This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Nucleon Energy Correlators

Xiaohui Liu xiliu@bnu.edu.cn Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875, China Center for High Energy Physics, Peking University, Beijing 100871, China    Hua Xing Zhu zhuhx@zju.edu.cn Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, 310027, China
Abstract

We introduce the concept of the nucleon energy correlators, a set of novel objects that encode the microscopic details of a nucleon, such as the parton angular distribution in a nucleon, the collinear splitting to all orders, as well as the internal transverse dynamics of the nucleon. The nucleon energy correlators complement the conventional nucleon/nucleus tomography, but without introducing the non-perturbative fragmentation functions or the jet clustering algorithms. We demonstrate how the nucleon energy correlators can be measured in the lepton-nucleon deep inelastic scattering. The predicted distributions display a fascinating phase transition between the perturbative and non-perturbative regime. In the perturbative phase, a polar angle version of the Bjorken scaling behavior is predicted. We discuss its possible applications and expect it aggrandize the physics content at the electron ion colliders with a far-forward detector.

Introduction. The femtoscale structure of the nucleon has been the central scientific importance of nuclear physics for decades. The next generation QCD facilities [1, 2, 3] will boost the revelation of the nucleon/nucleus partonic structure in great detail. Conventional approach to the nucleon/nucleus tomography is to probe its transverse momentum dependent (TMD) structure functions through either the semi-inclusive deep inelastic scattering (SIDIS) [4, 5, 6, 7, 8, 9] or the jet-based studies [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. However SIDIS calls for the knowledge of the TMD fragmentation functions, while jets involve the clustering procedure and require high machine energy, either probes seem to complicate the analysis in one way or another.

There are other substitutions to jets and identified hadrons, such as event-shape observables and the energy-energy correlator (EEC) [26, 27]. Recently, there has been ongoing efforts to reformulate jet substructure physics using the EEC and its higher point generalization [28]. This is largely inspired by the unprecedented detector resolution at the LHC, as well as insights from conformal collider physics [29, 30, 31, 32, 33, 34]. For recent application of energy correlators in jet substructure see for example [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

The EEC measures the correlation (ni)(nj)\langle{\cal E}(n_{i}){\cal E}(n_{j})\rangle between the energy deposit in two detectors along directions nin_{i} and njn_{j} with angular separation θij\theta_{ij}, where (n)=limr0𝑑tT0n(t,nr)r2{\cal E}(n)=\lim_{r\to\infty}\int_{0}^{\infty}dtT_{0\vec{n}}(t,\vec{n}r)r^{2} is the asymptotic energy flow operator with TμνT_{\mu\nu} the energy-stress tensor [50, 51, 52, 53]. One particular interesting feature of the EEC is its collinear limit as θij0\theta_{ij}\to 0, in which the EEC exhibits a universal scaling behavior (modulo running coupling effects), limnjni(ni)(nj)θγ(αs)\lim_{n_{j}\to n_{i}}{\cal E}(n_{i}){\cal E}(n_{j})\sim\theta^{\gamma(\alpha_{s})} as described by the light-ray OPE [29, 32]. The collinear limit is well encoded in the EEC jet function [34]

JEECq(θ2)\displaystyle J^{q}_{EEC}(\theta^{2}) =\displaystyle= Xi,jXn¯/αβ2Ω|χ¯nδQ,𝒫nδ(θ2θij2)|Xα\displaystyle\sum_{X}\sum_{{i,j\in X}}\!\!\!\frac{{{\bar{n}}\!\!\!/}_{\alpha\beta}}{2}\langle\Omega|{\bar{\chi}}_{n}\,\delta_{Q,{\cal P}_{n}}\delta(\theta^{2}-\theta^{2}_{ij})|X\rangle_{\alpha} (1)
×EiEj(Q/2)2X|χn|Ωβ,\displaystyle\hskip 21.52771pt\times\frac{E_{i}E_{j}}{(Q/2)^{2}}\langle X|\chi_{n}|\Omega\rangle_{\beta}\,,

where χn\chi_{n} is the gauge invariant nn-collinear quark field in the soft collinear effective theory (SCET) [54, 55, 56, 57, 58] that serves the source to create collinear particles out of the vacuum |Ω|\Omega\rangle and QQ represents the hard scale that initiates the process. EiE_{i} and EjE_{j} are the energies measured. The light like vectors n=(1,0,1)n=(1,\vec{0}_{\perp},1) and n¯=(1,0,1){\bar{n}}=(1,\vec{0}_{\perp},-1). When θQΛQCD\theta Q\gg\Lambda_{\rm QCD}, the EEC jet function can be predicted using the collinear splitting functions [34, 35]. When θQΛQCD\theta Q\sim\Lambda_{\rm QCD}, a striking confining transition was observed in analyzing CMS Open Data [40].

The EEC has also been adapted to the TMD studies in DIS, where the back-to-back limit θijπ\theta_{ij}\to\pi is probed instead [59, 60, 61]. It was shown that when the EEC is measured in DIS in this limit, the unpolarized TMD parton distribution arises [59, 61]. However, given that the EEC essentially measures the final state correlations and carries no information on the nucleon, the current EEC probe of the TMDs is indirect, in the sense that the EEC is used as a simple replacement of the jets or hadrons, while its power and features are not yet fully exploited.

In this manuscript, we propose a novel energy correlator named the nucleon EEC that probes the initial-final state correlation. The nucleon EEC encodes the information on the nucleon three dimensional microscopic structures, meanwhile inherits the fascinating features of the conventional final-state EEC. As one of the major results of this work, we will demonstrate the accessibility to the nucleon EEC via the measurement in DIS

ΣN(Q2,θ2)=i𝑑σ(xB,Q2,pi)xBN1n¯piPδ(θ2θi2),\displaystyle\Sigma_{N}(Q^{2},\theta^{2})=\sum_{i}\int d\sigma(x_{B},Q^{2},p_{i})\,x_{B}^{N-1}\frac{{\bar{n}}\!\cdot\!p_{i}}{P}\,\delta(\theta^{2}-\theta_{i}^{2})\,,\quad (2)

where N1N\geq 1 is a positive power and dσd\sigma is the differential cross section. xBx_{B} is the Bjorken variable and θi\theta_{i} is the polar angle of the calorimeter measured with respect to the beam. pip_{i} denotes the momentum flow into the detector and PP the momentum of the incoming nucleon while Q2Q^{2} the virtuality of the photon. We leave the detailed explanation to the rest of this manuscript.

The nucleon energy-energy-correlator. We first generalize the EEC jet function to introduce the (unpolarized) nucleon EEC, whose definition is

fEECq(N,θ2)\displaystyle f^{q}_{EEC}(N,\theta^{2}) =\displaystyle= XkXn¯/αβ2P|χ¯nδzkP,𝒫nδ(θ2θk2)|Xα\displaystyle\sum_{X}\,\sum_{{k\in X}}\!\!\frac{{{\bar{n}}\!\!\!/}_{\alpha\beta}}{2}\langle P|{\bar{\chi}}_{n}\,\delta_{z_{k}P,{\cal P}_{n}}\delta(\theta^{2}-\theta^{2}_{k})|X\rangle_{\alpha} (3)
×zbN1n¯pkPX|χn|Pβ.\displaystyle\hskip 21.52771pt\times z_{b}^{N-1}\frac{{\bar{n}}\cdot p_{k}}{P}\langle X|\chi_{n}|P\rangle_{\beta}\,.

Here zbz_{b} is the partonic momentum fraction with respect to the incoming hadron PP that enters the hard interaction at the hard scale QQ. Here θk\theta_{k} is the polar angle of the caloremiter kk with respect to the beam. The gluon nucleon EEC can be defined similarly using the gauge invariant gluonic field.

Refer to caption
Figure 1: The momentum flow due to an initial state splitting where a fraction of zb=ξzz_{b}=\xi z goes into the hard interaction at the scale QQ, while the rest, including the remnants contribute when θk𝒪(ΛQCD/Q)\theta_{k}\sim{\cal O}(\Lambda_{\rm QCD}/Q), will deposit in the calorimeter.

