This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The nonlocal Almgren problem

Emanuel Indrei Department of Mathematics
Kennesaw State University
Marietta, GA 30060
USA.
Abstract.

In the nonlocal Almgren problem, the goal is to investigate the convexity of a minimizer under a mass constraint via a nonlocal free energy generated with some nonlocal perimeter and convex potential. In the paper, the main result is a quantitative stability theorem for the nonlocal free energy assuming symmetry on the potential. In addition, several results that involve uniqueness, non-existence, and moduli estimates from the theory for crystals are proven also in the nonlocal context.

1. Introduction

A fundamental theorem in real analysis is Taylor’s theorem: assume
f:f:\mathbb{R}\rightarrow\mathbb{R} is twice differentiable,

f(e)=f(em)+f(em)(eem)+f′′(αe,em)2|eem|2,f(e)=f(e_{m})+f^{\prime}(e_{m})(e-e_{m})+\frac{f^{\prime\prime}(\alpha_{e,e_{m}})}{2}|e-e_{m}|^{2},

αe,em(em,e)\alpha_{e,e_{m}}\in(e_{m},e). If f(em)=0f^{\prime}(e_{m})=0, f′′(αe,em)a>0f^{\prime\prime}(\alpha_{e,e_{m}})\geq a_{*}>0, then

(1) f(e)f(em)a2|eem|2.f(e)-f(e_{m})\geq\frac{a_{*}}{2}|e-e_{m}|^{2}.

In particular, one may obtain sharp information from this: assume ff is a quantity which classifies an optimizer eme_{m} in the sense that f(e)=f(em)f(e)=f(e_{m}) implies e=eme=e_{m}. Now, let ee satisfy f(e)=f(em)+ϵf(e)=f(e_{m})+\epsilon, with ϵ>0\epsilon>0 a small number; thus f(e)f(em)f(e)\approx f(e_{m}) and the expectation is that eeme\approx e_{m}. The utility of (1) is to make this clear in the context that ee is at most, up to a constant, ϵ\sqrt{\epsilon} from eme_{m}.

When instead of a real-valued function ff the object of investigation is an energy \mathcal{E} which is defined on measurable sets EE, recent work has investigated analogous estimates. An application is to understand the perturbations of minimizers through the energy. The main problem is to minimize \mathcal{E} subject to a mass constraint |E|=m|E|=m. Thus at the minimum EmE_{m}, the first variation is zero (Em)=0\mathcal{E}^{\prime}(E_{m})=0, hence if some lower bound exists on the second variation, it is natural to anticipate that mod an invariance class

(2) (E)(Em)aχEχEm2,\mathcal{E}(E)-\mathcal{E}(E_{m})\geq a_{*}||\chi_{E}-\chi_{E_{m}}||^{2},

where χE\chi_{E} is the characteristic function of EE. A natural norm is often chosen to be the L1L^{1} norm [Fig13]. In applications, the free energy is of the form

(E)=s(E)+a(E),\mathcal{E}(E)=\mathcal{E}_{s}(E)+\mathcal{E}_{a}(E),

where s\mathcal{E}_{s} is a surface energy and a\mathcal{E}_{a} a potential/repulsion energy. In the next discussion, four physical and fundamental energies are underscored.

1.1. The Free Energy

The crystal theory starts with the anisotropic surface energy on sets of finite perimeter EnE\subset\mathbb{R}^{n} with reduced boundary E\partial^{*}E:

s(E)=(E)=Ef(νE)𝑑n1,\mathcal{E}_{s}(E)=\mathcal{F}(E)=\int_{\partial^{*}E}f(\nu_{E})d\mathcal{H}^{n-1},

where ff is a surface tension, i.e. a convex positively 1-homogeneous

f:n[0,)f:\mathbb{R}^{n}\rightarrow[0,\infty)

with f(x)>0f(x)>0 if |x|>0|x|>0. The potential energy of a set EE is

a(E)=𝒢(E)=Eg(x)𝑑x,\mathcal{E}_{a}(E)=\mathcal{G}(E)=\int_{E}g(x)dx,

where g0g\geq 0, g(0)=0g(0)=0, gLlocg\in L_{loc}^{\infty} [Ind24, IK23, IK24, FZ22, Tay78, TA87, Fon91, FM91, FMP10, DPV22, FM11]; see in addition many interesting references in [Ind24] that comprehensively discuss the history. In thermodynamics, to obtain a crystal, one minimizes the free energy

(E)=(E)+𝒢(E)\mathcal{E}(E)=\mathcal{F}(E)+\mathcal{G}(E)

under a mass constraint. Gibbs and Curie independently discovered this physical principle [Gib78, Cur85].

1.2. The Binding Energy

The nonlocal Coulomb repulsion energy is given via

a(E)=𝒟(E)=α1E×E1|zy|λ𝑑z𝑑y,\mathcal{E}_{a}(E)=\mathcal{D}(E)=\alpha_{1}\int\int_{E\times E}\frac{1}{|z-y|^{\lambda}}dzdy,

λ(0,n)\lambda\in(0,n), α1>0\alpha_{1}>0. The binding energy of a set of finite perimeter EnE\subset\mathbb{R}^{n} is the sum

(E)=(E)+𝒟(E).\mathcal{E}(E)=\mathcal{F}(E)+\mathcal{D}(E).

In the classical context, λ=1\lambda=1, f(x)=|x|f(x)=|x|, n=3n=3, α1=12\alpha_{1}=\frac{1}{2} [FN21]. The theory is historically attributed to Gamow via his 1930 paper [Gam30] and it successfully predicts the non-existence of nuclei with a large atomic number, cf. references in [Ind23, CR24, FFM+15].

1.3. The Nonlocal Free Energy

The nonlocal perimeter encodes a parameter α(0,1)\alpha\in(0,1)

s(E)=Pα(E)=EEc1|xy|α+n𝑑x𝑑y\mathcal{E}_{s}(E)=P_{\alpha}(E)=\int_{E}\int_{E^{c}}\frac{1}{|x-y|^{\alpha+n}}dxdy

[FLS08, FFM+15, CRS10, BNO23]. Caffarelli, Roquejoffre, and Savin investigated the Plateau problem with respect to the nonlocal energy functionals [CRS10]. The nonlocal isoperimetric inequality has appeared in [FLS08]: assume |E|=|Ba||E|=|B_{a}|, then

Pα(E)Pα(Ba)P_{\alpha}(E)\geq P_{\alpha}(B_{a})

with equality if and only if E=Ba+xE=B_{a}+x. Hence the nonlocal free energy is

(E)=Pα(E)+𝒢(E),\mathcal{E}(E)=P_{\alpha}(E)+\mathcal{G}(E),

[CN17, BNO23].

1.4. The Nonlocal Binding Energy

The nonlocal Coulomb repulsion energy together with the nonlocal perimeter in the aforementioned give the nonlocal binding energy

(E)=Pα(E)+𝒟(E),\mathcal{E}(E)=P_{\alpha}(E)+\mathcal{D}(E),

see [FFM+15] for a theorem on the minimizers when the mass is small.

1.5. The Main Problem

Observe via the above that four main choices of \mathcal{E} are:

(E)=(E)+𝒢(E)\mathcal{E}(E)=\mathcal{F}(E)+\mathcal{G}(E)
(E)=(E)+𝒟(E)\mathcal{E}(E)=\mathcal{F}(E)+\mathcal{D}(E)
(E)=Pα(E)+𝒢(E)\mathcal{E}(E)=P_{\alpha}(E)+\mathcal{G}(E)
(E)=Pα(E)+𝒟(E).\mathcal{E}(E)=P_{\alpha}(E)+\mathcal{D}(E).

Therefore the central problem is: assume m>0m>0 and solve

inf{(E):|E|=m}.\inf\{\mathcal{E}(E):|E|=m\}.

Naturally, the questions involve existence, uniqueness, convexity, and optimal stability. My paper investigates this for

(E)=Pα(E)+𝒢(E).\mathcal{E}(E)=P_{\alpha}(E)+\mathcal{G}(E).

Observe that two main ingredients define the nonlocal free energy of a set EnE\subset\mathbb{R}^{n}: Pα(E)P_{\alpha}(E); and, 𝒢(E)=Eg(x)𝑑x\mathcal{G}(E)=\int_{E}g(x)dx.

In this context, the nonlocal Almgren problem is to investigate the convexity of a minimizer EmE_{m} under the assumption that gg is convex, refer to [FM11, p. 146] to understand the local Almgren problem. Several theorems may be shown without convexity on gg. In particular, a complete theory begins via gLlocg\in L_{loc}^{\infty} (in several contexts, one can assume gLloc1g\in L_{loc}^{1}).

1. Assuming coercivity, there are minima for m>0m>0 [CN17].
2. Assuming that mm is sufficiently small, all minimizers are convex [BNO23].
3. One may construct a gg which is convex so that there are no minimizers if m>0m>0, see Theorem 3.6.
4. Assuming g(x)=h(|x|)g(x)=h(|x|), h:++h:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+} is increasing, convex, h(0)=0h(0)=0, there exists a stability estimate similar to (2), see Theorem 2.1.
5. Assuming gLlocg\in L_{loc}^{\infty} and up to sets of measure zero gg admits unique minimizers EmE_{m}, there exist energy moduli. In addition, assuming that mm is sufficiently small, the energy modulus has a product structure, see Proposition 3.1 and Theorem 3.7.
6. Upper bounds for the moduli are obtained with minimal assumptions, see Theorem 3.2

In the paper, the novelty mostly is in 4. Interestingly, 3, 5, 6 can be obtained, via minor changes, as in [Ind24, IK23] (in 6, one utilizes [BNO23]) and hence these proofs are in the appendix.

