This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The nonlinear Schrödinger equation in the half-space

Antonio J. Fernández and Tobias Weth
Antonio J. Fernández
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.
ajf77@bath.ac.uk
Tobias Weth
Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 10, D-60629 Frankfurt am Main, Germany.
weth@math.uni-frankfurt.de
Abstract.

The present paper is concerned with the half-space Dirichlet problem

(PcP_{c}) Δv+v=|v|p1v, in +N,v=c, on +N,limxNv(x,xN)=0 uniformly in xN1,-\Delta v+v=|v|^{p-1}v,\ \textup{ in }\mathbb{R}^{N}_{+},\qquad v=c,\ \textup{ on }\partial\mathbb{R}^{N}_{+},\ \qquad\lim_{x_{N}\to\infty}v(x^{\prime},x_{N})=0\textup{ uniformly in }x^{\prime}\in\mathbb{R}^{N-1},

where +N:={xN:xN>0}\mathbb{R}^{N}_{+}:=\{\,x\in\mathbb{R}^{N}:x_{N}>0\,\} for some N1N\geq 1 and p>1p>1, c>0c>0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to (PcP_{c}). We prove that the existence and multiplicity of bounded positive solutions to (PcP_{c}) depend in a striking way on the value of c>0c>0 and also on the dimension NN. We find an explicit number cp(1,e){c_{p}}\in(1,\sqrt{e}), depending only on pp, which determines the threshold between existence and non-existence. In particular, in dimensions N2N\geq 2, we prove that, for 0<c<cp0<c<{c_{p}}, problem (PcP_{c}) admits infinitely many bounded positive solutions, whereas, for c>cpc>{c_{p}}, there are no bounded positive solutions to (PcP_{c}).

1. Introduction

Due to its relevance within several models arising in physics and biology, the nonlinear stationary Schrödinger equation

(1.1) Δv+v=|v|p1v, in N,-\Delta v+v=|v|^{p-1}v,\quad\textup{ in }\mathbb{R}^{N},

received extensive attention in the last four decades. In particular, let us mention that the study of solitary wave solutions for the (focusing) NLS

itφ+Δφ+|φ|p1φ=0,(t,x)×N,i\partial_{t}\varphi+\Delta\varphi+|\varphi|^{p-1}\varphi=0,\quad(t,x)\in\mathbb{R}\times\mathbb{R}^{N},

is reduced to problem (1.1) via a time-harmonic ansatz. For classic existence and multiplicity results, we refer the reader e.g. to the seminal papers [8, 9, 3, 2, 6, 31, 30] and the monographs [34, 32]. We also recall the fundamental works [16, 24] where the radial symmetry and uniqueness, up to translations, of positive solutions to (1.1) satisfying the decay condition

(1.2) v(x)0,as |x|,v(x)\to 0,\qquad\text{as $|x|\to\infty$},

are proved in the case 1<p<211<p<2^{*}-1. Here and in the following 22^{*} denotes the critical Sobolev exponent, i.e. 2=2NN22^{*}=\frac{2N}{N-2} for N3N\geq 3 and 2=21=2^{*}=2^{*}-1=\infty for N=1,2N=1,2. In particular, these results imply the uniqueness, up to translations, of positive finite energy solutions uH1(N)u\in H^{1}(\mathbb{R}^{N}). In contrast, for N2N\geq 2, (1.1) admits an abundance of sign-changing finite energy solutions satisfying (1.2), see e.g. [3, 2, 28, 27] and the references therein. Moreover, more recent geometric constructions of different solution shapes highlight the rich structure of the set of positive solutions which do not satisfy the decay assumption (1.2), see e.g. [11, 1, 28, 26] and the references therein.

Whereas it seems impossible to provide an exhaustive list of references for the full space problem (1.1), much less is known regarding the half-space Dirichlet problem

(1.3) {Δv+v=|v|p1v, in +N,v=c, on +N,\left\{\begin{aligned} -\Delta v+v&=|v|^{p-1}v,\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v&=c,&\quad\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

where +N:={xN:xN>0}\mathbb{R}^{N}_{+}:=\{x\in\mathbb{R}^{N}:x_{N}>0\} for some N1N\geq 1 and c0c\geq 0 is a constant. In the case c=0c=0, general nonexistence results are available for (1.3). More precisely, the non-existence of finite energy solutions uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}) to (1.3) in the case c=0c=0 follows from [14, Theorem I.1], while [4, Corollary 1.3] yields, in particular, the non-existence of positive solutions to (1.3) with c=0c=0 and the the decay property

(1.4) limxNv(x,xN)=0,uniformly in xN1.\lim_{x_{N}\to\infty}v(x^{\prime},x_{N})=0,\qquad\text{uniformly in $x^{\prime}\in\mathbb{R}^{N-1}$.}

The aim of the present paper is to analyse the existence, non-existence and multiplicity of bounded positive solutions vv to the problem (1.3)-(1.4) in the case c>0c>0, for which we are not aware of any previous result in general dimensions NN. As we shall see below, the multiplicity of positive solutions depends in a striking way on the value c>0c>0 and, somewhat surprisingly, also on the dimension NN. Let us stress that we cannot expect the existence of finite energy solutions uH1(+N)u\in H^{1}(\mathbb{R}^{N}_{+}) to (1.3) in the case N2N\geq 2. Actually, we cannot expect solutions to (1.3) belonging to Lp(+N)L^{p}(\mathbb{R}^{N}_{+}) for any 1p<1\leq p<\infty. The one-dimensional decay condition (1.4) therefore seems natural.

The consideration of inhomogeneous Dirichlet boundary conditions as in (1.3) is to some extend motivated by recent works on pattern formation in biological and chemical models. For instance, in [23], the authors numerically show that, for different types of reaction-diffusion systems, the pattern formation can be isolated away from the boundary using this type of boundary conditions. Moreover, within a rigorous analysis of some of these models in an asymptotically small diffusivity ratio, one may expect that the equation of the limiting profile is precisely (1.3) with c>0c>0. This is indeed the case for the Gierer-Meinhardt system considered in [19]. As one can observe in [19, Section 2], the homoclinic solution w0(+tc,p)w_{0}(\,\cdot+t_{c,p}) (see (1.6) and (1.7) below) plays a key role in the construction of multi-spike patterns for this model.

Not surprisingly, problem (1.3) is completely understood in the case N=1N=1. This is due to the fact that the one-dimensional equation

(1.5) w′′+w=wp,-w^{\prime\prime}+w=w^{p},

admits a first integral, and from this one can easily deduce that, for 1<p<1<p<\infty, (1.5) admits, up to sign and translation, a unique global non trivial solution satisfying w(t)0w(t)\to 0 as t±t\to\pm\infty. See e.g. [8, Theorem 5], [34, Theorem 3.16] and [22, Theorem 1.2] where, in addition, the Mountain-Pass characterization of this unique solution is established. By direct computations, one can verify that this solution is precisely given by

(1.6) tw0(t)=cp[cosh(p12t)]2p1,withcp:=(p+12)1p1=w0(0)=suptw0(t).t\mapsto w_{0}(t)={c_{p}}\left[\cosh\left(\frac{p-1}{2}t\right)\right]^{-\frac{2}{p-1}},\qquad\text{with}\qquad{c_{p}}:=\left(\frac{p+1}{2}\right)^{\frac{1}{p-1}}=w_{0}(0)=\sup_{t\in\mathbb{R}}w_{0}(t).

As we shall see below, the value cp{c_{p}} will be of key importance also for the higher dimensional version of (1.3). The following complete characterization of the one dimensional case is an immediate consequence of these facts.

Proposition 1.1.

Let N=1N=1, p>1p>1 and c>0c>0. Then:

  • (i)

    If 0<c<cp0<c<{c_{p}}, problem (1.3)-(1.4) admits exactly two positive solutions given by tw0(t+tc,p)t\mapsto w_{0}(t+t_{c,p}) and tw0(ttc,p)t\mapsto w_{0}(t-t_{c,p}), where

    (1.7) tc,p:=2p1ln(p+12cp1+p+12cp11).t_{c,p}:=\frac{2}{p-1}\ln\left(\sqrt{\frac{p+1}{2c^{p-1}}}+\sqrt{\frac{p+1}{2c^{p-1}}-1}\right).
  • (ii)

    If c=cpc={c_{p}}, the function w0w_{0} is the unique positive solution to (1.3)-(1.4).

  • (iii)

    If c>cpc>{c_{p}}, problem (1.3)-(1.4) does not admit solutions.

Our main results concern dimensions N2N\geq 2. In this case, problem (1.3)-(1.4) is invariant under translations and rotations parallel to the boundary +N=N1\partial\mathbb{R}^{N}_{+}=\mathbb{R}^{N-1}. In particular, if N2N\geq 2 and vv is a positive solution to (1.3)-(1.4), then the functions xv(x+τ,xN)x\mapsto v(x^{\prime}+\tau,x_{N}), τN1\tau\in\mathbb{R}^{N-1} are also solutions to (1.3)-(1.4), where, here and in the following, we write x=(x,xN)x=(x^{\prime},x_{N}) for x+Nx\in\mathbb{R}^{N}_{+} with xN1x^{\prime}\in\mathbb{R}^{N-1}. In the following, we call two solutions geometrically distinct if they do not belong to the same orbit of solutions under translations and rotations in N1\mathbb{R}^{N-1}.

Our first main result reads as follows.

Theorem 1.2.

Let N2N\geq 2, p>1p>1 and c>0c>0. Then:

  • (i)

    If 0<c<cp0<c<{c_{p}}, there exist at least three geometrically distinct bounded positive solutions to (1.3)-(1.4).

  • (ii)

    If c>cpc>{c_{p}}, there are no bounded positive solutions to (1.3)-(1.4).

Remark 1.1.

  • (a)

    By a bounded positive solution to (1.3)-(1.4), we mean a positive function vC2(+N)C(+N¯)L(+N)v\in C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}})\cap L^{\infty}(\mathbb{R}^{N}_{+}) satisfying (1.3) in the pointwise sense and such that (1.4) holds.

  • (b)

    The nonexistence part (ii) of Theorem 1.2 is proved with a variant of the sliding method based on a comparison with xNx_{N}-translates of the function xw0(xN)x\mapsto w_{0}(x_{N}). We shall comment on this in more detail further below.

  • (c)

    As we have indicated above already, Theorem 1.2 (i) highlights the rich structure of solutions to (1.3)-(1.4) in the case N2N\geq 2, 0<c<cp0<c<{c_{p}}, which is in striking contrast to the case N=1N=1. Indeed, Theorem 1.2 (i) yields, in addition to the two one-dimensional profile solutions xw0(xN+tc,p)x\mapsto w_{0}(x_{N}+t_{c,p}) and xw0(xNtc,p)x\mapsto w_{0}(x_{N}-t_{c,p}) at least one further geometrically distinct solution which is not merely a function of the xNx_{N}-variable. Hence, by the remarks above, this one solution gives rise to an infinite number of positive solutions via translations parallel to the boundary +N=N1\partial\mathbb{R}^{N}_{+}=\mathbb{R}^{N-1}. In Corollary 1.4 below, we shall derive more precise lower estimates on the number of geometrically distinct solutions depending on the exponent pp and the dimension NN.

  • (d)

    It suffices to prove Theorem 1.2 (i) in the case N=2N=2 since every positive solution vv to (1.3)-(1.4) in the case N=2N=2 gives rise to a corresponding solution v~\tilde{v} to (1.3)-(1.4) in general dimension N3N\geq 3 by simply setting v~(x)=v(x1,xN)\tilde{v}(x)=v(x_{1},x_{N}).

  • (e)

    It remains as an interesting open question whether the function xw0(xN)x\mapsto w_{0}(x_{N}) is the unique bounded positive solution to (1.3)-(1.4) in the case c=cpc={c_{p}}. At first glance, it seems natural to establish such a uniqueness result also with the help of a sliding argument as mentioned in (b) above, but additional difficulties appear in the case c=cpc={c_{p}}, and non-uniqueness remains a possibility for now.

The following result provides some information on the shape of the solutions we construct.

Theorem 1.3.

Let N2N\geq 2, 1<p<211<p<2^{*}-1 and 0<c<cp0<c<{c_{p}}. Then there exists a positive solution to (1.3)-(1.4) of the form

(1.8) xw0(xN+tc,p)+u(x),x\mapsto w_{0}(x_{N}+t_{c,p})+u(x),

with a nonnegative function uH01(+N){0}u\in H^{1}_{0}(\mathbb{R}^{N}_{+})\setminus\{0\}.

By the remarks above and since all exponents p<p<\infty are subcritical in the case N=2N=2, Theorem 1.3 implies Theorem 1.2 (i) in the case N=2N=2 and therefore for all N2N\geq 2. It also allows us to distinguish different solution orbits under translations and rotations in N1\mathbb{R}^{N-1}.

Corollary 1.4.

Let N3N\geq 3, 1<p<M+2M21<p<\frac{M+2}{M-2} for some M{3,,N}M\in\{3,\dots,N\} and 0<c<cp0<c<{c_{p}}. Then problem (1.3)-(1.4) admits at least M+1M+1 geometrically distinct positive solutions.

This result is a rather immediate corollary of Theorem 1.3. Indeed, under the given assumptions, for every dimension N~{2,3,,M}{\widetilde{N}}\in\{2,3,\dots,M\}, Theorem 1.3 yields the existence of a solution to (1.3)-(1.4) of the form

xw0(xN~+tc,p)+u(x1,,xN~1,xN~)x\mapsto w_{0}(x_{\widetilde{N}}+t_{c,p})+u(x_{1},\dots,x_{{\widetilde{N}}-1},x_{\widetilde{N}})

with a nonnegative uH01(+N~){0}u\in H^{1}_{0}(\mathbb{R}^{{\widetilde{N}}}_{+})\setminus\{0\}. Clearly, these M1M-1 solutions are geometrically distinct, and they are also geometrically distinct from the two one-dimensional profile solutions.

It is natural to guess that the change of the solution set when passing from c>cpc>{c_{p}} to c<cpc<{c_{p}} is a bifurcation phenomenon. More precisely, one may guess that the solutions constructed in Theorem 1.3 have the property that u=uc0H01(+N)u=u_{c}\to 0\in H^{1}_{0}(\mathbb{R}^{N}_{+}) as ccpc\nearrow{c_{p}} for the functions uu in the ansatz (1.8). This remains an open question, and the answer could even depend on the value of pp. We note that standard results from bifurcation theory do not apply here since the linearized problem

{Δv+vp|w0(xN)|p1v=0 in +N,v=0 on +N,\left\{\begin{aligned} -\Delta v+v-p|w_{0}(x_{N})|^{p-1}v&=0\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v&=0&\quad\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

at the parameter value c=cpc=c_{p} has purely essential spectrum due to its invariance with respect to translations in directions parallel to the boundary +N=N1\partial\mathbb{R}^{N}_{+}=\mathbb{R}^{N-1}. Bifurcation from the essential spectrum has been observed succesfully in other contexts (see e.g. the survey paper [33] and the references therein), but there is still no general functional analytic framework which provides sufficient abstract conditions.

We now give some ideas of the proof of Theorem 1.3. For this we fix c(0,cp)c\in(0,{c_{p}}) and define the functions

tzc(t):=w0(t+tc,p) and tz~c(t):=w0(ttc,p),t\mapsto z_{c}(t):=w_{0}\left(t+t_{c,p}\right)\qquad\textup{ and }\qquad t\mapsto\widetilde{z}_{c}(t):=w_{0}\left(t-t_{c,p}\right),

where tc,pt_{c,p} is given in (1.7). We recall that zcz_{c} and z~c\widetilde{z}_{c} are the unique positive solutions to (1.5) such that zc(0)=z~c(0)=cz_{c}(0)=\widetilde{z}_{c}(0)=c. Moreover, we define uc:+N¯u_{c}:\overline{\mathbb{R}^{N}_{+}}\to\mathbb{R} and u~c:+N¯\widetilde{u}_{c}:\overline{\mathbb{R}^{N}_{+}}\to\mathbb{R} as

(1.9) uc(x):=zc(xN) and u~c(x):=z~c(xN),u_{c}(x):=z_{c}(x_{N})\quad\textup{ and }\quad\widetilde{u}_{c}(x):=\widetilde{z}_{c}(x_{N}),

and we directly notice that ucu_{c} and u~c\widetilde{u}_{c} are both solutions to (1.3)-(1.4). Furthermore, it follows that

(1.10) uc(x)=O(exN) and u~c(x)=O(exN), as xN.u_{c}(x)=O(e^{-x_{N}})\quad\textup{ and }\quad\widetilde{u}_{c}(x)=O(e^{-x_{N}}),\quad\textup{ as }x_{N}\to\infty.

Proving Theorem 1.3 now amounts to find a nonnegative solution uH01(+N){0}u\in H_{0}^{1}(\mathbb{R}^{N}_{+})\setminus\{0\} to the non-autonomous Schrödinger type equation

(1.11) Δu+u=f(x,u),uH01(+N),-\Delta u+u=f(x,u),\quad u\in H_{0}^{1}(\mathbb{R}^{N}_{+}),

with

(1.12) f(x,s):=|uc(x)+s|p1(uc(x)+s)(uc(x))p,f(x,s):=|u_{c}(x)+s|^{\,p-1}(u_{c}(x)+s)-(u_{c}(x))^{\,p},

because in this case v=uc+uv=u_{c}+u is of the form (1.8), solves (1.3) and it is easy to see that also satisfies (1.4). Since we are interested in finding non-negative solutions to (1.11), we truncate the nonlinearity and define

(1.13) g(x,s):=(uc(x)+s+)p(uc(x))p={f(x,s), if s0,0, if s0,g(x,s):=(u_{c}(x)+s^{+})^{\,p}-(u_{c}(x))^{\,p}=\left\{\begin{aligned} &f(x,s),\quad&\textup{ if }s\geq 0,\\ &0,&\textup{ if }s\leq 0,\end{aligned}\right.

with ff given in (1.12). We then consider the auxiliary problem

(1.14) Δu+u=g(x,u),uH01(+N).-\Delta u+u=g(x,u),\quad u\in H_{0}^{1}(\mathbb{R}^{N}_{+}).

