This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Monge-Ampère equation for (n1)(n-1)-quaternionic PSH functions on a hyperKähler manifold

Jixiang Fu and Xin Xu and Dekai Zhang Shanghai Center for Mathematical Sciences, Jiangwan Campus, Fudan University, Shanghai, 200438, China majxfu@fudan.edu.cn School of Mathematical Sciences, Fudan University, Shanghai 200433, China 20110180015@fudan.edu.cn Department of Mathematics, Shanghai University, Shanghai, 200444, China dkzhang@shu.edu.cn
Abstract.

We prove the existence of unique smooth solutions to the quaternionic Monge-Ampère equation for (n1)(n-1)-quaternionic plurisubharmonic functions on a hyperKähler manifold and thus obtain solutions for the quaternionic form type equation. We derive the C0C^{0} estimate by establishing a Cherrier-type inequality as in Tosatti and Weinkove [22]. By adopting the approach of Dinew and Sroka [9] to our context, we obtain C1C^{1} and C2C^{2} estimates without assuming the flatness of underlying hyperKähler metric comparing to previous results [14].

1. Introduction

A hypercomplex manifold is a smooth manifold MM together with a triple (I,J,K)(I,J,K) of complex structures satisfying the quaternoinic relation

IJ=JI=K.IJ=-JI=K.

Let (M,I,J,K)(M,I,J,K) be a hypercomplex manifold, and gg a Riemannian metric on MM. The metric gg is called hyperhermitian if gg is hermitian with respect to I,J,KI,J,K, i.e. for any vector fields XX and YY on MM,

g(X,Y)=g(XI,YI)=g(XJ,YJ)=g(XK,YK).g(X,Y)=g(XI,YI)=g(XJ,YJ)=g(XK,YK).

Denote by ωI,ωJ,ωK\omega_{I},\omega_{J},\omega_{K} the fundamental form corresponding to I,J,KI,J,K respectively and let Ω=ωJ+iωK\Omega=\omega_{J}+i\omega_{K}. On a hyperhermitian manifold (M,I,J,K,g)(M,I,J,K,g), the metric gg is called hyperKähler (HK) if dΩ=0d\Omega=0 or equivalently dωI=dωJ=dωK=0d\omega_{I}=d\omega_{J}=d\omega_{K}=0, and called hyperKähler with torsion (HKT) if Ω=0\partial\Omega=0.

In analogy with the classical Calabi-Yau theorem [27] on the complex Monge-Ampère equation on a Kähler manifold, Alesker and Verbitsky [4] conjectured the existsnce of solutions to the quaternoinic Monge-Ampère equation on a compact HKT manifold of quaternionic dimension nn. It takes the form

(1.1) (Ω+Ju)n=efΩn,Ω+Ju>0,\begin{split}(\Omega+\partial\partial_{J}u)^{n}&=e^{f}\Omega^{n},\\ \Omega+\partial\partial_{J}u&>0,\end{split}

where J=J1¯J\partial_{J}=J^{-1}\circ\overline{\partial}\circ J. While general solution to this equation remains open, partial results can be found in [1, 5, 13, 9, 4, 2, 3, 18]. Specifically, Alesker and Verbitsky [4] obtained C0C^{0} estimate when the canonical bundle is holomorphically trivial. Alesker [1] proved the conjecture on compact manifolds with a flat hyperKähler metric. In [2] Alesker and Shelukhin proved C0C^{0} estimate without any extra assumptions and the proof was later simplyfied by Sroka [18]. Dinew and Sroka [9] solved equation (1.1) on a hyperKähler manifold.

As in the complex setting, we consider the quaternoinic form-type equation, as the analogue of the form-type equation which was proposed and also solved on a Kähler manifold of nonnegative bisectional curvature by Fu-Wang-Wu [10, 11]. It was later shown by Tosatti and Weinkove [22] that the assumption on curvature can be removed.

In particular, one can define quaternionic balanced metrics on hypercomplex manifolds by Ωn1=0\partial\Omega^{n-1}=0 (see [15]). Let (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) be a hypercomplex manifold of quaternionic dimension nn, and g0g_{0} a quaternionic balanced metric on MM with induced (2,0)(2,0)-form Ω0\Omega_{0}. Let φ\varphi be a (2n4,0)(2n-4,0)-form such that Ω0n1+Jφ\Omega_{0}^{n-1}+\partial\partial_{J}\varphi is strictly positive. Then there exists a quaternionic balanced metric Ωφ\Omega_{\varphi} such that

(1.2) Ωφn1=Ω0n1+Jφ.\Omega_{\varphi}^{n-1}=\Omega_{0}^{n-1}+\partial\partial_{J}\varphi.

The quaternionic form-type Calabi-Yau equation is written as

(1.3) Ωφn=ef+bΩn\Omega_{\varphi}^{n}=e^{f^{\prime}+b^{\prime}}\Omega^{n}

where ff^{\prime} is a given smooth function on MM and bb^{\prime} is a uniquely determined constant. Solving equation (1.3) gives a quaternionic balanced metric Ωφ\Omega_{\varphi} with prescribed volume form up to scaling. One can reduce the form-type equation to function type by considering a function uC(M,)u\in C^{\infty}(M,\mathbb{R}) such that Ω0n1+J(uΩn2)\Omega_{0}^{n-1}+\partial\partial_{J}(u\Omega^{n-2}) is strictly positive, and denote by Ωu\Omega_{u} the unique strictly positive (2,0)(2,0)-form such that

(1.4) Ωun1=Ω0n1+J(uΩn2).\Omega_{u}^{n-1}=\Omega_{0}^{n-1}+\partial\partial_{J}(u\Omega^{n-2}).

Then equation (1.3) is reduced to

(1.5) Ωun=ef+bΩn.\Omega_{u}^{n}=e^{f^{\prime}+b^{\prime}}\Omega^{n}.

In particular when Ω\Omega is HKT, Ω=JΩ=0\partial\Omega=\partial_{J}\Omega=0. Then (1.4) becomes

(1.6) Ωun1=Ω0n1+JuΩn2.\Omega_{u}^{n-1}=\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}.

In this paper, we consider equation (1.5) under the assumption that Ω\Omega is hyperKähler. Parallel to the complex case in [22], equation (1.5) can be restated as equation (1.7) in terms of quaternoinic Monge-Ampère equation for (n1)(n-1)-quaternoinic plurisubharmonic functions. Our main result is as follows.

Theorem 1.1.

Let (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) be a compact hyperKähler manifold of quaternionic dimension nn, and Ωh\Omega_{h} a strictly positive (2,0)(2,0)-form with respect to II. Let ff be a smooth function on MM. Then there is a unique pair (u,b)C(M,)×(u,b)\in C^{\infty}(M,\mathbb{R})\times\mathbb{R}, solving

(1.7) (Ωh+1n1(S1(Ju)ΩJu))n=ef+bΩn\big{(}\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)\big{)}^{n}=e^{f+b}\Omega^{n}

with

(1.8) Ωh+1n1(S1(Ju)ΩJu)>0,supMu=0.\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)>0,\quad\sup_{M}u=0.

Here S1(Ju)S_{1}(\partial\partial_{J}u) is defined in Section 2 and related to the Chern Laplacian (see (2.4), (2.5)). Recently on a locally flat hyperhermitian manifold, Gentili and Zhang [14] studied a general class of fully non-linear equations including equation (1.7) and they solved the equation assuming the existence of a flat hyperKähler metric. Here we are able to remove the assumption on flatness. From Theorem 1.1 we obtain

Corollary 1.2.

Let (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) be a compact hyperKähler manifold of quaternionic dimension nn and g0g_{0} a quaternionic balanced (resp., Gauduchon; resp., strongly Gauduchon) metric on MM with induced (2,0)(2,0)-form Ω0\Omega_{0}. Then for a given smooth function ff^{\prime} on MM, there exists a unique constant bb^{\prime} and a unique quaternionic balanced (resp., Gauduchon; resp., strongly Gauduchon) metric Ωu\Omega_{u} satisfying (1.6) and solving (1.5).

We obtain a priori estimates and thus employ the continuity method to prove Theorem 1.1. In Section 2 we give definitions and notations used throughout this paper, and explain the relation between equation (1.5) and (1.7). We derive C0C^{0} estimate in Section 3 by establishing a Cherrier-type inequality without using the hyperKähler condition. We derive C1C^{1} estimate in Section 4 and C2C^{2} estimate in Section 5 and Section 6. Then the main theorem is proved in last section.

2. Preliminaries and notation

On a hypercomplex manifold (M,I,J,K)(M,I,J,K), the exterior differential dd is decomposed into d=I+¯Id=\partial_{I}+\bar{\partial}_{I} with respect to complex structure II. For simplicity we denote by =I\partial=\partial_{I} and ¯=¯I\bar{\partial}=\bar{\partial}_{I} . Verbitsky [24] introduced the operator J\partial_{J} as the quaternionic analogue of ¯\bar{\partial} by

J=J1¯J.\partial_{J}=J^{-1}\circ\bar{\partial}\circ J.

As in [9] we also define

¯J=J1J.\bar{\partial}_{J}=J^{-1}\circ\partial\circ J.

The operators ,¯,J\partial,\bar{\partial},\partial_{J} and ¯J\bar{\partial}_{J} satisfy the following properties.

Lemma 2.1 ([9], Lemma 2.12).

For a hypercomplex manifold (M,I,J,K)(M,I,J,K) the following holds.

(2.1) 2=¯2=J2=¯J2=0,¯+¯=J¯J+¯J¯=J+J=0,¯¯J+¯J¯=J¯+¯J=¯J+¯J=0.\begin{gathered}\partial^{2}=\bar{\partial}^{2}=\partial_{J}^{2}=\bar{\partial}_{J}^{2}=0,\\ \partial\bar{\partial}+\bar{\partial}\partial=\partial_{J}\bar{\partial}_{J}+\bar{\partial}_{J}\bar{\partial}=\partial\partial_{J}+\partial_{J}\partial=0,\\ \bar{\partial}\bar{\partial}_{J}+\bar{\partial}_{J}\bar{\partial}=\partial_{J}\bar{\partial}+\bar{\partial}\partial_{J}=\bar{\partial}_{J}\partial+\partial\bar{\partial}_{J}=0.\end{gathered}

On a hyperhermitian manifold (M,I,J,K,g)(M,I,J,K,g) of quaternionic dimension nn, let

Ω=ωJ+iωK\Omega=\omega_{J}+i\omega_{K}

where ωJ\omega_{J} and ωK\omega_{K} are the fundamental forms of (g,J)(g,J) and (g,K)(g,K) respectively. We denote by Ip,q(M)\bigwedge_{I}^{p,q}(M) the (p,q)(p,q)-forms with respect to II, which we simply call (p,q)(p,q)-forms throughout this paper. A form αI2k,0(M)\alpha\in\bigwedge_{I}^{2k,0}(M) satisfying Jα=α¯J\alpha=\overline{\alpha} is called JJ-real and denoted by αI,2k,0(M)\alpha\in\bigwedge_{I,\mathbb{R}}^{2k,0}(M). In particular, we have ΩI,2,0(M)\Omega\in\bigwedge_{I,\mathbb{R}}^{2,0}(M).

Definition 2.2.

A JJ-real (2,0)(2,0)-form α\alpha is said to be positive (resp. strictly positive) if α(X,X¯J)0\alpha(X,\overline{X}J)\geq 0 (resp. α(X,X¯J)>0\alpha(X,\overline{X}J)>0), for any non-zero (1,0)(1,0)-vector XX.

In complex case, one can simultaneously diagonalize two hermitian matrices when one of them is positive definete. Similar result holds for JJ-real (2,0)(2,0)-forms.

Lemma 2.3 ([18], Lemma 3).

Let α\alpha and β\beta be two JJ-real (2,0)(2,0)-forms on a hyperhermitian manifold MM of quaternionic dimension nn, and α\alpha is strictly positive. Then for each xMx\in M there exists a basis e1,e1¯J,,en,en¯Je_{1},\overline{e_{1}}J,\dots,e_{n},\overline{e_{n}}J of TI,x1,0(M)T^{1,0}_{I,x}(M) such that

α(ei,ej)=β(ei,ej)=α(ei,ej¯J)=β(ei,ej¯J)=0 for ij.\alpha(e_{i},e_{j})=\beta(e_{i},e_{j})=\alpha(e_{i},\overline{e_{j}}J)=\beta(e_{i},\overline{e_{j}}J)=0\text{\, for\, }i\neq j.

Analogous to positive definite (n1,n1)(n-1,n-1)-form in complex case [22], we define strictly positive (2n2,0)(2n-2,0)-form as follows.

Definition 2.4.

A JJ-real (2n2,0)(2n-2,0)-form Φ\Phi is said to be strictly positive if Φα0\Phi\wedge\alpha\geq 0, for any positive (2,0)(2,0)-form α\alpha, with equality if and only if α=0\alpha=0. We denote all strictly positive JJ-real (2n2,0)(2n-2,0)-forms by I,2n2,0(M)>0\bigwedge_{I,\mathbb{R}}^{2n-2,0}(M)_{>0}.

The notion of (strictly) positive forms on hypercomplex manifolds can be found in various literature [3, 26, 25], and we refer readers to [26] for thorough discussions. For complex case see for instance [8].

As in [14], we define the Hodge star-type operator :Ip,0(M)I2np,0(M)\ast:\bigwedge_{I}^{p,0}(M)\to\bigwedge_{I}^{2n-p,0}(M) by the relation

αβ=1n!α,βgΩn,for α,βIp,0(M).\alpha\wedge\ast\beta=\frac{1}{n!}\langle\alpha,\beta\rangle_{g}\Omega^{n},\quad\text{for \,}\alpha,\beta\in\bigwedge\nolimits_{I}^{p,0}(M).

Here, the pointwise inner product ,g\langle\,,\,\rangle_{g} is defined by

α,βg=1p!gλ1μ¯1gλpμ¯pαλ1λpβμ1μp¯,for α,βIp,0(M)\langle\alpha,\beta\rangle_{g}=\frac{1}{p!}\sum g^{\lambda_{1}\overline{\mu}_{1}}\cdots g^{\lambda_{p}\overline{\mu}_{p}}\alpha_{\lambda_{1}\cdots\lambda_{p}}\overline{\beta_{\mu_{1}\cdots\mu_{p}}},\quad\text{for \,}\alpha,\beta\in\bigwedge\nolimits_{I}^{p,0}(M)

where any (p,0)(p,0)-form α\alpha is locally written as

α=1p!αλ1λpdzλ1dzλp.\alpha=\frac{1}{p!}\sum\alpha_{\lambda_{1}\cdots\lambda_{p}}dz^{\lambda_{1}}\wedge\cdots\wedge dz^{\lambda_{p}}.

At a point pMp\in M we can take II-holomorphic coordinates (z0,,z2n1)(z^{0},\cdots,z^{2n-1}) such that (gλμ¯)(g_{\lambda\overline{\mu}}) is the identity at pp, then we have

(dz2idz2i+1)=dz0dz1dz2i^dz2i+1^dz2n2dz2n1.\ast(dz^{2i}\wedge dz^{2i+1})=dz^{0}\wedge dz^{1}\wedge\cdots\wedge\widehat{dz^{2i}}\wedge\widehat{dz^{2i+1}}\wedge\cdots\wedge dz^{2n-2}\wedge dz^{2n-1}.

