This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Minkowski problem based on the (p,q)(p,q)-mixed quermassintegrals thanks: Research is supported in part by the Natural Science Foundation of China (No.11871275; No.11371194).

Bin Chen1, Weidong Wang2, and Peibiao Zhao1

(1. Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China)
(2. Three Gorges Mathematical Research Center, China Three Gorges University, Yichang, China)
E-mail: chenb121223@163.com.E-mail: wangwd722@163.com.Corresponding author E-mail: pbzhao@njust.edu.cn.

Abstract: Lutwak, Yang and Zhang [24] introduced the concept of LpL_{p} dual curvature measure for convex bodies and star bodies, and studied the Minkowski problem. We in this paper establish a new unified concept, in briefly, the (p,q)(p,q)-mixed quermassintegrals, via (p,q)(p,q)-dual mixed curvature measure, and further have a deep discussion on Minkowski problem with respect to the (p,q)(p,q)-dual mixed curvature measure.

By the way, we derive at some important properties and geometric inequalities for (p,q)(p,q)-mixed quermassintegrals.

Keywords: (p,q)(p,q)-dual mixed curvature measure; (p,q)(p,q)-mixed quermassintegral; Minkowski problem; Minkowski inequality

2010 Mathematics Subject Classification: 52A20   52A40   52A39.


1 Introduction

Brunn and Minkowski pioneered the classical Brunn-Minkowski theory of convex bodies in nn-dimensional Euclidean space. The Minkowski linear combination of vectors, mixed volumes, surface area measures and basic Brunn-Minkowski inequalities etc. are the essence in Brunn-Minkowski theory. The classical dual Brunn-Minkowski theory of star bodies was introduced by Lutwak ([18]) in 1975. The formation of dual Brunn-Minkowski theory was based on radial Minkowski combination and dual mixed volumes of star bodies. For more information about classical Brunn-Minkowski theory and dual Brunn-Minkowski theory, please refer to two excellent books [12, 29] in details.

In modern convex geometry, the LpL_{p} Brunn-Minkowski theory and LpL_{p} dual Brunn-Minkowski theory generalize and dualize the classical Brunn-Minkowski theory. The LpL_{p} mixed quermassintegrals Wp,i(M,N)W_{p,i}(M,N) of convex bodies introduced by Lutwak (see[19]) and LpL_{p} dual mixed quermassintegrals W~p,i(M,N)\widetilde{W}_{-p,i}(M,N) of star bodies introduced by Wang and Leng (see[32]) generalized the LpL_{p} mixed volumes Vp(M,N)V_{p}(M,N) introduced in [19] and LpL_{p} dual mixed volumes V~p(M,N)\widetilde{V}_{-p}(M,N) introduced in [20] are the main geometric measures in these two theories. In 2018, Lutwak, Young and Zhang established the (p,q)(p,q)-mixed volume Vp,q(M,N,Q)V_{p,q}(M,N,Q) in [24]. Meanwhile, they demonstrated a surprising connection between the LpL_{p} mixed volume and LpL_{p} dual mixed volume. During the last three decades, scholars have done a lot of work on the research of LpL_{p} Brunn-Minkowski theory and LpL_{p} dual Brunn-Minkowski theory, see e.g., [2, 3, 4, 7, 11, 15, 16, 22, 25, 30, 33, 34, 35, 36].

The Minkowski problem in Brunn-Minkowski theory and dual Brunn-Minkowski theory is a hot topic of research. The classical Minkowski problem was first studied by Minkowski [27, 28], who proved both existence and uniqueness of solutions for the given measure. The LpL_{p} Minkowski problem in LpL_{p} Brunn-Minkowski theory was introduced in [19]. Existence of solutions for the dual Minkowski problem for even data within the class of origin-symmetric convex bodies was proved in [15]. Very recently, LpL_{p} dual Minkowski problem for LpL_{p} dual curvature measures was stated in [24], which a unified Minkowski problem of LpL_{p} Minkowski problem when q=nq=n and dual Minkowski problem when p=0p=0 and N=BN=B. The Minkowski problem and dual Minkowski problem have already aroused considerable attention; see, e.g., [6, 7, 8, 13, 14, 21, 23, 26, 31, 37, 38, 39, 40, 41].

The LpL_{p} dual curvature measure C~p,q(M,N,)\widetilde{C}_{p,q}(M,N,\cdot) of M𝒦onM\in\mathcal{K}_{o}^{n} and N𝒮onN\in\mathcal{S}_{o}^{n} was introduced in [24], which constructs a unified frame for LpL_{p} surface area measures introduced in [19] and dual curvature measures introduced in [15]. Meanwhile, they demonstrated a surprising connection between the LpL_{p} Brunn-Minkowski theory and LpL_{p} dual Brunn-Minkowski theory by establishing geometric inequalities and variational integral formulas of LpL_{p} dual curvature measure, respectively.

Based on the concepts introduced above, it is worth researching to find a concept that can unify the LpL_{p} mixed quermassintegrals, LpL_{p} dual mixed quermassintegrals and (p,q)(p,q)-mixed volume. Motivated by ideas in [19] and [24], the main purpose of this paper is to introduce the concept of (p,q)(p,q)-dual mixed curvature measures of convex bodies and star bodies. Next, by the concept of (p,q)(p,q)-dual mixed curvature measures, we establish the integral formula of (p,q)(p,q)-mixed quermassintegrals W~p,q,i(M,N,Q)\widetilde{W}_{p,q,i}(M,N,Q), which is a unified structure of (p,q)(p,q)-mixed volumes, LpL_{p} mixed quermassintegrals and LpL_{p} dual mixed quermassintegrals. Our main work in this article can be illustrated in the block diagram below:

Refer to caption
Figure 1: Idea guide chart.

Let MM be a convex body if MM is a compact, convex subset in nn-dimensional Euclidean space n\mathbb{R}^{n} with non-empty interior. The set of all convex bodies containing the origin in their interiors in n\mathbb{R}^{n} is written as 𝒦on\mathcal{K}_{o}^{n}. We write uu for a unit vector and BB for the unit ball centered at the origin, the surface of BB denoted by Sn1S^{n-1}. We shall use V(M)V(M) for the nn-dimensional volume of the body MM in n\mathbb{R}^{n}, we write V(B)=ωnV(B)=\omega_{n}.

For M𝒦nM\in\mathcal{K}^{n}, the support function hM=h(M,):nh_{M}=h(M,\cdot):\mathbb{R}^{n}\rightarrow\mathbb{R} is defined by

h(M,x)=max{xy:yM},xn.h(M,x)=\max\{x\cdot y:y\in M\},\ \ \ \ x\in\mathbb{R}^{n}.

where xyx\cdot y denotes the standard inner product of xx and yy in n\mathbb{R}^{n} (see[12, 29]).

In the dual Brunn-Minkowski theory, for MM is a compact star shaped (about the origin) in n\mathbb{R}^{n}, the radial function, ρM=ρ(M,)\rho_{M}=\rho(M,\cdot): n\{0}[0,+)\mathbb{R}^{n}\backslash\{0\}\rightarrow[0,+\infty), is defined by

ρ(M,x)=max{λ0:λxM},xn\{0}.\rho(M,x)=\max\{\lambda\geq 0:\lambda x\in M\},\ \ \ \ x\in\mathbb{R}^{n}\backslash\{0\}.

If ρM\rho_{M} is positive and continuous, then call MM is a star body and write as 𝒮on\mathcal{S}_{o}^{n} (see[12, 29]).

For K,L𝒦onK,L\in\mathcal{K}_{o}^{n}, p1p\geq 1 and λ,μ0\lambda,\mu\geq 0 (not both zero), the LpL_{p}-Minkowski linear combination, λK+pμL𝒦on\lambda\cdot K+_{p}\mu\cdot L\in\mathcal{K}_{o}^{n}, of KK and LL satisfies (see[9])

h(λK+pμL,)p=λh(K,)p+μh(L,)p.h(\lambda\cdot K+_{p}\mu\cdot L,\cdot)^{p}=\lambda h(K,\cdot)^{p}+\mu h(L,\cdot)^{p}.

The LpL_{p} mixed surface area measures Sp,i(M,)S_{p,i}(M,\cdot) of M𝒦onM\in\mathcal{K}_{o}^{n} can be defined by the variational formula,

ddtWp,i(M+ptN)|t=0+=1pSn1hNp(u)𝑑Sp,i(M,u),\frac{d}{dt}W_{p,i}(M+_{p}t\cdot N)\bigg{|}_{t=0^{+}}=\frac{1}{p}\int_{S^{n-1}}h_{N}^{p}(u)dS_{p,i}(M,u),

for N𝒦onN\in\mathcal{K}_{o}^{n} and 0in10\leq i\leq n-1.

For qq\in\mathbb{R} and 0in10\leq i\leq n-1, the qq-th dual mixed quermassintegral of M,N𝒮onM,N\in\mathcal{S}_{o}^{n}, is defined by

W~q,i(M,N)=1nSn1ρMq(u)ρNnqi(u)𝑑u.\displaystyle\widetilde{W}_{q,i}(M,N)=\frac{1}{n}\int_{S^{n-1}}\rho_{M}^{q}(u)\rho_{N}^{n-q-i}(u)du. (1.1)

In this paper, the (p,q)(p,q)-dual mixed curvature measures, 𝒞~p,q,j\widetilde{\mathcal{C}}_{p,q,j}, is a three-parameter family of Borel measures on Sn1S^{n-1}. For p,qp,q\in\mathbb{R}, jnj\neq n, and M𝒦onM\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n}, we define the 𝒞~p,q,j(M,Q,)\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot) by

Sn1g(v)𝑑𝒞~p,q,j(M,Q,v)=1nSn1g(αM(u))hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u,\int_{S^{n-1}}g(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,v)=\frac{1}{n}\int_{S^{n-1}}g(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du,

for a continuous function g:Sn1g:S^{n-1}\rightarrow\mathbb{R}, where αM\alpha_{M} is the radial Gauss map (see Section 2) that associates to almost uSn1u\in S^{n-1} the unique out unit normal vector at the point ρM(u)uM\rho_{M}(u)u\in\partial M.

The LpL_{p} mixed surface area measures and LpL_{p} dual curvature measures are special cases of the (p,q)(p,q)-dual mixed curvature measures. For p,qp,q\in\mathbb{R}, M𝒦onM\in\mathcal{K}_{o}^{n} and M𝒮onM\in\mathcal{S}_{o}^{n}

𝒞~p,q,0(M,Q,)=𝒞~p,q(M,Q,),𝒞~p,q,0(M,M,)=1nSp(M,),\widetilde{\mathcal{C}}_{p,q,0}(M,Q,\cdot)=\widetilde{\mathcal{C}}_{p,q}(M,Q,\cdot),\ \ \ \ \widetilde{\mathcal{C}}_{p,q,0}(M,M,\cdot)=\frac{1}{n}S_{p}(M,\cdot),
𝒞~p,n,0(M,B,)=1nSp(M,),𝒞~0,q,0(M,B,)=1n𝒞~q(M,).\widetilde{\mathcal{C}}_{p,n,0}(M,B,\cdot)=\frac{1}{n}S_{p}(M,\cdot),\ \ \ \ \widetilde{\mathcal{C}}_{0,q,0}(M,B,\cdot)=\frac{1}{n}\widetilde{\mathcal{C}}_{q}(M,\cdot).

Recall that LpL_{p} Minkowski linear combination, we give the variational formulas of qq-th dual mixed quermassintegral: Suppose p,qp,q\in\mathbb{R}, jnj\neq n. For M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n},

ddtW~q,j(M+ptN,Q)|t=0+=qpSn1hNp(u)𝑑C~p,q,j(M,Q,u).\displaystyle\frac{d}{dt}\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)\bigg{|}_{t=0^{+}}=\frac{q}{p}\int_{S^{n-1}}h_{N}^{p}(u)d\widetilde{C}_{p,q,j}(M,Q,u). (1.2)

It will be shown that the (p,q)(p,q)-mixed quermassintegral W~p,q,j\widetilde{W}_{p,q,j} has a integral representation using the (p,q)(p,q)-dual mixed curvature measure: For p,qp,q\in\mathbb{R}, and j=0,1,,n1j=0,1,...,n-1, there exists a regular Borel measure 𝒞~p,q,j(M,N,)\mathcal{\widetilde{C}}_{p,q,j}(M,N,\cdot) on Sn1S^{n-1}, such that the (p,q)(p,q)-mixed quermassintegral W~p,q,j\widetilde{W}_{p,q,j} has the following integral representation:

W~p,q,j(M,N,Q)=Sn1hNp(v)𝑑C~p,q,j(M,Q,v).\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)=\int_{S^{n-1}}h_{N}^{p}(v)d\widetilde{C}_{p,q,j}(M,Q,v). (1.3)

The LpL_{p} mixed quermassintegrals and the LpL_{p} dual mixed quermassintegrals will be the special cases of (p,q)(p,q)-mixed quermassintegrals,

W~p,q,j(M,N,M)=Wp,j(M,N),\displaystyle\widetilde{W}_{p,q,j}(M,N,M)=W_{p,j}(M,N), (1.4)
W~p,q,j(M,M,Q)=W~q,j(M,N).\displaystyle\widetilde{W}_{p,q,j}(M,M,Q)=\widetilde{W}_{q,j}(M,N). (1.5)

The following inequality for (p,q)(p,q)-mixed quermassintegral is a generalization of the LpL_{p} Minkowski inequality: Suppose p,qp,q\in\mathbb{R} satisfies 1qnjp1\leq\frac{q}{n-j}\leq p, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

W~p,q,j(M,N,Q)Wj(M)qpnjWj(N)pnjW~j(Q)nqjnj,\widetilde{W}_{p,q,j}(M,N,Q)\geq W_{j}(M)^{\frac{q-p}{n-j}}W_{j}(N)^{\frac{p}{n-j}}\widetilde{W}_{j}(Q)^{\frac{n-q-j}{n-j}},

with equality if and only if M,N,QM,N,Q are dilates when 1<qnj<p1<\frac{q}{n-j}<p, while only MM and NN are dilates when q=nq=n and p>1p>1, and MM and NN are homotheic when q=nq=n and p=1p=1.