Considering uH01(+N)u^{-}\in H_{0}^{1}(\mathbb{R}^{N}_{+}) as test function in (1.14), one can easily check that every solution to (1.14) is non-negative and so, that every solution to (1.14) is a non-negative solution to (1.11). It might be worth pointing out that the one-dimensional function u~:=u~cucC2(+N)\widetilde{u}:=\widetilde{u}_{c}-u_{c}\in C^{2}(\mathbb{R}^{N}_{+}) is a positive solution to the equation in (1.14) and also satisfies u~=0\widetilde{u}=0 on +N\partial\mathbb{R}^{N}_{+}. However, u~H01(+N)\widetilde{u}\not\in H_{0}^{1}(\mathbb{R}^{N}_{+}) since it only depends on the xNx_{N} variable. Hence, u~\widetilde{u} is not a solution to (1.14).

We shall look for a non-trivial solution to (1.14) as a critical point of the associated functional

(1.15) E:H01(+N),E(u)=12+N(|u|2+u2)𝑑x+NG(x,u)𝑑x,E:H_{0}^{1}(\mathbb{R}^{N}_{+})\to\mathbb{R},\qquad E(u)=\frac{1}{2}\int_{\mathbb{R}^{N}_{+}}\left(|\nabla u|^{2}+u^{2}\right)dx-\int_{\mathbb{R}^{N}_{+}}G(x,u)dx,

where

(1.16) G(x,u):=0ug(x,s)𝑑s=1p+1((uc+u+)p+1ucp+1(p+1)ucpu+).G(x,u):=\int_{0}^{u}g(x,s)ds=\frac{1}{p+1}\bigl{(}(u_{c}+u^{+})^{p+1}-u_{c}^{p+1}-(p+1)u_{c}^{p}u^{+}\bigr{)}.

More precisely, we are going to prove the existence of a non-trivial critical point of mountain pass type. This requires new and subtle estimates. The key difficulties in the variational approach are the non-standard shape of the nonlinearity gg in (1.14) and the lack of compactness due to the unboundedness of +N\mathbb{R}^{N}_{+}. To overcome these difficulties, we need new estimates within the analysis of Cerami sequences and for comparing the mountain pass energy value for EE with the corresponding one of the limit energy functional

(1.17) E:H1(N),E(u)=12N(|u|2+u2)𝑑x1p+1N|u|p+1𝑑x.E_{\infty}:H^{1}(\mathbb{R}^{N})\to\mathbb{R},\qquad E_{\infty}(u)=\frac{1}{2}\int_{\mathbb{R}^{N}}\big{(}|\nabla u|^{2}+u^{2}\big{)}\,dx-\frac{1}{p+1}\int_{\mathbb{R}^{N}}|u|^{\,p+1}dx.

In particular, we shall use the asymptotic decay properties of the unique positive radial solution to (1.1) in order to build suitable test functions.

We wish to mention two further open problems at this stage. First, one may ask whether Theorem 1.3 extends to the critical case N3N\geq 3, p=21p=2^{*}-1. In this case, the mountain pass geometry of the functional EE remains, but the lack of compactness is more severe as it is not only caused by the unboundedness of +N\mathbb{R}^{N}_{+} but also by possible point concentration of bounded Cerami sequences. Indeed, while the limit energy functional EE_{\infty} in (1.17) does not admit critical points in the case p=2p=2^{*} by Pohozaev’s identity (see e.g. [34, Corollary B.4]), rescaling bounded Cerami sequences around possible concentration points leads to critical points of the Yamabe functional u12N|u|2𝑑x12N|u|2𝑑xu\mapsto\frac{1}{2}\int_{\mathbb{R}^{N}}|\nabla u|^{2}\,dx-\frac{1}{2^{*}}\int_{\mathbb{R}^{N}}|u|^{2^{*}}dx. It therefore seems natural to build test functions from translated and concentrated instantons x[N(N2)ε2]N24(ε2+|xx|2)N22x\mapsto[N(N-2)\varepsilon^{2}]^{\frac{N-2}{4}}\bigl{(}\varepsilon^{2}+|x-x_{*}|^{2}\bigr{)}^{-\frac{N-2}{2}} in order to estimate the mountain pass energy. However, since our estimates rely on the precise exponential decay rate of the unique positive radial solution to (1.1) as given in (4.6), they do not apply to instantons. Hence the case p=2p=2^{*} remains a problem for future research.

The second open problem concerns the existence of solutions of the form xw0(xNtc,p)+u(x)x\mapsto w_{0}(x_{N}-t_{c,p})+u(x) with uH01(+N){0}u\in H^{1}_{0}(\mathbb{R}^{N}_{+})\setminus\{0\}. In this case, ucu_{c} has to be replaced by u~c\widetilde{u}_{c} in the definition of the nonlinearity GG in (1.16). One may observe that the mountain pass geometry is lost in this case, and the presence of essential spectrum leads to additional difficulties which seem hard to deal with.

We now comment on the proofs of the non-existence part (ii) of Theorem 1.2. We argue by contradiction and use a suitable modification of the so-called sliding method introduced by H. Berestycki and L. Nirenberg and further developed by H. Berestycki, L. Caffarelli and L. Nirenberg among others. Specifically, our proofs are inspired by [15, Section 2] and [7, Section 4].

We finally comment on the boundedness of positive solutions to (1.3)-(1.4). As stated in the following proposition, all the positive solutions to (1.3)-(1.4) are bounded in the case where 1<p<211<p<2^{*}-1. Hence, the fact that we are considering bounded solutions is not a restriction in this case.

Proposition 1.5.

Let N2N\geq 2, 1<p<211<p<2^{*}-1 and c>0c>0. Any positive vC2(+N)C(+N¯)v\in C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}})-solution to (1.3)-(1.4) belongs to L(+N)L^{\infty}(\mathbb{R}^{N}_{+}).

The proof of Proposition 1.5 follows by a rather standard blow up argument based on the doubling lemma by P. Poláčik, P. Quittner and P. Souplet in [29]. For the convenience of the reader, we include the proof in Section 5 below.

Organization of the paper

In Section 2, we collect estimates related to the nonlinearity gg in (1.13) and the functional EE associated with (1.14). With the help of these estimates, we establish the mountain pass geometry of EE in Section 3, and we show that Cerami sequences at nontrivial energy levels are bounded and admit nontrivial weak limits after suitable translation. In Section 4, we then prove a key energy estimate which shows that, in dimensions N2N\geq 2, the mountain pass energy of the functional EE is strictly smaller than the corresponding one for the limit energy functional EE_{\infty} given in (1.17). With the help of this energy estimate, we then complete the proof of Theorem 1.3 in Section 5. Finally, we give the proof of Theorem 1.2 (ii) in Section 6.

Notation

For 1p<,1\leq p<\infty, we let Lp(+N)\|\cdot\|_{L^{p}(\mathbb{R}^{N}_{+})} denote the standard norm on the usual Lebesgue space Lp(+N)L^{p}(\mathbb{R}^{N}_{+}). The Sobolev space H01(+N)H_{0}^{1}(\mathbb{R}^{N}_{+}) is endowed with the standard norm

u2=+N(|u|2+|u|2)𝑑x.\|u\|^{2}=\int_{\mathbb{R}^{N}_{+}}\big{(}\,|\nabla u|^{2}+|u|^{2}\big{)}\,dx.

Also, for a function vv, we define v+:=max{v,0}v^{+}:=\max\{v,0\} and v:=max{v,0}v^{-}:=\max\{-v,0\} and we write x=(x,xN)x=(x^{\prime},x_{N}) for x+Nx\in\mathbb{R}^{N}_{+} with xN1x^{\prime}\in\mathbb{R}^{N-1}. We denote by {}^{\prime}\rightarrow^{\prime}, respectively by {}^{\prime}\rightharpoonup^{\prime}, the strong convergence, respectively the weak convergence in corresponding space and denote by BR(x)B_{R}(x) the open ball in N\mathbb{R}^{N} of center xx and radius R>0.R>0. Also, we shall denote by Ci>0C_{i}>0 different constants which may vary from line to line but are not essential to the analysis of the problem. Finally, at various places, we have to distinguish the cases p2p\leq 2 and p>2p>2. For this it is convenient to introduce the special constant

1{p>2}:={0,p2,1,p>2.1_{\{p>2\}}:=\left\{\begin{aligned} &0,&&\qquad p\leq 2,\\ &1,&&\qquad p>2.\end{aligned}\right.

Acknowledgements

The authors wish to thank the anonymous referees for their valuable comments and corrections. Part of this work was done while the first author was visiting the Goethe-Universität Frankfurt. He wishes to thank his hosts for the warm hospitality and the financial support.

2. Preliminaries

In this section we collect some estimates related to the transformed nonlinearity gg defined in (1.13), its primitive GG and the functional EE defined in (1.15). For this we fix, throughout Sections 2–Section 5, c(0,cp)c\in(0,{c_{p}}), p(1,21)p\in(1,2^{*}-1), and we let ucu_{c} be given in (1.9). We recall that we have the uniform estimate

(2.1) 0uccpin +N.0\leq u_{c}\leq c_{p}\qquad\text{in $\mathbb{R}^{N}_{+}$.}

We start with an elementary inequality for nonnegative real numbers which will be used in the energy estimates in Section 4 below.

Lemma 2.1.

For every q>2q>2 there exists κq>0\kappa_{q}>0 with

(2.2) (a+b)qaqbqqaq1b+κqabq1for all a,b0.(a+b)^{q}-a^{q}-b^{q}\geq qa^{q-1}b+\kappa_{q}ab^{q-1}\qquad\text{for all $a,b\geq 0$.}
Remark 2.1.

If q3q\geq 3, then (2.2) holds in symmetric form with κq=q\kappa_{q}=q, see e.g. [20, Theorem 1]. If q(2,3)q\in(2,3), it is easy to see that one has to choose κq<q\kappa_{q}<q.

Proof of Lemma 2.1.

We first note that, since q1>1q-1>1, we have, by convexity of the function τ(1+τ)q1\tau\mapsto(1+\tau)^{q-1},

(2.3) (s+t)q1(sq1+tq1)=sq1[(1+ts)q1(1+(ts)q1)]sq1((q1)ts(ts)q1)=(q1)tsq2tq1(s+t)^{q-1}-\bigl{(}s^{q-1}+t^{q-1}\bigr{)}=s^{q-1}\Bigl{[}\bigl{(}1+\frac{t}{s}\bigr{)}^{q-1}-\bigl{(}1+\bigl{(}\frac{t}{s}\bigr{)}^{q-1}\bigr{)}\Bigr{]}\geq s^{q-1}\Bigl{(}(q-1)\frac{t}{s}-\bigl{(}\frac{t}{s}\bigr{)}^{q-1}\Bigr{)}=(q-1)ts^{q-2}-t^{q-1}

for st>0s\geq t>0. Now, to prove the claim, it suffices to consider a,b>0a,b>0, since the inequality holds trivially if a=0a=0 or b=0b=0. Moreover, it suffices to prove that the inequality holds for ba>0b\geq a>0 with some κq(0,q]\kappa_{q}\in(0,q], since then it also follows for arbitrary a,b>0a,b>0. For fixed a>0a>0, we consider the function

:[0,),(t)=(a+t)qaqtqqaq1t\ell:[0,\infty)\to\mathbb{R},\qquad\ell(t)=(a+t)^{q}-a^{q}-t^{q}-qa^{q-1}t

Then we have (0)=0\ell(0)=0 and

(t)=q[(a+t)q1(aq1+tq1)]\ell^{\prime}(t)=q\Bigl{[}(a+t)^{q-1}-\bigl{(}a^{q-1}+t^{q-1}\bigr{)}\Bigr{]}

Consequently, by (2.3) we have, for bab\geq a,

(b)\displaystyle\ell(b) =0a(t)𝑑t+ab(t)𝑑tq[0a((q1)taq2tq1)𝑑t+ab((q1)atq2aq1)𝑑t]\displaystyle=\int_{0}^{a}\ell^{\prime}(t)\,dt+\int_{a}^{b}\ell^{\prime}(t)\,dt\geq q\Bigl{[}\int_{0}^{a}\bigl{(}(q-1)ta^{q-2}-t^{q-1}\bigr{)}dt+\int_{a}^{b}\bigl{(}(q-1)at^{q-2}-a^{q-1}\bigr{)}dt\Bigr{]}
=qa(κq,1aq1+bq1aq2b)with κq,1:=q121q>0.\displaystyle=qa\bigl{(}\kappa_{q,1}a^{q-1}+b^{q-1}-a^{q-2}b\bigr{)}\qquad\text{with $\quad\kappa_{q,1}:=\frac{q-1}{2}-\frac{1}{q}>0$.}

Since, by Young’s inequality,

aq2bq2q1aq1+1q1bq1,a^{q-2}b\leq\frac{q-2}{q-1}a^{q-1}+\frac{1}{q-1}b^{q-1},

we deduce that

(b)qa[(κq,1q2q1)aq1+q2q1bq1].\ell(b)\geq qa\bigl{[}\bigl{(}\kappa_{q,1}-\frac{q-2}{q-1}\bigr{)}a^{q-1}+\frac{q-2}{q-1}b^{q-1}\bigr{]}.

If κq,1q2q1\kappa_{q,1}\geq\frac{q-2}{q-1}, we conclude that (b)q(q2)q1abq1\ell(b)\geq\frac{q(q-2)}{q-1}ab^{q-1}. On the other hand, if 0<κq,1<q2q10<\kappa_{q,1}<\frac{q-2}{q-1}, we use again that bab\geq a and conclude that

(b)qa[(κq,1q2q1)bq1+q2q1bq1]=qκq,1abq1.\ell(b)\geq qa\bigl{[}\bigl{(}\kappa_{q,1}-\frac{q-2}{q-1}\bigr{)}b^{q-1}+\frac{q-2}{q-1}b^{q-1}\bigr{]}=q\kappa_{q,1}ab^{q-1}.

Hence, (2.2) holds for ba>0b\geq a>0 with κq=qmin{q2q1,κq,1}(0,q)\kappa_{q}=q\min\{\frac{q-2}{q-1},\kappa_{q,1}\}\in(0,q). The proof is finished. ∎

Next we provide basic but important estimates for the nonlinearity gg defined in (1.13) and its primitive GG.

Lemma 2.2.

  • (i)

    For (x,s)+N×(x,s)\in\mathbb{R}^{N}_{+}\times\mathbb{R} we have

    (2.4) 0g(x,s)s+puc(x)p1C1,p[s+]p+1{p>2}C2,p[s+]2,0\leq g(x,s)-s^{+}pu_{c}(x)^{p-1}\leq C_{1,p}\,[s^{+}]^{\,p}+1_{\{p>2\}}C_{2,p}\,[s^{+}]^{2},

    and

    (2.5) 0G(x,s)p2[s+]2uc(x)p1C1,pp+1[s+]p+1+1{p>2}C2,p3[s+]3,0\leq G(x,s)-\frac{p}{2}[s^{+}]^{2}u_{c}(x)^{p-1}\leq\frac{C_{1,p}}{p+1}[s^{+}]^{p+1}+1_{\{p>2\}}\frac{C_{2,p}}{3}[s^{+}]^{3},

    with C1,p:=1+2p3p(p1)C_{1,p}:=1+2^{p-3}p(p-1) and C2,p:=p(p1)2p3cpp2C_{2,p}:=p(p-1)2^{p-3}{c_{p}}^{p-2}.

  • (ii)

    Let

    H(x,s):=12g(x,s)sG(x,s)for x+Ns.H(x,s):=\frac{1}{2}g(x,s)s-G(x,s)\qquad\text{for $x\in\mathbb{R}^{N}_{+}$, $s\in\mathbb{R}$.}

    Then we have

    (2.6) H(x,s)max{ 0,p12(p+1)[s+]p+1uc(x)p1D1,p[s+]2uc(x) 1{p>2}D2,p[s+]p}H(x,s)\geq\max\Bigl{\{}\>0\>,\>\frac{p-1}{2(p+1)}\,[s^{+}]^{p+1}-u_{c}(x)^{p-1}D_{1,p}[s^{+}]^{2}-u_{c}(x)\,1_{\{p>2\}}D_{2,p}[s^{+}]^{p}\Bigr{\}}

    with D1,p:=p(p1)p+1(1+2p2)D_{1,p}:=\frac{p(p-1)}{p+1}\bigl{(}1+2^{p-2}\bigr{)} and D2,p:=p2p2p+1D_{2,p}:=\frac{p2^{p-2}}{p+1}.
    Moreover, the function H(x,)H(x,\cdot) is non-decreasing in ss for every x+Nx\in\mathbb{R}^{N}_{+}.

Remark 2.2.

The constants Ci,pC_{i,p} and Di,pD_{i,p}, i=1,2i=1,2, are not optimal. However, this choice simplifies the presentation. Moreover, they do not play an important role in our proofs below.

Proof of Lemma 2.2.

(i) Since g(,s)0g(\cdot,s)\equiv 0 and G(,s)0G(\cdot,s)\equiv 0 for s0s\leq 0, it suffices to consider s>0s>0. Fix x+Nx\in\mathbb{R}^{N}_{+}. Since g(x,)g(x,\cdot) is of class C1C^{1} on (0,)(0,\infty), we have

(2.7) g(x,s)=(uc(x)+s)puc(x)p=spuc(x)p1+p0s[(uc(x)+τ)p1uc(x)p1]𝑑τ,for s>0.g(x,s)=(u_{c}(x)+s)^{p}-u_{c}(x)^{p}=spu_{c}(x)^{p-1}+p\int_{0}^{s}\bigl{[}(u_{c}(x)+\tau)^{p-1}-u_{c}(x)^{p-1}\bigr{]}\,d\tau,\qquad\text{for $s>0$.}

We now distinguish two cases. If p(1,2]p\in(1,2], we have

0(a+τ)p1ap1τp1for τ>0,a0,0\leq(a+\tau)^{p-1}-a^{p-1}\leq\tau^{p-1}\qquad\text{for $\tau>0,\>a\geq 0$},

and therefore, if p(1,2]p\in(1,2],

(2.8) 0g(x,s)spuc(x)p1p0sτp1𝑑τsp,for s0.0\leq g(x,s)-spu_{c}(x)^{p-1}\leq p\int_{0}^{s}\tau^{p-1}\,d\tau\leq s^{p},\qquad\text{for $s\geq 0$.}

If p>2p>2, we have

0(a+τ)p1ap1(p1)τ(a+τ)p2,for τ>0,a0,0\leq(a+\tau)^{p-1}-a^{p-1}\leq(p-1)\tau(a+\tau)^{p-2},\qquad\text{for $\tau>0,\>a\geq 0$},

by the convexity of the function a(a+τ)p1a\mapsto(a+\tau)^{p-1} and therefore, using also (2.1),

0\displaystyle 0 g(x,s)spuc(x)p1p0s[(uc(x)+τ)p1uc(x)p1]𝑑τ\displaystyle\leq g(x,s)-spu_{c}(x)^{p-1}\leq p\int_{0}^{s}\bigl{[}(u_{c}(x)+\tau)^{p-1}-u_{c}(x)^{p-1}\bigr{]}\,d\tau
p(p1)0sτ(uc(x)+τ)p2𝑑τp(p1)2s2(uc(x)+s)p2p(p1)2s2(cp+s)p2.\displaystyle\leq p(p-1)\int_{0}^{s}\tau(u_{c}(x)+\tau)^{p-2}\,d\tau\leq\frac{p(p-1)}{2}s^{2}(u_{c}(x)+s)^{p-2}\leq\frac{p(p-1)}{2}s^{2}({c_{p}}+s)^{p-2}.