It is easy to show that the operator \ast maps I,2,0(M)>0\bigwedge_{I,\mathbb{R}}^{2,0}(M)_{>0} to I,2n2,0(M)>0\bigwedge_{I,\mathbb{R}}^{2n-2,0}(M)_{>0} and vice versa.

Definition 2.5.
  1. (1)

    For a JJ-real (2,0)(2,0)-form locally written as α=i<jαijdzidzj\alpha=\sum_{i<j}\alpha_{ij}dz^{i}\wedge dz^{j}, define the Pfaffian of α\alpha locally by Pf(α)dz0dz2n1=αn\textnormal{Pf}(\alpha)dz^{0}\wedge\cdots\wedge dz^{2n-1}=\alpha^{n}.

  2. (2)

    The Pfaffian of a JJ-real (2n2,0)(2n-2,0)-form Φ\Phi is defined by

    Pf(Φ)=Pf(1(n1)!Φ).\textnormal{Pf}(\Phi)=\textnormal{Pf}(\frac{1}{(n-1)!}\ast\!\Phi).

In particular, we have for any αI,2,0(M)\alpha\in\bigwedge_{I,\mathbb{R}}^{2,0}(M),

(2.2) Pf(αn1)=Pf(α)n1.\text{Pf}(\alpha^{n-1})=\text{Pf}(\alpha)^{n-1}.

In fact, computing at a point and using Lemma 2.3 we can write α=λidz2idz2i+1\alpha=\sum\lambda_{i}dz^{2i}\wedge dz^{2i+1}. Define Λ=λ0λn1\Lambda=\lambda_{0}\cdots\lambda_{n-1}, Λi=λ0λi^λn1\Lambda_{i}=\lambda_{0}\cdots\hat{\lambda_{i}}\cdots\lambda_{n-1}. Then Pf(α)=Λ\text{Pf}(\alpha)=\Lambda. On the other hand,

αn1=(n1)!Λidz0dz1dz2i^dz2i+1^dz2n2dz2n1.\alpha^{n-1}=(n-1)!\sum\Lambda_{i}dz^{0}\wedge dz^{1}\wedge\cdots\wedge\widehat{dz^{2i}}\wedge\widehat{dz^{2i+1}}\wedge\cdots\wedge dz^{2n-2}\wedge dz^{2n-1}.

By definition we have Pf(αn1)=Λn1\text{Pf}(\alpha^{n-1})=\Lambda^{n-1}. Hence (2.2) follows.

Also, observe that for any two JJ-real (2,0)(2,0)-forms χ\chi and η\eta, we have

(2.3) χnηn=Pf(χ)Pf(η)=Pf(χ)Pf(η).\frac{\chi^{n}}{\eta^{n}}=\frac{\text{Pf}(\chi)}{\text{Pf}(\eta)}=\frac{\text{Pf}(\ast\chi)}{\text{Pf}(\ast\eta)}.

For conveninence in later computation, we introduce the following definition.

Definition 2.6.

For χI,2,0(M)\chi\in\bigwedge_{I,\mathbb{R}}^{2,0}(M), define

(2.4) Sm(χ)=CnmχmΩnmΩnfor0mn.S_{m}(\chi)=\frac{C_{n}^{m}\chi^{m}\wedge\Omega^{n-m}}{\Omega^{n}}\quad\text{for}\quad 0\leq m\leq n.

In particular for uC(M,)u\in C^{\infty}(M,\mathbb{R}) we have

(2.5) S1(Ju)=12ΔI,gu.S_{1}(\partial\partial_{J}u)=\frac{1}{2}\Delta_{I,g}u.

In fact, choose local coordinates such that Ω=i=0n1dz2idz2i+1\Omega=\sum_{i=0}^{n-1}dz^{2i}\wedge dz^{2i+1}. Now ωI\omega_{I} takes the form

ωI=i2α=02n1dzαdz¯α.\omega_{I}=\frac{i}{2}\sum_{\alpha=0}^{2n-1}dz^{\alpha}\wedge d\overline{z}^{\alpha}.

Since

J(Ju)=J(Ju)=¯Ju=¯J1u=¯¯Ju=Ju¯,J(\partial\partial_{J}u)=-J(\partial_{J}\partial u)=-\bar{\partial}J\partial u=\bar{\partial}J^{-1}\partial u=\bar{\partial}\bar{\partial}_{J}u=\overline{\partial\partial_{J}u},

we see that Ju\partial\partial_{J}u is JJ-real. Then compute

Ju=(J1¯u)=(uj¯J1dz¯j)=uj¯idziJ1dz¯j+uj¯(J1dz¯j)=uj¯idziJ1dz¯j.\begin{split}\partial\partial_{J}u&=\sum\partial(J^{-1}\bar{\partial}u)=\sum\partial(u_{\bar{j}}J^{-1}d\bar{z}^{j})\\ &=\sum u_{\bar{j}i}dz^{i}\wedge J^{-1}d\bar{z}^{j}+\sum u_{\bar{j}}\partial(J^{-1}d\bar{z}^{j})=\sum u_{\bar{j}i}dz^{i}\wedge J^{-1}d\bar{z}^{j}.\end{split}

The last equality above is derived from

0=(¯¯J+¯J¯)(zi)=¯J1J(zi)+J1J¯zi=J1Jdz¯i.0=(\bar{\partial}\bar{\partial}_{J}+\bar{\partial}_{J}\bar{\partial})(z^{i})=\bar{\partial}J^{-1}\partial J(z^{i})+J^{-1}\partial J\bar{\partial}z^{i}=J^{-1}\partial Jd\bar{z}^{i}.

Hence

S1(Ju)=nJuΩn1Ωn=α=02n1uαα¯S_{1}(\partial\partial_{J}u)=\frac{n\partial\partial_{J}u\wedge\Omega^{n-1}}{\Omega^{n}}=\sum_{\alpha=0}^{2n-1}u_{\alpha\overline{\alpha}}

and

ΔI,gu=2n¯uωI2n1ωI2n=2α=02n1uαα¯.\Delta_{I,g}u=\frac{2n\partial\overline{\partial}u\wedge\omega_{I}^{2n-1}}{\omega_{I}^{2n}}=2\sum_{\alpha=0}^{2n-1}u_{\alpha\overline{\alpha}}.

Thus equation (2.5) holds.

Now let (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) be a compact hyperKähler manifold and Ωh\Omega_{h} a strictly positive (2,0)(2,0)-form with respect to II. The quaternionic Monge–Ampère equation for (n1)(n-1)-quaternionic plurisubharmonic functions is written as

(2.6) (Ωh+1n1(S1(Ju)ΩJu))n=ef+bΩn\displaystyle\big{(}\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)\big{)}^{n}=e^{f+b}\Omega^{n}
(2.7) Ωh+1n1(S1(Ju)ΩJu)>0,supMu=0.\displaystyle\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)>0,\quad\sup_{M}u=0.

For a quaternionic balanced metric (resp., Gauduchon; resp., strongly Gauduchon, for definitions and their correspondence with the complex case see [15, Table 2]) with induced (2,0)(2,0)-form Ω0\Omega_{0}, we define Ωh\Omega_{h} by

(2.8) (n1)!Ωh=Ω0n1.(n-1)!\ast\Omega_{h}=\Omega_{0}^{n-1}.

We would like to show that a solution to equation (2.6) gives rise to a solution to the quaternionic form type equation. We also need

(2.9) 1(n1)!(JuΩn2)=1n1(S1(Ju)ΩJu)\frac{1}{(n-1)!}\ast(\partial\partial_{J}u\wedge\Omega^{n-2})=\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)

which can be seen by computing in local coordinates. We refer readers to [14, p. 34] for details. By (2.3), (2.8) and (2.9), we have

(Ωh+1n1(S1(Ju)ΩJu))nΩn=Pf((Ωh+1n1(S1(Ju)ΩJu)))Pf(Ω)=Pf(Ω0n1+JuΩn2)Pf(Ωn1).\begin{split}&\frac{\big{(}\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)\big{)}^{n}}{\Omega^{n}}\\ =&\frac{\text{Pf}\big{(}\ast(\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u))\big{)}}{\text{Pf}(\ast\Omega)}\\ =&\frac{\text{Pf}(\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})}{\text{Pf}(\Omega^{n-1})}.\end{split}

Now observe that a strictly positive (2n2,0)(2n-2,0)-form Φ\Phi can be written as Φ=ϕn1\Phi=\phi^{n-1}, where ϕ\phi is a strictly positive (2,0)(2,0) form. The proof here is almost identical to the arguments in [16, p. 279-280]. Since \ast maps I,2,0(M)>0\bigwedge_{I,\mathbb{R}}^{2,0}(M)_{>0} to I,2n2,0(M)>0\bigwedge_{I,\mathbb{R}}^{2n-2,0}(M)_{>0}, we have

(2.10) Ω0n1+JuΩn2>0.\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}>0.

Thus there exist Ωu\Omega_{u} such that

Ωun1=Ω0n1+JuΩn2.\Omega_{u}^{n-1}=\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}.

Such Ωu\Omega_{u} is quaternionic balanced (resp., Gauduchon; resp., strongly Gauduchon) and we have

ef+b=Pf(Ωun1)Pf(Ωn1)=Pf(Ωu)n1Pf(Ω)n1=(ΩunΩn)n1.e^{f+b}=\frac{\text{Pf}(\Omega_{u}^{n-1})}{\text{Pf}(\Omega^{n-1})}=\frac{\text{Pf}(\Omega_{u})^{n-1}}{\text{Pf}(\Omega)^{n-1}}=\left(\frac{\Omega_{u}^{n}}{\Omega^{n}}\right)^{n-1}.

It follows that a solution to equation (2.6) solves

(2.11) Ωun=ef+bΩn.\Omega_{u}^{n}=e^{f^{\prime}+b^{\prime}}\Omega^{n}.

This proves Corollary 1.2.

Remark 2.7.

On a hyperhermitian manifold (M,I,J,K,g)(M,I,J,K,g), There exists a unique torsion free connection O\nabla^{O} called Obata connection [17] such that

OI=OJ=OK=0.\nabla^{O}I=\nabla^{O}J=\nabla^{O}K=0.

It is well known that the hyperKähler condition dΩ=0d\Omega=0 is equivalent to O=LC\nabla^{O}=\nabla^{LC} where LC\nabla^{LC} is the Levi-Civita connection. Using Obata connection it is shown in [9, Sect. 2.4] that one can choose around any point xMx\in M local II-holomorphic geodesic coordinates such that the Christoffel symbol of O\nabla^{O} and the first derivatives of JJ vanish at xx. This property is crucial for C2C^{2} estimate in Sect. 6.

From above remark, we have the following useful lemma.

Lemma 2.8.

On a hyperhermitian manifold (M,I,J,K,g)(M,I,J,K,g), given a JJ-real (2,0)(2,0)-form α\alpha, for any point xMx\in M, one can choose around xx local II-holomorphic coordinates such that the following relations hold at xx, for all i,j=0,,n1i,j=0,\dots,n-1.

(2.12) α2i2j,p=α2i+12j+1,p¯¯,α2i2j+1,p=α2j2i+1,p¯¯,α2i+12j,p=α2j+12i,p¯¯,α2i+12j+1,p=α2i2j,p¯¯,\begin{split}&\alpha_{2i2j,p}=\overline{\alpha_{2i+12j+1,\bar{p}}}\,,\quad\alpha_{2i2j+1,p}=\overline{\alpha_{2j2i+1,\bar{p}}}\,,\\ &\alpha_{2i+12j,p}=\overline{\alpha_{2j+12i,\bar{p}}}\,,\quad\alpha_{2i+12j+1,p}=\overline{\alpha_{2i2j,\bar{p}}}\,,\end{split}

if α\alpha is locally written as

α=i<jαijdzidzj,αij=αji,\alpha=\sum_{i<j}\alpha_{ij}dz^{i}\wedge dz^{j},\quad\alpha_{ij}=-\alpha_{ji},

and

αij,p=zpαij,αij,p¯=z¯pαij.\alpha_{ij,p}=\frac{\partial}{\partial z^{p}}\alpha_{ij},\quad\alpha_{ij,\bar{p}}=\frac{\partial}{\partial\bar{z}^{p}}\alpha_{ij}.
Proof.

Choose local II-holomorphic coordinates around xx such that at xx, the first derivatives of JJ vanish and

Jdz2i=dz¯2i+1,Jdz2i+1=dz¯2i.Jdz^{2i}=-d\bar{z}^{2i+1},\quad Jdz^{2i+1}=d\bar{z}^{2i}.

The JJ action on 11-forms is given by

Jdzi=Jk¯idz¯k.Jdz^{i}=J^{i}_{\bar{k}}d\bar{z}^{k}.

Hence

Jα=k<lαklJdzkJdzl=i,jk<lαklJi¯kJj¯ldz¯idz¯j=i<jk<lαkl(Ji¯kJj¯lJj¯kJi¯l)dz¯idz¯j.\begin{split}J\alpha&=\sum_{k<l}\alpha_{kl}Jdz^{k}\wedge Jdz^{l}=\sum_{i,j}\sum_{k<l}\alpha_{kl}J^{k}_{\bar{i}}J^{l}_{\bar{j}}d\bar{z}^{i}\wedge d\bar{z}^{j}\\ &=\sum_{i<j}\sum_{k<l}\alpha_{kl}(J^{k}_{\bar{i}}J^{l}_{\bar{j}}-J^{k}_{\bar{j}}J^{l}_{\bar{i}})d\bar{z}^{i}\wedge d\bar{z}^{j}.\end{split}

Since the derivatives of JJ vanish at xx, taking \partial and evaluating at xx gives

(2.13) Jα=pi<jk<lαkl,p(Ji¯kJj¯lJj¯kJi¯l)dzpdz¯idz¯j.\partial J\alpha=\sum_{p}\sum_{i<j}\sum_{k<l}\alpha_{kl,p}(J^{k}_{\bar{i}}J^{l}_{\bar{j}}-J^{k}_{\bar{j}}J^{l}_{\bar{i}})dz^{p}\wedge d\bar{z}^{i}\wedge d\bar{z}^{j}.

On the other hand

(2.14) α¯=pi<jαij,¯dpzpdz¯idz¯j.\partial\bar{\alpha}=\sum_{p}\sum_{i<j}\overline{\alpha_{ij,}}{}_{p}dz^{p}\wedge d\bar{z}^{i}\wedge d\bar{z}^{j}.

