This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The low-lying hidden- and double-charm tetraquark states in a constituent quark model with Instanton-induced Interaction

Jin-Bao Wang School of Physical Science and Technology, Southwest University, Chongqing 400715, China    Gang Li gli@qfnu.edu.cn College of Physics and Engineering, Qufu Normal University, Qufu 273165, China    Chun-Sheng An ancs@swu.edu.cn School of Physical Science and Technology, Southwest University, Chongqing 400715, China    Cheng-Rong Deng School of Physical Science and Technology, Southwest University, Chongqing 400715, China    Ju-Jun Xie Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
Abstract

Spectrum of the low-lying hidden- and double-charm tetraquark states are investigated in a nonrelativistic quark potential model, where the Instanton-induced interaction is taken as the residual spin-dependent hyperfine interaction between quarks. The model parameters are fixed by fitting the spectrum of the ground hadron states. Our numerical results show that masses of several presently studied tetraquark states are close to those of the experimentally observed candidates of exotic meson, which indicates that the corresponding compact tetraquark components may take considerable probabilities in those observed exotic states.

I Introduction

More and more exotic hadron candidates, which exhibit different properties from mesons and baryons in the traditional quark model, have been observed experimentally PDG since the discovery of X(3872)X(3872) Belle 2003 . The typical mesonic exotic states, such as the charmonium-like state Zc(3900)±Z_{c}(3900)^{\pm} observed in the π±J/ψ\pi^{\pm}J/\psi invariant mass spectra of the process e+eπ+πJ/ψe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi BESIII 2013 and the Zcs(3985)Z_{cs}(3985) state observed in the DsD0D_{s}^{-}D^{*0} and DsD0D_{s}^{*-}D^{0} final states of the e+eK+DsD0(DsD0)e^{+}e^{-}\rightarrow K^{+}D_{s}^{-}D^{*0}(D_{s}^{*-}D^{0}) reaction BESIII 2021 , may contain at least four cc¯qq¯c\bar{c}q\bar{q} quarks. Theoretically, the exotic meson states can be explained as compact tetraquark states in quark potential model Yang:2009zzp ; Deng:2016rus ; Richard:2017una ; Luo:2017eub ; JinX 2021 ; YangG 2021 ; Deng 2021 , QCD sum rule Chen:2013pya ; Chen:2015ata ; Wang:2017dtg ; Wang:2019got , and diquark-diquark picture D.Ebert 2007 ; Esposito:2013fma ; Shi:2021jyr . While, they could be also described as the molecular states in effective field theory Liu:2009qhy ; WangP 2013 ; HeJ 2013 ; Aceti:2014kja ; ChenR 2021 ; Feijoo:2021ppq . See also Refs. Chen:2016qju ; Lebed:2016hpi ; Guo:2017jvc ; Liu:2019zoy ; Brambilla:2019esw for recent reviews.

Very recently, an exotic state Tcc+T_{cc}^{+} was reported in the D0D0π+D^{0}D^{0}\pi^{+} mass spectrum by LHCb collaboration LHCbTcc1 ; LHCbTcc2 , which has a mass very close to the D0D+D^{0}D^{*+} threshold and its width is extremely narrow. In fact, taking into account the heavy quark symmetry between Ξcc\Xi_{cc} and TccT_{cc}, the existence of tetraquark states which contain two heavy quarks has been predicted theoretically in Refs. Zhu 2013 ; Kar.M 2017 , after the discovery of double-charm baryon Ξcc++\Xi_{cc}^{++} Xicc . Especially, the binding energy of DDDD^{*} molecule predicted by one boson exchange model is in agreement with the experimental value. Within the DDDD^{*} molecule nature, the strong and radiative decay widths of Tcc+T^{+}_{cc} are studied in Ref. Feijoo:2021ppq ; Ling:2021bir . The successful prediction and the discovery of Tcc+T_{cc}^{+} are enormously helpful to our understanding of the hadron structure.

The constituent quark model (CQM), in which different versions of the explicit hyperfine interactions between quarks have been proposed, is one of the most successful phenomenological method to study the hadron structure. For instance, in the Godfrey-Isgur model Isgur , all the effects of one gluon exchange interactions (OGE) are included, and it gives a good description for meson spectra from π\pi to Υ\Upsilon meson. The chiral constituent quark model Glozman:1995fu ; Glozman:1995xy ; Vijande:2004he ; Deng:2014gqa ; Yang:2015bmv ; Deng:2017xlb is another widely used version to investigate hadron spectrum, which usually contains one boson exchange (OBE) interactions, characterizing chiral symmetry spontaneously broken of QCD at low energy. Tentatively, different versions of CQM have been compared in the estimations on spectrum of baryon excitations in a multiquark picture recently Yuan:2012wz ; Yuan:2012zs ; An:2013zoa ; An:2014lga ; An:2017lwg ; Wang:2021rjk .

In addition to the widely employed OGE- and OBE-CQM, the instanton-induced interaction between quarks has also been used in Refs. Yuan:2012wz ; Yuan:2012zs ; An:2013zoa to investigate the spectrum of baryon excitations as pentaquark sates. This kind of interaction was firstly introduced by ’t Hooft to solve the U(1)U(1)-problem tHooft , and the instanton vacuum of QCD could provide a mechanism of spontaneous chiral symmetry breaking of QCD Diakonov:1983hh ; Diakonov:1985eg . Phenomenologically, it has been shown that one can successfully reproduce the spectrum of light hadrons Shuryak:1988bf ; Blask:1990ez ; Brau:1998sxe ; Semay:2001th and the single charm baryons Migura:2006ep employing the instanton-induced interaction. Furthermore, the instanton-induced interaction has also been employed to study the tetraquark states Metch ; tHooft:2008rus . Consequently, here we use it to investigate the spectra of low-lying hidden- and double-charm tetraquark states.

The present manuscript is organized as follows. In Sec. II, we present the formalism of the CQM with instanton-induced interaction between quarks, including effective Hamiltonian, wave functions for tetraquark configurations and model parameters. The masses of hidden- and double-charm tetraquark states in our model and discussions are given in Sec. III. Finally, Sec. IV is a brief summary of present manuscript.

II Framework

II.1 Effective Hamiltonian

In present work, a non-relativistic quark potential model is employed for calculations on the spectra of hidden- and double-charm tetraquark states. The dynamics of the model are governed by an effective Hamiltonian as follow:

Heff.=i=14(mi+Ti)TC.M.+VConf.+VIns.,H_{eff.}=\sum_{i=1}^{4}\left(m_{i}+T_{i}\right)-T_{C.M.}+V_{Conf.}+V_{Ins.}\,, (1)

where mim_{i} and TiT_{i} are the constituent mass and kinetic energy of ii-th quark, TC.M.T_{C.M.} denotes center of mass kinetic energy. VConf.V_{Conf.} stands for the quark confinement potential, which is taken to be the widely accepted Cornell potential in present work Cornell :

VConf.=i<j316(λicλjc)(brij43αijrij+C0),V_{Conf.}=\sum_{i<j}-\frac{3}{16}\,\left(\vec{\lambda}^{c}_{i}\cdot\vec{\lambda}^{c}_{j}\right)\,\left(b\,r_{ij}-\frac{4}{3}\frac{\alpha_{ij}}{r_{ij}}+C_{0}\right)\,, (2)

where λi(j)c\vec{\lambda}^{c}_{i(j)} is Gell-Mann matrix in SU(3)SU(3) color space acting on the i(j)i(j)-th quark, bb, αij\alpha_{ij} and C0C_{0} are strength of quark confinement, QCD effective coupling constant between two quarks and zero point energy, respectively.

For the residual spin-dependent interaction VIns.V_{Ins.} in Eq. (1), we employ a phenomenologically extended version of ’t Hooft’s instanton-induced interaction Migura:2006ep :

VIns.=VIns.qq+VIns.qq¯,V_{Ins.}=V^{qq}_{Ins.}+V^{q\bar{q}}_{Ins.}\,, (3)

with

VIns.qq\displaystyle V^{qq}_{Ins.} =\displaystyle= i<jg^ijqq(PijS=1PijC,𝟔+2PijS=0PijC,𝟑¯)δ3(rij),\displaystyle\sum_{i<j}-\hat{g}^{qq}_{ij}\Big{(}P_{ij}^{S=1}P_{ij}^{C,\bf{6}}+2P_{ij}^{S=0}P_{ij}^{C,\bf{\bar{3}}}\Big{)}\delta^{3}(\vec{r}_{ij})\,,
VIns.qq¯\displaystyle V^{q\bar{q}}_{Ins.} =\displaystyle= i<jg^ijqq¯[32PijS=1PijC,𝟖+PijS=0(12PijC,𝟖\displaystyle\sum_{i<j}\hat{g}^{q\bar{q}}_{ij}\Bigg{[}\frac{3}{2}P_{ij}^{S=1}P_{ij}^{C,\bf{8}}+P_{ij}^{S=0}\Big{(}\frac{1}{2}P_{ij}^{C,\bf{8}} (4)
+8PijC,𝟏)]δ3(rij),\displaystyle+8P_{ij}^{C,\bf{1}}\Big{)}\Bigg{]}\delta^{3}(\vec{r}_{ij})\,,

where VIns.qqV^{qq}_{Ins.} is for the interaction between a quark-quark or antiquark-antiquark pair, and VIns.qq¯V^{q\bar{q}}_{Ins.} is for that between a quark-antiquark pair. g^ijqq\hat{g}^{qq}_{ij} and g^ijqq¯\hat{g}^{q\bar{q}}_{ij} are flavor-dependent coupling strength operators, whose explicit matrix elements are shown in Table 1 and Table 2. PijS=0P_{ij}^{S=0} and PijS=1P_{ij}^{S=1} are spin projector operators onto spin-singlet and spin-triplet states, respectively; PijC,𝟑¯P_{ij}^{C,\bf{\bar{3}}}, PijC,𝟔P_{ij}^{C,\bf{6}}, PijC,𝟏P_{ij}^{C,\bf{1}} and PijC,𝟖P_{ij}^{C,\bf{8}} are color projector operators onto color anti-triplet 𝟑¯𝐜\bf{\bar{3}}_{c}, color sextet 𝟔𝐜\bf{6}_{c}, color singlet 𝟏𝐜\bf{1}_{c} and color octet 𝟖𝐜\bf{8}_{c}, respectively.

One should note that instanton-induced interaction is a pure contact interaction, and δ3(rij)\delta^{3}\left(\vec{r}_{ij}\right) will lead to an unbound Hamiltonian if we don’t treat it perturbatively. Here we regularize it as in Refs. Isgur ; Vijande:2004he ; Metch ,

δ3(rij)(σπ)3exp(σ2rij2).\delta^{3}\left(\vec{r}_{ij}\right)\,\rightarrow\,\left(\frac{\sigma}{\sqrt{\pi}}\right)^{3}\mathrm{exp}\left(-\sigma^{2}\,r_{ij}^{2}\right)\,. (5)

The regularization parameter σ\sigma should correlate to the finite size of constituent quarks and therefore flavor dependent Vijande:2004he , but here we just make σ\sigma to be a unified parameter for different quark flavors and absorb the flavor dependence into g^ijqq\hat{g}^{qq}_{ij} and g^ijqq¯\hat{g}^{q\bar{q}}_{ij}.