The nucleon EEC correlates the energy EkE_{k} from the initial state radiation that flows into the calorimeter and the energy zbz_{b} that participates the hard interaction, as illustrated in Fig. 1. The nucleon EEC has several fascinating features:

1. The nucleon EEC probes the nucleon internal transverse degrees of freedom through the polar angle θ\theta when θ𝒪(ΛQCD/Q)\theta\sim{\cal O}(\Lambda_{\rm QCD}/Q). It measures the partonic θ\theta-distribution within the nucleon induced by the intrinsic transverse dynamics.The nucleon EEC complements the conventional nucleon tomography by using the TMD PDFs. The nucleon EEC evolves as the moment of the collinear PDFs,

dfEECi(N,θ2,μ)dlnμ2=γijNfEECj,\displaystyle\frac{df_{EEC}^{i}(N,\theta^{2},\mu)}{d\ln\mu^{2}}=\gamma^{N}_{ij}f_{EEC}^{j}\,, (4)

where γijN\gamma_{ij}^{N} is the Mellin-moment of the collinear splitting kernel γijN=01𝑑zzN1Pij(z)\gamma_{ij}^{N}=\int_{0}^{1}dz\,z^{N-1}\,P_{ij}(z), and i,ji\,,j are parton flavor indices. Compared with the TMD PDFs, the nucleon EEC is free of the Sudakov suppression, hence it is likely to provide better resolutions to the intrinsic non-perturbative structures. As concrete examples, we will demonstrate the nucleon EEC can be probed in DIS and will also discuss the generalization of the unpolarized EEC in Eq. (3) to the polarized case.

2. When the transverse momentum θQΛQCD\theta Q\gg\Lambda_{\rm QCD}, the nucleon EEC can be factorized into the product of a perturbatively calculable coefficient IijI_{ij} and the Mellin moment of the collinear PDF fj/P(N,μ)=01𝑑ξξN1fj/P(ξ,μ)f_{j/P}(N,\mu)=\int_{0}^{1}d\xi\xi^{N-1}f_{j/P}(\xi,\mu), which gives

fEECi(N,θ2,μ)=Iij(N,θ2,μ)fj/P(N+1,μ),\displaystyle f_{EEC}^{i}(N,\theta^{2},\mu)=I_{ij}(N,\theta^{2},\mu)f_{j/P}(N+1,\mu)\,, (5)

where IijI_{ij} encodes the complete information on θ\theta. While the details of IijI_{ij} remained to be calculated order by order using the collinear splitting function similar to the conventional EEC, its scale dependence is fixed to all orders by

dIij(N,θ2,μ)dlnμ2=γikNIkjIikγkjN+1.\displaystyle\frac{dI_{ij}(N,\theta^{2},\mu)}{d\ln\mu^{2}}=\gamma_{ik}^{N}I_{kj}-I_{ik}\gamma_{kj}^{N+1}\,. (6)

At the leading logarithmic (LL) accuracy, we thus find the fEECif^{i}_{EEC} satisfies the scaling behavior

fEECi(N,θ2,μ)\displaystyle f^{i}_{EEC}(N,\theta^{2},\mu)
=\displaystyle= [e2γ(0),Nβ0LI(0)(N,θ2)e2γ(0),N+1β0L]ijfj/P(N+1,μ),\displaystyle\left[e^{\frac{2\gamma^{(0),N}}{\beta_{0}}L}I^{(0)}(N,\theta^{2})e^{-\frac{2\gamma^{(0),N+1}}{\beta_{0}}L}\right]_{ij}f_{j/P}(N+1,\mu)\,, (7)

where I(0)I^{(0)} is the leading matching coefficient can be found in the Supplemental Material. α22πγij(0),N\frac{\alpha_{2}}{2\pi}\gamma_{ij}^{(0),N} is the leading order moment of splitting function and L=lnαs(Qθ)αs(μ)L=\ln\frac{\alpha_{s}(Q\theta)}{\alpha_{s}(\mu)}. If αs(Qθ)\alpha_{s}(Q\theta) is small enough, the nucleon EEC satisfies the scaling behavior fEECθ2θαs(Q)2πγ(0),Nθαs(Q)2πγ(0),N1f_{EEC}\sim\theta^{-2}\theta^{\frac{\alpha_{s}(Q)}{2\pi}\gamma^{(0),N}}\theta^{-\frac{\alpha_{s}(Q)}{2\pi}\gamma^{(0),N-1}}. In this sense, the nucleon EEC faithfully probes the initial state collinear splitting in the vacuum through the θ\theta distribution. Deviations from the power-law scaling could shed light on the nature of the initial state source that induces the modification. For example, when then transverse momentum θQΛQCD\theta Q\sim\Lambda_{\rm QCD}, we expect the non-perturbative structure of proton becomes important, where a non-perturbative modification is needed in (The Nucleon Energy Correlators), whose detailed study we leave for future work.

3. The nucleon EEC can be straightforwardly generalized to the multiple energy correlators by measuring the energy E1,,EnE_{1}\,,\dots\,,E_{n} deposit in multiple caloremiters with angular separation θij\theta_{ij} with i,j=1,ni,j=1,\dots n and the beam. The underlying nucleon internal microscopic details will be imprinted in the detailed structure of these correlation functions, see Fig. 2, in analogy with the details of the early universe imprinted in cosmological correlation functions. We will leave detailed studies on the nucleon multi-energy correlation to future works.

Refer to caption
Figure 2: Nucleon 3-point correlation function.

4. In the extreme small angle limit, we expect simple scaling behavior θ2\sim\theta^{2} for the nucleon EEC, which signifies the existence of a free hadron phase in initial state beam jet. Similar behavior has been seen in final state jet using CMS open data [40].

The xBx_{B} weighted deep-inelastic scattering. To see how the nucleon EEC can be measured, we consider the DIS process l+Pl+Xl+P\to l^{\prime}+X in the frame where the virtual photon γ\gamma^{\ast} acquires no transverse momentum, e.g., the γ\gamma^{\ast}-PP center of mass frame or the Breit frame. We assume the nucleon is moving along the +z+z-direction. We measure the Bjorken xB=q22Pqx_{B}=\frac{-q^{2}}{2P\cdot q} and the momentum flow piμp_{i}^{\mu} deposit (including the ones from the beam remnants) in a calorimeter along the direction ii. Here q=llq=l^{\prime}-l is the momentum carried by the virtual photon. In this manuscript, we will be particularly interested in the scenario where the detector is placed in the far-forward region and therefore the transverse momentum flow pi,t2θ2Ei2p_{i,t}^{2}\sim\theta^{2}E_{i}^{2} is very small compared with q2=Q2q^{2}=-Q^{2}, as depicted in Fig 3.

Refer to caption
Figure 3: xBx_{B} and pip_{i} measurement in DIS that will probe the nucleon EEC fEECf_{EEC}. Here Ω\Omega stands for (θi,ϕi)(\theta_{i},\phi_{i}) with ϕi\phi_{i} the azimuthal angle measured with respect to the nucleon spin.

The measurement probes the weighted cross section ΣN(Q2,θ)\Sigma_{N}(Q^{2},\theta) in Eq. (2). We note that the polar angle θi\theta_{i} is related to the transverse momentum as sinθi=pi,tEi\sin\theta_{i}=\frac{p_{i,t}}{E_{i}}. For the time being, we assume the proton is unpolarized.

The weighted cross section in Eq. (2) can be calculated via

ΣN(Q2,θ2)=α2Q4𝑑xBxBN1iX,λ=T,Lei2fλ(y)\displaystyle\Sigma_{N}(Q^{2},\theta^{2})=\frac{\alpha^{2}}{Q^{4}}\int dx_{B}x_{B}^{N-1}\!\!\!\sum_{{i\in X},{\lambda=T,L}}\!\!e_{i}^{2}f_{\lambda}(y)\,
×d4xeiqxP|jϵλ2(θ)Pjϵλ(x)|P,\displaystyle\times\int d^{4}xe^{iq\cdot x}\,\langle P|j^{\dagger}\!\!\cdot\!\epsilon^{\ast}_{\lambda}\,\frac{2{\cal E}(\theta)}{P}\,j\!\cdot\!\epsilon_{\lambda}(x)|P\rangle\,,\quad (8)

where jμj^{\mu} is the conserved current. ϵλ\epsilon_{\lambda} is the virtual photon polarization vector with λ=L,T\lambda=L,T for the longitudinal and transverse polarization, respectively. fλ(y)f_{\lambda}(y) is the photon flux such that fT=1y+y2/2f_{T}=1-y+y^{2}/2 and fL=2(1y)f_{L}=2(1-y) where y=2pq2ply=\frac{2p\cdot q}{2p\cdot l} is the inelastcity. We note that the property of the similar matrix element with |P|P\rangle replaced by the vacuum state has been discussed in context of the conformal collider physics [29].