Notice at the point xx

J2i+1¯2i=1,J2i¯2i+1=1,J^{2i}_{\overline{2i+1}}=-1,\quad J^{2i+1}_{\overline{2i}}=1,

and all the other Jl¯kJ^{k}_{\bar{l}} vanish. Since Jα=α¯J\alpha=\bar{\alpha}, comparing components of (2.13) and (2.14) we get for example, when 2i+1<2j+12i+1<2j+1,

α2i+12j+1,¯p=k<lαkl,p(J2i+1¯kJ2j+1¯lJ2j+1¯kJ2i+1¯l)=α2i2j,pJ2i+1¯2iJ2j+1¯2j=α2i2j,p.\begin{split}\overline{\alpha_{2i+12j+1,}}{}_{p}&=\sum_{k<l}\alpha_{kl,p}(J^{k}_{\overline{2i+1}}J^{l}_{\overline{2j+1}}-J^{k}_{\overline{2j+1}}J^{l}_{\overline{2i+1}})\\ &=\alpha_{2i2j,p}J^{2i}_{\overline{2i+1}}J^{2j}_{\overline{2j+1}}=\alpha_{2i2j,p}\,.\end{split}

And when 2j+1<2i2j+1<2i,

α2j+12i,¯p=k<lαkl,p(J2j+1¯kJ2i¯lJ2i¯kJ2j+1¯l)=α2j2i+1,pJ2j+1¯2jJ2i¯2i+1=α2j2i+1,p=α2i+12j,p.\begin{split}\overline{\alpha_{2j+12i,}}{}_{p}&=\sum_{k<l}\alpha_{kl,p}(J^{k}_{\overline{2j+1}}J^{l}_{\overline{2i}}-J^{k}_{\overline{2i}}J^{l}_{\overline{2j+1}})\\ &=\alpha_{2j2i+1,p}J^{2j}_{\overline{2j+1}}J^{2i+1}_{\overline{2i}}=-\alpha_{2j2i+1,p}=\alpha_{2i+12j,p}\,.\end{split}

By taking all the other combinations of i,ji,j we obtain (2.12). ∎

Remark 2.9.

Combining Lemma 2.3 and Remark 2.7, on a hyperhermitian manifold (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) of quaternionic dimension nn, we can find local II-holomorphic geodesic coordinates suth that Ω\Omega and another JJ-real (2,0)(2,0)-form Ω~\widetilde{\Omega} are simultaneously diagonalizable at a point xMx\in M, i.e.

Ω=i=0n1dz2idz2i+1,Ω~=i=0n1Ω~2i2i+1dz2idz2i+1,\Omega=\sum_{i=0}^{n-1}dz^{2i}\wedge dz^{2i+1},\quad\widetilde{\Omega}=\sum_{i=0}^{n-1}\widetilde{\Omega}_{2i2i+1}dz^{2i}\wedge dz^{2i+1},

and the Christoffel symbol of O\nabla^{O} and first derivatives of JJ vanish at xx, i.e.

Jk¯,il=Jk,il¯=Jk,i¯l¯=Jk¯,i¯l=0.J^{l}_{\bar{k},i}=J^{\bar{l}}_{k,i}=J^{\bar{l}}_{k,\bar{i}}=J^{l}_{\bar{k},\bar{i}}=0.

We call such local coordinates the normal coordinates around xx.

3. C0C^{0} Estimate

Recently Sroka [19] obtained a sharp C0C^{0} estimate for a class of PDEs given by the operator dominating the quaternionic Monge-Ampère operator. Here we adopt a different approach for our purpose by establishing a Cherrier-type inequality and the lemmas in [22]. We obtain

Theorem 3.1.

Let (M,I,J,K,g,Ω)(M,I,J,K,g,\Omega) be a compact hyperhermitian manifold of quaternionic dimension nn, and Ωh\Omega_{h} a strictly positive (2,0)(2,0)-form with respect to II. Let ff be a smooth function on MM. If uu is a solution to equation (1.7) satisfying (1.8). Then there exists a constant CC depending only on the fixed data (I,J,K,g,Ω,Ωh)(I,J,K,g,\Omega,\Omega_{h}) and ff such that

supM|u|C.\sup_{M}|u|\leq C.

Notice that by maximum principal the constant bb in equation (1.7) is uniformly bounded by supM|f|\sup_{M}|f|, Ω\Omega and Ωh\Omega_{h}. In fact, at the maximum point of uu,

S1(Ju)ΩJu0.S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u\leq 0.

Hence by equation (1.7) bb is bounded above. Similarly bb is also bounded below. Thus for simplicity we denote f+bf+b still as ff when doing estimates.

For convenience we denote

(3.1) Ω~=Ωh+1n1(S1(Ju)ΩJu).\widetilde{\Omega}=\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u).

The next lemma we need is straightforward.

Lemma 3.2.
(3.2) S1(Ju)=S1(Ω~)S1(Ωh)\displaystyle S_{1}(\partial\partial_{J}u)=S_{1}(\widetilde{\Omega})-S_{1}(\Omega_{h})
(3.3) Ju=(n1)ΩhS1(Ωh)Ω+S1(Ω~)Ω(n1)Ω~.\displaystyle\partial\partial_{J}u=(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega+S_{1}(\widetilde{\Omega})\Omega-(n-1)\widetilde{\Omega}.
Proof.

From (3.1) we have

nΩ~Ωn1=nΩhΩn1+nn1(S1(Ju)ΩnJuΩn1).n\widetilde{\Omega}\wedge\Omega^{n-1}=n\Omega_{h}\wedge\Omega^{n-1}+\frac{n}{n-1}(S_{1}(\partial\partial_{J}u)\Omega^{n}-\partial\partial_{J}u\wedge\Omega^{n-1}).

Namely,

S1(Ω~)=S1(Ωh)+1n1(nS1(Ju)S1(Ju))=S1(Ωh)+S1(Ju)S_{1}(\widetilde{\Omega})=S_{1}(\Omega_{h})+\frac{1}{n-1}(nS_{1}(\partial\partial_{J}u)-S_{1}(\partial\partial_{J}u))=S_{1}(\Omega_{h})+S_{1}(\partial\partial_{J}u)

This proves (3.2), and (3.3) follows by inserting (3.2) into (3.1). ∎

Define Ω0\Omega_{0} by (n1)!Ωh=Ω0n1(n-1)!\Omega_{h}=\ast\Omega_{0}^{n-1}, we have the follwing

Lemma 3.3.

There exists a uniform constant CC such that

(3.4) Ju(2Ω0n1+JuΩn2)CΩn\partial\partial_{J}u\wedge(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\leq C\Omega^{n}
Proof.

Using (3.3) we compute

Ju(2Ω0n1+JuΩn1)= 2((n1)ΩhS1(Ωh)Ω)Ω0n12((n1)Ω~S1(Ω~)Ω)Ω0n1+((n1)ΩhS1(Ωh)Ω((n1)Ω~S1(Ω~)Ω))2Ωn2= 2((n1)ΩhS1(Ωh)Ω)Ω0n1+((n1)ΩhS1(Ωh)Ω)2Ωn22((n1)Ω~S1(Ω~)Ω)Ω0n12((n1)ΩhS1(Ωh)Ω)((n1)Ω~S1(Ω~)Ω)Ωn2+(n1)2Ω~2Ωn22(n1)S1(Ω~)Ω~Ωn1+S12(Ω~)ΩnCΩn2(n1)Ω~Ω0n1+2S1(Ω~)ΩΩ0n12(n1)2ΩhΩ~Ωn2+2(n1)S1(Ω~)ΩhΩn1+2(n1)S1(Ωh)Ω~Ωn12S1(Ωh)S1(Ω~)Ωn+(n1)2Ω~2Ωn22(n1)S1(Ω~)Ω~Ωn1+S12(Ω~)Ωn.\begin{split}&\>\partial\partial_{J}u\wedge(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-1})\\ =&\>2\big{(}(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega\big{)}\wedge\Omega_{0}^{n-1}-2\big{(}(n-1)\widetilde{\Omega}-S_{1}(\widetilde{\Omega})\Omega\big{)}\wedge\Omega_{0}^{n-1}\\ &\>+\big{(}(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega-((n-1)\widetilde{\Omega}-S_{1}(\widetilde{\Omega})\Omega)\big{)}^{2}\wedge\Omega^{n-2}\\ =&\>2\big{(}(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega\big{)}\wedge\Omega_{0}^{n-1}+\big{(}(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega\big{)}^{2}\wedge\Omega^{n-2}\\ &\>-2\big{(}(n-1)\widetilde{\Omega}-S_{1}(\widetilde{\Omega})\Omega\big{)}\wedge\Omega_{0}^{n-1}-2\big{(}(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega\big{)}\big{(}(n-1)\widetilde{\Omega}-S_{1}(\widetilde{\Omega})\Omega\big{)}\wedge\Omega^{n-2}\\ &\>+(n-1)^{2}\widetilde{\Omega}^{2}\wedge\Omega^{n-2}-2(n-1)S_{1}(\widetilde{\Omega})\widetilde{\Omega}\wedge\Omega^{n-1}+S_{1}^{2}(\widetilde{\Omega})\Omega^{n}\\ \leq&\>C\Omega^{n}-2(n-1)\widetilde{\Omega}\wedge\Omega_{0}^{n-1}+2S_{1}(\widetilde{\Omega})\Omega\wedge\Omega_{0}^{n-1}-2(n-1)^{2}\Omega_{h}\wedge\widetilde{\Omega}\wedge\Omega^{n-2}\\ &\>+2(n-1)S_{1}(\widetilde{\Omega})\Omega_{h}\wedge\Omega^{n-1}+2(n-1)S_{1}(\Omega_{h})\widetilde{\Omega}\wedge\Omega^{n-1}-2S_{1}(\Omega_{h})S_{1}(\widetilde{\Omega})\Omega^{n}\\ &\>+(n-1)^{2}\widetilde{\Omega}^{2}\wedge\Omega^{n-2}-2(n-1)S_{1}(\widetilde{\Omega})\widetilde{\Omega}\wedge\Omega^{n-1}+S_{1}^{2}(\widetilde{\Omega})\Omega^{n}.\end{split}

By definition of S1(Ω~)S_{1}(\widetilde{\Omega}) and Sn1(Ω0)S_{n-1}(\Omega_{0}), we have

(3.5) Ju(2Ω0n1+JuΩn1)CΩn2(n1)Ω~Ω0n1+2nS1(Ω~)Sn1(Ω0)Ωn2(n1)2ΩhΩ~Ωn2+2(n1)nS1(Ω~)S1(Ωh)Ωn+2(n1)nS1(Ωh)S1(Ω~)Ωn2S1(Ωh)S1(Ω~)Ωn+2(n1)nS2(Ω~)Ωn2(n1)nS12(Ω~)Ωn+S12(Ω~)Ωn=CΩn2(n1)Ω~Ω0n1+2nS1(Ω~)Sn1(Ω0)Ωn2(n1)2ΩhΩ~Ωn2+2(n2)nS1(Ωh)S1(Ω~)Ωn+2(n1)nS2(Ω~)Ωn+2nnS12(Ω~)Ωn.\begin{split}&\>\partial\partial_{J}u\wedge(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-1})\\ \leq&\>C\Omega^{n}-2(n-1)\widetilde{\Omega}\wedge\Omega_{0}^{n-1}+\frac{2}{n}S_{1}(\widetilde{\Omega})S_{n-1}(\Omega_{0})\Omega^{n}-2(n-1)^{2}\Omega_{h}\wedge\widetilde{\Omega}\wedge\Omega^{n-2}\\ &\>+\frac{2(n-1)}{n}S_{1}(\widetilde{\Omega})S_{1}(\Omega_{h})\Omega^{n}+\frac{2(n-1)}{n}S_{1}(\Omega_{h})S_{1}(\widetilde{\Omega})\Omega^{n}-2S_{1}(\Omega_{h})S_{1}(\widetilde{\Omega})\Omega^{n}\\ &\>+\frac{2(n-1)}{n}S_{2}(\widetilde{\Omega})\Omega^{n}-\frac{2(n-1)}{n}S_{1}^{2}(\widetilde{\Omega})\Omega^{n}+S_{1}^{2}(\widetilde{\Omega})\Omega^{n}\\ =&\>C\Omega^{n}-2(n-1)\widetilde{\Omega}\wedge\Omega_{0}^{n-1}+\frac{2}{n}S_{1}(\widetilde{\Omega})S_{n-1}(\Omega_{0})\Omega^{n}-2(n-1)^{2}\Omega_{h}\wedge\widetilde{\Omega}\wedge\Omega^{n-2}\\ &\>+\frac{2(n-2)}{n}S_{1}(\Omega_{h})S_{1}(\widetilde{\Omega})\Omega^{n}+\frac{2(n-1)}{n}S_{2}(\widetilde{\Omega})\Omega^{n}+\frac{2-n}{n}S_{1}^{2}(\widetilde{\Omega})\Omega^{n}.\end{split}

Choose local II-holomorphic coordinates such that at a point, Ω=i=0n1dz2idz2i+1\Omega=\sum_{i=0}^{n-1}dz^{2i}\wedge dz^{2i+1} and Ω0=i=0n1λidz2idz2i+1\Omega_{0}=\sum_{i=0}^{n-1}\lambda_{i}dz^{2i}\wedge dz^{2i+1} with λi>0\lambda_{i}>0. Since

Ωh=1(n1)!Ω0n1=i=0n1Λidz2idz2i+1\Omega_{h}=\frac{1}{(n-1)!}\ast\Omega_{0}^{n-1}=\sum_{i=0}^{n-1}\Lambda_{i}dz^{2i}\wedge dz^{2i+1}

where Λi=λ0λi^λn1\Lambda_{i}=\lambda_{0}\cdots\hat{\lambda_{i}}\cdots\lambda_{n-1}, we have S1(Ωh)=Sn1(Ω0)=i=0n1ΛiS_{1}(\Omega_{h})=S_{n-1}(\Omega_{0})=\sum_{i=0}^{n-1}\Lambda_{i}. Therefore

(3.6) 2nS1(Ω~)Sn1(Ω0)+2(n2)nS1(Ω~)S1(Ωh)=2(n1)nS1(Ω~)Sn1(Ω0).\frac{2}{n}S_{1}(\widetilde{\Omega})S_{n-1}(\Omega_{0})+\frac{2(n-2)}{n}S_{1}(\widetilde{\Omega})S_{1}(\Omega_{h})=\frac{2(n-1)}{n}S_{1}(\widetilde{\Omega})S_{n-1}(\Omega_{0}).

Now compute

2(n1)Ω~Ω0n1=2(n1)(n1)!i=0n1Ω~2i,2i+1Λidz0dz2n12(n1)2ΩhΩ~Ωn2=2(n1)(n1)!i=0n1Λi(S1(Ω~)Ω~2i,2i+1)dz0dz2n1.\begin{split}2(n-1)\widetilde{\Omega}\wedge\Omega_{0}^{n-1}&=2(n-1)(n-1)!\sum_{i=0}^{n-1}\widetilde{\Omega}_{2i,2i+1}\Lambda_{i}dz^{0}\wedge\cdots\wedge dz^{2n-1}\\ 2(n-1)^{2}\Omega_{h}\wedge\widetilde{\Omega}\wedge\Omega^{n-2}&=2(n-1)(n-1)!\sum_{i=0}^{n-1}\Lambda_{i}(S_{1}(\widetilde{\Omega})-\widetilde{\Omega}_{2i,2i+1})dz^{0}\wedge\cdots\wedge dz^{2n-1}.\end{split}

Thus

(3.7) 2(n1)Ω~Ω0n1+2(n1)2ΩhΩ~Ωn2=2(n1)nS1(Ω~)Sn1(Ω0)Ωn.2(n-1)\widetilde{\Omega}\wedge\Omega_{0}^{n-1}+2(n-1)^{2}\Omega_{h}\wedge\widetilde{\Omega}\wedge\Omega^{n-2}=\frac{2(n-1)}{n}S_{1}(\widetilde{\Omega})S_{n-1}(\Omega_{0})\Omega^{n}.