2. Stability for nonlocal free energy minimization

Theorem 2.1.

Suppose g(x)=h(|x|)g(x)=h(|x|), h:++h:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+} is increasing, convex, h(0)=0h(0)=0. Let m>0m>0, |Ba|=|E|=m|B_{a}|=|E|=m, then
(i)

(E)(Ba)r(m,n,α)χEχBaL14\mathcal{E}(E)-\mathcal{E}(B_{a})\geq r(m,n,\alpha)||\chi_{E}-\chi_{B_{a}}||_{L^{1}}^{4}

for some r(m,n,α)>0r(m,n,\alpha)>0;

(ii) supposing a^>a\hat{a}>a, EBa^E\subset B_{\hat{a}}, then

(E)(Ba)r(m,a^,n,α)χEχBaL12\mathcal{E}(E)-\mathcal{E}(B_{a})\geq r(m,\hat{a},n,\alpha)||\chi_{E}-\chi_{B_{a}}||_{L^{1}}^{2}

for some explicit r(m,a^,n,α)>0r(m,\hat{a},n,\alpha)>0.

Remark 2.2.

The exponent 4 is appearing when considering the stability of the isoperimetric inequality. Hall proved a stability theorem with 4 and conjectured that the exponent can be replaced with 2 [Hal92]. The conjecture was proven in [FMP08, FMP10].

Proof.

(i)
Assume

(E)(Ba)ν,\mathcal{E}(E)-\mathcal{E}(B_{a})\geq\nu,

for ν>0\nu>0. Then since

|EΔBa|416m4,|E\Delta B_{a}|^{4}\leq 16m^{4},
|EΔBa|4\displaystyle|E\Delta B_{a}|^{4} 16m4\displaystyle\leq 16m^{4}
16m4νν16m4ν((E)(Ba)).\displaystyle\leq\frac{16m^{4}}{\nu}\nu\leq\frac{16m^{4}}{\nu}(\mathcal{E}(E)-\mathcal{E}(B_{a})).

Therefore it is sufficient to prove: there exists ν>0\nu>0 so that if

(E)(Ba)ν,\mathcal{E}(E)-\mathcal{E}(B_{a})\leq\nu,

then

(3) w(|EΔBa|)(E)(Ba),w(|E\Delta B_{a}|)\leq\mathcal{E}(E)-\mathcal{E}(B_{a}),

where w(t)=r(m,n,α)t4w(t)=r(m,n,\alpha)t^{4}. To start, the existence of a modulus ww is proved so that (3) is true (observe this also follows from a compactness proof, cf. Proposition 3.1, as soon as one obtains that the ball is the unique minimizer; the new argument has advantages in the context of explicitly encoding estimates to identify w(t)=r(m,n,α)t4w(t)=r(m,n,\alpha)t^{4}). Suppose

T:EBaBaET:E\setminus B_{a}\rightarrow B_{a}\setminus E

denotes the Brenier map between μ=χEBadx\mu_{*}=\chi_{E\setminus B_{a}}dx and ν=χBaEdx\nu_{*}=\chi_{B_{a}\setminus E}dx [Bre91]. Since

T#μ=ν,T_{\#}\mu_{*}=\nu_{*},

one has

(4) EBah(|T(x)|)𝑑x=BaEh(|x|)𝑑x;\int_{E\setminus B_{a}}h(|T(x)|)dx=\int_{B_{a}\setminus E}h(|x|)dx;

thus, (4) and monotonicity of hh yield

Bah𝑑x\displaystyle\int_{B_{a}}hdx =EBah𝑑x+BaEh(|x|)𝑑x\displaystyle=\int_{E\cap B_{a}}hdx+\int_{B_{a}\setminus E}h(|x|)dx
=EBah𝑑x+EBah(|T(x)|)𝑑x\displaystyle=\int_{E\cap B_{a}}hdx+\int_{E\setminus B_{a}}h(|T(x)|)dx
EBah𝑑x+EBah(|x|)𝑑x\displaystyle\leq\int_{E\cap B_{a}}hdx+\int_{E\setminus B_{a}}h(|x|)dx
(5) =Eh𝑑x.\displaystyle=\int_{E}hdx.

Observe that via |T(x)|a|T(x)|\leq a and the above,

EBa[h(|x|)h(a)]𝑑xEh𝑑xBah𝑑x.\int_{E\setminus B_{a}}[h(|x|)-h(a)]dx\leq\int_{E}hdx-\int_{B_{a}}hdx.

Hence the previous inequality and [FFM+15] imply

(E)(Ba)\displaystyle\mathcal{E}(E)-\mathcal{E}(B_{a}) =Pα(E)Pα(Ba)+𝒢(E)𝒢(Ba)\displaystyle=P_{\alpha}(E)-P_{\alpha}(B_{a})+\mathcal{G}(E)-\mathcal{G}(B_{a})
Pα(Ba)A2(E)C(n,α)+Eh𝑑xBah𝑑x\displaystyle\geq P_{\alpha}(B_{a})\frac{A^{2}(E)}{C(n,\alpha)}+\int_{E}hdx-\int_{B_{a}}hdx
Pα(Ba)A2(E)C(n,α)+EBa[h(|x|)h(a)]𝑑x,\displaystyle\geq P_{\alpha}(B_{a})\frac{A^{2}(E)}{C(n,\alpha)}+\int_{E\setminus B_{a}}[h(|x|)-h(a)]dx,
A(E)=inf{|EΔ(Ba+x)||E|:xn}.A(E)=\inf\{\frac{|E\Delta(B_{a}+x)|}{|E|}:x\in\mathbb{R}^{n}\}.

Let zEz_{E} achieve

A(E)=|EΔ(Ba+zE)||E|.A(E)=\frac{|E\Delta(B_{a}+z_{E})|}{|E|}.

Hence

(6) (|EΔ(Ba+zE)||E|)2a~1((E)(Ba)),\Big{(}\frac{|E\Delta(B_{a}+z_{E})|}{|E|}\Big{)}^{2}\leq\tilde{a}_{1}\Big{(}\mathcal{E}(E)-\mathcal{E}(B_{a})\Big{)},

a~1=a~1(n,α,a)>0.\tilde{a}_{1}=\tilde{a}_{1}(n,\alpha,a)>0. Assume

(Ei)(Ba)0,\mathcal{E}(E_{i})-\mathcal{E}(B_{a})\rightarrow 0,

|Ei|=m=|Ba||E_{i}|=m=|B_{a}|. Observe

|EiΔ(Ba+zEi)|0.|E_{i}\Delta(B_{a}+z_{E_{i}})|\rightarrow 0.

Let A(i)Ba+zEiA(i)\subset B_{a}+z_{E_{i}}, |A(i)|p>0|A(i)|\geq p>0. Thus

|χEi(x)χBa+zEi(x)|𝑑x0\int|\chi_{E_{i}}(x)-\chi_{B_{a}+z_{E_{i}}}(x)|dx\rightarrow 0

yields

A(i)|χEi(x)1|𝑑x0.\int_{A(i)}|\chi_{E_{i}}(x)-1|dx\rightarrow 0.

By the triangle inequality,

||A(i)Ei||A(i)||\displaystyle||A(i)\cap E_{i}|-|A(i)|| =|A(i)(χEi(x)1)𝑑x|\displaystyle=|\int_{A(i)}(\chi_{E_{i}}(x)-1)dx|
A(i)|χEi(x)1|𝑑x0.\displaystyle\leq\int_{A(i)}|\chi_{E_{i}}(x)-1|dx\rightarrow 0.

This thus implies

|A(i)Ei|p7|A(i)\cap E_{i}|\geq\frac{p}{7}

assuming ii is large.

Claim 1: supi|zEi|<\sup_{i}|z_{E_{i}}|<\infty.

Proof of Claim 1:
Assume not. Then modulo a subsequence,

|zEi|.|z_{E_{i}}|\rightarrow\infty.

Since A(i)Ba+zEiA(i)\subset B_{a}+z_{E_{i}}, one obtains

infA(i)Eig\inf_{A(i)\cap E_{i}}g\rightarrow\infty

thanks to the (strict) monotonicity of gg. Thus

\displaystyle\infty =limip7infA(i)Eig\displaystyle=\lim_{i}\frac{p}{7}\inf_{A(i)\cap E_{i}}g
A(i)Eig\displaystyle\leq\int_{A(i)\cap E_{i}}g
EigBg<,\displaystyle\leq\int_{E_{i}}g\rightarrow\int_{B}g<\infty,

and this contradiction yields Claim 1.

Claim 2: |zEi|0|z_{E_{i}}|\rightarrow 0.

Proof of Claim 2:
If one can find a subsequence (continued to have the same index) so that infi|zEi|>0\inf_{i}|z_{E_{i}}|>0, observe via the positive bound that up to possibly another subsequence,

zEiz0.z_{E_{i}}\rightarrow z\neq 0.

