This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix

Benjamín A. Itzá-Ortiz Rubén A. Martínez-Avendaño  and  Hiroshi Nakazato Centro de Investigación en Matemáticas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico Departamento Académico de Matemáticas, Instituto Tecnológico Autónomo de México, Mexico City, Mexico Department of Mathematics and Physics, Hirosaki University, Hirosaki City, Japan Dedicated to the memory of Rudolf Kippenhahn (1926–2020)
(Date: January 2021)
Abstract.

In this paper we show that the closure of the numerical range of an n+1n+1-periodic tridiagonal operator is equal to the numerical range of a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) complex matrix.

The second author’s research is partially supported by the Asociación Mexicana de Cultura A.C.

Introduction

Consider 𝒜\mathcal{A} to be a finite set of complex numbers and let a=(ai)ia=(a_{i})_{i\in{\mathbb{Z}}} be a biinfinite sequence in the total shift space 𝒜\mathcal{A}^{\mathbb{Z}}. In [13], the tridiagonal operator Aa:2()2()A_{a}\colon\ell^{2}({\mathbb{Z}})\to\ell^{2}({\mathbb{Z}}) associated to aa is defined as

(1) Aa=(01a201a101a001a10)A_{a}=\begin{pmatrix}\ddots&\ddots&&&&&\\ \ddots&0&1&&&&\\ &a_{-2}&0&1&&&\\ &&a_{-1}&\framebox[11.38092pt][l]{0}&1&&\\ &&&a_{0}&0&1&\\ &&&&a_{1}&0&\ddots\\ &&&&&\ddots&\ddots\end{pmatrix}

where the square marks the matrix entry at (0,0)(0,0). In the particular case of the alphabet 𝒜={1,1}\mathcal{A}=\{-1,1\}, the corresponding operator AaA_{a} is related to the so called “hopping sign model” introduced in [7] and subsequently studied in many other works, such as [1, 2, 3, 4, 5, 6, 9, 10, 13], just to name a few. On the other hand, when the alphabet is 𝒜={0,1}\mathcal{A}=\{0,1\} some results for computing the numerical range of AaA_{a} are presented in [13, 14]. In particular, work in [14] addresses the case when aa is an n+1n+1-periodic sequence. Relying on the fact that the closure of the numerical range of AaA_{a} may be written as the closure of the convex hull of an uncountable union of numerical ranges of certain matrices, in [14] the closure of the numerical range of the 2-periodic case is computed by substituting such uncountable union of numerical ranges by the convex hull of the union of the numerical ranges of just two 2×22\times 2 matrices. In this work, we further contribute to the study of the numerical range of AaA_{a} when aa is an n+1n+1 periodic biinfinite sequence.

Instead of working with the operators AaA_{a}, we work with the more general tridiagonal operators T=T(a,b,c)T=T(a,b,c) defined in Section 2, since, as can be seen in [14], the computation of the closure of the numerical range of AaA_{a} is a particular case of that of TT. Using a result of Plaumann and Vinzant [20], we show that the closure of the numerical range of the n+1n+1 periodic tridiagonal operator TT is the numerical range of a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) matrix (cf. Theorem 2.6).

We divide this work in two sections. In Section 1 we briefly introduce the notation and terminologies needed in the rest of the paper. In Section 2 we develop the required machinery, first by computing the Kippenhahn polynomial of the symbol of n+1n+1 periodc tridiagonal operatos TT on 2(0)\ell^{2}({\mathbb{N}}_{0}) and then by combining our computations with results of Plaumann and Vizant. We will conclude that the closure of the numerical range of TT is equal to the numerical range of a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) matrix AA. Furthermore, we provide some examples where AA can be explicitly computed and we show that the size of AA is optimal.

1. Preliminaries

In this section we introduce the notation required which will be needed in the following sections. As usual, the symbols {\mathbb{N}}, 0{\mathbb{N}}_{0}, {\mathbb{Z}}, {\mathbb{R}} and {\mathbb{C}} will denote the set of positive integers, the sets of nonnegative integers, the set of integers, the set of real numbers and the set of complex numbers, respectively.

