P[{\mathbb{G}_{m}}]^{n-1}.

For another way to compute the same formula, note that XX and n\mathbb{P}^{n} have a common log blowup and hence the same class in K0(LogSchk)K_{0}({\rm LogSch}_{k}). The space n\mathbb{P}^{n} has (n+1r+1)\binom{n+1}{r+1} strata of dimension rr, and using the relation P(P+[𝔾m])=0P(P+[{\mathbb{G}_{m}}])=0 and the binomial expansion of (11)n+1(1-1)^{n+1} one arrives at the same formula.

Example 2.13.

Let XX be a toric variety of dimension nn whose fan Σn\Sigma\subset\mathbb{R}^{n} is obtained by taking the fan over a polyhedral complex Qn0Q\subset\mathbb{R}^{n}\setminus 0. Then we have

[X]=[𝔾m]n+χc(Q)P[𝔾m]n1.[{X}]=[{\mathbb{G}_{m}}]^{n}+\chi_{c}(Q)P[{\mathbb{G}_{m}}]^{n-1}.

If XX is an affine toric variety of dimension nn. Then Σ\Sigma is a single cone of dimension dnd\leq n. Choose a sharp map from f:Σf:\Sigma\to{\mathbb{N}} using using [Ogu18, Proposition I.2.2.1]. Then Σ\Sigma is the fan over a polyhedral complex f1(1)f^{-1}(1) that is contractible if d>0d>0 and is empty otherwise. If d>0d>0, then

[X]=[𝔾m]n+P[𝔾m]n1.[{X}]=[\mathbb{G}_{m}]^{n}+P[{\mathbb{G}_{m}}]^{n-1}.

The presentation from Theorem 2.1 leads to two natural maps K0(LogSchk)K0(Vark)K_{0}({\rm LogSch}_{k})\to K_{0}({\rm Var}_{k}).

Definition 2.14.

Define two morphisms τ,ρ:K0(LogSchk)K0(Vark)\tau,\rho:K_{0}({\rm LogSch}_{k})\to K_{0}({\rm Var}_{k}) of K0(Vark)K_{0}({\rm Var}_{k})-algebras by

τ(P)=0\tau(P)=0

and

ρ(P)=𝔾m\rho(P)=-\mathbb{G}_{m}

respectively. They are the log Betti map τ\tau and the log Hodge map ρ\rho.

Example 2.15.

For a toric variety XX of dimension nn we find τ([X])=[𝔾mn]\tau([{X}])=[{\mathbb{G}_{m}^{n}}] and ρ([X]))=χc(Σ)[𝔾mn]\rho([{X}]))=\chi_{c}(\Sigma)[{\mathbb{G}_{m}^{n}}].

Remark 2.16.

The function sending XX to its underlying scheme XX^{\circ} does not induce a morphism

K0(LogSchk)K0(Vark)K_{0}({\rm LogSch}_{k})\dashrightarrow K_{0}({\rm Var}_{k})

because it does not satisfy the log blowup relations.

A natural consequence of the presentation in Theorem 2.1 is that ring morphisms f:K0(LogSchk)Rf:K_{0}({\rm LogSch}_{k})\to R are uniquely determined by f|K0(Vark)f|_{K_{0}({\rm Var}_{k})} and f(P)f(P).

Proposition 2.17.

There is a unique ring homomorphism

χlog:K0(LogSch)\chi^{\rm log}:K_{0}({\rm LogSch}_{\mathbb{C}})\to\mathbb{Z}

extending the classical Euler characteristic

χ:K0(Var).\chi:K_{0}({\rm Var}_{\mathbb{C}})\to\mathbb{Z}.

We have χlog=χτ\chi^{\rm log}=\chi\circ\tau, i.e. χlog(X)=χ(X0)\chi^{\rm log}(X)=\chi(X_{0}), with X0X_{0} the locus where the log structure is trivial.

Proof.

By the presentation given in Theorem 2.1, an extension ff of χ\chi is determined by f(P)f(P) and must satisfy f(P)(f(P)+χ(𝔾m))=0f(P)(f(P)+\chi(\mathbb{G}_{m}))=0. As χ(𝔾m)=0\chi(\mathbb{G}_{m})=0, we find f(P)=0f(P)=0, and hence f=χτf=\chi\circ\tau. ∎

Remark 2.18.

Take XLogSchX\in{\rm LogSch}_{\mathbb{C}}. Its log Betti cohomology is defined as the singular cohomology with {\mathbb{Q}}-coefficients

H(XKN,)H^{*}(X^{KN},{\mathbb{Q}})

of the Kato-Nakayama space XKNX^{KN}, a real blowup of XX (written XlogX^{\rm log} in the original paper [KN99]). Taking compact support and the alternating sum gives an alternative construction of χlog\chi^{\rm log} as

χlog(X)=(1)qdimHcq(XKN,).\chi^{\rm log}(X)=\sum(-1)^{q}\dim_{\mathbb{Q}}H^{q}_{c}(X^{KN},{\mathbb{Q}}).

3. The log Hodge map

In this section, we work over Spec{\rm{Spec}\>}\mathbb{C}. Let XX be a log scheme over Spec{\rm{Spec}\>}\mathbb{C}^{\circ} with smooth, projective underlying scheme XX^{\circ}.

Define

Elog(X)dimHq(pΩXlog)upvq[u,v].{E^{\rm log}}(X)\coloneqq\sum\dim H^{q}(\wedge^{p}\Omega^{\rm log}_{X})u^{p}v^{q}\qquad\in\mathbb{Z}[u,v].

If X=XX=X^{\circ} has trivial log structure, this coincides with the usual Hodge–Deligne ee-polynomial Elog(X)=e(X){E^{\rm log}}(X)=e(X).

Example 3.1.

Let XX be 1\mathbb{P}^{1} with the toric log structure. Then ΩXlog\Omega^{\rm log}_{X} is the trivial line bundle over XX. Its cohomology vanishes, so we have Elog(X)=1+u{E^{\rm log}}(X)=1+u.

Example 3.2.

Let X=PX=P be the standard log point. Then ΩXlog\Omega^{\rm log}_{X} is again the trivial line bundle over PP and Elog(P)=1+u{E^{\rm log}}(P)=1+u.

One would like to define Elog{E^{\rm log}} for non-projective varieties using Elog{E^{\rm log}} on projective ones by checking Elog{E^{\rm log}} satisfies the scissor relations. Unfortunately, it does not.

Example 3.3.

We compactify 𝔾m\mathbb{G}_{m} in two different ways, embedding it in 1\mathbb{P}^{1} with its toric log structure and in (1)(\mathbb{P}^{1})^{\circ} with the trivial log structure.