In particular,

|EiΔ(Ba+z)|\displaystyle|E_{i}\Delta(B_{a}+z)| |(Ba+zEi)Δ(Ba+z)|+|EiΔ(Ba+zEi)|\displaystyle\leq|(B_{a}+z_{E_{i}})\Delta(B_{a}+z)|+|E_{i}\Delta(B_{a}+z_{E_{i}})|
a|zEiz|+|Ba|a~1((Ei)(Ba))\displaystyle\leq a_{*}|z_{E_{i}}-z|+|B_{a}|\sqrt{\tilde{a}_{1}(\mathcal{E}(E_{i})-\mathcal{E}(B_{a}))}
0.\displaystyle\rightarrow 0.

Hence

χEiχBa+zin L1.\chi_{E_{i}}\rightarrow\chi_{B_{a}+z}\hskip 28.90755pt\text{in $L^{1}$}.

and this readily yields, mod a subsequence,

χEiχBa+za.e..\chi_{E_{i}}\rightarrow\chi_{B_{a}+z}\hskip 28.90755pt\text{a.e.}.

Therefore via Fatou

Ba+zglim infingχEi=𝒢(Ba),\displaystyle\int_{B_{a}+z}g\leq\liminf_{i}\int_{\mathbb{R}^{n}}g\chi_{E_{i}}=\mathcal{G}(B_{a}),

Define H=Ba+zH=B_{a}+z. Consider {v1,v2,}\{v_{1},v_{2},\ldots\} directions which generate via Steiner symmetrization with respect to the planes through the origin and with normal viv_{i}, Hv1,Hv2,H_{v_{1}},H_{v_{2}},\ldots and

HviBa.H_{v_{i}}\rightarrow B_{a}.

Set

H1={(x2,,xn):(x1,x2,,xn)H}H_{1}=\{(x_{2},\ldots,x_{n}):(x_{1},x_{2},\ldots,x_{n})\in H\}
Hx2,x3,,xn={x1:(x1,x2,,xn)H}.H^{x_{2},x_{3},\ldots,x_{n}}=\{x_{1}:(x_{1},x_{2},\ldots,x_{n})\in H\}.

Note that one may let x1|x1|=v1\frac{x_{1}}{|x_{1}|}=v_{1}; hence the monotonicity and complete symmetry of gg imply

Hv1g𝑑x\displaystyle\int_{H_{v_{1}}}gdx =H1(|Hx2,x3,,xn|2|Hx2,x3,,xn|2g𝑑x1)𝑑x2𝑑xn\displaystyle=\int_{H_{1}}\Big{(}\int_{-\frac{|H^{x_{2},x_{3},\ldots,x_{n}}|}{2}}^{\frac{|H^{x_{2},x_{3},\ldots,x_{n}}|}{2}}gdx_{1}\Big{)}dx_{2}\ldots dx_{n}
H1(Hx2,x3,,xng𝑑x1)𝑑x2𝑑xn\displaystyle\leq\int_{H_{1}}\Big{(}\int_{H^{x_{2},x_{3},\ldots,x_{n}}}gdx_{1}\Big{)}dx_{2}\ldots dx_{n}
=Hg𝑑x.\displaystyle=\int_{H}gdx.

Moreover, via the radial property of gg, one may rotate the coordinate x1x_{1} so that x1|x1|=v2\frac{x_{1}}{|x_{1}|}=v_{2} and iterate the argument above:

Hv1g𝑑xHv2g𝑑x;\int_{H_{v_{1}}}gdx\geq\int_{H_{v_{2}}}gdx;

in particular, note that via HBaH\neq B_{a} & the monotonicity of gg (the strict monotonicity), there is one direction so that the inequality is strict, therefore

Hg𝑑x>Bag𝑑x.\int_{H}gdx>\int_{B_{a}}gdx.

Hence one obtains a contradiction

Bag𝑑x\displaystyle\int_{B_{a}}gdx <Hg=Ba+zg\displaystyle<\int_{H}g=\int_{B_{a}+z}g
lim infingχEil\displaystyle\leq\liminf_{i}\int_{\mathbb{R}^{n}}g\chi_{E_{i_{l}}}
=𝒢(Ba)=Bag𝑑x.\displaystyle=\mathcal{G}(B_{a})=\int_{B_{a}}gdx.

Note that this proves:

assuming

(Ei)(Ba)0,\mathcal{E}(E_{i})-\mathcal{E}(B_{a})\rightarrow 0,

it follows that

|EiΔ(Ba+zEi)|0,|E_{i}\Delta(B_{a}+z_{E_{i}})|\rightarrow 0,
(7) zEi0.z_{E_{i}}\rightarrow 0.

Now note

|EiΔBa|\displaystyle|E_{i}\Delta B_{a}| |EiΔ(Ba+zEi)|+|BaΔ(Ba+zEi)|\displaystyle\leq|E_{i}\Delta(B_{a}+z_{E_{i}})|+|B_{a}\Delta(B_{a}+z_{E_{i}})|
|EiΔ(Ba+zEi)|+a|zEi|0.\displaystyle\leq|E_{i}\Delta(B_{a}+z_{E_{i}})|+a_{*}|z_{E_{i}}|\rightarrow 0.

Hence there is some modulus ww so that

(E)(Ba)w(|EΔBa|).\mathcal{E}(E)-\mathcal{E}(B_{a})\geq w(|E\Delta B_{a}|).

Supposing a1^>a1>0\hat{a_{1}}>a_{1}>0, EBa1^E_{*}\subset B_{\hat{a_{1}}}, |E|=|Ba1||E_{*}|=|B_{a_{1}}|, then via strict monotonicity and convexity of hh, one obtains that the subdifferential

+h(a1)\partial_{+}h(a_{1})\neq\emptyset

is compact and

(8) inf+h(a1)|x|>0:\inf_{\partial_{+}h(a_{1})}|x|>0:

assume 0+h(a1)0\in\partial_{+}h(a_{1}), one then can use a1>0a_{1}>0 and convexity to deduce that gg has a global minimum at a1a_{1} and this is a contradiction via the strict monotonicity (g(0)=0g(0)=0, g0g\geq 0), therefore this shows (8). Hence thanks to [IK23], there exists

(9) ra1^,a1,+h(a1)=(1inf+h(a1)|x|A)12>0,r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*}=\Big{(}\frac{1}{\inf_{\partial_{+}h(a_{1})}|x|A_{*}}\Big{)}^{\frac{1}{2}}>0,

A=A(a1^,n,a)>0A_{*}=A_{*}(\hat{a_{1}},n,a)>0, so that

(10) ra1^,a1,+h(a1)[𝒢(E)𝒢(Ba1)]12|EΔBa1|.r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*}\Big{[}\mathcal{G}(E_{*})-\mathcal{G}(B_{a_{1}})\Big{]}^{\frac{1}{2}}\geq|E_{*}\Delta B_{a_{1}}|.

Supposing |E|=|Ba||E|=|B_{a}|, via the previous argument (cf. (7)) if

(E)(Ba)0,\mathcal{E}(E)-\mathcal{E}(B_{a})\rightarrow 0,

it follows that

zE0.z_{E}\rightarrow 0.

Hence if

(E)(Ba)ν\mathcal{E}(E)-\mathcal{E}(B_{a})\leq\nu

where ν\nu small, then |zE||z_{E}| is small.

Next,

(Ba+zE)Ba+|zE|(B_{a}+z_{E})\subset B_{a+|z_{E}|}

yields

EBa+|zE|E(Ba+zE)E\setminus B_{a+|z_{E}|}\subset E\setminus(B_{a}+z_{E})

and thus utilizing (6)

(11) |EBa+|zE|||E(Ba+zE)||Ba|2a~1((E)(Ba)).|E\setminus B_{a+|z_{E}|}|\leq|E\setminus(B_{a}+z_{E})|\leq\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}.

Set

E=E(Ba+|zE|);E_{*}=E\cap(B_{a+|z_{E}|});

then note

E=E(E(Ba+|zE|))E=E_{*}\cup(E\setminus(B_{a+|z_{E}|}))

& thanks to (11)

m\displaystyle m =|E|+|E(Ba+|zE|)|\displaystyle=|E_{*}|+|E\setminus(B_{a+|z_{E}|})|
|E|+|Ba|2a~1((E)(Ba)).\displaystyle\leq|E_{*}|+\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}.

Therefore

(12) m|E||Ba|2a~1((E)(Ba));m-|E_{*}|\leq\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))};

next, consider a1>0a_{1}>0 via

|E|=|Ba1|=a1n|B1|.|E_{*}|=|B_{a_{1}}|=a_{1}^{n}|B_{1}|.

Observe that (12) easily implies

m|Ba|2a~1((E)(Ba))|E|=a1n|B1|,m-\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}\leq|E_{*}|=a_{1}^{n}|B_{1}|,

hence

(m|Ba|2a~1((E)(Ba))|B1|)1na1.\Big{(}\frac{m-\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}}{|B_{1}|}\Big{)}^{\frac{1}{n}}\leq a_{1}.