Note also that, since p>2p>2,

(2.9) (cp+s)p2(2max{cp,s})p2(2cp)p2+(2s)p2,for s0.({c_{p}}+s)^{p-2}\leq\bigl{(}2\max\{{c_{p}},s\}\bigr{)}^{p-2}\leq(2{c_{p}})^{p-2}+(2s)^{p-2},\qquad\text{for $s\geq 0$.}

Consequently, if p>2p>2,

(2.10) 0g(x,s)spuc(x)p12p3p(p1)sp+p(p1)2p3cpp2s2,for s0.0\leq g(x,s)-spu_{c}(x)^{p-1}\leq 2^{p-3}p(p-1)s^{p}+p(p-1)2^{p-3}{c_{p}}^{p-2}s^{2},\qquad\text{for $s\geq 0$.}

Now (2.4) follows by combining (2.8) and (2.10). Moreover, (2.5) follows by integrating (2.4).

(ii) We first note that H(x,s)0H(x,s)\equiv 0 for all s0s\leq 0. Thus, we just have to prove the result for s>0s>0. Directly observe that, for all x+Nx\in\mathbb{R}^{N}_{+}, we have H(x,)C1()H(x,\cdot)\in C^{1}(\mathbb{R}) and

sH(x,s)\displaystyle\frac{\partial}{\partial s}H(x,s) =p2(uc(x)+s)p1s+12(uc(x)+s)p12ucp(x)(uc(x)+s)p+ucp(x)\displaystyle=\frac{p}{2}(u_{c}(x)+s)^{p-1}s+\frac{1}{2}(u_{c}(x)+s)^{p}-\frac{1}{2}u_{c}^{p}(x)-(u_{c}(x)+s)^{p}+u_{c}^{p}(x)
=12[p(uc(x)+s)p1s(uc(x)+s)p+ucp(x)]for (x,s)+N×(0,+).\displaystyle=\frac{1}{2}\left[p(u_{c}(x)+s)^{p-1}s-(u_{c}(x)+s)^{p}+u_{c}^{p}(x)\right]\qquad\text{for $(x,s)\in\mathbb{R}^{N}_{+}\times(0,+\infty).$}

On the other hand, since p>1p>1, we have, by the mean value theorem,

(uc(x)+s)pucp(x)p(uc(x)+s)p1sfor (x,s)+N×(0,+).(u_{c}(x)+s)^{p}-u_{c}^{p}(x)\leq p(u_{c}(x)+s)^{p-1}s\qquad\text{for $(x,s)\in\mathbb{R}^{N}_{+}\times(0,+\infty).$}

Hence sH(x,s)0\frac{\partial}{\partial s}H(x,s)\geq 0 for all s>0s>0, so the function H(x,)H(x,\cdot) is non-decrasing in s[0,)s\in[0,\infty). This also implies that H(x,s)0H(x,s)\geq 0 for s0s\geq 0. It thus remains to prove (2.6) for s0s\geq 0. For this we first note that

H(x,s)=g(x,s)s2G(x,s)\displaystyle H(x,s)=\frac{g(x,s)s}{2}-G(x,s) =12((uc(x)+s)puc(x)p)s1p+1((uc(x)+s)p+1uc(x)p+1(p+1)uc(x)ps)\displaystyle=\frac{1}{2}\Bigl{(}(u_{c}(x)+s)^{p}-u_{c}(x)^{p}\Bigr{)}s-\frac{1}{p+1}\Bigl{(}(u_{c}(x)+s)^{p+1}-u_{c}(x)^{p+1}-(p+1)u_{c}(x)^{p}s\Bigr{)}
=(121p+1)((uc(x)+s)puc(x)p)s1p+1((uc(x)+s)puc(x)ppuc(x)p1s)uc(x)\displaystyle=\Bigl{(}\frac{1}{2}-\frac{1}{p+1}\Bigr{)}\Bigl{(}(u_{c}(x)+s)^{p}-u_{c}(x)^{p}\Bigr{)}s-\frac{1}{p+1}\Bigl{(}(u_{c}(x)+s)^{p}-u_{c}(x)^{p}-pu_{c}(x)^{p-1}s\Bigr{)}u_{c}(x)
p12(p+1)sp+11p+1uc(x)(g(x,s)spuc(x)p1).\displaystyle\geq\frac{p-1}{2(p+1)}\,s^{p+1}-\frac{1}{p+1}u_{c}(x)\bigl{(}g(x,s)-spu_{c}(x)^{p-1}\bigr{)}.

It therefore remains to show that

(2.11) uc(x)(g(x,s)spucp1(x))(p+1)(ucp1(x)D1,ps2+uc(x) 1{p>2}D2,psp), for s>0.u_{c}(x)\bigl{(}g(x,s)-spu_{c}^{p-1}(x)\bigr{)}\leq(p+1)\bigl{(}u_{c}^{p-1}(x)\,D_{1,p}s^{2}+u_{c}(x)\,1_{\{p>2\}}D_{2,p}s^{p}\bigr{)},\quad\textup{ for }s>0.

By (2.7) and integration by parts we have

uc(x)(g(x,s)spucp1(x))\displaystyle u_{c}(x)\bigl{(}g(x,s)-spu_{c}^{p-1}(x)\bigr{)} =puc(x)0s[(uc(x)+τ)p1uc(x)p1]𝑑τ\displaystyle=pu_{c}(x)\int_{0}^{s}\bigl{[}(u_{c}(x)+\tau)^{p-1}-u_{c}(x)^{p-1}\bigr{]}\,d\tau
(2.12) =p(p1)uc(x)0s(sτ)[(uc(x)+τ)p2]𝑑τ.\displaystyle=p(p-1)u_{c}(x)\int_{0}^{s}(s-\tau)\bigl{[}(u_{c}(x)+\tau)^{p-2}\bigr{]}\,d\tau.

If p(1,2]p\in(1,2], we have (uc(x)+τ)p2uc(x)p2(u_{c}(x)+\tau)^{p-2}\leq u_{c}(x)^{p-2} for τ>0\tau>0 and therefore

(2.13) uc(x)(g(x,s)spuc(x)p1)p(p1)ucp1(x)0s(sτ)𝑑τp(p1)ucp1(x)s2.u_{c}(x)\bigl{(}g(x,s)-spu_{c}(x)^{p-1}\bigr{)}\leq p(p-1)u_{c}^{p-1}(x)\int_{0}^{s}(s-\tau)\,d\tau\leq p(p-1)u_{c}^{p-1}(x)s^{2}.

If p>2p>2, arguing as (2.9), we have

(uc(x)+τ)p22p2(ucp2(x)+τp2),for τ0,(u_{c}(x)+\tau)^{p-2}\leq 2^{p-2}\bigr{(}u_{c}^{p-2}(x)+\tau^{p-2}\bigr{)},\qquad\text{for $\tau\geq 0$},

and therefore (2.12) yields

(2.14) uc(x)(g(x,s)spuc(x)p1)\displaystyle u_{c}(x)\bigl{(}g(x,s)-spu_{c}(x)^{p-1}\bigr{)} 2p2p(p1)uc(x)0s(sτ)[ucp2(x)+τp2]𝑑τ\displaystyle\leq 2^{p-2}p(p-1)u_{c}(x)\int_{0}^{s}(s-\tau)\bigl{[}u_{c}^{p-2}(x)+\tau^{p-2}\bigr{]}\,d\tau
=2p2p(p1)uc(x)(ucp2(x)0s(sτ)𝑑τ+0s(sτ)τp2𝑑τ)\displaystyle=2^{p-2}p(p-1)u_{c}(x)\left(u_{c}^{p-2}(x)\int_{0}^{s}(s-\tau)d\tau+\int_{0}^{s}(s-\tau)\tau^{p-2}d\tau\right)
2p2p(p1)ucp1(x)s2+2p2puc(x)sp, for s>0.\displaystyle\leq 2^{p-2}p(p-1)u_{c}^{p-1}(x)\,s^{2}+2^{p-2}pu_{c}(x)\,s^{p},\quad\textup{ for }s>0.

Now (2.11) follows by combining (2.13) and (2.14). The proof is finished. ∎

Remark 2.3.

  • (a)

    From the growth estimates given in Lemma 2.2 (i) and the fact that gg is continuous, it follows in a standard way that the functional EE is well-defined on H01(+N)H_{0}^{1}(\mathbb{R}^{N}_{+}) and of class C1C^{1}.

  • (b)

    Part (ii) of Lemma 2.2 will be useful in the analysis of Cerami sequences of the functional EE, see Section 3 below.

Next, we consider the quadratic form qc:H01(+N)q_{c}:H_{0}^{1}(\mathbb{R}^{N}_{+})\to\mathbb{R} given by

(2.15) qc(u):=+N(|u|2+Vc(x)u2)𝑑x,q_{c}(u):=\int_{\mathbb{R}^{N}_{+}}\big{(}|\nabla u|^{2}+V_{c}(x)u^{2}\big{)}\,dx,

with

(2.16) Vc(x):=1pucp1(xN)L(+N).\qquad V_{c}(x):=1-pu_{c}^{p-1}(x_{N})\,\in\,L^{\infty}(\mathbb{R}^{N}_{+}).

As we show in the following lemma, qcq_{c} is positive definite on H01(+N)H^{1}_{0}(\mathbb{R}^{N}_{+}).

Proposition 2.3.

We have

(2.17) q~c:=infuH01(+N){0}qc(u)u2>0.\widetilde{q}_{c}:=\inf_{u\in H^{1}_{0}(\mathbb{R}^{N}_{+})\setminus\{0\}}\frac{q_{c}(u)}{\|u\|^{2}}>0.
Remark 2.4.

  • (a)

    Recall that we are using the shortened notation u2=+N(|u|2+|u|2)𝑑x\|u\|^{2}=\int_{\mathbb{R}^{N}_{+}}\big{(}|\nabla u|^{2}+|u|^{2}\big{)}\,dx.

  • (b)

    From Proposition 2.3 it follows that (qc())1/2(q_{c}(\cdot))^{1/2} is an equivalent norm to \|\cdot\| in H01(+N)H_{0}^{1}(\mathbb{R}^{N}_{+}).

Proof of Proposition 2.3.

Since VcL(+N)V_{c}\in L^{\infty}(\mathbb{R}^{N}_{+}), it suffices to show there exists C>0C>0 such that

(2.18) qc(u)CuL2(+N)2for all uH01(+N).q_{c}(u)\geq C\|u\|_{L^{2}(\mathbb{R}^{N}_{+})}^{2}\qquad\text{for all $u\in H^{1}_{0}(\mathbb{R}^{N}_{+}).$}

Indeed, if (2.18) holds, then for δ(0,1)\delta\in(0,1) we have

qc(u)\displaystyle q_{c}(u) δqc(u)+(1δ)CuL2(+N)2δu2+[(1δ)Cδ(1+VcL(+N))]uL2(+N)2.\displaystyle\geq\delta q_{c}(u)+(1-\delta)C\|u\|^{2}_{L^{2}(\mathbb{R}^{N}_{+})}\geq\delta\|u\|^{2}+\bigl{[}(1-\delta)C-\delta\bigl{(}1+\|V_{c}\|_{L^{\infty}(\mathbb{R}^{N}_{+})}\bigr{)}\bigr{]}\,\|u\|^{2}_{L^{2}(\mathbb{R}^{N}_{+})}.

Choosing δ\delta sufficiently small, we have (1δ)Cδ(1+VcL(+N))0(1-\delta)C-\delta\bigl{(}1+\|V_{c}\|_{L^{\infty}(\mathbb{R}^{N}_{+})}\bigr{)}\geq 0 and therefore (2.17) holds with q~cδ\widetilde{q}_{c}\geq\delta.
To show (2.18), we first consider the case N=1N=1. Arguing by contradiction, we assume that

λ:=inf{qc(u):uH01(+) and uL2(+)=1}0,\lambda:=\inf\big{\{}q_{c}(u):u\in H_{0}^{1}(\mathbb{R}_{+})\textup{ and }\|u\|_{L^{2}(\mathbb{R}_{+})}=1\big{\}}\leq 0,

(note that λ>\lambda>-\infty since VcL(+)V_{c}\in L^{\infty}(\mathbb{R}_{+})). Then, there exists a sequence (un)n(u_{n})_{n} such that unL2(+)=1\|u_{n}\|_{L^{2}(\mathbb{R}_{+})}=1 for all nn\in\mathbb{N} and qc(un)λq_{c}(u_{n})\to\lambda as nn\to\infty. Hence, (un)n(u_{n})_{n} is a bounded sequence in H01(+)H_{0}^{1}(\mathbb{R}_{+}), and thus unuu_{n}\rightharpoonup u_{*} weakly in H01(+)H_{0}^{1}(\mathbb{R}_{+}) after passing to a subsequence. Moreover, with vn:=unuv_{n}:=u_{n}-u_{*}, we have vn0v_{n}\rightharpoonup 0 in H01(+)H_{0}^{1}(\mathbb{R}_{+}) and therefore vn0v_{n}\to 0 in Lloc2(+)L^{2}_{loc}(\mathbb{R}_{+}). Since Vc(t)1V_{c}(t)\to 1 as tt\to\infty, this implies that

qc(vn)+Vc(t)vn2𝑑tvnL2(+)2+o(1),as n,q_{c}(v_{n})\geq\int_{\mathbb{R}_{+}}V_{c}(t)v_{n}^{2}\,dt\geq\|v_{n}\|_{L^{2}(\mathbb{R}_{+})}^{2}+o(1),\qquad\text{as $n\to\infty$},

and therefore

λ+o(1)\displaystyle\lambda+o(1) =qc(un)=qc(u)+qc(vn)+o(1)\displaystyle=q_{c}(u_{n})=q_{c}(u_{*})+q_{c}(v_{n})+o(1)
λuL2(+)2+vnL2(+)2+o(1)=λ(uL2(+)2+vnL2(+)2)+(1λ)vnL2(+)2+o(1)\displaystyle\geq\lambda\|u_{*}\|_{L^{2}(\mathbb{R}_{+})}^{2}+\|v_{n}\|_{L^{2}(\mathbb{R}_{+})}^{2}+o(1)=\lambda\big{(}\|u_{*}\|_{L^{2}(\mathbb{R}_{+})}^{2}+\|v_{n}\|_{L^{2}(\mathbb{R}_{+})}^{2}\big{)}+(1-\lambda)\|v_{n}\|_{L^{2}(\mathbb{R}_{+})}^{2}+o(1)
=λ+(1λ)vnL2(+)2+o(1)\displaystyle=\lambda+(1-\lambda)\|v_{n}\|_{L^{2}(\mathbb{R}_{+})}^{2}+o(1)

It thus follows that vn0v_{n}\to 0 in L2(+)L^{2}(\mathbb{R}_{+}) and hence unuu_{n}\to u_{*} in L2(+)L^{2}(\mathbb{R}_{+}), which yields that uL2=1\|u_{*}\|_{L^{2}}=1. Moreover, by weak lower semicontinuity of qcq_{c} and the definition of λ\lambda, it follows that qc(u)=λq_{c}(u_{*})=\lambda, so uu_{*} is a constrained minimizer for qcq_{c}. A standard argument (based on replacing uu_{*} by |u||u_{*}|) shows that uH01(+)u_{*}\in H_{0}^{1}(\mathbb{R}_{+}) is a positive or negative solution of

u′′+Vc(t)u=λuin +,u(0)=0.-u_{*}^{\prime\prime}+V_{c}(t)u_{*}=\lambda u_{*}\quad\text{in $\mathbb{R}_{+}$},\qquad u_{*}(0)=0.

Without loss of generality, we may assume that uu_{*} is positive, which implies that u(0)>0u_{*}^{\prime}(0)>0. We also recall that w:=ucw_{*}:=-u_{c}^{\prime} satisfies

w′′+Vc(t)w=0in +,w>0in +¯.-w_{*}^{\prime\prime}+V_{c}(t)w_{*}=0\quad\text{in $\mathbb{R}_{+}$},\qquad w_{*}>0\quad\text{in $\overline{\mathbb{R}_{+}}$}.

Consequently, we have

0λ+wu𝑑x=+(wu′′uw′′)𝑑x=w(0)u(0)<0,0\leq-\lambda\int_{\mathbb{R}^{+}}w_{*}u_{*}\,dx=\int_{\mathbb{R}^{+}}\bigl{(}w_{*}u_{*}^{\prime\prime}-u_{*}w_{*}^{\prime\prime}\bigr{)}\,dx=-w_{*}(0)u_{*}^{\prime}(0)<0,

a contradiction. Hence, we conclude that (2.18) holds in the case N=1N=1. To show (2.18) for general N2N\geq 2, we remark that, by density, we only have to show it for uCc(+N)u\in C^{\infty}_{c}(\mathbb{R}^{N}_{+}). For any such function we then have, writing x=(x,t)+Nx=(x^{\prime},t)\in\mathbb{R}^{N}_{+} with xN1x^{\prime}\in\mathbb{R}^{N-1}, t>0t>0:

qc(u)\displaystyle q_{c}(u) +N(|tu|2+Vcu2)𝑑x\displaystyle\geq\int_{\mathbb{R}^{N}_{+}}\Bigl{(}|\partial_{t}u|^{2}+V_{c}u^{2}\Bigr{)}\,dx
=N1+(|tu(x,t)|2+Vcu2(x,t))𝑑t𝑑x\displaystyle=\int_{\mathbb{R}^{N-1}}\int_{\mathbb{R}_{+}}\Bigl{(}|\partial_{t}u(x^{\prime},t)|^{2}+V_{c}u^{2}(x^{\prime},t)\Bigr{)}\,dtdx^{\prime}
CN1+u2(x,t)𝑑t𝑑x=CuL2(+N)2.\displaystyle\geq C\int_{\mathbb{R}^{N-1}}\int_{\mathbb{R}_{+}}u^{2}(x^{\prime},t)\,dtdx^{\prime}=C\|u\|^{2}_{L^{2}(\mathbb{R}^{N}_{+})}.