Examples 3.1 and 3.2 show

Elog(1)=Elog(P)=1+u.{E^{\rm log}}(\mathbb{P}^{1})={E^{\rm log}}(P)=1+u.

The Elog{E^{\rm log}}-polynomials of their underlying schemes are the same as the usual ee-polynomials:

Elog((1))=1+uv,Elog(pt)=1.{E^{\rm log}}((\mathbb{P}^{1})^{\circ})=1+uv,\qquad{E^{\rm log}}({\rm pt})=1.

Note the differences

Elog(1)2Elog(P)=1u{E^{\rm log}}(\mathbb{P}^{1})-2{E^{\rm log}}(P)=-1-u
Elog((1))2Elog(pt)=1+uv2=uv1{E^{\rm log}}((\mathbb{P}^{1})^{\circ})-2{E^{\rm log}}({\rm pt})=1+uv-2=uv-1

do not coincide, and hence Elog{E^{\rm log}} does not respect the strict scissor relations. However, the differences coincide after setting v=1v=-1.

Proposition 3.4.

There is no map

ϕ:LogSch[u,v]\phi:{\rm LogSch}_{\mathbb{C}}\to\mathbb{Z}[u,v]

that satisfies ϕ(X)=ϕ(Z)+ϕ(XZ)\phi(X)=\phi(Z)+\phi(X\setminus Z) for strict closed subschemes ZXZ\subset X and that agrees with Elog{E^{\rm log}} on smooth log smooth projective schemes.

Proof.

Note that 1,1\mathbb{P}^{1},{\mathbb{P}^{1}}^{\circ} and pt{\rm pt} are all smooth, log smooth and projective. As

Elog(1)Elog(1)+2Elog(pt)=2+uuv{E^{\rm log}}(\mathbb{P}^{1})-{E^{\rm log}}({\mathbb{P}^{1}}^{\circ})+2{E^{\rm log}}({\rm pt})=-2+u-uv

is not divisible by 22, there is no possible value of ϕ(P)[u,v]\phi(P)\in\mathbb{Z}[u,v] such that Elog(1)2ϕ(P)=Elog(1)2Elog(pt){E^{\rm log}}(\mathbb{P}^{1})-2\phi(P)={E^{\rm log}}({\mathbb{P}^{1}}^{\circ})-2{E^{\rm log}}({\rm pt}). ∎

The Elog{E^{\rm log}}-polynomial does not induce a function

K0(LogSch)[u,v].K_{0}({\rm LogSch}_{\mathbb{C}})\to\mathbb{Z}[u,v].

Nevertheless, it sometimes satisfies invariance under log modifications.

Lemma 3.5.

Let π:XY\pi:X\to Y be a morphism of log schemes with smooth, projective underlying schemes. If π\pi is log étale and Rπ𝒪X𝒪YR\pi_{*}\mathcal{O}_{X}\simeq\mathcal{O}_{Y}, the Elog{E^{\rm log}}-polynomials agree

Elog(X)=Elog(Y).{E^{\rm log}}(X)={E^{\rm log}}(Y).
Proof.

Because XYX\to Y is log étale, pullback equates the log Kähler differentials

πΩYlogΩXlog.\pi^{*}\Omega^{\rm log}_{Y}\simeq\Omega^{\rm log}_{X}.

The same goes for their exterior powers. Coherent sheaves such as ΩXlog,ΩYlog\Omega^{\rm log}_{X},\Omega^{\rm log}_{Y} are perfect, as X,YX,Y have smooth underlying schemes. Then we can apply the projection formula [Sta18, 0B54]:

RπpΩXlog=RππpΩYlog=pΩYlogRππ𝒪YpΩYlog.R\pi_{*}\wedge^{p}\Omega^{\rm log}_{X}=R\pi_{*}\pi^{*}\wedge^{p}\Omega^{\rm log}_{Y}=\wedge^{p}\Omega^{\rm log}_{Y}\otimes R\pi_{*}\pi^{*}\mathcal{O}_{Y}\cong\wedge^{p}\Omega^{\rm log}_{Y}.

The (cohomology of) wedge products of ΩXlog\Omega^{\rm log}_{X} and ΩYlog\Omega^{\rm log}_{Y} agree, so the Elog{E^{\rm log}} polynomials of XX and YY agree.

Corollary 3.6.

Let π:X~X\pi:\widetilde{X}\to X be a log modification with X,X~X,\widetilde{X} smooth, log smooth, projective.

Then the Elog{E^{\rm log}}-polynomials agree

Elog(X~)=Elog(X).{E^{\rm log}}(\widetilde{X})={E^{\rm log}}(X).
Proof.

It suffices to show Rπ𝒪X~𝒪XR\pi_{*}\mathcal{O}_{\widetilde{X}}\simeq\mathcal{O}_{X}. This strict-étale local in XX. After passing to a strict-étale neighborhood, one can find a pullback square

X~{\widetilde{X}{}}{\mathscr{B}}X{X}𝒞{\mathscr{C}}{\ulcorner}τ\scriptstyle{\tau}

with X𝒞X\to\mathscr{C} strict and 𝒞\mathscr{B}\to\mathscr{C} a representable, proper morphism of Artin fans.

The structure sheaf pushes forward along τ\tau

Rτ𝒪𝒪𝒞R\tau_{*}\mathcal{O}_{\mathscr{B}}\simeq\mathcal{O}_{\mathscr{C}}

as in [CHL20, Lemma 2.1]. The map X𝒞X\to\mathscr{C} is smooth, as it is log smooth and strict. Cohomology and base change then ensures Rπ𝒪X~𝒪XR\pi_{*}\mathcal{O}_{\widetilde{X}}\simeq\mathcal{O}_{X}. ∎

Proposition 3.7.

Let X=(X,k)X=(X,{\mathbb{N}}^{k}) be a free constant log scheme over Spec{\rm{Spec}\>}\mathbb{C}^{\circ} and X~X\widetilde{X}\to X a log blowup factoring through the blowup at (e1,e2,,ek)k(e_{1},e_{2},\cdots,e_{k})\subseteq{\mathbb{N}}^{k}. If X,X~X^{\circ},\widetilde{X}^{\circ} are smooth and projective, their Elog{E^{\rm log}}-polynomials coincide:

Elog(X~)=Elog(X).{E^{\rm log}}(\widetilde{X})={E^{\rm log}}(X).
Proof of Proposition 3.7.