Therefore, we can see that the LpL_{p} Brunn-Minkowski theory and LpL_{p} dual Brunn-Minkowski theory can be finally unified by definitions of (p,q)(p,q)-dual mixed curvature measures and (p,q)(p,q)-mixed quermassintegrals.

The another goal of this article is to study the Minkowski problem for (p,q)(p,q)-dual mixed curvature measures, which is a general Minkowski problem that unify the LpL_{p} Minkowski problem and the LpL_{p} dual Minkowski problem. To prove the existence of Minkowski problems, the key is to convert the Minkowski problem to maximization problem.

The existence problem for (p,q)(p,q)-dual mixed curvature measures is: For p,qp,q\in\mathbb{R}, jnj\neq n and Q𝒮onQ\in\mathcal{S}_{o}^{n}. Given a Borel measure μ\mu, what are necessary and sufficient conditions on μ\mu so that there exists a convex body M𝒦onM\in\mathcal{K}_{o}^{n} whose dual curvature measure 𝒞~p,q,j(M,Q,)\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot) is the given measure μ\mu?

The uniqueness problem for (p,q)(p,q)-dual mixed curvature measures is: For p,qp,q\in\mathbb{R}, jnj\neq n and Q𝒮onQ\in\mathcal{S}_{o}^{n}. If M1,M2𝒦onM_{1},M_{2}\in\mathcal{K}_{o}^{n}, are such that

𝒞~p,q,j(M1,Q,)=𝒞~p,q,j(M2,Q,),\widetilde{\mathcal{C}}_{p,q,j}(M_{1},Q,\cdot)=\widetilde{\mathcal{C}}_{p,q,j}(M_{2},Q,\cdot),

then how is M1M_{1} related to M2M_{2}?

The organization is as follows. The corresponding background materials and some results are introduced in Section 2. In Section 3, we define the concept of (p,q)(p,q)-dual mixed curvature measures on the basis of LpL_{p} dual curvature measures. In Section 4, we then establish the variational formulas for qq-th dual mixed quermassintegrals, and obtain the integral formula for (p,q)(p,q)-mixed quermassintegrals via the concept of (p,q)(p,q)-dual mixed curvature measures. In Section 5, we derive at some important geometric inequalities involving Minkowski inequality etc. Finally, we further study the Minkowski problem for (p,q)(p,q)-dual mixed curvature measures in Section 6.

2 Preliminaries

   In this section, we give the interrelated background materials and some results. Gardner’s book [12] and Schneider’s book [29] are our standard references for the basics regarding convex bodies and star bodies.

2.1  Support function, radial function, Wulff shape and convex hull

For M𝒦nM\in\mathcal{K}^{n}, the support function hM=h(M,):nh_{M}=h(M,\cdot):\mathbb{R}^{n}\rightarrow\mathbb{R} is given by

h(M,x)=max{xy:yM},xn.h(M,x)=\max\{x\cdot y:y\in M\},\ \ \ \ x\in\mathbb{R}^{n}.

where xyx\cdot y denotes the standard inner product of xx and yy in n\mathbb{R}^{n}. For ϕGL(n)\phi\in GL(n) (which denotes the general linear transformation group), the image of MM under ϕ\phi, we have

h(ϕM,x)=h(M,ϕtx),xn,h(\phi M,x)=h(M,\phi^{t}x),\ \ \ \ x\in\mathbb{R}^{n},

where ϕt\phi^{t} denotes the transpose of ϕ\phi.

For M𝒮onM\in\mathcal{S}_{o}^{n}, the radial function, ρM=ρ(M,)\rho_{M}=\rho(M,\cdot): n\{0}[0,+)\mathbb{R}^{n}\backslash\{0\}\rightarrow[0,+\infty), is defined by

ρ(M,x)=max{λ0:λxM},xn\{0}.\rho(M,x)=\max\{\lambda\geq 0:\lambda x\in M\},\ \ \ \ x\in\mathbb{R}^{n}\backslash\{0\}.

Similarly, for ϕGL(n)\phi\in GL(n), we have

ρ(ϕM,x)=ρ(M,ϕ1x),xn\{0}.\rho(\phi M,x)=\rho(M,\phi^{-1}x),\ \ \ \ x\in\mathbb{R}^{n}\backslash\{0\}.

For M𝒦onM\in\mathcal{K}_{o}^{n}, the polar body MM^{\ast} of MM is the convex body in n\mathbb{R}^{n}, and defined by

M={xn:xy1,forallyM}.M^{\ast}=\{x\in\mathbb{R}^{n}:x\cdot y\leq 1,\ for\ all\ y\in M\}.

From this definition, we easily see that on n\{0}\mathbb{R}^{n}\backslash\{0\},

ρM=1hMandhM=1ρM.\displaystyle\rho_{M}=\frac{1}{h_{M^{\ast}}}\ \ \ \ and\ \ \ \ h_{M}=\frac{1}{\rho_{M^{\ast}}}. (2.1)

It follows that for M𝒦onM\in\mathcal{K}_{o}^{n}

(M)=M.(M^{\ast})^{\ast}=M.

Let ΩSn1\Omega\subset S^{n-1} denote a set that is closed and cannot be contained in any closed hemisphere of Sn1S^{n-1}. The Wulff shape [h]𝒦on[h]\in\mathcal{K}_{o}^{n}, of a continuous function h:Ω(0,)h:\Omega\rightarrow(0,\infty), also known as the Aleksandrov body of hh, is define by

[h]=uΩ{xn:xuh(u)}.[h]=\bigcap_{u\in\Omega}\{x\in\mathbb{R}^{n}:x\cdot u\leq h(u)\}.

Because of the restrictions placed on Ω\Omega, we see that [h]𝒦on[h]\in\mathcal{K}_{o}^{n}. If M𝒦onM\in\mathcal{K}_{o}^{n}, then

[hM]=M.[h_{M}]=M.

For the radial function of the Wulff shape, we have

ρ[h](u)1=maxuΩ(uv)h(v)1.\rho_{[h]}(u)^{-1}=\max_{u\in\Omega}(u\cdot v)h(v)^{-1}.

Let ρ:Ω(0,)\rho:\Omega\rightarrow(0,\infty) be continuous and {ρ(u)u:uSn1}\{\rho(u)u:u\in S^{n-1}\} is a compact set in n\mathbb{R}^{n}. The convex hull ρ\langle\rho\rangle is defined by

ρ=conv{ρ(u)u:uSn1},\langle\rho\rangle=conv\{\rho(u)u:u\in S^{n-1}\},

is compact as well (see Schneider [29] Theorem 1.1.11). If M𝒦onM\in\mathcal{K}_{o}^{n}, then

ρM=M.\langle\rho_{M}\rangle=M.

For the support function of the convex hulls, we have

hρ(v)maxuΩ(uv)ρ(u),h_{\langle\rho\rangle}(v)\max_{u\in\Omega}(u\cdot v)\rho(u),

for all vSn1v\in S^{n-1}.

Using the concept of Wulff shape, the definition of LpL_{p} Minkowski combination can be extended to p<1p<1 and even negative kk or ll: Fix a real p0p\neq 0. For M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, and k,lk,l\in\mathbb{R} such that khMp+lhNpkh_{M}^{p}+lh_{N}^{p} is a strictly positive function on Sn1S^{n-1}, define the LpL_{p} Minkowski combination, kM+plN𝒦onk\cdot M+_{p}l\cdot N\in\mathcal{K}_{o}^{n}, by

kM+plN=[(khMp+lhNp)1p].\displaystyle k\cdot M+_{p}l\cdot N=[(kh_{M}^{p}+lh_{N}^{p})^{\frac{1}{p}}]. (2.2)

For ϕGL(n)\phi\in GL(n) and p0p\neq 0,

kϕM+plϕN=ϕ(kM+plN).\displaystyle k\cdot\phi M+_{p}l\cdot\phi N=\phi(k\cdot M+_{p}l\cdot N). (2.3)

2.2  The radial Gauss map

Suppose M𝒦nM\in\mathcal{K}^{n} in n\mathbb{R}^{n}. For vn\{0}v\in\mathbb{R}^{n}\backslash\{0\}, the hyperplane

HM(v)={xn:xv=hM(v)}H_{M}(v)=\{x\in\mathbb{R}^{n}:x\cdot v=h_{M}(v)\}

is called the supporting hyperplane to MM with outer normal vv.

The spherical image of σM\sigma\subset\partial M is defined by

𝕍M(σ)={vSn1:xHM(v)forsomexσ}Sn1.\mathbb{V}_{M}(\sigma)=\{v\in S^{n-1}:x\in H_{M}(v)\ for\ some\ x\in\sigma\}\subset S^{n-1}.

The reverse spherical image of ηSn1\eta\subset S^{n-1} is defined by

𝕏M(η)={xM:xHM(v)forsomevη}M.\mathbb{X}_{M}(\eta)=\{x\in\partial M:x\in H_{M}(v)\ for\ some\ v\in\eta\}\subset\partial M.

Let σMM\sigma_{M}\subset\partial M be the set consisting of all xMx\in\partial M, for which the set 𝕍M({x})\mathbb{V}_{M}(\{x\}), which we frequently abbreviate as 𝕍M(x)\mathbb{V}_{M}(x), contains more than a single element. It is well known that n1(σM)=0\mathcal{H}^{n-1}(\sigma_{M})=0 (see p. 84 of Schneider [29]). On precisely the set of regular radial vectors of M\partial M is defined the function

νM:M\σMSn1,\nu_{M}:\partial M\backslash\sigma_{M}\rightarrow S^{n-1},

by letting νM(x)\nu_{M}(x) be the unique element in 𝕍M(x)\mathbb{V}_{M}(x) for each xM\σMx\in\partial M\backslash\sigma_{M}. The function νM\nu_{M} is called the spherical image map of MM and is known to be continuous (see Lemma 2.2.12 of Schneider [29]). It will occasionally be convenient to abbreviate M\σM\partial M\backslash\sigma_{M} by M\partial^{\prime}M. Since n1(σM)=0\mathcal{H}^{n-1}(\sigma_{M})=0, when the integration is with respect to n1\mathcal{H}^{n-1}, it will be immaterial if the domain is over subsets of M\partial^{\prime}M or M\partial M.

For M𝒦onM\in\mathcal{K}_{o}^{n} and uSn1u\in S^{n-1}, the radial map of MM is defined as,

rM:Sn1MbyrM(u)=ρM(u)uM.r_{M}:S^{n-1}\rightarrow\partial M\ \ by\ \ r_{M}(u)=\rho_{M}(u)u\in\partial M.

For ωSn1\omega\subset S^{n-1}, the radial Gauss image of ω\omega is defined as

M(ω)={vSn1:rM(u)HM(v)forsomeuω},\Re_{M}(\omega)=\{v\in S^{n-1}:r_{M}(u)\in H_{M}(v)\ for\ some\ u\in\omega\},

and thus, for uSn1u\in S^{n-1},

M(u)={vSn1:rM(u)HM(v)}.\displaystyle\Re_{M}(u)=\{v\in S^{n-1}:r_{M}(u)\in H_{M}(v)\}. (2.4)

For M𝒦onM\in\mathcal{K}_{o}^{n}, the radial Gauss map is defined by

αM:Sn1\ωMSn1,byαM=νMrM\alpha_{M}:S^{n-1}\backslash\omega_{M}\rightarrow S^{n-1},\ \ by\ \ \alpha_{M}=\nu_{M}\circ r_{M}

where ωM=rM1(σM)\omega_{M}=r_{M}^{-1}(\sigma_{M}). Since rM1r_{M}^{-1} is a bi-Lipschitz map between the space M\partial M and Sn1S^{n-1} it follows that ωM\omega_{M} has spherical Lebesgue measure zero. Observe that if uSn1\ωMu\in S^{n-1}\backslash\omega_{M}, then M(u)\Re_{M}(u) contains only the element αM(u)\alpha_{M}(u). For xn\{0}x\in\mathbb{R}^{n}\backslash\{0\}, define x¯Sn1\overline{x}\in S^{n-1} by x¯=x/|x|\overline{x}=x/|x|. Since both νM\nu_{M} and rMr_{M} are continuous, then αM\alpha_{M} is continuous. Note that for xMx\in\partial^{\prime}M,

αM(x¯)=νM(x),\displaystyle\alpha_{M}(\overline{x})=\nu_{M}(x), (2.5)

and hence, for xMx\in\partial^{\prime}M,

hM(αM(x¯))=hM(νM(x))=xνM(x).\displaystyle h_{M}(\alpha_{M}(\overline{x}))=h_{M}(\nu_{M}(x))=x\cdot\nu_{M}(x). (2.6)

For ηSn1\eta\subset S^{n-1}, the reverse radial Gauss image of η\eta is defined by

M(η)=rM1(𝕏M(η))=𝕏M(η).\Re_{M}^{\ast}(\eta)=r_{M}^{-1}(\mathbb{X}_{M}(\eta))=\langle\mathbb{X}_{M}(\eta)\rangle.