In particular, since the energy difference is small (E)(Ba)ν\mathcal{E}(E)-\mathcal{E}(B_{a})\leq\nu, there exists a lower bound on a1a_{1} via a,n,αa,n,\alpha. Thanks to |zE||z_{E}| being small and (10), one may choose

5a>a1^>a+|zE|5a>\hat{a_{1}}>a+|z_{E}|

such that

(13) ra1^,a1,+h(a1)[𝒢(E)𝒢(Ba1)]12|EΔBa1|,r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*}\Big{[}\mathcal{G}(E_{*})-\mathcal{G}(B_{a_{1}})\Big{]}^{\frac{1}{2}}\geq|E_{*}\Delta B_{a_{1}}|,

where ra1^,a1,+h(a1)r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*} is bounded via a,n,αa,n,\alpha. Now since aa1a\geq a_{1}, (12) implies

𝒢(E)𝒢(Ba1)\displaystyle\mathcal{G}(E_{*})-\mathcal{G}(B_{a_{1}}) =𝒢(E)𝒢(Ba)+𝒢(Ba)𝒢(Ba1)\displaystyle=\mathcal{G}(E_{*})-\mathcal{G}(B_{a})+\mathcal{G}(B_{a})-\mathcal{G}(B_{a_{1}})
𝒢(E)𝒢(Ba)+(supBag)|BaBa1|\displaystyle\leq\mathcal{G}(E_{*})-\mathcal{G}(B_{a})+\big{(}\sup_{B_{a}}g\big{)}|B_{a}\setminus B_{a_{1}}|
𝒢(E)𝒢(Ba)+(supBag)(|Ba||Ba1|)\displaystyle\leq\mathcal{G}(E_{*})-\mathcal{G}(B_{a})+\big{(}\sup_{B_{a}}g\big{)}(|B_{a}|-|B_{a_{1}}|)
=𝒢(E)𝒢(Ba)+(supBag)(m|E|)\displaystyle=\mathcal{G}(E_{*})-\mathcal{G}(B_{a})+\big{(}\sup_{B_{a}}g\big{)}(m-|E_{*}|)
(E)(Ba)+(supBag)|Ba|2a~1((E)(Ba)).\displaystyle\leq\mathcal{E}(E)-\mathcal{E}(B_{a})+\big{(}\sup_{B_{a}}g\big{)}\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}.

In particular, (13) and the above inequality imply

|EΔBa1|\displaystyle|E_{*}\Delta B_{a_{1}}| ra1^,a1,+h(a1)[𝒢(E)𝒢(Ba1)]12\displaystyle\leq r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*}\Big{[}\mathcal{G}(E_{*})-\mathcal{G}(B_{a_{1}})\Big{]}^{\frac{1}{2}}
(14) ra1^,a1,+h(a1)[(E)(Ba)+supBag|Ba|2a~1((E)(Ba))]12.\displaystyle\leq r_{\hat{a_{1}},a_{1},\partial_{+}h(a_{1})}^{*}\Big{[}\mathcal{E}(E)-\mathcal{E}(B_{a})+\sup_{B_{a}}g\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}\Big{]}^{\frac{1}{2}}.

Also, (12) & (11) yield

(15) |BaΔBa1|=|BaBa1||Ba|2a~1((E)(Ba))|B_{a}\Delta B_{a_{1}}|=|B_{a}\setminus B_{a_{1}}|\leq\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}
(16) |EΔE|=|E(Ba+|zE|)||Ba|2a~1((E)(Ba)).|E_{*}\Delta E|=|E\setminus(B_{a+|z_{E}|})|\leq\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}.

Hence (15), (2), (16), (11), & the triangle inequality in L1L^{1} imply

|BaΔ(Ba+zE)|\displaystyle|B_{a}\Delta(B_{a}+z_{E})| |BaΔBa1|+|Ba1ΔE|+|EΔE|+|EΔ(Ba+zE)|\displaystyle\leq|B_{a}\Delta B_{a_{1}}|+|B_{a_{1}}\Delta E_{*}|+|E\Delta E_{*}|+|E\Delta(B_{a}+z_{E})|
α[(E)(Ba)]14.\displaystyle\leq\alpha_{*}\Big{[}\mathcal{E}(E)-\mathcal{E}(B_{a})\Big{]}^{\frac{1}{4}}.

Last,

|EΔBa|\displaystyle|E\Delta B_{a}| |EΔ(Ba+zE)|+|(Ba+zE)ΔBa|\displaystyle\leq|E\Delta(B_{a}+z_{E})|+|(B_{a}+z_{E})\Delta B_{a}|
|Ba|2a~1((E)(Ba))+α[(E)(Ba)]14\displaystyle\leq\sqrt{|B_{a}|^{2}\tilde{a}_{1}(\mathcal{E}(E)-\mathcal{E}(B_{a}))}+\alpha_{*}\Big{[}\mathcal{E}(E)-\mathcal{E}(B_{a})\Big{]}^{\frac{1}{4}}
α¯[(E)(Ba)]14,\displaystyle\leq\overline{\alpha}_{*}\Big{[}\mathcal{E}(E)-\mathcal{E}(B_{a})\Big{]}^{\frac{1}{4}},

α¯=α¯(a,n,α)>0\overline{\alpha}_{*}=\overline{\alpha}_{*}(a,n,\alpha)>0.

(ii)
Supposing a^>a\hat{a}>a, EBa^E\subset B_{\hat{a}}, then one can show similarly to the proof in (i) (cf. (10), (9)) that there exists some constant rm,a^,n,α>0r_{m,\hat{a},n,\alpha}^{*}>0 (that is explicit) so that

rm,a^,n,α[(E)(Ba)]12rm,a^,n,α[𝒢(E)𝒢(Ba)]12|EΔBa|.r_{m,\hat{a},n,\alpha}^{*}\Big{[}\mathcal{E}(E)-\mathcal{E}(B_{a})\Big{]}^{\frac{1}{2}}\geq r_{m,\hat{a},n,\alpha}^{*}\Big{[}\mathcal{G}(E)-\mathcal{G}(B_{a})\Big{]}^{\frac{1}{2}}\geq|E\Delta B_{a}|.

Remark 2.3.

Assuming EBa^E\subset B_{\hat{a}}, the estimate is optimal: set g(y)=|y|2g(y)=|y|^{2},

(Ba+x)(Ba)\displaystyle\mathcal{E}(B_{a}+x)-\mathcal{E}(B_{a}) =Ba(2y,x+|x|2)𝑑y=|x|2|Ba|;\displaystyle=\int_{B_{a}}(2\langle y,x\rangle+|x|^{2})dy=|x|^{2}|B_{a}|;

supposing |x||x| is small, since

|(Ba+x)ΔBa||x|,|(B_{a}+x)\Delta B_{a}|\approx|x|,
|(Ba+x)ΔBa|2|x|2.|(B_{a}+x)\Delta B_{a}|^{2}\approx|x|^{2}.
Remark 2.4.

In the argument of the theorem, (2) implies that balls minimize the energy also when gg is non-decreasing, radial, and possibly non-convex.

Remark 2.5.

In the theorem, a quantitative inequality is proven without translation invariance. In particular, the invariance class is completely identified and stability is not modulo translations like the quantitative anisotropic isoperimetric inequality. Supposing a context where the set is in a convex cone [FI13, Ind21, Pog24, DPV22], translations are crucial: assuming the cone contains no line, the quantitative term is without translations.

Corollary 2.6.

Suppose g(x)=h(|x|)g(x)=h(|x|), where hh is non-negative, non-decreasing, not identically zero, and homogeneous of degree ν\nu. Let m>0m>0 and assume EmE_{m} is the minimizer with |Em|=m|E_{m}|=m, set

mα,ν,g=|B1|[α(nα)ν(n+ν)Pα(B1)B1g(x)𝑑x]nν+αm_{\alpha,\nu,g}=|B_{1}|\Big{[}\frac{\alpha(n-\alpha)}{\nu(n+\nu)}\frac{P_{\alpha}(B_{1})}{\int_{B_{1}}g(x)dx}\Big{]}^{\frac{n}{\nu+\alpha}}

it then follows that

m(Em)m\mapsto\mathcal{E}(E_{m})

is concave on (0,mα,ν,g)(0,m_{\alpha,\nu,g}) and convex on (mα,ν,g,)(m_{\alpha,\nu,g},\infty).

Proof.

Thanks to Remark 2.4, Em=BrE_{m}=B_{r}, r=[m|B1|]1nr=\Big{[}\frac{m}{|B_{1}|}\Big{]}^{\frac{1}{n}}, which therefore implies

(Em)=Pα(B1)(1|B1|nαn)mnαn+(1|B1|ν+nn)(B1h(|x|)𝑑x)mn+νn.\mathcal{E}(E_{m})=P_{\alpha}(B_{1})(\frac{1}{|B_{1}|^{\frac{n-\alpha}{n}}})m^{\frac{n-\alpha}{n}}+(\frac{1}{|B_{1}|^{\frac{\nu+n}{n}}})(\int_{B_{1}}h(|x|)dx)m^{\frac{n+\nu}{n}}.

The critical mass mα,ν,gm_{\alpha,\nu,g} therefore is calculated with the second derivative. ∎

3. Appendix

3.1. Compactness: existence of moduli

Proposition 3.1.