When θ1\theta\ll 1 and thus ii is close to the beam, it is ready to show by using SCET [54, 55, 56, 57, 58] that ΣN\Sigma_{N} takes the factorized form at LL

ΣN(Q2,θ2)=fEECi(N,θ2,μ)𝑑ζζN1d2σ^i(μ)dζdQ2+𝒪(θ),\displaystyle\Sigma_{N}(Q^{2},\theta^{2})=f^{i}_{EEC}(N,\theta^{2},\mu)\,\int d\zeta\zeta^{N-1}\,\frac{d^{2}\hat{\sigma}_{i}(\mu)}{d\zeta dQ^{2}}+{\cal O}(\theta)\,,\quad (9)

where we see the occurrence of the nucleon EEC fEECi(N,θ)f^{i}_{EEC}(N,\theta) and therefore the proposed measurement does probe the nucleon EEC. The zbN1z_{b}^{N-1} within fEECi(N,θ)f^{i}_{EEC}(N,\theta) in Eq. (3) enters through the xBN1x_{B}^{N-1} weight. We note that the coefficient of fEECif_{EEC}^{i} is nothing but the Mellin-moment dσ^i(N,μ)d\hat{\sigma}_{i}(N,\mu) of the partonic DIS cross section 111Strictly speaking, this is only true if we integrate xBx_{B} down to 0 in Eq. (2). However, if we choose sufficiently large NN, to suppress the contribution from the small values of xBx_{B}, the integral will be well approximated by the Mellin-moment., satisfy dσ^i(N,μ)/dlnμ2=γijNσ^j(N,μ)d\hat{\sigma}_{i}(N,\mu)/d\ln\mu^{2}=-\gamma^{N}_{ij}\hat{\sigma}_{j}(N,\mu). Here ii and jj can either be a quark or gluon.

When θQΛQCD\theta Q\gg\Lambda_{\rm QCD}, the nucleon EEC is further factorized following Eq. (5). Thus the scale dependence of the coefficient IijI_{ij} in Eq. (6) is an immediate consequence of the scale independence of the weighted cross section dΣN/dlnμ=0d\Sigma_{N}/d\ln\mu=0.

Now we estimate the requirement of the forward detector for this measurement. Suppose we want to probe the intrinsic transverse momentum of the nucleon, we will demand the detector to detect transverse momentum flow pi,tΛQCDp_{i,t}\sim\Lambda_{\rm QCD} and thus to cover polar angles down to θpi,t/Q\theta\sim p_{i,t}/Q. Hence for Q𝒪(5GeV)Q\sim{\cal O}(5\>{\rm GeV}), the estimated θ𝒪(0.2rad)\theta\sim{\cal O}(0.2\>\text{rad}), which is well covered by the EIC far-forward particle detection plan [1, 2, 62, 63] and will be even better favored if the coverage proposals such as the Zero Degree Calorimeter [62, 64] down to and below 5mrad5\,{\rm mrad} would be realized. We emphasize that since we only count the energy deposit in the calorimeters, no jet clustering procedure is needed. Meanwhile, instead of using the calorimetry, the track-based measurements can be carried out [28, 38, 39] to offer better pointing and angular resolution.

Here we predict the normalized differential distribution EECN=1/σθ2dΣN(θ2)\langle\text{EEC}\rangle_{N}=1/\sigma\theta^{2}d\Sigma_{N}(\theta^{2}) in the Breit frame. We define the rapidity y=lntanθ/2y=\ln\tan\theta/2. For the prediction, we use Pythia82 [65] with the proton P=275GeVP=275\>{\rm GeV} and the incoming lepton l=10GeVl=10\>{\rm GeV}.

Refer to caption
Figure 4: EEC\langle\text{EEC}\rangle and γ\gamma distribution in the Breit Frame.

In Fig. 4, we show the predictions for EECEEC2\langle\text{EEC}\rangle\equiv\langle\text{EEC}\rangle_{2}, i.e., with N=2N=2. We vary the values of QQ with Q>10GeVQ>10\>{\rm GeV}, Q>30GeVQ>30\>{\rm GeV}, Q>50GeVQ>50\>{\rm GeV}. We see from the upper panel of Fig. 4 that although the QQ’s are different, the predicted EEC\langle\text{EEC}\rangle’s display similar features, which implies that the normalized distributions reflect the property of the nucleon itself at different scales μQ\mu\sim Q.

We note that Fig. 4 exhibits an interesting “phase transition” between the perturbative-phase for θ0.2rad\theta\gtrsim 0.2\>{\rm rad} and the “free-particle-phase” for θ0.005rad\theta\lesssim 0.005\>{\rm rad}, connected by the non-perturbative transition region. In the perturbative region, the distribution is almost flat, largely independent of QQ’s, which is a direct manifestation of Bjorken scaling in the space of polar angle (rapidity), as can be seen from Eq. (The Nucleon Energy Correlators).

The feature is more evident by looking at the slope γ\gamma showed in the lower panel of Fig. 4, where in the perturbative region γ0\gamma\sim 0, while in the deep non-perturbative region for θ0.005rad\theta\lesssim 0.005\>{\rm rad}, γ2\gamma\sim 2. It will be very interesting if we can confirm such phase transition at future experimental facilities.

We again notice that all the slope γ\gamma distributions with different values of QQ shares similar behaviour which indicates it reveals the intrinsic property of the nucleon EEC at different scales μ\mu. The transition region moves to the right as we decrease QQ, which is expected since the transition occurs when θ𝒪(ΛQCD/Q)\theta\sim{\cal O}(\Lambda_{\rm QCD}/Q). The γ\gamma in the perturbative region can be predicted using the LL result in Eq. (The Nucleon Energy Correlators) and the factorization in Eq. (9), which is showed in the red line. All the QQ values are covered within the band, obtained by a dramatic variation of μ\mu, from μ=50GeV\mu=50\>{\rm GeV} to μ=300MeV\mu=300\,{\rm MeV}. We find good agreement between the Pythia simulations and the analytic LL result in the perturbative phase. We emphasize that future observed deviation from the predicted slope could be used to extract the nature of the initial state source that induces the modification to the collinear splitting kernel, such as the hadronization and the hot/cold nucleus medium effects. The theory precision can be further improved and we leave it to future works.

In Fig. 5, we show the EECN\langle\text{EEC}\rangle_{N} for different NN. The smaller values of the NN increase the sensitivity to the small-xx component of a nucleon while larger NN probes more into the large xx regime. Again the plot manifests the polar angle (rapidity) scaling behavior of the nucleon EEC, similar to the famous Bjorken scaling rule of the PDFs. We note that for larger NN, therefore effectively larger xx closer to 11, the transition region appears at larger angle, consistent with the expectation that θ𝒪(ΛQCD/Q)\theta\sim{\cal O}(\Lambda_{\rm QCD}/Q) increase as QQ decrease. Also since the normalization of nucleon EEC is propotional to moment of PDFs, we expect to see a decrease in the magnitude as NN increase, as a result of small-xx enhancement of PDFs.

Refer to caption
Figure 5: The angular “Bjorken scaling rule” of the nucleon EEC.

Transversely polarized EEC. Once the incoming nucleon is polarized, we can also probe the spin asymmetry by measuring the azimuthal modulation. Here the beam and the out-going lepton span the xx-zz plane.