Combining (3.5), (3.6) and (3.7) we get

(3.8) Ju(2Ω0n1+JuΩn2)CΩn+2(n1)nS2(Ω~)Ωn+2nnS12(Ω~)Ωn.\partial\partial_{J}u\wedge(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\leq C\Omega^{n}+\frac{2(n-1)}{n}S_{2}(\widetilde{\Omega})\Omega^{n}+\frac{2-n}{n}S_{1}^{2}(\widetilde{\Omega})\Omega^{n}.

It remains to prove that the sum of the last two terms has a upper bound. The proof is analogous to that in [22], which we give here for completeness. Choose local coordinates such that at a point,

Ω=i=0n1dz2idz2i+1Ω~=i=0n1μidz2idz2i+1 with 0<μ0μn1.\begin{split}\Omega&=\sum_{i=0}^{n-1}dz^{2i}\wedge dz^{2i+1}\\ \widetilde{\Omega}&=\sum_{i=0}^{n-1}\mu_{i}dz^{2i}\wedge dz^{2i+1}\text{ with }0<\mu_{0}\leq\cdots\leq\mu_{n-1}.\end{split}

Then we have

 2(n1)S2(Ω~)+(2n)S12(Ω~)= 2(n1)i<jμiμj(n2)(i=0n1μi)2=(n2)i=0n1μi22(n2)i<jμiμj+2(n1)i<jμiμj=(n2)i=1n1μi2+21i<jn1μiμj(n2)μ02+2μ0i=1n1μi1i<jn1(μiμj)2+2μ0i=1n1μi.\begin{split}&\>2(n-1)S_{2}(\widetilde{\Omega})+(2-n)S_{1}^{2}(\widetilde{\Omega})\\ =&\>2(n-1)\sum_{i<j}\mu_{i}\mu_{j}-(n-2)(\sum_{i=0}^{n-1}\mu_{i})^{2}\\ =&\>-(n-2)\sum_{i=0}^{n-1}\mu_{i}^{2}-2(n-2)\sum_{i<j}\mu_{i}\mu_{j}+2(n-1)\sum_{i<j}\mu_{i}\mu_{j}\\ =&\>-(n-2)\sum_{i=1}^{n-1}\mu_{i}^{2}+2\sum_{1\leq i<j\leq n-1}\mu_{i}\mu_{j}-(n-2)\mu_{0}^{2}+2\mu_{0}\sum_{i=1}^{n-1}\mu_{i}\\ \leq&\>-\sum_{1\leq i<j\leq n-1}(\mu_{i}-\mu_{j})^{2}+2\mu_{0}\sum_{i=1}^{n-1}\mu_{i}.\end{split}

We want to show this quantity has a upper bound using the equation

μ0μn1=ef.\mu_{0}\cdots\mu_{n-1}=e^{f}.

When μ1<μn1/2\mu_{1}<\mu_{n-1}/2, we have (μ1μn1)214μn12(\mu_{1}-\mu_{n-1})^{2}\geq\frac{1}{4}\mu_{n-1}^{2}. Thus

1i<jn1(μiμj)2+2μ0i=1n1μi14μn12+Cμn1C,-\sum_{1\leq i<j\leq n-1}(\mu_{i}-\mu_{j})^{2}+2\mu_{0}\sum_{i=1}^{n-1}\mu_{i}\leq-\frac{1}{4}\mu_{n-1}^{2}+C\mu_{n-1}\leq C^{\prime},

and the first inequality above is because μ0\mu_{0} has a uniform upper bound, being the smalest eigenvalue. When μ1μn1/2\mu_{1}\geq\mu_{n-1}/2, then we have μiμn1/2\mu_{i}\geq\mu_{n-1}/2 for i=1,,n1i=1,\cdots,n-1. Hence

μ0Cμ1μn1C2n2μn1n1.\mu_{0}\leq\frac{C}{\mu_{1}\cdots\mu_{n-1}}\leq\frac{C2^{n-2}}{\mu_{n-1}^{n-1}}.

And in this case

1i<jn1(μiμj)2+2μ0i=1n1μiCμn1n1μn1=Cμn1n2C.-\sum_{1\leq i<j\leq n-1}(\mu_{i}-\mu_{j})^{2}+2\mu_{0}\sum_{i=1}^{n-1}\mu_{i}\leq\frac{C^{\prime}}{\mu_{n-1}^{n-1}}\mu_{n-1}=\frac{C^{\prime}}{\mu_{n-1}^{n-2}}\leq C^{\prime}.

This proves the lemma. ∎

We now establish the Cherrier-type inequality:

Lemma 3.4.

There exist uniform constants CC and p0p_{0} such that for all pp0p\geq p_{0},

(3.9) M|epu2|g2ΩnΩ¯nCpMepuΩnΩ¯n.\int_{M}|\partial e^{-\frac{pu}{2}}|^{2}_{g}\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}\leq Cp\int_{M}e^{-pu}\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}.
Proof.

By Lemma 3.3 we have

:=MepuJu(2Ω0n1+JuΩn2)Ω¯nCMepuΩnΩ¯n.\mathcal{I}:=\int_{M}e^{-pu}\partial\partial_{J}u\wedge(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\wedge\overline{\Omega}{\mathstrut}^{n}\leq C\int_{M}e^{-pu}\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}.

Interating by parts, we have

=\displaystyle\mathcal{I}= MepuJu(2Ω0n1+JuΩn2)Ω¯n\displaystyle-\int_{M}\partial e^{-pu}\wedge\partial_{J}u\wedge\Big{(}2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}\Big{)}\wedge{\overline{\Omega}}^{n}
+MepuJu((2Ω0n1+JuΩn2)Ω¯n)\displaystyle+\int_{M}e^{-pu}\partial_{J}u\wedge\partial\Big{(}(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\wedge{\overline{\Omega}}^{n}\Big{)}
=\displaystyle= pMepuuJu(2Ω0n1+JuΩn2)Ω¯n\displaystyle p\int_{M}e^{-pu}\partial u\wedge\partial_{J}u\wedge\Big{(}2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}\Big{)}\wedge{\overline{\Omega}}^{n}
+MepuJu((2Ω0n1+JuΩn2)Ω¯n+(2Ω0n1+JuΩn2)Ω¯n)\displaystyle+\int_{M}e^{-pu}\partial_{J}u\wedge\Big{(}(2\partial\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\partial\Omega^{n-2})\wedge{\overline{\Omega}}^{n}+(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\wedge\partial{\overline{\Omega}}^{n}\Big{)}
=\displaystyle= 1+2\displaystyle\mathcal{I}_{1}+\mathcal{I}_{2}

Since Ω0n1+JuΩn2>0\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2}>0 (see (2.10)), we obtain

1pMepuuJuΩ0n1Ω¯nc0pMepuuJuΩn1Ω¯n,\displaystyle\mathcal{I}_{1}\geq p\int_{M}e^{-pu}\partial u\wedge\partial_{J}u\wedge\Omega_{0}^{n-1}\wedge{\overline{\Omega}}^{n}\geq c_{0}p\int_{M}e^{-pu}\partial u\wedge\partial_{J}u\wedge\Omega^{n-1}\wedge{\overline{\Omega}}^{n},

where we use Ω0c01n1Ω\Omega_{0}\geq c_{0}^{\frac{1}{n-1}}\Omega for a positive constant c0c_{0}.

Next we estimate 2\mathcal{I}_{2}. Indeed, we have

2=\displaystyle\mathcal{I}_{2}= 1pMJepu((2Ω0n1+JuΩn2)Ω¯n+(2Ω0n1+JuΩn2)Ω¯n)\displaystyle-\frac{1}{p}\int_{M}{\partial_{J}e^{-pu}\wedge\Big{(}(2\partial\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\partial\Omega^{n-2})\wedge{\overline{\Omega}}^{n}+(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\wedge\partial{\overline{\Omega}}^{n}\Big{)}}
=\displaystyle= 1pMepu((2JΩ0n1+JuJΩn2)Ω¯n(2Ω0n1+JuΩn2)JΩ¯n)\displaystyle\frac{1}{p}\int_{M}{e^{-pu}\Big{(}(2\partial_{J}\partial\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\partial_{J}\partial\Omega^{n-2})\wedge{\overline{\Omega}}^{n}-(2\partial\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\partial\Omega^{n-2})\wedge\partial_{J}{\overline{\Omega}}^{n}\Big{)}}
+1pMepu((2JΩ0n1+JuJΩn2)Ω¯n+(2Ω0n1+JuΩn2)JΩ¯n)\displaystyle+\frac{1}{p}\int_{M}{e^{-pu}\Big{(}(2\partial_{J}\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\partial_{J}\Omega^{n-2})\wedge\partial{\overline{\Omega}}^{n}+(2\Omega_{0}^{n-1}+\partial\partial_{J}u\wedge\Omega^{n-2})\wedge{\partial_{J}\partial\overline{\Omega}}^{n}\Big{)}}
=\displaystyle= 1pMepuJu(JΩn2Ω¯nΩn2JΩ¯n+JΩn2Ω¯n+Ωn2JΩ¯n)\displaystyle\frac{1}{p}\int_{M}{e^{-pu}\partial\partial_{J}u\wedge\Big{(}\partial_{J}\partial\Omega^{n-2}\wedge{\overline{\Omega}}^{n}-\partial\Omega^{n-2}\wedge\partial_{J}{\overline{\Omega}}^{n}+\partial_{J}\Omega^{n-2}\wedge\partial{\overline{\Omega}}^{n}+\Omega^{n-2}\wedge\partial_{J}\partial{\overline{\Omega}}^{n}\Big{)}}
+1pMepu(2JΩ0n1Ω¯n2Ω0n1JΩ¯n+2JΩ0n1Ω¯n+2Ω0n1JΩ¯n)\displaystyle+\frac{1}{p}\int_{M}{e^{-pu}\Big{(}2\partial_{J}\partial\Omega_{0}^{n-1}\wedge{\overline{\Omega}}^{n}-2\partial\Omega_{0}^{n-1}\wedge\partial_{J}{\overline{\Omega}}^{n}+2\partial_{J}\Omega_{0}^{n-1}\wedge\partial{\overline{\Omega}}^{n}+2\Omega_{0}^{n-1}\wedge\partial_{J}\partial{\overline{\Omega}}^{n}\Big{)}}
=\displaystyle= 21+22.\displaystyle\mathcal{I}_{21}+\mathcal{I}_{22}.

22\mathcal{I}_{22} has the following estimate:

22Cp1MepuΩnΩ¯n.\mathcal{I}_{22}\geq-Cp^{-1}\int_{M}{e^{-pu}\Omega^{n}\wedge\overline{\Omega}^{n}}.

Integrating by parts, we have

21=\displaystyle\mathcal{I}_{21}= MepuuJu(JΩn2Ω¯nΩn2JΩ¯n+JΩn2Ω¯n+Ωn2JΩ¯n)\displaystyle\int_{M}{e^{-pu}\partial u\wedge\partial_{J}u\wedge\Big{(}\partial_{J}\partial\Omega^{n-2}\wedge{\overline{\Omega}}^{n}-\partial\Omega^{n-2}\wedge\partial_{J}{\overline{\Omega}}^{n}+\partial_{J}\Omega^{n-2}\wedge\partial{\overline{\Omega}}^{n}+\Omega^{n-2}\wedge\partial_{J}\partial{\overline{\Omega}}^{n}\Big{)}}
+\displaystyle+ 1pMepuJu(JΩn2Ω¯n+Ωn2JΩ¯n+JΩn2Ω¯n+Ωn2JΩ¯n)\displaystyle\frac{1}{p}\int_{M}{e^{-pu}\partial_{J}u\wedge\Big{(}\partial_{J}\partial\Omega^{n-2}\wedge\partial{\overline{\Omega}}^{n}+\partial\Omega^{n-2}\wedge\partial\partial_{J}{\overline{\Omega}}^{n}+\partial\partial_{J}\Omega^{n-2}\wedge\partial{\overline{\Omega}}^{n}+\partial\Omega^{n-2}\wedge\partial_{J}\partial{\overline{\Omega}}^{n}\Big{)}}
\displaystyle\geq CMepuuJuΩn1Ω¯n.\displaystyle-C\int_{M}{e^{-pu}\partial u\wedge\partial_{J}u\wedge\Omega^{n-1}\wedge\overline{\Omega}^{n}}.

Therefore we obtain

(c0pC)MepuuJuΩn1Ω¯nCpMepuΩnΩ¯n\displaystyle\mathcal{I}\geq(c_{0}p-C)\int_{M}{e^{-pu}\partial u\wedge\partial_{J}u\wedge\Omega^{n-1}\wedge\overline{\Omega}^{n}}-\frac{C}{p}\int_{M}{e^{-pu}\Omega^{n}\wedge\overline{\Omega}^{n}}
c0p2MepuuJuΩn1Ω¯nCpMepuΩnΩ¯n.\displaystyle\geq\frac{c_{0}p}{2}\int_{M}{e^{-pu}\partial u\wedge\partial_{J}u\wedge\Omega^{n-1}\wedge\overline{\Omega}^{n}}-\frac{C}{p}\int_{M}{e^{-pu}\Omega^{n}\wedge\overline{\Omega}^{n}}.

Take p0=(2c0)1Cp_{0}=(2c_{0})^{-1}C, then for all pp0p\geq p_{0},

1pMepu2Jepu2Ωn1Ω¯nCMepuΩΩ¯n.\frac{1}{p}\int_{M}\partial e^{-\frac{pu}{2}}\wedge\partial_{J}e^{-\frac{pu}{2}}\wedge\Omega^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n}\leq C\int_{M}e^{-pu}\Omega\wedge\overline{\Omega}{\mathstrut}^{n}.

This proves the lemma. ∎

Proof of Theorem 3.1.

From Lemma 3.4, we can prove the C0C^{0} estimate using similar arguments as that in [12] and [21, 20, 23] by regarding MM as a Hermitian manifold (M,I,g)(M,I,g). For completeness, we sketch the proof here.

By [20], the Cherrier-type inequality (3.9) implies

ep0infMuCMep0uωI2n.e^{-p_{0}\inf\limits_{M}u}\leq C\int_{M}e^{-p_{0}u}\omega_{I}^{2n}.

Then by [12] or [21] there exist uniform constants C1C_{1} and δ>0\delta>0 such that

|{uinfMu+C1}|ωIδ.|\{u\leq\inf_{M}u+C_{1}\}|_{\omega_{I}}\geq\delta.

On the other hand, from supMu=0\sup_{M}u=0 and ΔωIu=2S1(Ju)2S1(Ωh)\Delta_{\omega_{I}}u=2S_{1}(\partial\partial_{J}u)\geq-2S_{1}(\Omega_{h}) (see (3.2)), one can show that (see [23])

M(u)ωI2nC2.\int_{M}(-u)\omega_{I}^{2n}\leq C_{2}.