If m>0m>0, gLlocg\in L_{loc}^{\infty}, and up to sets of measure zero, gg admits unique minimizers EmE_{m}, then for ϵ>0\epsilon>0 there exists wm(ϵ)>0w_{m}(\epsilon)>0 such that if |E|=|Em||E|=|E_{m}|, EBRE\subset B_{R}, R=R(m)R=R(m), and

|(E)(Em)|<wm(ϵ),|\mathcal{E}(E)-\mathcal{E}(E_{m})|<w_{m}(\epsilon),

then

χEχEmL1|Em|<ϵ.\frac{||\chi_{E}-\chi_{E_{m}}||_{L^{1}}}{|E_{m}|}<\epsilon.
Proof.

Assume the assumptions do not yield the conclusion, then there exists ϵ>0\epsilon>0 and for a>0a>0, there exist EaBRE_{a}^{\prime}\subset B_{R} and EmE_{m}, |Ea|=|Em|=m|E_{a}^{\prime}|=|E_{m}|=m,

|(Ea)(Em)|<a,|\mathcal{E}(E_{a}^{\prime})-\mathcal{E}(E_{m})|<a,
|EmΔEa||Em|ϵ.\frac{|E_{m}\Delta E_{a}^{\prime}|}{|E_{m}|}\geq\epsilon.

Define a=1ka=\frac{1}{k}, kk\in\mathbb{N}; therefore there exist E1kE_{\frac{1}{k}}^{\prime}, |E1k|=m|E_{\frac{1}{k}}^{\prime}|=m,

|(Em)(E1k)|1k,|\mathcal{E}(E_{m})-\mathcal{E}(E_{\frac{1}{k}}^{\prime})|\leq\frac{1}{k},
|EmΔE1k||Em|ϵ.\frac{|E_{m}\Delta E_{\frac{1}{k}}^{\prime}|}{|E_{m}|}\geq\epsilon.

In particular

Pα(E1k)\displaystyle P_{\alpha}(E_{\frac{1}{k}}^{\prime}) (E1k)\displaystyle\leq\mathcal{E}(E_{\frac{1}{k}}^{\prime})
1k+(Em),\displaystyle\leq\frac{1}{k}+\mathcal{E}(E_{m}),
E1kBR,E_{\frac{1}{k}}^{\prime}\subset B_{R},

and via the compactness Hα2Lloc1H^{\frac{\alpha}{2}}\hookrightarrow L_{loc}^{1}, up to a subsequence,

E1kEinL1(BR);E_{\frac{1}{k}}^{\prime}\rightarrow E^{\prime}\hskip 21.68121ptin\hskip 5.78172ptL^{1}(B_{R});

thus |E|=m|E^{\prime}|=m because of the triangle inequality in L1(BR)L^{1}(B_{R}). Next

(E)lim infk(E1k)=(Em)\mathcal{E}(E^{\prime})\leq\liminf_{k}\mathcal{E}(E_{\frac{1}{k}}^{\prime})=\mathcal{E}(E_{m})

implies EE^{\prime} is a minimizer, contradicting

|EmΔE||Em|ϵ\frac{|E_{m}\Delta E^{\prime}|}{|E_{m}|}\geq\epsilon

via the uniqueness. ∎

3.2. Bounds on the moduli

Identifying the modulus wm(ϵ)w_{m}(\epsilon) is in general complex. Additional conditions illuminate interesting properties as illustrated in the first theorem. In the subsequent theorem, upper bounds are illustrated with minimal assumptions.

Theorem 3.2.

Suppose m>0m>0, and up to sets of measure zero, gg admits unique minimizers EmBr(m)E_{m}\subset B_{r(m)} in the collection of sets of finite perimeter, then
(i) if gWloc1,1g\in W_{loc}^{1,1} is locally uniformly differentiable, there exists α1=α1(Em)>0\alpha_{1}=\alpha_{1}(E_{m})>0 such that if ϵ<α1\epsilon<\alpha_{1}, one has

wm(ϵ)λg,Em(m,ϵ)=og,Em(ϵmam),w_{m}(\epsilon)\leq\lambda_{g,E_{m}}(m,\epsilon)=o_{g,E_{m}}(\frac{\epsilon m}{a_{m_{*}}}),
am=α|D𝝌Emw|(n)a_{m_{*}}=\alpha_{*}|D\boldsymbol{\chi}_{E_{m}}\cdot w_{*}|(\mathbb{R}^{n})

with α>0\alpha_{*}>0, wnw_{*}\in\mathbb{R}^{n};
(ii) if gWloc1,g\in W_{loc}^{1,\infty}, there exists ma>0m_{a}>0 such that if m<mam<m_{a}, ϵ<α1\epsilon<\alpha_{1}, then

λg,Em(m,ϵ)=α1m1nog,Em(ϵ),\lambda_{g,E_{m}}(m,\epsilon)=\alpha_{1_{*}}m^{\frac{1}{n}}o_{g,E_{m}}(\epsilon),
og,Em(ϵ)=ϵEmox,g(1)𝑑x,o_{g,E_{m}}(\epsilon)=\epsilon\int_{E_{m}}o_{x,g}(1)dx,
Emox,g(1)𝑑x0\int_{E_{m}}o_{x,g}(1)dx\rightarrow 0

as ϵ0+\epsilon\rightarrow 0^{+}, α1>0\alpha_{1_{*}}>0;
(iii) if gC1g\in C^{1}, there exist ma,αm>0m_{a},\alpha_{m}>0 such that if m<mam<m_{a}, ϵ<αm\epsilon<\alpha_{m}, then

λg,Em(m,ϵ)=α2m1+1nog(ϵ),\lambda_{g,E_{m}}(m,\epsilon)=\alpha_{2_{*}}m^{1+\frac{1}{n}}o_{g}(\epsilon),

α2=α2(DgL(Br(ma)))>0\alpha_{2_{*}}=\alpha_{2_{*}}(||Dg||_{L^{\infty}(B_{r(m_{a})})})>0;
(iv) if gWloc2,1g\in W_{loc}^{2,1} is twice differentiable, there exists αm>0\alpha_{m}>0 such that if ϵ<αm\epsilon<\alpha_{m},

wm(ϵ)amϵ2,w_{m}(\epsilon)\leq a_{m}\epsilon^{2},
am=(D2gL1(Em)+m16)(mα|D𝝌Emw|(n))2a_{m}=\Big{(}||D^{2}g||_{L^{1}(E_{m})}+m\frac{1}{6}\Big{)}(\frac{m}{\alpha_{*}|D\boldsymbol{\chi}_{E_{m}}\cdot w_{*}|(\mathbb{R}^{n})})^{2}

with α>0\alpha_{*}>0;
(v) if gWloc2,g\in W_{loc}^{2,\infty}, there exists ma>0m_{a}>0 such that if m<mam<m_{a}, then

wm(ϵ)amϵ2,w_{m}(\epsilon)\leq a_{m}\epsilon^{2},
am=am1+2n,a_{m}=a_{*}m^{1+\frac{2}{n}},

a=a(D2gL(Br(ma)))>0a_{*}=a_{*}(||D^{2}g||_{L^{\infty}(B_{r(m_{a})})})>0.

Proof.

Assuming mm is small, the convexity of EmE_{m} is established in [BNO23] and utilized for (ii),(iii),(v)(ii),(iii),(v) similar to the proof in [IK23]. The argument for (i)(i) & (iv)(iv) is the same as in [IK23]. ∎

Remark 3.3.

The existence of bounded EmE_{m} was proven in [CN17] via assuming coercivity of gg. Also, a minimizer EmE_{m} is up to a closed set with Hausdorff dimension at most n3n-3, a C2,aC^{2,a} set, in particular, much more smooth than just a set of finite perimeter. One may in some contexts preclude translations (e.g. supposing that gg is strictly convex). If gg is zero on some small ball, then note that if the mass is very small, uniqueness is only up to translations and sets of measure zero.

Remark 3.4.

The assumption gWloc1,1g\in W_{loc}^{1,1} is locally uniformly differentiable in (i) can be weakened.

Remark 3.5.

Theorem 2.1 encodes the modulus in an explicit way. In particular, supposing mm is small, if g(|x|)=|x|2g(|x|)=|x|^{2}, a possible modulus is wm(ϵ)=a1ϵ2m3w_{m}(\epsilon)=a_{1}\epsilon^{2}m^{3}. Thus the ϵ\epsilon dependence in (v) is optimal. Observe also that via the quadratic, the mm dependence is almost sharp in two dimensions. The optimal mm–modulus also encodes a(D2gL(Br(ma)))a_{*}(||D^{2}g||_{L^{\infty}(B_{r(m_{a})})}).

3.3. Non-existence of minimizers

In the general case when gg is convex, one does not have existence.

Theorem 3.6.

There exists g0g\geq 0 convex such that g(0)=0g(0)=0 and such that if m>0m>0, then there is no solution to

inf{(E):|E|=m}.\inf\{\mathcal{E}(E):|E|=m\}.
Proof.

The definition of gg via the construction in [Ind24] also works in this case:

g(x,y)={x2(1y)+x2y2if y0x21+yif y>0.g(x,y)=\begin{cases}x^{2}(1-y)+x^{2}y^{2}&\text{if }y\leq 0\\ \frac{x^{2}}{1+y}&\text{if }y>0.\end{cases}

Set e2=(0,1)e_{2}=(0,1), a>0a>0; the potential is non-increasing in the yy-variable and strictly decreasing if x0.x\neq 0. in particular, note if a minimizer EmE_{m} exists,

Em+ae2g(x,y)𝑑x𝑑y<Emg(x,y)𝑑x𝑑y,\int_{E_{m}+ae_{2}}g(x,y)dxdy<\int_{E_{m}}g(x,y)dxdy,

therefore via the translation invariance of PαP_{\alpha},

(Em+ae2)<(Em),\mathcal{E}(E_{m}+ae_{2})<\mathcal{E}(E_{m}),

a contradiction.