For instance, for the transversely polarized nucleon beam, if we measure the sin(ϕϕS)\sin(\phi-\phi_{S}) distribution with ϕϕS\phi-\phi_{S} the azimuthal angle between the detector and the nucleon spin, we are probing the spin dependent distribution dΣN(nt,ST)d\Sigma_{N}(\vec{n}_{t},S_{T}) whose sin(ϕϕS)\sin(\phi-\phi_{S}) dependent part factorized similarly as the unpolarized case in Eq. (9), with the replacement of fEECi(θ)f^{i}_{EEC}(\theta) by

ϵTabntaSTbMPfT,EECq(N,θ)=XiXzbN1n¯piPn¯/αβ2\displaystyle\frac{-\epsilon_{T}^{ab}n^{a}_{t}S_{T}^{b}}{M_{P}}\,f^{q}_{T,EEC}(N,\theta)=\sum_{X}\sum_{i\in X}z_{b}^{N-1}\frac{{\bar{n}}\cdot p_{i}}{P}\frac{{{\bar{n}}\!\!\!/}_{\alpha\beta}}{2}
×P,ST|χ¯nδziP,𝒫nδ(2)(n^tn^i,t)|XαX|χn|P,STβ,\displaystyle\times\langle P,S_{T}|{\bar{\chi}}_{n}\delta_{z_{i}P,{\cal P}_{n}}\delta^{(2)}(\vec{\hat{n}}_{t}-\vec{\hat{n}}_{i,t})|X\rangle_{\alpha}\langle X|\chi_{n}|P,S_{T}\rangle_{\beta}\,,\qquad (10)

for quark, where nt=sinθ(cosϕ,sinϕ)\vec{n}_{t}=\sin\theta(\cos\phi,\sin\phi), STS_{T} is the nucleon spin and MPM_{P} is the nucleon mass. The non-vanishing of fT,EECf_{T,EEC} is owing to the same mechanism that gives rise to the Sivers effect [66, 67]. The Sivers-like EEC fT,EECf_{T,EEC} induces the sin(ϕϕS)\sin(\phi-\phi_{S}) azimuthal asymmetry AN=dΣN(ST)dΣN(ST)Σ(ST)+Σ(ST)A_{N}=\frac{d\Sigma_{N}(S_{T})-d\Sigma_{N}(-S_{T})}{\Sigma(S_{T})+\Sigma(-S_{T})}. The predicion of ANA_{N} relies on the non-perturbative input of the fT,EECf_{T,EEC} which requires further studies in the future. Since there is no Sudakov surprresion, we anticipate a better chance to observe the asymmetry at the EIC.

Conclusion. In this manuscript, we introduced the nucleon energy-energy-correlator (EEC) that measures the correlation of the energy flows from the initial nucleon. The nucleon EEC reflects the parton angular distribution in a nucleon. This new object is novel both theoretically and phenomenologically. Theoretically, we have demonstrated that the microscopic details of the nucleon such as the faithful vacuum collinear splitting behavior as well as the nucleon internal transverse momentum and spin degrees of freedom are imprinted in the energy correlation function, and meanwhile the nucleon EEC may offer additional possibilities to understand the nucleon structures using the light-ray OPE in QCD. Phenomenologically, we showed how the nucleon EEC can be probed at EIC with a far-forward detector. We have set the theoretical foundation for the observable and predict the measured distribution at EIC to exhibit power law scaling behaviours. A novel phase transition between the free-particle and the perturbative phases is observed. In the perturbative region, the polar angle (rapidity) version of the Bjorken scaling behavior is also predicted.

One advantage of the nucleon EEC is that its measurement involves no jet clustering procedure nor additional non-perturbative object other than the nucleon EEC itself. Besides, the factorization in Eq. (9) only involves a product instead of a convolution should make the extraction of the nucleon EEC a lot easier. Therefore it serves a clean complement to the conventional TMDs to the nucleon structures, good for either high energy or low energy machines.

Other than the scenarios considered in the manuscript, we expect the proposed nucleon EEC to have a wide application to future nucleon/nucleus studies. Extensions to other observables sensitive to the various TMD distributions will follow straightforwardly. By suitably choosing the weight NN, the nucleon EEC can be made sensitive to the small-xx phenomenology. The nucleon EEC can also be used to study the cold nuclear effect in eAeA collisions or to extract the hot medium effect with heavy ion data. All these effects will leave its foot print in the deviations from the EECN\langle\text{EEC}\rangle_{N} and its slope introduced in this work. As long as one charm is tagged in the detected forward event, the nucleon EEC can offer a direct look into the intrinsic charm content. Furthermore, the generalization of the EEC to multiple point correlations will allow for more delicate differentiation of the nucleon/nucleus microscopic details. We thus anticipate that the nucleon EEC introduced in this work will stimulate further theoretical developments along these directions.

Acknowledgements.
Acknowledgement. We are grateful to Miguel Arratia, Hao Chen, Zhong-bo Kang, Ian Moult, Jinlong Zhang, Jian Zhou for insightful discussions. We thank for the hospitality of the committee for the “Heavy flavor and QCD” workshop held in Changsha where this work was initiated. We thank for stimulating feed-backs from the EicC bi-week meeting. This work is supported by the Natural Science Foundation of China under contract No. 12175016 (X. L.), No. 11975200 (H. X. Z.).

Appendix A Supplemental Materials for “The Nucleon Energy Correlators”

In this supplemental material, we present the operator definition of the nucleon energy-energy correlator (EEC) while the factorization theorem that gives rise to the nucleon EEC will be given else where [68]. We comment the feature of the nucleon EEC, demonstrate the absence of the perturbative Sudakov factor and highlight the calculation of the quark energy-energy correlator fEECf_{\rm EEC} at 𝒪(αs){\cal O}(\alpha_{s}) for θQ>ΛQCD\theta Q>\Lambda_{\rm QCD}. The detailed calculations of all the fEECf_{\rm EEC}’s, including their higher order generalization, will be presented in the on-going work [68]. We also present a model calculation to illustrate the relation of fEECf_{\rm EEC} to the Trnasverse-Momentum-Dependent (TMD) PDFs.

A.1 operator definition and one-loop calculation

The operator definition of the nucleon energy-energy correlator (EEC) with both θ\theta and ϕ\phi dependence is given by

fq,EEC(N,θ,ϕ)=01zN1dy2πeizP+yP|χ¯n(y)γ+22(θ,ϕ)P+χn(0)|P,\displaystyle f_{q,{\rm EEC}}(N,\theta,\phi)=\int_{0}^{1}z^{N-1}\int\frac{dy^{-}}{2\pi}e^{-izP^{+}y^{-}}\left\langle P\left|{\bar{\chi}}_{n}(y^{-})\frac{\gamma^{+}}{2}\frac{2{\cal E}(\theta,\phi)}{P^{+}}\chi_{n}(0)\right|P\right\rangle\,,
fg,EEC(N,θ,ϕ)=01zN1dy2πzP+eizP+yP|n¯𝒢(y)2(θ,ϕ)P+n¯𝒢(0)|P,\displaystyle f_{g,{\rm EEC}}(N,\theta,\phi)=-\int_{0}^{1}z^{N-1}\int\frac{dy^{-}}{2\pi zP^{+}}e^{-izP^{+}y^{-}}\left\langle P\left|{\bar{n}}\cdot{\cal G}_{\perp}(y^{-})\frac{2{\cal E}(\theta,\phi)}{P^{+}}{\bar{n}}\cdot{\cal G}_{\perp}(0)\right|P\right\rangle\,, (11)

where χ\chi and 𝒢{\cal G}_{\perp} are the SCET gauge invariant collinear quark and gluon fields, respectively [54, 55, 56, 57, 58]. The transverse angular information of the nucleon enters through the energy operator (θ,ϕ){\cal E}(\theta,\phi) that measures the energy deposit in the detector at given angles θ\theta and ϕ\phi [50, 51, 52, 53],

(θ,ϕ)|X=iXEiδ(θi2θ2)δ(ϕiϕ)|X.\displaystyle{\cal E}(\theta,\phi)|X\rangle=\sum_{i\in X}E_{i}\delta(\theta_{i}^{2}-\theta^{2})\delta(\phi_{i}-\phi)|X\rangle\,. (12)

Here are some comments on the nuclone EEC fEECf_{\rm EEC}:

  • We note that the soft contribution with momentum scaling ps=(ps+,ps,ps,t)Q(θ,θ,θ)p_{s}=(p_{s}^{+},p_{s}^{-},p_{s,t})\sim Q(\theta,\theta,\theta) to the EEC will be power suppressed and absent from fEECf_{\rm EEC}, since (θ,ϕ)|Xs=Esδ(θs2θ2)δ(ϕsϕ)|XsθQ|Xs0{\cal E}(\theta,\phi)|X_{s}\rangle=E_{s}\delta(\theta^{2}_{s}-\theta^{2})\delta(\phi_{s}-\phi)|X_{s}\rangle\sim\theta Q|X_{s}\rangle\to 0 as θ0\theta\to 0, compared with the collinear contribution with pcQ(1,θ2,θ)p_{c}\sim Q(1,\theta^{2},\theta) and thus (θ,ϕ)|Xc=Ecδ(θc2θ2)δ(ϕcϕ)|XcQ|Xc{\cal E}(\theta,\phi)|X_{c}\rangle=E_{c}\delta(\theta^{2}_{c}-\theta^{2})\delta(\phi_{c}-\phi)|X_{c}\rangle\sim Q|X_{c}\rangle. The absence of the soft contribution indicates that there will be no perturbative Sudakov logarithms in fEECf_{\rm EEC} and thus no perturbative Sudakov suppression factor.