We show RπΩX~log=?ΩXlogR\pi_{*}\Omega^{\rm log}_{\widetilde{X}}\overset{?}{=}\Omega^{\rm log}_{X}. We can assume XX is connected and thus atomic. Let QQ be a log point with underlying scheme Spec{\rm{Spec}\>}\mathbb{C} and a strict map XQX\to Q. The log blowup π\pi is pulled back from a log blowup τ\tau of the log point

X~{\widetilde{X}{}}Q~{\widetilde{Q}}X{X}Q.{Q.}π\scriptstyle{\pi}{\ulcorner}τ\scriptstyle{\tau}

The pullback X~\widetilde{X} is the product of XX and Q~\widetilde{Q}. All the maps in the square are flat.

If we show Rπ𝒪X~=𝒪XR\pi_{*}\mathcal{O}_{\widetilde{X}}=\mathcal{O}_{X}, we can apply Lemma 3.5. Theorem A.1 in the appendix asserts

Rτ𝒪Q~=𝒪Q.R\tau_{*}\mathcal{O}_{\widetilde{Q}}=\mathcal{O}_{Q}. (8)

By cohomology and base change, we are done.

Definition 3.8.

Write E¯log(X)\overline{E}^{\rm log}(X) for the image of the polynomial Elog(X){E^{\rm log}}(X) under the ring homomorphism

[u,v]\displaystyle\mathbb{Z}[u,v] [u]×[v]\displaystyle\to\mathbb{Z}[u]\times\mathbb{Z}[v]
v\displaystyle v (1,v)\displaystyle\mapsto(-1,v)
u\displaystyle u (u,0)\displaystyle\mapsto(u,0)

Define

E¯1log(X)Elog(X)(u,1)\displaystyle\overline{E}^{\rm log}_{1}(X)\coloneqq{E^{\rm log}}(X)(u,-1)
E¯2log(X)Elog(X)(0,v),\displaystyle\overline{E}^{\rm log}_{2}(X)\coloneqq{E^{\rm log}}(X)(0,v),

or equivalently

E¯log(X)=(E¯1log(X),E¯2log(X))(χ(pΩXlog)up,dimHq(𝒪X)vq)[u]×[v]\overline{E}^{\rm log}(X)=(\overline{E}^{\rm log}_{1}(X),\overline{E}^{\rm log}_{2}(X))\coloneqq\left(\sum\chi(\wedge^{p}\Omega^{\rm log}_{X})u^{p},\quad\sum\dim H^{q}(\mathcal{O}_{X})v^{q}\right)\qquad\in\mathbb{Z}[u]\times\mathbb{Z}[v]

as the generating functions of the Euler characteristics of the wedges pΩXlog\wedge^{p}\Omega^{\rm log}_{X} and the Betti numbers.

We construct maps out of K0(LogSchk)K_{0}({\rm LogSch}_{k}) which restrict to E¯1log,E¯2log\overline{E}^{\rm log}_{1},\overline{E}^{\rm log}_{2} on nice log schemes with smooth, projective underlying scheme.

3.1. The cohomology of the structure sheaf

For a log scheme XX with smooth, projective underlying scheme, the polynomial E¯2log(X)\overline{E}^{\rm log}_{2}(X) coincides with the substitution u=0u=0 of the usual ee-polynomial

E¯2log(X)=e(X)(0,v).\overline{E}^{\rm log}_{2}(X)=e(X^{\circ})(0,v).

Write bb for the composite

b:K0(Var)[P]PSpecK0(Var)e|u=0[v].b:K_{0}({\rm Var}_{\mathbb{C}})[P]\overset{P\mapsto{\rm{Spec}\>}\mathbb{C}}{\longrightarrow}K_{0}({\rm Var}_{\mathbb{C}})\overset{e|_{u=0}}{\longrightarrow}\mathbb{Z}[v].
Proposition 3.9.

The map bb factors through the quotient K0(Var)[P]K0(LogSch)K_{0}({\rm Var}_{\mathbb{C}})[P]\to K_{0}({\rm LogSch}_{\mathbb{C}}).

Proof.

We need only check P(P+[𝔾m])P(P+[\mathbb{G}_{m}]) maps to zero. In fact, bb sends P+[𝔾m]P+[\mathbb{G}_{m}] to zero, as e|u=0(Spec)=1e|_{u=0}({\rm{Spec}\>}\mathbb{C})=1 and e|u=0(𝔾m)=(uv1)|u=0=1e|_{u=0}(\mathbb{G}_{m})=(uv-1)|_{u=0}=-1. ∎

This defines a log motivic invariant which restricts to E¯2log\overline{E}^{\rm log}_{2} on log schemes with smooth, projective underlying scheme.

3.2. The log χy\chi_{y}-genus

The alternating sum of the Euler characteristics of the usual Kähler differentials is called the χy\chi_{y}-genus

χy(X)(1)pχ(pΩX)yp.\chi_{y}(X)\coloneqq\sum(-1)^{p}\chi(\wedge^{p}\Omega_{X})y^{p}.

The E¯1log\overline{E}^{\rm log}_{1}-polynomial defined here is a “log χy\chi_{-y}-genus,” where we replace yy by y-y.

If X=(X,D)X=(X,D) is an s.n.c. pair of dimension dimX=n\dim X=n with XX proper, [Gro17, Proposition 3.1] relates our E¯1log\overline{E}^{\rm log}_{1}-polynomial to the χy\chi_{y}-genus of XDX\setminus D, after a change of coordinates:

χy(XD)\displaystyle\chi_{y}(X\setminus D) =(1)nrχ(nrΩXlog)yr,\displaystyle=\sum(-1)^{n-r}\chi(\wedge^{n-r}\Omega^{\rm log}_{X})y^{r}, (9)
(u)nχ1u(XD)\displaystyle(-u)^{n}\cdot\chi_{-\frac{1}{u}}(X\setminus D) =E¯1log(X)χ(pΩXlog)up.\displaystyle=\overline{E}^{\rm log}_{1}(X)\coloneqq\sum\chi(\wedge^{p}\Omega^{\rm log}_{X})u^{p}. (10)
Remark 3.10.

This equality shows E¯1log(X)\overline{E}^{\rm log}_{1}(X) only depends on the interior XDX\setminus D where the log structure is trivial for s.n.c. pairs. In particular, this implies invariance under log blowups of s.n.c. pairs. It does not imply E¯1log(P)=0\overline{E}^{\rm log}_{1}(P)=0, as we still have E¯1log(P)=1+u\overline{E}^{\rm log}_{1}(P)=1+u.

We will now build a ring homomorphism out of the log Grothendieck ring and show it agrees with E¯1log\overline{E}^{\rm log}_{1} for a large collection of log schemes.

Definition 3.11.