Thus,

M(η)={x¯:xMwherexHM(v)forsomevη}.\Re_{M}^{\ast}(\eta)=\{\overline{x}:x\in\partial M\ \ where\ x\in H_{M}(v)\ for\ some\ v\in\eta\}.

If η\eta contains only the single vector vSn1v\in S^{n-1}, then

M(v)={x¯:xMwherexHM(v)}.\Re_{M}^{\ast}(v)=\{\overline{x}:x\in\partial M\ \ where\ x\in H_{M}(v)\}.

Note that the set ηSn1\eta\subset S^{n-1},

M(η)={uSn1:rM(u)HM(v)forsomevη},\Re_{M}^{\ast}(\eta)=\{u\in S^{n-1}:r_{M}(u)\in H_{M}(v)\ for\ some\ v\in\eta\},

and for uSn1u\in S^{n-1} and ηSn1\eta\subset S^{n-1}, we see that from (2.4) that

uM(η)M(u)η.\displaystyle u\in\Re_{M}^{\ast}(\eta)\ \ \Leftrightarrow\ \ \Re_{M}(u)\cap\eta\neq\varnothing. (2.7)

If uωMu\not\in\omega_{M}, then M(u)={αM(u)}\Re_{M}(u)=\{\alpha_{M}(u)\}, then (2.7) becomes

uM(η)αM(u)η,\displaystyle u\in\Re_{M}^{\ast}(\eta)\ \Leftrightarrow\ \alpha_{M}(u)\in\eta, (2.8)

and hence (2.8) holds for almost all uSn1u\in S^{n-1}, with respect to spherical Lebesgue measure.

The reverse radial Gauss image of a convex body and the radial Gauss image of its polar body are related (see[15]).

Lemma 2.1  For each ηSn1\eta\subset S^{n-1}. If M𝒦onM\in\mathcal{K}_{o}^{n}, then

M(η)=M(η).\Re_{M}^{\ast}(\eta)=\Re_{M^{\ast}}(\eta).

For almost all vSn1v\in S^{n-1}, then M(v)={αM(v)}\Re_{M}^{\ast}(v)=\{\alpha_{M}^{\ast}(v)\}, and M(v)={αM(v)}\Re_{M^{\ast}}(v)=\{\alpha_{M^{\ast}}(v)\}. Therefore,

αM=αM.\alpha_{M}^{\ast}=\alpha_{M^{\ast}}.

2.3  The surface area measure

By using the spherical image and reverse spherical image, one can define the surface area measures, and their LpL_{p} extensions.

For Borel set ηSn1\eta\subset S^{n-1} and M𝒦onM\in\mathcal{K}_{o}^{n}. the surface area measures S(M,)S(M,\cdot) can be defined by

S(M,η)=n1(𝕏M(η)).S(M,\eta)=\mathcal{H}^{n-1}(\mathbb{X}_{M}(\eta)).

For convex bodies M,NM,N in n\mathbb{R}^{n}, the mixed quermassintegral Wi(M,N)W_{i}(M,N) has the following integral representation:

Wi(M,N)=1nSn1hN(u)𝑑Si(M,u),W_{i}(M,N)=\frac{1}{n}\int_{S^{n-1}}h_{N}(u)dS_{i}(M,u),

where dSi(M,u)/dS(u)=fi(M,u):Sn1[0,)dS_{i}(M,u)/dS(u)=f_{i}(M,u):S^{n-1}\rightarrow[0,\infty) denote the ii-th curvature function (see[19]).

For pp\in\mathbb{R} and M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, the LpL_{p} mixed quermassintegral Wp,i(M,N)W_{p,i}(M,N) is defined by

Wp,i(M,N)=1nSn1hNp(u)𝑑Sp,i(M,u),\displaystyle W_{p,i}(M,N)=\frac{1}{n}\int_{S^{n-1}}h_{N}^{p}(u)dS_{p,i}(M,u), (2.9)

where the Sp,i(M,)S_{p,i}(M,\cdot) is the LpL_{p} surface area measure.

For p1p\geq 1, the LpL_{p} Minkowski inequality of LpL_{p} mixed quermassintegral is obtained

Wp,i(M,N)Wi(M)npiniWi(N)pni,\displaystyle W_{p,i}(M,N)\geq W_{i}(M)^{\frac{n-p-i}{n-i}}W_{i}(N)^{\frac{p}{n-i}}, (2.10)

with equality if and only if MM and NN are dilates when p>1p>1, and MM and NN are homothets when p=1p=1.

The following important integral identity was established in [15]: For qq\in\mathbb{R}, jnj\neq n and M𝒦onM\in\mathcal{K}_{o}^{n}. If f:Sn1f:S^{n-1}\rightarrow\mathbb{R} is bounded and Lebesgue integrable, then

Sn1f(u)ρMq(u)𝑑u=Mf(x¯)|x|qn(xνM(x))𝑑n1(x).\displaystyle\int_{S^{n-1}}f(u)\rho_{M}^{q}(u)du=\int_{\partial M}f(\overline{x})|x|^{q-n}(x\cdot\nu_{M}(x))d\mathcal{H}^{n-1}(x). (2.11)

3 The (p,q)(p,q)-dual mixed curvature measures

   In this section, we introduce the concept of (p,q)(p,q)-dual mixed curvature measures on the basis of LpL_{p} dual curvature measures.

Let Q𝒮onQ\in\mathcal{S}_{o}^{n}, define a continuous and positively function Q:n[0,)\|\cdot\|_{Q}:\mathbb{R}^{n}\rightarrow[0,\infty) by

xQ={0,x=0.ρQ1(x),x0\displaystyle\|x\|_{Q}=\bigg{\{}_{0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=0.}^{\rho_{Q}^{-1}(x),\ \ \ \ \ \ \ \ \ \ x\neq 0} (3.1)

Note that Q\|\cdot\|_{Q} is a continuous, and a positively homogeneous function of degree one. When QQ is an origin-symmetric convex bodies in n\mathbb{R}^{n}, then Q\|\cdot\|_{Q} is an ordinary norm in n\mathbb{R}^{n}, and (n,Q)(\mathbb{R}^{n},\|\cdot\|_{Q}) is the nn-dimensional Banach space whose unit ball is QQ.

Definition 3.1  Suppose qq\in\mathbb{R} and jnj\neq n. For M𝒦onM\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and each Borel ηSn1\eta\subseteq S^{n-1}, the qq-th dual mixed curvature measure, 𝒞~q,j(M,Q,)\widetilde{\mathcal{C}}_{q,j}(M,Q,\cdot), of M,QM,Q is defined by

𝒞~q,j(M,Q,η)\displaystyle\widetilde{\mathcal{C}}_{q,j}(M,Q,\eta) =1nM(η)ρMq(u)ρQnqj(u)𝑑u\displaystyle=\frac{1}{n}\int_{\Re_{M}^{\ast}(\eta)}\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du
=1nSn1𝕀M(η)(u)ρMq(u)ρQnqj(u)𝑑u.\displaystyle=\frac{1}{n}\int_{S^{n-1}}\mathbb{I}_{\Re^{*}_{M}(\eta)}(u)\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du. (3.2)

Moreover, for any pp\in\mathbb{R}, the (p,q)(p,q)-th dual mixed curvature measure, 𝒞~p,q,j(M,Q,)\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot), is defined by

d𝒞~p,q,j(M,Q,)d𝒞~q,j(M,Q,)=hp(M,).\displaystyle\frac{d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot)}{d\widetilde{\mathcal{C}}_{q,j}(M,Q,\cdot)}=h^{-p}(M,\cdot). (3.3)

In particular, if p=0p=0 in (3.3), then

𝒞~0,q,j(M,Q,)=𝒞~q,j(M,Q,).\widetilde{\mathcal{C}}_{0,q,j}(M,Q,\cdot)=\widetilde{\mathcal{C}}_{q,j}(M,Q,\cdot).

Remark  In particular, let j=0j=0 in (3), the dual curvature measures 𝒞~q,0(M,N,η)=𝒞~q(M,N,η)\widetilde{\mathcal{C}}_{q,0}(M,N,\eta)=\widetilde{\mathcal{C}}_{q}(M,N,\eta). If j=0j=0 in (3.3), then d𝒞~p,q,0(M,N,)=hKpd𝒞~p.q(M,N,)d\widetilde{\mathcal{C}}_{p,q,0}(M,N,\cdot)=h_{K}^{-p}d\widetilde{\mathcal{C}}_{p.q}(M,N,\cdot). Further, if p=0p=0, then 𝒞~0,q(M,N,)=𝒞~q(M,N,)\widetilde{\mathcal{C}}_{0,q}(M,N,\cdot)=\widetilde{\mathcal{C}}_{q}(M,N,\cdot) (see[24]).

Then, we are ready to establish the integral representation of (p,q)(p,q)-dual mixed curvature measures. But we also need a tool as follows. Let φ:Sn1\varphi:S^{n-1}\rightarrow\mathbb{R} be a simple function on Sn1S^{n-1} by letting

φ=i=1kci𝕀ηi\varphi=\sum_{i=1}^{k}c_{i}\mathbb{I}_{\eta_{i}}

for cic_{i}\in\mathbb{R} and Borel set ηiSn1\eta_{i}\subset S^{n-1}.

Lemma 3.1   Suppose qq\in\mathbb{R} and jnj\neq n. For M𝒦onM\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and a bounded Borel function f:Sn1f:S^{n-1}\rightarrow\mathbb{R}, we have

Sn1f(v)𝑑𝒞~q,j(M,Q,v)=1nSn1f(αM(v))ρMq(v)ρQnqj(v)𝑑v.\displaystyle\int_{S^{n-1}}f(v)d\widetilde{\mathcal{C}}_{q,j}(M,Q,v)=\frac{1}{n}\int_{S^{n-1}}f(\alpha_{M}(v))\rho_{M}^{q}(v)\rho_{Q}^{n-q-j}(v)dv. (3.4)

Proof.  From (3) and the fact (2.8), for any Borel sets ηSn1\eta\subset S^{n-1}, we get

Sn1φ(u)𝑑𝒞~q,j(M,Q,u)\displaystyle\int_{S^{n-1}}\varphi(u)d\widetilde{\mathcal{C}}_{q,j}(M,Q,u) =Sn1i=1kci𝕀ηi(u)d𝒞~q,j(M,Q,u)\displaystyle=\int_{S^{n-1}}\sum_{i=1}^{k}c_{i}\mathbb{I}_{\eta_{i}}(u)d\widetilde{\mathcal{C}}_{q,j}(M,Q,u)
=i=1kciSn1𝕀ηi(u)𝑑𝒞~q,j(M,Q,u)\displaystyle=\sum_{i=1}^{k}c_{i}\int_{S^{n-1}}\mathbb{I}_{\eta_{i}}(u)d\widetilde{\mathcal{C}}_{q,j}(M,Q,u)
=i=1kci𝒞~q,j(M,Q,ηi)\displaystyle=\sum_{i=1}^{k}c_{i}\widetilde{\mathcal{C}}_{q,j}(M,Q,\eta_{i})
=1ni=1kciM(ηi)ρMq(v)ρQnqj(v)𝑑v\displaystyle=\frac{1}{n}\sum_{i=1}^{k}c_{i}\int_{\Re_{M}^{\ast}(\eta_{i})}\rho_{M}^{q}(v)\rho_{Q}^{n-q-j}(v)dv (3.5)
=1nSn1i=1kci𝕀M(ηi)(v)ρMq(v)ρQnqj(v)dv\displaystyle=\frac{1}{n}\int_{S^{n-1}}\sum_{i=1}^{k}c_{i}\mathbb{I}_{\Re_{M}^{\ast}(\eta_{i})}(v)\rho_{M}^{q}(v)\rho_{Q}^{n-q-j}(v)dv
=1nSn1i=1kci𝕀ηi(αM(v))ρMq(v)ρQnqj(v)dv\displaystyle=\frac{1}{n}\int_{S^{n-1}}\sum_{i=1}^{k}c_{i}\mathbb{I}_{{\eta_{i}}}(\alpha_{M}(v))\rho_{M}^{q}(v)\rho_{Q}^{n-q-j}(v)dv
=1nSn1φ(αM(u))ρMq(u)ρQnqj(u)𝑑u.\displaystyle=\frac{1}{n}\int_{S^{n-1}}\varphi(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du.

In (3), we choose a sequence of simple functions fkf_{k} that converge uniformly to ff. Then fkαMf_{k}\circ\alpha_{M} converges to fαMf\circ\alpha_{M} a.e. with respect to spherical Lebesgue measure. Since ff is a Borel function on Sn1S^{n-1} and the radial Gauss map αM\alpha_{M} is continuous on Sn1\ωMS^{n-1}\backslash\omega_{M}, then composite function fαMf\circ\alpha_{M} is a Borel function on Sn1\ωMS^{n-1}\backslash\omega_{M} as well. Since ff is bounded and ωM\omega_{M} has Lebesgue measure zero. Thus, ff and Sn1\ωMS^{n-1}\backslash\omega_{M} are Lebesgue integrable on Sn1S^{n-1}. Taking the kk\rightarrow\infty, we can establish (3.4). {\square}

From (3.3), (3.4) and (2.8), we can easily get the integral formula for (p,q)(p,q)-dual mixed curvature measures as follows: Suppose p,qp,q\in\mathbb{R} and jnj\neq n. For M𝒦onM\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and each Borel set ηSn1\eta\subseteq S^{n-1}, then

𝒞~p,q,j(M,Q,η)=1nM(η)hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u.\displaystyle\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\eta)=\frac{1}{n}\int_{\Re_{M}^{\ast}(\eta)}h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du. (3.6)

Next, we are going to get some properties of (p,q)(p,q)-dual mixed curvature measures.