    Refer to caption
    Figure 6: When QθΛQCDQ\theta\sim\Lambda_{\rm QCD}, the partons in the proton with intrinsic transverse momentum pi+2θ(cosϕ,sinϕ)\frac{p_{i}^{+}}{2}\theta(\cos\phi,\sin\phi) are detected through the (θ,ϕ){\cal E}(\theta,\phi). By looking at the detectors (represented by the red block) at different (θ,ϕ)(\theta,\phi), we are effectively imaging the internal structure of the proton in the azimuthal plane where θ\theta dertmines the angular distance to the zz-axis.
  • The internal structure of the proton or more specifically the partonic radiation angular (θ,ϕ)(\theta,\phi) distribution enters through (θ,ϕ){\cal E}(\theta,\phi), when θQΛQCD\theta Q\sim\Lambda_{\rm QCD}, as illustrated in Fig. 6, where the intrinsic transverse dynamics of the partons generate the non-zero angles (θ,ϕ)(\theta,\phi) and drive the partons to hit the detector. In this way, by recording the energy deposit in the detectors (realized by the energy flow operator (θ,ϕ){\cal E}(\theta,\phi)) located at different (θ,ϕ)(\theta,\phi), we are able to scan the internal structure of the proton.

  • The definition can be generalized to multiple correlators

    fq,EnC(N,{θi,ϕi})=01zN1dy2πeizP+yP|χ¯n(y)γ+22(θ1,ϕ1)P+2(θn,ϕn)P+χn(0)|P,\displaystyle f_{q,{\text{E${}^{n}$C}}}(N,\{\theta_{i},\phi_{i}\})=\int_{0}^{1}z^{N-1}\int\frac{dy^{-}}{2\pi}e^{-izP^{+}y^{-}}\left\langle P\left|{\bar{\chi}}_{n}(y^{-})\frac{\gamma^{+}}{2}\frac{2{\cal E}(\theta_{1},\phi_{1})}{P^{+}}\dots\frac{2{\cal E}(\theta_{n},\phi_{n})}{P^{+}}\chi_{n}(0)\right|P\right\rangle\,,
    fg,EnC(N,{θi,ϕi})=01zN1dy2πzP+eizP+yP|n¯𝒢(y)2(θ1,ϕ1)P+2(θn,ϕn)P+n¯𝒢(0)|P,\displaystyle f_{g,{\text{E${}^{n}$C}}}(N,\{\theta_{i},\phi_{i}\})=\int_{0}^{1}z^{N-1}\int\frac{dy^{-}}{2\pi zP^{+}}e^{-izP^{+}y^{-}}\left\langle P\left|{\bar{n}}\cdot{\cal G}_{\perp}(y^{-})\frac{2{\cal E}(\theta_{1},\phi_{1})}{P^{+}}\dots\frac{2{\cal E}(\theta_{n},\phi_{n})}{P^{+}}{\bar{n}}\cdot{\cal G}_{\perp}(0)\right|P\right\rangle\,,\qquad (13)

    which measures the correlation among the partons of the proton sit at different angular positions in the azimuthal plane. The multiple correlators will help to establish a more detailed differential picture of the proton structures.

  • When θQΛQCD\theta Q\gg\Lambda_{\rm QCD}, the fEECf_{\rm EEC} can be calculated perturbatively. Here, we show one example that contributes to the ΣN\Sigma_{N} at order αs\alpha_{s}, to highlight in detail how such calculation is performed. We considered the case shown in Fig. 7, in which an incoming gluon gg from the proton splits into a qq¯q{\bar{q}} pair, one of which enters the hard interaction and the other hits the detector at θ\theta. Other channels can be obtained similarly [68].

    Refer to caption
    Figure 7: Representative contribution to the fq,EECf_{q,{\rm EEC}} initiated by a gluon with momentum ξP\xi P out of the proton splitting into qq¯q{\bar{q}} with momentum pp and qq, respectively. The vertical dashed line stands for the phase space cut, the red block for the (θ){\cal E}(\theta) insertion and the double line is the Wilson line.

    Fig. 7 contributes to the quark nucleon EEC fq,EECf_{q,{\rm EEC}} as

    fq,EEC(N,θ)=𝑑zzN1Xμ2ϵddq(2π)d1δ(q2)δ((1z)P+q+pX+)q+P+δ(θq2θ2)P|χ¯(0)|q¯Xq¯X|γ+2χ|P,\displaystyle f_{q,{\rm EEC}}(N,\theta)=\int dzz^{N-1}\sum_{X}\mu^{2\epsilon}\int\frac{d^{d}q}{(2\pi)^{d-1}}\delta(q^{2})\delta((1-z)P^{+}-q^{+}-p_{X}^{+})\frac{q^{+}}{P^{+}}\delta(\theta^{2}_{q}-\theta^{2})\langle P|{\bar{\chi}}(0)|{\bar{q}}X\rangle\langle{\bar{q}}X|\frac{\gamma^{+}}{2}\chi|P\rangle\,,\quad (14)

    where we have inserted the complete set ddq(2π)d1δ(q2)X|q¯Xq¯X|\int\frac{d^{d}q}{(2\pi)^{d-1}}\delta(q^{2})\sum_{X}|{\bar{q}}X\rangle\langle{\bar{q}}X| into the operator definition in Eq. (A.1) and applied the translation operation on yy^{-}. At the order αs\alpha_{s}, the final state q¯{\bar{q}} is from the gluon splitting, while XX stands for the remnants from the proton. For θ>0\theta>0, we safely set ϵ=0\epsilon=0 and thus d=4d=4. The gluon splitting can be calculated using the SCET Feynman rules, see for instance, Fig. 1 in [54], which gives

    fq,EEC(N,θ)\displaystyle f_{q,{\rm EEC}}(N,\theta) =\displaystyle= 𝑑zzN112dq+d2qtq+(2π)3q+P+δ((1z)P+q+pX+)δ(θq2θ2)\displaystyle\int dzz^{N-1}\frac{1}{2}\int\frac{dq^{+}d^{2}q_{t}}{q^{+}(2\pi)^{3}}\frac{q^{+}}{P^{+}}\delta((1-z)P^{+}-q^{+}-p_{X}^{+})\delta(\theta^{2}_{q}-\theta^{2}) (15)
    ×gs2Tr[TaTa]12Tr[γtμγt,μq/γ+](qt2(q+)2+pt2(p+)2)(p+p2)2\displaystyle\times g_{s}^{2}{\rm Tr}[T_{a}T_{a}]\frac{1}{2}{\rm Tr}[\gamma^{\mu}_{t}\gamma_{t,\mu}{q{\!\!\!/}}\gamma^{+}]\left(\frac{{-\vec{q}^{2}_{t}}}{(q^{+})^{2}}+\frac{{-\vec{p}^{2}_{t}}}{(p^{+})^{2}}\right)\left(\frac{p^{+}}{p^{2}}\right)^{2}
    ×121NC21XP|At,a,μ|XX|Ata,μ|P𝑑ξP+δ((1ξ)P+pX+),\displaystyle\times\frac{1}{2}\frac{1}{N_{C}^{2}-1}\sum_{X}\langle P|\,A_{t,a,\mu}|X\rangle\langle X|A_{t}^{a,\mu}|P\rangle\int d\xi P^{+}\delta((1-\xi)P^{+}-p_{X}^{+})\,,

    where the subscript “tt” stands for the transverse component. We have inserted in the last line 1=𝑑ξP+δ((1ξ)P+pX+)1=\int d\xi P^{+}\delta((1-\xi)P^{+}-p_{X}^{+}) to define the variable ξ\xi, and we averaged over the initial color and polarizations.