Here we have used the result in the case N=1N=1 and the fact that u(x,)Cc(+)H01(+)u(x^{\prime},\cdot)\in C^{\infty}_{c}(\mathbb{R}_{+})\subset H^{1}_{0}(\mathbb{R}_{+}) for every xN1x^{\prime}\in\mathbb{R}^{N-1}. We thus have proved (2.18) for general N1N\geq 1, and the proof is complete. ∎

Having at hand Proposition 2.3, we prove a lower estimate on the functional EE given in (1.15) that will be useful at several points below.

Corollary 2.4.

We have

E(u)q~c2u2C1,pp+1uLp+1(+N)p+11{p>2}C2,p3uL3(+N)3for all uH01(+N).E(u)\geq\frac{\widetilde{q}_{c}}{2}\|u\|^{2}-\frac{C_{1,p}}{p+1}\|u\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}\frac{C_{2,p}}{3}\|u\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}\qquad\text{for all $u\in H_{0}^{1}(\mathbb{R}^{N}_{+}).$}

with q~c\widetilde{q}_{c} given in (2.17) and C1,p,C2,pC_{1,p},C_{2,p} given in Lemma 2.2 (i).

Proof.

For all uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}), we have, by (2.5) and Proposition 2.3,

E(u)\displaystyle E(u) =12u2+NG(x,u)𝑑x\displaystyle=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}_{+}}G(x,u)dx
12u212+Npucp1(u+)2𝑑xC1,pp+1u+Lp+1(+N)p+11{p>2}C2,p3u+L3(+N)3\displaystyle\geq\frac{1}{2}\|u\|^{2}-\frac{1}{2}\int_{\mathbb{R}^{N}_{+}}pu_{c}^{p-1}(u^{+})^{2}dx-\frac{C_{1,p}}{p+1}\|u^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}\frac{C_{2,p}}{3}\|u^{+}\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}
12qc(u)C1,pp+1uLp+1(+N)p+11{p>2}C2,p3uL3(+N)3\displaystyle\geq\frac{1}{2}q_{c}(u)-\frac{C_{1,p}}{p+1}\|u\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}\frac{C_{2,p}}{3}\|u\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}
q~c2u2C1,pp+1uLp+1(+N)p+11{p>2}C2,p3uL3(+N)3.\displaystyle\geq\frac{\widetilde{q}_{c}}{2}\|u\|^{2}-\frac{C_{1,p}}{p+1}\|u\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}\frac{C_{2,p}}{3}\|u\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}.

3. Mountain-pass geometry and boundedness of the Cerami sequences

This section is devoted to show that the functional EE has a Mountain-pass geometry and that, for any dd\in\mathbb{R}, the Cerami sequences for EE and level dd are bounded. We keep using the notation of the introduction and of Section 2, which depends on the fixed quantities c(0,cp)c\in(0,{c_{p}}) and p(1,21)p\in(1,2^{*}-1). We begin by proving that the functional EE has indeed a Mountain-pass geometry.

Lemma 3.1.

The functional EE has the following properties.

  • (i)

    E(0)=0E(0)=0.

  • (ii)

    There exist ρ0>0\rho_{0}>0 and δ0>0\delta_{0}>0 such that E(u)δ0E(u)\geq\delta_{0} for all uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}) such that u=ρ0\|u\|=\rho_{0}.

  • (iii)

    There exists ψH01(+N)\psi\in H_{0}^{1}(\mathbb{R}^{N}_{+}) such that ψ>ρ0\|\psi\|>\rho_{0} and E(ψ)<0E(\psi)<0.

Proof.

Since (i) is obvious, we concentrate on proving (ii) and (iii). We first prove (ii). Let uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}) with u=ρ0\|u\|=\rho_{0}. By Corollary 2.4, we have

E(u)q~c2ρ02C1,pp+1uLp+1(+N)p+11{p>2}C2,p3uL3(+N)3.E(u)\geq\frac{\widetilde{q}_{c}}{2}\rho_{0}^{2}-\frac{C_{1,p}}{p+1}\|u\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}\frac{C_{2,p}}{3}\|u\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}.

Applying then Sobolev embeddings, we deduce that

E(u)q~c2ρ02C(ρ0p+1+1{p>2}ρ03),E(u)\geq\frac{\widetilde{q}_{c}}{2}\rho_{0}^{2}-C\big{(}\rho_{0}^{p+1}+1_{\{p>2\}}\rho_{0}^{3}\big{)},

with a constant C>0C>0. Since p>1p>1, Claim (ii) follows by taking ρ0\rho_{0} sufficiently small. It then remains to prove (iii). Let φCc(+N)\varphi\in C_{c}^{\infty}(\mathbb{R}^{N}_{+}) with φ0\varphi\gneqq 0 and ψ:=tφ\psi:=t\varphi with t(0,+)t\in(0,+\infty). Directly observe that

E(ψ)=t22φ2+t+Nucpφ𝑑x1p+1+N((uc+tφ)p+1ucp+1)𝑑xE(\psi)=\frac{t^{2}}{2}\|\varphi\|^{2}+t\int_{\mathbb{R}^{N}_{+}}u_{c}^{p}\varphi dx-\frac{1}{p+1}\int_{\mathbb{R}^{N}_{+}}\left((u_{c}+t\varphi)^{p+1}-u_{c}^{p+1}\right)dx

Then, since

+N((uc+tφ)p+1ucp+1)𝑑xtp+1φLp+1(+N)p+1,\int_{\mathbb{R}^{N}_{+}}\left((u_{c}+t\varphi)^{p+1}-u_{c}^{p+1}\right)dx\geq t^{p+1}\|\varphi\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1},

we have that

E(ψ)t22φ2+tcpφL1(+N)tp+1p+1φLp+1(+N)p+1.E(\psi)\leq\frac{t^{2}}{2}\|\varphi\|^{2}+tc^{p}\|\varphi\|_{L^{1}(\mathbb{R}^{N}_{+})}-\frac{t^{p+1}}{p+1}\|\varphi\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}.

Claim (iii) follows taking tt sufficiently large and thus the proof is complete. ∎

We now prove the boundedness of Cerami sequences of the functional EE.

Proposition 3.2.

Cerami sequences for EE at any level dd\in\mathbb{R} are bounded.

Remark 3.1.

  • (a)

    Recall that (φn)nH01(+N)(\varphi_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) is a Cerami sequence for EE at level dd\in\mathbb{R} if

    E(φn)d and (1+φn)E(φn)H1(+N)0.E(\varphi_{n})\to d\quad\textup{ and }\quad(1+\|\varphi_{n}\|)\|E^{\prime}(\varphi_{n})\|_{H^{-1}(\mathbb{R}^{N}_{+})}\to 0.
  • (b)

    The proof of Proposition 3.2 is inspired by [21, Section 3]. However, since our problem is not invariant under translations in N\mathbb{R}^{N} and our nonlinearity gg has a non-standard shape, several difficulties appear.

Proof of Proposition 3.2.

Let dd\in\mathbb{R} be an arbitrary but fixed constant and let (un)nH01(+N)(u_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) be a Cerami sequence for EE at level dd\in\mathbb{R}. First of all, observe that

un2=E(un),un0, as n.\|u_{n}^{-}\|^{2}=-\langle E^{\prime}(u_{n}),u_{n}^{-}\rangle\to 0,\quad\textup{ as }n\to\infty.

In particular, we deduce that (un)n(u_{n}^{-})_{n} is bounded. It then remains to prove that (un+)n(u_{n}^{+})_{n} is bounded. We assume by contradiction that un\|u_{n}\|\to\infty and we set vn:=un/unv_{n}:=u_{n}\,/\,\|u_{n}\| for all nn\in\mathbb{N}. Since (vn)n(v_{n})_{n} and (un)n(u_{n}^{-})_{n} are bounded, up to a subsequence if necessary, we have

(3.1) vnv in H01(+N),vnv in Llocq(+N)for 1q<2 and vnva.e. in +N,v_{n}\rightharpoonup v\textup{ in }H_{0}^{1}(\mathbb{R}^{N}_{+}),\quad v_{n}\to v\textup{ in }L^{q}_{loc}(\mathbb{R}^{N}_{+})\quad\text{for $1\leq q<2^{\ast}$}\quad\textup{ and }\quad v_{n}\to v\;\textup{a.e. in $\mathbb{R}^{N}_{+}$},

for some vH01(+N)v\in H_{0}^{1}(\mathbb{R}^{N}_{+}) with v0v\geq 0. We have now two possible cases:

Case 1 (Vanishing): For all R>0R>0, it follows that

(3.2) limnsupy+NBR(y)+Nvn2𝑑x=0.\lim_{n\to\infty}\sup_{y\in\mathbb{R}^{N}_{+}}\int_{B_{R}(y)\cap\mathbb{R}^{N}_{+}}v_{n}^{2}dx=0.

Case 2 (Non-vanishing): There exist R>0,δ>0R>0,\ \delta>0 and a sequence of points (yn)n+N(y^{n})_{n}\subset\mathbb{R}^{N}_{+} such that

(3.3) limnBR(yn)+Nvn2𝑑xδ.\lim_{n\to\infty}\int_{B_{R}(y^{n})\cap\mathbb{R}^{N}_{+}}v_{n}^{2}dx\geq\delta.

We shall prove that none of these cases may happen. This will prove the boundedness of the sequence Cerami sequence (un)n(u_{n})_{n}.

Case 1 (Vanishing): First of all, observe that, by (3.2) and Lions’ Lemma [25, Lemma I.1], vn0v_{n}\to 0 in Lq(+N)L^{q}(\mathbb{R}^{N}_{+}) for all 2<q<22<q<2^{\ast}, and so, by uniqueness of the limit we have v0v\equiv 0. We define then the sequence (zn)nH01(+N)(z_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) by zn:=tnunz_{n}:=t_{n}u_{n} with tn[0,1]t_{n}\in[0,1] satisfying

E(zn)=maxt[0,1]E(tun),E(z_{n})=\max_{t\in[0,1]}E(tu_{n}),

(if, for nn\in\mathbb{N}, tnt_{n} is not unique, we choose the smallest value) and we split the proof in the vanishing case (Case 1) into three steps.

Step 1.1: limnE(zn)=+\displaystyle\lim_{n\to\infty}E(z_{n})=+\infty.

We argue by contradiction. Suppose there exists M<+M<+\infty such that

lim infnE(zn)M,\liminf_{n\to\infty}E(z_{n})\leq M,

and define (kn)nH01(+N)(k_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) as

kn:=(4Mq~c)12vn=(4Mq~c)121unun,for all n,k_{n}:=\left(\frac{4M}{\widetilde{q}_{c}}\right)^{\frac{1}{2}}v_{n}=\left(\frac{4M}{\widetilde{q}_{c}}\right)^{\frac{1}{2}}\frac{1}{\|u_{n}\|}u_{n},\qquad\text{for all $n\in\mathbb{N}$},

where q~c>0\widetilde{q}_{c}>0 is the constant given by Proposition 2.3. First, observe that

(3.4) kn0 in H01(+N),kn0 in Lq(+N),for 2<q<2, and kn0 a.e. in +N.k_{n}\rightharpoonup 0\textup{ in }H_{0}^{1}(\mathbb{R}^{N}_{+}),\quad k_{n}\to 0\textup{ in }L^{q}(\mathbb{R}^{N}_{+}),\ \ \text{for $2<q<2^{\ast}$,}\quad\textup{ and }\quad k_{n}\to 0\textup{ a.e. in }\mathbb{R}^{N}_{+}.

Then, by Corollary 2.4 and (3.4), we obtain that

(3.5) E(kn)q~c2kn2C(knLp+1(+N)p+1+1{p>2}knL3(+N)3)=2M+o(1).E(k_{n})\geq\frac{\widetilde{q}_{c}}{2}\|k_{n}\|^{2}-C\left(\|k_{n}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}+1_{\{p>2\}}\|k_{n}\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}\right)=2M+o(1).

Taking MM bigger if necessary, we have that, for all nn\in\mathbb{N} large enough,

E(kn)>32M.E(k_{n})>\frac{3}{2}M.

On the other hand, observe that, for nn\in\mathbb{N} large enough, (4Mq~c)121un[0,1].\left(\frac{4M}{\widetilde{q}_{c}}\right)^{\frac{1}{2}}\frac{1}{\|u_{n}\|}\in[0,1]. Hence, we have that

32Mlim infnE(kn)lim infnE(zn)M,\frac{3}{2}M\leq\liminf_{n\to\infty}E(k_{n})\leq\liminf_{n\to\infty}E(z_{n})\leq M,

which is a contradiction. Thus, the Step 1.1 follows.

Step 2.1: E(zn),zn=0\langle E^{\prime}(z_{n}),z_{n}\rangle=0 for all nn\in\mathbb{N} large enough.

By Step 1.1 we know that E(zn)E(z_{n})\to\infty as nn\to\infty. On the other hand, E(0)=0E(0)=0 and E(un)dE(u_{n})\to d as nn\to\infty. Hence, for nn\in\mathbb{N} large enough, tn(0,1)t_{n}\in(0,1) and so, by the definition of znz_{n}, the Step 2.1 follows.

Step 3.1: Conclusion Case 1.

Observe that, by Step 2.1, for all nn\in\mathbb{N} large enough,

E(zn)=E(zn)12E(zn),zn=+NH(x,zn)𝑑x,E(z_{n})=E(z_{n})-\frac{1}{2}\langle E^{\prime}(z_{n}),z_{n}\rangle=\int_{\mathbb{R}^{N}_{+}}H(x,z_{n})dx,

where HH is given in Lemma 2.2 (ii). By Step 1.1, we have that

(3.6) limn+NH(x,zn)𝑑x=+.\lim_{n\to\infty}\int_{\mathbb{R}^{N}_{+}}H(x,z_{n})dx=+\infty.

On the other hand, since (un)n(u_{n})_{n} is a Cerami sequence,

d+o(1)=E(un)12E(un),un=+NH(x,un)𝑑x.d+o(1)=E(u_{n})-\frac{1}{2}\langle E^{\prime}(u_{n}),u_{n}\rangle=\int_{\mathbb{R}^{N}_{+}}H(x,u_{n})dx.

Then, using the definition of znz_{n} and the fact that H(x,s)H(x,s) is non-decreasing in ss by Lemma 2.2 (ii), we obtain

+NH(x,zn)𝑑x+NH(x,un)𝑑x=d+o(1),\int_{\mathbb{R}^{N}_{+}}H(x,z_{n})dx\leq\int_{\mathbb{R}^{N}_{+}}H(x,u_{n})dx=d+o(1),

which clearly contradicts (3.6). Hence, Case 1 (vanishing) cannot happen.

Case 2 (Non-vanishing): We split the proof into two steps.

Step 1.2: There exists M>0M>0 such that yNn:=dist(yn,+N)My^{n}_{N}:={\rm dist}(y^{n},\partial\mathbb{R}^{N}_{+})\leq M for all nn\in\mathbb{N}.

We assume by contradiction that yNn+y^{n}_{N}\to+\infty as n+n\to+\infty. Then, for all nn\in\mathbb{N}, we introduce wn:=vn(+yn)w_{n}:=v_{n}(\cdot+y^{n}) and observe that

(3.7) wnw in H1(N),wnw in Llocq(N)for 1q<2, and wnw a.e. in N,w_{n}\rightharpoonup w\textup{ in }H^{1}(\mathbb{R}^{N}),\quad w_{n}\to w\textup{ in }L^{q}_{loc}(\mathbb{R}^{N})\;\text{for $1\leq q<2^{\ast}$},\quad\textup{ and }\quad w_{n}\to w\textup{ a.e. in }\mathbb{R}^{N},

for some wH1(N)w\in H^{1}(\mathbb{R}^{N}) with w0w\not\equiv 0 (by (3.3)) and w0w\geq 0. Now, observe that, since (un)n(u_{n})_{n} is a Cerami sequence, Lemma 2.2 (ii) implies that

o(1)\displaystyle o(1) =1unp+1(E(un)12E(un),un)=1unp+1+NH(x,un(x))𝑑x\displaystyle=\frac{1}{\|u_{n}\|^{p+1}}\Bigl{(}E(u_{n})-\frac{1}{2}\langle E^{\prime}(u_{n}),u_{n}\rangle\Bigr{)}=\frac{1}{\|u_{n}\|^{p+1}}\int_{\mathbb{R}^{N}_{+}}H(x,u_{n}(x))\,dx
1unp+1[p12(p+1)un+Lp+1(+N)p+1+N(ucp1(x)D1,p[un+]2+uc(x) 1{p>2}D2,p[un+]p)𝑑x]\displaystyle\geq\frac{1}{\|u_{n}\|^{p+1}}\Bigl{[}\frac{p-1}{2(p+1)}\|u_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-\int_{\mathbb{R}^{N}_{+}}\bigl{(}u_{c}^{p-1}(x)D_{1,p}[u_{n}^{+}]^{2}+u_{c}(x)\,1_{\{p>2\}}D_{2,p}[u_{n}^{+}]^{p}\bigr{)}dx\Bigr{]}
1unp+1[p12(p+1)un+Lp+1(+N)p+1max{cpp1,cp}(D1,pun+L2(+N)2+1{p>2}D2,pun+Lp(+N)p)]\displaystyle\geq\frac{1}{\|u_{n}\|^{p+1}}\Bigl{[}\frac{p-1}{2(p+1)}\|u_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-\max\{{c_{p}}^{p-1},{c_{p}}\}\Bigl{(}D_{1,p}\|u_{n}^{+}\|_{L^{2}(\mathbb{R}^{N}_{+})}^{2}+1_{\{p>2\}}D_{2,p}\|u_{n}^{+}\|_{L^{p}(\mathbb{R}^{N}_{+})}^{p}\bigr{)}\Bigr{]}
p12(p+1)vn+Lp+1(+N)p+1Cunp+1(un2+1{p>2}unp)p12(p+1)vn+Lp+1(+N)p+1+o(1),\displaystyle\geq\frac{p-1}{2(p+1)}\|v_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-\frac{C}{\|u_{n}\|^{p+1}}\Bigl{(}\|u_{n}\|^{2}+1_{\{p>2\}}\|u_{n}\|^{p}\bigr{)}\geq\frac{p-1}{2(p+1)}\|v_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}+o(1),

where C>0C>0 is a constant independent of nn. Here we also used Sobolev embeddings and the fact that un\|u_{n}\|\to\infty as nn\to\infty. Since p>1p>1, we thus conclude by Fatou’s Lemma that

0=limnvn+Lp+1(+N)p+1=lim infn{xNyNn}(wn+)p+1𝑑xN(w+)p𝑑x.0=\lim_{n\to\infty}\|v_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}=\liminf_{n\to\infty}\int_{\{x_{N}\geq-y^{n}_{N}\}}(w_{n}^{+})^{p+1}dx\geq\int_{\mathbb{R}^{N}}(w^{+})^{p}dx.