Let tt be the composite

K0(LogSch)𝜌K0(Var)𝑒[u,v]K_{0}({\rm LogSch}_{\mathbb{C}})\overset{\rho}{\longrightarrow}K_{0}({\rm Var}_{\mathbb{C}})\overset{e}{\longrightarrow}\mathbb{Z}[u,v]

of the log Hodge map ρ\rho (Theorem 2.1) with the usual ee-polynomial. Write t¯\overline{t} for the composite of tt with the map

[u,v][u,v]uv+u[u]×[v]\mathbb{Z}[u,v]\longrightarrow\dfrac{\mathbb{Z}[u,v]}{uv+u}\to\mathbb{Z}[u]\times\mathbb{Z}[v]

and t¯=(t¯1,t¯2)\overline{t}=(\overline{t}_{1},\overline{t}_{2}).

Example 3.12.

If (X,D)(X,D) is an s.n.c. divisor with components DiDD_{i}\subseteq D, let DrD_{r} be the union of the closed strata IDi\bigcap_{I}D_{i} with #I=r\#I=r. For example,

D0=X,D1=D,D2=ij(DiDj),.D_{0}=X,\quad D_{1}=D,\quad D_{2}=\bigcup_{i\neq j}(D_{i}\cap D_{j}),\cdots.

The log Hodge map sends the divisorial log structure X=(X,D)X=(X,D) to the alternating sum

ρ(X)=r([𝔾m])r[DrDr+1]=[XD][𝔾m][DD2]+.\rho(X)=\sum_{r\in{\mathbb{N}}}(-[\mathbb{G}_{m}])^{r}[D_{r}^{\circ}\setminus D^{\circ}_{r+1}]=[X^{\circ}\setminus D^{\circ}]-[\mathbb{G}_{m}]\cdot[D^{\circ}\setminus D^{\circ}_{2}]+\cdots.

The map tt sends PP to the ee-polynomial of [𝔾m]-[\mathbb{G}_{m}]

t(P)=1uv.t(P)=1-uv.

So tt is computed by

t(X)=k(1uv)re(DkDr+1).t(X)=\sum_{k}(1-uv)^{r}e(D_{k}^{\circ}\setminus D_{r+1}^{\circ}).

We can now identify E¯log\overline{E}^{\rm log} and t¯\overline{t} in two nice cases.

Theorem 3.13.

The two maps E¯log,t¯\overline{E}^{\rm log},\overline{t} agree on constant, free log schemes (X,r)(X,{\mathbb{N}}^{r}) with smooth, projective underlying scheme XX.

Proof.

There is a pullback square

X{X{}}Pr{P_{r}}X{X^{\circ}}pt,{{\rm pt},}{\ulcorner} (11)

where PrP_{r} is the point with rank-rr log structure. The resulting equality of classes [X]=[X]Pr[X]=[X^{\circ}]P^{r} identifies the t¯\overline{t}-polynomial

t¯(X)=t¯([X])t¯(P)r.\overline{t}(X)=\overline{t}([X^{\circ}])\overline{t}(P)^{r}.

The t¯\overline{t}-polynomial of PP is defined as

t¯(P)e([𝔾m])=1uvmodu+uv\overline{t}(P)\coloneqq e(-[\mathbb{G}_{m}])=1-uv\mod u+uv

and hence is equal to E¯log(P)=1+umodu+uv\overline{E}^{\rm log}(P)=1+u\mod u+uv.

By [Ogu18, Proposition IV.1.2.15], the pullback square (11) decomposes the log Kähler differentials of XX as

ΩXlog=ΩPrlog|XΩX.\Omega^{\rm log}_{X}=\Omega^{\rm log}_{P_{r}}|_{X}\oplus\Omega_{X^{\circ}}.

The log Kähler differentials of the point PrP_{r} are the trivial bundle ΩPrlog=𝒪Prr\Omega^{\rm log}_{P_{r}}=\mathcal{O}_{P_{r}}^{\oplus r} of rank rr.

The exterior algebra is then

ΩXlog=𝒪XrΩX.\wedge^{*}\Omega^{\rm log}_{X}=\wedge^{*}\mathcal{O}^{r}_{X}\otimes\wedge^{*}\Omega_{X^{\circ}}.

We have i𝒪Xr=𝒪X(ri)\wedge^{i}\mathcal{O}_{X}^{r}=\mathcal{O}_{X}^{\binom{r}{i}} for 0ir0\leq i\leq r, and hence

pΩXlog=i+j=p(jΩX)(ri).\wedge^{p}\Omega^{\rm log}_{X}=\bigoplus_{i+j=p}\left(\wedge^{j}\Omega_{X^{\circ}}\right)^{\oplus\binom{r}{i}}.

The log Hodge numbers are

dimHq(pΩXlog)=i+j=p(ri)hj,q(X),\dim H^{q}(\wedge^{p}\Omega^{\rm log}_{X})=\sum_{i+j=p}\dbinom{r}{i}h^{j,q}(X^{\circ}),

where hp,qh^{p,q} are the usual Hodge numbers of the underlying scheme XX^{\circ}. The generating function Elog{E^{\rm log}} for the log Hodge numbers then equals

Elog(X)=p,q(i+j=p(ri)hj,q(X))upvq=e(X)(1+u)r.{E^{\rm log}}(X)=\sum_{p,q}\left(\sum_{i+j=p}\dbinom{r}{i}h^{j,q}(X^{\circ})\right)u^{p}v^{q}=e(X^{\circ})(1+u)^{r}.

We obtain

E¯log(X)\displaystyle\overline{E}^{\rm log}(X) =e(X)(1+u)rmodu+uv\displaystyle=e(X^{\circ})(1+u)^{r}\mod u+uv
=t¯([X])t¯(P)r\displaystyle=\overline{t}([X^{\circ}])\overline{t}(P)^{r}
=t¯(X).\displaystyle=\overline{t}(X).

Theorem 3.14.

The equality E¯log(X)=t¯(X)\overline{E}^{\rm log}(X)=\overline{t}(X) holds when XX is log smooth and has smooth, projective underlying scheme.

Proof.

If X~X\widetilde{X}\to X is a log modification and both X~,X\widetilde{X},X have smooth, projective underlying scheme, Corollary 3.6 equates their Elog{E^{\rm log}}-polynomials. The tt-polynomials are similarly unchanged. Section §3.1 shows E¯2log(X)=t¯2(X)\overline{E}^{\rm log}_{2}(X)=\overline{t}_{2}(X).

To show that E¯1log(X)=t¯1(X)\overline{E}^{\rm log}_{1}(X)=\overline{t}_{1}(X), we may, after applying a suitable log blowup, assume that X=(X,D)X=(X,D) is an s.n.c. pair. We will now prove the assertion with induction first on the dimension of XX and then on the number of irreducible components of the divisor DD. For the base cases we note that case dimX=0\dim X=0 is clear and that if D=D=\varnothing, both E¯1log(X)\overline{E}^{\rm log}_{1}(X) and t¯1(X)\overline{t}_{1}(X) are immediately equal to the classical ee-polynomial of X=XX=X^{\circ}, evaluated at v=1v=-1.