In particular, coercivity or another condition is necessary.

3.4. A product property

If α,g\alpha,g are given, an invariance map of the nonlocal free energy is a transformation

A𝒜m=𝒜α,g,m\displaystyle A\in\mathcal{A}_{m}=\mathcal{A}_{\alpha,g,m}
={A:Ax=Aax+xa,xan,(AaE)=(E),|AaE|=|E|=m for some minimizer E}.\displaystyle=\{A:Ax=A_{a}x+x_{a},x_{a}\in\mathbb{R}^{n},\mathcal{E}(A_{a}E)=\mathcal{E}(E),|A_{a}E|=|E|=m\text{ for some minimizer $E$}\}.

Uniqueness of minimizers can only be true up to PαP_{\alpha} sets of measure zero and an invariance map. Note that in many classes of potentials, assuming mm is small, A𝒜mA\in\mathcal{A}_{m} is a translation; a simple case is: assume gg is zero on a ball BB, therefore if mm is small, Aa=In×nA_{a}=I_{n\times n}, xanx_{a}\in\mathbb{R}^{n} is such that Ba+xa{g=0}B_{a}+x_{a}\subset\{g=0\} when BaBB_{a}\subset B.

Supposing gg is locally bounded, the stability modulus, in the context of small mass, is a product in any dimension.

Theorem 3.7.

Suppose gLloc({g<})g\in L_{loc}^{\infty}(\{g<\infty\}) admits minimizers EmBRE_{m}\subset B_{R} for all mm small. There exists m0>0m_{0}>0 and a modulus of continuity q(0+)=0q(0^{+})=0 such that for all m<m0m<m_{0} there exists ϵ0>0\epsilon_{0}>0 such that for all 0<ϵ<ϵ00<\epsilon<\epsilon_{0} and for all minimizers EmBRE_{m}\subset B_{R}, EBRE\subset B_{R}, |E|=|Em|=m<m0|E|=|E_{m}|=m<m_{0}, if

|(Em)(E)|<a(m,ϵ,α)=q(ϵ)mnαn,|\mathcal{E}(E_{m})-\mathcal{E}(E)|<a(m,\epsilon,\alpha)=q(\epsilon)m^{\frac{n-\alpha}{n}},

there exists an invariance map A𝒜mA\in\mathcal{A}_{m} such that

χEχAEmL1|Em|<ϵ.\frac{||\chi_{E}-\chi_{AE_{m}}||_{L^{1}}}{|E_{m}|}<\epsilon.

Also, AEmEm+αmAE_{m}\approx E_{m}+\alpha_{m}, αmn\alpha_{m}\in\mathbb{R}^{n} cf. (3.4).

Remark 3.8.

If g(x)=h(|x|)g(x)=h(|x|), h:++h:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+} is increasing, h(0)=0h(0)=0, then AA is the identity in the conclusion of Theorem 3.7: if m>0m>0, then

𝒜α,h(|x|),m={In×n}.\mathcal{A}_{\alpha,h(|x|),m}=\{I_{n\times n}\}.
Proof.

Via contradiction, suppose the theorem is not true, then for m0>0m_{0}>0, for all moduli qq, there exists m<m0m<m_{0} such that for ϵ0(0,2]\epsilon_{0}\in(0,2] there exists ϵ<ϵ0\epsilon<\epsilon_{0} and Em,ϵ0,Em,ϵ0BRE_{m,\epsilon_{0}},E_{m,\epsilon_{0}}^{\prime}\subset B_{R}, |Em,ϵ0|=|Em,ϵ0|=m|E_{m,\epsilon_{0}}|=|E_{m,\epsilon_{0}}^{\prime}|=m,

|(Em)(Em)|<q(ϵ)mnαn,|\mathcal{E}(E_{m})-\mathcal{E}(E_{m}^{\prime})|<q(\epsilon)m^{\frac{n-\alpha}{n}},

and

(17) infA𝒜m|Em,ϵ0ΔAEm,ϵ0||Em,ϵ0|ϵ>0.\inf_{A\in\mathcal{A}_{m}}\frac{|E_{m,\epsilon_{0}}^{\prime}\Delta AE_{m,\epsilon_{0}}|}{|E_{m,\epsilon_{0}}|}\geq\epsilon>0.

In particular, let m0=1km_{0}=\frac{1}{k}, wk0+w_{k}\rightarrow 0^{+}, q^\hat{q} define a modulus of continuity, and let

(18) qk=wkq^(ϵ).q_{k}=w_{k}\hat{q}(\epsilon).

Therefore there exists mk<1km_{k}<\frac{1}{k} such that for a fixed ϵ0(0,2]\epsilon_{0}\in(0,2] there exists ϵ<ϵ0\epsilon<\epsilon_{0} and Emk,ϵ0,Emk,ϵ0BRE_{m_{k},\epsilon_{0}},E_{m_{k},\epsilon_{0}}^{\prime}\subset B_{R}, |Emk,ϵ0|=|Emk,ϵ0|=mk<1k|E_{m_{k},\epsilon_{0}}|=|E_{m_{k},\epsilon_{0}}^{\prime}|=m_{k}<\frac{1}{k},

|(Emk)(Emk)|<qkmknαn,|\mathcal{E}(E_{m_{k}})-\mathcal{E}(E_{m_{k}}^{\prime})|<q_{k}m_{k}^{\frac{n-\alpha}{n}},

and

(19) infA𝒜mk|Emk,ϵ0ΔAEmk,ϵ0||Emk,ϵ0|ϵ>0.\inf_{A\in\mathcal{A}_{m_{k}}}\frac{|E_{m_{k},\epsilon_{0}}^{\prime}\Delta AE_{m_{k},\epsilon_{0}}|}{|E_{m_{k},\epsilon_{0}}|}\geq\epsilon>0.

Let

(20) ak=qkmknαn,a_{k}=q_{k}m_{k}^{\frac{n-\alpha}{n}},

Emk=Emk,ϵ0E_{m_{k}}=E_{m_{k},\epsilon_{0}}, Emk=Emk,ϵ0E_{m_{k}}^{\prime}=E_{m_{k},\epsilon_{0}}^{\prime}. Define γk=(|B1|mk)1n\gamma_{k}=(\frac{|B_{1}|}{m_{k}})^{\frac{1}{n}},

|γkEmk|=|B1|.|\gamma_{k}E_{m_{k}}|=|B_{1}|.

Observe via the nonlocal isoperimetric inequality and the minimality,

Pα(1γkB1)+Emkg\displaystyle P_{\alpha}(\frac{1}{\gamma_{k}}B_{1})+\int_{E_{m_{k}}}g Pα(Emk)+Emkg\displaystyle\leq P_{\alpha}(E_{m_{k}})+\int_{E_{m_{k}}}g
Pα(1γkB1)+1γkB1g\displaystyle\leq P_{\alpha}(\frac{1}{\gamma_{k}}B_{1})+\int_{\frac{1}{\gamma_{k}}B_{1}}g
Pα(Emk)Pα(1γkB1)(sup1γkB1g)mkP_{\alpha}(E_{m_{k}})-P_{\alpha}(\frac{1}{\gamma_{k}}B_{1})\leq(\sup_{\frac{1}{\gamma_{k}}B_{1}}g)m_{k}
γknα(Pα(Emk)Pα(1γkB1))γknα((sup1γkB1g)mk)\gamma_{k}^{n-\alpha}\Big{(}P_{\alpha}(E_{m_{k}})-P_{\alpha}(\frac{1}{\gamma_{k}}B_{1})\Big{)}\leq\gamma_{k}^{n-\alpha}\Big{(}(\sup_{\frac{1}{\gamma_{k}}B_{1}}g)m_{k}\Big{)}
(Pα(γkEmk)Pα(B1))((sup1γkB1g)(γknαmk))\Big{(}P_{\alpha}(\gamma_{k}E_{m_{k}})-P_{\alpha}(B_{1})\Big{)}\leq\Big{(}(\sup_{\frac{1}{\gamma_{k}}B_{1}}g)(\gamma_{k}^{n-\alpha}m_{k})\Big{)}
(Pα(γkEmk)Pα(B1))((sup(1γk)B1g)(|B1|γkα)).\Big{(}P_{\alpha}(\gamma_{k}E_{m_{k}})-P_{\alpha}(B_{1})\Big{)}\leq\Big{(}(\sup_{(\frac{1}{\gamma_{k}})B_{1}}g)(\frac{|B_{1}|}{\gamma_{k}^{\alpha}})\Big{)}.

Since mk0m_{k}\rightarrow 0 as kk\rightarrow\infty, it thus follows that γk\gamma_{k}\rightarrow\infty, hence

δ(γkEmk)\displaystyle\delta(\gamma_{k}E_{m_{k}}) =Pα(γkEmk)Pα(B1)10.\displaystyle=\frac{P_{\alpha}(\gamma_{k}E_{m_{k}})}{P_{\alpha}(B_{1})}-1\rightarrow 0.