Then we have

δinfMu{uinfMu+C1}(u+C1)C.-\delta\inf_{M}u\leq\int_{\{u\leq\inf\limits_{M}u+C_{1}\}}(-u+C_{1})\leq C.

This finishes the proof. ∎

4. C1C^{1} Estimate

Theorem 4.1.

Let uu be a solution as in Theorem 1.1. Then there exists a constant CC depending only on the fixed data (I,J,K,g,Ω,Ωh)(I,J,K,g,\Omega,\Omega_{h}) and ff such that

(4.1) |du|gC.|du|_{g}\leq C.
Proof.

A simple computation in local coordinates shows that

nuJuΩn1=14|du|g2Ωn.n\partial u\wedge\partial_{J}u\wedge\Omega^{n-1}=\frac{1}{4}|du|_{g}^{2}\Omega^{n}.

Define

β14|du|g2.\beta\coloneqq\frac{1}{4}|du|_{g}^{2}.

Following [6], we consider

G=logβφuG=\log\beta-\varphi\circ u

where φ\varphi is a function to be determined. Suppose GG attain its maximum at pp, and from now on we compute at the point pp using the normal coordinates around pp (see Remark 2.9).

G=ββφu=0;JG=JββφJu=0;JG=JβββJββ2φ′′uJuφJu=Jββ((φ)2+φ′′)uJuφJu.\begin{split}\partial G&=\frac{\partial\beta}{\beta}-\varphi^{\prime}\partial u=0;\\ \partial_{J}G&=\frac{\partial_{J}\beta}{\beta}-\varphi^{\prime}\partial_{J}u=0;\\ \partial\partial_{J}G&=\frac{\partial\partial_{J}\beta}{\beta}-\frac{\partial\beta\wedge\partial_{J}\beta}{\beta^{2}}-\varphi^{\prime\prime}\partial u\wedge\partial_{J}u-\varphi^{\prime}\partial\partial_{J}u\\ &=\frac{\partial\partial_{J}\beta}{\beta}-((\varphi^{\prime})^{2}+\varphi^{\prime\prime})\partial u\wedge\partial_{J}u-\varphi^{\prime}\partial\partial_{J}u.\end{split}

Let

(4.2) A=Sn1(Ω~)Ωn1Ω~n1,A=S_{n-1}(\widetilde{\Omega})\Omega^{n-1}-\widetilde{\Omega}^{n-1},

where Ω~\widetilde{\Omega} is as in the last section. Computing in normal coordinates shows

A=(n1)!i=0n1(jiΩ~01Ω~2n2 2n1Ω~2j2j+1)dz0dz1dz2i^dz2i+1^dz2n2dz2n1.A=(n-1)!\sum_{i=0}^{n-1}(\sum_{j\neq i}\frac{\widetilde{\Omega}_{01}\cdots\widetilde{\Omega}_{2n-2\>2n-1}}{\widetilde{\Omega}_{2j2j+1}})dz^{0}\wedge dz^{1}\wedge\cdots\wedge\widehat{dz^{2i}}\wedge\widehat{dz^{2i+1}}\wedge\cdots\wedge dz^{2n-2}\wedge dz^{2n-1}.

Thus AA is positive, and we have at point pp

(4.3) 0JGAΩ¯nΩ~nΩ¯n=JβAΩ¯nβΩ~nΩ¯n((φ)2+φ′′)uJuAΩ¯nΩ~nΩ¯nφJuAΩ¯nΩ~nΩ¯n.\begin{split}0&\geq\frac{\partial\partial_{J}G\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\\ &=\frac{\partial\partial_{J}\beta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\beta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}-((\varphi^{\prime})^{2}+\varphi^{\prime\prime})\frac{\partial u\wedge\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}-\varphi^{\prime}\frac{\partial\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}.\end{split}

We need to compute Jβ\partial\partial_{J}\beta. By definition of β\beta we have

βΩ¯n=n¯uJ¯uΩ¯n1.\beta\overline{\Omega}{\mathstrut}^{n}=n\overline{\partial}u\wedge\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}.

Taking J\partial_{J} of both sides and noticing JΩ=0\partial_{J}\Omega=0 since Ω\Omega is hyperKähler, we get

JβΩ¯n=nJ¯uJ¯uΩ¯n1n¯uJJ¯uΩ¯n1.\partial_{J}\beta\wedge\overline{\Omega}{\mathstrut}^{n}=n\partial_{J}\overline{\partial}u\wedge\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}-n\overline{\partial}u\wedge\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}.

Then taking \partial of both sides, we get

JβΩ¯n=nJ¯uJ¯uΩ¯n1+nJ¯uJ¯uΩ¯n1n¯uJJ¯uΩ¯n1+n¯uJJ¯uΩ¯n1.\begin{split}\partial\partial_{J}\beta\wedge\overline{\Omega}{\mathstrut}^{n}=&n\partial\partial_{J}\overline{\partial}u\wedge\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}+n\partial_{J}\overline{\partial}u\wedge\partial\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &-n\partial\overline{\partial}u\wedge\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}+n\overline{\partial}u\wedge\partial\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}.\end{split}

From the equation

(4.4) Ω~n=efΩn,\widetilde{\Omega}^{n}=e^{f}\Omega^{n},

by taking ¯\overline{\partial} we obtain

An¯Ju=(n1)(nΩ~n1¯Ωh+¯efΩn),A\wedge n\overline{\partial}\partial\partial_{J}u=(n-1)(-n\widetilde{\Omega}^{n-1}\wedge\overline{\partial}\Omega_{h}+\overline{\partial}e^{f}\wedge\Omega^{n}),

and by taking J¯\overline{\partial_{J}} we obtain

AnJ¯Ju=(n1)(nΩ~n1J¯Ωh+J¯efΩn).A\wedge n\overline{\partial_{J}}\partial\partial_{J}u=(n-1)(-n\widetilde{\Omega}^{n-1}\wedge\overline{\partial_{J}}\Omega_{h}+\overline{\partial_{J}}e^{f}\wedge\Omega^{n}).

Thus we have for the first term of (4.3)

(4.5) JβAΩ¯n=I1+I2+nJ¯uJ¯uΩ¯n1An¯uJJ¯uΩ¯n1A\partial\partial_{J}\beta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}=I_{1}+I_{2}+n\partial_{J}\overline{\partial}u\wedge\partial\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\wedge A-n\partial\overline{\partial}u\wedge\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\wedge A

where

I1=(n1)(nΩ~n1¯Ωh+¯efΩn)J¯uΩ¯n1,I2=(n1)(nΩ~n1J¯ΩhJ¯efΩn)¯uΩ¯n1.\begin{split}I_{1}&=(n-1)(-n\widetilde{\Omega}^{n-1}\wedge\overline{\partial}\Omega_{h}+\overline{\partial}e^{f}\wedge\Omega^{n})\wedge\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1},\\ I_{2}&=(n-1)(n\widetilde{\Omega}^{n-1}\wedge\overline{\partial_{J}}\Omega_{h}-\overline{\partial_{J}}e^{f}\wedge\Omega^{n})\wedge\overline{\partial}u\wedge\overline{\Omega}{\mathstrut}^{n-1}.\end{split}

By direct computation,

J¯u=uji¯J1dzi¯dzj¯;J¯u=uijdzjJ1dzi;¯u=uij¯dzidzj¯;JJ¯u=uij¯J1dzj¯J1dzi;\begin{split}\partial_{J}\overline{\partial}u&=\sum u_{\overline{ji}}J^{-1}d\overline{z^{i}}\wedge d\overline{z^{j}};\\ \partial\overline{\partial_{J}}u&=\sum u_{ij}dz^{j}\wedge J^{-1}dz^{i};\\ \partial\overline{\partial}u&=\sum u_{i\overline{j}}dz^{i}\wedge d\overline{z^{j}};\\ \partial_{J}\overline{\partial_{J}}u&=\sum u_{i\overline{j}}J^{-1}d\overline{z^{j}}\wedge J^{-1}dz^{i};\end{split}

Thus the third term of (4.5) become

(4.6) nJ¯uJ¯uΩ¯n1A=1nk=0n1j=02n1(ik1Ω~2i2i+1)(|u2kj|2+|u2k+1j|2)Ω~nΩ¯n;n\partial_{J}\overline{\partial}u\wedge\partial\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\wedge A=\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}(\sum_{i\neq k}\frac{1}{\widetilde{\Omega}_{2i2i+1}})(|u_{2kj}|^{2}+|u_{2k+1j}|^{2})\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n};

and the forth term

(4.7) n¯uJJ¯uΩ¯n1A=1nk=0n1j=02n1(ik1Ω~2i2i+1)(|u2kj¯|2+|u2k+1j¯|2)Ω~nΩ¯n.-n\partial\overline{\partial}u\wedge\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\wedge A=\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}(\sum_{i\neq k}\frac{1}{\widetilde{\Omega}_{2i2i+1}})(|u_{2k\overline{j}}|^{2}+|u_{2k+1\overline{j}}|^{2})\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}.

For I1I_{1} and I2I_{2} we have

(4.8) 1n1I1=nΩ~n1¯ΩhJ¯uΩ¯n1J¯u¯efΩnΩ¯n1=1ni=0n1j=02n1(Ωh)2i2i+1,j¯ujΩ~2i2i+1Ω~nΩ¯n+1nj=02n1uj(ef)j¯efΩ~nΩ¯n\begin{split}\frac{1}{n-1}I_{1}&=-n\widetilde{\Omega}^{n-1}\wedge\overline{\partial}\Omega_{h}\wedge\overline{\partial_{J}}u\wedge\overline{\Omega}{\mathstrut}^{n-1}-\overline{\partial_{J}}u\wedge\overline{\partial}e^{f}\wedge\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &=-\frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=0}^{2n-1}\frac{(\Omega_{h})_{2i2i+1,\overline{j}}u_{j}}{\widetilde{\Omega}_{2i2i+1}}\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}+\frac{1}{n}\sum_{j=0}^{2n-1}\frac{u_{j}(e^{f})_{\overline{j}}}{e^{f}}\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}\end{split}

and

(4.9) 1n1I2=nΩ~n1J¯Ωh¯uΩ¯n1+¯uJ¯efΩnΩ¯n1=1ni=0n1j=02n1(Ω¯h)2i2i+1,juj¯Ω~2i2i+1Ω~nΩ¯n+1nj=02n1uj¯(ef)jefΩ~nΩ¯n.\begin{split}\frac{1}{n-1}I_{2}&=n\widetilde{\Omega}^{n-1}\wedge\overline{\partial_{J}}\Omega_{h}\wedge\overline{\partial}u\wedge\overline{\Omega}{\mathstrut}^{n-1}+\overline{\partial}u\wedge\overline{\partial_{J}}e^{f}\wedge\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &=-\frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=0}^{2n-1}\frac{(\overline{\Omega}{\mathstrut}_{h})_{2i2i+1,j}u_{\overline{j}}}{\widetilde{\Omega}_{2i2i+1}}\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}+\frac{1}{n}\sum_{j=0}^{2n-1}\frac{u_{\overline{j}}(e^{f})_{j}}{e^{f}}\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}.\end{split}

Combining (4.8), (4.9), (4.6), (4.7) we obtain estimate of (4.5)

(4.10) JβAΩ¯nβΩ~nΩ¯n=1nβi=0n1j=02n1(Ωh)2i2i+1,j¯uj+(Ω¯h)2i2i+1,juj¯Ω~2i2i+1+1nβj=02n1uj(ef)j¯+uj¯(ef)jef+1nβk=0n1j=02n1ik|u2kj|2+|u2k+1j|2Ω~2i2i+1+1nβk=0n1j=02n1ik|u2kj¯|2+|u2k+1j¯|2Ω~2i2i+1.\begin{split}\frac{\partial\partial_{J}\beta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\beta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}&=-\frac{1}{n\beta}\sum_{i=0}^{n-1}\sum_{j=0}^{2n-1}\frac{(\Omega_{h})_{2i2i+1,\overline{j}}u_{j}+(\overline{\Omega}{\mathstrut}_{h})_{2i2i+1,j}u_{\overline{j}}}{\widetilde{\Omega}_{2i2i+1}}+\frac{1}{n\beta}\sum_{j=0}^{2n-1}\frac{u_{j}(e^{f})_{\overline{j}}+u_{\overline{j}}(e^{f})_{j}}{e^{f}}\\ &+\frac{1}{n\beta}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}\sum_{i\neq k}\frac{|u_{2kj}|^{2}+|u_{2k+1j}|^{2}}{\widetilde{\Omega}_{2i2i+1}}+\frac{1}{n\beta}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}\sum_{i\neq k}\frac{|u_{2k\overline{j}}|^{2}+|u_{2k+1\overline{j}}|^{2}}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

Again by direct computation, the second term of (4.3) is

(4.11) uJuAΩ¯n=1ni=0n1(ki1Ω~2k2k+1)(|u2i|2+|u2i+1|2)Ω~nΩ¯n.\partial u\wedge\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}=\frac{1}{n}\sum_{i=0}^{n-1}(\sum_{k\neq i}\frac{1}{\widetilde{\Omega}_{2k2k+1}})(|u_{2i}|^{2}+|u_{2i+1}|^{2})\widetilde{\Omega}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}.

For the third term of (4.3), we compute

(4.12) JuA=Ju(nΩ~n1ΩΩnΩn1Ω~n1)=(S1(Ju)ΩJu)Ω~n1=(n1)(Ω~nΩhΩ~n1).\begin{split}\partial\partial_{J}u\wedge A&=\partial\partial_{J}u\wedge(\frac{n\widetilde{\Omega}^{n-1}\wedge\Omega}{\Omega^{n}}\Omega^{n-1}-\widetilde{\Omega}^{n-1})\\ &=(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u)\wedge\widetilde{\Omega}^{n-1}\\ &=(n-1)(\widetilde{\Omega}^{n}-\Omega_{h}\wedge\widetilde{\Omega}^{n-1}).\end{split}

By compactness of MM, there exists ϵ>0\epsilon>0 such that ΩhϵΩ\Omega_{h}\geq\epsilon\Omega, we obtain

(4.13) φJuAΩ¯nΩ~nΩ¯n=(n1)φ+(n1)φΩhΩ~n1Ω¯nΩ~nΩ¯n(n1)φ+ϵ(n1)φni=0n11Ω~2i2i+1.\begin{split}-\varphi^{\prime}\frac{\partial\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}&=-(n-1)\varphi^{\prime}+(n-1)\varphi^{\prime}\frac{\Omega_{h}\wedge\widetilde{\Omega}^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\\ &\geq-(n-1)\varphi^{\prime}+\frac{\epsilon(n-1)\varphi^{\prime}}{n}\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

We may assume β1\beta\gg 1 otherwise we are finished. The inequality (4.3) become

(4.14) 0n1nβefi=02n1(ui(ef)i¯+ui¯(ef)i)(φ)2+φ′′ni=0n1(ki1Ω~2k2k+1)(|u2i|2+|u2i+1|2)(n1)φ+n1n(ϵφC1ujβC2uj¯β)i=0n11Ω~2i2i+1.\begin{split}0\geq&\frac{n-1}{n\beta e^{f}}\sum_{i=0}^{2n-1}(u_{i}(e^{f})_{\overline{i}}+u_{\overline{i}}(e^{f})_{i})\\ &-\frac{(\varphi^{\prime})^{2}+\varphi^{\prime\prime}}{n}\sum_{i=0}^{n-1}(\sum_{k\neq i}\frac{1}{\widetilde{\Omega}_{2k2k+1}})(|u_{2i}|^{2}+|u_{2i+1}|^{2})\\ &-(n-1)\varphi^{\prime}+\frac{n-1}{n}(\epsilon\varphi^{\prime}-C_{1}\frac{\sum u_{j}}{\beta}-C_{2}\frac{\sum u_{\overline{j}}}{\beta})\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

The first term is bounded from below. Now we take

(4.15) φ(t)=log(2t+C0)2.\varphi(t)=\frac{\log(2t+C_{0})}{2}.

where C0C_{0} is determined by C0C^{0} estimate, and rewrite (4.14) as

(4.16) C3C4i=0n1(ki1Ω~2k2k+1)(|u2i|2+|u2i+1|2)+C5i=0n11Ω~2i2i+1.C_{3}\geq C_{4}\sum_{i=0}^{n-1}(\sum_{k\neq i}\frac{1}{\widetilde{\Omega}_{2k2k+1}})(|u_{2i}|^{2}+|u_{2i+1}|^{2})+C_{5}\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.