Now assume DD\neq\varnothing, let FF be a component of DD, and let D=DFD^{\prime}=D-F. Then FF meets DD^{\prime} transversely and DF=DD^{\prime}\cup F=D. Moreover, let XX^{\prime} be the scheme XX^{\circ} endowed with the divisorial log structure defined by DD^{\prime} and denote by F^\widehat{F} the scheme FF endowed with the divisorial log structure defined by the s.n.c. divisor D|FD^{\prime}|_{F}. By [EV92, Property 2.3 b)] we have, for every pp\in\mathbb{Z}, a short exact sequence

0pΩXlogpΩXlogp1ΩF^log0.0\to\wedge^{p}\Omega^{\rm log}_{X^{\prime}}\to\wedge^{p}\Omega^{\rm log}_{X}\to\wedge^{p-1}\Omega^{\rm log}_{\widehat{F}}\to 0\ .

By the additivity of the holomorphic Euler characteristic it follows that

E¯1log(X)=E¯1log(X)+uE¯1log(F^),\overline{E}^{\rm log}_{1}(X)=\overline{E}^{\rm log}_{1}(X^{\prime})+u\overline{E}^{\rm log}_{1}(\widehat{F}),

which, by induction hypothesis, equals

t¯1(X)+ut¯1(F^)\overline{t}_{1}(X^{\prime})+u\overline{t}_{1}(\widehat{F})

It remains to show that t¯1(X)+ut¯1(F^)\overline{t}_{1}(X^{\prime})+u\overline{t}_{1}(\widehat{F}) is equal to t¯1(X)\overline{t}_{1}(X). We first prove that [F]=[F^]P[F]=[\widehat{F}]\cdot P in K0(LogSch)K_{0}({\rm LogSch}_{\mathbb{C}}).

The class [F][F] is the sum [FD]+[D][F\setminus D^{\prime}]+[D^{\prime}]. The log scheme [FD][F\setminus D^{\prime}] has locally constant, rank-one log structure. It’s equivalent to the constant rank-one log structure by Corollary 2.5

[FD]=[F^D]P.[F\setminus D^{\prime}]=[\widehat{F}\setminus D^{\prime}]\cdot P.

Apply the same argument to the strata of the intersections of DD^{\prime}.

We can conclude that t¯1(F)=t¯1(F^)t¯1(P)=t¯1(F^)(1+u)\overline{t}_{1}(F)=\overline{t}_{1}(\widehat{F})\overline{t}_{1}(P)=\overline{t}_{1}(\widehat{F})(1+u), so ut¯1(F^)=t¯1(F)t¯1(F^)u\overline{t}_{1}(\widehat{F})=\overline{t}_{1}(F)-\overline{t}_{1}(\widehat{F}). But the classes

[X][F^]=[X][F][X^{\prime}]-[\widehat{F}]=[X]-[F]

are equal. So their tt-polynomials agree and we obtain

t¯1(X)=t¯1(X)+t¯1(F)t¯1(F^)=t¯1(X)+ut¯1(F^)\overline{t}_{1}(X)=\overline{t}_{1}(X^{\prime})+\overline{t}_{1}(F)-\overline{t}_{1}(\widehat{F})=\overline{t}_{1}(X^{\prime})+u\cdot\overline{t}_{1}(\widehat{F})

and we are done. ∎

3.3. Duality

Write 𝕃[(𝔸1)]\mathbb{L}\coloneqq[({\mathbb{A}}^{1})^{\circ}] for the Lefschetz motive, the class of the affine line with trivial log structure.

After inverting 𝕃\mathbb{L}, the usual Grothendieck ring of varieties K0(Var)K_{0}({\rm Var}_{\mathbb{C}}) admits a ring involution

():K0(Var)[𝕃1]K0(Var)[𝕃1](-)^{\vee}\colon K_{0}({\rm Var}_{\mathbb{C}})[\mathbb{L}^{-1}]\to K_{0}({\rm Var}_{\mathbb{C}})[\mathbb{L}^{-1}]

determined by [X][X]=[X]/𝕃dimX[X]\mapsto[X]^{\vee}=[X]/\mathbb{L}^{\dim X} for all smooth projective complex varieties XX [Bit04].

Example 3.15.

The dual of [1][\mathbb{P}^{1}] is

[1]=[1]/𝕃=(𝕃+1)/𝕃=1+𝕃1.[\mathbb{P}^{1}]^{\vee}=[\mathbb{P}^{1}]/\mathbb{L}=(\mathbb{L}+1)/\mathbb{L}=1+\mathbb{L}^{-1}.

As ()(-)^{\vee} is a ring homomorphism,

𝕃=𝕃1,[𝔾m]=𝕃11=[𝔾m]𝕃.\mathbb{L}^{\vee}=\mathbb{L}^{-1},\qquad[\mathbb{G}_{m}]^{\vee}=\mathbb{L}^{-1}-1=-\dfrac{[{\mathbb{G}_{m}}]}{\mathbb{L}}.

We show duality ()(-)^{\vee} extends in two ways to the log Grothendieck ring of varieties

i1,i2:K0(LogSch)[𝕃1]K0(LogSch)[𝕃1].i_{1},i_{2}:K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}]\longrightarrow K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}].

Define

i1(P)P𝕃1,i2(P)(P+[𝔾m])𝕃1i_{1}(P)\coloneqq-P\cdot\mathbb{L}^{-1},\qquad i_{2}(P)\coloneqq(P+[\mathbb{G}_{m}])\cdot\mathbb{L}^{-1} (12)

and let i1([X])=i2([X])[X]i_{1}([X^{\circ}])=i_{2}([X^{\circ}])\coloneqq[X^{\circ}]^{\vee} extend the usual duality on schemes XX^{\circ} with trivial log structure.

Lemma 3.16.

The assignments from (12) yield well-defined ring homomorphisms which are involutions i12=i22=idi_{1}^{2}=i_{2}^{2}=id. They satisfy

()τ=τi1,()ρ=ρi1(-)^{\vee}\circ\tau=\tau\circ i_{1},\qquad(-)^{\vee}\circ\rho=\rho\circ i_{1} (13)
()τ=ρi2,()ρ=τi2(-)^{\vee}\circ\tau=\rho\circ i_{2},\qquad(-)^{\vee}\circ\rho=\tau\circ i_{2} (14)

with the log Betti and log Hodge maps τ,ρ\tau,\rho.

Proof.