Lemma 3.2  Suppose p,qp,q\in\mathbb{R} and jnj\neq n. If M𝒦onM\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then for each bounded, Borel function g:Sn1g:S^{n-1}\rightarrow\mathbb{R}

Sn1g(v)𝑑𝒞~p,q,j(M,Q,v)=1nSn1g(αM(u))hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u.\displaystyle\int_{S^{n-1}}g(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,v)=\frac{1}{n}\int_{S^{n-1}}g(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du. (3.7)

For the right hand of formula (3.7), the integration is with respect to spherical Lebesgue measure.

Proof.  Since hMp:Sn1h_{M}^{-p}:S^{n-1}\rightarrow\mathbb{R} is a bounded Borel function, let f=ghMpf=gh_{M}^{-p} in (3.4), we have

Sn1g(v)hMp(v)𝑑𝒞~q,j(M,Q,v)=1nSn1g(αM(u))hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u,\int_{S^{n-1}}g(v)h_{M}^{-p}(v)d\widetilde{\mathcal{C}}_{q,j}(M,Q,v)=\frac{1}{n}\int_{S^{n-1}}g(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du,

which, in light of (3.3), is the desired result (3.7). {\square}

Lemma 3.3  Suppose p,qp,q\in\mathbb{R} and jnj\neq n. If M𝒦onM\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then for Borel set ηSn1\eta\subseteq S^{n-1} and each bounded, Borel function g:Sn1g:S^{n-1}\rightarrow\mathbb{R}

Sn1g(v)𝑑𝒞~p,q,j(M,Q,v)\displaystyle\int_{S^{n-1}}g(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,v)
=1nMg(νM(x))(xνM(x))1p|x|jxQq+jn𝑑n1(x),\displaystyle=\frac{1}{n}\int_{\partial^{\prime}M}g(\nu_{M}(x))(x\cdot\nu_{M}(x))^{1-p}|x|^{-j}\|x\|_{Q}^{q+j-n}d\mathcal{H}^{n-1}(x), (3.8)
𝒞~p,q,j(M,Q,η)=1nxχ(xνM(x))1p|x|jxQq+jn𝑑n1(x),\displaystyle\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\eta)=\frac{1}{n}\int_{x\in\chi}(x\cdot\nu_{M}(x))^{1-p}|x|^{-j}\|x\|_{Q}^{q+j-n}d\mathcal{H}^{n-1}(x), (3.9)

where χ=𝕏M(η)\chi=\mathbb{X}_{M}(\eta).

Proof.  Let f=g(αM)hMp(αM)ρQnqj(u)f=g(\alpha_{M})h_{M}^{-p}(\alpha_{M})\rho_{Q}^{n-q-j}(u) in (2.11). From the homogeneity of ρQ\rho_{Q}, (2.5), (2.6) and finally the fact that Q=ρQ1\|\cdot\|_{Q}=\rho_{Q}^{-1}, combining with (3.7), we get

Sn1g(v)𝑑𝒞~p,q,j(M,Q,v)\displaystyle\int_{S^{n-1}}g(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,v)
=1nSn1g(αM(u))hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u\displaystyle=\frac{1}{n}\int_{S^{n-1}}g(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du
=1nMg(αM(x¯))hMp(αM(x¯))|x|qnρQnqj(x¯)(xνM(x))𝑑n1(x)\displaystyle=\frac{1}{n}\int_{\partial^{\prime}M}g(\alpha_{M}(\overline{x}))h_{M}^{-p}(\alpha_{M}(\overline{x}))|x|^{q-n}\rho_{Q}^{n-q-j}(\overline{x})(x\cdot\nu_{M}(x))d\mathcal{H}^{n-1}(x)
=1nMg(νM(x))(xνM(x))1p|x|jxQq+jn𝑑n1(x).\displaystyle=\frac{1}{n}\int_{\partial^{\prime}M}g(\nu_{M}(x))(x\cdot\nu_{M}(x))^{1-p}|x|^{-j}\|x\|^{q+j-n}_{Q}d\mathcal{H}^{n-1}(x).

This gives the (3).

Let g=𝕀ηg=\mathbb{I}_{\eta} in (3). Recall that νM(x)ηx𝕏M(η)\nu_{M}(x)\in\eta\Leftrightarrow x\in\mathbb{X}_{M}(\eta), for almost all xx with respect to spherical Lebesgue measure. Thus, we establish (3.9). {\square}

Proposition 3.1  For p,qp,q\in\mathbb{R} and jnj\neq n. If M𝒦onM\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

𝒞~p,q,0(M,M,)=𝒞~p,n,0(M,B,)=1nSp(M,),\displaystyle\widetilde{\mathcal{C}}_{p,q,0}(M,M,\cdot)=\widetilde{\mathcal{C}}_{p,n,0}(M,B,\cdot)=\frac{1}{n}S_{p}(M,\cdot), (3.10)
𝒞~0,q,j(M,Q,)=𝒞~q,j(M,Q,).\displaystyle\widetilde{\mathcal{C}}_{0,q,j}(M,Q,\cdot)=\widetilde{\mathcal{C}}_{q,j}(M,Q,\cdot). (3.11)

Proof.  For all xMx\in\partial M, using the (3.1), we have xM=ρM1(x)=1\|x\|_{M}=\rho_{M}^{-1}(x)=1 from the definition of the radial function. From (3.9), we have

𝒞~p,n,0(M,B,η)\displaystyle\widetilde{\mathcal{C}}_{p,n,0}(M,B,\eta) =1nxχ(xνM(x))1p𝑑n1(x)\displaystyle=\frac{1}{n}\int_{x\in\chi}(x\cdot\nu_{M}(x))^{1-p}d\mathcal{H}^{n-1}(x)
=1nxχ(xνM(x))1pxMq+jn𝑑n1(x)\displaystyle=\frac{1}{n}\int_{x\in\chi}(x\cdot\nu_{M}(x))^{1-p}\|x\|_{M}^{q+j-n}d\mathcal{H}^{n-1}(x)
=𝒞~p,q,0(M,M,η),χ=𝕏M(η).\displaystyle=\widetilde{\mathcal{C}}_{p,q,0}(M,M,\eta),\ \ \chi=\mathbb{X}_{M}(\eta).

The (LABEL:2.9) states that the integral above is just 1nSp(M,)\frac{1}{n}S_{p}(M,\cdot), then (3.10) and (3.11) are obtained. From the (3.6) and let p=0p=0 in (3.6), we get the (3.11). {\square}

4 The (p,q)(p,q)-mixed quermassintegrals

   In this section, in order to prove the main results, we first give some variational formulas for qq-th dual mixed quermassintegrals of a logarithmic family of Wulff shapes and convex hull. Then, we establish the integral representation and study some properties of (p,q)(p,q)-mixed quermassintegrals.

Suppose Ω\Omega be a closed subset of Sn1S^{n-1} that is not contained in any closed hemisphere. Let f:Ωf:\Omega\rightarrow\mathbb{R} be continuous and δ>0\delta>0. Define a positive continuous function, ht:Ω(0,)h_{t}:\Omega\rightarrow(0,\infty), by letting

loght(v)=logh0(v)+tf(v)+o(t,v),\log h_{t}(v)=\log h_{0}(v)+tf(v)+o(t,v),

for each t(δ,δ)t\in(-\delta,\delta), where o(t,):Ωo(t,\cdot):\Omega\rightarrow\mathbb{R} is continuous and limt0o(t,)/t=0\lim_{t\rightarrow 0}o(t,\cdot)/t=0, uniformly on Ω\Omega. Denote by

[ht]={x:xvht(v)forallvΩ},[h_{t}]=\{x\in\mathbb{R}:x\cdot v\leq h_{t}(v)\ for\ all\ v\in\Omega\},

the Wulff shape determined by hth_{t}. We shall call [ht][h_{t}] a logarithmic family of Wulff shapes generated by (h0,f)(h_{0},f). If h0h_{0} is the support function hMh_{M} of a convex body MM, we also write [ht][h_{t}] as [M,f,t][M,f,t].

The Wulff shape of a function and the convex hull generated by its reciprocal are relate (see[15]).

Lemma 4.1  Suppose ΩSn1\Omega\subset S^{n-1} is a closed set not contained in any closed hemisphere of Sn1S^{n-1}. Let h:Ω(0,)h:\Omega\rightarrow(0,\infty) be continuous. Then the Wulff shape [h][h] determined by hh and the convex hull 1\h\langle 1\backslash h\rangle generated by the function 1\h1\backslash h are polar reciprocals of each other; i.e.,

[h]=1\h.[h]^{\ast}=\langle 1\backslash h\rangle.

The following lemma shows that the support function of convex hull are differentiable.

Lemma 4.2 [15]  Suppose ΩSn1\Omega\subset S^{n-1} is a closed set not contained in any closed hemisphere of Sn1S^{n-1}. Let ρ0:Ω(0,)\rho_{0}:\Omega\rightarrow(0,\infty) and f:Ωf:\Omega\rightarrow\mathbb{R} are continuous. If ρt\langle\rho_{t}\rangle is a logarithmic family of convex hulls generated by (ρ0,f)(\rho_{0},f), then, for qq\in\mathbb{R}

limt0hρtq(v)hρ0q(v)t=qhρ0q(v)f(αρ0(v)).\lim_{t\rightarrow 0}\frac{h^{-q}_{\langle\rho_{t}\rangle}(v)-h^{-q}_{\langle\rho_{0}\rangle}(v)}{t}=-qh^{-q}_{\langle\rho_{0}\rangle}(v)f(\alpha^{\ast}_{\langle\rho_{0}\rangle}(v)).

for all vSn1\ηρ0v\in S^{n-1}\backslash\eta_{\langle\rho_{0}\rangle}.

The following theorem shows a variational formula for qq-th dual mixed quermassintegrals of qq-th dual mixed curvature measure and polar convex hull.

Theorem 4.1  Suppose ΩSn1\Omega\subset S^{n-1} is a closed set not contained in any closed hemisphere of Sn1S^{n-1}. Let ρ0:Ω(0,)\rho_{0}:\Omega\rightarrow(0,\infty) and f:Ωf:\Omega\rightarrow\mathbb{R} are continuous. If ρt\langle\rho_{t}\rangle is a logarithmic family of convex hulls of (ρ0,f)(\rho_{0},f), and q0q\neq 0, jnj\neq n, then

limt0W~q,j(ρt,Q)W~q,j(ρ0,Q)t=qΩf(u)𝑑𝒞~q,j(ρ0,Q,u)\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(\langle\rho_{t}\rangle^{\ast},Q)-\widetilde{W}_{q,j}(\langle\rho_{0}\rangle^{\ast},Q)}{t}=-q\int_{\Omega}f(u)d\widetilde{\mathcal{C}}_{q,j}(\langle\rho_{0}\rangle^{\ast},Q,u)

which holds for Q𝒮onQ\in\mathcal{S}_{o}^{n}.

Proof of Theorem 4.1.  First, we write ηρ0\eta_{\langle\rho_{0}\rangle} by η0\eta_{0}. Recall that η0\eta_{0} is the set of spherical Lebesgue measure zero that consists of the complement, in Sn1S^{n-1}, of the regular normal vectors of the convex body ρ0=conv{ρ0(u)u:uΩ}\langle\rho_{0}\rangle=conv\{\rho_{0}(u)u:u\in\Omega\}. The continuous function

αρ0:Sn1\η0Sn1\alpha_{\langle\rho_{0}\rangle}^{\ast}:S^{n-1}\backslash\eta_{0}\rightarrow S^{n-1}

is defined by αρ0(v)ρ0(v)={αρ0(v)}\alpha_{\langle\rho_{0}\rangle}^{\ast}(v)\in\Re_{\langle\rho_{0}\rangle}^{\ast}(v)=\{\alpha_{\langle\rho_{0}\rangle}^{\ast}(v)\} for all vSn1\η0v\in S^{n-1}\backslash\eta_{0}

For vSn1\η0v\in S^{n-1}\backslash\eta_{0}. Now, we prove that ρ0(v)Ω\Re_{\langle\rho_{0}\rangle}(v)\subset\Omega. Let

hρ0(v)=maxuΩρ0(u)uv=ρ0(u0)u0vh_{\langle\rho_{0}\rangle}(v)=\max_{u\in\Omega}\rho_{0}(u)u\cdot v=\rho_{0}(u_{0})u_{0}\cdot v

for some u0Ωu_{0}\in\Omega. This means that

ρ0(u0)u0Hρ0(v),\rho_{0}(u_{0})u_{0}\in H_{\langle\rho_{0}\rangle}(v),

thus ρ0(u0)u0ρ0\rho_{0}(u_{0})u_{0}\in\partial\langle\rho_{0}\rangle because in addition to ρ0(u0)u0\rho_{0}(u_{0})u_{0} obviously belonging to ρ0\langle\rho_{0}\rangle, it also belongs to Hρ0(v)H_{\langle\rho_{0}\rangle}(v). Since vv is a regular normal vector of ρ0\langle\rho_{0}\rangle, therefore αρ0(v)=u0Ω\alpha_{\langle\rho_{0}\rangle}^{\ast}(v)=u_{0}\in\Omega. Thus

ρ0(Sn1\η0)Ω.\displaystyle\Re^{\ast}_{\langle\rho_{0}\rangle}(S^{n-1}\backslash\eta_{0})\subset\Omega. (4.1)

From (4.1) and Lemma 2.1, we get the fact that

ρ0(Sn1\η0)Ω.\displaystyle\Re_{\langle\rho_{0}\rangle^{\ast}}(S^{n-1}\backslash\eta_{0})\subset\Omega. (4.2)