Thus for any fixed ii

Ω~2i2i+1C5C3C.\widetilde{\Omega}_{2i2i+1}\geq\frac{C_{5}}{C_{3}}\geq C.

By equation (4.4) we also have

1Ω~2i2i+1=efjiΩ~2j2j+1Cn1supMef.\frac{1}{\widetilde{\Omega}_{2i2i+1}}=e^{-f}\prod_{j\neq i}\widetilde{\Omega}_{2j2j+1}\geq\frac{C^{n-1}}{\sup_{M}e^{f}}.

From the bound on all Ω~2i2i+1\widetilde{\Omega}_{2i2i+1}, we obtain the bound on β\beta by (4.16). ∎

5. Bound on Ju\partial\partial_{J}u

Theorem 5.1.

Let uu be a solution as in Theorem 1.1. Then there exists a constant CC depending only on the fixed data (I,J,K,g,Ω,Ωh)(I,J,K,g,\Omega,\Omega_{h}) and ff such that

(5.1) |Ju|gC.|\partial\partial_{J}u|_{g}\leq C.
Proof.

For simplicity denote

η=S1(Ju).\eta=S_{1}(\partial\partial_{J}u).

Consider the function

G=logηφuG=\log\eta-\varphi\circ u

where the function φ\varphi is as in the previous section. We compute at a maximum point pp of GG using the normal coordinates around pp (see Remark 2.9). We have

G=ηηφu=0;JG=JηηφJu=0;JG=Jηη((φ)2+φ′′)uJuφJu.\begin{split}\partial G&=\frac{\partial\eta}{\eta}-\varphi^{\prime}\partial u=0;\\ \partial_{J}G&=\frac{\partial_{J}\eta}{\eta}-\varphi^{\prime}\partial_{J}u=0;\\ \partial\partial_{J}G&=\frac{\partial\partial_{J}\eta}{\eta}-((\varphi^{\prime})^{2}+\varphi^{\prime\prime})\partial u\wedge\partial_{J}u-\varphi^{\prime}\partial\partial_{J}u.\end{split}

Let AA be as before (see (4.2)), then at point pp we have

(5.2) 0JGAΩ¯nΩ~nΩ¯n=JηAΩ¯nηΩ~nΩ¯n((φ)2+φ′′)uJuAΩ¯nΩ~nΩ¯nφJuAΩ¯nΩ~nΩ¯n.\begin{split}0&\geq\frac{\partial\partial_{J}G\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\\ &=\frac{\partial\partial_{J}\eta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\eta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}-((\varphi^{\prime})^{2}+\varphi^{\prime\prime})\frac{\partial u\wedge\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}-\varphi^{\prime}\frac{\partial\partial_{J}u\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}.\end{split}

The second and the third term were dealt with in the previous section. We now focus on Jη\partial\partial_{J}\eta in the first term.

By definition η\eta is real, and

ηΩ¯n=n¯¯JuΩ¯n1.\eta\overline{\Omega}{\mathstrut}^{n}=n\bar{\partial}\bar{\partial}_{J}u\wedge\overline{\Omega}{\mathstrut}^{n-1}.

Under the hyperKähler condition dΩ=0\mathrm{d}\>\!\Omega=0, differentiating twice the above equation gives

(5.3) JηΩ¯n=nJ¯¯JuΩ¯n1=n¯¯JJuΩ¯n1\partial\partial_{J}\eta\wedge\overline{\Omega}{\mathstrut}^{n}=n\partial\partial_{J}\bar{\partial}\bar{\partial}_{J}u\wedge\overline{\Omega}{\mathstrut}^{n-1}=n\bar{\partial}\bar{\partial}_{J}\partial\partial_{J}u\wedge\overline{\Omega}{\mathstrut}^{n-1}

The last equality above is due to Lemma 2.1.

We know that (recall (3.3))

Ju=(n1)ΩhS1(Ωh)Ω+S1(Ω~)Ω(n1)Ω~.\partial\partial_{J}u=(n-1)\Omega_{h}-S_{1}(\Omega_{h})\Omega+S_{1}(\widetilde{\Omega})\Omega-(n-1)\widetilde{\Omega}.

Thus

(5.4) ¯¯JJu=(n1)¯¯JΩh¯¯JS1(Ωh)Ω+¯¯JS1(Ω~)Ω(n1)¯¯JΩ~.\bar{\partial}\bar{\partial}_{J}\partial\partial_{J}u=(n-1)\bar{\partial}\bar{\partial}_{J}\Omega_{h}-\bar{\partial}\bar{\partial}_{J}S_{1}(\Omega_{h})\wedge\Omega+\bar{\partial}\bar{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge\Omega-(n-1)\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}.

Here we again used the hyperKähler condition on Ω\Omega. Now we have

(5.5) JηAΩ¯n=nA¯¯JJuΩ¯n1=n(n1)A¯¯JΩhΩ¯n1n¯¯JS1(Ωh)AΩΩ¯n1+n¯¯JS1(Ω~)AΩΩ¯n1n(n1)A¯¯JΩ~Ω¯n1\begin{split}\partial\partial_{J}\eta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}&=nA\wedge\bar{\partial}\bar{\partial}_{J}\partial\partial_{J}u\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &=n(n-1)A\wedge\bar{\partial}\bar{\partial}_{J}\Omega_{h}\wedge\overline{\Omega}{\mathstrut}^{n-1}-n\bar{\partial}\bar{\partial}_{J}S_{1}(\Omega_{h})\wedge A\wedge\Omega\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &\quad+n\bar{\partial}\bar{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge A\wedge\Omega\wedge\overline{\Omega}{\mathstrut}^{n-1}-n(n-1)A\wedge\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\overline{\Omega}{\mathstrut}^{n-1}\end{split}

Notice that

AΩ=Sn1(Ω~)ΩnΩ~n1Ω=n1nSn1(Ω~)ΩnA\wedge\Omega=S_{n-1}(\widetilde{\Omega})\Omega^{n}-\widetilde{\Omega}^{n-1}\wedge\Omega=\frac{n-1}{n}S_{n-1}(\widetilde{\Omega})\Omega^{n}

and

¯¯JS1(Ω~)Ωn=n¯¯JΩ~Ωn1.\bar{\partial}\bar{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge\Omega^{n}=n\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\Omega^{n-1}.

The third term of (5.5) becomes

¯¯JS1(Ω~)AΩΩ¯n1=¯¯JS1(Ω~)(Ωnn1nSn1(Ω~))Ω¯n1=(n1)Sn1(Ω~)¯¯JΩ~Ωn1Ω¯n1.\begin{split}\bar{\partial}\bar{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge A\wedge\Omega\wedge\overline{\Omega}{\mathstrut}^{n-1}&=\bar{\partial}\bar{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge(\Omega^{n}\cdot\frac{n-1}{n}S_{n-1}(\widetilde{\Omega}))\wedge\overline{\Omega}{\mathstrut}^{n-1}\\ &=(n-1)S_{n-1}(\widetilde{\Omega})\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\Omega^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}.\end{split}

The forth term is

A¯¯JΩ~Ω¯n1=Sn1(Ω~)¯¯JΩ~Ωn1Ω¯n1Ω~n1¯¯JΩ~Ω¯n1.A\wedge\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\overline{\Omega}{\mathstrut}^{n-1}=S_{n-1}(\widetilde{\Omega})\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\Omega^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}-\widetilde{\Omega}^{n-1}\wedge\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\overline{\Omega}{\mathstrut}^{n-1}.

The first two terms of (5.5) are similar and we get

JηAΩ¯n=n(n1)¯¯JΩ~Ω~n1Ω¯n1n(n1)¯¯JΩhΩ~n1Ω¯n1\partial\partial_{J}\eta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}=n(n-1)\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\widetilde{\Omega}^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}-n(n-1)\bar{\partial}\bar{\partial}_{J}\Omega_{h}\wedge\widetilde{\Omega}^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}

and

(5.6) JηAΩ¯nηΩ~nΩ¯n=n(n1)¯¯JΩ~Ω~n1Ω¯n1ηΩ~nΩ¯nn(n1)¯¯JΩhΩ~n1Ω¯n1ηΩ~nΩ¯n=n1ηni=0n1p=02n1Ω~2i2i+1,pp¯Ω~2i2i+1n1ηni=0n1p=02n1(Ωh)2i2i+1,pp¯Ω~2i2i+1n1ηni=0n1p=02n1Ω~2i2i+1,pp¯Ω~2i2i+1C1ηi=0n11Ω~2i2i+1.\begin{split}\frac{\partial\partial_{J}\eta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\eta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}&=n(n-1)\frac{\bar{\partial}\bar{\partial}_{J}\widetilde{\Omega}\wedge\widetilde{\Omega}^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}}{\eta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}-n(n-1)\frac{\bar{\partial}\bar{\partial}_{J}\Omega_{h}\wedge\widetilde{\Omega}^{n-1}\wedge\overline{\Omega}{\mathstrut}^{n-1}}{\eta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\\ &=\frac{n-1}{\eta n}\sum_{i=0}^{n-1}\sum_{p=0}^{2n-1}\frac{\widetilde{\Omega}_{2i2i+1,p\bar{p}}}{\widetilde{\Omega}_{2i2i+1}}-\frac{n-1}{\eta n}\sum_{i=0}^{n-1}\sum_{p=0}^{2n-1}\frac{(\Omega_{h})_{2i2i+1,p\bar{p}}}{\widetilde{\Omega}_{2i2i+1}}\\ &\geq\frac{n-1}{\eta n}\sum_{i=0}^{n-1}\sum_{p=0}^{2n-1}\frac{\widetilde{\Omega}_{2i2i+1,p\bar{p}}}{\widetilde{\Omega}_{2i2i+1}}-\frac{C_{1}}{\eta}\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

We now rewrite the right hand side of (5.6) using the equation

(5.7) Pf(Ω~ij)=efPf(Ωij).\text{Pf}(\widetilde{\Omega}_{ij})=e^{f}\text{Pf}(\Omega_{ij}).

Take logarithm of both sides

(5.8) logPf(Ω~ij)=f+logPf(Ωij).\log\text{Pf}(\widetilde{\Omega}_{ij})=f+\log\text{Pf}(\Omega_{ij}).

Since Ωn=Pf(Ωij)dz0dz2n1\Omega^{n}=\text{Pf}(\Omega_{ij})dz^{0}\wedge\cdots\wedge dz^{2n-1} and ¯Ω=0\bar{\partial}\Omega=0, we have ¯Pf(Ω)=0\bar{\partial}\text{Pf}(\Omega)=0. Taking ¯\bar{\partial} of (5.8), since Pf(Ω~ij)2=det(Ω~ij)\text{Pf}(\widetilde{\Omega}_{ij})^{2}=\det(\widetilde{\Omega}_{ij}), we get

(5.9) 12Ω~ijΩ~ji,p¯=fp¯.\frac{1}{2}\sum\widetilde{\Omega}^{ij}\widetilde{\Omega}_{ji,\bar{p}}=f_{\bar{p}}.

Taking \partial of both sides we obtain

(5.10) 12Ω~ijΩ~ji,p¯p=12Ω~ikΩ~kl,pΩ~ljΩ~ji,p¯+fpp¯.\frac{1}{2}\sum\widetilde{\Omega}^{ij}\widetilde{\Omega}_{ji,\bar{p}p}=\frac{1}{2}\sum\widetilde{\Omega}^{ik}\widetilde{\Omega}_{kl,p}\widetilde{\Omega}^{lj}\widetilde{\Omega}_{ji,\bar{p}}+f_{p\bar{p}}.

Writing in local coordinates, the left hand side of (5.10) is

(5.11) 12Ω~2i2i+1Ω~2i+12i,pp¯+12Ω~2i+12iΩ~2i2i+1,pp¯=Ω~2i2i+1,pp¯Ω~2i2i+1.\frac{1}{2}\sum\widetilde{\Omega}^{2i2i+1}\widetilde{\Omega}_{2i+12i,p\bar{p}}+\frac{1}{2}\sum\widetilde{\Omega}^{2i+12i}\widetilde{\Omega}_{2i2i+1,p\bar{p}}=\sum\frac{\widetilde{\Omega}_{2i2i+1,p\bar{p}}}{\widetilde{\Omega}_{2i2i+1}}.

We claim that the first term of the right hand side of (5.10) is positive, i.e.

(5.12) Ω~ikΩ~kl,pΩ~ljΩ~ji,p¯0.\sum\widetilde{\Omega}^{ik}\widetilde{\Omega}_{kl,p}\widetilde{\Omega}^{lj}\widetilde{\Omega}_{ji,\bar{p}}\geq 0.