To check i1,i2i_{1},i_{2} are well-defined, we need to show they kill P(P+[𝔾m])P(P+[\mathbb{G}_{m}]):

i1(P(P+[𝔾m]))\displaystyle i_{1}(P\cdot(P+[\mathbb{G}_{m}])) =P𝕃(P𝕃[𝔾m]𝕃)\displaystyle=\dfrac{-P}{\mathbb{L}}\left(\dfrac{-P}{\mathbb{L}}-\dfrac{[\mathbb{G}_{m}]}{\mathbb{L}}\right)
=P(P+[𝔾m])𝕃2=0.\displaystyle=P\cdot(P+[\mathbb{G}_{m}])\cdot\mathbb{L}^{-2}=0.
i2(P(P+[𝔾m]))\displaystyle i_{2}(P\cdot(P+[\mathbb{G}_{m}])) =P+[𝔾m]𝕃(P+[𝔾m]𝕃[𝔾m]𝕃)\displaystyle=\dfrac{P+[\mathbb{G}_{m}]}{\mathbb{L}}\cdot\left(\dfrac{P+[\mathbb{G}_{m}]}{\mathbb{L}}-\dfrac{[\mathbb{G}_{m}]}{\mathbb{L}}\right)
=(P+[𝔾m])P𝕃2=0.\displaystyle=(P+[\mathbb{G}_{m}])\cdot P\cdot\mathbb{L}^{-2}=0.

They are involutions as we have i12(P)=i22(P)=Pi_{1}^{2}(P)=i_{2}^{2}(P)=P. ∎

The ring involutions i1,i2i_{1},i_{2} are determined by duality ()(-)^{\vee} on schemes with trivial log structure and (13), (14), up to a small discrepancy.

Lemma 3.17.

Let F:K0(LogSch)[𝕃1]K0(LogSch)[𝕃1]F:K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}]\to K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}] be a ring endomorphism extending ()(-)^{\vee}. If FF satisfies (13), the difference Fi1F-i_{1} is annihilated by [𝔾m][\mathbb{G}_{m}]

[𝔾m](Fi1)=0.[\mathbb{G}_{m}]\cdot(F-i_{1})=0.

The same goes for (14)\eqref{eqn:dualitycompatible2} and i2i_{2}.

Proof.

Let F:K0(LogSch)[𝕃1]K0(LogSch)[𝕃1]F:K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}]\to K_{0}({\rm LogSch}_{\mathbb{C}})[\mathbb{L}^{-1}] be a ring endomorphism extending ()(-)^{\vee} and write F(P)=α+βPF(P)=\alpha+\beta P for some α,βK0(Var)[𝕃1]\alpha,\beta\in K_{0}({\rm Var}_{\mathbb{C}})[\mathbb{L}^{-1}].

If FF satisfies (13), check α=0\alpha=0 and

[𝔾m](β+𝕃1)=0.[\mathbb{G}_{m}]\cdot(\beta+\mathbb{L}^{-1})=0.

If FF satisfies (14), α=𝔾m𝕃\alpha=\dfrac{\mathbb{G}_{m}}{\mathbb{L}} and

[𝔾m](β𝕃1)=0.[\mathbb{G}_{m}]\cdot(\beta-\mathbb{L}^{-1})=0.

If we invert [𝔾m][\mathbb{G}_{m}] by tensoring with K0(Var)[[𝔾m]1]K_{0}({\rm Var}_{\mathbb{C}})[[\mathbb{G}_{m}]^{-1}], then i1,i2i_{1},i_{2} are the unique ring endomorphisms extending ()(-)^{\vee}.

Example 3.18.

Let XX be a proper toric variety of dimension nn. Then using Proposition 2.11 we can compute

ij(X)=(1)n(j+1)𝕃n[X].i_{j}(X)=(-1)^{n(j+1)}\mathbb{L}^{-n}\cdot[X].
Remark 3.19 (Duality).

For a smooth, projective scheme XX, Serre duality equates the Hodge numbers hp,q=hnp,nqh^{p,q}=h^{n-p,n-q}. The ee-polynomial of the dual XX^{\vee} is then

e(X)=e(X)/e(𝕃dimX)=e(X)/(uv)dimX=e(X)(u1,v1)e(X^{\vee})=e(X)/e(\mathbb{L}^{\dim X})=e(X)/(uv)^{\dim X}=e(X)(u^{-1},v^{-1})

and the square

K0(Var)[𝕃1]{K_{0}({\rm Var}_{\mathbb{C}})[\mathbb{L}^{-1}]}[u±,v±]{\mathbb{Z}[u^{\pm},v^{\pm}]}K0(Var)[𝕃1]{K_{0}({\rm Var}_{\mathbb{C}})[\mathbb{L}^{-1}]}[u±,v±]{\mathbb{Z}[u^{\pm},v^{\pm}]}e\scriptstyle{e}\scriptstyle{-^{\vee}}I\scriptstyle{I}e\scriptstyle{e}

commutes, where I(p)p(u1,v1)I(p)\coloneqq p(u^{-1},v^{-1}).

The equality ρi1=()ρ\rho\circ i_{1}=(-)^{\vee}\circ\rho gives

t¯1(i1(X))=t¯1(X)(u1).\overline{t}_{1}(i_{1}(X))=\overline{t}_{1}(X)(u^{-1}). (15)

Endow a smooth, projective scheme XX^{\circ} of dimension nn with constant free rank-kk log structure XX. Then i1(X)=(1)k𝕃kPkX=(1)k𝕃(k+n)Xi_{1}(X)=(-1)^{k}\mathbb{L}^{-k}P^{k}{X^{\circ}}^{\vee}=(-1)^{k}\mathbb{L}^{-(k+n)}X and Theorem 3.13 rewrites (15) as

(1)kt¯1(X)t¯1(𝕃k+n)=(1)kE¯1log(X)uk+n=E¯1log(X)(u1).\dfrac{(-1)^{k}\overline{t}_{1}(X)}{\overline{t}_{1}(\mathbb{L}^{k+n})}=\dfrac{(-1)^{k}\overline{E}^{\rm log}_{1}(X)}{u^{k+n}}=\overline{E}^{\rm log}_{1}(X)(u^{-1}).

Whence χ(k+niΩXlog)=(1)kχ(iΩXlog)\chi(\wedge^{k+n-i}\Omega^{\rm log}_{X})=(-1)^{k}\chi(\wedge^{i}\Omega^{\rm log}_{X}), a limited “log Serre duality.”

Example 3.20.