Hence w=w+0w=w^{+}\equiv 0, which clearly is a contradiction. Thus, Step 1.2 follows.

Step 2.2: Conclusion Case 2.

By Step 1.2 we know there exists M>0M>0 such that yNnMy^{n}_{N}\leq M for all nn\in\mathbb{N}. We then define, for all nn\in\mathbb{N}, w~n:=vn(+ξn)\widetilde{w}_{n}:=v_{n}(\cdot+\xi_{n}), where ξn=(y1n,,yN1n,0)\xi_{n}=(y^{n}_{1},\ldots,y^{n}_{N-1},0). Again by (3.3), we have

(3.8) w~nw~ in H01(+N),w~nw~ in Llocq(+N)for 1q<2, and w~nw~ a.e. in +N,\widetilde{w}_{n}\rightharpoonup\widetilde{w}\textup{ in }H_{0}^{1}(\mathbb{R}^{N}_{+}),\quad\widetilde{w}_{n}\to\widetilde{w}\textup{ in }L^{q}_{loc}(\mathbb{R}^{N}_{+})\;\text{for $1\leq q<2^{\ast}$},\quad\textup{ and }\quad\widetilde{w}_{n}\to\widetilde{w}\textup{ a.e. in }\mathbb{R}^{N}_{+},

for some w~H01(+N)\widetilde{w}\in H_{0}^{1}(\mathbb{R}^{N}_{+}) with w~0\widetilde{w}\not\equiv 0 and w~0\widetilde{w}\geq 0. For nn\in\mathbb{N}, let φn:=w~(ξn)H01(+N)\varphi_{n}:=\widetilde{w}(\cdot-\xi_{n})\in H^{1}_{0}(\mathbb{R}^{N}_{+}). Since (un)n(u_{n})_{n} is a Cerami sequence with un\|u_{n}\|\to\infty as nn\to\infty, we have

o(1)\displaystyle o(1) =E(un),φnun=1un+N(unφn+unφng(x,un)φn)𝑑x\displaystyle=\frac{\langle E^{\prime}(u_{n}),\varphi_{n}\rangle}{\|u_{n}\|}=\frac{1}{\|u_{n}\|}\int_{\mathbb{R}^{N}_{+}}\bigl{(}\nabla u_{n}\nabla\varphi_{n}+u_{n}\varphi_{n}-g(x,u_{n})\varphi_{n}\bigr{)}dx
=+N(vnφn+vnφn)𝑑x+N((uc+un+)pucpun)φn𝑑x\displaystyle=\int_{\mathbb{R}^{N}_{+}}\bigl{(}\nabla v_{n}\nabla\varphi_{n}+v_{n}\varphi_{n}\bigr{)}dx-\int_{\mathbb{R}^{N}_{+}}\Bigl{(}\frac{(u_{c}+u_{n}^{+})^{p}-u_{c}^{p}}{\|u_{n}\|}\Bigr{)}\,\varphi_{n}dx
=+N(w~nw~+w~nw~)𝑑x+N((uc+unw~n+)pucpun)w~𝑑x\displaystyle=\int_{\mathbb{R}^{N}_{+}}\bigl{(}\nabla\widetilde{w}_{n}\nabla\widetilde{w}+\widetilde{w}_{n}\widetilde{w}\bigr{)}dx-\int_{\mathbb{R}^{N}_{+}}\Bigl{(}\frac{(u_{c}+\|u_{n}\|\widetilde{w}_{n}^{+})^{p}-u_{c}^{p}}{\|u_{n}\|}\Bigr{)}\,\widetilde{w}dx
=w~2+o(1)+N((uc+unw~n+)pucpun)w~𝑑x.\displaystyle=\|\widetilde{w}\|^{2}+o(1)-\int_{\mathbb{R}^{N}_{+}}\Bigl{(}\frac{(u_{c}+\|u_{n}\|\widetilde{w}_{n}^{+})^{p}-u_{c}^{p}}{\|u_{n}\|}\Bigr{)}\,\widetilde{w}dx.

On the other hand, since p>1p>1, we have that

lim infn(uc+unw~n+)pucpunw~n+w~n+w~=+, a.e. in {w~>0}\liminf_{n\to\infty}\frac{(u_{c}+\|u_{n}\|\widetilde{w}_{n}^{+})^{p}-u_{c}^{p}}{\|u_{n}\|\widetilde{w}_{n}^{+}}\,\widetilde{w}_{n}^{+}\widetilde{w}=+\infty,\quad\textup{ a.e. in $\{\widetilde{w}>0\}$}

and therefore, since w~0\widetilde{w}\geq 0 and w~0\widetilde{w}\not\equiv 0,

lim infn+N((uc+un+(+ξn))pucpun)w~𝑑x=lim infn{w~>0}((uc+un+(+ξn))pucpun)w~𝑑x=+\liminf_{n\to\infty}\int_{\mathbb{R}^{N}_{+}}\Bigl{(}\frac{(u_{c}+u_{n}^{+}(\cdot+\xi_{n}))^{p}-u_{c}^{p}}{\|u_{n}\|}\Bigr{)}\,\widetilde{w}dx=\liminf_{n\to\infty}\int_{\{\widetilde{w}>0\}}\Bigl{(}\frac{(u_{c}+u_{n}^{+}(\cdot+\xi_{n}))^{p}-u_{c}^{p}}{\|u_{n}\|}\Bigr{)}\,\widetilde{w}dx=+\infty

by Fatou’s Lemma. This yields a contradiction. Hence, Case 2 (non-vanishing) cannot happen either and thus the result follows. ∎

Lemma 3.3.

Let (un)n(u_{n})_{n} be a Cerami sequence for EE at level d{0}d\in\mathbb{R}\setminus\{0\}. Then, there exist R>0R>0, δ>0\delta>0 and a sequence of points (yn)n+N(y^{n})_{n}\subset\mathbb{R}^{N}_{+} such that

lim infnBR(yn)+Nun2𝑑xδ.\liminf_{n\to\infty}\int_{B_{R}(y^{n})\cap\mathbb{R}^{N}_{+}}u_{n}^{2}\,dx\geq\delta.
Proof.

We assume by contradiction that, for all R>0R>0,

lim infnsupy+NBR(y)+Nun2𝑑x=0.\liminf_{n\to\infty}\sup_{y\in\mathbb{R}^{N}_{+}}\int_{B_{R}(y)\cap\mathbb{R}^{N}_{+}}u_{n}^{2}dx=0.

Then, by Lions’ [25, Lemma I.1], we have that un0u_{n}\to 0 in Lq(+N)L^{q}(\mathbb{R}^{N}_{+}) for all 2<q<22<q<2^{\ast}. Now, since (un)n(u_{n})_{n} is a Cerami sequence, using Lemma 2.2 (i), we get

o(1)\displaystyle o(1) =E(un),un=un2+Ng(x,un(x))un𝑑x\displaystyle=\langle E^{\prime}(u_{n}),u_{n}\rangle=\|u_{n}\|^{2}-\int_{\mathbb{R}^{N}_{+}}g(x,u_{n}(x))u_{n}\,dx
un2+Npucp1(un+)2𝑑xC1,pun+Lp+1(+N)p+11{p>2}C2,pun+L3(+N)3\displaystyle\geq\|u_{n}\|^{2}-\int_{\mathbb{R}^{N}_{+}}pu_{c}^{p-1}(u_{n}^{+})^{2}dx-C_{1,p}\|u_{n}^{+}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}C_{2,p}\|u_{n}^{+}\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}
qc(un)C1,punLp+1(+N)p+11{p>2}C2,punL3(+N)3\displaystyle\geq q_{c}(u_{n})-C_{1,p}\|u_{n}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}C_{2,p}\|u_{n}\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}
q~cun2C1,punLp+1(+N)p+11{p>2}C2,punL3(+N)3.\displaystyle\geq\widetilde{q}_{c}\|u_{n}\|^{2}-C_{1,p}\|u_{n}\|_{L^{p+1}(\mathbb{R}^{N}_{+})}^{p+1}-1_{\{p>2\}}C_{2,p}\|u_{n}\|_{L^{3}(\mathbb{R}^{N}_{+})}^{3}.

Hence, since un0u_{n}\to 0 in Lq(+N)L^{q}(\mathbb{R}^{N}_{+}) for all 2<q<22<q<2^{*}, we deduce that un0\|u_{n}\|\to 0. Since EE is continuous, this implies that E(un)0E(u_{n})\to 0 as nn\to\infty, contradicting our assumption that d0d\not=0. The proof is finished. ∎

4. Energy estimates

We keep using the notation of the introduction and of Section 2, which depends on the fixed quantities c(0,cp)c\in(0,{c_{p}}) and p(1,21)p\in(1,2^{*}-1). Moreover, we will assume N2N\geq 2 throughout this section, which will be of key importance in order to derive the energy estimates we need. The mountain pass value associated to (1.14) is given by

(4.1) b:=infγΓmaxt[0,1]E(γ(t)),b:=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}E(\gamma(t)),

where

Γ:={γC([0,1],H01(+N)):γ(0)=0,E(γ(1))<0}.\Gamma:=\big{\{}\gamma\in C([0,1],H_{0}^{1}(\mathbb{R}^{N}_{+})):\gamma(0)=0,\ E(\gamma(1))<0\,\big{\}}.

We note that b>0b>0 by Lemma 3.1. We also note that the functional EE (given in (1.15)) can be written as

(4.2) E(u)=E+(u)1p+1+N((uc+u+)p+1ucp+1(u+)p+1(p+1)ucpu+)𝑑x,E(u)=E_{\infty}^{+}(u)-\frac{1}{p+1}\int_{\mathbb{R}^{N}_{+}}\left((u_{c}+u^{+})^{p+1}-u_{c}^{p+1}-(u^{+})^{p+1}-(p+1)u_{c}^{p}u^{+}\right)dx,

where E+:H01(+N)E_{\infty}^{+}:H_{0}^{1}(\mathbb{R}^{N}_{+})\to\mathbb{R} is given by

E+(u)=12u21p+1+N(u+)p+1𝑑x.E_{\infty}^{+}(u)=\frac{1}{2}\|u\|^{2}-\frac{1}{p+1}\int_{\mathbb{R}^{N}_{+}}(u^{+})^{p+1}dx.

Now, we introduce the auxiliary (limit) problem

(4.3) Δu+u=|u|p1u,uH1(N),-\Delta u+u=|u|^{p-1}u,\quad u\in H^{1}(\mathbb{R}^{N}),

and its associated energy E:H1(N)E_{\infty}:H^{1}(\mathbb{R}^{N})\to\mathbb{R} given by

(4.4) E(u)=12N(|u|2+u2)𝑑x1p+1N|u|p+1𝑑x.E_{\infty}(u)=\frac{1}{2}\int_{\mathbb{R}^{N}}\big{(}|\nabla u|^{2}+u^{2}\big{)}\,dx-\frac{1}{p+1}\int_{\mathbb{R}^{N}}|u|^{\,p+1}dx.

Also, we define

(4.5) b:=inf𝒦E, where 𝒦:={uH1(N){0}:E(u)=0}.b_{\infty}:=\inf_{\mathcal{K}_{\infty}}E_{\infty},\quad\text{ where }\quad\mathcal{K}_{\infty}:=\left\{u\in H^{1}(\mathbb{R}^{N})\setminus\{0\}:E_{\infty}^{\prime}(u)=0\right\}.

According to [8, Theorem 1], [6, Théorème 1] and [16, Theorem 2], there exists a ground-state solution ψC2(N)\psi\in C^{2}(\mathbb{R}^{N}) to (4.3) which is positive, radially symmetric, and such that

(4.6) ψ(x)CGS|x|N12e|x| and |ψ(x)|CGS|x|N12e|x|, as|x|,\psi(x)\leq C_{GS}|x|^{-\frac{N-1}{2}}e^{-|x|}\quad\textup{ and }\quad|\nabla\psi(x)|\leq C_{GS}|x|^{-\frac{N-1}{2}}e^{-|x|},\qquad\textup{ as}\quad|x|\to\infty,

for some CGS>0C_{GS}>0 depending only on NN and pp. Moreover,

(4.7) ψ\psi is strictly decreasing in the radial variable.

Let us also emphasize that

(4.8) 0<b=E(ψ)=(121p+1)ψLp+1(N)p+1=p12(p+1)ψLp+1(N)p+1=p12(p+1)infu𝒦uLp+1(N)p+1.0<b_{\infty}=E_{\infty}(\psi)=\left(\frac{1}{2}-\frac{1}{p+1}\right)\|\psi\|_{L^{p+1}(\mathbb{R}^{N})}^{p+1}=\frac{p-1}{2(p+1)}\|\psi\|_{L^{p+1}(\mathbb{R}^{N})}^{p+1}=\frac{p-1}{2(p+1)}\inf_{u\in{{\mathcal{K}}}_{\infty}}\|u\|_{L^{p+1}(\mathbb{R}^{N})}^{p+1}.

The aim of this section is to show, based on the assumption N2N\geq 2, that

(4.9) b<b.b<b_{\infty}.

This strict inequality will be crucial to prove the existence result to (1.14) contained in Section 5. To this end, let us recall that uc(x)exNu_{c}(x)\sim e^{-x_{N}} as xNx_{N}\to\infty. More precisely, it follows from (1.6) and the definition of ucu_{c} that

(4.10) mc,1exNuc(x)mc,2exN,for x+N, withmc,1:=cpetc,p,mc,2:=cp22p1etc,p.m_{c,1}\,e^{-x_{N}}\leq u_{c}(x)\leq m_{c,2}\,e^{-x_{N}},\quad\text{for $x\in\mathbb{R}^{N}_{+},\quad$ with}\qquad m_{c,1}:={c_{p}}e^{-t_{c,p}},\quad m_{c,2}:={c_{p}}2^{\frac{2}{p-1}}e^{-t_{c,p}}.

Moreover, for r>0r>0, we introduce the function

xψr(x):=(ψ(xreN)εr)+,x\mapsto\psi_{r}(x):=(\psi(x-re_{N})-\varepsilon_{r})^{+},

where eN=(0,,0,1)e_{N}=(0,\ldots,0,1) is the NN-th coordinate vector and εr>0\varepsilon_{r}>0 is uniquely defined by (4.7) and the property that

ψ>εrin Br(0)andψεrin NBr(0).\psi>\varepsilon_{r}\qquad\text{in $B_{r}(0)$}\qquad\text{and}\qquad\psi\leq\varepsilon_{r}\qquad\text{in $\mathbb{R}^{N}\setminus B_{r}(0)$.}

We note that, as a consequence of (4.6), we have

(4.11) εrCGSrN12er\varepsilon_{r}\leq C_{GS}r^{-\frac{N-1}{2}}e^{-r}

We also note that ψrH01(+N)\psi_{r}\in H_{0}^{1}(\mathbb{R}^{N}_{+}) for every r0r\geq 0.

The rest of the section is devoted to prove the following result from which (4.9) immediately follows.

Proposition 4.1.

There exists R>0R>0 and k>0k>0 with the following properties:

  • i)

    E(tψr)<bE(t\psi_{r})<b_{\infty} for all rR,t[0,k]r\geq R,\>t\in[0,k].

  • ii)

    E(kψr)<0E(k\psi_{r})<0 for all rRr\geq R.

We split the proof of this proposition into several lemmas.

Lemma 4.2.

There exists C1>0C_{1}>0 with

(4.12) E+(tψr)b+C1errN12tp+1for all t,r>0E_{\infty}^{+}(t\psi_{r})\leq b_{\infty}+C_{1}e^{-r}r^{-\frac{N-1}{2}}t^{p+1}\qquad\text{for all $t,r>0$. }
Proof.

Let t,r>0t,r>0. Directly observe that, by the definition of ψr\psi_{r},

(4.13) E+(tψr)=t22ψr2tp+1p+1+Nψrp+1𝑑x=t22Br(0)(|ψ|2+(ψεr)2)𝑑xtp+1p+1Br(0)(ψεr)p+1𝑑x.E_{\infty}^{+}(t\psi_{r})=\frac{t^{2}}{2}\|\psi_{r}\|^{2}-\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^{N}_{+}}\psi_{r}^{p+1}dx=\frac{t^{2}}{2}\int_{B_{r}(0)}\big{(}|\nabla\psi|^{2}+(\psi-\varepsilon_{r})^{2}\big{)}\,dx-\frac{t^{p+1}}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})^{p+1}dx.

On the other hand, since ψ\psi is a solution to (4.3) and (ψεr)+H1(N)(\psi-\varepsilon_{r})^{+}\in H^{1}(\mathbb{R}^{N}), using (ψεr)+(\psi-\varepsilon_{r})^{+} as test function in (4.3), we obtain that

Br(0)|ψ|2𝑑x\displaystyle\int_{B_{r}(0)}|\nabla\psi|^{2}dx =Nψ(ψεr)+dx\displaystyle=\int_{\mathbb{R}^{N}}\nabla\psi\nabla(\psi-\varepsilon_{r})^{+}dx
=N(ψ(ψεr)++ψp(ψεr)+)𝑑x=Br(0)(ψ(ψεr)+ψp(ψεr))𝑑x.\displaystyle=\int_{\mathbb{R}^{N}}\left(-\psi(\psi-\varepsilon_{r})^{+}+\psi^{p}(\psi-\varepsilon_{r})^{+}\right)dx=\int_{B_{r}(0)}\left(-\psi(\psi-\varepsilon_{r})+\psi^{p}(\psi-\varepsilon_{r})\right)dx.