Table 1: Matrix elements of flavor-dependent coupling strength operators g^ijqq\hat{g}^{qq}_{ij}. gf1f2g_{f_{1}f_{2}} is flavor-dependent model parameter, n=u,dn=u,d stands for light flavor.
udud dudu usus dsds sdsd susu ucuc dcdc cdcd cucu scsc cscs uuuu dddd ssss cccc
udud gnng_{nn} gnn-g_{nn} 0 0 0 0
dudu gnn-g_{nn} gnng_{nn}
usus 0 gnsg_{ns} 0 0 gns-g_{ns} 0 0 0
dsds 0 gnsg_{ns} gns-g_{ns} 0
sdsd 0 gns-g_{ns} gnsg_{ns} 0
susu gns-g_{ns} 0 0 gnsg_{ns}
ucuc 0 0 gncg_{nc} 0 0 gnc-g_{nc} 0 0
dcdc 0 gncg_{nc} gnc-g_{nc} 0
cdcd 0 gnc-g_{nc} gncg_{nc} 0
cucu gnc-g_{nc} 0 0 gncg_{nc}
scsc 0 0 0 gscg_{sc} gsc-g_{sc} 0
cscs gsc-g_{sc} gscg_{sc}
uuuu 0 0 0 0 0
dddd
ssss
cccc
Table 2: Matrix elements of flavor-dependent coupling strength operator g^ijqq¯\hat{g}^{q\bar{q}}_{ij}. gf1f2g_{f_{1}f_{2}} is flavor-dependent model parameter, n=u,dn=u,d stands for light flavor.
ud¯u\bar{d} du¯d\bar{u} us¯u\bar{s} ds¯d\bar{s} sd¯s\bar{d} su¯s\bar{u} uc¯u\bar{c} dc¯d\bar{c} cd¯c\bar{d} cu¯c\bar{u} sc¯s\bar{c} cs¯c\bar{s} uu¯u\bar{u} dd¯d\bar{d} ss¯s\bar{s} cc¯c\bar{c}
ud¯u\bar{d} gnn-g_{nn} 0 0 0 0 0
du¯d\bar{u} 0 gnn-g_{nn}
us¯u\bar{s} 0 gns-g_{ns} 0 0 0 0 0 0
ds¯d\bar{s} 0 gns-g_{ns} 0 0
sd¯s\bar{d} 0 0 gns-g_{ns} 0
su¯s\bar{u} 0 0 0 gns-g_{ns}
uc¯u\bar{c} 0 0 gnc-g_{nc} 0 0 0 0 0
dc¯d\bar{c} 0 gnc-g_{nc} 0 0
cd¯c\bar{d} 0 0 gnc-g_{nc} 0
cu¯c\bar{u} 0 0 0 gnc-g_{nc}
sc¯s\bar{c} 0 0 0 gsc-g_{sc} 0 0
cs¯c\bar{s} 0 gsc-g_{sc}
uu¯u\bar{u} 0 0 0 0 0 gnng_{nn} gnsg_{ns} gncg_{nc}
dd¯d\bar{d} gnng_{nn} 0 gnsg_{ns} gncg_{nc}
ss¯s\bar{s} gnsg_{ns} gnsg_{ns} 0 gscg_{sc}
cc¯c\bar{c} gncg_{nc} gncg_{nc} gscg_{sc} 0

II.2 Configurations of four quark systems

Considering the Pauli principle for two-quark (-antiquark) subsystems, there are eight possible flavor-spin-color symmetry configurations for qqq¯q¯qq\bar{q}\bar{q} systems, as follows:

|1\displaystyle\hskip 28.45274pt|1\rangle ={qq}𝟔c{q¯q¯}𝟔¯c,\displaystyle=\{qq\}_{{\bf{6}}_{c}}\{\bar{q}\bar{q}\}_{\bar{\bf{6}}_{c}}\,, |2\displaystyle|2\rangle =[qq]𝟑¯c[q¯q¯]𝟑c,\displaystyle=[qq]_{\bar{\bf{3}}_{c}}[\bar{q}\bar{q}]_{{\bf{3}}_{c}}\,,\hskip 28.45274pt
|3\displaystyle|3\rangle ={qq}𝟑¯c[q¯q¯]𝟑c,\displaystyle=\{qq\}^{*}_{\bar{\bf{3}}_{c}}[\bar{q}\bar{q}]_{{\bf{3}}_{c}}\,, |4\displaystyle|4\rangle =[qq]𝟑¯c{q¯q¯}𝟑c,\displaystyle=[qq]_{\bar{\bf{3}}_{c}}\{\bar{q}\bar{q}\}^{*}_{{\bf{3}}_{c}}\,,
|5\displaystyle|5\rangle =[qq]𝟔c{q¯q¯}𝟔¯c,\displaystyle=[qq]^{*}_{{\bf{6}}_{c}}\{\bar{q}\bar{q}\}_{\bar{\bf{6}}_{c}}\,, |6\displaystyle|6\rangle ={qq}𝟔c[q¯q¯]𝟔¯c,\displaystyle=\{qq\}_{{\bf{6}}_{c}}[\bar{q}\bar{q}]^{*}_{\bar{\bf{6}}_{c}}\,,
|7\displaystyle|7\rangle ={qq}𝟑¯c{q¯q¯}𝟑c,\displaystyle=\{qq\}^{*}_{\bar{\bf{3}}_{c}}\{\bar{q}\bar{q}\}^{*}_{{\bf{3}}_{c}}\,, |8\displaystyle|8\rangle =[qq]𝟔c[q¯q¯]𝟔¯c,\displaystyle=[qq]^{*}_{{\bf{6}}_{c}}[\bar{q}\bar{q}]^{*}_{\bar{\bf{6}}_{c}}\,, (6)

where {}\{\dots\} denotes a permutation symmetric flavor wave function and [][\dots] denotes a permutation antisymmetric flavor wave function of two-quark (-antiquark) subsystem. The superscript * means diquark or antidiquark forms a spin-triplet, while the configurations without superscript are spin-singlet. The blackened number in the subscript denotes color wave function of two-quark (-antiquark) subsystem. As we can see, there are two possible color neutral structures of tetraquark systems, namely, 𝟔𝐜𝟔¯𝐜\bf{6}_{c}\otimes\bf{\bar{6}}_{c} and 𝟑¯𝐜𝟑𝐜\bf{\bar{3}}_{c}\otimes\bf{3}_{c}. Note that here we only consider the SS-wave tetraquark systems, so the spatial wave functions are always completely permutation symmetric.

Explicit flavor wave functions of the studied hidden- and double-charm tetraquark systems are presented in the following subsections, respectively.

II.2.1 Hidden-Charm Systems

There are nine flavor configurations for qq¯cc¯q\bar{q}c\bar{c} with qq the light quarks uu, dd, and ss, which are: ucu¯c¯uc\bar{u}\bar{c}, ucd¯c¯uc\bar{d}\bar{c}, ucs¯c¯uc\bar{s}\bar{c}, dcd¯c¯dc\bar{d}\bar{c}, dcs¯c¯dc\bar{s}\bar{c}, scs¯c¯sc\bar{s}\bar{c}, dcu¯c¯dc\bar{u}\bar{c}, scu¯c¯sc\bar{u}\bar{c}, and scd¯c¯sc\bar{d}\bar{c}. Compositions of these configurations could lead to the tetraquark states with quantum numbers isospin II and strangeness SS, as below:

  • I=0,S=0.I=0,\,S=0.

    Xnn¯\displaystyle X_{n\bar{n}} =12(ucu¯c¯+dcd¯c¯),\displaystyle=\frac{1}{\sqrt{2}}\left(uc\bar{u}\bar{c}+dc\bar{d}\bar{c}\right), (7)
    Xss¯\displaystyle X_{s\bar{s}} =scs¯c¯.\displaystyle=sc\bar{s}\bar{c}. (8)
  • I=12,S=±1.I=\frac{1}{2},\,S=\pm 1.

    Zcs+=ucs¯c¯,\displaystyle Z_{cs}^{+}=uc\bar{s}\bar{c}, Z¯cs0=scd¯c¯,\displaystyle\bar{Z}_{cs}^{0}=-sc\bar{d}\bar{c}, (9)
    Zcs0=dcs¯c¯.\displaystyle Z_{cs}^{0}=dc\bar{s}\bar{c}. Zcs=scu¯c¯.\displaystyle Z_{cs}^{-}=sc\bar{u}\bar{c}. (10)
  • I=1,S=0.I=1,\,S=0.

    Zc+\displaystyle Z_{c}^{+} =ucd¯c¯,\displaystyle=-uc\bar{d}\bar{c}, (11)
    Zc0\displaystyle Z_{c}^{0} =12(ucu¯c¯dcd¯c¯),\displaystyle=\frac{1}{\sqrt{2}}\left(uc\bar{u}\bar{c}-dc\bar{d}\bar{c}\right), (12)
    Zc\displaystyle Z_{c}^{-} =dcu¯c¯.\displaystyle=dc\bar{u}\bar{c}. (13)

XX and Zc0Z_{c}^{0} are pure neutral systems, thus they could have CC-parity. Note that Z¯cs0\bar{Z}_{cs}^{0} and ZcsZ_{cs}^{-} are the conjugate states of Zcs0Z_{cs}^{0} and Zcs+Z_{cs}^{+}, respectively. Thus, we only consider the latter set in following, since a state should share the same energy with its conjugate state in present model.

Accordingly, the symmetry configurations of hidden-charm systems in Eq. (6) could be classified by quantum numbers JP(C)J^{P(C)}, which are listed in Table 3.

Table 3: The symmetry configurations of hidden-charm systems.
For ZcsZ_{cs} states For XX and ZcZ_{c} states
JPJ^{P} Configuration JPCJ^{PC} Configuration
0+0^{+} |1|1\rangle 0++0^{++} |1|1\rangle
|2|2\rangle |2|2\rangle
|7|7\rangle |7|7\rangle
|8|8\rangle |8|8\rangle
1+1^{+} |3|3\rangle 1++1^{++} |3=12(|3+|4)|3^{\prime}\rangle=\frac{1}{\sqrt{2}}\left(|3\rangle+|4\rangle\right)
|4|4\rangle |5=12(|5+|6)|5^{\prime}\rangle=\frac{1}{\sqrt{2}}\left(|5\rangle+|6\rangle\right)
|5|5\rangle 1+1^{+-} |4=12(|3|4)|4^{\prime}\rangle=\frac{1}{\sqrt{2}}\left(|3\rangle-|4\rangle\right)
|6|6\rangle |6=12(|5|6)|6^{\prime}\rangle=\frac{1}{\sqrt{2}}\left(|5\rangle-|6\rangle\right)
|7|7\rangle |7|7\rangle
|8|8\rangle |8|8\rangle
2+2^{+} |7|7\rangle 2++2^{++} |7|7\rangle
|8|8\rangle |8|8\rangle

II.2.2 Double-Charm Systems

Similarly as in the previous section, the flavor wave functions of ccq¯q¯cc\bar{q}\bar{q} systems with proper quantum numbers can be decomposed as follows:

  • I=0,S=0.I=0,\,S=0\,.

    (Tcc0,0)+=12cc(d¯u¯+u¯d¯),\left(T_{cc}^{0,0}\right)^{+}=\frac{1}{\sqrt{2}}cc\left(-\bar{d}\bar{u}+\bar{u}\bar{d}\right)\,, (14)
  • I=0,S=2.I=0,\,S=2\,.

    (Tcc0,2)++=ccs¯s¯,\left(T_{cc}^{0,2}\right)^{++}=cc\bar{s}\bar{s}\,, (15)
  • I=12,S=1.I=\frac{1}{2},\,S=1\,.

    (Tcc12,1)+\displaystyle\left(T_{cc}^{\frac{1}{2},1}\right)^{+} =12cc(d¯s¯±s¯d¯),\displaystyle=-\frac{1}{\sqrt{2}}cc\left(\bar{d}\bar{s}\pm\bar{s}\bar{d}\right)\,, (16)
    (Tcc12,1)0\displaystyle\left(T_{cc}^{\frac{1}{2},1}\right)^{0} =12cc(u¯s¯±s¯u¯),\displaystyle=\frac{1}{\sqrt{2}}cc\left(\bar{u}\bar{s}\pm\bar{s}\bar{u}\right)\,, (17)
  • I=1,S=0.I=1,\,S=0\,.

    (Tcc1,0)++=ccd¯d¯,\displaystyle\left(T_{cc}^{1,0}\right)^{++}=cc\bar{d}\bar{d}\,, (18)
    (Tcc1,0)+=12cc(d¯u¯+u¯d¯),\displaystyle\left(T_{cc}^{1,0}\right)^{+}=-\frac{1}{\sqrt{2}}cc\left(\bar{d}\bar{u}+\bar{u}\bar{d}\right)\,, (19)
    (Tcc1,0)0=ccu¯u¯,\displaystyle\left(T_{cc}^{1,0}\right)^{0}=cc\bar{u}\bar{u}\,, (20)

here we use (TccI,S)Q\left(T_{cc}^{I,S}\right)^{Q} to denote ccq¯q¯cc\bar{q}\bar{q} systems, where II, SS and QQ are isospin, strangeness, and electric charge of the state, respectively.

For the double-charm states, the flavor wave function of diquark must be symmetric since it is cccc, and the symmetry of antidiquark flavor wave functions is determined by Eqs. (1420). All the configurations of double-charm tetraquark systems and their corresponding quantum numbers are listed in Table 4.