Let X=(1,)X=(\mathbb{P}^{1},{\mathbb{N}}) be the projective line with constant rank-one log structure. Its log Kähler differentials are

ΩXlog=𝒪(2)𝒪,\Omega^{\rm log}_{X}=\mathcal{O}(-2)\oplus\mathcal{O},

with wedges

pΩXlog={𝒪p=0𝒪(2)𝒪p=1𝒪(2)p=20otherwise.\wedge^{p}\Omega^{\rm log}_{X}=\left\{\leavevmode\hbox to129.08pt{\vbox to78.5pt{\pgfpicture\makeatletter\hbox{\hskip 64.54166pt\lower-39.2499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.54166pt}{-35.5902pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\quad\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{O}}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}}}&\quad\hfil&\hfil\hskip 39.98775pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.68224pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${p=0}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\qquad\hfil\cr\vskip 4.49997pt\cr\hfil\hskip 26.24998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.94444pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{O}(-2)\oplus\mathcal{O}}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\hskip 26.24998pt\hfil&\hfil\hskip 39.98775pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.68224pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${p=1}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\qquad\hfil\cr\vskip 4.49997pt\cr\hfil\qquad\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.05556pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{O}(-2)}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\qquad\hfil&\hfil\hskip 39.98775pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.68224pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${p=2}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\qquad\hfil\cr\vskip 4.49997pt\cr\hfil\quad\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\quad\hfil&\hfil\hskip 50.29166pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.98615pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\text{otherwise}.}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\hskip 26.29169pt\hfil\cr}}}\pgfsys@invoke{ }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\right.

Its log Hodge “diamond” is then the rectangle

q=0110q=1011,\begin{tabular}[]{c|c c c}$p$:&0&1&2\\ \hline\cr$q=0$&1&1&0\\ $q=1$&0&1&1\end{tabular},
p:012

and

χ(𝒪)=1,χ(ΩXlog)=0,χ(2ΩXlog)=1.\chi(\mathcal{O})=1,\qquad\chi(\Omega^{\rm log}_{X})=0,\qquad\chi(\wedge^{2}\Omega^{\rm log}_{X})=-1.
Remark 3.21.

We sketch a “Bittner presentation” [Bit04] for the log Grothendieck ring, which doesn’t seem to work as well as for the ordinary Grothendieck ring.

Consider the free group generated by isomorphism classes of \mathbb{C}-log schemes XX with smooth, projective underlying scheme. Let Bitt{\rm Bitt} be the quotient of this free group by three relations:

  • []0[\varnothing]\sim 0,

  • If X~X\widetilde{X}\to X is a log blowup, then [X][X~][X]\sim[\widetilde{X}],

  • If ZXZ\subseteq X is a strict closed subscheme and BXB\to X its blowup, write EBE\subseteq B for the exceptional divisor. Endow Z,B,EZ,B,E with log structure pulled back from XX. Then

    [B][E][X][Z].[B]-[E]\sim[X]-[Z].

Let BittBitt{\rm Bitt}^{\prime}\subseteq{\rm Bitt} be the subgroup generated by constant log schemes with smooth, projective underlying scheme. The arguments of [Bit04] identify BittK0(LogSch){\rm Bitt}^{\prime}\simeq K_{0}({\rm LogSch}_{\mathbb{C}}). It is not clear to us if this is the whole group Bitt=?Bitt{\rm Bitt}^{\prime}\overset{?}{=}{\rm Bitt}.

Given a finite type, separated variety VV with log structure and a compactification VV¯V\subseteq\overline{V}\vphantom{V}, it’s unclear how to extend the log structure to V¯\overline{V}\vphantom{V}. Moreover, general log schemes XX do not admit a “resolution” X~X\widetilde{X}\to X by log smooth schemes in the usual sense, even over \mathbb{C}. For the standard log point PP, there is no map XPX\dashrightarrow P from a nonempty log flat log scheme XX. See [Hao20] for the case where XX is generically log smooth and nice.

Appendix A Cohomology of fibers of toric blowups

We work over a field kk. Let B𝔸nB\to{\mathbb{A}}^{n} a subdivision. Write 0𝔸n\vec{0}\in{\mathbb{A}}^{n} for the origin and B0BB_{0}\subseteq B for the fiber over 0\vec{0}. Suppose B𝔸nB\to{\mathbb{A}}^{n} factors through the log blowup Bl0𝔸nBl_{\vec{0}}{\mathbb{A}}^{n} at the ideal (x1,,xn)k[x1,,xn](x_{1},\cdots,x_{n})\subseteq k[x_{1},\cdots,x_{n}].

The goal of this appendix is to compute the cohomology of B0B_{0}. The proof is due to Mike Roth, who graciously encouraged the authors to write up his arguments.

Theorem A.1.

The cohomology of B0B_{0} is kk:

RΓ(B0,𝒪B0)=k.R\Gamma(B_{0},\mathcal{O}_{B_{0}})=k.

In other words, Hq(B0,𝒪B0)=0H^{q}(B_{0},\mathcal{O}_{B_{0}})=0 for q0q\neq 0 and H0(B0,𝒪B0)=kH^{0}(B_{0},\mathcal{O}_{B_{0}})=k.

The main obstacle to proving this theorem is that B0B_{0} need not be reduced.

Example A.2 (Karl Schwede).

Let B𝔸2B\to{\mathbb{A}}^{2} be the log blowup at the monoidal ideal

I=(x2,y)(x,y)(x,y2)2.I=(x^{2},y)\cdot(x,y)\cdot(x,y^{2})\qquad\subseteq{\mathbb{N}}^{2}.

The fiber over 0𝔸2\vec{0}\in{\mathbb{A}}^{2} has three components, and the middle one is nonreduced.

If we replace B0B_{0} by its reduced subscheme B0,redB_{0,red}, a similar vanishing

H(B0,red,𝒪B0,red)=H^{*}(B_{0,red},\mathcal{O}_{B_{0,red}})=\mathbb{C}

was shown in [MS23, Lemma 2.5]. The proof refers to special cases in [DB81, Proposition 3.1], [Ste83, Proposition 3.7 and §3.6], [Ish14, Proposition 8.1.11.(ii) and 8.1.12], [Nam00, Lemma 1.2]. Theorem A.1 also generalizes a result of Molcho–Wise [MW23, Corollary 6.4].

Lemma A.3.

Let π:XY\pi:X\to Y be a birational, perfect morphism such that Rπ𝒪X=𝒪YR\pi_{*}\mathcal{O}_{X}=\mathcal{O}_{Y}. Let EYE\subseteq Y be an effective Cartier divisor and DXD\subseteq X its pullback. Then the structure sheaf of the divisor DD pushes forward to that of EE

Rπ𝒪D=𝒪E.R\pi_{*}\mathcal{O}_{D}=\mathcal{O}_{E}.
Proof.