Since Ω\Omega is closed, using the Tietze extension theorem, we can extend the continuous function f:Ωf:\Omega\rightarrow\mathbb{R} to a continuous function f^:Sn1\hat{f}:S^{n-1}\rightarrow\mathbb{R}. From (4.2), we get

f(αρ0(v))=(f^𝕀Ω)(αρ0(v)).\displaystyle f(\alpha_{\langle\rho_{0}\rangle^{\ast}}(v))=(\hat{f}\mathbb{I}_{\Omega})(\alpha_{\langle\rho_{0}\rangle^{\ast}}(v)). (4.3)

From (1.1), (2.1), Lemma 4.2, Lemma 2.1, (4.3), (3.4), and dominated convergence theorem. Since η0\eta_{0} has measures zero, we get for Q𝒮onQ\in\mathcal{S}_{o}^{n}

limt0W~q,j(ρt,Q)W~q,j(ρ0,Q)t\displaystyle\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(\langle\rho_{t}\rangle^{\ast},Q)-\widetilde{W}_{q,j}(\langle\rho_{0}\rangle^{\ast},Q)}{t}
=limt01nSn1ρρtq(v)ρρ0q(v)tρQnqj(v)𝑑v\displaystyle=\lim_{t\rightarrow 0}\frac{1}{n}\int_{S^{n-1}}\frac{\rho_{\langle\rho_{t}\rangle^{\ast}}^{q}(v)-\rho_{\langle\rho_{0}\rangle^{\ast}}^{q}(v)}{t}\rho_{Q}^{n-q-j}(v)dv
=1nSn1\η0limt0hρtq(v)hρ0q(v)tρQnqj(v)dv\displaystyle=\frac{1}{n}\int_{S^{n-1}\backslash\eta_{0}}\lim_{t\rightarrow 0}\frac{h_{\langle\rho_{t}\rangle}^{-q}(v)-h_{\langle\rho_{0}\rangle}^{-q}(v)}{t}\rho_{Q}^{n-q-j}(v)dv
=qnSn1\η0f(αρ0(v))hρ0q(v)ρQnqj(v)𝑑v\displaystyle={-\frac{q}{n}}\int_{S^{n-1}\backslash\eta_{0}}f(\alpha^{\ast}_{\langle\rho_{0}\rangle}(v))h^{-q}_{\langle\rho_{0}\rangle}(v)\rho_{Q}^{n-q-j}(v)dv
=qnSn1\η0f(αρ0(v))ρρ0q(v)ρQnqj(v)𝑑v\displaystyle={-\frac{q}{n}}\int_{S^{n-1}\backslash\eta_{0}}f(\alpha_{\langle\rho_{0}\rangle^{\ast}}(v))\rho^{q}_{\langle\rho_{0}\rangle^{\ast}}(v)\rho_{Q}^{n-q-j}(v)dv
=qnSn1\η0(f^𝕀Ω)(αρ0(v))ρρ0q(v)ρQnqj(v)𝑑v\displaystyle={-\frac{q}{n}}\int_{S^{n-1}\backslash\eta_{0}}(\hat{f}\mathbb{I}_{\Omega})(\alpha_{\langle\rho_{0}\rangle^{\ast}}(v))\rho^{q}_{\langle\rho_{0}\rangle^{\ast}}(v)\rho_{Q}^{n-q-j}(v)dv
=qSn1(f^𝕀Ω)(u)𝑑𝒞~q,j(ρ0,Q,u)\displaystyle=-q\int_{S^{n-1}}(\hat{f}\mathbb{I}_{\Omega})(u)d\widetilde{\mathcal{C}}_{q,j}(\langle\rho_{0}\rangle^{\ast},Q,u)
=qΩf(u)𝑑𝒞~q,j(ρ0,Q,u).\displaystyle=-q\int_{\Omega}f(u)d\widetilde{\mathcal{C}}_{q,j}(\langle\rho_{0}\rangle^{\ast},Q,u).

This give the proof of Theorem 4.1. {\square}

The following theorem shows a variational formula for qq-th dual mixed quermassintegrals of qq-th dual mixed curvature measure and Wulff shape.

Theorem 4.2  Suppose ΩSn1\Omega\subset S^{n-1} is a closed set not contained in any closed hemisphere of Sn1S^{n-1}. If h0:Ω(0,)h_{0}:\Omega\rightarrow(0,\infty) and f:Ωf:\Omega\rightarrow\mathbb{R} are continuous, and [ht][h_{t}] is a logarithmic family of Wulff shapes generated by (h0,f)(h_{0},f), then

limt0W~q,j([ht],Q)W~q,j([h0],Q)t=qΩf(v)𝑑𝒞~q,j([h0],Q,v)\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}([h_{t}],Q)-\widetilde{W}_{q,j}([h_{0}],Q)}{t}=q\int_{\Omega}f(v)d\widetilde{\mathcal{C}}_{q,j}([h_{0}],Q,v)

which holds for Q𝒮onQ\in\mathcal{S}_{o}^{n}, jq0j\neq q\neq 0.

Proof of Theorem 4.2.  The logarithmic family of Wulff shapes [ht][h_{t}] is defined as the Wulff shape of hth_{t}, where hth_{t} if given by

loght(v)=logh0(v)+tf(v)+o(t,v).\log h_{t}(v)=\log h_{0}(v)+tf(v)+o(t,v).

Let ρt=ht1\rho_{t}=h_{t}^{-1}, we get

logρt(v)=logρ0(v)tf(v)o(t,v).\log\rho_{t}(v)=\log\rho_{0}(v)-tf(v)-o(t,v).

Let ρt\langle\rho_{t}\rangle be the logarithmic family of convex hulls associated with (ρ0,f)(\rho_{0},-f). From Lemma 4.1, we see that

[ht]=ρt,[h_{t}]=\langle\rho_{t}\rangle^{\ast},

and the desired conclusions now follows from Theorem 4.1. {\square}

Then we state the special case of Theorem 4.2 for logarithmic families of Wulff shapes generated by convex bodies. Here, we shall write [ht][h_{t}] as [h,f,t][h,f,t], and if hh happens to be the support function of a convex body MM perhaps as [M,f,t][M,f,t].

Theorem 4.3  Suppose M𝒦onM\in\mathcal{K}_{o}^{n} and f:Sn1f:S^{n-1}\rightarrow\mathbb{R} are continuous. If Q𝒮onQ\in\mathcal{S}_{o}^{n}, jnj\neq n and q0q\neq 0, then

limt0W~q,j([M,f,t],Q)W~q,j(M,Q)t=qSn1f(v)𝑑𝒞~q,j(M,Q,v).\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}([M,f,t],Q)-\widetilde{W}_{q,j}(M,Q)}{t}=q\int_{S^{n-1}}f(v)d\widetilde{\mathcal{C}}_{q,j}(M,Q,v).

From (3.7), let Q=MQ=M and g=hNpg=h_{N}^{p}, we see that

Sn1g(v)𝑑𝒞~p,q,j(M,M,v)=1nSn1hNp(αM(u))hMp(αM(u))ρMnj(u)𝑑u.\int_{S^{n-1}}g(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,M,v)=\frac{1}{n}\int_{S^{n-1}}h_{N}^{p}(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{n-j}(u)du.

According to the (3.10) and (2.9), the LpL_{p} mixed quermassintegrals, Wp,j(M,N)W_{p,j}(M,N), has an integral formula: For M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, then

Wp,j(M,N)=1nSn1(hNhM)p(αM(u))ρMnj(u)𝑑u.\displaystyle W_{p,j}(M,N)=\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p}(\alpha_{M}(u))\rho_{M}^{n-j}(u)du. (4.4)

Using the above results, we obtain the following important result, namely, the variational formulas of qq-th dual mixed quermassintegrals with respect to (p,q)(p,q)-dual mixed curvature measures.

Theorem 4.4  Suppose p,q0p,q\neq 0, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

limt0W~q,j(M+ptN,Q)W~q,j(M,Q)t=qpn1hNp(v)𝑑C~p,q,j(M,Q,v).\displaystyle\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)-\widetilde{W}_{q,j}(M,Q)}{t}=\frac{q}{p}\int_{n-1}h_{N}^{p}(v)d\widetilde{C}_{p,q,j}(M,Q,v). (4.5)

Proof of Theorem 4.4.  Choose small enough ε\varepsilon, define hth_{t} by

htp=hMp+thNp,p0.\displaystyle h_{t}^{p}=h_{M}^{p}+th_{N}^{p},\ \ p\neq 0. (4.6)

From (2.2) and (4.6), the Wulff shape [ht]=M+ptN[h_{t}]=M+_{p}t\cdot N. Let f=1phNphMpf=\frac{1}{p}\frac{h_{N}^{p}}{h_{M}^{p}}. By Theorem 4.3, we have

limt0W~q,j(M+ptN,Q)W~q,j(M,Q)t=qpSn1hNp(v)hMp(v)𝑑𝒞~q,j(M,Q,v).\displaystyle\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)-\widetilde{W}_{q,j}(M,Q)}{t}=\frac{q}{p}\int_{S^{n-1}}h_{N}^{p}(v)h_{M}^{-p}(v)d\widetilde{\mathcal{\mathcal{C}}}_{q,j}(M,Q,v). (4.7)

From (3.3), using (3.7) with g=hNpg=h_{N}^{p}, we can write (4.7) as

limt0W~q,j(M+ptN,Q)W~q,j(M,Q)t=qpSn1hNp(v)𝑑𝒞~p,q,j(M,Q,v)\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)-\widetilde{W}_{q,j}(M,Q)}{t}=\frac{q}{p}\int_{S^{n-1}}h_{N}^{p}(v)d\widetilde{\mathcal{C}}_{p,q,j}(M,Q,v)

Hence, above result complete the proof of Theorem 4.4. {\square}

Corollary 4.1  Let j=0j=0 in (4.5), the result of V~p,q(M,N,Q)=W~p,q,0(M,N,Q)\widetilde{V}_{p,q}(M,N,Q)=\widetilde{W}_{p,q,0}(M,N,Q) was obtained in [24].

In order to obtain a unification which includes the LpL_{p} mixed quermassintegrals and dual mixed quermassintegrals, this leads us to define the (p,q)(p,q)-dual mixed quermassintegrals.

Definition 4.1  Suppose p,qp,q\in\mathbb{R}, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, define the (p,q)(p,q)-dual mixed quermassintegrals, W~p,q,j(M,N,Q)\widetilde{W}_{p,q,j}(M,N,Q), by

qpW~p,q,j(M,N,Q)=limt0W~q,j(M+ptN,Q)W~q,j(M,Q)t\displaystyle\frac{q}{p}\widetilde{W}_{p,q,j}(M,N,Q)=\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)-\widetilde{W}_{q,j}(M,Q)}{t} (4.8)

By using (3.7) with g=hNpg=h_{N}^{p}, the Definition 4.1 can be written as a following formula,

W~p,q,j(M,N,Q)=1n(hNhM)p(αM(u))(ρMρQ)q(u)ρQnj(u)du.\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)=\frac{1}{n}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p}(\alpha_{M}(u))\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)du. (4.9)

Now, we study some properties of (p,q)(p,q)-mixed quermassintegrals.

Proposition 4.1  Suppose p,qp,q\in\mathbb{R}, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

W~p,q,j(M,M,M)=W~j(M),\displaystyle\widetilde{W}_{p,q,j}(M,M,M)=\widetilde{W}_{j}(M), (4.10)
W~p,q,j(M,M,Q)=W~q,j(M,Q),\displaystyle\widetilde{W}_{p,q,j}(M,M,Q)=\widetilde{W}_{q,j}(M,Q), (4.11)
W~p,q,j(M,N,M)=Wp,j(M,N),\displaystyle\widetilde{W}_{p,q,j}(M,N,M)=W_{p,j}(M,N), (4.12)
W~0,q,j(M,N,Q)=W~q,j(M,Q),\displaystyle\widetilde{W}_{0,q,j}(M,N,Q)=\widetilde{W}_{q,j}(M,Q), (4.13)
W~p,n,j(M,N,Q)=Wp,j(M,N),\displaystyle\widetilde{W}_{p,n,j}(M,N,Q)=W_{p,j}(M,N), (4.14)
W~p,q,0(M,N,Q)=V~p,q(M,N,Q).\displaystyle\widetilde{W}_{p,q,0}(M,N,Q)=\widetilde{V}_{p,q}(M,N,Q). (4.15)

Proof.  From (4.9) and the polar coordinate formula for volume, the (4.10) is obtained. By (4.9) and the definition of dual mixed quermassintegrals (1.1), it yields (4.11). Together with (4.9) and the definition of mixed quermassintegrals (4.4), identit (4.12) is obtained. Identity (4.13) follow from (4.9) and the definition of dual mixed quermassintegrals (1.1). Note that (4.9) and the definition of mixed quermassintegrals (4.4) it easily conclude that (4.14) is ture. Finally, when j=0j=0 in (4.9), then (p,q)(p,q)-mixed volume is obtained. {\square}

Next, we give the property of general linear transformation under GL(n)GL(n), the group of general linear transformation.

Proposition 4.2  Support p,qp,q\in\mathbb{R}, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

W~p,q,j(ϕM,ϕN,ϕQ)=|detϕ|W~p,q,j(M,N,Q),\displaystyle\widetilde{W}_{p,q,j}(\phi M,\phi N,\phi Q)=|det\phi|\widetilde{W}_{p,q,j}(M,N,Q), (4.16)

for each ϕGL(n)\phi\in GL(n).