Table 4: The symmetry configuraitons of double-charm systems.
TccI,ST_{cc}^{I,S} JPJ^{P} Configuration
Tcc0,0T_{cc}^{0,0} 1+1^{+} |3|3\rangle
|6|6\rangle
Tcc0,2T_{cc}^{0,2} 0+0^{+} |1|1\rangle
|7|7\rangle
1+1^{+} |7|7\rangle
2+2^{+} |7|7\rangle
Tcc12,1T_{cc}^{\frac{1}{2},1} 0+0^{+} |1|1\rangle
|7|7\rangle
1+1^{+} |3|3\rangle
|6|6\rangle
|7|7\rangle
2+2^{+} |7|7\rangle
Tcc1,0T_{cc}^{1,0} 0+0^{+} |1|1\rangle
|7|7\rangle
1+1^{+} |7|7\rangle
2+2^{+} |7|7\rangle

II.3 Wave functions

For the calculation of Hamiltonian matrices, a Gaussian functions expansion method Zhang:2007mu ; Zhang:2005jz ; Liu:2019zuc ; GEM is used here to solve the Schrödinger equation of Hamiltonian Eq. (1), where the orbital wave function of the ground SS-wave tetraquark system can be expanded by a series of Gaussian functions,

Ψ({ri})=i=14𝓁nCi𝓁(1πbi𝓁2)3/4exp[12bi𝓁2ri2],\Psi(\{\vec{r}_{i}\})=\prod_{i=1}^{4}\sum_{\mathcal{l}}^{n}C_{i\mathcal{l}}\left(\frac{1}{\pi b_{i\mathcal{l}}^{2}}\right)^{3/4}\mathrm{exp}\left[-\frac{1}{2b_{i\mathcal{l}}^{2}}r_{i}^{2}\right]\,, (21)

here {bi𝓁}\{b_{i\mathcal{l}}\} are harmonic oscillator length parameters and can be related to the frequencies {ω𝓁}\{\omega_{\mathcal{l}}\} with 1/bi𝓁2=miω𝓁1/b_{i\mathcal{l}}^{2}=m_{i}\omega_{\mathcal{l}}, where we have taken the ansatz that ω𝓁\omega_{\mathcal{l}} is independent to the quark mass as in Ref. Liu:2019zuc . Then the orbital wave function can be simplified to be

Ψ({ri})=\displaystyle\Psi(\{\vec{r}_{i}\})= 𝓁nC𝓁i=14(miω𝓁π)3/4exp[miω𝓁2ri2]\displaystyle\sum_{\mathcal{l}}^{n}C_{\mathcal{l}}\prod_{i=1}^{4}\left(\frac{m_{i}\omega_{\mathcal{l}}}{\pi}\right)^{3/4}\mathrm{exp}\left[-\frac{m_{i}\omega_{\mathcal{l}}}{2}r_{i}^{2}\right]
=\displaystyle= 𝓁nC𝓁ψ(ω𝓁,{ri}),\displaystyle\sum_{\mathcal{l}}^{n}C_{\mathcal{l}}\,\psi\left(\omega_{\mathcal{l}},\{\vec{r}_{i}\}\right)\,, (22)

which is often adopted for the calculations of multiquark systems Zhang:2007mu ; Zhang:2005jz .

On the other hand, here we define the Jacobi coordinates by {ri}\{\vec{r}_{i}\} as

ξ1\displaystyle\vec{\xi}_{1} =\displaystyle= r1r2,\displaystyle\vec{r}_{1}-\vec{r}_{2}\,, (23)
ξ2\displaystyle\vec{\xi}_{2} =\displaystyle= r3r4,\displaystyle\vec{r}_{3}-\vec{r}_{4}\,, (24)
ξ3\displaystyle\vec{\xi}_{3} =\displaystyle= m1r1+m2r2m1+m2m3r3+m4r4m3+m4,\displaystyle\frac{m_{1}\vec{r}_{1}+m_{2}\vec{r}_{2}}{m_{1}+m_{2}}-\frac{m_{3}\vec{r}_{3}+m_{4}\vec{r}_{4}}{m_{3}+m_{4}}\,, (25)
R\displaystyle\vec{R} =\displaystyle= m1r1+m2r2+m3r3+m4r4m1+m2+m3+m4,\displaystyle\frac{m_{1}\vec{r}_{1}+m_{2}\vec{r}_{2}+m_{3}\vec{r}_{3}+m_{4}\vec{r}_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}\,, (26)

to remove contributions of the motion of the center of mass directly. Where we have enumerated the two quarks by 1,21,2 and the two antiquarks by 3,43,4, respectively.

In the calculations we define 1/b𝓁2mqω𝓁1/b_{\mathcal{l}}^{2}\equiv m_{q}\omega_{\mathcal{l}} (mqm_{q} denotes the constituent mass of the corresponding quark). Following the work of Ref. GEM , the parameters {b𝓁}\{b_{\mathcal{l}}\} are set to be geometric series,

b𝓁=b1a𝓁1(𝓁=1,2,,n),b_{\mathcal{l}}=b_{1}a^{\mathcal{l}-1}\hskip 22.76228pt\left(\mathcal{l}=1,2,...,n\right)\,, (27)

where nn is the number of Gaussian functions and aa the ratio coefficient, then there are only thee parameters {b1,bn,n}\{b_{1},b_{n},n\} need to be determined.

Using the orbital wave function in Eq. (22), we compute the diagonal elements of the Hamiltonian matrices by solving the generalized matrix eigenvalue problem:

𝓁n𝓁nC𝓁i(H𝓁𝓁dEidN𝓁𝓁)C𝓁i=0,\sum_{\mathcal{l}}^{n}\sum_{\mathcal{l}^{\prime}}^{n}C^{i}_{\mathcal{l}}\left(H^{d}_{\mathcal{l}\mathcal{l}^{\prime}}-E_{i}^{d}N_{\mathcal{l}\mathcal{l}^{\prime}}\right)C^{i}_{\mathcal{l}^{\prime}}=0\,, (28)

where i=1ni=1\text{--}n and

H𝓁𝓁d=\displaystyle H^{d}_{\mathcal{l}\mathcal{l}^{\prime}}= ψ(ω𝓁)(FSC)|Heff.|ψ(ω𝓁)(FSC),\displaystyle\langle\psi\left(\omega_{\mathcal{l}}\right)(FSC)|H_{eff.}|\psi\left(\omega_{\mathcal{l}^{\prime}}\right)(FSC)\rangle\,, (29)
N𝓁𝓁=\displaystyle N_{\mathcal{l}\mathcal{l}^{\prime}}= ψ(ω𝓁)(FSC)|ψ(ω𝓁)(FSC),\displaystyle\langle\psi\left(\omega_{\mathcal{l}}\right)(FSC)|\psi\left(\omega_{\mathcal{l}^{\prime}}\right)(FSC)\rangle\,, (30)

here (FSC)(FSC) stands for flavor\,\otimes\,spin\,\otimes\,color wave function. One can choose a set of {b1,bn,n}\{b_{1},b_{n},n\} tentatively, then extend and densify the harmonic oscillator length parameters to get a minimum energy EmdE^{d}_{m}, which should be correlative to the energy of physical state according to the Rayleigh-Ritz variational principle. In present work we take {b1,bn,n}={0.02fm,6fm,40}\{b_{1},b_{n},n\}=\{0.02\,\text{fm},6\,\text{fm},40\} for the light quarks, and one can directly obtain the ranges for the strange and charm quarks by replacing the light quark mass by strange and charm quark masses, respectively. Besides, the nondiagonal elements of Hamiltonian matrices can be easily obtained using {C𝓁m}\{C_{\mathcal{l}}^{m}\}.

II.4 Model Parameters

There are sixteen parameters in our model, namely, constituent quark masses mnm_{n}, msm_{s} and mcm_{c}; quark confinement strength bb, QCD effective coupling constants αij\alpha_{ij} (ii and jj are quark flavor), and zero point energy C0C_{0} for Cornell potential; gnng_{nn}, gnsg_{ns}, gncg_{nc}, gscg_{sc}, and σ\sigma for instanton-induced interaction. All these above model parameters are collected in Table 5.

Table 5: Parameters used in this work.
mn=340MeVm_{n}=340\,\text{MeV} ms=511MeVm_{s}=511\,\text{MeV}
mc=1674MeVm_{c}=1674\,\text{MeV}
b=0.39GeVfm1b=0.39\,\text{GeV}\cdot\text{fm}^{-1} C0=296MeVC_{0}=-296\,\text{MeV}
αnn=0.600\alpha_{nn}=0.600 αns=0.600\alpha_{ns}=0.600
αss=0.562\alpha_{ss}=0.562 αnc=0.509\alpha_{nc}=0.509
αsc=0.480\alpha_{sc}=0.480 αcc=0.450\alpha_{cc}=0.450
gnn=0.169×104MeV2g_{nn}=0.169\times 10^{-4}\,\text{MeV}^{-2} gns=0.107×104MeV2g_{ns}=0.107\times 10^{-4}\,\text{MeV}^{-2}
gnc=0.040×104MeV2g_{nc}=0.040\times 10^{-4}\,\text{MeV}^{-2} gsc=0.031×104MeV2g_{sc}=0.031\times 10^{-4}\,\text{MeV}^{-2}
σ=485MeV\sigma=485\,\text{MeV}

Since none of the exotic states is identified as a pure tetraquark state, one cannot take the masses of these exotic states as input to evaluate the model parameters. In our model, the interactions between quarks and antiquarks in tetraquark states are simple superposition of two-body confinements and tow-body residual interactions, which is the same as the description of traditional baryons and mesons in CQM. Therefore, we just extract model parameters from traditional hadron spectra. In this work, eleven mesons and eight baryons are taken as inputs to determine these model parameters.

It is worthy to mention that, if the pseudoscalar mesons whose dominant contents are considered to be pure qf1q¯f2q_{f_{1}}\bar{q}_{f_{2}} with f1=f2f_{1}=f_{2}, as shown in Table 2, the instanton-induced interaction effects will vanish, this should lead to the mass relation mηc=mJ/ψm_{\eta_{c}}=m_{J/\psi}, it’s obviously unreasonable. In fact, as discussed in tHooft:1999cta , the instanton-induced interaction should cause mixing between this kind of states with quantum number 0+0^{-+} naturally, although the mixing between the cc¯c\bar{c} pair with the light quark-antiquark pairs should be very small, it will obviously influence on the mass of ηc\eta_{c}. Consequently, to get the correct mass relations, one has to consider the flavor-configuration mixing for η\eta, η\eta^{\prime} and ηc\eta_{c}. However, the mixing angles are unknown and difficult to determine tHooft:1999cta . Thus, these sates η\eta, η\eta^{\prime} and ηc\eta_{c} are not taken into account for determining the model parameters shown in table 5. In addition, the effective strong coupling constant between two charm quarks is determined by fitting the mass of J/ψJ/\psi.

With these model parameters shown in Table 5, the model calculations for the hadron spectra are shown in Table 6.

Table 6: Ground state hadron spectrum. The columns denoted by “M” are model calculations while the columns denoted by “PDG” are experimental data for the masses of these states in PDG PDG . The units are in MeV.
States M PDG States M PDG
π\pi 139139 138138 J/ψJ/\psi 30973097 30973097
ρ\rho 775775 775775 Σc\Sigma_{c} 24472447 24542454
ω\omega 775775 783783 Σc\Sigma_{c}^{*} 25182518 25182518
ϕ\phi 10191019 10191019 Ξc\Xi_{c} 25072507 24692469
KK 499499 496496 Ξc\Xi_{c}^{\prime} 25542554 25772577
KK^{*} 894894 895895 Ξc\Xi_{c}^{*} 26272627 26462646
DD 18661866 18671867 Ωc\Omega_{c} 26642664 26952695
DD^{*} 20092009 20092009 Ωc\Omega_{c}^{*} 27372737 27662766
DsD_{s} 19691969 19681968 Ξcc\Xi_{cc} 36073607 36213621
DsD_{s}^{*} 21112111 21122112

III Results and Discussions

With the model parameters in Table 5, one can calculate the mass spectra of the ground SS-wave hidden- and double-charm tetraquark systems. The numerical results are shown in Tables 7-13.

As discussed in the Sec. II, there are two possible color structures of tetraquark configurations, namely, 𝟔𝐜𝟔¯𝐜\bf{6}_{c}\otimes\bf{\bar{6}}_{c} and 𝟑¯𝐜𝟑𝐜\bf{\bar{3}}_{c}\otimes\bf{3}_{c}. The results of color factor λicλjc\langle\vec{\lambda}^{c}_{i}\cdot\vec{\lambda}^{c}_{j}\rangle show that, the Cornell potentials are attractive between each of quarks and antiquarks in tetraquark states with 𝟑¯𝐜𝟑𝐜\bf{\bar{3}}_{c}\otimes\bf{3}_{c} color structure (configurations |2,|3,|4,|7|2\rangle,|3\rangle,|4\rangle,|7\rangle). However, they are repulsive for those states with 𝟔𝐜𝟔¯𝐜\bf{6}_{c}\otimes\bf{\bar{6}}_{c} color structure (configurations |1,|5,|6,|8|1\rangle,|5\rangle,|6\rangle,|8\rangle). Intuitively, one might think that the tetraquark states with 𝟑¯𝐜𝟑𝐜\bf{\bar{3}}_{c}\otimes\bf{3}_{c} structure could be more bound than those states with the 𝟔𝐜𝟔¯𝐜\bf{6}_{c}\otimes\bf{\bar{6}}_{c}, and thus have lower energies.

However, this is not always true. Because, on one hand, a tighter binding is accompanied by a higher quark kinetic energy, on the other hand a color dependent residual interaction, Instanton-induced interaction, is considered in the model, which has a much more complicated interaction structure in tetraquark states compared with traditional meson states.