By the projection formula [Sta18, 0B54] and our hypothesis, any line bundle LL on YY satisfies

RππL=L.R\pi_{*}\pi^{*}L=L. (16)

We claim the ideal sheaves pull back π𝒪Y(E)=𝒪X(D)\pi^{*}\mathcal{O}_{Y}(-E)=\mathcal{O}_{X}(-D). This is a local question, so assume Y=SpecBY={\rm{Spec}\>}B and E=V(f)E=V(f). Then 𝒪Y(E)𝒪Y\mathcal{O}_{Y}(-E)\to\mathcal{O}_{Y} is multiplication f:BBf:B\to B by the nonzerodivisor ff. The ideal sheaf 𝒪X(D)\mathcal{O}_{X}(-D) is the image of the pullback π𝒪Y(E)π𝒪Y=𝒪X\pi^{*}\mathcal{O}_{Y}(-E)\to\pi^{*}\mathcal{O}_{Y}=\mathcal{O}_{X}, which we need to show is injective. Localize in XX to assume X=SpecAX={\rm{Spec}\>}A. Then multiplication f:AAf:A\to A is also injective, otherwise XX has an embedded component over YY. But the map π\pi is assumed to be birational.

Consider the exact sequence

0𝒪X(D)𝒪X𝒪D00\to\mathcal{O}_{X}(-D)\to\mathcal{O}_{X}\to\mathcal{O}_{D}\to 0

on XX. Apply RπR\pi_{*} to get an exact triangle Rπ𝒪X(D)Rπ𝒪XRπ𝒪D+1R\pi_{*}\mathcal{O}_{X}(-D)\to R\pi_{*}\mathcal{O}_{X}\to R\pi_{*}\mathcal{O}_{D}\overset{+1}{\to}. By taking L=𝒪Y(E),𝒪YL=\mathcal{O}_{Y}(E),\mathcal{O}_{Y} in (16), the triangle becomes

𝒪X(E)𝒪XRπ𝒪D+1\mathcal{O}_{X}(-E)\to\mathcal{O}_{X}\to R\pi_{*}\mathcal{O}_{D}\overset{+1}{\to}

and we can see Rπ𝒪D=𝒪ER\pi_{*}\mathcal{O}_{D}=\mathcal{O}_{E}. ∎

Proof of Theorem A.1.

Write π:BBl0𝔸n𝔸n\pi:B^{\prime}\coloneqq Bl_{\vec{0}}{\mathbb{A}}^{n}\to{\mathbb{A}}^{n} for the log blowup at the ideal (x1,,xn)(x_{1},\cdots,x_{n}). By assumption on BB, it factors through this blowup ρ:BB\rho:B\to B^{\prime}. Write B0,B0B_{0},B^{\prime}_{0} for the fiber over the origin 0𝔸n\vec{0}\in{\mathbb{A}}^{n}. Apply Lemma A.3 to ρ\rho with D=B0,E=B0D=B_{0},E=B^{\prime}_{0}. Then Rρ𝒪B0′′=𝒪B0R\rho^{\prime}_{*}\mathcal{O}_{B^{\prime\prime}_{0}}=\mathcal{O}_{B^{\prime}_{0}}. But B0=n1B^{\prime}_{0}=\mathbb{P}^{n-1}, so Rπ𝒪B0=𝒪0R\pi^{\prime}_{*}\mathcal{O}_{B^{\prime}_{0}}=\mathcal{O}_{\vec{0}}. Composing these derived functors, we get R(πρ)𝒪B0′′=𝒪0R(\pi^{\prime}\circ\rho^{\prime})_{*}\mathcal{O}_{B^{\prime\prime}_{0}}=\mathcal{O}_{\vec{0}}. Taking global sections gives the result. ∎

References

  • [Bit04] Franziska Bittner. The universal Euler characteristic for varieties of characteristic zero. Compos. Math., 140(4):1011–1032, 2004.
  • [CHL20] You-Cheng Chou, Leo Herr, and Yuan-Pin Lee. The Log Product Formula in quantum KK-theory. arXiv e-prints, page arXiv:2012.09379, December 2020.
  • [DB81] Philippe Du Bois. Complexe de de Rham filtré d’une variété singulière. Bulletin de la Société Mathématique de France, 109:41–81, 1981.
  • [EV92] Hélène Esnault and Eckart Viehweg. Lectures on vanishing theorems. Notes, grew out of the DMV-seminar on algebraic geometry, held at Reisensburg, October 13-19, 1991, volume 20 of DMV Semin. Basel: Birkhäuser Verlag, 1992.
  • [FN20] Taro Fujisawa and Chikara Nakayama. Geometric polarized log Hodge structures with a base of log rank one. Kodai Mathematical Journal, 43(1):57 – 83, 2020.
  • [Gri68] Phillip A. Griffiths. Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties. Amer. J. Math., 90:568–626, 1968.
  • [Gri70] Phillip A. Griffiths. Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems. Bull. Amer. Math. Soc., 76:228–296, 1970.
  • [Gro17] Andreas Gross. Refined Tropicalizations for Schön Subvarieties of Tori. arXiv e-prints, page arXiv:1705.05719, May 2017.
  • [Hao20] Ming Hao Quek. Logarithmic resolution via weighted toroidal blow-ups. arXiv e-prints, page arXiv:2005.05939, May 2020.
  • [Ish14] S. Ishii. Introduction to Singularities. Springer, 2014.
  • [KKMSD06] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal Embeddings 1. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2006.
  • [KN99] Kazuya Kato and Chikara Nakayama. Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over 𝐂{\bf C}. Kodai Mathematical Journal, 22(2):161 – 186, 1999.
  • [KU08] K. Kato and S. Usui. Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169). Annals of Mathematics Studies. Princeton University Press, 2008.
  • [MS23] Mirko Mauri and Evgeny Shinder. Homological bondal-orlov localization conjecture for rational singularities. Forum of Mathematics, Sigma, 11, 08 2023.
  • [MW23] Samouil Molcho and Jonathan Wise. Remarks on logarithmic étale sheafification. arXiv e-prints, page arXiv:2311.05172, November 2023.
  • [Nam00] Yoshinori Namikawa. Deformation theory of singular symplectic n-folds. Mathematische Annalen, 319:597–623, 2000.
  • [Niz06] Wiesława Nizioł. Toric singularities: Log-blow-ups and global resolutions. J. Algebraic Geom., 15(1):1–29, 2006.
  • [Ogu18] Arthur Ogus. Lectures on Logarithmic Algebraic Geometry. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2018.
  • [Sta18] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2018.
  • [Ste83] Joseph Steenbrink. Mixed hodge structures associated with isolated singularities. Proc. Symp. Pure Math., 40, 01 1983.