For a given nn\in{\mathbb{N}}, let aa, bb and cc be (n+1)(n+1)-periodic infinite sequences in 𝒜0\mathcal{A}^{{\mathbb{N}}_{0}}. We will denote by T=T(a,b,c)T=T(a,b,c) the (n+1)(n+1)-periodic tridiagonal operator on 2(0)\ell^{2}({\mathbb{N}}_{0}) given by

T=(b0c0a1b1c1a2b2c2anbncna0b0c0an1bn1cn1anbncn).T=\setcounter{MaxMatrixCols}{11}\begin{pmatrix}b_{0}&c_{0}&&&&&&&&\\ a_{1}&b_{1}&c_{1}&&&&&&&\\ &a_{2}&b_{2}&c_{2}&&&&&&\\ &&\ddots&\ddots&\ddots&&&&&\\ &&&a_{n}&b_{n}&c_{n}&&&&\\ &&&&a_{0}&b_{0}&c_{0}&&&\\ &&&&&\ddots&\ddots&\ddots&&\\ &&&&&&a_{n-1}&b_{n-1}&c_{n-1}&\\ &&&&&&&a_{n}&b_{n}&c_{n}&\\ &&&&&&&&\ddots&\ddots&\ddots\end{pmatrix}.

We should observe that TT is a bounded operator since the sum of the moduli of the entries in each column (and in each row) is uniformly bounded (see, e.g., [16, Example 2.3]). The biinfinite matrix AaA_{a} is also a bounded operator, as long as the biinfinite sequence aa arises from a finite alphabet.

If n>1n>1, for each ϕ[0,2π)\phi\in[0,2\pi), following [1, 14] we define the symbol of TT, as the following (n+1)×(n+1)(n+1)\times(n+1) matrix

(2) Tϕ=(b0c000a0eiϕa1b1c1000a2b2c200an2bn2cn2000an1bn1cn1cneiϕ00anbn);T_{\phi}=\begin{pmatrix}b_{0}&c_{0}&0&&&0&a_{0}e^{-i\phi}\\ a_{1}&b_{1}&c_{1}&0&&&0\\ 0&a_{2}&b_{2}&c_{2}&0&&\\ &\ddots&\ddots&\ddots&\ddots&\ddots&\\ &&0&a_{n-2}&b_{n-2}&c_{n-2}&0\\ 0&&&0&a_{n-1}&b_{n-1}&c_{n-1}\\ c_{n}e^{i\phi}&0&&&0&a_{n}&b_{n}\end{pmatrix};

while the symbol of TT for n=1n=1 is the 2×22\times 2 matrix

(3) Tϕ=(b0c0+a0eiϕa1+c1eiϕb1).T_{\phi}=\begin{pmatrix}b_{0}&c_{0}+a_{0}e^{-i\phi}\\ a_{1}+c_{1}e^{i\phi}&b_{1}\end{pmatrix}.

Recall that given a Hilbert space \mathcal{H} and a bounded operator AA on it, the numerical range is defined as the set

W(A)={Ax,x:x=1}.W(A)=\{\left<Ax,x\right>\,:\,\|x\|=1\}.

The Toeplitz-Haussdorf Theorem establishes that W(A)W(A) is a bounded convex subset of {\mathbb{C}} (closed, if the Hilbert space is finite dimensional) and hence the closure of the numerical range can be seen as the intersection of the closed half-spaces containing the numerical range.

Kippenhahn [17] (see also [18]) characterized two vertical support lines of W(A)W(A) for a given n×nn\times n matrix as Re(z)=λ1(A)\mathrm{Re}(z)=\lambda_{1}(A) and Re(z)=λn(A)\mathrm{Re}(z)=\lambda_{n}(A), where λ1(A)\lambda_{1}(A) and λn(A)\lambda_{n}(A) are the respective largest and least eigenvalues of Re(A)\mathrm{Re}(A) (recall that Re(A):=12(A+A)\mathrm{Re}(A):=\frac{1}{2}(A+A^{*}) and Im(A):=12i(AA)\mathrm{Im}(A):=\frac{1}{2i}(A-A^{*})). In fact, if αW(A)\alpha\in W(A) then λn(A)Re(α)λ1(A)\lambda_{n}(A)\leq\mathrm{Re}(\alpha)\leq\lambda_{1}(A) (and the equalities hold for some points α1,α2W(A)\alpha_{1},\alpha_{2}\in W(A)). Since eiθW(A)=W(eiθA)e^{i\theta}W(A)=W(e^{i\theta}A) for each θ[0,2π)\theta\in[0,2\pi), it follows that if αW(A)\alpha\in W(A), then eiθαW(eiθA)e^{-i\theta}\alpha\in W(e^{-i\theta}A) and hence Re(eiθα)λ1(eiθA)\mathrm{Re}(e^{-i\theta}\alpha)\leq\lambda_{1}(e^{-i\theta}A). It follows that the lines Re(eiθz)=λ1(eiθA)\mathrm{Re}(e^{-i\theta}z)=\lambda_{1}(e^{-i\theta}A) are support lines of W(A)W(A). Hence the convex set W(A)W(A) is uniquely determined by the numbers λ1(eiθA)\lambda_{1}(e^{-i\theta}A), as θ\theta varies on the interval [0,2π)[0,2\pi); i.e. W(A)W(A) is determined by the largest eigenvalue of Re(eiθA)\mathrm{Re}(e^{-i\theta}A), which equals cos(θ)Re(A)+sin(θ)Im(A)\cos(\theta)\mathrm{Re}(A)+\sin(\theta)\mathrm{Im}(A). Thus the numerical range is determined by the largest roots of the family of characteristic polynomials