Proof.  For ϕGL(n)\phi\in GL(n). From the definition (4.8) and (2.3), combined with the fact that W~q,j(ϕM,ϕQ)=|detϕ|W~q,j(M,Q)\widetilde{W}_{q,j}(\phi M,\phi Q)=|det\phi|\widetilde{W}_{q,j}(M,Q), we get

qpW~p,q,j(ϕM,ϕN,ϕQ)\displaystyle\frac{q}{p}\widetilde{W}_{p,q,j}(\phi M,\phi N,\phi Q)
=limt0W~q,j(ϕM+pt(ϕN),ϕQ)W~q,j(ϕM,ϕQ)t\displaystyle=\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(\phi M+_{p}t\cdot(\phi N),\phi Q)-\widetilde{W}_{q,j}(\phi M,\phi Q)}{t}
=limt0W~q,j(ϕ(M+ptN),ϕQ)W~q,j(ϕM,ϕQ)t\displaystyle=\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(\phi(M+_{p}t\cdot N),\phi Q)-\widetilde{W}_{q,j}(\phi M,\phi Q)}{t}
=|detϕ|limt0W~q,j(M+ptN,Q)W~q,j(M,Q)t\displaystyle=|det\phi|\lim_{t\rightarrow 0}\frac{\widetilde{W}_{q,j}(M+_{p}t\cdot N,Q)-\widetilde{W}_{q,j}(M,Q)}{t}
=qp|detϕ|W~p,q,j(ϕM,ϕN,ϕQ),\displaystyle=\frac{q}{p}|det\phi|\widetilde{W}_{p,q,j}(\phi M,\phi N,\phi Q),

i.e.

W~p,q,j(ϕM,ϕN,ϕQ)=|detϕ|W~p,q,j(M,N,Q).\widetilde{W}_{p,q,j}(\phi M,\phi N,\phi Q)=|det\phi|\widetilde{W}_{p,q,j}(M,N,Q).

This give the (4.16). {\square}

Corollary 4.2  If each ϕSL(n)\phi\in SL(n) in (4.16), then

W~p,q,j(ϕM,ϕN,ϕQ)=W~p,q,j(M,N,Q).\widetilde{W}_{p,q,j}(\phi M,\phi N,\phi Q)=\widetilde{W}_{p,q,j}(M,N,Q).

Proposition 4.3  The (p,q)(p,q)-mixed quermassintegrals W~p,q,j(M,N,Q)\widetilde{W}_{p,q,j}(M,N,Q) is a valuation respect to N𝒦onN\in\mathcal{K}_{o}^{n}, and is a valuation with respect to Q𝒮onQ\in\mathcal{S}_{o}^{n}.

Proof.  From Definition 4.1

W~p,q,j(M,N,Q)=1nSn1hNp(αM(u))hMp(αM(u))ρMq(u)ρQnqj(u)𝑑u.\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)=\frac{1}{n}\int_{S^{n-1}}h_{N}^{p}(\alpha_{M}(u))h_{M}^{-p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du. (4.17)

The (p,q)(p,q)-mixed quermassintegrals is a valuation on 𝒮on\mathcal{S}_{o}^{n} with respect to the QQ can be seen easily by writing as and observing that for Q1,Q2𝒮onQ_{1},Q_{2}\in\mathcal{S}_{o}^{n}, we get

ρQ1Q2nqj+ρQ1Q2nqj=ρQ1nqj+ρQ2nqj.\rho_{Q_{1}\cup Q_{2}}^{n-q-j}+\rho_{Q_{1}\cap Q_{2}}^{n-q-j}=\rho_{Q_{1}}^{n-q-j}+\rho_{Q_{2}}^{n-q-j}.

That the (p,q)(p,q)-mixed quermassintegrals is a valuation on 𝒦on\mathcal{K}_{o}^{n} with respect to the NN can be see easily by looking at (4.17) and using the fact that if N1,N2𝒦onN_{1},N_{2}\in\mathcal{K}_{o}^{n}, are such that N1N2𝒦onN_{1}\cup N_{2}\in\mathcal{K}_{o}^{n}, we get

hN1N2p+hN1N2p=hN1p+hN2p.h_{N_{1}\cup N_{2}}^{p}+h_{N_{1}\cap N_{2}}^{p}=h_{N_{1}}^{p}+h_{N_{2}}^{p}.

{\square}

5 Geometric inequalities

In this section, we obtain some important geometric inequalities of (p,q)(p,q)-mixed quermassintegrals. Firstly, we give the LpL_{p} Minkowski type inequality for (p,q)(p,q)-mixed quermassintegrals.

Theorem 5.1  Suppose p,qp,q\in\mathbb{R} are such that 1qnjp1\leq\frac{q}{n-j}\leq p, jnj\neq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n} and Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

W~p,q,j(M,N,Q)Wj(M)qpnjWj(N)pnjW~j(Q)nqjnj,\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)\geq W_{j}(M)^{\frac{q-p}{n-j}}W_{j}(N)^{\frac{p}{n-j}}\widetilde{W}_{j}(Q)^{\frac{n-q-j}{n-j}}, (5.1)

with equality if and only if M,N,QM,N,Q are dilates when 1<qnj<p1<\frac{q}{n-j}<p, while only MM and NN are dilates when q=nq=n and p>1p>1, and MM and NN are homotheic when q=nq=n and p=1p=1.

Proof of Theorem 5.1.  From (4.9), (1.2) and Definition 4.1, if 1qnjp1\leq\frac{q}{n-j}\leq p, by the Hölder inequality, we have

W~p,q,j(M,N,Q)=1nSn1(hNhM)p(αM(u))ρMq(u)ρQnqj(u)𝑑u\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)=\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p}(\alpha_{M}(u))\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du
=1nSn1[(hNhM)(nj)pq(αM(u))ρMnj(u)]qnj[ρQnj(u)]nqjnj𝑑u\displaystyle=\frac{1}{n}\int_{S^{n-1}}\bigg{[}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{\frac{(n-j)p}{q}}(\alpha_{M}(u))\rho_{M}^{n-j}(u)\bigg{]}^{\frac{q}{n-j}}\bigg{[}\rho_{Q}^{n-j}(u)\bigg{]}^{\frac{n-q-j}{n-j}}du
[1nSn1(hNhM)(nj)pq(αM(u))ρMnj(u)𝑑u]qnj[1nSn1ρQnj(u)𝑑u]nqjnj\displaystyle\geq\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{\frac{(n-j)p}{q}}(\alpha_{M}(u))\rho_{M}^{n-j}(u)du\bigg{]}^{\frac{q}{n-j}}\bigg{[}\frac{1}{n}\int_{S^{n-1}}\rho_{Q}^{n-j}(u)du\bigg{]}^{\frac{n-q-j}{n-j}}
=W(nj)pq,j(M,N)qnjW~j(Q)nqjnj\displaystyle=W_{\frac{(n-j)p}{q},j}(M,N)^{\frac{q}{n-j}}\widetilde{W}_{j}(Q)^{\frac{n-q-j}{n-j}}
Wj(M)qpnjWj(N)pnjW~j(Q)nqjnj.\displaystyle\geq W_{j}(M)^{\frac{q-p}{n-j}}W_{j}(N)^{\frac{p}{n-j}}\widetilde{W}_{j}(Q)^{\frac{n-q-j}{n-j}}.

The equality condition of (5.1) follow from the equality conditions of Hölder inequality and (2.10). {\square}

Corollary 5.1  Let j=0j=0 in Theorem 5.1, we can get the Minkowski inequality of (p,q)(p,q)-mixed volumes (see e.g., [24]).

Then, we show the monotonic inequality of (p,q)(p,q)-mixed quermassintegrals.

Theorem 5.2  Suppose p,qp,q\in\mathbb{R} are such that 0<p<q0<p<q or p<0<qp<0<q. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and jnj\neq n, then

(W~p,q,j(M,N,Q)W~q,j(M,Q))1p(W~pq,q,j(M,N,Q)W~q,j(M,Q))1pq,\displaystyle\bigg{(}\frac{\widetilde{W}_{p,q,j}(M,N,Q)}{\widetilde{W}_{q,j}(M,Q)}\bigg{)}^{\frac{1}{p}}\geq\bigg{(}\frac{\widetilde{W}_{p-q,q,j}(M,N,Q)}{\widetilde{W}_{q,j}(M,Q)}\bigg{)}^{\frac{1}{p-q}}, (5.2)

with equality if and only if M,N,QM,N,Q are dilates.

Proof of Theorem 5.2.  From (4.9), Hölder inequality, we obtain that for ppq>1\frac{p}{p-q}>1,

W~p,q,j(M,N,Q)=1nSn1(hNhM)p(αM(u))(ρMρQ)q(u)ρQnj(u)𝑑u\displaystyle\widetilde{W}_{p,q,j}(M,N,Q)=\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p}(\alpha_{M}(u))\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)du
=1nSn1[(hNhM)pq(αM(u))(ρMρQ)q(u)ρQnj(u)]ppq[(ρMρQ)q(u)ρQnj(u)]qpq𝑑u\displaystyle=\frac{1}{n}\int_{S^{n-1}}\bigg{[}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p-q}(\alpha_{M}(u))\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)\bigg{]}^{\frac{p}{p-q}}\bigg{[}\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)\bigg{]}^{\frac{-q}{p-q}}du
[1nSn1(hNhM)pq(αM(u))(ρMρQ)q(u)ρQnj(u)𝑑u]ppq\displaystyle\geq\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p-q}(\alpha_{M}(u))\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)du\bigg{]}^{\frac{p}{p-q}}
[1nSn1(ρMρQ)q(u)ρQnj(u)𝑑u]qpq\displaystyle\ \ \ \ \cdot\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{\rho_{M}}{\rho_{Q}}\bigg{)}^{q}(u)\rho_{Q}^{n-j}(u)du\bigg{]}^{\frac{-q}{p-q}}
=W~pq,q,j(M,N,Q)ppqW~q,j(M,Q)qpq.\displaystyle=\widetilde{W}_{p-q,q,j}(M,N,Q)^{\frac{p}{p-q}}\widetilde{W}_{q,j}(M,Q)^{-\frac{q}{p-q}}.

This implies that for p>0p>0

(W~p,q,j(M,N,Q)W~q,j(M,Q))1p(W~pq,q,j(M,N,Q)W~q,j(M,Q))1pq.\bigg{(}\frac{\widetilde{W}_{p,q,j}(M,N,Q)}{\widetilde{W}_{q,j}(M,Q)}\bigg{)}^{\frac{1}{p}}\geq\bigg{(}\frac{\widetilde{W}_{p-q,q,j}(M,N,Q)}{\widetilde{W}_{q,j}(M,Q)}\bigg{)}^{\frac{1}{p-q}}.

According to equality condition of Hölder inequality, we see that equality holds in (5.2) if and only if M,N,QM,N,Q are dilates. {\square}

Corollary 5.2  Let W~j(Q)\widetilde{W}_{j}(Q) replace W~q,j(M,Q)\widetilde{W}_{q,j}(M,Q) in Theorem 1.3, we can get

(W~np,q,j(M,N,Q)W~j(M))1np(W~nq,q,j(M,N,Q)W~j(M))1nq,\bigg{(}\frac{\widetilde{W}_{n-p,q,j}(M,N,Q)}{\widetilde{W}_{j}(M)}\bigg{)}^{\frac{1}{n-p}}\geq\bigg{(}\frac{\widetilde{W}_{n-q,q,j}(M,N,Q)}{\widetilde{W}_{j}(M)}\bigg{)}^{\frac{1}{n-q}},

with equality if and only if M,QM,Q are dilates.

Corollary 5.3  Let j=0j=0 in Corollary 5.2, we can get the monotonic inequality of (p,q)(p,q)-mixed volumes (see e.g., [10]).

Finally, we obtain a type of cyclic inequalities of (p,q)(p,q)-mixed quermassintegrals as follows.

Theorem 5.3  Suppose p,q,r,sp,q,r,s\in\mathbb{R} satisfy p<q<rnp<q<r\leq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and jnj\neq n, then

W~q,s,j(M,N,Q)rpW~p,s,j(M,N,Q)rqW~r,s,j(M,N,Q)qp,\displaystyle\widetilde{W}_{q,s,j}(M,N,Q)^{r-p}\leq\widetilde{W}_{p,s,j}(M,N,Q)^{r-q}\widetilde{W}_{r,s,j}(M,N,Q)^{q-p}, (5.3)

with equality if and only if M,NM,N and QQ are dilates.

Theorem 5.4  Suppose p,q,r,sp,q,r,s\in\mathbb{R} satisfy p<q<rnp<q<r\leq n. If M,N𝒦onM,N\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}_{o}^{n} and jnj\neq n, then

W~s,q,j(M,N,Q)rpW~s,p,j(M,N,Q)rqW~s.r,j(M,N,Q)qp,\displaystyle\widetilde{W}_{s,q,j}(M,N,Q)^{r-p}\leq\widetilde{W}_{s,p,j}(M,N,Q)^{r-q}\widetilde{W}_{s.r,j}(M,N,Q)^{q-p}, (5.4)

with equality if and only if M,NM,N and QQ are dilates.