Consequently, a physical tetraquark state should be composed of the two kinds of components with 𝟑¯𝐜𝟑𝐜\bf{\bar{3}}_{c}\otimes\bf{3}_{c} and 𝟔𝐜𝟔¯𝐜\bf{6}_{c}\otimes\bf{\bar{6}}_{c} color structures. In Tables 7910 and 13, the numerical results including mixing of the two kinds of components are presented in the last two columns. Obviously, effects of configurations mixing are important.

In the following subsections, we discuss the results of XX, ZcZ_{c}, ZcsZ_{cs} and double-charm tetraquark states, respectively.

III.1 XX states

Table 7: The numerical results of ground SS-wave XX states with IG=0+I^{G}=0^{+}. First and second columns are the quark content of each state and the corresponding JPCJ^{PC} quantum numbers, the fourth column are the results of single configuration calculations, fifth and sixth columns are the model results after considering configuration mixing, but not considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing.
Single configuration Configurations mixing
Quark content JPCJ^{PC} Config. Energies (MeV) Energies (MeV) Mixing coefficients
cc¯nn¯c\bar{c}n\bar{n} 0++0^{++} |1|1\rangle 4161.554161.55 4039.344039.34 (0.64,0.43,0.00,0.64)(-0.64,\hskip 4.26773pt-0.43,\hskip 4.26773pt0.00,\hskip 4.26773pt-0.64)
|2|2\rangle 4131.904131.90 4115.934115.93 (0.00,0.75,0.43,0.50)(0.00,\hskip 4.26773pt-0.75,\hskip 4.26773pt-0.43,\hskip 4.26773pt0.50)
|7|7\rangle 4212.694212.69 4231.324231.32 (0.28,0.46,0.84,0.02)(0.28,\hskip 4.26773pt-0.46,\hskip 4.26773pt0.84,\hskip 4.26773pt0.02)
|8|8\rangle 4131.284131.28 4250.834250.83 (0.71,0.20,0.34,0.59)(0.71,\hskip 4.26773pt-0.20,\hskip 4.26773pt-0.34,\hskip 4.26773pt-0.59)
cc¯nn¯c\bar{c}n\bar{n} 1++1^{++} |3|3^{\prime}\rangle 4151.064151.06 4052.784052.78 (0.51,0.86)(0.51,\hskip 4.26773pt-0.86)
|5|5^{\prime}\rangle 4088.234088.23 4186.524186.52 (0.86,0.51)(-0.86,\hskip 4.26773pt-0.51)
cc¯nn¯c\bar{c}n\bar{n} 1+1^{+-} |4|4^{\prime}\rangle 4193.214193.21 4053.084053.08 (0.46,0.51,0.25,0.68)(-0.46,\hskip 4.26773pt0.51,\hskip 4.26773pt-0.25,\hskip 4.26773pt0.68)
|6|6^{\prime}\rangle 4190.934190.93 4186.874186.87 (0.26,0.41,0.55,0.68)(-0.26,\hskip 4.26773pt0.41,\hskip 4.26773pt-0.55,\hskip 4.26773pt-0.68)
|7|7\rangle 4211.404211.40 4228.554228.55 (0.75,0.05,0.61,0.24)(0.75,\hskip 4.26773pt0.05,\hskip 4.26773pt-0.61,\hskip 4.26773pt0.24)
|8|8\rangle 4127.504127.50 4254.524254.52 (0.40,0.76,0.51,0.11)(0.40,\hskip 4.26773pt0.76,\hskip 4.26773pt0.51,\hskip 4.26773pt-0.11)
cc¯nn¯c\bar{c}n\bar{n} 2++2^{++} |7|7\rangle 4208.784208.78 4055.734055.73 (0.54,0.84)(-0.54,\hskip 4.26773pt-0.84)
|8|8\rangle 4119.534119.53 4272.574272.57 (0.84,0.54)(-0.84,\hskip 4.26773pt0.54)
cc¯ss¯c\bar{c}s\bar{s} 0++0^{++} |1|1\rangle 4341.924341.92 4203.764203.76 (0.24,0.37,0.14,0.89)(-0.24,\hskip 4.26773pt-0.37,\hskip 4.26773pt-0.14,\hskip 4.26773pt0.89)
|2|2\rangle 4293.154293.15 4270.154270.15 (0.61,0.77,0.10,0.14)(0.61,\hskip 4.26773pt-0.77,\hskip 4.26773pt0.10,\hskip 4.26773pt-0.14)
|7|7\rangle 4361.494361.49 4340.174340.17 (0.34,0.32,0.81,0.35)(0.34,\hskip 4.26773pt0.32,\hskip 4.26773pt0.81,\hskip 4.26773pt0.35)
|8|8\rangle 4237.314237.31 4419.794419.79 (0.67,0.41,0.56,0.27)(-0.67,\hskip 4.26773pt-0.41,\hskip 4.26773pt0.56,\hskip 4.26773pt-0.27)
cc¯ss¯c\bar{c}s\bar{s} 1++1^{++} |3|3^{\prime}\rangle 4328.424328.42 4284.164284.16 (0.39,0.92)(-0.39,\hskip 4.26773pt-0.92)
|5|5^{\prime}\rangle 4292.144292.14 4336.394336.39 (0.92,0.39)(-0.92,\hskip 4.26773pt0.39)
cc¯ss¯c\bar{c}s\bar{s} 1+1^{+-} |4|4^{\prime}\rangle 4350.704350.70 4265.064265.06 (0.00,0.00,0.17,0.98)(0.00,\hskip 4.26773pt0.00,\hskip 4.26773pt-0.17,\hskip 4.26773pt0.98)
|6|6^{\prime}\rangle 4347.164347.16 4283.644283.64 (0.70,0.72,0.00,0.00)(0.70,\hskip 4.26773pt-0.72,\hskip 4.26773pt0.00,\hskip 4.26773pt0.00)
|7|7\rangle 4372.054372.05 4375.424375.42 (0.00,0.00,0.98,0.17)(0.00,\hskip 4.26773pt0.00,\hskip 4.26773pt0.98,\hskip 4.26773pt0.17)
|8|8\rangle 4268.424268.42 4414.234414.23 (0.72,0.70,0.00,0.00)(0.72,\hskip 4.26773pt0.70,\hskip 4.26773pt0.00,\hskip 4.26773pt0.00)
cc¯ss¯c\bar{c}s\bar{s} 2++2^{++} |7|7\rangle 4392.524392.52 4286.554286.55 (0.52,0.85)(0.52,\hskip 4.26773pt-0.85)
|8|8\rangle 4325.864325.86 4431.834431.83 (0.85,0.52)(-0.85,\hskip 4.26773pt-0.52)

In this subsection, we present the numerical results for spectrum of the ground SS-wave cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} states, those we call XX states.

Similar to ηη\eta\text{--}\eta^{\prime} mixing, there are transitions between cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} quark configurations, which can be naturally caused by the instanton-induced interaction. Consequently, we will discuss the results within two models: one takes into account only the single configurations cnc¯n¯cn\bar{c}\bar{n} or csc¯s¯cs\bar{c}\bar{s}, respectively; while the other one includes the mixing of these configurations. The numerical results of energies for the IG=0+I^{G}=0^{+} XX states are given in Tables 7 and 8, respectively, where the masses and configurations mixing coefficients for the obtained tetraquark states are shown explicitly.

Meanwhile, we depict the obtained mass spectrum of XX states in Fig. 1 comparing with the experimental measurements, where red solid lines denote cnc¯n¯cn\bar{c}\bar{n} system and blue lines denote csc¯s¯cs\bar{c}\bar{s} system, hollow circles with crosses denote results after considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing, gray dotted lines are corresponding SS-wave charm meson pair thresholds, finally, the green rectangles represent experimental masses of these XX states taken from PDG PDG , the rectangle widths stand their masses uncertainties.

Refer to caption
Figure 1: Mass spectrum of ground SS-wave XX states. Red solid lines denote cnc¯n¯cn\bar{c}\bar{n} system and blue lines denote csc¯s¯cs\bar{c}\bar{s} system, hollow circles with crosses denote results after considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing, gray dotted lines are corresponding SS-wave charm meson pair thresholds, the green rectangles represent XX states experimental masses taken from PDG PDG , the rectangle width stand their masses uncertainties.

Experimentally, in 2003, the X(3872)X(3872) state was observed by Belle collaboration Belle 2003 and its quantum number was determined to be JPC=1++J^{PC}=1^{++} LHCb 2013 . Explicitly, its mass and width are: M=3871.65±0.06M=3871.65\pm 0.06 and Γ=1.19±0.01MeV\Gamma=1.19\pm 0.01\,\text{MeV} PDG . Its mass is extremely close to the D0D¯0D^{0}\bar{D}^{*0} mass threshold, which indicates that X(3872)X(3872) may be explained as a D0D¯0D^{0}\bar{D}^{*0} hadronic molecule. In present work, the lowest energy of cnc¯n¯cn\bar{c}\bar{n} states with quantum numbers IG(JPC)=0+(1++)I^{G}(J^{PC})=0^{+}(1^{++}) is about 4053MeV4053\,\text{MeV}, which is much higher than the mass of X(3872)X(3872). Consequently, our result may support that the X(3872)X(3872) is mostly dominated by a hadronic molecular state.

The X(3930)X(3930) and X(3915)X(3915) states are observed through two photon fusion processes by Belle in 2005 Belle 2006 and 2010 Belle 2010 , respectively. They were suggested to be good candidates of the 23P02^{3}P_{0} and 23P22^{3}P_{2} charmonium states, χc0(2P)\chi_{c0}(2P) and χc2(2P)\chi_{c2}(2P), respectively Belle 2006 ; Belle 2010 ; BaBar 2012 . From our results shown in Table 7 and Fig. 1, it is found that our results of the states with quantum numbers IG(JPC)=0+(0++)I^{G}(J^{PC})=0^{+}(0^{++}) and IG(JPC)=0+(2++)I^{G}(J^{PC})=0^{+}(2^{++}) are all higher than the masses of X(3930)X(3930) and X(3915)X(3915). Thus X(3930)X(3930) and X(3915)X(3915) cannot be described by the compact tetraquark states.

The CDF collaboration reported the discoveries of X(4140)X(4140) and X(4274)X(4274) in the J/ψϕJ/\psi\phi invariant mass distribution of the process B+J/ψϕK+B^{+}\rightarrow J/\psi\phi K^{+} in 2009 CDF 2009 and 2011 CDF 2011 , respectively. Later, LHCb collaboration confirmed their existences and determined their spin-parity quantum numbers to be JP=1+J^{P}=1^{+} LHCb 2017 ; LHCb PRD 2017 ; LHCb 2021 . Masses and widths of X(4140)X(4140) and X(4274)X(4274) are PDG

(MX(4140)=4146.8±2.4,ΓX(4140)=227+8)MeV,\displaystyle(M_{X(4140)}=4146.8\pm 2.4\,,\Gamma_{X(4140)}=22^{+8}_{-7})\,\text{MeV}\,,
(MX(4274)=42746+8,ΓX(4274)=49±12)MeV,\displaystyle(M_{X(4274)}=4274^{+8}_{-6}\,,\Gamma_{X(4274)}=49\pm 12)\,\text{MeV}\,,

respectively. The next lowest energy of the cnc¯n¯cn\bar{c}\bar{n} states with quantum number IG(JPC)=0+(1++)I^{G}(J^{PC})=0^{+}(1^{++}) in present model is around 4187MeV4187\,\text{MeV}, very close to the mass of X(4140)X(4140) state, while the lowest energy of the csc¯s¯cs\bar{c}\bar{s} states with quantum number IG(JPC)=0+(1++)I^{G}(J^{PC})=0^{+}(1^{++}) in present model is about 4284MeV4284\,\text{MeV}, very close to the mass of X(4274)X(4274) state. Thus X(4140)X(4140) and X(4274)X(4274) can be interpreted as compact cc¯nn¯c\bar{c}n\bar{n} and cc¯ss¯c\bar{c}s\bar{s} tetraquark states with quantum number IG(JPC)=0+(1++)I^{G}(J^{PC})=0^{+}(1^{++}), respectively.

The results by considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing are also given in Fig. 1, which are denoted by hollow circles with crosses. It can be found that configurations mixing effects in the tetraquark states with quantum numbers JPC=0++J^{PC}=0^{++} are significant, while those in the JPC=1++J^{PC}=1^{++} tetraquark states are tiny. The results of four of the obtained XX states with quantum number JPC=1++J^{PC}=1^{++}, considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing, are shown in Table 8 with explicit probabilities of the admixtures. One can find that every state is dominated by a single configuration.