    To proceed, we note that since the intrinsic transverse momentum of the gluon, ltΛQCDl_{t}\sim\Lambda_{\rm QCD} and is negligible when θQΛQCD\theta Q\gg\Lambda_{\rm QCD}, we have pt=qt\vec{p}_{t}=-\vec{q}_{t} and

    p2=(lq)2=2lq=l+q+qt2.\displaystyle p^{2}=(l-q)^{2}=-2l\cdot q=-\frac{l^{+}}{q^{+}}\vec{q}_{t}^{2}\,. (16)

    Working out the traces, we find

    fq,EEC(N,θ)\displaystyle f_{q,{\rm EEC}}(N,\theta) =\displaystyle= 01𝑑zzN1z1dξξ1218π3dq+d2qtξPq+q+P+δ(1zξq+ξP+)δ(θq2θ2)\displaystyle\int_{0}^{1}dzz^{N-1}\int_{z}^{1}\frac{d\xi}{\xi}\,\frac{1}{2}\frac{1}{8\pi^{3}}\int\frac{dq^{+}d^{2}q_{t}}{\xi P\,q^{+}}\frac{q^{+}}{P^{+}}\delta\left(1-\frac{z}{\xi}-\frac{q^{+}}{\xi P^{+}}\right)\delta(\theta^{2}_{q}-\theta^{2}) (17)
    ×4παsTR2q+1qt2((p+)2(q+)2+1)(q+g+)2\displaystyle\times 4\pi\alpha_{s}T_{R}2q^{+}\frac{1}{\vec{q}_{t}^{2}}\left(\frac{(p^{+})^{2}}{(q^{+})^{2}}+1\right)\left(\frac{q^{+}}{g^{+}}\right)^{2}
    ×X()P|At,a,μ|XX|Ata,μ|P(ξP+)δ((1ξ)P+pX+).\displaystyle\times\sum_{X}(-)\langle P|\,A_{t,a,\mu}|X\rangle\langle X|A_{t}^{a,\mu}|P\rangle(\xi P^{+})\delta((1-\xi)P^{+}-p_{X}^{+})\,.

    where we notice that the last line gives nothing but the gluon PDF, see for instance [69]. Working out the q+q^{+} and the solid angle integration, we find

    fq,EEC(N,θ)\displaystyle f_{q,{\rm EEC}}(N,\theta) =\displaystyle= dξξ𝑑zzN1(1zξ)ξdqt2qt2δ(θq2θ2)\displaystyle\int\frac{d\xi}{\xi}\int dzz^{N-1}\left(1-\frac{z}{\xi}\right)\xi\int\frac{dq^{2}_{t}}{q_{t}^{2}}\delta(\theta^{2}_{q}-\theta^{2}) (18)
    ×αs2πTR((zξ)2+(1zξ)2)fg/P(ξ).\displaystyle\times\frac{\alpha_{s}}{2\pi}T_{R}\left(\left(\frac{z}{\xi}\right)^{2}+\left(1-\frac{z}{\xi}\right)^{2}\right)f_{g/P}(\xi)\,.

    Now we make the varaible change zξx\frac{z}{\xi}\to x and use the fact that qt=qzsinθ=q+2θqq_{t}=q_{z}\sin\theta=\frac{q^{+}}{2}\theta_{q} for small θq\theta_{q}, to find

    fq,EEC(N,θ)\displaystyle f_{q,{\rm EEC}}(N,\theta) =\displaystyle= 𝑑xxN1(1x)αs2πTR{1θ2[x2+(1x)2]}𝑑ξξNfg/P(ξ)\displaystyle\int dx\,x^{N-1}(1-x)\,\frac{\alpha_{s}}{2\pi}T_{R}\Bigg{\{}\frac{1}{\theta^{2}}\left[x^{2}+(1-x)^{2}\right]\Bigg{\}}\int d\xi\xi^{N}f_{g/P}(\xi)\, (19)

    We notice that the result factorized into product of a matching coefficient and the moment of PDF. The angular dependence 1/θ21/\theta^{2} is governed by the splitting function Pqg(x)P_{qg}(x). The calculation also suggests that q+2θ\frac{q^{+}}{2}\theta probes the partonic transverse momentum qtq_{t}. The qqq\to q channel can be calculated in the same way.

    Once sum over all partonic channels, we find the quark nucleon EEC

    fq,EEC(N,θ2)\displaystyle f_{q,{\rm EEC}}(N,\theta^{2}) =\displaystyle= Iqg(0)(N,θ2)fg/P(N+1)+Iqq(0)(N,θ2)fq/P(N+1),\displaystyle I^{(0)}_{qg}(N,\theta^{2})f_{g/P}(N+1)+I^{(0)}_{qq}(N,\theta^{2})f_{q/P}(N+1)\,, (20)

    with the coefficient Iqg(0)I^{(0)}_{qg} given by

    Iqg(0)(N,θ2)\displaystyle I^{(0)}_{qg}(N,\theta^{2}) =\displaystyle= 𝑑xxN1(1x)αs2πTR1θ2[x2+(1x)2]=αs2π(γqg(0)(N)γqg(0)(N+1))1θ2,\displaystyle\int dx\,x^{N-1}(1-x)\,\frac{\alpha_{s}}{2\pi}T_{R}\frac{1}{\theta^{2}}\left[x^{2}+(1-x)^{2}\right]=\frac{\alpha_{s}}{2\pi}\Big{(}\gamma_{qg}^{(0)}(N)-\gamma_{qg}^{(0)}(N+1)\Big{)}\frac{1}{\theta^{2}}\,, (21)

    where

    γqg(0)(N)=TR2+N+N2N(N+1)(N+2).\gamma_{qg}^{(0)}(N)=T_{R}\frac{2+N+N^{2}}{N(N+1)(N+2)}\,. (22)

    Following the same line, the leading matching coefficient for Iqq(0)(N,θ2)I^{(0)}_{qq}(N,\theta^{2}) is given by

    Iqq(0)(N,θ2)\displaystyle I^{(0)}_{qq}(N,\theta^{2}) =\displaystyle= 𝑑xxN1(1x)αs2πCF1θ2[1+x21x].\displaystyle\int dx\,x^{N-1}(1-x)\,\frac{\alpha_{s}}{2\pi}C_{F}\frac{1}{\theta^{2}}\left[\frac{1+x^{2}}{1-x}\right]\,. (23)

    We can see explicitly from Eq. (23) that the (1x)(1-x) factor originated from the energy weighting will cancel the soft divergent term 1/(1x)1/(1-x) when x1x\to 1. Therefore there is no perturbative Sudakov logarithm in fEECf_{\rm EEC} as we have argued previously.

    Perform the zz integral we find

    Iqq(0)(N,θ2)\displaystyle I^{(0)}_{qq}(N,\theta^{2}) =\displaystyle= αs2π(γqq(0)(N)γqq(0)(N+1))1θ2,\displaystyle\,\frac{\alpha_{s}}{2\pi}\left(\gamma_{qq}^{(0)}(N)-\gamma_{qq}^{(0)}(N+1)\right)\frac{1}{\theta^{2}}\,, (24)

    where

    γqq(0)(N)=CF[32+1N1N+12(γE+ψ(N+1))],\displaystyle\gamma_{qq}^{(0)}(N)=C_{F}\Big{[}\frac{3}{2}+\frac{1}{N}-\frac{1}{N+1}-2(\gamma_{E}+\psi(N+1))\Big{]}\,, (25)

    with ψ(n)=Γ(n)/Γ(n)\psi(n)=\Gamma^{\prime}(n)/\Gamma(n) is the di-Gamma function.