Next, by the triangle inequality,

|Pα(Emk)\displaystyle|P_{\alpha}(E_{m_{k}}^{\prime}) Pα(Emk)|\displaystyle-P_{\alpha}(E_{m_{k}})|
=|[(Emk)(Emk)]+[Emkg(x)𝑑xEmkg(x)𝑑x]|\displaystyle=|[\mathcal{E}(E_{m_{k}}^{\prime})-\mathcal{E}(E_{m_{k}})]+[\int_{E_{m_{k}}}g(x)dx-\int_{E_{m_{k}}^{\prime}}g(x)dx]|
|(Emk)(Emk)|+g(x)|χEmkχEmk|𝑑x\displaystyle\leq|\mathcal{E}(E_{m_{k}}^{\prime})-\mathcal{E}(E_{m_{k}})|+\int g(x)|\chi_{E_{m_{k}}^{\prime}}-\chi_{E_{m_{k}}}|dx
<ak+EmkΔEmkg(x)𝑑x.\displaystyle<a_{k}+\int_{E_{m_{k}}^{\prime}\Delta E_{m_{k}}}g(x)dx.

In particular,

|Pα(γkEmk)\displaystyle|P_{\alpha}(\gamma_{k}E_{m_{k}}^{\prime}) Pα(γkEmk)|\displaystyle-P_{\alpha}(\gamma_{k}E_{m_{k}})|
<γknαak+2γknαmk(supBR{g<}g)\displaystyle<\gamma_{k}^{n-\alpha}a_{k}+2\gamma_{k}^{n-\alpha}m_{k}(\sup_{B_{R}\cap\{g<\infty\}}g)
=|B1|nαnakmknαn+2|B1|nαn(supBR{g<}g)mk1nαn\displaystyle=|B_{1}|^{\frac{n-\alpha}{n}}\frac{a_{k}}{m_{k}^{\frac{n-\alpha}{n}}}+2|B_{1}|^{\frac{n-\alpha}{n}}(\sup_{B_{R}\cap\{g<\infty\}}g)m_{k}^{1-\frac{n-\alpha}{n}}

and since from (18) and (20),

ak=qkmknαn=wkq^(ϵ)mknαn,a_{k}=q_{k}m_{k}^{\frac{n-\alpha}{n}}=w_{k}\hat{q}(\epsilon)m_{k}^{\frac{n-\alpha}{n}},

one obtains

akmknαn=wkq^(ϵ)0\frac{a_{k}}{m_{k}^{\frac{n-\alpha}{n}}}=w_{k}\hat{q}(\epsilon)\rightarrow 0
|Pα(γkEmk)Pα(γkEmk)|0|P_{\alpha}(\gamma_{k}E_{m_{k}}^{\prime})-P_{\alpha}(\gamma_{k}E_{m_{k}})|\rightarrow 0

as kk\rightarrow\infty. Hence

(21) δ(γkEmk)\displaystyle\delta(\gamma_{k}E_{m_{k}}^{\prime}) |δ(γkEmk)δ(γkEmk)|+δ(γkEmk)\displaystyle\leq|\delta(\gamma_{k}E_{m_{k}}^{\prime})-\delta(\gamma_{k}E_{m_{k}})|+\delta(\gamma_{k}E_{m_{k}})
(22) =1Pα(B1)|Pα(γkEmk)Pα(γkEmk)|+δ(γkEmk)\displaystyle=\frac{1}{P_{\alpha}(B_{1})}|P_{\alpha}(\gamma_{k}E_{m_{k}}^{\prime})-P_{\alpha}(\gamma_{k}E_{m_{k}})|+\delta(\gamma_{k}E_{m_{k}})
(23) 0\displaystyle\hskip 10.84006pt\rightarrow 0

as kk\rightarrow\infty. Next, by the sharp stability of the nonlocal isoperimetric inequality [FFM+15] or a compactness argument, there exist xk,xknx_{k},x_{k}^{\prime}\in\mathbb{R}^{n} such that

(24) |(γkEmk+xk)ΔB1||γkEmk|0,\frac{|(\gamma_{k}E_{m_{k}}+x_{k})\Delta B_{1}|}{|\gamma_{k}E_{m_{k}}|}\rightarrow 0,

&

(25) |(γkEmk+xk)ΔB1||γkEmk|0\frac{|(\gamma_{k}E_{m_{k}}^{\prime}+x_{k}^{\prime})\Delta B_{1}|}{|\gamma_{k}E_{m_{k}}^{\prime}|}\rightarrow 0

as kk\rightarrow\infty.

Therefore (24) and (25) yield kk\in\mathbb{N} such that

|(Emk+(xkxk)γk)ΔEmk||Emk|\displaystyle\frac{|(E_{m_{k}}^{\prime}+\frac{(x_{k}^{\prime}-x_{k})}{\gamma_{k}})\Delta E_{m_{k}}|}{|E_{m_{k}}|} =|(γkEmk+xk)Δ(γkEmk+x)||γkEmk|\displaystyle=\frac{|(\gamma_{k}E_{m_{k}}^{\prime}+x_{k}^{\prime})\Delta(\gamma_{k}E_{m_{k}}+x)|}{|\gamma_{k}E_{m_{k}}|}
|(γkEmk+x)ΔB1||γkEmk|+|B1Δ(γkEmk+xk)||γkEmk|\displaystyle\leq\frac{|(\gamma_{k}E_{m_{k}}+x)\Delta B_{1}|}{|\gamma_{k}E_{m_{k}}|}+\frac{|B_{1}\Delta(\gamma_{k}E_{m_{k}}^{\prime}+x_{k}^{\prime})|}{|\gamma_{k}E_{m_{k}}|}
<ϵ,\displaystyle<\epsilon,

a contradiction to

|(Emk+(xkxk)γk)ΔEmk||Emk|\displaystyle\frac{\Big{|}\Big{(}E_{m_{k}}^{\prime}+\frac{(x_{k}^{\prime}-x_{k})}{\gamma_{k}}\Big{)}\Delta E_{m_{k}}\Big{|}}{|E_{m_{k}}|} =|EmkΔ(Emk(xkxk)γk)||Emk|\displaystyle=\frac{\Big{|}E_{m_{k}}^{\prime}\Delta\Big{(}E_{m_{k}}-\frac{(x_{k}^{\prime}-x_{k})}{\gamma_{k}}\Big{)}\Big{|}}{|E_{m_{k}}|}
infA𝒜mk|EmkΔAEmk||Emk|\displaystyle\geq\inf_{A\in\mathcal{A}_{m_{k}}}\frac{|E_{m_{k}}^{\prime}\Delta AE_{m_{k}}|}{|E_{m_{k}}|}
ϵ>0,\displaystyle\geq\epsilon>0,

thanks to (19). To finish, assume EmE_{m} is a minimizer, m<m0m<m_{0}, and define γm=(|B1|m)1n\gamma_{m}=(\frac{|B_{1}|}{m})^{\frac{1}{n}},

|γmEm|=|B1|.|\gamma_{m}E_{m}|=|B_{1}|.

Since

Pα(1γmB1)Pα(Em),P_{\alpha}(\frac{1}{\gamma_{m}}B_{1})\leq P_{\alpha}(E_{m}),
Pα(1γmB1)+Emg(x)𝑑x\displaystyle P_{\alpha}(\frac{1}{\gamma_{m}}B_{1})+\int_{E_{m}}g(x)dx Pα(Em)+Emg(x)𝑑x\displaystyle\leq P_{\alpha}(E_{m})+\int_{E_{m}}g(x)dx
Pα(1γmB1)+1γmB1g(x)𝑑x,\displaystyle\leq P_{\alpha}(\frac{1}{\gamma_{m}}B_{1})+\int_{\frac{1}{\gamma_{m}}B_{1}}g(x)dx,

thus via subtracting

Pα(1γmB1)+Emg(x)𝑑x,P_{\alpha}(\frac{1}{\gamma_{m}}B_{1})+\int_{E_{m}}g(x)dx,
Pα(Em)Pα(1γmB1)\displaystyle P_{\alpha}(E_{m})-P_{\alpha}(\frac{1}{\gamma_{m}}B_{1}) 1γmB1g(x)𝑑xEmg(x)𝑑x\displaystyle\leq\int_{\frac{1}{\gamma_{m}}B_{1}}g(x)dx-\int_{E_{m}}g(x)dx
(26) (supBRmg)m,\displaystyle\leq(\sup_{B_{R_{m}}}g)m,
1γmB1BRm.\frac{1}{\gamma_{m}}B_{1}\subset B_{R_{m}}.

Next (26) implies

Pα(γmEm)Pα(B1)\displaystyle P_{\alpha}(\gamma_{m}E_{m})-P_{\alpha}(B_{1}) =(γm)nα(Pα(Em)Pα(1γmB1))\displaystyle=(\gamma_{m})^{n-\alpha}(P_{\alpha}(E_{m})-P_{\alpha}(\frac{1}{\gamma_{m}}B_{1}))
(27) (γm)nα(supBRmg)m=|B1|nαn(supBRmg)mαn.\displaystyle\leq(\gamma_{m})^{n-\alpha}(\sup_{B_{R_{m}}}g)m=|B_{1}|^{\frac{n-\alpha}{n}}(\sup_{B_{R_{m}}}g)m^{\frac{\alpha}{n}}.