Indeed, in canonical coordinates,

Ω~ikΩ~kl,pΩ~ljΩ~ji,p¯=Ω~2i2i+1(Ω~2j2j+1Ω~2i+12j,pΩ~2j+12i,p¯+Ω~2j+12jΩ~2i+12j+1,pΩ~2j2i,p¯)+Ω~2i+12i(Ω~2j2j+1Ω~2i2j,pΩ~2j+12i+1,p¯+Ω~2j+12jΩ~2i2j+1,pΩ~2j2i+1,p¯)=Ω~2i+12j,pΩ~2j+12i,p¯+Ω~2i2j+1,pΩ~2j2i+1,p¯Ω~2i2i+1Ω~2j2j+1Ω~2i+12j+1,pΩ~2j2i,p¯+Ω~2i2j,pΩ~2j+12i+1,p¯Ω~2i2i+1Ω~2j2j+1\begin{split}\sum\widetilde{\Omega}^{ik}\widetilde{\Omega}_{kl,p}\widetilde{\Omega}^{lj}\widetilde{\Omega}_{ji,\bar{p}}&=\widetilde{\Omega}^{2i2i+1}(\widetilde{\Omega}^{2j2j+1}\widetilde{\Omega}_{2i+12j,p}\widetilde{\Omega}_{2j+12i,\bar{p}}+\widetilde{\Omega}^{2j+12j}\widetilde{\Omega}_{2i+12j+1,p}\widetilde{\Omega}_{2j2i,\bar{p}})\\ &\quad+\widetilde{\Omega}^{2i+12i}(\widetilde{\Omega}^{2j2j+1}\widetilde{\Omega}_{2i2j,p}\widetilde{\Omega}_{2j+12i+1,\bar{p}}+\widetilde{\Omega}^{2j+12j}\widetilde{\Omega}_{2i2j+1,p}\widetilde{\Omega}_{2j2i+1,\bar{p}})\\ &=\sum\frac{\widetilde{\Omega}_{2i+12j,p}\widetilde{\Omega}_{2j+12i,\bar{p}}+\widetilde{\Omega}_{2i2j+1,p}\widetilde{\Omega}_{2j2i+1,\bar{p}}}{\widetilde{\Omega}_{2i2i+1}\widetilde{\Omega}_{2j2j+1}}\\ &\quad-\sum\frac{\widetilde{\Omega}_{2i+12j+1,p}\widetilde{\Omega}_{2j2i,\bar{p}}+\widetilde{\Omega}_{2i2j,p}\widetilde{\Omega}_{2j+12i+1,\bar{p}}}{\widetilde{\Omega}_{2i2i+1}\widetilde{\Omega}_{2j2j+1}}\end{split}

Since Ω~\widetilde{\Omega} is JJ-real, using relation (2.12) we see that

(5.13) Ω~ikΩ~klpΩ~ljΩ~jip¯=|Ω~2i+12j,p|2+|Ω~2i2j+1,p|2+|Ω~2i+12j+1,p|2+|Ω~2i2j,p|2Ω~2i2i+1Ω~2j2j+1\widetilde{\Omega}^{ik}\widetilde{\Omega}_{klp}\widetilde{\Omega}^{lj}\widetilde{\Omega}_{ji\bar{p}}=\sum\frac{|\widetilde{\Omega}_{2i+12j,p}|^{2}+|\widetilde{\Omega}_{2i2j+1,p}|^{2}+|\widetilde{\Omega}_{2i+12j+1,p}|^{2}+|\widetilde{\Omega}_{2i2j,p}|^{2}}{\widetilde{\Omega}_{2i2i+1}\widetilde{\Omega}_{2j2j+1}}

therefore (5.12) holds. By (5.6), (5.10), (5.11) and (5.12) we have

(5.14) JηAΩ¯nηΩ~nΩ¯nn12ηnΔI,gfC1ηi=0n11Ω~2i2i+1.\frac{\partial\partial_{J}\eta\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\eta\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\geq\frac{n-1}{2\eta n}\Delta_{I,g}f-\frac{C_{1}}{\eta}\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.

By (4.11) and (4.13), the inequality (5.2) now becomes

(5.15) 0n12ηnΔI,gf(φ)2+φ′′ni=0n1(ki1Ω~2k2k+1)(|u2i|2+|u2i+1|2)(n1)φ+(ϵ(n1)φnC1η)i=0n11Ω~2i2i+1.\begin{split}0\geq&\frac{n-1}{2\eta n}\Delta_{I,g}f-\frac{(\varphi^{\prime})^{2}+\varphi^{\prime\prime}}{n}\sum_{i=0}^{n-1}(\sum_{k\neq i}\frac{1}{\widetilde{\Omega}_{2k2k+1}})(|u_{2i}|^{2}+|u_{2i+1}|^{2})\\ &-(n-1)\varphi^{\prime}+\left(\frac{\epsilon(n-1)\varphi^{\prime}}{n}-\frac{C_{1}}{\eta}\right)\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

Assuming η1\eta\gg 1, we obtain from (5.15)

(5.16) C2C3i=0n11Ω~2i2i+1C_{2}\geq C_{3}\sum_{i=0}^{n-1}\frac{1}{\widetilde{\Omega}_{2i2i+1}}

and hence all Ω~2i2i+1\widetilde{\Omega}_{2i2i+1} are uniformly bounded. Since η=S1(Ju)=S1(Ω~)S1(Ωh)\eta=S_{1}(\partial\partial_{J}u)=S_{1}(\widetilde{\Omega})-S_{1}(\Omega_{h}), we can therefore obtain a unform bound on η\eta.

6. C2C^{2} Estimate

Theorem 6.1.

Let uu be a solution as in Theorem 1.1. Then there exists a constant CC depending only on the fixed data (I,J,K,g,Ω,Ωh)(I,J,K,g,\Omega,\Omega_{h}) and ff such that

(6.1) |2u|gC.|\nabla^{2}u|_{g}\leq C.
Proof.

Since the sum of eigenvalues of 2u\nabla^{2}u is bounded below by

12ΔI,gu=S1(Ju)=S1(Ω~)S1(Ωh)S1(Ωh),\frac{1}{2}\Delta_{I,g}u=S_{1}(\partial\partial_{J}u)=S_{1}(\widetilde{\Omega})-S_{1}(\Omega_{h})\geq-S_{1}(\Omega_{h}),

it is sufficient to show that the maximum eigenvalue is bounded from above. Define a function on MM as in [7]

λ(x)=supXS(TxM)(2u)(X,X)\lambda(x)=\sup_{X\in S(T_{x}M)}(\nabla^{2}u)(X,X)

where S(TxM)S(T_{x}M) denotes unit tangent vectors at xx.

Consider the function

G=λ+14|du|g2.G=\lambda+\frac{1}{4}|du|_{g}^{2}.

Since we have obtained C1C^{1} estimate, it is sufficient to estimate GG at a maximum point pMp\in M. In the normal coordinates around pp we introduce real coordinates

(6.2) zj=tj+it2n+j,j=0,,2n1,z^{j}=t_{j}+it_{2n+j},\quad j=0,\cdots,2n-1,

and compute

(6.3) 2u=(utjdtj)=utitjdtidtjΓjikutjdtidtk,\nabla^{2}u=\nabla(u_{t_{j}}dt_{j})=u_{t_{i}t_{j}}dt_{i}\otimes dt_{j}-\Gamma^{k}_{ji}u_{t_{j}}dt_{i}\otimes dt_{k},

where Γjik\Gamma^{k}_{ji} is the Christoffel symbol of \nabla with respect to {tj}i=04n1\{\frac{\partial}{\partial t_{j}}\}^{4n-1}_{i=0}. Suppose

X(p)=j=04n1Xj(p)tj(p)X(p)=\sum_{j=0}^{4n-1}X^{j}(p)\frac{\partial}{\partial t_{j}}(p)

is the vector realizing the supremum of 2u\nabla^{2}u at pp, and we extend it to a constant vector field XX near pp, i.e.

X=j=04n1Xj(p)tj.X=\sum_{j=0}^{4n-1}X^{j}(p)\frac{\partial}{\partial t_{j}}.

Then define in a sufficiently small neighbourhood,

λ~=2u(X,X)G~=λ~+14|du|g2.\begin{split}\tilde{\lambda}&=\nabla^{2}u(X,X)\\ \tilde{G}&=\tilde{\lambda}+\frac{1}{4}|du|_{g}^{2}.\end{split}

Notice that λ~λ\tilde{\lambda}\leq\lambda, λ~(p)=λ(p)\tilde{\lambda}(p)=\lambda(p). Hence G~\tilde{G} also attain its maximum at pp near pp, and λ~\tilde{\lambda} therefore G~\tilde{G} is smooth near pp. By (6.3) we have

(6.4) λ~=DX2uΓjikutjXiXk\tilde{\lambda}=D^{2}_{X}u-\Gamma^{k}_{ji}u_{t_{j}}X^{i}X^{k}

where DD denotes the usual derivative with respect to real coordinates.

Let AA be as before (see (4.2)), then at the point pp we get

(6.5) 0JG~AΩ¯nΩ~nΩ¯n=Jλ~AΩ¯nΩ~nΩ¯n+14J|du|g2AΩ¯nΩ~nΩ¯n.0\geq\frac{\partial\partial_{J}\tilde{G}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}=\frac{\partial\partial_{J}\tilde{\lambda}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}+\frac{\frac{1}{4}\partial\partial_{J}|du|_{g}^{2}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}.

In local coordinates, the first term is

(6.6) Jλ~AΩ¯nΩ~nΩ¯n=1np=0n1ipλ~2p2p¯+λ~2p+12p+1¯Ω~2i2i+1=1ni=0n1piλ~2p2p¯+λ~2p+12p+1¯Ω~2i2i+1.\begin{split}\frac{\partial\partial_{J}\tilde{\lambda}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}&=\frac{1}{n}\sum_{p=0}^{n-1}\sum_{i\neq p}\frac{\tilde{\lambda}_{2p\overline{2p}}+\tilde{\lambda}_{2p+1\overline{2p+1}}}{\widetilde{\Omega}_{2i2i+1}}\\ &=\frac{1}{n}\sum_{i=0}^{n-1}\sum_{p\neq i}\frac{\tilde{\lambda}_{2p\overline{2p}}+\tilde{\lambda}_{2p+1\overline{2p+1}}}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

Differentiating (6.4) twice gives

(6.7) λ~pp¯=DX2upp¯Γjipp¯kutjXiXkΓjipkutjtp¯XiXkΓjip¯kutjtpXiXkDX2upp¯C1(λ~+1).\begin{split}\tilde{\lambda}_{p\overline{p}}&=D^{2}_{X}u_{p\overline{p}}-\Gamma^{k}_{jip\overline{p}}u_{t_{j}}X^{i}X^{k}-\Gamma^{k}_{jip}u_{t_{j}t_{\overline{p}}}X^{i}X^{k}-\Gamma^{k}_{ji\overline{p}}u_{t_{j}t_{p}}X^{i}X^{k}\\ &\geq D^{2}_{X}u_{p\overline{p}}-C_{1}(\tilde{\lambda}+1).\end{split}

Here we used Remark 2.9 and the fact that derivatives of Γijk\Gamma^{k}_{ij} depend only on gg, and the gradient of uu is bounded. In addition

|utitj|C2(1+λ~).|u_{t_{i}t_{j}}|\leq C_{2}(1+\tilde{\lambda}).

By (5.1) and (3.2) we know that

(6.8) 1C3Ω~2i2i+1C3.\frac{1}{C_{3}}\leq\widetilde{\Omega}_{2i2i+1}\leq C_{3}.

Applying (6.7) and (6.8) we can estimate (6.6):

(6.9) 1ni=0n1piλ~2p2p¯+λ~2p+12p+1¯Ω~2i2i+11ni=0n1piDX2u2p2p¯+DX2u2p+12p+1¯Ω~2i2i+1C1(λ~+1)C4p=02n1DX2upp¯C1(λ~+1)\begin{split}\frac{1}{n}\sum_{i=0}^{n-1}\sum_{p\neq i}\frac{\tilde{\lambda}_{2p\overline{2p}}+\tilde{\lambda}_{2p+1\overline{2p+1}}}{\widetilde{\Omega}_{2i2i+1}}&\geq\frac{1}{n}\sum_{i=0}^{n-1}\sum_{p\neq i}\frac{D^{2}_{X}u_{2p\overline{2p}}+D^{2}_{X}u_{2p+1\overline{2p+1}}}{\widetilde{\Omega}_{2i2i+1}}-C_{1}(\tilde{\lambda}+1)\\ &\geq C_{4}\sum_{p=0}^{2n-1}D^{2}_{X}u_{p\overline{p}}-C_{1}(\tilde{\lambda}+1)\end{split}

To deal with the first term of the right hand side, we use equation (5.7)

logPf(Ω~ij)=f+logPf(Ωij).\log\text{Pf}(\widetilde{\Omega}_{ij})=f+\log\text{Pf}(\Omega_{ij}).

Differentiating twice in direction XX, we get

(6.10) 12Ω~ijDX2Ω~ji=12Ω~ikDXΩ~klΩ~ljDXΩ~ji+DX2f+DX2logPf(Ωij).\frac{1}{2}\sum\widetilde{\Omega}^{ij}D^{2}_{X}\widetilde{\Omega}_{ji}=\frac{1}{2}\sum\widetilde{\Omega}^{ik}D_{X}\widetilde{\Omega}_{kl}\widetilde{\Omega}^{lj}D_{X}\widetilde{\Omega}_{ji}+D^{2}_{X}f+D^{2}_{X}\log\text{Pf}(\Omega_{ij}).

As in previous section,

Ω~ikDXΩ~klΩ~ljDXΩ~ji=DXΩ~2i+12jDXΩ~2j+12i+DXΩ~2i2j+1DXΩ~2j2i+1Ω~2i2i+1Ω~2j2j+1DXΩ~2i+12j+1DXΩ~2j2i+DXΩ~2i2jDXΩ~2j+12i+1Ω~2i2i+1Ω~2j2j+1.\begin{split}\sum\widetilde{\Omega}^{ik}D_{X}\widetilde{\Omega}_{kl}\widetilde{\Omega}^{lj}D_{X}\widetilde{\Omega}_{ji}=&\sum\frac{D_{X}\widetilde{\Omega}_{2i+12j}D_{X}\widetilde{\Omega}_{2j+12i}+D_{X}\widetilde{\Omega}_{2i2j+1}D_{X}\widetilde{\Omega}_{2j2i+1}}{\widetilde{\Omega}_{2i2i+1}\widetilde{\Omega}_{2j2j+1}}\\ &-\sum\frac{D_{X}\widetilde{\Omega}_{2i+12j+1}D_{X}\widetilde{\Omega}_{2j2i}+D_{X}\widetilde{\Omega}_{2i2j}D_{X}\widetilde{\Omega}_{2j+12i+1}}{\widetilde{\Omega}_{2i2i+1}\widetilde{\Omega}_{2j2j+1}}.\end{split}

Notice that for p=0,,2n1p=0,\dots,2n-1,

tpΩ~ij=zpΩ~ij+z¯pΩ~ij,t2n+pΩ~ij=i(z¯pΩ~ijzpΩ~ij).\frac{\partial}{\partial t_{p}}\widetilde{\Omega}_{ij}=\frac{\partial}{\partial z^{p}}\widetilde{\Omega}_{ij}+\frac{\partial}{\partial\bar{z}^{p}}\widetilde{\Omega}_{ij},\quad\frac{\partial}{\partial t_{2n+p}}\widetilde{\Omega}_{ij}=-i\big{(}\frac{\partial}{\partial\bar{z}^{p}}\widetilde{\Omega}_{ij}-\frac{\partial}{\partial z^{p}}\widetilde{\Omega}_{ij}\big{)}.