Table 8: The results of the XX states with quantum numbers JPC=1++J^{PC}=1^{++} by considering cnc¯n¯cn\bar{c}\bar{n} and csc¯s¯cs\bar{c}\bar{s} mixing.
Model values Experimental values
M (MeV) cc¯nn¯c\bar{c}n\bar{n} cc¯ss¯c\bar{c}s\bar{s} States M (MeV)
4052.724052.72 99.98%99.98\% 0.02%0.02\%
4176.074176.07 93.70%93.70\% 6.30%6.30\% X(4140)X(4140) 4146.8±2.44146.8\pm 2.4
4284.764284.76 0.46%0.46\% 99.54%99.54\% X(4274)X(4274) 42746+84274^{+8}_{-6}
4346.294346.29 5.86%5.86\% 94.14%94.14\%

Finally, as shown in Fig. 1, one may note that most of the energies for the obtained XX states in present work are near but higher than thresholds of corresponding SS-wave meson-meson channels, with only a few exceptions including the states shown in Table 8. This may indicate that most of the presently obtained XX states with compact tetraquark structure cannot form considerable components in the physical meson exotics.

III.2 ZcZ_{c} and ZcsZ_{cs} states

The numerical results for SS-wave cnc¯n¯cn\bar{c}\bar{n} and cnc¯s¯cn\bar{c}\bar{s} systems are collected in Table. 9 and Table. 10, respectively. In these tables, the first and second columns give the quark content of each state and their corresponding quantum numbers, the fourth column shows the numerical results considering only single configurations, while numbers in the fifth column are the results obtained by including the configurations mixing effects, and the explicit probability amplitudes for the mixed configurations are shown in the last column.

Table 9: As in table 7 but for the case of ZcZ_{c} states.
Single configuration Configurations mixing
Quark content IG(JPC)I^{G}(J^{PC}) Config. Energies (MeV) Energies (MeV) Mixing coefficients
cc¯nn¯c\bar{c}n\bar{n} 1(0++)1^{-}(0^{++}) |1|1\rangle 4079.464079.46 3777.233777.23 (0.23,0.42,0.30,0.82)(0.23,\hskip 4.26773pt0.42,\hskip 4.26773pt0.30,\hskip 4.26773pt0.82)
|2|2\rangle 4048.334048.33 4018.554018.55 (0.76,0.17,0.42,0.46)(-0.76,\hskip 4.26773pt-0.17,\hskip 4.26773pt-0.42,\hskip 4.26773pt0.46)
|7|7\rangle 4093.054093.05 4076.614076.61 (0.04,0.78,0.60,0.19)(-0.04,\hskip 4.26773pt-0.78,\hskip 4.26773pt0.60,\hskip 4.26773pt0.19)
|8|8\rangle 3872.813872.81 4221.264221.26 (0.60,0.43,0.61,0.28)(-0.60,\hskip 4.26773pt0.43,\hskip 4.26773pt0.61,\hskip 4.26773pt-0.28)
cc¯nn¯c\bar{c}n\bar{n} 1(1++)1^{-}(1^{++}) |3|3^{\prime}\rangle 4099.704099.70 4052.824052.82 (0.40,0.91)(-0.40,\hskip 4.26773pt-0.91)
|5|5^{\prime}\rangle 4061.954061.95 4108.844108.84 (0.91,0.40)(-0.91,\hskip 4.26773pt0.40)
cc¯nn¯c\bar{c}n\bar{n} 1+(1+)1^{+}(1^{+-}) |4|4^{\prime}\rangle 4095.304095.30 3814.573814.57 (0.43,0.53,0.31,0.66)(-0.43,\hskip 4.26773pt-0.53,\hskip 4.26773pt-0.31,\hskip 4.26773pt0.66)
|6|6^{\prime}\rangle 4050.894050.89 4050.164050.16 (0.48,0.54,0.14,0.68)(0.48,\hskip 4.26773pt0.54,\hskip 4.26773pt-0.14,\hskip 4.26773pt0.68)
|7|7\rangle 4118.374118.37 4149.294149.29 (0.28,0.09,0.90,0.32)(-0.28,\hskip 4.26773pt0.09,\hskip 4.26773pt0.90,\hskip 4.26773pt0.32)
|8|8\rangle 3959.103959.10 4209.654209.65 (0.71,0.65,0.26,0.07)(0.71,\hskip 4.26773pt-0.65,\hskip 4.26773pt0.26,\hskip 4.26773pt0.07)
cc¯nn¯c\bar{c}n\bar{n} 1(2++)1^{-}(2^{++}) |7|7\rangle 4164.704164.70 4052.984052.98 (0.52,0.85)(-0.52,\hskip 4.26773pt-0.85)
|8|8\rangle 4095.254095.25 4206.974206.97 (0.85,0.52)(-0.85,\hskip 4.26773pt0.52)
Table 10: As in table 7 but for the case of ZcsZ_{cs} states.
Single configuration Configurations mixing
Quark content I(JP)I(J^{P}) Config. Energies (MeV) Energies (MeV) Mixing coefficients
cc¯ns¯c\bar{c}n\bar{s} 12(0+)\frac{1}{2}(0^{+}) |1|1\rangle 4198.044198.04 3951.723951.72 (0.17,0.45,0.24,0.84)(0.17,\hskip 4.26773pt0.45,\hskip 4.26773pt-0.24,\hskip 4.26773pt0.84)
|2|2\rangle 4158.904158.90 4129.624129.62 (0.76,0.23,0.45,0.41)(-0.76,\hskip 4.26773pt-0.23,\hskip 4.26773pt0.45,\hskip 4.26773pt0.41)
|7|7\rangle 4210.364210.36 4186.384186.38 (0.00,0.76,0.61,0.23)(0.00,\hskip 4.26773pt-0.76,\hskip 4.26773pt-0.61,\hskip 4.26773pt0.23)
|8|8\rangle 4019.174019.17 4318.754318.75 (0.62,0.41,0.61,0.26)(-0.62,\hskip 4.26773pt0.41,\hskip 4.26773pt-0.61,\hskip 4.26773pt-0.26)
cc¯ns¯c\bar{c}n\bar{s} 12(1+)\frac{1}{2}(1^{+}) |3|3\rangle 4205.974205.97 3988.723988.72 (0.31,0.31,0.37,0.37,0.29,0.68)(-0.31,\hskip 4.26773pt-0.31,\hskip 4.26773pt0.37,\hskip 4.26773pt-0.37,\hskip 4.26773pt0.29,\hskip 4.26773pt0.68)
|4|4\rangle 4209.704209.70 4159.094159.09 (0.34,0.34,0.28,0.48,0.10,0.67)(0.34,\hskip 4.26773pt0.34,\hskip 4.26773pt-0.28,\hskip 4.26773pt0.48,\hskip 4.26773pt0.10,\hskip 4.26773pt0.67)
|5|5\rangle 4176.114176.11 4165.974165.97 (0.31,0.21,0.70,0.60,0.03,0.09)(0.31,\hskip 4.26773pt-0.21,\hskip 4.26773pt-0.70,\hskip 4.26773pt-0.60,\hskip 4.26773pt0.03,\hskip 4.26773pt0.09)
|6|6\rangle 4174.254174.25 4212.734212.73 (0.64,0.67,0.28,0.23,0.05,0.02)(0.64,\hskip 4.26773pt-0.67,\hskip 4.26773pt0.28,\hskip 4.26773pt0.23,\hskip 4.26773pt-0.05,\hskip 4.26773pt-0.02)
|7|7\rangle 4231.974231.97 4253.474253.47 (0.20,0.16,0.07,0.01,0.92,0.28)(-0.20,\hskip 4.26773pt-0.16,\hskip 4.26773pt-0.07,\hskip 4.26773pt0.01,\hskip 4.26773pt-0.92,\hskip 4.26773pt0.28)
|8|8\rangle 4089.374089.37 4307.394307.39 (0.49,0.52,0.47,0.47,0.22,0.05)(-0.49,\hskip 4.26773pt-0.52,\hskip 4.26773pt-0.47,\hskip 4.26773pt0.47,\hskip 4.26773pt0.22,\hskip 4.26773pt-0.05)
cc¯ns¯c\bar{c}n\bar{s} 12(2+)\frac{1}{2}(2^{+}) |7|7\rangle 4272.184272.18 4167.214167.21 (0.52,0.85)(0.52,\hskip 4.26773pt-0.85)
|8|8\rangle 4205.904205.90 4310.874310.87 (0.85,0.52)(-0.85,\hskip 4.26773pt-0.52)

In addition, we also depict the mass spectra of SS-wave cnc¯n¯cn\bar{c}\bar{n} and cnc¯s¯cn\bar{c}\bar{s} tetraquark states in Figs. 2 and 3 comparing with the experimental measurements PDG ; LHCb 2021 ; BESIII 2021 , where the red solid lines are results obtained in present work, while the green and yellow rectangles represent the states with and without definite quantum numbers in experiments, respectively, with the rectangle widths indicating their masses uncertainties, and the gray dotted lines denote the corresponding SS-wave charm meson pair thresholds.

Refer to caption
Figure 2: Mass spectra of ground SS-wave ZcZ_{c} states. Red solid lines denote the model results. Gray dotted lines are corresponding SS-wave charm meson pair thresholds. The green rectangle represents experimental mass of Zc(3900)Z_{c}(3900) with definite quantum number, the rectangle width is its mass uncertainty. The yellow rectangles represents the electric charmonium-like states, observed in experiments near 4.1 GeV, whose spin-parity quantum numbers have not been pinned down yet, the corresponding quantum numbers in figure are suggested by model calculation, the rectangle width stand their masses uncertainties, while the deep yellow solid lines in rectangles are central values of their experimental masses. All the experimental values shown in this figure are taken from PDG PDG .
Refer to caption
Figure 3: Mass spectra of ground SS-wave ZcsZ_{cs} states. Red solid lines denote the model results. Gray dotted lines are corresponding SS-wave charm meson pair thresholds. The green rectangles represent the experimental masses of Zcs(4000)Z_{cs}(4000) and Zcs(4220)Z_{cs}(4220) with definite quantum numbers LHCb 2021 , the rectangle width stand their masses uncertainties and the deep green solid lines in the rectangles are central values of their masses. The yellow rectangles represent the experimental mass of Zcs(3985)Z_{cs}(3985), the rectangle width stand its mass uncertainty. Spin-parity quantum numbers of Zcs(3985)Z_{cs}(3985) in figure are suggested by model calculation.

In 2013, BESIII collaboration reported the electric charmoniumlike state Zc(3900)±Z_{c}(3900)^{\pm} in the π±J/ψ\pi^{\pm}J/\psi invariant mass spectrum of the process e+eπ+πJ/ψe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\psi BESIII 2013 . And the same structure was also observed in the same process by Belle collaboration Belle 2013 . Later on, Zc(3885)±Z_{c}(3885)^{\pm} was discovered in the (DD¯)±(D\bar{D}^{*})^{\pm} invariant mass spectrum of the process e+eπ(DD¯)±e^{+}e^{-}\rightarrow\pi^{\mp}(D\bar{D}^{*})^{\pm} by BESIII collaboration, which should have a very similar mass with the Zc(3900)±Z_{c}(3900)^{\pm} state BESIII 2014 . Since they have the same spin–parity JP=1+J^{P}=1^{+}, similar mass and width, Zc(3900)Z_{c}(3900) and Zc(3885)Z_{c}(3885) are probably the same state, and mainly couple dominantly to the DD¯D\bar{D}^{*} channel BESIII 2014 . Thus we will not distinguish the Zc(3900)Z_{c}(3900) and Zc(3885)Z_{c}(3885) in the following discussions.

The average mass and width of Zc(3900)Z_{c}(3900) from PDG PDG are: MZc(3900)=3887.1±2.6M_{Z_{c}(3900)}=3887.1\pm 2.6 and ΓZc(3900)=28.4±2.6MeV\Gamma_{Z_{c}(3900)}=28.4\pm 2.6\,\text{MeV}. In present model, the lowest mass of ground SS-wave cnc¯n¯cn\bar{c}\bar{n} states with quantum numbers IG(JPC)=1+(1+)I^{G}(J^{PC})=1^{+}(1^{+-}), considering configuration mixing, is about 3815MeV3815\,\text{MeV}. This value is lower than, but not far from, the experimental mass of Zc(3900)Z_{c}(3900). This may indicate that the compact cc¯nn¯c\bar{c}n\bar{n} tetraquark components may take notable probability in the Zc(3900)Z_{c}(3900) state.