Substituting the above identity into (4.13) and using the mean value theorem, we find that

E+(tψr)\displaystyle E_{\infty}^{+}(t\psi_{r}) =t22Br(0)(ψ(ψεr)+ψp(ψεr)+(ψεr)2)𝑑xtp+1p+1Br(0)(ψεr)p+1𝑑x\displaystyle=\frac{t^{2}}{2}\int_{B_{r}(0)}\left(-\psi(\psi-\varepsilon_{r})+\psi^{p}(\psi-\varepsilon_{r})+(\psi-\varepsilon_{r})^{2}\right)dx-\frac{t^{p+1}}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})^{p+1}dx
=εrt22Br(0)(ψεr)𝑑x+1p+1Br(0)(ψεr)[p+12t2ψptp+1(ψεr)p]𝑑x\displaystyle=-\frac{\varepsilon_{r}t^{2}}{2}\int_{B_{r}(0)}(\psi-\varepsilon_{r})dx+\frac{1}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})\left[\frac{p+1}{2}t^{2}\psi^{p}-t^{p+1}(\psi-\varepsilon_{r})^{p}\right]dx
1p+1Br(0)(ψεr)[p+12t2ψptp+1(ψεr)p]𝑑x\displaystyle\leq\frac{1}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})\left[\frac{p+1}{2}t^{2}\psi^{p}-t^{p+1}(\psi-\varepsilon_{r})^{p}\right]dx
=1p+1(p+12t2tp+1)Br(0)(ψεr)ψp𝑑x+tp+1p+1Br(0)(ψεr)[ψp(ψεr)p]𝑑x\displaystyle=\frac{1}{p+1}\left(\frac{p+1}{2}t^{2}-t^{p+1}\right)\int_{B_{r}(0)}(\psi-\varepsilon_{r})\psi^{p}dx+\frac{t^{p+1}}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})\left[\psi^{p}-(\psi-\varepsilon_{r})^{p}\right]dx
p12(p+1)Br(0)(ψεr)ψp𝑑x+εrptp+1p+1Br(0)(ψεr)ψp1𝑑x\displaystyle\leq\frac{p-1}{2(p+1)}\int_{B_{r}(0)}(\psi-\varepsilon_{r})\psi^{p}dx+\frac{\varepsilon_{r}\,p\,t^{\,p+1}}{p+1}\int_{B_{r}(0)}(\psi-\varepsilon_{r})\psi^{p-1}dx
p12(p+1)Nψp+1𝑑x+εrptp+1p+1N(ψεr)+ψp1𝑑x.\displaystyle\leq\frac{p-1}{2(p+1)}\int_{\mathbb{R}^{N}}\psi^{\,p+1}dx+\frac{\varepsilon_{r}\,p\,t^{\,p+1}}{p+1}\int_{\mathbb{R}^{N}}(\psi-\varepsilon_{r})^{+}\psi^{p-1}dx.

Using (4.8) and (4.11), we deduce that

E+(tψr)b+εrptp+1p+1N(ψεr)+ψp1𝑑xb+pp+1CGSrN12ertp+1Nψp𝑑x.E_{\infty}^{+}(t\psi_{r})\leq b_{\infty}+\frac{\varepsilon_{r}\,p\,t^{\,p+1}}{p+1}\int_{\mathbb{R}^{N}}(\psi-\varepsilon_{r})^{+}\psi^{p-1}dx\leq b_{\infty}+\frac{p}{p+1}C_{GS}r^{-\frac{N-1}{2}}e^{-r}t^{p+1}\int_{\mathbb{R}^{N}}\psi^{p}dx.

Hence (4.12) holds with C1=pCGSp+1Nψp𝑑xC_{1}=\frac{pC_{GS}}{p+1}\int_{\mathbb{R}^{N}}\psi^{p}dx. ∎

Lemma 4.3.

There exists R1{R^{\prime}}\geq 1 and C2>0C_{2}>0 with

(4.14) E+(tψr)E(tψr)C2ertpfor all t>0rR.E_{\infty}^{+}(t\psi_{r})-E(t\psi_{r})\geq C_{2}e^{-r}\,t^{\,p}\qquad\text{for all $t>0$, $r\geq{R^{\prime}}$.}
Proof.

Let t>0t>0 be arbitrary but fixed. Using Lemma 2.1 with q=p+1q=p+1, κ:=κq>0\kappa:=\kappa_{q}>0, the identity (4.2), the lower bound in (4.10) and the mean value theorem, we deduce that, for all r1r\geq 1,

E+(tψr)E(tψr)\displaystyle E_{\infty}^{+}(t\psi_{r})-E(t\psi_{r}) =1p+1+N((uc+tψr)p+1ucp+1(tψr)p+1(p+1)ucptψr)𝑑xκtp+Nucψrp𝑑x\displaystyle=\frac{1}{p+1}\int_{\mathbb{R}^{N}_{+}}\left((u_{c}+t\psi_{r})^{p+1}-u_{c}^{p+1}-(t\psi_{r})^{p+1}-(p+1)u_{c}^{p}t\psi_{r}\right)dx\geq\kappa t^{p}\int_{\mathbb{R}^{N}_{+}}u_{c}\psi_{r}^{p}dx
=κtp+Nuc((ψ(reN)εr)+)pdx=κtpBr(0)uc(+reN)(ψεr)pdx\displaystyle=\kappa t^{p}\int_{\mathbb{R}^{N}_{+}}u_{c}\bigl{(}(\psi(\cdot-re_{N})-\varepsilon_{r})^{+}\bigr{)}^{p}dx=\kappa t^{p}\int_{B_{r}(0)}u_{c}(\cdot+re_{N})(\psi-\varepsilon_{r})^{p}dx
κtpBr(0)uc(+reN)(ψpεrpψp1)dxκtp(Br(0)uc(+reN)ψpdxεrpcpNψp1dx)\displaystyle\geq\kappa t^{p}\int_{B_{r}(0)}u_{c}(\cdot+re_{N})\bigl{(}\psi^{p}-\varepsilon_{r}p\psi^{p-1}\bigr{)}\,dx\geq\kappa t^{p}\Bigl{(}\int_{B_{r}^{-}(0)}u_{c}(\cdot+re_{N})\psi^{p}dx-\varepsilon_{r}pc_{p}\int_{\mathbb{R}^{N}}\psi^{p-1}dx\Bigr{)}
κtp(mc,1erBr(0)ψp𝑑xpcpCGSrN12erNψp1𝑑x)\displaystyle\geq\kappa t^{p}\Bigl{(}m_{c,1}e^{-r}\int_{B_{r}^{\,-}(0)}\psi^{p}dx-pc_{p}C_{GS}r^{-\frac{N-1}{2}}e^{-r}\int_{\mathbb{R}^{N}}\psi^{p-1}dx\Bigr{)}
κtper(mc,12Br(0)ψp𝑑xpcpCGSrN12Nψp1𝑑x)\displaystyle\geq\kappa t^{p}e^{-r}\Bigl{(}\frac{m_{c,1}}{2}\int_{B_{r}(0)}\psi^{p}dx-pc_{p}C_{GS}r^{-\frac{N-1}{2}}\int_{\mathbb{R}^{N}}\psi^{p-1}dx\Bigr{)}
κtper(mc,12B1(0)ψp𝑑xpcpCGSrN12Nψp1𝑑x)\displaystyle\geq\kappa t^{p}e^{-r}\Bigl{(}\frac{m_{c,1}}{2}\int_{B_{1}(0)}\psi^{p}dx-pc_{p}C_{GS}r^{-\frac{N-1}{2}}\int_{\mathbb{R}^{N}}\psi^{p-1}dx\Bigr{)}

where we have set Br(0):={xBr(0):xN0}B_{r}^{\,-}(0):=\{x\in B_{r}(0)\>:\>x_{N}\leq 0\}. Since N2N\geq 2, we may choose R1{R^{\prime}}\geq 1 sufficiently large to guarantee that

pcpCGSrN12Nψp1𝑑xmc,14B1(0)ψp𝑑x,for rR,pc_{p}C_{GS}r^{-\frac{N-1}{2}}\int_{\mathbb{R}^{N}}\psi^{p-1}dx\leq\frac{m_{c,1}}{4}\int_{B_{1}(0)}\psi^{p}dx,\qquad\text{for $r\geq{R^{\prime}}$},

and therefore

E+(tψr)E(tψr)C2ertp,for rR,  withC2:=κmc,14B1(0)ψp𝑑x.E_{\infty}^{+}(t\psi_{r})-E(t\psi_{r})\geq C_{2}e^{-r}\,t^{\,p},\quad\text{for $r\geq{R^{\prime}}$, \quad with}\quad C_{2}:=\frac{\kappa m_{c,1}}{4}\int_{B_{1}(0)}\psi^{p}dx.

Hence the claim follows. ∎

Lemma 4.4.

Let R1{R^{\prime}}\geq 1 be given as in Lemma 4.3. Then there exist k>0k>0 with E(kψr)<0E(k\psi_{r})<0 for all rRr\geq{R^{\prime}}.

Proof.

Let k>0k>0. For rR1r\geq{R^{\prime}}\geq 1 we have, by Lemma 4.3 and since the map rεrr\mapsto\varepsilon_{r} is strictly decreasing by (4.7),

E(kψr)\displaystyle E(k\psi_{r}) E+(kψr)=k22ψr2kp+1p+1+Nψrp+1𝑑xk22ψH1(N)2kp+1p+1Br(0)(ψεr)p+1𝑑x\displaystyle\leq E_{\infty}^{+}(k\psi_{r})=\frac{k^{2}}{2}\|\psi_{r}\|^{2}-\frac{k^{p+1}}{p+1}\int_{\mathbb{R}^{N}_{+}}\psi_{r}^{p+1}dx\leq\frac{k^{2}}{2}\|\psi\|_{H^{1}(\mathbb{R}^{N})}^{2}-\frac{k^{p+1}}{p+1}\int_{B_{r}(0)}\big{(}\psi-\varepsilon_{r}\big{)}^{p+1}dx
k22ψH1(N)2kp+1p+1B1(0)(ψε1)p+1𝑑x\displaystyle\leq\frac{k^{2}}{2}\|\psi\|_{H^{1}(\mathbb{R}^{N})}^{2}-\frac{k^{p+1}}{p+1}\int_{B_{1}(0)}\big{(}\psi-\varepsilon_{1}\big{)}^{p+1}dx

Since B1(0)(ψε1)p+1𝑑x>0\int_{B_{1}(0)}\big{(}\psi-\varepsilon_{1}\big{)}^{p+1}dx>0 by (4.7), we may choose

k>((p+1)ψH1(N)22B1(0)(ψε1)p+1𝑑x)1p1k>\left(\frac{(p+1)\|\psi\|_{H^{1}(\mathbb{R}^{N})}^{2}}{2\int_{B_{1}(0)}\big{(}\psi-\varepsilon_{1}\big{)}^{p+1}dx}\right)^{\frac{1}{p-1}}

which implies that E(kψr)<0E(k\psi_{r})<0 for rRr\geq{R^{\prime}}, as claimed. ∎

Proof of Proposition 4.1.

Let R1{R^{\prime}}\geq 1 be given by Lemma 4.3, and let k>0k>0 be given by Lemma 4.4. For rRr\geq{R^{\prime}} and t[0,k]t\in[0,k] we then have, by Lemmas 4.2 and 4.3,

E(tψr)=E+(tψr)(E+(tψr)E(tψr))b+er(tp+1C1rN12tpC2)b+ertp(kC1rN12C2).E(t\psi_{r})=E_{\infty}^{+}(t\psi_{r})-(E_{\infty}^{+}(t\psi_{r})-E(t\psi_{r}))\leq b_{\infty}+e^{-r}\bigl{(}t^{p+1}C_{1}r^{-\frac{N-1}{2}}-t^{p}C_{2}\bigr{)}\leq b_{\infty}+e^{-r}t^{p}\bigl{(}kC_{1}r^{-\frac{N-1}{2}}-C_{2}\bigr{)}.

Since N2N\geq 2, we may fix RRR\geq R^{\prime} with the property that kC1rN12C22kC_{1}r^{-\frac{N-1}{2}}\leq\frac{C_{2}}{2} for rRr\geq R, which implies that

E(tψr)bC22ertp<bfor t(0,k]rR.E(t\psi_{r})\leq b_{\infty}-\frac{C_{2}}{2}e^{-r}t^{p}<b_{\infty}\quad\text{for $t\in(0,k]$, $r\geq R$.}

Since also E(0)=0<bE(0)=0<b_{\infty}, we thus obtain that E(tψr)<bE(t\psi_{r})<b_{\infty} for t[0,k]t\in[0,k], rRr\geq R. Moreover, by Lemma 4.4 we have E(kψr)<0E(k\psi_{r})<0 for all rRr\geq R since RRR\geq R^{\prime}. The proof is finished. ∎

5. The existence result

We keep using the notation of the introduction and of Section 2, which depends on the fixed quantities c(0,cp)c\in(0,{c_{p}}) and p(1,21)p\in(1,2^{*}-1). Moreover, we will assume N2N\geq 2 throughout this section, which will allow us to prove the existence of a non-trivial solution to (1.14). This will conclude the proof of Theorem 1.3.

Theorem 5.1.

Let N2N\geq 2. Then there exists a non-trivial solution uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}) to (1.14) which, in particular, is a positive solution to (1.11).

The strategy of the proof is as follows: using the strict inequality (4.9), we will manage to prove the existence of a Cerami sequence whose weak limit is non trivial and thus we will obtain a non trivial solution to (1.14).

Proof of Theorem 5.1.

Since the functional EE has a mountain pass geometry (see Lemma 3.1), there exists a Cerami sequence for EE at the corresponding mountain pass level bb defined in (4.1) (see e.g. [10] or [13, Theorem 6, Section 1, Chapter IV]), i.e. there exists (un)nH01(+N)(u_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) such that

E(un)b and (1+un)E(un)H1(+N)0, as n.E(u_{n})\to b\quad\textup{ and }\quad(1+\|u_{n}\|)\|E^{\prime}(u_{n})\|_{H^{-1}(\mathbb{R}^{N}_{+})}\to 0,\quad\textup{ as }n\to\infty.

By Proposition 3.2 we know that (un)n(u_{n})_{n} is bounded in H01(+N)H_{0}^{1}(\mathbb{R}^{N}_{+}). Moreover,

(5.1) un2=E(un),un0as n.\|u_{n}^{-}\|^{2}=\langle E^{\prime}(u_{n}),u_{n}^{-}\rangle\to 0\qquad\text{as $n\to\infty$.}

Let (yn)n+N(y^{n})_{n}\subset\mathbb{R}^{N}_{+} be the sequence of points obtained in Lemma 3.3 applied to (un)n(u_{n})_{n}, i.e., we have

(5.2) lim infnBR(yn)+Nun2𝑑xδfor some δ>0.\liminf_{n\to\infty}\int_{B_{R}(y^{n})\cap\mathbb{R}^{N}_{+}}u_{n}^{2}\,dx\geq\delta\qquad\text{for some $\delta>0$.}

We split the argument into two steps.

Step 1: There exists M>0M>0 such that yNn=dist(yn,+N)My^{n}_{N}={\rm dist}(y^{n},\partial\mathbb{R}^{N}_{+})\leq M for all nn\in\mathbb{N}.

We assume by contradiction that

(5.3) limnyNn=+.\displaystyle\lim_{n\to\infty}y^{n}_{N}=+\infty.

Then, let us define, for all nn\in\mathbb{N}, wn:=un(+yn)w_{n}:=u_{n}(\cdot+y^{n}). By Lemma 3.3 and (5.1), it follows that

(5.4) wnw in H1(N),wnw in Llocq(N)for 1q<2, and wnw a.e. in N,w_{n}\rightharpoonup w\textup{ in }H^{1}(\mathbb{R}^{N}),\quad w_{n}\to w\textup{ in }L^{q}_{loc}(\mathbb{R}^{N})\ \;\text{for $1\leq q<2^{\ast}$},\quad\textup{ and }\quad w_{n}\to w\textup{ a.e. in }\mathbb{R}^{N},

for some wH1(N)w\in H^{1}(\mathbb{R}^{N}) with w0w\geq 0, w0w\not\equiv 0. We also observe that

(5.5) b+o(1)=E(un)12E(un),un=+NH(x,un(x))𝑑x={xNyNn}H(x+yn,wn+(x))𝑑x,as n,b+o(1)=E(u_{n})-\frac{1}{2}\langle E^{\prime}(u_{n}),u_{n}\rangle=\int_{\mathbb{R}^{N}_{+}}H(x,u_{n}(x))\,dx=\int_{\{x_{N}\geq-y^{n}_{N}\}}H(x+y_{n},w_{n}^{+}(x))dx,\qquad\text{as $n\to\infty$},

with the function HH defined in Lemma 2.2 (ii). Next, we note that

H(x+yn,wn+(x))0,for x{xNyNn},H(x+y_{n},w_{n}^{+}(x))\geq 0,\qquad\text{for $x\in\{x_{N}\geq-y^{n}_{N}\}$},

and

lim infnH(x+yn,wn+(x))\displaystyle\liminf_{n\to\infty}H(x+y_{n},w_{n}^{+}(x)) lim infn(p12(p+1)[wn+(x)]p+1uc(x+yn)p1D1,p[wn+(x)]2uc(x+yn)1{p>2}D2,p[wn+(x)]p)\displaystyle\geq\liminf_{n\to\infty}\,\Bigl{(}\frac{p-1}{2(p+1)}\,[w_{n}^{+}(x)]^{p+1}-u_{c}(x+y_{n})^{p-1}D_{1,p}[w_{n}^{+}(x)]^{2}-u_{c}(x+y_{n})1_{\{p>2\}}D_{2,p}[w_{n}^{+}(x)]^{p}\Bigr{)}
=p12(p+1)[w+(x)]p+1=p12(p+1)wp+1(x),for x{xNyNn},\displaystyle=\frac{p-1}{2(p+1)}\,[w^{+}(x)]^{p+1}=\frac{p-1}{2(p+1)}\,w^{p+1}(x),\qquad\text{for $x\in\{x_{N}\geq-y^{n}_{N}\}$},

by Lemma 2.2 (ii) and (4.10). Thus, (5.5) and Fatou’s Lemma imply that

(5.6) p12(p+1)wLp+1(N)p+1b.\frac{p-1}{2(p+1)}\|w\|_{L^{p+1}(\mathbb{R}^{N})}^{p+1}\leq b.