Proof of Theorem 5.3.  Suppose p,q,r,sp,q,r,s\in\mathbb{R} satisfy p<q<rnp<q<r\leq n. From (4.9) and Hölder inequality, we get that for uSn1u\in S^{n-1}

W~p,s,j(M,N,Q)rqrpW~r,s,j(M,N,Q)qprp\displaystyle\widetilde{W}_{p,s,j}(M,N,Q)^{\frac{r-q}{r-p}}\widetilde{W}_{r,s,j}(M,N,Q)^{\frac{q-p}{r-p}}
=[1nSn1(hNhM)p(αM(u))ρMs(u)ρQnsj(u)𝑑u]rqrp\displaystyle=\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{p}(\alpha_{M}(u))\rho_{M}^{s}(u)\rho_{Q}^{n-s-j}(u)du\bigg{]}^{\frac{r-q}{r-p}}
[1nSn1(hNhM)r(αM(u))ρMs(u)ρQnsj(u)𝑑u]qprp\displaystyle\ \ \ \ \cdot\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{r}(\alpha_{M}(u))\rho_{M}^{s}(u)\rho_{Q}^{n-s-j}(u)du\bigg{]}^{\frac{q-p}{r-p}}
=[1nSn1((hNhM)p(rq)rp(αM(u))ρMs(rq)rp(u)ρQ(nsj)(rq)rp(u))rprq𝑑u]rqrp\displaystyle=\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{\frac{p(r-q)}{r-p}}(\alpha_{M}(u))\rho_{M}^{\frac{s(r-q)}{r-p}}(u)\rho_{Q}^{\frac{(n-s-j)(r-q)}{r-p}}(u)\bigg{)}^{\frac{r-p}{r-q}}du\bigg{]}^{\frac{r-q}{r-p}}
[1nSn1((hNhM)r(qp)rp(αM(u))ρMs(qp)rp(u)ρQ(nsj)(qp)rp(u))rpqp𝑑u]qprp\displaystyle\ \ \ \ \cdot\bigg{[}\frac{1}{n}\int_{S^{n-1}}\bigg{(}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{\frac{r(q-p)}{r-p}}(\alpha_{M}(u))\rho_{M}^{\frac{s(q-p)}{r-p}}(u)\rho_{Q}^{\frac{(n-s-j)(q-p)}{r-p}}(u)\bigg{)}^{\frac{r-p}{q-p}}du\bigg{]}^{\frac{q-p}{r-p}}
1nSn1(hNhM)q(αM(u))ρMs(u)ρQnsj(u)𝑑u\displaystyle\geq\frac{1}{n}\int_{S^{n-1}}\bigg{(}\frac{h_{N}}{h_{M}}\bigg{)}^{q}(\alpha_{M}(u))\rho_{M}^{s}(u)\rho_{Q}^{n-s-j}(u)du
=W~q,s,j(M,N,Q).\displaystyle=\widetilde{W}_{q,s,j}(M,N,Q).

i.e.

W~q,s,j(M,N,Q)rpW~p,s,j(M,N,Q)rqW~r,s,j(M,N,Q)qp.\widetilde{W}_{q,s,j}(M,N,Q)^{r-p}\leq\widetilde{W}_{p,s,j}(M,N,Q)^{r-q}\widetilde{W}_{r,s,j}(M,N,Q)^{q-p}.

This yields (5.3). According to the equality condition of Hölder’s integral inequality, we see that equality holds in (5.3) if and only if M,NM,N, and QQ are dilates. {\square}

Proof of Theorem 5.4.  Similar to the proof of Theorem 5.3, we can easily get Theorem 5.4. {\square}

Corollary 5.4  Let j=0j=0 in Theorem 5.3 and 5.4, we can get the cyclic inequalities of (p,q)(p,q)-mixed volumes (see e.g., [5]).

Corollary 5.5[20]  Let Q=MQ=M in Theorem 5.3, and together with (4.10), we can get the monotonic inequality of LpL_{p}-mixed quermassintegrals

Wq,j(M,N)rpWp,j(M,N)rqWr,j(M,N)qp,W_{q,j}(M,N)^{r-p}\geq W_{p,j}(M,N)^{r-q}W_{r,j}(M,N)^{q-p},

with equality if and only if MM and NN are dilates.

If N=MN=M in Theorem 5.4, by (4.11), we can get another monotonic inequality of dual mixed quermassintegrals

W~q,j(M,N)rpW~p,j(M,N)rqW~r,j(M,N)qp,\widetilde{W}_{q,j}(M,N)^{r-p}\geq\widetilde{W}_{p,j}(M,N)^{r-q}\widetilde{W}_{r,j}(M,N)^{q-p},

with equality if and only if MM and NN are dilates.

6 The (p,q)(p,q)-dual mixed Minkowski problem

The Minkowski problem and dual Minkowski problem are the hot topic of research in Brunn-Minkowski theory and dual Brunn-Minkowski theory. In this section, we further study the Minkowski problem for the (p,q)(p,q)-dual mixed curvature measures.

Here, in order to prove the existence of Minkowski problem for (p,q)(p,q)-dual mixed curvature measures, we can transform the existence problem into a maximization problem. Therefore, we need to define an important function below, which is the key to contact Minkowski problem and maximization problem.

Suppose μ\mu is a non-zero finite Borel measure on Sn1S^{n-1}, p,q0p,q\neq 0 and jnj\neq n, we define Φp,q,j:𝒦on\Phi_{p,q,j}:\mathcal{K}_{o}^{n}\rightarrow\mathbb{R} by

Φp,q,j(M,Q)=1plogSn1hMp(v)𝑑μ(v)+1qlogSn1hMq(u)ρQnqj(u)𝑑u,\displaystyle\Phi_{p,q,j}(M,Q)=-\frac{1}{p}\log\int_{S^{n-1}}h_{M}^{p}(v)d\mu(v)+\frac{1}{q}\log\int_{S^{n-1}}h_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du, (6.1)

for any M𝒦onM\in\mathcal{K}_{o}^{n}, and Q𝒮onQ\in\mathcal{S}_{o}^{n}.

Theorem 6.1  (Existence) For p,qp,q\in\mathbb{R}, jnj\neq n and Q𝒮onQ\in\mathcal{S}_{o}^{n}. If μ\mu is a Borel measure on Sn1S^{n-1}, then there exists a convex body M𝒦onM\in\mathcal{K}_{o}^{n} such that 𝒞~p,q,j(M,Q,)=μ\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot)=\mu.

Next, we consider the maximization problem.

sup{Φp,q,j(M,Q):M𝒦on}.\sup\{\Phi_{p,q,j}(M,Q):M\in\mathcal{K}_{o}^{n}\}.

In the following lemma, we can prove that a solution to the Minkowski problem for measure μ\mu is also a solution to a maximization problem for the function Φp,q,j\Phi_{p,q,j}.

Lemma 6.1  Suppose p,q0p,q\neq 0, jnj\neq n and μ\mu is a non-zero finite Borel measure on Sn1S^{n-1}. For fixed Q𝒮onQ\in\mathcal{S}^{n}_{o}, if M𝒦onM\in\mathcal{K}_{o}^{n} and satisfies the following conditions

Sn1hMp(v)𝑑μ(v)=W~q,j(M,Q),\displaystyle\int_{S^{n-1}}h_{M}^{p}(v)d\mu(v)=\widetilde{W}_{q,j}(M,Q), (6.2)

and

Φp,q,j(M,Q)=sup{Φp,q,j(N,Q):N𝒦on},\displaystyle\Phi_{p,q,j}(M,Q)=\sup\{\Phi_{p,q,j}(N,Q):N\in\mathcal{K}_{o}^{n}\}, (6.3)

then

μ=𝒞~p,q,j(M,Q,),\mu=\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot),

Proof.  For any f,gC+(Sn1)f,g\in C^{+}(S^{n-1}), corresponding to (6.1), we first define the functional Ψp,q,j:C+(Sn1)\Psi_{p,q,j}:C^{+}(S^{n-1})\rightarrow\mathbb{R} by

Ψp,q,j(f,g)=1plogSn1fp(v)𝑑μ(v)+1qlogSn1ρ[f]q(u)ρgnqj(u)𝑑u,\Psi_{p,q,j}(f,g)=-\frac{1}{p}\log\int_{S^{n-1}}f^{p}(v)d\mu(v)+\frac{1}{q}\log\int_{S^{n-1}}\rho_{[f]}^{q}(u)\rho_{\langle g\rangle}^{n-q-j}(u)du,

where [f][f] denotes the Wulff shape generated by ff and g\langle g\rangle denotes the convex hull generated by gg.

To prove the final result, we claim that

Ψp,q,j(f,g)Ψp,q,j(hM,ρQ),\displaystyle\Psi_{p,q,j}(f,g)\leq\Psi_{p,q,j}(h_{M},\rho_{Q}), (6.4)

for each f,gC+(Sn1)f,g\in C^{+}(S^{n-1}) and M𝒦onM\in\mathcal{K}_{o}^{n}, Q𝒮onQ\in\mathcal{S}^{n}_{o}.

We give the following facts to explain our claim. From the notions of Wullf shape and convex hull, we have h[f]fh_{[f]}\leq f, ρgg\rho_{\langle g\rangle}\geq g, [hM]=M[h_{M}]=M and ρQ=Q\langle\rho_{Q}\rangle=Q. Thus

Ψp,q,j(f,g)Ψp,q,j(h[f],ρg)=Φp,q,j([f],g)Φp,q,j(N,Q)=Ψp,q,j(hM,ρQ),\Psi_{p,q,j}(f,g)\leq\Psi_{p,q,j}(h_{[f]},\rho_{\langle g\rangle})=\Phi_{p,q,j}([f],\langle g\rangle)\leq\Phi_{p,q,j}(N,Q)=\Psi_{p,q,j}(h_{M},\rho_{Q}),

where the second inequality sign follows from (6.3).

For any zC(Sn1)z\in C(S^{n-1}) and t(δ,δ)t\in(-\delta,\delta) where δ>0\delta>0 is sufficiently small, let

ht(v)=hM(v)etz(v).\displaystyle h_{t}(v)=h_{M}(v)e^{tz(v)}. (6.5)

From Theorem 4.2, we have

ddtW~q,j([ht],Q)|t=0=qSn1z(v)𝑑𝒞~q,j(N,Q).\displaystyle\frac{d}{dt}\widetilde{W}_{q,j}([h_{t}],Q)\bigg{|}_{t=0}=q\int_{S^{n-1}}z(v)d\widetilde{\mathcal{C}}_{q,j}(N,Q). (6.6)

According to the (6.4), the definition of Ψp,q,j\Psi_{p,q,j} and (6.6), we have

0\displaystyle 0 =ddtΨp,q,j(ht,g)\displaystyle=\frac{d}{dt}\Psi_{p,q,j}(h_{t},g)
=ddt(1plogSn1htp(v)𝑑μ(v)+1qlogW~q,j([ht],ρQ))|t=0\displaystyle=\frac{d}{dt}\bigg{(}-\frac{1}{p}\log\int_{S^{n-1}}h_{t}^{p}(v)d\mu(v)+\frac{1}{q}\log\widetilde{W}_{q,j}([h_{t}],\langle\rho_{Q}\rangle)\bigg{)}\bigg{|}_{t=0}
=(Sn1hMp(v)𝑑μ(v))1Sn1hMp(v)z(v)𝑑μ(v)\displaystyle=-\bigg{(}\int_{S^{n-1}}h^{p}_{M}(v)d\mu(v)\bigg{)}^{-1}\int_{S^{n-1}}h_{M}^{p}(v)z(v)d\mu(v)
+1W~q,j(M,Q)Sn1z(v)𝑑𝒞~q,j(M,Q,v).\displaystyle\ \ \ \ +\frac{1}{\widetilde{W}_{q,j}(M,Q)}\int_{S^{n-1}}z(v)d\widetilde{\mathcal{C}}_{q,j}(M,Q,v).

Using (6.2), then

hNp(v)dμ(v)=d𝒞~q,j(M,Q,v).h_{N}^{p}(v)d\mu(v)=d\widetilde{\mathcal{C}}_{q,j}(M,Q,v).

This together with (3.3), we get μ=𝒞~p,q,j(M,Q,)\mu=\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot). {\square}

Therefore, we have shown that the Minkowski problem can be transformed into a maximization problem via Lemma 6.1. The next key task is to prove the existence of solutions to the maximum problem. Before we do that, let us give the following lemmas. The first lemma was established in [17].

Lemma 6.2  For p,ε0>0p,\varepsilon_{0}>0 and μ\mu is a non-zero even finite Borel measure on Sn1S^{n-1}. Suppose e1k,,enke_{1k},...,e_{nk} is a sequence of orthonormal basis in n\mathbb{R}^{n} and {ak}\{a_{k}\} is a sequence of positive real numbers. Assume e1k,,enke_{1k},...,e_{nk} converges to an orthonormal basis e1,,ene_{1},...,e_{n} in n\mathbb{R}^{n}. Define

Gk={xn:|xe1k|2++xen1,k|2ak2andxenk|2ε0}.G_{k}=\{x\in\mathbb{R}^{n}:|x\cdot e_{1k}|^{2}+\cdot\cdot\cdot+x\cdot e_{n-1,k}|^{2}\leq a_{k}^{2}\ \ and\ \ x\cdot e_{nk}|^{2}\leq\varepsilon_{0}\}.

If μ\mu is not concentrated in any great subsphere, then there exists c,L>0c,L>0 (independent of kk) such that

Sn1hGkp(v)𝑑μ(v)c,\int_{S^{n-1}}h_{G_{k}}^{p}(v)d\mu(v)\geq c,

for any k>Lk>L.

The following lemma estimates the qq-th dual mixed quermassintegrals of the generalized ellipsoid TαT_{\alpha}.