The Zc(4025)Z_{c}(4025) state was observed in DD¯D\bar{D}^{*} final state in Ref. BESIII 2014 Zc4025 and, meanwhile, a similar structure Zc(4020)Z_{c}(4020) was observed in πhc\pi h_{c} final state by BESIII collaboration BESIII 2013 Zc4020 . At present, the Zc(4020)Z_{c}(4020) and Zc(4025)Z_{c}(4025) states are denoted as an identical state X(4020)X(4020) in PDG PDG . Its average mass and width are MZc(4020)=4024.1±1.9,ΓZc(4020)=13±5MeVM_{Z_{c}(4020)}=4024.1\pm 1.9,\,\Gamma_{Z_{c}(4020)}=13\pm 5\,\text{MeV}, and its quantum number are probably JPC=1+J^{PC}=1^{+-} HeJ 2013 . In present model, the next-lowest mass of ground SS-wave cnc¯n¯cn\bar{c}\bar{n} state with quantum number IG(JPC)=1+(1+)I^{G}(J^{PC})=1^{+}(1^{+-}), considering configuration mixing, is about 4050MeV4050\,\text{MeV}, which is very close to the mass of X(4020)X(4020). Therefore, one may expect that the cc¯nn¯c\bar{c}n\bar{n} tetraquark configuration obtained here could be a component in the X(4020)X(4020) state.

Table 11: The comparison of model results with experimental masses for ZcZ_{c} states. Fourth, fifth and sixth columns collect the experimental data of ZcZ_{c} states near 4.1GeV4.1\,\text{GeV}, and first two columns collect the model results in which model masses are close to the experimental masses.
Present results Experimental data
IG(JPC)I^{G}(J^{PC}) M (MeV) States IG(JPC)I^{G}(J^{PC}) M (MeV)
1+(1+)1^{+}(1^{+-}) 3814.573814.57 Zc(3900)Z_{c}(3900) 1+(1+)1^{+}(1^{+-}) 3887.1±2.63887.1\pm 2.6
1+(1+)1^{+}(1^{+-}) 4050.164050.16 X(4020)X(4020) 1+(??)1^{+}(?^{?-}) 4024.1±1.94024.1\pm 1.9
1(1++)1^{-}(1^{++}) 4052.824052.82 X(4050)X(4050) 1(??+)1^{-}(?^{?+}) 4051±1441+204051\pm 14^{+20}_{-41}
1(2++)1^{-}(2^{++}) 4052.984052.98
1+(1+)1^{+}(1^{+-}) 4050.164050.16 X(4055)X(4055) 1+(??)1^{+}(?^{?-}) 4054±3±14054\pm 3\pm 1
1(0++)1^{-}(0^{++}) 4076.614076.61 X(4100)X(4100) 1(???)1^{-}(?^{??}) 4096±2022+184096\pm 20^{+18}_{-22}
1(0++)1^{-}(0^{++}) 4221.264221.26 X(4250)X(4250) 1(??+)1^{-}(?^{?+}) 42482935+44+1804248^{+44+180}_{-29-35}
1(2++)1^{-}(2^{++}) 4206.974206.97

Besides, there are several other electric charmonium-like particles observed experimentally, which need to be further confirmed. Here we also compare the present numerical results with these experimental data, as shown in the Table 11, the last three columns collect the experimental data of ZcZ_{c} states near 4.1GeV4.1\,\text{GeV}, and the first two columns are the presently obtained numerical results those are close to the experimental data.

The X(4050)X(4050) and X(4250)X(4250) states were reported by Belle collaboration in the π+χc1\pi^{+}\chi_{c1} invariant mass distribution of the process B¯0Kπ+χc1\bar{B}^{0}\rightarrow K^{-}\pi^{+}\chi_{c1} Belle 2008 . In present model, we get two states with masses very close two X(4050)X(4050), whose quantum numbers are IG(JPC)=1(1++)I^{G}(J^{PC})=1^{-}(1^{++}) and IG(JPC)=1(2++)I^{G}(J^{PC})=1^{-}(2^{++}), respectively. Meanwhile, masses of two obtained states with the quantum numbers IG(JPC)=1(0++)I^{G}(J^{PC})=1^{-}(0^{++}) and IG(JPC)=1(2++)I^{G}(J^{PC})=1^{-}(2^{++}), respectively, are a little bit lower than X(4250)X(4250). Finally, two obtained states, whose quantum numbers are IG(JPC)=1+(1+)I^{G}(J^{PC})=1^{+}(1^{+-}) and 1(0++)1^{-}(0^{++}), respectively, are very close to the X(4055)±X(4055)^{\pm} observed in π±ψ\pi^{\pm}\psi final state through process e+eπ+πψ(2S)e^{+}e^{-}\rightarrow\pi^{+}\pi^{-}\psi(2S) by Belle Belle 2015 , and X(4100)X(4100) observed in the ηcπ\eta_{c}\pi^{-} invariant mass spectrum in B0ηcK+πB^{0}\rightarrow\eta_{c}K^{+}\pi^{-} decay by LHCb collaboration LHCb 2018 . We look forward to further examinations on these results by future experiments.

Now we turn to the ZcsZ_{cs} states. The Zcs(3985)Z_{cs}(3985) was the first observed charmonium-like state containing a strange quark, it was discovered in the DsD0(DsD0)D_{s}^{-}D^{*0}(D_{s}^{*-}D^{0}) channel by BESIII very recently BESIII 2021 . The mass and width of Zcs(3985)Z_{cs}(3985) are MZcs(3985)=3982.52.6+1.8±2.1M_{Z_{cs}(3985)}=3982.5^{+1.8}_{-2.6}\pm{2.1} and ΓZcs(3985)=12.84.4+5.3±3.0MeV\Gamma_{Z_{cs}(3985)}=12.8^{+5.3}_{-4.4}\pm 3.0\,\text{MeV}. Its mass is very close to the DsD0(DsD0)D_{s}^{-}D^{*0}(D_{s}^{*-}D^{0}) mass threshold. Recently, an theoretical analysis shows that the Zcs(3985)Z_{cs}(3985) cannot be a pure DsD0(DsD0)D_{s}^{-}D^{*0}(D_{s}^{*-}D^{0}) molecule ChenR 2021 . And in Ref. Guo 2021 , it has been shown that the two charm-meson molecular components make up about 40 percent of the physical Zcs(3985)Z_{cs}(3985) state.

In addition, the Zcs(3985)Z_{cs}(3985) state has also been studied within constituent quark models JinX 2021 ; YangG 2021 . For example, in Ref. JinX 2021 , the diquark-antidiquark [cs][c¯n¯][cs][\bar{c}\bar{n}] configurations have been investigated, and it’s found that there would be resonance states falling in the mass range of 3916.53964.63916.5\sim 3964.6 MeV with quantum numbers JP=0+J^{P}=0^{+}, and 4008.84091.24008.8\sim 4091.2 MeV with JP=1+J^{P}=1^{+}. Thus, one may conclude that a compact tetraquark state with JP=0+J^{P}=0^{+} or JP=1+J^{P}=1^{+} may take considerable probability in Zcs(3985)Z_{cs}(3985). And in a very recent paper Ikeno:2021mcb , it’s shown that the ZcsZ_{cs} state may correspond to a cusp structure.

In present model, the lowest mass of ground SS-wave cnc¯s¯cn\bar{c}\bar{s} states with quantum number I(JP)=1/2(0+)I(J^{P})=1/2(0^{+}) and I(JP)=1/2(1+)I(J^{P})=1/2(1^{+}) are about 3952MeV3952\,\text{MeV} and 3989MeV3989\,\text{MeV}, respectively. Both of them are close to the experimental mass of Zcs(3985)Z_{cs}(3985). Therefore, based on the above discussions, our results also support that the Zcs(3985)Z_{cs}(3985) may be not a pure hadronic molecule, and the compact tetraquark component should take notable probability in it.

Besides, LHCb collaboration performed an analysis of the B+J/ψϕK+B^{+}\rightarrow J/\psi\phi K^{+} dacay and reported two ZcsZ_{cs} particles, Zcs(4000)Z_{cs}(4000) and Zcs(4220)Z_{cs}(4220) in the invariant J/ψK+J/\psi K^{+} mass distributions LHCb 2021 . The spin-parity of Zcs(4000)Z_{cs}(4000) is JP=1+J^{P}=1^{+} and Zcs(4220)Z_{cs}(4220) is JP=1+J^{P}=1^{+} or JP=1J^{P}=1^{-}. Their fitting masses and widths are

MZcs(4000)=4003±614+4MeV,\displaystyle M_{Z_{cs}(4000)}=4003\pm 6^{+4}_{-14}\,\text{MeV}\,,
ΓZcs(4000)=131±15±26MeV,\displaystyle\Gamma_{Z_{cs}(4000)}=131\pm 15\pm 26\,\text{MeV}\,,
MZcs(4220)=4216±2430+43MeV,\displaystyle M_{Z_{cs}(4220)}=4216\pm 24^{+43}_{-30}\,\text{MeV}\,,
ΓZcs(4220)=233±5273+97MeV,\displaystyle\Gamma_{Z_{cs}(4220)}=233\pm 52^{+97}_{-73}\,\text{MeV}\,,

respectively. Although the mass of Zcs(4000)Z_{cs}(4000) is very close to that of Zcs(3985)Z_{cs}(3985), there is no evidence that Zcs(4000)Z_{cs}(4000) and Zcs(3985)Z_{cs}(3985) are the same state LHCb 2021 . In present model, the lowest ground SS-wave cnc¯s¯cn\bar{c}\bar{s} state with quantum numbers I(JP)=1/2(1+)I(J^{P})=1/2(1^{+}) falls at 3989MeV\sim 3989\,\text{MeV}, which thus could be interpreted as component of Zcs(4000)Z_{cs}(4000). Yet, in the mass range 4.164.26GeV4.16\sim 4.26\,\text{GeV} for I(JP)=1/2(1+)I(J^{P})=1/2(1^{+}), there are three states whose masses are consistent with the experimental mass of Zcs(4220)Z_{cs}(4220).

Accordingly, the experimental data of ZcsZ_{cs} states, and presently obtained results those are close to the experimental data, are collected in Table 12.

Table 12: Comparison of model results with experimental masses for ZcsZ_{cs} states. Fourth, fifth and sixth columns collect the experimental data of ZcsZ_{cs} states, and first two columns collect the model results in which model masses are close to the experimental masses.
Model values Experiment values
I(JP)I(J^{P}) M (MeV) States I(JP)I(J^{P}) M (MeV)
1/2(0+)1/2(0^{+}) 3951.723951.72 Zcs(3985)Z_{cs}(3985) 1/2(??)1/2(?^{?}) 3982.52.6+1.8±2.13982.5^{+1.8}_{-2.6}\pm 2.1
1/2(1+)1/2(1^{+}) 3988.723988.72
1/2(1+)1/2(1^{+}) 3988.723988.72 Zcs(4000)Z_{cs}(4000) 1/2(1+)1/2(1^{+}) 4003±614+44003\pm 6^{+4}_{-14}
1/2(1+)1/2(1^{+}) 4165.974165.97 Zcs(4220)Z_{cs}(4220) 1/2(1?)1/2(1^{?}) 4216±2430+434216\pm 24^{+43}_{-30}
1/2(1+)1/2(1^{+}) 4212.734212.73
1/2(1+)1/2(1^{+}) 4253.474253.47

III.3 Double-charm TccT_{cc} states

Very recently, the first double-charm exotic state Tcc+T_{cc}^{+} with I(JP)=0(1+)I(J^{P})=0(1^{+}), whose minimal quark content is ccu¯d¯cc\bar{u}\bar{d}, was observed by LHCb LHCbTcc1 . Its mass is very close to and below D0D+D^{0}D^{*+} threshold, and its decay width is extremely narrow. A further analysis have been done by LHCb collaboration in Ref. LHCbTcc2 . Theoretically, the tetraquark states containing two heavy quarks have been predicted in Refs. Zhu 2013 ; Kar.M 2017 .

In present work, the mass spectra of ground SS-wave ccn¯n¯cc\bar{n}\bar{n}, ccn¯s¯cc\bar{n}\bar{s} and ccs¯s¯cc\bar{s}\bar{s} tetraquark systems are studied. The numerical results are listed in Table 13, where the first three columns are the labels of these states in the model, quark content and quantum number of each state respectively, the fourth, fifth columns show the results of single configuration calculations, and the last two columns give the results obtained by considering configurations mixing effects. The model spectrum of SS-wave double-charm tetraquark states are also shown in Fig. 4, where red solid lines denote Tcc0,0T_{cc}^{0,0} states, blue solid lines denote Tcc1,0T_{cc}^{1,0} states, pink solid lines denote Tcc1/2,1T_{cc}^{1/2,1} states, green solid line denote Tcc0,2T_{cc}^{0,2} states.