Next we claim that w𝒦w\in{\mathcal{K}}_{\infty}, i.e., ww is a nontrivial solution of (4.3). To see this, we fix an arbitrary φCc(N)\varphi\in C_{c}^{\infty}(\mathbb{R}^{N}), and we show that

(5.7) N(wφ+wφ)𝑑x=N(w+)pφ𝑑x.\int_{\mathbb{R}^{N}}\big{(}\nabla w\nabla\varphi+w\varphi\big{)}dx=\int_{\mathbb{R}^{N}}(w^{+})^{\,p}\varphi\,dx.

Since (5.3) holds, we have that supp(φ){xNyNn}{\rm supp}(\varphi)\subset\{x_{N}\geq-y^{n}_{N}\} for nn\in\mathbb{N} sufficiently large. Hence, for nn\in\mathbb{N} large enough, we have that

(5.8) o(1)\displaystyle o(1) =E(un),φ(yn)\displaystyle=\langle E^{\prime}(u_{n}),\varphi(\cdot-y^{n})\rangle
={xNyNn}(wnφ+wnφ)dx{xNyNn}(uc(+yn)+wn+)pφdx{xNyNn}ucp(+yn)φdx\displaystyle=\int_{\{x_{N}\geq-y^{n}_{N}\}}\left(\nabla w_{n}\nabla\varphi+w_{n}\varphi\right)dx-\int_{\{x_{N}\geq-y^{n}_{N}\}}\big{(}u_{c}(\cdot+y^{n})+w_{n}^{+}\big{)}^{p}\varphi dx-\int_{\{x_{N}\geq-y^{n}_{N}\}}u_{c}^{p}(\cdot+y^{n})\varphi dx
=N(wnφ+wnφ)dxN(uc(+yn)+wn+)pφdx+o(1)\displaystyle=\int_{\mathbb{R}^{N}}\left(\nabla w_{n}\nabla\varphi+w_{n}\varphi\right)dx-\int_{\mathbb{R}^{N}}\big{(}u_{c}(\cdot+y^{n})+w_{n}^{+}\big{)}^{p}\varphi dx+o(1)
=N(wnφ+wnφ)dxN(wn+)pφdxN((uc(+yn)+wn+)p(wn+)p)φdx+o(1)\displaystyle=\int_{\mathbb{R}^{N}}\left(\nabla w_{n}\nabla\varphi+w_{n}\varphi\right)dx-\int_{\mathbb{R}^{N}}(w_{n}^{+})^{p}\varphi dx-\int_{\mathbb{R}^{N}}\big{(}(u_{c}(\cdot+y^{n})+w_{n}^{+})^{p}-(w_{n}^{+})^{p}\big{)}\varphi dx+o(1)
=N(wnφ+wnφ)𝑑xN(wn+)pφ𝑑x+o(1)\displaystyle=\int_{\mathbb{R}^{N}}\left(\nabla w_{n}\nabla\varphi+w_{n}\varphi\right)dx-\int_{\mathbb{R}^{N}}(w_{n}^{+})^{p}\varphi dx+o(1)
=N(wφ+wφ)𝑑xN(w+)pφ𝑑x+o(1),as n.\displaystyle=\int_{\mathbb{R}^{N}}\big{(}\nabla w\nabla\varphi+w\varphi\big{)}dx-\int_{\mathbb{R}^{N}}(w^{+})^{\,p}\varphi\,dx+o(1),\qquad\text{as $n\to\infty$.}

Hence (5.7) follows, and therefore w𝒦w\in{\mathcal{K}}_{\infty}. Together with (4.8) and (5.6) it then follows that bbb\geq b_{\infty}, but this contradicts (4.9). Hence, (5.3) cannot happen and Step 1 follows.

Step 2: Conclusion.

Let us define, for all nn\in\mathbb{N}, vn:=un(+ξn)v_{n}:=u_{n}(\cdot+\xi_{n}) with ξn:=(y1n,,yN1n,0)\xi_{n}:=(y^{n}_{1},\ldots,y^{n}_{{N-1}},0) and observe that, after passing to a subsequence

(5.9) vnv in H01(+N),vnv in Llocq(+N) for 1q<2 and vnv a.e. in +N,v_{n}\rightharpoonup v\textup{ in }H_{0}^{1}(\mathbb{R}^{N}_{+}),\quad v_{n}\to v\textup{ in }L_{loc}^{q}(\mathbb{R}^{N}_{+})\textup{ for }1\leq q<2^{\ast}\quad\textup{ and }\quad v_{n}\to v\textup{ a.e. in }\mathbb{R}^{N}_{+},

for some vH01(+N)v\in H_{0}^{1}(\mathbb{R}^{N}_{+}). Also, note that (vn)nH01(+N)(v_{n})_{n}\subset H_{0}^{1}(\mathbb{R}^{N}_{+}) is a Cerami sequence for EE at level bb. Hence, if v0v\not\equiv 0, we will have that vv is a non-trivial solution to (1.14). Since vnvv_{n}\to v in Llocq(+N)L^{q}_{loc}(\mathbb{R}^{N}_{+}) and yNnMy^{n}_{N}\leq M for all nn\in\mathbb{N}, the lower integral bound (5.2) implies that v0v\not\equiv 0, and the result follows. ∎

Proof of Theorem 1.3 (completed).

Let uH01(+N)u\in H_{0}^{1}(\mathbb{R}^{N}_{+}) be the non-negative and non-trivial solution to (1.11) obtained in Theorem 5.1. By standard elliptic regularity we have that uC2(+N)C(+N¯)L(+N)u\in C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}})\cap L^{\infty}(\mathbb{R}^{N}_{+}) and v:=uc+uv:=u_{c}+u is a bounded positive solution to (1.3)-(1.4) of the form (1.8). ∎

Remark 5.1.

As explained in the introduction, Theorem 1.2 (i) and Corollary 1.4 are direct consequences of Theorem 1.3.

In the remaining of this section we prove Proposition 1.5. Let us first state a technical lemma due to Poláčik, Quittner and Souplet that will be key to prove this result.

Lemma 5.2.

(Particular case of [29, Lemma 5.1]) Let (X,d)(X,d) be a complete metric space and let M:X(0,+)M:X\to(0,+\infty) be continuous. For any δ<supXM\delta<\sup_{X}M and any k>0k>0 there exists yXy\in X such that

  • \bullet

    M(y)δM(y)\geq\delta.

  • \bullet

    M(z)2M(y)M(z)\leq 2M(y) for all zXz\in X with d(z,y)kM(y)d(z,y)\leq\frac{k}{M(y)}.

The following proof is inspired by [12, Lemma 2.5].

Proof of Proposition 1.5.

We assume by contradiction that there exists vC2(+N)C(+N¯)v\in C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}}) unbounded solving (1.3)-(1.4). By Lemma 5.2 applied with X=+N¯X=\overline{\mathbb{R}^{N}_{+}} and M=vp12M=v^{\frac{p-1}{2}}, there exits a sequence (yk)k+N(y^{k})_{k}\subset\mathbb{R}^{N}_{+} such that

(5.10) M(yk), as k,\displaystyle M(y^{k})\to\infty,\quad\textup{ as }\ k\to\infty,
(5.11) M(z)2M(yk), for all z+N with d(z,yk)kM(yk) and all k.\displaystyle M(z)\leq 2M(y^{k}),\quad\textup{ for all }z\in\mathbb{R}^{N}_{+}\ \textup{ with }\ d(z,y^{k})\leq\frac{k}{M(y^{k})}\ \textup{ and all }\ k\in\mathbb{N}.

Note that, without loss of generality, we can suppose that M(yk)1M(y^{k})\geq 1 for all kk\in\mathbb{N}. We then define, for all kk\in\mathbb{N}, dk:=yNkM(yk)d_{k}:=y_{N}^{k}M(y^{k}), the half-space Hk:={x+N:xN>dk}H_{k}:=\big{\{}x\in\mathbb{R}^{N}_{+}:x_{N}>-d_{k}\big{\}} and

vk:Hk+N given by vk(z):=1v(yk)v(yk+zM(yk)).v^{k}:H_{k}\to\mathbb{R}^{N}_{+}\quad\textup{ given by }\quad v^{k}(z):=\frac{1}{v(y^{k})}v\big{(}y^{k}+\frac{z}{M(y^{k})}\big{)}\,.

Note that, for all kk\in\mathbb{N}, vkv^{k} is a positive solution to

(5.12) {Δvk+1M2(yk)vk=(vk)p, in Hk,vk=cM2p1(yk), on Hk,\left\{\begin{aligned} -\Delta v^{k}+\frac{1}{M^{2}(y^{k})}v^{k}&=(v^{k})^{p},&\quad\textup{ in }H_{k},\\ v^{k}&=\frac{c}{M^{\frac{2}{p-1}}(y^{k})},&\textup{ on }\partial H_{k},\end{aligned}\right.

and, by its definition and (5.11), it satisfies

(5.13) vk(0)=1 and vk(z)22q1 for all zHkBk(0).v^{k}(0)=1\quad\textup{ and }\quad v^{k}(z)\leq 2^{\frac{2}{q-1}}\quad\textup{ for all }z\in H_{k}\cap B_{k}(0).

We now consider two cases separately.

Case 1: dkd_{k}\to\infty\ as k\ k\to\infty.

Using standard LqL^{q} estimates (see e.g. [18, Chapter 9]), (5.12) and (5.13), we get (taking a subsequence if necessary) that (vk)k(v^{k})_{k} is locally W2,qW^{2,q}-bounded in N\mathbb{R}^{N} for arbitrarily large q<+q<+\infty. Hence, up to a subsequence, vkv¯v^{k}\to\overline{v} in Cloc1(N)C_{loc}^{1}(\mathbb{R}^{N}), where v¯C1(N)\overline{v}\in C^{1}(\mathbb{R}^{N}) is a non-trivial positive solution to

(5.14) Δv¯+v¯p=0, in N.\Delta\overline{v}+\overline{v}^{p}=0,\quad\textup{ in }\mathbb{R}^{N}.

By (5.13) we infer that v¯\overline{v} is bounded in N\mathbb{R}^{N} with v¯(0)=1\overline{v}(0)=1. Hence v¯C2(N)\overline{v}\in C^{2}(\mathbb{R}^{N}) by standard elliptic regularity. Then, since by [17, Theorem 1.2] we know that the only C2(N)C^{2}(\mathbb{R}^{N}) non-negative solution to (5.14) is v¯0\overline{v}\equiv 0, we obtain a contradiction and deduce that Case 1 cannot happen.

Case 2: dkd0d_{k}\to d\geq 0\ as k\ k\to\infty.

Let us define, for all kk\in\mathbb{N},

(5.15) wk:+N as wk(z)=vk(zdkeN),w^{k}:\mathbb{R}^{N}_{+}\to\mathbb{R}\quad\textup{ as }\quad w^{k}(z)=v^{k}(z-d_{k}e_{N}),

where eN:=(0,,0,1)e_{N}:=(0,\ldots,0,1) is the NN-th coordinate vector. Note that, for all kk\in\mathbb{N}, wkw^{k} is a positive solution to

(5.16) {Δwk+1M2(yk)wk=(wk)p, in +N,wk=cM2p1(yk), on +N,\left\{\begin{aligned} -\Delta w^{k}+\frac{1}{M^{2}(y^{k})}w^{k}&=(w^{k})^{p},&\quad\textup{ in }\mathbb{R}^{N}_{+},\\ w^{k}&=\frac{c}{M^{\frac{2}{p-1}}(y^{k})},&\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

and satisfies

(5.17) wk(dkeN)=1 and wk(z)22p1 for all z+N¯Bk(dkeN).w^{k}(d_{k}e_{N})=1\quad\textup{ and }\quad w^{k}(z)\leq 2^{\frac{2}{p-1}}\quad\textup{ for all }z\in\overline{\mathbb{R}^{N}_{+}}\cap B_{k}(d_{k}e_{N}).

Now, arguing as in the proof of [18, Theorem 9.13] (with auxiliary functions φk=wkcM2p1(yk)\varphi^{k}=w^{k}-c\,M^{-\frac{2}{p-1}}(y^{k})) and taking into account (5.16) and (5.17), we get (taking a subsequence if necessary) that (wk)k(w^{k})_{k} is locally W2,qW^{2,q}-bounded in +N¯\overline{\mathbb{R}^{N}_{+}} for arbitrarily large q<+q<+\infty and therefore also locally C1,βC^{1,\beta}-bounded in +N¯\overline{\mathbb{R}^{N}_{+}} for all β(0,1)\beta\in(0,1). In particular, |wk||\nabla w^{k}| remains bounded pointwise independently of kk in a neighbourhood of the origin. Taking into account (5.10), the boundary conditions in (5.16) and (5.17), we infer that d=limkdk>0d=\lim_{k\to\infty}d_{k}>0. Hence, up to a subsequence, wkw¯w^{k}\to\overline{w} in Cloc1(+N)C^{1}_{loc}(\mathbb{R}^{N}_{+}) with w¯C1(+N)\overline{w}\in C^{1}(\mathbb{R}^{N}_{+}) a non-trivial positive solution to

(5.18) {Δw¯+w¯p=0, in +N,w¯=0, on +N.\left\{\begin{aligned} \Delta\overline{w}+\overline{w}^{p}&=0,&\quad\textup{ in }\mathbb{R}^{N}_{+},\\ \overline{w}&=0,&\quad\textup{ on }\partial\mathbb{R}^{N}_{+}.\end{aligned}\right.

By (5.17) we have that w¯\overline{w} is bounded with w¯(deN)=1\overline{w}(de_{N})=1. Hence w¯C2(N)C(+N¯)\overline{w}\in C^{2}(\mathbb{R}^{N})\cap C(\overline{\mathbb{R}^{N}_{+}}) by standard elliptic regularity. Then, since by [17, Theorem 1.3] we know that the only C2(+N)C(+N¯)C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}}) non-negative solution to (5.18) is w¯0\overline{w}\equiv 0 , we obtain a contradiction and deduce that Case 2 cannot happen either. Hence, the result follows. ∎

6. The non-existence result

In this section we prove Part (ii) of Theorem 1.2, which is concerned with the non-existence of bounded positive solutions to (1.3)-(1.4) in the case c>cpc>{c_{p}}. Recall that

w0(t)=cp[cosh(p12t)]2p1,w_{0}(t)={c_{p}}\left[\cosh\left(\frac{p-1}{2}t\right)\right]^{-\frac{2}{p-1}},

is the unique even non-trivial positive solution to (1.5). Throughout this section, we will use the following notation. We define v0:Nv_{0}:\mathbb{R}^{N}\to\mathbb{R} as

(6.1) v0(x)=w0(xN),for xN.v_{0}(x)=w_{0}(x_{N}),\qquad\text{for $x\in\mathbb{R}^{N}.$}

Also, recall that for a bounded positive solution to (1.3)-(1.4), we mean a function vC2(+N)C(+N¯)L(+N)v\in C^{2}(\mathbb{R}^{N}_{+})\cap C(\overline{\mathbb{R}^{N}_{+}})\cap L^{\infty}(\mathbb{R}^{N}_{+}), positive, satisfying (1.3) in the pointwise sense and such that (1.4) holds.

Theorem 6.1.

For N1N\geq 1, p>1p>1 and c>cpc>{c_{p}}, there are no bounded positive solutions to (1.3)-(1.4).

Proof.

Let us fix an arbitrary c>cpc>{c_{p}}. We assume by contradiction that there exists a bounded positive solution vv to (1.3)-(1.4) and we define, for all tt\in\mathbb{R}, vt:=v0(+teN)v_{t}:=v_{0}(\cdot+te_{N}) where v0v_{0} is given in (6.1) and eN=(0,,0,1)e_{N}=(0,\ldots,0,1) is the NN-th coordinate vector. We split the proof into three steps.

Step 1: There exists t0>0t_{0}>0 such that v>vtv>v_{t} in +N¯\overline{\mathbb{R}^{N}_{+}} for all tt0t\geq t_{0}.

First of all, fixed an arbitrary x+N¯x\in\overline{\mathbb{R}^{N}_{+}}, observe that

vt(x)0, as t, and vt1(x)>vt2(x), for all 0<t1<t2.v_{t}(x)\to 0,\quad\textup{ as }t\to\infty,\quad\textup{ and }\quad v_{t_{1}}(x)>v_{t_{2}}(x),\quad\textup{ for all }0<t_{1}<t_{2}.

Hence, there exists t0>0t_{0}>0 such that, for all tt0t\geq t_{0},

(6.2) vt(12p)1p1 in +N¯.v_{t}\leq\left(\frac{1}{2p}\right)^{\frac{1}{p-1}}\quad\textup{ in }\overline{\mathbb{R}^{N}_{+}}.

We fix t0>0t_{0}>0 such that (6.2) holds and we are going to prove the Step 1 for this t0t_{0}. To that end, we fix an arbitrary tt0>0t\geq t_{0}>0. First, we are going to prove that vvtv\geq v_{t} in +N¯\overline{\mathbb{R}^{N}_{+}}. Since c>cpmaxxvt(x)c>{c_{p}}\geq\max_{x\in\mathbb{R}}v_{t}(x), we have that

(6.3) {Δ(vvt)+(vvt)=|v|p1v|vt|p1vt, in +N,vvt>0, on +N,\left\{\begin{aligned} -\Delta(v-v_{t})+(v-v_{t})&=|v|^{p-1}v-|v_{t}|^{p-1}v_{t},\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v-v_{t}&>0,&\quad\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

or equivalently

(6.4) {Δ(vvt)+ct(x)(vvt)=0, in +N,vvt>0, on +N,\left\{\begin{aligned} -\Delta(v-v_{t})+c_{t}(x)(v-v_{t})&=0,\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v-v_{t}&>0,&\quad\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

where

(6.5) ct(x):={1(v(x))p(vt(x))pv(x)vt(x), if v(x)vt(x)0,1, if v(x)vt(x)=0.c_{t}(x):=\left\{\begin{aligned} &1-\frac{(v(x))^{p}-(v_{t}(x))^{p}}{v(x)-v_{t}(x)},&\quad\textup{ if }v(x)-v_{t}(x)\neq 0,\\ &1,&\qquad\textup{ if }v(x)-v_{t}(x)=0.\end{aligned}\right.