Lemma 6.3  Suppose 0<α<10<\alpha<1 and e1,,ene_{1},...,e_{n} be an orthonormal basis in n\mathbb{R}^{n}. If 0<q<nj0<q<n-j, jnj\neq n and fixed Q𝒮onQ\in\mathcal{S}_{o}^{n}, then

limα0+Sn1ρTαq(u)ρQnqj(u)𝑑u=0,\lim_{\alpha\rightarrow 0^{+}}\int_{S^{n-1}}\rho_{T_{\alpha}}^{q}(u)\rho_{Q}^{n-q-j}(u)du=0,

where TαT_{\alpha} is defined by

Tα={xn:|xe1|αand|xe2|2+|xen|21},T_{\alpha}=\{x\in\mathbb{R}^{n}:|x\cdot e_{1}|\leq\alpha\ \ and\ \ |x\cdot e_{2}|^{2}+\cdot\cdot\cdot|x\cdot e_{n}|^{2}\leq 1\},

for 0<α<10<\alpha<1 and e1,,ene_{1},...,e_{n} be the orthonormal basis in n\mathbb{R}^{n}.

Proof.  For 0<α<10<\alpha<1 and fixed Q𝒮onQ\in\mathcal{S}_{o}^{n}, then ρTα\rho_{T_{\alpha}} and ρQ\rho_{Q} are bounded. Therefore, using the dominated convergence theorem, we get

limα0+Sn1ρTαq(u)ρQnqj(u)𝑑u=Sn1limα0+ρQnqj(u)ρTαq(u)du.\lim_{\alpha\rightarrow 0^{+}}\int_{S^{n-1}}\rho_{T_{\alpha}}^{q}(u)\rho_{Q}^{n-q-j}(u)du=\int_{S^{n-1}}\lim_{\alpha\rightarrow 0^{+}}\rho_{Q}^{n-q-j}(u)\rho_{T_{\alpha}}^{q}(u)du.

It is easy to see that

limα0+ρQnqj(u)ρTαq(u)={0,otherwise.ρQnqj(u),uspan{e1,,en}\lim_{\alpha\rightarrow 0^{+}}\rho_{Q}^{n-q-j}(u)\rho_{T_{\alpha}}^{q}(u)=\bigg{\{}_{0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise.}^{\rho_{Q}^{n-q-j}(u),\ \ \ \ u\in span\{e_{1},...,e_{n}\}}

Therefore,

limα0+Sn1ρTαq(u)ρQnqj(u)𝑑u=0.\lim_{\alpha\rightarrow 0^{+}}\int_{S^{n-1}}\rho_{T_{\alpha}}^{q}(u)\rho_{Q}^{n-q-j}(u)du=0.

{\square}

Now, we establish the existence of maximization problem.

Lemma 6.4  Suppose p,q>0,pq,jnp,q>0,p\neq q,j\neq n and μ\mu is a non-zero even finite Borel measure on Sn1S^{n-1}. If μ\mu is not concentrated in any great subsphere, then there exists M𝒦enM\in\mathcal{K}_{e}^{n} such that

Φp,q,j(M,Q)=sup{Φp,q,j(N,Q):N𝒦en},\displaystyle\Phi_{p,q,j}(M,Q)=\sup\{\Phi_{p,q,j}(N,Q):N\in\mathcal{K}_{e}^{n}\}, (6.7)

for fixed Q𝒮onQ\in\mathcal{S}_{o}^{n}.

Let {Nk}𝒦en\{N_{k}\}\subset\mathcal{K}_{e}^{n} be a maximizing sequence; i.e.,

limkΦp,q,j(Nk,Q)=sup{Φp,q,j(N,Q):N𝒦en},\lim_{k\rightarrow\infty}\Phi_{p,q,j}(N_{k},Q)=\sup\{\Phi_{p,q,j}(N,Q):N\in\mathcal{K}_{e}^{n}\},

for fixed Q𝒮onQ\in\mathcal{S}_{o}^{n}.

Combining with Lemma 6.2 and Lemma 6.3, for Q=BQ=B, Lemma 6.4 was proved in [17]. When QQ is a star body in 𝒮on\mathcal{S}_{o}^{n}, the proof method of Lemma 6.4 is similar, and thus will be omitted.

Proof of Theorem 6.1.  The proof follows directly from the Lemma 6.1 and Lemma 6.4. {\square}

In order to prove the uniqueness for the (p,q)(p,q)-dual mixed Minkowski problem, we need the following facts.

(p,q)(p,q)-dual mixed curvature measures of polytopes. For jnj\neq n and M𝒦onM\in\mathcal{K}_{o}^{n} be a polytope with outer unit normals v1,,vmv_{1},...,v_{m}. Let j\triangle_{j} be the cone that consists of the set of all rays emanating from the origin and passing through the facet of MM whose outer normal is vjv_{j}. Recalling that we abbreviate M({vj})\Re_{M}^{\ast}(\{v_{j}\}) by M(vj)\Re_{M}^{\ast}(v_{j}), from the definition of reverse radial Gauss image, we get

M(vj)=Sn1j,andαM(u)=vj,foralmostalluSn1j.\displaystyle\Re_{M}^{\ast}(v_{j})=S^{n-1}\cap\triangle_{j},\ \ and\ \alpha_{M}(u)=v_{j},\ for\ almost\ all\ u\in S^{n-1}\cap\triangle_{j}. (6.8)

If ηSn1\eta\subset S^{n-1} is a Borel set such that {v1,,vm}η=\{v_{1},...,v_{m}\}\cap\eta=\varnothing, then M(η)\Re_{M}^{\ast}(\eta) has spherical Lebesgue measure zero. Thus, the (p,q)(p,q)-dual mixed curvature measure 𝒞~p,q,j(M,Q,)\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot) is discrete and is concentrated on {v1,,vm}\{v_{1},...,v_{m}\}. From the (3.6), and (6.8), we get

𝒞~p,q,j(M,Q,)=1nj=1mδvjhMp(vj)Sn1jρMq(u)ρQnqj(u)𝑑u,\displaystyle\widetilde{\mathcal{C}}_{p,q,j}(M,Q,\cdot)=\frac{1}{n}\sum_{j=1}^{m}\delta_{v_{j}}h_{M}^{-p}(v_{j})\int_{S^{n-1}\cap\triangle_{j}}\rho_{M}^{q}(u)\rho_{Q}^{n-q-j}(u)du, (6.9)

where δvj\delta_{v_{j}} denotes the delta measure concentrated at vjv_{j}.

Theorem 6.2  (Uniqueness) For p,qp,q\in\mathbb{R}, jnj\neq n, Q𝒮onQ\in\mathcal{S}_{o}^{n} and M1,M2𝒦onM_{1},M_{2}\in\mathcal{K}_{o}^{n} be polytopes. If

𝒞~p,q,j(M1,Q,)=𝒞~p,q,j(M2,Q,),\widetilde{\mathcal{C}}_{p,q,j}(M_{1},Q,\cdot)=\widetilde{\mathcal{C}}_{p,q,j}(M_{2},Q,\cdot),

then M1=M2M_{1}=M_{2} when p<qp<q, and M1M_{1} is a dilate of M2M_{2} when q=pq=p.

Proof of Theorem 6.2.  From the first fact, we see that the (p,q)(p,q)-dual mixed curvature measures of polytopes are discrete. If 𝒞~p,q,j(M1,Q,)=𝒞~p,q,j(M2,Q,)\widetilde{\mathcal{C}}_{p,q,j}(M_{1},Q,\cdot)=\widetilde{\mathcal{C}}_{p,q,j}(M_{2},Q,\cdot). By (6.9), then M1M_{1} and M2M_{2} have the same outer unit normals, we have

1nhM1p(vj)Sn1jρM1q(u)ρQnqj(u)𝑑u\displaystyle\frac{1}{n}h_{M_{1}}^{-p}(v_{j})\int_{S^{n-1}\cap\triangle_{j}}\rho_{M_{1}}^{q}(u)\rho_{Q}^{n-q-j}(u)du
=1nhM2p(vj)Sn1jρM2q(u)ρQnqj(u)𝑑u,\displaystyle=\frac{1}{n}h_{M_{2}}^{-p}(v_{j})\int_{S^{n-1}\cap\triangle_{j}^{\prime}}\rho_{M_{2}}^{q}(u)\rho_{Q}^{n-q-j}(u)du, (6.10)

where j\triangle_{j} and j\triangle_{j}^{\prime} are the cones formed by the origin and the facets of M1M_{1} and M2M_{2} with normal vjv_{j}, respectively.

If M1M2M_{1}\neq M_{2}, clearly M1M2M_{1}\subsetneq M_{2} is not possible. Let λ\lambda be the maximal number such that λM1M2\lambda M_{1}\subseteq M_{2}, then λ<1\lambda<1. Since λM1\lambda M_{1} and M2M_{2} have the same outer unit normals, there is a facet of λM1\lambda M_{1} that is contained in a facet of M2M_{2}.

Let j=0j=0 in (6), then the proof of uniqueness was obtain in [24]. If jnj\neq n, the proof of uniqueness for the (p,q)(p,q)-dual mixed Minkowski problem is very similar, therefore, we can get the result. {\square}

References

  • [1]
  • [2] K. J. Böröczky and F. Fodor, The LpL_{p} dual Minkowski problem for p>1p>1 and q>0q>0, arXiv: 4802.00933, (2018).
  • [3] K. Böröczky, E. Lutwak, D. Yang and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974-1997.
  • [4] K. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.
  • [5] Bin Chen and W. D. Wang, Some inequalities for (p,q)(p,q)-mixed volume, J. Inequal. Appl., 2018 (2018), 247, 1-9.
  • [6] K. S. Chen and X. J. Wang, The LpL_{p} Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.
  • [7] W. Chen, LpL_{p} Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77-89.
  • [8] A. Cianchi, E. Lutwak, D. Yang and G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 419-436.
  • [9] W. J. Firey, pp-means of convex bodies, Math. Scand, 10 (1962), 17-24.
  • [10] Y. B. Feng and B. W. He, The (p,q)(p,q)-mixed geominimal surface areas, Quaest. Math., 42 (2019), 1031-1043.
  • [11] Y. B. Feng and W. D. Wang, LpL_{p} dual mixed geominimal surface area, Glasgow. Math. J., 56 (2014), 224-239.
  • [12] R. J. Gardner, Geometric Tomography, Second ed., Gambridge Univ. Press, Cambridge, 2006.
  • [13] C. Haberl and F. E. Schuster. Grinberg and G. Zhang, Asymmetric affine Lp Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
  • [14] Y. Huang, J. Liu and L. Xu, On the uniqueness of Lp-Minkowski problems: the constant p-curvature case in 3\mathbb{R}^{3}, Adv. Math., 281 (2015), 906-927.
  • [15] Y. Huang, E. Lutwak, D. Yang and G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325-388.
  • [16] Y. Huang, E. Lutwak, D. Yang and G. Zhang, The LpL_{p} Alexandrov problem for the LpL_{p} integral curvature, J. Differential Geom., 110 (2018), 1-29.
  • [17] Y. Huang and Y. Zhao, On the LpL_{p} dual Minkowski problem, Adv. Math., 332 (2018), 57-84.
  • [18] E. Lutwak, Dual mixed volume, Pacific J. Math., 58 (1975), 531-538.
  • [19] E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
  • [20] E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
  • [21] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., 41 (1995), 227-246.
  • [22] E. Lutwak, D. Yang and G. Zhang, LpL_{p} affine isoperimetric inequalities, J. Differential Geom., 56 (2000), 1-13.
  • [23] E. Lutwak, D. Yang and G. Zhang, Sharp affine LpL_{p} Sobolev inequalities, J. Differential Geom., 62 (2002), 17-38.
  • [24] E. Lutwak, D. Yang and G. Zhang, LpL_{p} dual curvature measures, Adv. Math., 329 (2018), 85-132.
  • [25] X. Li, H. J. Wang and J. Z. Zhou, (p,q)(p,q)-Mined geominimal surface and (p,q)(p,q)-mixed affine surface area, J. Math. Anal. Appl., 475 (2019), 1472-1492.
  • [26] H. Jian, J. Lu and J. X. Wang, Nonuniqueness of solutions to the LpL_{p}-Minkowski problem, Adv. Math., 281 (2015), 845-856.
  • [27] H. Minkowski, Allegemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, 329 (1897), 198-219.
  • [28] H. Minkowski, Volumen and Oberfläche, Math. Ann., 57 (1903), 447-495.
  • [29] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, 2nd edn, Cambridge University Press, Cambridge, 2014.
  • [30] E. Werner, On LpL_{p}-affine surface area, Indeana Univ. Math. J., 56 (2007), 2305-2324.
  • [31] H. J. Wang, N. F. Fang and J. Z. Zhou, Continuity of the solution to the dual Minkowski problem for negative indicts, Proc. Amer. Math. Soc., 147 (2019), 1299-1312.
  • [32] W. D. Wang and G. S. Leng, LpL_{p}-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177-188.
  • [33] W. Wang and B. W. He, LpL_{p}-dual affine surface area, J. Math. Anal. Appl., 348 (2008), 746-751.
  • [34] W. D. Wang and G. S. Leng, LpL_{p}-Mixed affine surface area, J. Math. Anal. Appl., 335 (2007), 341-354.
  • [35] X. Y. Wan and W. D. Wang, LpL_{p}-dual mixed affine surface area, Ukra. Math. J., 68 (2016), 601-609.
  • [36] B. C. Zhu, J. Z. Zhou and W. X. Xu, LpL_{p} mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247-1263.
  • [37] G. Zhang, The affine Sobolev inequality, J. Differential Geom., 53 (1999), 183-202.
  • [38] G. Zhu, The LpL_{p} Minkowski problem for polytopes for 0<p<10<p<1, J. Funct. Anal., 269 (2015), 1070-1094.
  • [39] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math., 262 (2014), 909-931.
  • [40] Y. Zhao, The dual Minkowski problem for negative indices, Calc. Car. Partial Differential Equations., 56 (2017), 18.
  • [41] Y. Zhao, Existence of solutions to the even dual Minkowski problem, J. Differential Geom., 110 (2018), 543-572.
  • [42]