Table 13: The model results of ground SS-wave double-charm tetraquark states. First three columns are the labels of these states in the model, quark content and quantum number of each state repectively, the fourth, fifth columns give the results of single configuration calculations, and the sixth, seventh columns give the results after considering configuration mixing.
Single configuration Configurations mixing
States Quark content (I,S)(JP)(I,S)(J^{P}) Config. M (MeV) M (MeV) Mixing coefficients
Tcc0,0T_{cc}^{0,0} ccn¯n¯cc\bar{n}\bar{n} (0,0)(1+)(0,0)(1^{+}) |3|3\rangle 3998.903998.90 3982.123982.12 (0.95,0.30)(-0.95,\hskip 4.26773pt-0.30)
|6|6\rangle 4152.404152.40 4169.184169.18 (0.30,0.95)(-0.30,\hskip 4.26773pt0.95)
Tcc1,0T_{cc}^{1,0} ccn¯n¯cc\bar{n}\bar{n} (1,0)(0+)(1,0)(0^{+}) |1|1\rangle 4204.414204.41 4032.304032.30 (0.42,0.91)(0.42,\hskip 4.26773pt-0.91)
|7|7\rangle 4069.694069.69 4241.804241.80 (0.91,0.42)(-0.91,\hskip 4.26773pt-0.42)
Tcc1,0T_{cc}^{1,0} ccn¯n¯cc\bar{n}\bar{n} (1,0)(1+)(1,0)(1^{+}) |7|7\rangle 4092.344092.34
Tcc1,0T_{cc}^{1,0} ccn¯n¯cc\bar{n}\bar{n} (1,0)(2+)(1,0)(2^{+}) |7|7\rangle 4134.594134.59
Tcc12,1T_{cc}^{\frac{1}{2},1} ccn¯s¯cc\bar{n}\bar{s} (12,1)(0+)(\frac{1}{2},1)(0^{+}) |1|1\rangle 4296.644296.64 4132.954132.95 (0.45,0.89)(-0.45,\hskip 4.26773pt-0.89)
|7|7\rangle 4174.014174.01 4337.714337.71 (0.89,0.45)(-0.89,\hskip 4.26773pt0.45)
Tcc12,1T_{cc}^{\frac{1}{2},1} ccn¯s¯cc\bar{n}\bar{s} (12,1)(1+)(\frac{1}{2},1)(1^{+}) |3|3\rangle 4134.144134.14 4115.104115.10 (0.94,0.34,0.00)(-0.94,\hskip 4.26773pt-0.34,\hskip 4.26773pt0.00)
|6|6\rangle 4257.374257.37 4197.184197.18 (0.00,0.00,1.00)(0.00,\hskip 4.26773pt0.00,\hskip 4.26773pt1.00)
|7|7\rangle 4197.184197.18 4276.414276.41 (0.34,0.94,0.00)(0.34,\hskip 4.26773pt-0.94,\hskip 4.26773pt0.00)
Tcc12,1T_{cc}^{\frac{1}{2},1} ccn¯s¯cc\bar{n}\bar{s} (12,1)(2+)(\frac{1}{2},1)(2^{+}) |7|7\rangle 4240.554240.55
Tcc0,2T_{cc}^{0,2} ccs¯s¯cc\bar{s}\bar{s} (0,2)(0+)(0,2)(0^{+}) |1|1\rangle 4387.454387.45 4234.844234.84 (0.48,0.88)(0.48,\hskip 4.26773pt-0.88)
|7|7\rangle 4280.694280.69 4433.304433.30 (0.88,0.48)(-0.88,\hskip 4.26773pt-0.48)
Tcc0,2T_{cc}^{0,2} ccs¯s¯cc\bar{s}\bar{s} (0,2)(1+)(0,2)(1^{+}) |7|7\rangle 4304.254304.25
Tcc0,2T_{cc}^{0,2} ccs¯s¯cc\bar{s}\bar{s} (0,2)(2+)(0,2)(2^{+}) |7|7\rangle 4348.454348.45
Refer to caption
Figure 4: The model spectrum of ground SS-wave double-charm tetraquark states. Red solid lines denote Tcc0,0T_{cc}^{0,0} states, blue solid lines denote Tcc1,0T_{cc}^{1,0} states, pink solid lines denote Tcc1/2,1T_{cc}^{1/2,1} states, green solid line denote Tcc0,2T_{cc}^{0,2} states.

As shown in Table 13, all the presently obtained lowest compact TccT_{cc} states are higher than thresholds of corresponding charmed meson-meson channels. Therefore, there may be no stable bound states for SS-wave double-charm tetraquark state. For instance, the lowest SS-wave ccn¯n¯cc\bar{n}\bar{n} states with quantum number I(JP)=0(1+)I(J^{P})=0(1^{+}) in present model falls at 3982MeV\sim 3982\,\text{MeV}, which is about 100MeV100\,\text{MeV} higher than the experimental data for Tcc+T_{cc}^{+}. Thus, Tcc+T_{cc}^{+} cannot be interpreted as a compact tetraquark state in our model.

In Ref. D.Ebert 2007 , the spectrum of tetraquark states containing double heavy quarks were investigated within a diquark-antidiquark picture employing the relativistic constituent quark model, the obtained numerical results are in agreements with the present ones. Very recently, double-heavy tetraquark states have been also studied using a Chiral quark model in Ref. Deng 2021 , it’s shown that both the meson exchange force and the coupled channel effects play pivotal roles for reproduction of the binding energy of Tcc+T_{cc}^{+} correlative to D0D+D^{0}D^{*+} threshold, revealing the molecular nature of Tcc+T_{cc}^{+} Deng 2021 .

IV Summary

In present work, we study the ground SS-wave hidden- and double-charm tetraquark states employing a nonrelativistic quark potential model, where the instanton-induced interaction is employed as the spin-dependent residual interaction between quarks. The model parameters are fixed by fitting the spectrum of the ground state hadrons. Our numerical results show that energies for several presently obtained compact tetraquark states are very close to the masses of the experimentally observed meson exotic states.

Particularly, two cc¯nn¯c\bar{c}n\bar{n} and cc¯ss¯c\bar{c}s\bar{s} tetraquark states with quantum numbers IG(JPC)=0+(1++)I^{G}(J^{PC})=0^{+}(1^{++}) fall at the energies close to X(4140)X(4140) and X(4274)X(4274), respectively. Energies of several cc¯nn¯c\bar{c}n\bar{n} tetraquark states with IG(JPC)=1+(1+)I^{G}(J^{PC})=1^{+}(1^{+-}) are close to Zc(3900)Z_{c}(3900), Zc(4020)Z_{c}(4020) and X(4055)X(4055), and another obtained cc¯nn¯c\bar{c}n\bar{n} sate with IG(JPC)=1(0++)I^{G}(J^{PC})=1^{-}(0^{++}) is close to the X(4100)X(4100) state. In addition, the X(4050)X(4050) and X(4250)X(4250) states, whose quantum numbers have not been determined, may be interpreted as compact cc¯nn¯c\bar{c}n\bar{n} tetraquark states with quantum numbers IG(JPC)=1(1++)I^{G}(J^{PC})=1^{-}(1^{++}) or IG(JPC)=1(2++)I^{G}(J^{PC})=1^{-}(2^{++}), and IG(JPC)=1(0++)I^{G}(J^{PC})=1^{-}(0^{++}) or IG(JPC)=1(2++)I^{G}(J^{PC})=1^{-}(2^{++}), respectively.

For the exotic meson states with one strange quark, we obtain two states very close to the experimentally observed Zcs(3985)Z_{cs}(3985) state, which indicates the quantum number of Zcs(3985)Z_{cs}(3985) may be JP=0+J^{P}=0^{+} or JP=1+J^{P}=1^{+}. Furthermore, several cc¯ns¯c\bar{c}n\bar{s} tetraquark states with JP=1+J^{P}=1^{+} are obtained to fall in the energy range close to the Zcs(4000)Z_{cs}(4000) and Zcs(4220)Z_{cs}(4220) states. Accordingly, one may conclude that the presently considered compact tetraquark states my take significant probabilities in the above referred XX, ZcZ_{c} and ZcsZ_{cs} states.

Acknowledgements.
We would like to thank Prof. X. H. Zhong for very helpful discussions. This work is partly supported by the Chongqing Natural Science Foundation under Project No. cstc2021jcyj-msxmX0078, No. cstc2019jcyj-msxmX0409, and the National Natural Science Foundation of China under Grant Nos. 12075288, 12075133, 11735003, 11961141012 and 11835015. It is also supported by the Youth Innovation Promotion Association CAS, Taishan Scholar Project of Shandong Province (Grant No.tsqn202103062), the Higher Educational Youth Innovation Science and Technology Program Shandong Province (Grant No. 2020KJJ004).