We assume by contradiction that

(6.6) {x+N:v(x)<vt(x)}.\big{\{}x\in\mathbb{R}^{N}_{+}:v(x)<v_{t}(x)\big{\}}\neq\emptyset.

Then, using the mean value theorem and (6.2), we deduce that, for all x{x+N:v(x)<vt(x)}x\in\{x\in\mathbb{R}^{N}_{+}:v(x)<v_{t}(x)\},

(6.7) ct(x)1p(vt(x))p112.c_{t}(x)\geq 1-p(v_{t}(x))^{p-1}\geq\frac{1}{2}.

Hence, in each connected component DD of {x+N:v(x)<vt(x)}\{x\in\mathbb{R}^{N}_{+}:v(x)<v_{t}(x)\} we have that

(6.8) {Δ(vvt)+ct(x)(vvt)=0, in D,vvt=0, on D,\left\{\begin{aligned} -\Delta(v-v_{t})+c_{t}(x)(v-v_{t})&=0,\quad&\textup{ in }D,\\ v-v_{t}&=0,&\quad\textup{ on }\partial D,\end{aligned}\right.

with ctc_{t} satisfying (6.7). Then, applying the weak maximum principle [5, Lemma 2.1], we obtain that vvtv\geq v_{t} in D¯\overline{D} which contradicts the fact that D{x+N:v(x)<vt(x)}D\subset\{x\in\mathbb{R}^{N}_{+}:v(x)<v_{t}(x)\}. Hence, we conclude that {x+N:v(x)<vt(x)}=\{x\in\mathbb{R}^{N}_{+}:v(x)<v_{t}(x)\}=\emptyset and so, that vvtv\geq v_{t} in +N\mathbb{R}^{N}_{+}. Having this at hand and substituting in (6.3), we deduce that

(6.9) {Δ(vvt)+(vvt)0, in +N,vvt>0, on +N,\left\{\begin{aligned} -\Delta(v-v_{t})+(v-v_{t})&\geq 0,\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v-v_{t}&>0,&\quad\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

and so, the Step 1 follows from the strong maximum principle and the fact that tt0t\geq t_{0} is arbitrary.

Step 2: v>vtv>v_{t} in +N¯\overline{\mathbb{R}^{N}_{+}} for all tt\in\mathbb{R}.

Note that, if we prove that vvtv\geq v_{t} in +N\mathbb{R}^{N}_{+} for all tt\in\mathbb{R}, then the claim follows from the Strong Maximum principle. Also, by the Step 1, we know that

{t:vvs in +N for all st}.\big{\{}\,t\in\mathbb{R}:v\geq v_{s}\textup{ in }\mathbb{R}^{N}_{+}\textup{ for all }s\geq t\,\big{\}}\neq\emptyset.

Hence, we can define

(6.10) t:=inf{t:vvs in +N for all st}[,t0].t_{\star}:=\inf\big{\{}\,t\in\mathbb{R}:v\geq v_{s}\textup{ in }\mathbb{R}^{N}_{+}\textup{ for all }s\geq t\,\big{\}}\in[-\infty,t_{0}].

We argue by contradiction and suppose that t>t_{\star}>-\infty. First note that, by continuity, vvtv\geq v_{t_{\star}} in +N\mathbb{R}^{N}_{+}. Also, t>t_{\star}>-\infty implies the existence of M>0M>0 such that

(6.11) vt(x,xN)(12p)1p1, for all t[t1,t],xN1 and xNM.v_{t}(x^{\prime},x_{N})\leq\left(\frac{1}{2p}\right)^{\frac{1}{p-1}},\quad\textup{ for all }t\in[t_{\star}-1,t_{\star}],\ x^{\prime}\in\mathbb{R}^{N-1}\textup{ and }\ x_{N}\geq M.

We now consider separately two cases.

Case 1: infxN1×[0,M](vvt)=:δM>0\displaystyle\inf_{x\in\mathbb{R}^{N-1}\times[0,M]}\big{(}v-v_{t_{\star}}\big{)}=:\delta_{M}>0.

First, taking into account that w0L()cp\|w_{0}^{\prime}\|_{L^{\infty}(\mathbb{R})}\leq{c_{p}}, we infer that, for all ttt\leq t_{\star} and xN1×[0,M]x\in\mathbb{R}^{N-1}\times[0,M],

v(x,xN)vt(x,xN)\displaystyle v(x^{\prime},x_{N})-v_{t}(x^{\prime},x_{N}) =v(x,xN)vt(x,xN)+(vt(x,xN)vt(x,xN))\displaystyle=v(x^{\prime},x_{N})-v_{t_{\star}}(x^{\prime},x_{N})+\big{(}v_{t_{\star}}(x^{\prime},x_{N})-v_{t}(x^{\prime},x_{N})\big{)}
δM|w0(xN+t)w0(xN+t)|\displaystyle\geq\delta_{M}-\big{|}w_{0}(x_{N}+t_{\star})-w_{0}(x_{N}+t)\big{|}
δMcp|tt|.\displaystyle\geq\delta_{M}-c_{p}|t_{\star}-t|.

Hence, there exists η0(0,1)\eta_{0}\in(0,1) such that, for all tttη0t_{\star}\geq t\geq t_{\star}-\eta_{0},

(6.12) v(x,xN)vt(x,xN)>0, for all xN1 and xN[0,M].v(x^{\prime},x_{N})-v_{t}(x^{\prime},x_{N})>0,\quad\textup{ for all }x^{\prime}\in\mathbb{R}^{N-1}\ \textup{ and }\ x_{N}\in[0,M].

In particular, if we define ΣM:={xN:xN>M}\Sigma_{M}:=\{x\in\mathbb{R}^{N}:x_{N}>M\}, we have

vvt>0, on ΣM, for all t[tη0,t].v-v_{t}>0,\quad\textup{ on }\partial\Sigma_{M},\quad\textup{ for all }t\in[t_{\star}-\eta_{0},t_{\star}].

Next, we are going to prove that, for all t[tη0,t]t\in[t_{\star}-\eta_{0},t_{\star}], it follows vvtv\geq v_{t} in ΣM\Sigma_{M}. To that end, we fix an arbitrary t[tη0,t]t\in[t_{\star}-\eta_{0},t_{\star}]. Arguing as in Step 1, we have that

(6.13) {Δ(vvt)+ct(x)(vvt)=0, in ΣM,vvt>0, on ΣM,\left\{\begin{aligned} -\Delta(v-v_{t})+c_{t}(x)(v-v_{t})&=0,\quad&\textup{ in }\Sigma_{M},\\ v-v_{t}&>0,&\quad\textup{ on }\partial\Sigma_{M},\end{aligned}\right.

where

(6.14) ct(x):={1(v(x))p(vt(x))pv(x)vt(x), if v(x)vt(x)0,1, if v(x)vt(x)=0.c_{t}(x):=\left\{\begin{aligned} &1-\frac{(v(x))^{p}-(v_{t}(x))^{p}}{v(x)-v_{t}(x)},&\quad\textup{ if }v(x)-v_{t}(x)\neq 0,\\ &1,&\qquad\textup{ if }v(x)-v_{t}(x)=0.\end{aligned}\right.

We assume by contradiction that

(6.15) {xΣM:v(x)<vt(x)}.\big{\{}x\in\Sigma_{M}:v(x)<v_{t}(x)\big{\}}\neq\emptyset.

Then, using the mean value theorem and (6.11), we deduce that, for all x{xΣM:v(x)<vt(x)}x\in\{x\in\Sigma_{M}:v(x)<v_{t}(x)\},

(6.16) ct(x)1p(vt(x))p112.c_{t}(x)\geq 1-p(v_{t}(x))^{p-1}\geq\frac{1}{2}.

Hence, in each connected component DD of {xΣM:v(x)<vt(x)}\{x\in\Sigma_{M}:v(x)<v_{t}(x)\} we have that

(6.17) {Δ(vvt)+ct(x)(vvt)=0, in D,vvt=0, on D,\left\{\begin{aligned} -\Delta(v-v_{t})+c_{t}(x)(v-v_{t})&=0,\quad&\textup{ in }D,\\ v-v_{t}&=0,&\quad\textup{ on }\partial D,\end{aligned}\right.

with ctc_{t} satisfying (6.16). Then, applying the weak maximum principle [5, Lemma 2.1], we obtain that vvtv\geq v_{t} in D¯\overline{D} which contradicts the fact that D{xΣM:v(x)<vt(x)}D\subset\{x\in\Sigma_{M}:v(x)<v_{t}(x)\}. Hence, we conclude that {xΣM:v(x)<vt(x)}=\{x\in\Sigma_{M}:v(x)<v_{t}(x)\}=\emptyset and so, that vvtv\geq v_{t} in ΣM\Sigma_{M}. Taking into account (6.12), we infer that, for all η[0,η0]\eta\in[0,\eta_{0}], vvtηv\geq v_{t_{\star}-\eta} in +N\mathbb{R}^{N}_{+}. This is in contradiction with the definition of tt_{\star}. Hence, Case 1 cannot happen.

Case 2: infxN1×[0,M](vvt)=0\displaystyle\inf_{x\in\mathbb{R}^{N-1}\times[0,M]}\big{(}v-v_{t_{\star}}\big{)}=0.

In this case there exists a sequence of points (xn)nN1×[0,M](x^{n})_{n}\subset\mathbb{R}^{N-1}\times[0,M] such that

(6.18) v(xn)vt(xn)0, as n.v(x^{n})-v_{t_{\star}}(x^{n})\to 0,\quad\textup{ as }n\to\infty.

Up to a subsequence, it follows that xNnx¯Nx_{N}^{n}\to\overline{x}_{N} for some x¯N[0,M]\overline{x}_{N}\in[0,M]. We define then

vn(x)=v(x+(xn),xN), for all n,v^{n}(x)=v\big{(}x^{\prime}+(x^{n})^{\prime},x_{N}\big{)}\,,\quad\textup{ for all }n\in\mathbb{N},

and, for all nn\in\mathbb{N}, we have vnvtv^{n}\geq v_{t_{\star}} in +N\mathbb{R}^{N}_{+} and

{Δvn+vn=(vn)p, in +N,vn=c, on +N.\left\{\begin{aligned} -\Delta v^{n}+v^{n}&=(v^{n})^{p},\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v^{n}&=c,&\textup{ on }\partial\mathbb{R}^{N}_{+}.\end{aligned}\right.

Moreover, for all nn\in\mathbb{N}, it follows that

{Δ(vnvt)+(vnvt)0, in +N,vnvt>0, on +N,\left\{\begin{aligned} -\Delta(v^{n}-v_{t_{\star}})+(v^{n}-v_{t_{\star}})&\geq 0,\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ v^{n}-v_{t_{\star}}&>0,&\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

and so, by the Strong Maximum principle, we have that

vnvt>0, in +N¯, for all n.v^{n}-v_{t_{\star}}>0,\quad\textup{ in }\overline{\mathbb{R}^{N}_{+}},\quad\textup{ for all }n\in\mathbb{N}.

Now, arguing as in [15, Proof of Theorem 2.1, Step 1], we deduce that the sequence (vn)n(v^{n})_{n} admits a subsequence, still denoted by (vn)n(v^{n})_{n}, converging to a function v¯\overline{v} in Cloc2(+N)C_{loc}^{2}(\mathbb{R}^{N}_{+}). This function v¯\overline{v} still solves

{Δv¯+v¯=v¯p, in +N,v¯=c, on +N,\left\{\begin{aligned} -\Delta\overline{v}+\overline{v}&=\overline{v}^{p},\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ \overline{v}&=c,&\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

and satisfies v¯vt, in +N\overline{v}\geq v_{t_{\star}},\textup{ in }\mathbb{R}^{N}_{+}, and

(6.19) v¯(0,x¯N)=vt(0,x¯N).\overline{v}(0^{\prime},\overline{x}_{N})=v_{t_{\star}}(0^{\prime},\overline{x}_{N}).

Note that (6.19) and v¯=c>cpvt\overline{v}=c>c_{p}\geq v_{t_{\star}} on +N\partial\mathbb{R}^{N}_{+} imply x¯N>0\overline{x}_{N}>0. Since v¯vt\overline{v}\geq v_{t_{\star}} in +N\mathbb{R}^{N}_{+}, we have

{Δ(v¯vt)+(v¯vt)0, in +N,v¯vt>0, on +N,\left\{\begin{aligned} -\Delta(\overline{v}-v_{t_{\star}})+(\overline{v}-v_{t_{\star}})&\geq 0,\quad&\textup{ in }\mathbb{R}^{N}_{+},\\ \overline{v}-v_{t_{\star}}&>0,&\textup{ on }\partial\mathbb{R}^{N}_{+},\end{aligned}\right.

Hence, by the Strong Maximum principle, it follows that v¯>vt\overline{v}>v_{t_{\star}} in +N\mathbb{R}^{N}_{+} which gives a contradiction with (6.19). Case 2 cannot happen either and hence the Step 2 follows.

Step 3: Conclusion.

Observe that v>vtv>v_{t} in +N\mathbb{R}^{N}_{+} for all tt\in\mathbb{R} implies that vv0(0)=cpv\geq v_{0}(0)={c_{p}} in +N\mathbb{R}^{N}_{+}. This gives a contradiction with (1.4) and so the proof is complete. ∎

Declarations

Conflict of Interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Availability Statement. This article has no additional data.

References

  • [1] W. Ao, M. Musso, F. Pacard, and J. Wei. Solutions without any symmetry for semilinear elliptic problems. J. Funct. Anal., 270(3):884–956, 2016.
  • [2] T. Bartsch and M. Willem. Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal., 117(2):447–460, 1993.
  • [3] T. Bartsch and M. Willem. Infinitely many radial solutions of a semilinear elliptic problem on 𝐑N{\bf R}^{N}. Arch. Ration. Mech. Anal., 124(3):261–276, 1993.
  • [4] H. Berestycki, L. Caffarelli, and L. Nirenberg. Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(1-2):69–94, 1997.
  • [5] H. Berestycki, L. A. Caffarelli, and L. Nirenberg. Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math., 50(11):1089–1111, 1997.
  • [6] H. Berestycki, T. Gallouët, and O. Kavian. Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math., 297(5):307–310, 1983.
  • [7] H. Berestycki, F. Hamel, and R. Monneau. One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J., 103(3):375–396, 2000.
  • [8] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal., 82(4):313–345, 1983.
  • [9] H. Berestycki and P.-L. Lions. Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal., 82(4):347–375, 1983.
  • [10] G. Cerami. Un criterio di esistenza per i punti critici su varietà illimitate. Istit. Lomb. Accad. Sci. Lett. Rend. A, 112(2):332–336, 1978.
  • [11] E. N. Dancer. New solutions of equations on n\mathbb{R}^{n}. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30(3-4):535–563 (2002), 2001.
  • [12] E. N. Dancer and T. Weth. Liouville-type results for non-cooperative elliptic systems in a half-space. J. Lond. Math. Soc. (2), 86(1):111–128, 2012.
  • [13] I. Ekeland. Convexity methods in Hamiltonian mechanics. Springer-Verlag, Berlin, 1990.
  • [14] M. J. Esteban and P.-L. Lions. Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A, 93(1-2):1–14, 1982/83.
  • [15] A. Farina. Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of N\mathbb{R}^{N} and in half spaces. Adv. Math. Sci. Appl., 13(1):65–82, 2003.
  • [16] B. Gidas, W. M. Ni, and L. Nirenberg. Symmetry of positive solutions of nonlinear elliptic equations in 𝐑n{\bf R}^{n}. Adv. in Math. Suppl. Stud., 7:369–402, 1981.
  • [17] B. Gidas and J. Spruck. A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations, 6(8):883–901, 1981.
  • [18] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001.
  • [19] D. Gomez and J. Wei. Multi-spike patterns in the gierer-meinhardt system with a non-zero activator boundary flux. Preprint, https://arxiv.org/abs/2008.04533. 2020.
  • [20] G. J. O. Jameson. Inequalities comparing (a+b)papbp(a+b)^{p}-a^{p}-b^{p} and ap1b+abp1a^{p-1}b+ab^{p-1}. Elem. Math., 69(3):156–161, 2014.
  • [21] L. Jeanjean. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on 𝐑N{\bf R}^{N}. Proc. Roy. Soc. Edinburgh Sect. A, 129(4):787–809, 1999.
  • [22] L. Jeanjean and K. Tanaka. A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud., 3(4):445–455, 2003.
  • [23] A. L. Krause, V. Klika, P. K. Maini, D. Headon, and E. A. Gaffney. Isolating patterns in open reaction-diffusion systems. Preprint, https://arxiv.org/abs/2009.13114. 2020.
  • [24] M. K. Kwong. Uniqueness of positive solutions of Δuu+up=0\Delta u-u+u^{p}=0 in 𝐑n{\bf R}^{n}. Arch. Ration. Mech. Anal., 105(3):243–266, 1989.
  • [25] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):223–283, 1984.
  • [26] Y. Liu and J. Wei. On the Helmholtz equation and Dancer’s-type entire solutions for nonlinear elliptic equations. Proc. Amer. Math. Soc., 147(3):1135–1148, 2019.
  • [27] S. Lorca and P. Ubilla. Symmetric and nonsymmetric solutions for an elliptic equation on N\mathbb{R}^{N}. Nonlinear Anal., 58(7-8):961–968, 2004.
  • [28] M. Musso, F. Pacard, and J. Wei. Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation. J. Eur. Math. Soc. (JEMS), 14(6):1923–1953, 2012.
  • [29] P. Poláčik, P. Quittner, and P. Souplet. Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J., 139(3):555–579, 2007.
  • [30] P. H. Rabinowitz. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43(2):270–291, 1992.
  • [31] W. A. Strauss. Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55(2):149–162, 1977.
  • [32] M. Struwe. Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, volume 34. Springer-Verlag, Berlin, fourth edition, 2008.
  • [33] C. A. Stuart. Bifurcation from the essential spectrum. In Topological nonlinear analysis, II (Frascati, 1995), volume 27 of Progr. Nonlinear Differential Equations Appl., pages 397–443. Birkhäuser Boston, Boston, MA, 1997.
  • [34] M. Willem. Minimax theorems. Birkhäuser Boston, Inc., Boston, MA, 1996.