    For completeness, we also give the results for gluon induced hard process,

    Igg(0)(N,θ2)=\displaystyle I_{gg}^{(0)}(N,\theta^{2})= αs2π(γgg(0)(N)γgg(0)(N+1))1θ2,\displaystyle\ \frac{\alpha_{s}}{2\pi}\left(\gamma_{gg}^{(0)}(N)-\gamma_{gg}^{(0)}(N+1)\right)\frac{1}{\theta^{2}}\,, (26)
    Igq(0)(N,θ2)=\displaystyle I_{gq}^{(0)}(N,\theta^{2})= αs2π(γgq(0)(N)γgq(0)(N+1))1θ2,\displaystyle\ \frac{\alpha_{s}}{2\pi}\left(\gamma_{gq}^{(0)}(N)-\gamma_{gq}^{(0)}(N+1)\right)\frac{1}{\theta^{2}}\,, (27)

    where

    γgg(0)(N)=\displaystyle\gamma_{gg}^{(0)}(N)= 2CA[1N(N1)+1(N+1)(N+2)(γE+ψ(N+1))]+116CA13nf,\displaystyle\ 2C_{A}\left[\frac{1}{N(N-1)}+\frac{1}{(N+1)(N+2)}-(\gamma_{E}+\psi(N+1))\right]+\frac{11}{6}C_{A}-\frac{1}{3}n_{f}\,, (28)
    γgq(0)(N)=\displaystyle\gamma_{gq}^{(0)}(N)= CF2+N+N2N(N21).\displaystyle\ C_{F}\frac{2+N+N^{2}}{N(N^{2}-1)}\,. (29)

A.2 relation to the TMD PDFs

Now we consider the case in which Qθ>ΛQCDQ\theta>\Lambda_{\rm QCD} but is not significantly larger. Therefore, the incoming gluon transverse momentum ltl_{t} could have non-negligible contribution to the fEECf_{\rm EEC} and should be kept in the calculation, leading to potential sensitivities to TMD PDFs. In principle coupling is strong in this region and perturbation theory may not be reliable, nevertheless we can perform a calculation with an effective strong coupling to illustrate the idea. We leave detailed phenomenolgical studies to the future work [68]. Again, we use PP to denote the nucleon momentum, pp the partonic momentum that entering the hard scattering, qq the momentum of detected parton in the forward direction, and lt\vec{l}_{t} intrinsic transverse momentum of the parton from the nucleon.

The calculation essentially follows Eq. (15), but now the gluon transverse momentum is kept to find

fq,EEC(N,θ)\displaystyle f_{q,\rm EEC}(N,\theta) =\displaystyle= 𝑑zzN112dq+d2qtq+(2π)3q+Pδ((1z)P+q+pX+)δ(θq2θ2)\displaystyle\int dzz^{N-1}\frac{1}{2}\int\frac{dq^{+}d^{2}q_{t}}{q^{+}(2\pi)^{3}}\frac{q^{+}}{P}\delta((1-z)P^{+}-q^{+}-p_{X}^{+})\delta(\theta^{2}_{q}-\theta^{2}) (30)
×gs2Tr[TaTb]12Tr[γtμγt,μq/γ+](qt2(q+)2+pt2(p+)2)(p+p2)2\displaystyle\times g_{s}^{2}\,{\rm Tr}[T_{a}T_{b}]\frac{1}{2}{\rm Tr}[\gamma^{\mu}_{t}\gamma_{t,\mu}{q{\!\!\!/}}\gamma^{+}]\left(\frac{{-\vec{q}^{2}_{t}}}{(q^{+})^{2}}+\frac{{-\vec{p}^{2}_{t}}}{(p^{+})^{2}}\right)\left(\frac{p^{+}}{p^{2}}\right)^{2}
×121NC21P|At,a,μ|XX|Ata,μ|P𝑑ξP+δ((1ξ)P+pX+)d2ltδ(2)(PtltpX,t).\displaystyle\times\frac{1}{2}\frac{1}{N_{C}^{2}-1}\langle P|\,A_{t,a,\mu}|X\rangle\langle X|A_{t}^{a,\mu}|P\rangle\int d\xi P^{+}\delta((1-\xi)P^{+}-p_{X}^{+})\int d^{2}l_{t}\delta^{(2)}(P_{t}-l_{t}-p_{X,t})\,.

Since ltl_{t} is not negligible, we will have for the single parton emission pt=ltqt\vec{p}_{t}=\vec{l}_{t}-\vec{q}_{t}, while

p2\displaystyle p^{2} =\displaystyle= (lq)2=2lq=l+qlq++2ltqt=l+q+qt2+2ltqtq+l+lt2\displaystyle(l-q)^{2}=-2l\cdot q=-l^{+}q^{-}-l^{-}q^{+}+2\vec{l}_{t}\cdot\vec{q}_{t}=-\frac{l^{+}}{q^{+}}\vec{q}^{2}_{t}+2\vec{l}_{t}\cdot\vec{q}_{t}-\frac{q^{+}}{l^{+}}\vec{l}_{t}^{2} (31)
=\displaystyle= l+q+(qtq+l+lt)2l+q+Kt2,\displaystyle-\frac{l^{+}}{q^{+}}\left(\vec{q}_{t}-\frac{q^{+}}{l^{+}}\vec{l}_{t}\right)^{2}\equiv-\frac{l^{+}}{q^{+}}\vec{K}_{t}^{2}\,,

where q+=ξ(1z/ξ)P+q^{+}=\xi(1-z/\xi)P^{+} and l+=ξP+l^{+}=\xi P^{+}. Therefore we find

fq,EEC(N,θ)\displaystyle f_{q,\rm EEC}(N,\theta) =\displaystyle= dξξ𝑑zzN1(1zξ)ξ\displaystyle\int\,\frac{d\xi}{\xi}\int dzz^{N-1}\left(1-\frac{z}{\xi}\right)\xi (32)
×αs2π2TR12θ2𝑑ϕd2ltqt2[qt2(zξ)2+(ltqt)2(1zξ)2](1Kt2)2\displaystyle\times\frac{\alpha_{s}}{2\pi^{2}}T_{R}\frac{1}{2\theta^{2}}\int d\phi d^{2}l_{t}\,q_{t}^{2}\left[\vec{q}_{t}^{2}\left(\frac{z}{\xi}\right)^{2}+(\vec{l}_{t}-\vec{q}_{t})^{2}\left(1-\frac{z}{\xi}\right)^{2}\right]\left(\frac{1}{\vec{K}_{t}^{2}}\right)^{2}
×X()P|At,a,μ|XX|Ata,μ|PξP+δ((1ξ)P+pX+)δ(2)(PtltpX,t),\displaystyle\times\sum_{X}(-)\langle P|\,A_{t,a,\mu}|X\rangle\langle X|A_{t}^{a,\mu}|P\rangle\xi P^{+}\delta((1-\xi)P^{+}-p_{X}^{+})\delta^{(2)}(P_{t}-l_{t}-p_{X,t})\,,

where we have worked out the qt\vec{q}_{t} integration by noting that qt=(1zξ)ξP+2θ(cosϕ,sinϕ)\vec{q}_{t}=\left(1-\frac{z}{\xi}\right)\xi\frac{P^{+}}{2}\theta(\cos\phi,\sin\phi). Now we note that the last line is related to the unpolarized gluon TMD PDF. Using a change of variable z/ξxz/\xi\to x, we find

fq,EEC(N,θ)\displaystyle f_{q,\rm EEC}(N,\theta) =\displaystyle= d2lt[αs2πTR1θ2𝑑xxN1(1x)dϕ2πqt2[qt2x2+(ltqt)2(1x)2](1Kt2)2]×𝑑ξξNfg/P(ξ,lt)\displaystyle\int d^{2}l_{t}\left[\frac{\alpha_{s}}{2\pi}T_{R}\frac{1}{\theta^{2}}\,\int dx\,x^{N-1}(1-x)\int\frac{d\phi}{2\pi}q_{t}^{2}\left[\vec{q}_{t}^{2}x^{2}+(\vec{l}_{t}-\vec{q}_{t})^{2}\left(1-x\right)^{2}\right]\left(\frac{1}{\vec{K}_{t}^{2}}\right)^{2}\right]\times\int d\xi\xi^{N}f_{g/P}(\xi,\vec{l}_{t}) (33)
=\displaystyle= d2ltI(0)(N,θ2,lt)fg/P(N+1,lt),\displaystyle\int d^{2}l_{t}\,I^{(0)}(N,\theta^{2},\vec{l}_{t})f_{g/P}(N+1,\vec{l}_{t})\,,

where Kt2=(qt(1x)lt)2\vec{K}_{t}^{2}=(\vec{q}_{t}-(1-x)\vec{l}_{t})^{2}. Note that this result reduces exactly to the collinear case in eq. (19) if we let lt=0\vec{l}_{t}=0, as it should. Eq. (33) suggests that the nucleon EEC probes the moment of the TMD PDFs with the matching coefficient I(0)(N,θ2,lt)I^{(0)}(N,\theta^{2},\vec{l}_{t}), which differs from the matching coefficient in the last section in that it depends on lt\vec{l}_{t}. Again, we note that due to the overall (1x)(1-x) factor, there is no perturbative Sudakov logarithms in the matching coefficient.