Therefore, since

δ(γmEm)c(n,α)(|γmEmΔ(am+B1)||B1|)2,\delta(\gamma_{m}E_{m})\geq c(n,\alpha)\Big{(}\frac{|\gamma_{m}E_{m}\Delta(a_{m}+B_{1})|}{|B_{1}|}\Big{)}^{2},

thanks to (27) and the sharp quantitative nonlocal isoperimetric inequality one obtains

c(n,α)(|γmEmΔ(am+B1)||B1|)2\displaystyle c(n,\alpha)\Big{(}\frac{|\gamma_{m}E_{m}\Delta(a_{m}+B_{1})|}{|B_{1}|}\Big{)}^{2} δ(γmEm)\displaystyle\leq\delta(\gamma_{m}E_{m})
=Pα(γmEm)Pα(B1)Pα(B1)\displaystyle=\frac{P_{\alpha}(\gamma_{m}E_{m})-P_{\alpha}(B_{1})}{P_{\alpha}(B_{1})}
|B1|nαnPα(B1)(supBRmg)mαn.\displaystyle\leq\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)m^{\frac{\alpha}{n}}.

Now

(28) |γmEmΔ(aEm+B1)||B1|(1c(n,α)|B1|nαnPα(B1)(supBRmg))12mα2n.|\gamma_{m}E_{m}\Delta(a_{E_{m}}+B_{1})|\leq|B_{1}|\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{\frac{\alpha}{2n}}.

Observe this is valid for any minimizer EmE_{m}, therefore for any minimizer AEmAE_{m} with A𝒜mA\in\mathcal{A}_{m}:

(29) |γmAEmΔ(aAEm+B1)||B1|(1c(n,α)|B1|nαnPα(B1)(supBRmg))12mα2n.|\gamma_{m}AE_{m}\Delta(a_{AE_{m}}+B_{1})|\leq|B_{1}|\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{\frac{\alpha}{2n}}.

Therefore (28), (29) yield

|γmEmΔ(γmAEm+(aEmaAEm))|\displaystyle|\gamma_{m}E_{m}\Delta\Big{(}\gamma_{m}AE_{m}+(a_{E_{m}}-a_{AE_{m}})\Big{)}|
|γmEmΔ(aEm+B1)|+|(aEm+B1)Δ(γmAEm+(aEmaAEm))|\displaystyle\leq|\gamma_{m}E_{m}\Delta(a_{E_{m}}+B_{1})|+|(a_{E_{m}}+B_{1})\Delta\Big{(}\gamma_{m}AE_{m}+(a_{E_{m}}-a_{AE_{m}})\Big{)}|
=|γmEmΔ(aEm+B1)|+|(aAEm+B1)Δ(γmAEm)|\displaystyle=|\gamma_{m}E_{m}\Delta(a_{E_{m}}+B_{1})|+|(a_{AE_{m}}+B_{1})\Delta\Big{(}\gamma_{m}AE_{m}\Big{)}|
2|B1|(1c(n,α)|B1|nαnPα(B1)(supBRmg))12mα2n.\displaystyle\leq 2|B_{1}|\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{\frac{\alpha}{2n}}.

Hence

(30) |B1|m|EmΔ(AEm+(aEmaAEm)γm)|2|B1|(1c(n,α)|B1|nαnPα(B1)(supBRmg))12mα2n.\frac{|B_{1}|}{m}|E_{m}\Delta\Big{(}AE_{m}+\frac{(a_{E_{m}}-a_{AE_{m}})}{\gamma_{m}}\Big{)}|\leq 2|B_{1}|\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{\frac{\alpha}{2n}}.

Set

αm:=aAEmaEmγm,\alpha_{m}:=\frac{a_{AE_{m}}-a_{E_{m}}}{\gamma_{m}},

thus via (30),

|AEmΔ(Em+αm)|\displaystyle|AE_{m}\Delta\Big{(}E_{m}+\alpha_{m}\Big{)}| 2(1c(n,α)|B1|nαnPα(B1)(supBRmg))12m1+α2n\displaystyle\leq 2\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{1+\frac{\alpha}{2n}}
(31) =2(1c(n,α)|B1|nαnPα(B1)(supBRmg))12m1+α2n.\displaystyle=2\Big{(}\frac{1}{c(n,\alpha)}\frac{|B_{1}|^{\frac{n-\alpha}{n}}}{P_{\alpha}(B_{1})}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{1+\frac{\alpha}{2n}}.

Remark 3.9.

The theorem may also be extended to gLloc1({g<})g\in L_{loc}^{1}(\{g<\infty\}) with some assumptions via Lebesgue’s differentiation theorem.

References

  • [BNO23] Konstantinos Bessas, Matteo Novaga, and Fumihiko Onoue, On the shape of small liquid drops minimizing nonlocal energies, ESAIM Control Optim. Calc. Var. 29 (2023), Paper No. 86, 26. MR 4674821
  • [Bre91] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math. 44 (4) (1991), 375–417.
  • [CN17] Annalisa Cesaroni and Matteo Novaga, Volume constrained minimizers of the fractional perimeter with a potential energy, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 4, 715–727. MR 3640534
  • [CR24] O. Chodosh and I. Ruohoniemi, On minimizers in the liquid drop model, arXiv:2401.04822v1 (2024).
  • [CRS10] L. Caffarelli, J.-M. Roquejoffre, and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), no. 9, 1111–1144. MR 2675483
  • [Cur85] P. Curie, Sur la formation des cristaux et sur les constantes capillaires de leurs different faces, Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 8 (1885), 145–150.
  • [DPV22] Serena Dipierro, Giorgio Poggesi, and Enrico Valdinoci, Radial symmetry of solutions to anisotropic and weighted diffusion equations with discontinuous nonlinearities, Calc. Var. Partial Differential Equations 61 (2022), no. 2, Paper No. 72, 31. MR 4380032
  • [FFM+15] A. Figalli, N. Fusco, F. Maggi, V. Millot, and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies, Comm. Math. Phys. 336 (2015), no. 1, 441–507. MR 3322379
  • [FI13] Alessio Figalli and Emanuel Indrei, A sharp stability result for the relative isoperimetric inequality inside convex cones, J. Geom. Anal. 23 (2013), no. 2, 938–969. MR 3023863
  • [Fig13] Alessio Figalli, Stability in geometric and functional inequalities, European Congress of Mathematics. Proceedings of the 6th ECM congress, Kraków, Poland, July 2–7 July, 2012, Zürich: European Mathematical Society (EMS), 2013, pp. 585–599 (English).
  • [FLS08] Rupert L. Frank, Elliott H. Lieb, and Robert Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), no. 4, 925–950. MR 2425175
  • [FM91] Irene Fonseca and Stefan Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), no. 1-2, 125–136. MR 1130601
  • [FM11] A. Figalli and F. Maggi, On the shape of liquid drops and crystals in the small mass regime, Arch. Ration. Mech. Anal. 201 (2011), no. 1, 143–207. MR 2807136
  • [FMP08] N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), no. 3, 941–980. MR 2456887
  • [FMP10] A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), no. 1, 167–211. MR 2672283
  • [FN21] Rupert L. Frank and Phan Thành Nam, Existence and nonexistence in the liquid drop model, Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 223, 12. MR 4314139
  • [Fon91] Irene Fonseca, The Wulff theorem revisited, Proc. Roy. Soc. London Ser. A 432 (1991), no. 1884, 125–145. MR 1116536
  • [FZ22] Alessio Figalli and Yi Ru-Ya Zhang, Strong stability for the wulff inequality with a crystalline norm, Communications on Pure and Applied Mathematics 75 (2022), no. 2, 422–446.
  • [Gam30] G. Gamow, Mass defect curve and nuclear constitution, Proc. R. Soc. Lond. Ser. A 126 (1930), 632–644.
  • [Gib78] J.W. Gibbs, On the equilibrium of heterogeneous substances, Collected Works 1 (1878).
  • [Hal92] R. R Hall, A quantitative isoperimetric inequality in nn-dimensional space, J. Reine Angew. Math. 428 (1992), 161–175 (English).
  • [IK23] E. Indrei and A. Karakhanyan, Minimizing the free energy, arXiv:2304.01866 (2023).
  • [IK24] by same author, On the three-dimensional shape of a crystal, arXiv:2406.00241 (2024).
  • [Ind21] Emanuel Indrei, A weighted relative isoperimetric inequality in convex cones, Methods Appl. Anal. 27 28 (2021), no. 1, 001–014.
  • [Ind23] E Indrei, Small mass uniqueness in the anisotropic liquid drop model and the critical mass problem, arXiv:2311.16573 (2023).
  • [Ind24] Emanuel Indrei, On the equilibrium shape of a crystal, Calc. Var. Partial Differential Equations 63 (2024), no. 4, Paper No. 97, 33. MR 4730410
  • [Pog24] Giorgio Poggesi, Soap bubbles and convex cones: optimal quantitative rigidity, Trans. Amer. Math. Soc. (2024).
  • [TA87] Jean E. Taylor and F. J. Almgren, Jr., Optimal crystal shapes, Variational methods for free surface interfaces (Menlo Park, Calif., 1985), Springer, New York, 1987, pp. 1–11. MR 872883
  • [Tay78] Jean E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), no. 4, 568–588. MR 493671