References

  • (1) P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics,” PTEP 2020, 083C01 (2020).
  • (2) S. K. Choi et al. [Belle], “Observation of a narrow charmonium - like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays,” Phys. Rev. Lett. 91, 262001 (2003).
  • (3) M. Ablikim et al. [BESIII], “Observation of a Charged Charmoniumlike Structure in e+ee^{+}e^{-}π+π\pi^{+}\pi^{-} J/ψ\psi at s\sqrt{s} =4.26 GeV,” Phys. Rev. Lett. 110, 252001 (2013).
  • (4) M. Ablikim et al. [BESIII], “Observation of a Near-Threshold Structure in the K+K^{+} Recoil-Mass Spectra in e+eK+(DsD0+DsD0e^{+}e^{-}\rightarrow K^{+}(D_{s}^{-}D^{*0}+D_{s}^{*-}D^{0}),” Phys. Rev. Lett. 126, 102001 (2021).
  • (5) Y. Yang, C. Deng, J. Ping and T. Goldman, “S-wave Q Q anti-q anti-q state in the constituent quark model,” Phys. Rev. D 80, 114023 (2009).
  • (6) C. Deng, J. Ping, H. Huang and F. Wang, “Heavy pentaquark states and a novel color structure,” Phys. Rev. D 95, 014031 (2017).
  • (7) J. M. Richard, A. Valcarce and J. Vijande, “Stable heavy pentaquarks in constituent models,” Phys. Lett. B 774, 710-714 (2017).
  • (8) S. Q. Luo, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, “Exotic tetraquark states with the qqQ¯Q¯qq\bar{Q}\bar{Q} configuration,” Eur. Phys. J. C 77, 709 (2017).
  • (9) X. Jin, Y. Wu, X. Liu, Y. Xue, H. Huang, J. Ping and B. Zhong, “Strange hidden-charm tetraquarks in constituent quark model,” Eur. Phys. J. C 81, 1108 (2021).
  • (10) G. Yang, J. Ping and J. Segovia, “Hidden-charm tetraquarks with strangeness in the chiral quark model,” Phys. Rev. D 104, 094035 (2021).
  • (11) C. Deng and S. L. Zhu, “Tcc+T^{+}_{cc} and its partners,” [arXiv:2112.12472 [hep-ph]].
  • (12) W. Chen, H. y. Jin, R. T. Kleiv, T. G. Steele, M. Wang and Q. Xu, “QCD sum-rule interpretation of X(3872) with JPC=1++J^{PC}=1^{++} mixtures of hybrid charmonium and D¯D\bar{D}D^{*} molecular currents,”. Phys. Rev. D 88, 045027 (2013)
  • (13) W. Chen, T. G. Steele, H. X. Chen and S. L. Zhu, “Mass spectra of ZcZ_{c} and ZbZ_{b} exotic states as hadron molecules,” Phys. Rev. D 92, 054002 (2015).
  • (14) Z. G. Wang and Z. H. Yan, “Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules,” Eur. Phys. J. C 78, 19 (2018).
  • (15) Z. G. Wang, “Analysis of the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), Pc(4457)P_{c}(4457) and related hidden-charm pentaquark states with QCD sum rules,” Int. J. Mod. Phys. A 35, 2050003 (2020).
  • (16) D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha, “Masses of tetraquarks with two heavy quarks in the relativistic quark model,” Phys. Rev. D 76, 114015 (2007).
  • (17) A. Esposito, M. Papinutto, A. Pilloni, A. D. Polosa and N. Tantalo, “Doubly charmed tetraquarks in BcB_{c} and Ξbc\Xi_{bc} decays,” Phys. Rev. D 88, no.5, 054029 (2013)
  • (18) P. P. Shi, F. Huang and W. L. Wang, “Hidden charm tetraquark states in a diquark model,” Phys. Rev. D 103, 094038 (2021).
  • (19) X. Liu, Z. G. Luo, Y. R. Liu and S. L. Zhu, “X(3872) and Other Possible Heavy Molecular States,” Eur. Phys. J. C 61, 411-428 (2009).
  • (20) P. Wang and X. G. Wang, “Study on X(3872)X(3872) from effective field theory with pion exchange interaction,” Phys. Rev. Lett. 111, 042002 (2013).
  • (21) J. He, X. Liu, Z. F. Sun and S. L. Zhu, “Zc(4025)Z_{c}(4025) as the hadronic molecule with hidden charm,” Eur. Phys. J. C 73, 2635 (2013).
  • (22) F. Aceti, M. Bayar, J. M. Dias and E. Oset, “Prediction of a Zc(4000)Z_{c}(4000) DD¯D^{*}\bar{D}^{*} state and relationship to the claimed Zc(4025)Z_{c}(4025),” Eur. Phys. J. A 50, 103 (2014).
  • (23) R. Chen and Q. Huang, “Zcs(3985)Z_{cs}(3985)^{-}: A strange hidden-charm tetraquark resonance or not?,” Phys. Rev. D 103, 034008 (2021).
  • (24) A. Feijoo, W. H. Liang and E. Oset, “D0D0π\pi+ mass distribution in the production of the Tcc exotic state,” Phys. Rev. D 104, no.11, 114015 (2021)
  • (25) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “The hidden-charm pentaquark and tetraquark states,” Phys. Rept. 639, 1-121 (2016).
  • (26) R. F. Lebed, R. E. Mitchell and E. S. Swanson, “Heavy-Quark QCD Exotica,” Prog. Part. Nucl. Phys. 93, 143-194 (2017).
  • (27) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, “Hadronic molecules,” Rev. Mod. Phys. 90, 015004 (2018).
  • (28) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “Pentaquark and Tetraquark states,” Prog. Part. Nucl. Phys. 107, 237-320 (2019).
  • (29) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, “The XYZXYZ states: experimental and theoretical status and perspectives,” Phys. Rept. 873, 1-154 (2020).
  • (30) R. Aaij et al. [LHCb], “Observation of an exotic narrow doubly charmed tetraquark,” [arXiv:2109.01038 [hep-ex]].
  • (31) R. Aaij et al. [LHCb], “Study of the doubly charmed tetraquark Tcc+T_{cc}^{+},” [arXiv:2109.01056 [hep-ex]].
  • (32) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, “Coupled-channel analysis of the possible D()D(),B¯()B¯()D^{(*)}D^{(*)},\bar{B}^{(*)}\bar{B}^{(*)} and D()B¯()D^{(*)}\bar{B}^{(*)} molecular states,” Phys. Rev. D 88, 114008 (2013).
  • (33) M. Karliner and J. L. Rosner, “Discovery of doubly-charmed Ξcc\Xi_{cc} baryon implies a stable (bbu¯d¯bb\bar{u}\bar{d}) tetraquark,” Phys. Rev. Lett. 119, 202001 (2017).
  • (34) R. Aaij et al. [LHCb], “Observation of the doubly charmed baryon Ξcc++\Xi_{cc}^{++},” Phys. Rev. Lett. 119, 112001 (2017).
  • (35) X. Z. Ling, M. Z. Liu, L. S. Geng, E. Wang and J. J. Xie, “Can we understand the decay width of the Tcc+T_{cc}^{+} state?,” Phys. Lett. B 826, 136897 (2022).
  • (36) S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics,” Phys. Rev. D 32, 189-231 (1985).
  • (37) L. Y. Glozman and D. O. Riska, “The Spectrum of the nucleons and the strange hyperons and chiral dynamics,” Phys. Rept. 268, 263-303 (1996).
  • (38) L. Y. Glozman and D. O. Riska, “The Charm and bottom hyperons and chiral dynamics,” Nucl. Phys. A 603, 326-344 (1996) [erratum: Nucl. Phys. A 620, 510-510 (1997)].
  • (39) J. Vijande, F. Fernandez and A. Valcarce, “Constituent quark model study of the meson spectra,” J. Phys. G 31, 481 (2005).
  • (40) C. Deng, J. Ping and F. Wang, “Interpreting Zc(3900)Z_{c}(3900) and Zc(4025)/Zc(4020)Z_{c}(4025)/Z_{c}(4020) as charged tetraquark states,” Phys. Rev. D 90, 054009 (2014).
  • (41) G. Yang and J. Ping, “The structure of pentaquarks Pc+P_{c}^{+} in the chiral quark model,” Phys. Rev. D 95, 014010 (2017).
  • (42) C. Deng, J. Ping, H. Huang and F. Wang, “Hidden charmed states and multibody color flux-tube dynamics,” Phys. Rev. D 98, 014026 (2018).
  • (43) S. G. Yuan, K. W. Wei, J. He, H. S. Xu and B. S. Zou, “Study of qqqcc¯qqqc\bar{c} five quark system with three kinds of quark-quark hyperfine interaction,” Eur. Phys. J. A 48, 61 (2012).
  • (44) S. G. Yuan, C. S. An, K. W. Wei, B. S. Zou and H. S. Xu, “Spectrum of low-lying s3QQ¯s^{3}Q\bar{Q} configurations with negative parity,” Phys. Rev. C 87, 025205 (2013).
  • (45) C. S. An, B. C. Metsch and B. S. Zou, “Mixing of the low-lying three- and five-quark Ω\Omega states with negative parity,” Phys. Rev. C 87, 065207 (2013).
  • (46) C. S. An and B. S. Zou, “Low-lying Ω\Omega states with negative parity in an extended quark model with Nambu-Jona-Lasinio interaction,” Phys. Rev. C 89, 055209 (2014).
  • (47) C. S. An and H. Chen, “Observed Ωc0\Omega_{c}^{0} resonances as pentaquark states,” Phys. Rev. D 96, 034012 (2017).
  • (48) J. B. Wang, G. Li, C. R. Deng, C. S. An and J. J. Xie, “Ω\Omegacc resonances with negative parity in the chiral constituent quark model,” Phys. Rev. D 104, 094008 (2021).
  • (49) G. ’t Hooft, “Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle,” Phys. Rev. D 14, 3432-3450 (1976) [erratum: Phys. Rev. D 18, 2199 (1978)].
  • (50) D. Diakonov and V. Y. Petrov, “Instanton Based Vacuum from Feynman Variational Principle,” Nucl. Phys. B 245, 259-292 (1984).
  • (51) D. Diakonov and V. Y. Petrov, “A Theory of Light Quarks in the Instanton Vacuum,” Nucl. Phys. B 272, 457-489 (1986).
  • (52) E. V. Shuryak and J. L. Rosner, “Instantons and Baryon Mass Splittings,” Phys. Lett. B 218, 72-74 (1989).
  • (53) W. H. Blask, U. Bohn, M. G. Huber, B. C. Metsch and H. R. Petry, “Hadron spectroscopy with instanton induced quark forces,” Z. Phys. A 337, 327-335 (1990).
  • (54) F. Brau and C. Semay, “Light meson spectra and instanton induced forces,” Phys. Rev. D 58, 034015 (1998).
  • (55) C. Semay, F. Brau and B. Silvestre-Brac, “Baryon spectra with instanton induced forces,” Phys. Rev. C 64, 055202 (2001).
  • (56) S. Migura, D. Merten, B. Metsch and H. R. Petry, “Charmed baryons in a relativistic quark model,” Eur. Phys. J. A 28, 41 (2006).
  • (57) M. W. Beinker, B. C. Metsch and H. R. Petry, “Bound q2q^{2}-anti-q2q^{2} states in a constituent quark model,” J. Phys. G 22, 1151-1160 (1996).
  • (58) G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, “A Theory of Scalar Mesons,” Phys. Lett. B 662, 424-430 (2008)
  • (59) E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D. Lane and T. M. Yan, “The Spectrum of Charmonium,” Phys. Rev. Lett. 34, 369-372 (1975) [erratum: Phys. Rev. Lett. 36, 1276 (1976)].
  • (60) M. Zhang, H. X. Zhang and Z. Y. Zhang, “QQQQ anti-qq anti-qq four-quark bound states in chiral SU(3) quark model,” Commun. Theor. Phys. 50, 437-440 (2008).
  • (61) D. Zhang, F. Huang, Z. Y. Zhang and Y. W. Yu, “Further study on 5q5q configuration states in the chiral SU(3) quark model,” Nucl. Phys. A 756, 215-226 (2005).
  • (62) M. S. Liu, Q. F. Lü, X. H. Zhong and Q. Zhao, “All-heavy tetraquarks,” Phys. Rev. D 100, 016006 (2019).
  • (63) E. Hiyama, Y. Kino and M. Kamimura, “Gaussian expansion method for few-body systems,” Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • (64) G. ’t Hooft, “The Physics of instantons in the pseudoscalar and vector meson mixing,” [arXiv:hep-th/9903189 [hep-th]].
  • (65) R. Aaij et al. [LHCb], “Determination of the X(3872)X(3872) meson quantum numbers,” Phys. Rev. Lett. 110, 222001 (2013).
  • (66) S. Uehara et al. [Belle], “Observation of a χc2\chi^{\prime}_{c2} candidate in γγDD¯\gamma\gamma\to D\bar{D} production at BELLE,” Phys. Rev. Lett. 96, 082003 (2006).
  • (67) S. Uehara et al. [Belle], “Observation of a charmonium-like enhancement in the γγωJ/ψ\gamma\gamma\to\omega J/\psi process,” Phys. Rev. Lett. 104, 092001 (2010).
  • (68) J. P. Lees et al. [BaBar], “Study of X(3915)J/ψωX(3915)\to J/\psi\omega in two-photon collisions,” Phys. Rev. D 86, 072002 (2012).
  • (69) T. Aaltonen et al. [CDF], “Evidence for a Narrow Near-Threshold Structure in the J/ψϕJ/\psi\phi Mass Spectrum in B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} Decays,” Phys. Rev. Lett. 102, 242002 (2009).
  • (70) T. Aaltonen et al. [CDF], “Observation of the Y(4140)Y(4140) Structure in the J/ψϕJ/\psi\phi Mass Spectrum in B±J/ψϕK±B^{\pm}\to J/\psi\phi K^{\pm} Decays,” Mod. Phys. Lett. A 32, 1750139 (2017).
  • (71) R. Aaij et al. [LHCb], “Observation of J/ψϕJ/\psi\phi structures consistent with exotic states from amplitude analysis of B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays,” Phys. Rev. Lett. 118, 022003 (2017).
  • (72) R. Aaij et al. [LHCb], “Amplitude analysis of B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays,” Phys. Rev. D 95, 012002 (2017).
  • (73) R. Aaij et al. [LHCb], “Observation of New Resonances Decaying to J/ψK+J/\psi K^{+} and J/ψϕJ/\psi\phi,” Phys. Rev. Lett. 127, 082001 (2021).
  • (74) Z. Q. Liu et al. [Belle], “Study of e+eπ+πJ/Ψe^{+}e^{-}\rightarrow\pi^{+}\pi^{-}J/\Psi and Observation of a Charged Charmoniumlike State at Belle,” Phys. Rev. Lett. 110, 252002 (2013) [erratum: Phys. Rev. Lett. 111, 019901 (2013)].
  • (75) M. Ablikim et al. [BESIII], “Observation of a charged (DD¯)±(D\bar{D}^{*})^{\pm} mass peak in e+eπDD¯e^{+}e^{-}\to\pi D\bar{D}^{*} at s=\sqrt{s}= 4.26 GeV,” Phys. Rev. Lett. 112, 022001 (2014).
  • (76) M. Ablikim et al. [BESIII], “Observation of a charged charmoniumlike structure in e+e(DD¯)±πe^{+}e^{-}\to(D^{*}\bar{D}^{*})^{\pm}\pi^{\mp} at s=4.26\sqrt{s}=4.26GeV,” Phys. Rev. Lett. 112, 132001 (2014).
  • (77) M. Ablikim et al. [BESIII], “Observation of a Charged Charmoniumlike Structure ZcZ_{c}(4020) and Search for the ZcZ_{c}(3900) in e+eπ+πhce^{+}e^{-}\rightarrow\pi^{+}\pi^{-}h_{c},” Phys. Rev. Lett. 111, 242001 (2013).
  • (78) R. Mizuk et al. [Belle], “Observation of two resonance-like structures in the π+χc1\pi^{+}\chi_{c1} mass distribution in exclusive B¯0Kπ+χc1\bar{B}^{0}\to K^{-}\pi^{+}\chi_{c1} decays,” Phys. Rev. D 78, 072004 (2008).
  • (79) X. L. Wang et al. [Belle], “Measurement of e+eπ+πψ(2S)e^{+}e^{-}\to\pi^{+}\pi^{-}\psi(2S) via Initial State Radiation at Belle,” Phys. Rev. D 91, 112007 (2015).
  • (80) R. Aaij et al. [LHCb], “Evidence for an ηc(1S)π\eta_{c}(1S)\pi^{-} resonance in B0ηc(1S)K+πB^{0}\rightarrow\eta_{c}(1S)K^{+}\pi^{-} decays,” Eur. Phys. J. C 78, 1019 (2018).
  • (81) Z. H. Guo and J. A. Oller, “Unified description of the hidden-charm tetraquark states Zcs(3985)Z_{cs}(3985), Zc(3900)Z_{c}(3900), and X(4020)X(4020),” Phys. Rev. D 103, 054021 (2021).
  • (82) N. Ikeno, R. Molina and E. Oset, “ZcsZ_{cs} states from the DsD¯D^{*}_{s}\overline{D} and J/ΨKJ/\Psi K^{*} coupled channels: Signal in B+J/ΨτKB^{+}\rightarrow J/\Psi\tau K^{*} decay,” Phys. Rev. D 105, no.1, 014012 (2022)