References

  • [1] R. Abdul Khalek et al., (2021), 2103.05419.
  • [2] Proceedings, Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider: Seattle (WA), United States, October 1 - November 16, 2018, WSP, 2020, 2002.12333.
  • [3] D. P. Anderle et al., Front. Phys. (Beijing) 16, 64701 (2021), 2102.09222.
  • [4] J. C. Collins et al., Phys. Rev. D 73, 014021 (2006), hep-ph/0509076.
  • [5] W. Vogelsang and F. Yuan, Phys. Rev. D 72, 054028 (2005), hep-ph/0507266.
  • [6] HERMES, A. Airapetian et al., Phys. Rev. Lett. 103, 152002 (2009), 0906.3918.
  • [7] A. Bacchetta and M. Radici, Phys. Rev. Lett. 107, 212001 (2011), 1107.5755.
  • [8] M. G. Echevarria, A. Idilbi, Z.-B. Kang, and I. Vitev, Phys. Rev. D 89, 074013 (2014), 1401.5078.
  • [9] I. Scimemi and A. Vladimirov, JHEP 06, 137 (2020), 1912.06532.
  • [10] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn, and L. Zoppi, Phys. Rev. Lett. 121, 162001 (2018), 1807.07573.
  • [11] X. Liu, F. Ringer, W. Vogelsang, and F. Yuan, Phys. Rev. Lett. 122, 192003 (2019), 1812.08077.
  • [12] D. Gutierrez-Reyes, Y. Makris, V. Vaidya, I. Scimemi, and L. Zoppi, JHEP 08, 161 (2019), 1907.05896.
  • [13] D. Gutierrez-Reyes, I. Scimemi, W. J. Waalewijn, and L. Zoppi, JHEP 10, 031 (2019), 1904.04259.
  • [14] M. Arratia, Z.-B. Kang, A. Prokudin, and F. Ringer, Phys. Rev. D 102, 074015 (2020), 2007.07281.
  • [15] X. Liu, F. Ringer, W. Vogelsang, and F. Yuan, Phys. Rev. D 102, 094022 (2020), 2007.12866.
  • [16] M. Arratia, Y. Makris, D. Neill, F. Ringer, and N. Sato, Phys. Rev. D 104, 034005 (2021), 2006.10751.
  • [17] H. T. Li and I. Vitev, Phys. Rev. Lett. 126, 252001 (2021), 2010.05912.
  • [18] Z.-B. Kang, X. Liu, S. Mantry, and D. Y. Shao, Phys. Rev. Lett. 125, 242003 (2020), 2008.00655.
  • [19] H1, V. Andreev et al., Phys. Rev. Lett. 128, 132002 (2022), 2108.12376.
  • [20] Z.-B. Kang, J. Terry, A. Vossen, Q. Xu, and J. Zhang, Phys. Rev. D 105, 094033 (2022), 2108.05383.
  • [21] X. Liu and H. Xing, (2021), 2104.03328.
  • [22] Z.-B. Kang, K. Lee, D. Y. Shao, and F. Zhao, JHEP 11, 005 (2021), 2106.15624.
  • [23] H. T. Li, Z. L. Liu, and I. Vitev, Phys. Lett. B 827, 137007 (2022), 2108.07809.
  • [24] W. K. Lai, X. Liu, M. Wang, and H. Xing, (2022), 2205.04570.
  • [25] Z.-B. Kang, K. Lee, D. Y. Shao, and F. Zhao, (2022), 2201.04582.
  • [26] C. Basham, L. S. Brown, S. D. Ellis, and S. T. Love, Phys. Rev. Lett. 41, 1585 (1978).
  • [27] C. Basham, L. Brown, S. Ellis, and S. Love, Phys. Rev. D 19, 2018 (1979).
  • [28] H. Chen, I. Moult, X. Zhang, and H. X. Zhu, Phys. Rev. D 102, 054012 (2020), 2004.11381.
  • [29] D. M. Hofman and J. Maldacena, JHEP 05, 012 (2008), 0803.1467.
  • [30] A. Belitsky, S. Hohenegger, G. Korchemsky, E. Sokatchev, and A. Zhiboedov, Phys. Rev. Lett. 112, 071601 (2014), 1311.6800.
  • [31] A. Belitsky, S. Hohenegger, G. Korchemsky, E. Sokatchev, and A. Zhiboedov, Nucl. Phys. B 884, 305 (2014), 1309.0769.
  • [32] M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, JHEP 01, 128 (2021), 1905.01311.
  • [33] G. Korchemsky, JHEP 01, 008 (2020), 1905.01444.
  • [34] L. J. Dixon, I. Moult, and H. X. Zhu, Phys. Rev. D 100, 014009 (2019), 1905.01310.
  • [35] H. Chen et al., JHEP 08, 028 (2020), 1912.11050.
  • [36] H. Chen, I. Moult, and H. X. Zhu, Phys. Rev. Lett. 126, 112003 (2021), 2011.02492.
  • [37] C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, JHEP 05, 059 (2022), 2010.04726.
  • [38] Y. Li, I. Moult, S. S. van Velzen, W. J. Waalewijn, and H. X. Zhu, Phys. Rev. Lett. 128, 182001 (2022), 2108.01674.
  • [39] M. Jaarsma, Y. Li, I. Moult, W. Waalewijn, and H. X. Zhu, JHEP 06, 139 (2022), 2201.05166.
  • [40] P. T. Komiske, I. Moult, J. Thaler, and H. X. Zhu, (2022), 2201.07800.
  • [41] J. Holguin, I. Moult, A. Pathak, and M. Procura, (2022), 2201.08393.
  • [42] K. Yan and X. Zhang, Phys. Rev. Lett. 129, 021602 (2022), 2203.04349.
  • [43] H. Chen, I. Moult, J. Sandor, and H. X. Zhu, (2022), 2202.04085.
  • [44] C.-H. Chang and D. Simmons-Duffin, (2022), 2202.04090.
  • [45] H. Chen, I. Moult, J. Thaler, and H. X. Zhu, JHEP 07, 146 (2022), 2205.02857.
  • [46] K. Lee, B. Meçaj, and I. Moult, (2022), 2205.03414.
  • [47] A. J. Larkoski, (2022), 2205.12375.
  • [48] L. Ricci and M. Riembau, (2022), 2207.03511.
  • [49] T.-Z. Yang and X. Zhang, (2022), 2208.01051.
  • [50] N. A. Sveshnikov and F. V. Tkachov, Phys. Lett. B 382, 403 (1996), hep-ph/9512370.
  • [51] F. V. Tkachov, Int. J. Mod. Phys. A 12, 5411 (1997), hep-ph/9601308.
  • [52] G. P. Korchemsky and G. F. Sterman, Nucl. Phys. B 555, 335 (1999), hep-ph/9902341.
  • [53] C. W. Bauer, S. P. Fleming, C. Lee, and G. F. Sterman, Phys. Rev. D 78, 034027 (2008), 0801.4569.
  • [54] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys. Rev. D 63, 114020 (2001), hep-ph/0011336.
  • [55] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. D 65, 054022 (2002), hep-ph/0109045.
  • [56] C. W. Bauer and I. W. Stewart, Phys. Lett. B 516, 134 (2001), hep-ph/0107001.
  • [57] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann, Nucl. Phys. B 643, 431 (2002), hep-ph/0206152.
  • [58] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, Phys. Rev. D 66, 014017 (2002), hep-ph/0202088.
  • [59] H. T. Li, I. Vitev, and Y. J. Zhu, JHEP 11, 051 (2020), 2006.02437.
  • [60] A. Ali, G. Li, W. Wang, and Z.-P. Xing, Eur. Phys. J. C 80, 1096 (2020), 2008.00271.
  • [61] H. T. Li, Y. Makris, and I. Vitev, Phys. Rev. D 103, 094005 (2021), 2102.05669.
  • [62] M. Arratia et al., (2022), 2208.05472.
  • [63] D. Cebra, X. Dong, Y. Ji, S. R. Klein, and Z. Sweger, (2022), 2204.07915.
  • [64] A. Bylinkin et al., (2022), 2208.14575.
  • [65] T. Sjöstrand et al., Comput. Phys. Commun. 191, 159 (2015), 1410.3012.
  • [66] D. W. Sivers, Phys. Rev. D 41, 83 (1990).
  • [67] J. C. Collins, Phys. Lett. B 536, 43 (2002), hep-ph/0204004.
  • [68] H. Cao, X. Liu, and H. X. Zhu.
  • [69] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, JHEP 09, 005 (2010), 1002.2213.