Hence by (2.12), we obtain

DXΩ~2i2j=DXΩ~2i+12j+1¯,DXΩ~2i2j+1=DXΩ~2j2i+1¯,DXΩ~2i+12j=DXΩ~2j+12i¯,DXΩ~2i+12j+1=DXΩ~2i2j¯.\begin{split}&D_{X}\widetilde{\Omega}_{2i2j}=\overline{D_{X}\widetilde{\Omega}_{2i+12j+1}}\,,\quad D_{X}\widetilde{\Omega}_{2i2j+1}=\overline{D_{X}\widetilde{\Omega}_{2j2i+1}}\,,\\ &D_{X}\widetilde{\Omega}_{2i+12j}=\overline{D_{X}\widetilde{\Omega}_{2j+12i}}\,,\quad D_{X}\widetilde{\Omega}_{2i+12j+1}=\overline{D_{X}\widetilde{\Omega}_{2i2j}}\,.\end{split}

Therefore

Ω~ikDXΩ~klΩ~ljDXΩ~ji0.\sum\widetilde{\Omega}^{ik}D_{X}\widetilde{\Omega}_{kl}\widetilde{\Omega}^{lj}D_{X}\widetilde{\Omega}_{ji}\geq 0.

Combining with (6.10) gives

(6.11) i=0n1DX2Ω~2i2i+1Ω~2i2i+1DX2f+DX2logPf(Ωij).\sum_{i=0}^{n-1}\frac{D^{2}_{X}\widetilde{\Omega}_{2i2i+1}}{\widetilde{\Omega}_{2i2i+1}}\geq D^{2}_{X}f+D^{2}_{X}\log\text{Pf}(\Omega_{ij}).

Write JJ in local coordinates as

J=Jk¯ldz¯kzl+Jkl¯dzkz¯l.J=J^{l}_{\bar{k}}d\bar{z}^{k}\otimes\partial_{z^{l}}+J^{\bar{l}}_{k}dz^{k}\otimes\partial_{\bar{z}^{l}}.

Notice that

Ω~ij=(Ωh)ij+1n1(S1(Ju)Ωij(uik¯Jjk¯+ujk¯Jik¯)).\widetilde{\Omega}_{ij}=(\Omega_{h})_{ij}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega_{ij}-(-u_{i\overline{k}}J^{\overline{k}}_{j}+u_{j\overline{k}}J^{\overline{k}}_{i})).

Differentiating twice we get

(6.12) (n1)DX2Ω~2i2i+1=(n1)DX2(Ωh)2i2i+1+p=02n1DX2upp¯+S1(Ju)DX2Ω2i2i+1(DX2u2i2i¯+DX2u2i+12i+1¯)+uik¯DX2Jjk¯ujk¯DX2Jik¯.\begin{split}(n-1)D^{2}_{X}\widetilde{\Omega}_{2i2i+1}=&\,(n-1)D^{2}_{X}(\Omega_{h})_{2i2i+1}+\sum_{p=0}^{2n-1}D^{2}_{X}u_{p\overline{p}}+S_{1}(\partial\partial_{J}u)D_{X}^{2}\Omega_{2i2i+1}\\ &-(D^{2}_{X}u_{2i\overline{2i}}+D^{2}_{X}u_{2i+1\overline{2i+1}})+u_{i\overline{k}}D^{2}_{X}J^{\overline{k}}_{j}-u_{j\overline{k}}D^{2}_{X}J^{\overline{k}}_{i}.\end{split}

Here we used Remark 2.9 again, namely at the point pp,

Jk¯,il=Jk,il¯=Jk,i¯l¯=Jk¯,i¯l=0.J^{l}_{\bar{k},i}=J^{\bar{l}}_{k,i}=J^{\bar{l}}_{k,\bar{i}}=J^{l}_{\bar{k},\bar{i}}=0.

Combine with (6.11)

(6.13) p=02n1DX2upp¯C5(λ~+1).\sum_{p=0}^{2n-1}D^{2}_{X}u_{p\overline{p}}\geq-C_{5}(\tilde{\lambda}+1).

Then combining with (6.9) we obtain

(6.14) 1ni=0n1piλ~2p2p¯+λ~2p+12p+1¯Ω~2i2i+1C(λ~+1).\frac{1}{n}\sum_{i=0}^{n-1}\sum_{p\neq i}\frac{\tilde{\lambda}_{2p\overline{2p}}+\tilde{\lambda}_{2p+1\overline{2p+1}}}{\widetilde{\Omega}_{2i2i+1}}\geq-C^{\prime}(\tilde{\lambda}+1).

Now we have the eatimate of (6.6). The second term of (6.5) has been dealt with in C1C^{1} estimate as in (4.10)

(6.15) 14J|du|g2AΩ¯nΩ~nΩ¯n=1ni=0n1j=02n1(Ωh)2i2i+1,j¯uj+(Ω¯h)2i2i+1,juj¯Ω~2i2i+1+1nj=02n1uj(ef)j¯+uj¯(ef)jef+1nk=0n1j=02n1ik|u2kj|2+|u2k+1j|2Ω~2i2i+1+1nk=0n1j=02n1ik|u2kj¯|2+|u2k+1j¯|2Ω~2i2i+1.\begin{split}&\frac{\frac{1}{4}\partial\partial_{J}|du|_{g}^{2}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\\ =&-\frac{1}{n}\sum_{i=0}^{n-1}\sum_{j=0}^{2n-1}\frac{(\Omega_{h})_{2i2i+1,\overline{j}}u_{j}+(\overline{\Omega}{\mathstrut}_{h})_{2i2i+1,j}u_{\overline{j}}}{\widetilde{\Omega}_{2i2i+1}}+\frac{1}{n}\sum_{j=0}^{2n-1}\frac{u_{j}(e^{f})_{\overline{j}}+u_{\overline{j}}(e^{f})_{j}}{e^{f}}\\ &+\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}\sum_{i\neq k}\frac{|u_{2kj}|^{2}+|u_{2k+1j}|^{2}}{\widetilde{\Omega}_{2i2i+1}}+\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}\sum_{i\neq k}\frac{|u_{2k\overline{j}}|^{2}+|u_{2k+1\overline{j}}|^{2}}{\widetilde{\Omega}_{2i2i+1}}.\end{split}

Combining with (6.8) and C1C^{1} estimate we obtain

(6.16) 14J|du|g2AΩ¯nΩ~nΩ¯nC6+C7(|uij|2+|uij¯|2).\frac{\frac{1}{4}\partial\partial_{J}|du|_{g}^{2}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\geq-C_{6}+C_{7}(|u_{ij}|^{2}+|u_{i\bar{j}}|^{2}).

By the definition of λ\lambda

(6.17) |uij|2+|uij¯|2C8λ~2.|u_{ij}|^{2}+|u_{i\bar{j}}|^{2}\geq C_{8}\tilde{\lambda}^{2}.

Combining (6.16) and (6.17) we get

(6.18) 14J|du|g2AΩ¯nΩ~nΩ¯nC6+Cλ~2.\frac{\frac{1}{4}\partial\partial_{J}|du|_{g}^{2}\wedge A\wedge\overline{\Omega}{\mathstrut}^{n}}{\widetilde{\Omega}{\mathstrut}^{n}\wedge\overline{\Omega}{\mathstrut}^{n}}\geq-C_{6}+C\tilde{\lambda}^{2}.

Insert (6.14) and (6.18) into (6.5)

(6.19) 0Cλ~2Cλ~C′′.0\geq C\tilde{\lambda}^{2}-C^{\prime}\tilde{\lambda}-C^{\prime\prime}.

This gives upper bound of λ~\tilde{\lambda}, therefore λ\lambda is bounded above. ∎

7. Proof of the Main Theorem

Once we have the C2C^{2} estimates, the C2,αC^{2,\alpha}-estimates can be derived. In order to prove the main theorem, We consider the following continuity equation (ut,bt)(u_{t},b_{t}) with t[0,1]t\in[0,1]:

(7.1) (Ωh+1n1(S1(Jut)ΩJut))n=etf+(1t)f0+btΩn,\displaystyle(\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u_{t})\Omega-\partial\partial_{J}u_{t}))^{n}=e^{tf+(1-t)f_{0}+b_{t}}\Omega^{n},
(7.2) Ωh+1n1(S1(Jut)ΩJut)>0,supMut=0.\displaystyle\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u_{t})\Omega-\partial\partial_{J}u_{t})>0,\quad\sup\limits_{M}u_{t}=0.

where f0=log(Ωhn/Ωn)f_{0}=\log(\Omega_{h}^{n}/\Omega^{n}). Consider the set

S={t[0,1]:(ut,bt)C2,α(M,)× solves the equation (7.1),(7.2)}S=\{t\in[0,1]:(u_{t},b_{t})\in C^{2,\alpha}(M,\mathbb{R})\times\mathbb{R}\text{\ solves the equation\ }\eqref{main1},\eqref{main2}\}

Clearly we have 0S0\in S. The C2,αC^{2,\alpha}-estimates implies closedness of SS. We would like to show the openness as in [7]. Denote

Ω~u=Ωh+1n1(S1(Ju)ΩJu).\widetilde{\Omega}_{u}=\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}u)\Omega-\partial\partial_{J}u).

Consider the operator

:𝒜uΩ~unΩu,\mathcal{M}:\mathcal{A}\ni u\mapsto\frac{\widetilde{\Omega}_{u}^{n}}{\Omega_{u}}\in\mathcal{B},

where

𝒜{uCk+2,α(M):Ω~u>0,MuΩnΩ¯n=0}\displaystyle\mathcal{A}\coloneqq\{u\in C^{k+2,\alpha}(M):\widetilde{\Omega}_{u}>0,\int_{M}u\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}=0\}
{f~Ck,α(M):Mf~ΩnΩ¯n=MΩnΩ¯n}.\displaystyle\mathcal{B}\coloneqq\{\tilde{f}\in C^{k,\alpha}(M):\int_{M}\tilde{f}\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}=\int_{M}\Omega^{n}\wedge\overline{\Omega}{\mathstrut}^{n}\}.

It remains to show that for every u𝒜u\in\mathcal{A} the differential dud_{u}\mathcal{M} is an isomorphism. Indeed for vTu𝒜v\in T_{u}\mathcal{A} we have

du(v)\displaystyle d_{u}\mathcal{M}(v) =ddt|t=0(u+tv)=ddt|t=0(Ωh+1n1(S1(J(u+tv))ΩJ(u+tv)))nΩn\displaystyle=\frac{d}{dt}\bigg{|}_{t=0}\mathcal{M}(u+tv)=\frac{d}{dt}\bigg{|}_{t=0}\frac{(\Omega_{h}+\frac{1}{n-1}(S_{1}(\partial\partial_{J}(u+tv))\Omega-\partial\partial_{J}(u+tv)))^{n}}{\Omega^{n}}
=nn1(S1(Jv)ΩJv)Ω~un1Ωn=Sn1(Ω~u)12(n1)ΔI,gv.\displaystyle=\frac{n}{n-1}\frac{(S_{1}(\partial\partial_{J}v)\Omega-\partial\partial_{J}v)\wedge\widetilde{\Omega}_{u}^{n-1}}{\Omega^{n}}=\frac{S_{n-1}(\widetilde{\Omega}_{u})-1}{2(n-1)}\Delta_{I,g}v.

From general elliptic theory we know that the laplacian is a bijection between the space of functions of zero integral on MM. Thus \mathcal{M} is locally invertible and therefore SS is open.

Acknowledgements: Fu is supported by NSFC grant No. 12141104. Zhang is supported by NSFC grant No. 11901102.

References

  • [1] Alesker, S. Solvability of the quaternionic Monge-Ampère equation on compact manifolds with a flat hyperKähler metric. Adv. Math. 241 (2013), 192–219.
  • [2] Alesker, S., and Shelukhin, E. A uniform estimate for general quaternionic calabi problem (with appendix by daniel barlet). Advances in Mathematics 316 (2017), 1–52.
  • [3] Alesker, S., and Verbitsky, M. Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry. J. Geom. Anal. 16, 3 (2006), 375–399.
  • [4] Alesker, S., and Verbitsky, M. Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds. Israel J. Math. 176 (2010), 109–138.
  • [5] Bedulli, L., Gentili, G., and Vezzoni, L. A parabolic approach to the Calabi-Yau problem in HKT geometry. Math. Z. 302, 2 (2022), 917–933.
  • [6] Błocki, Z. A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344, 2 (2009), 317–327.
  • [7] Błocki, Z. The complex Monge-Ampère equation in Kähler geometry. In Pluripotential theory, vol. 2075 of Lecture Notes in Math. Springer, Heidelberg, 2013, pp. 95–141.
  • [8] Demailly, J.-P. Complex analytic and differential geometry. Citeseer, 1997.
  • [9] Dinew, S., and Sroka, M. HKT from HK metrics. arXiv preprint arXiv:2105.09344 (2021).
  • [10] Fu, J., Wang, Z., and Wu, D. Form-type Calabi-Yau equations. Math. Res. Lett. 17, 5 (2010), 887–903.
  • [11] Fu, J., Wang, Z., and Wu, D. Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature. Calc. Var. Partial Differential Equations 52, 1-2 (2015), 327–344.
  • [12] Fu, J.-X., and Yau, S.-T. The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differential Geom. 78, 3 (2008), 369–428.
  • [13] Gentili, G., and Vezzoni, L. The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations. Int. Math. Res. Not. IMRN, 12 (2022), 9499–9528.
  • [14] Gentili, G., and Zhang, J. Fully non-linear elliptic equations on compact manifolds with a flat hyperkähler metric. J. Geom. Anal. 32, 9 (2022), Paper No. 229, 38.
  • [15] Lejmi, M., and Weber, P. Cohomologies on hypercomplex manifolds. In Complex and symplectic geometry, vol. 21 of Springer INdAM Ser. Springer, Cham, 2017, pp. 107–121.
  • [16] Michelsohn, M. L. On the existence of special metrics in complex geometry. Acta Math. 149, 3-4 (1982), 261–295.
  • [17] Obata, M. Affine transformations in an almost complex manifold with a natural affine connection. J. Math. Soc. Japan 8 (1956), 345–362.
  • [18] Sroka, M. The C0C^{0} estimate for the quaternionic Calabi conjecture. Adv. Math. 370 (2020), 107237.
  • [19] Sroka, M. Sharp uniform bound for the quaternionic Monge-Ampère equation on hyperhermitian manifolds. arXiv e-prints (Nov. 2022), arXiv:2211.00959.
  • [20] Tosatti, V., and Weinkove, B. The complex Monge-Ampère equation on compact Hermitian manifolds. J. Amer. Math. Soc. 23, 4 (2010), 1187–1195.
  • [21] Tosatti, V., and Weinkove, B. Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14, 1 (2010), 19–40.
  • [22] Tosatti, V., and Weinkove, B. The Monge-Ampère equation for (n1)(n-1)-plurisubharmonic functions on a compact Kähler manifold. J. Amer. Math. Soc. 30, 2 (2017), 311–346.
  • [23] Tosatti, V., and Weinkove, B. Hermitian metrics, (n1,n1)(n-1,n-1) forms and Monge-Ampère equations. J. Reine Angew. Math. 755 (2019), 67–101.
  • [24] Verbitsky, M. HyperKähler manifolds with torsion, supersymmetry and Hodge theory. Asian Journal of Mathematics 6 (01 2002), 679–712.
  • [25] Verbitsky, M. Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds. Math. Res. Lett. 16, 4 (2009), 735–752.
  • [26] Verbitsky, M. Positive forms on hyperkähler manifolds. Osaka J. Math. 47, 2 (2010), 353–384.
  • [27] Yau, S. T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31, 3 (1978), 339–411.