det(tIncos(θ)Re(A)sin(θ)Im(A)).\det(tI_{n}-\cos(\theta)\mathrm{Re}(A)-\sin(\theta)\mathrm{Im}(A)).

The homogeneous polynomial FA(t,x,y)=det(tIn+xRe(A)+yIm(A))F_{A}(t,x,y)=\det(tI_{n}+x\mathrm{Re}(A)+y\mathrm{Im}(A)) is called the Kippenhahn polynomial of the matrix AA. It clearly follows that two matrices have the same numerical range if their Kippenhahn polynomials coincide. Furthermore,

max{t:FA(t,cos(θ),sin(θ))=0}=max{Re(eiθz):zW(A)}\max\{t\in{\mathbb{R}}\,:\,F_{A}(t,-\cos(\theta),-\sin(\theta))=0\}=\max\{\mathrm{Re}(e^{-i\theta}z)\,:\,z\in W(A)\}

for each θ[0,2π)\theta\in[0,2\pi).

2. The Kippenhahn polynomial of the symbol TϕT_{\phi}

In this section, after some preliminary work, we show that the closure of the numerical range of a n+1n+1-periodic tridiagonal operator TT is the numerical range of a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) matrix.

We will need the following lemma.

Lemma 2.1.

Consider the (n+1)×(n+1)(n+1)\times(n+1) “almost tridiagonal” matrix

Λ=(λ1,1λ1,20000λ1,n+1λ2,1λ2,2λ2,300000λ3,2λ3,3λ3,400000λ4,3λ4,40000000λn1,n1λn1,n00000λn,n1λn,nλn,n+1λn+1,10000λn+1,nλn+1,n+1),\Lambda=\begin{pmatrix}\lambda_{1,1}&\lambda_{1,2}&0&0&\dots&0&0&\lambda_{1,n+1}\\ \lambda_{2,1}&\lambda_{2,2}&\lambda_{2,3}&0&\dots&0&0&0\\ 0&\lambda_{3,2}&\lambda_{3,3}&\lambda_{3,4}&\dots&0&0&0\\ 0&0&\lambda_{4,3}&\lambda_{4,4}&\dots&0&0&0\\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\ 0&0&0&0&\dots&\lambda_{n-1,n-1}&\lambda_{n-1,n}&0\\ 0&0&0&0&\dots&\lambda_{n,n-1}&\lambda_{n,n}&\lambda_{n,n+1}\\ \lambda_{n+1,1}&0&0&0&\dots&0&\lambda_{n+1,n}&\lambda_{n+1,n+1}\end{pmatrix},

where every λi,j\lambda_{i,j}\in{\mathbb{C}}. Then, det(Λ)\det(\Lambda) equals

det(λ1,1λ1,2000λ2,1λ2,2λ2,3000λ3,2λ3,300000λn1,n0000λn,nλn,n+1000λn+1,nλn+1,n+1)λ1,n+1λn+1,1det(λ2,2λ2,300λ3,2λ3,30000λn1,n1λn1,n00λn,n1λn,n)+(1)nλn+1,1λ1,2λ2,3λn1,nλn,n+1+(1)nλ1,n+1λ2,1λ3,2λn,n1λn+1,n.\begin{split}&\det\begin{pmatrix}\lambda_{1,1}&\lambda_{1,2}&0&\dots&0&0\\ \lambda_{2,1}&\lambda_{2,2}&\lambda_{2,3}&\dots&0&0\\ 0&\lambda_{3,2}&\lambda_{3,3}&\dots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\dots&\lambda_{n-1,n}&0\\ 0&0&0&\dots&\lambda_{n,n}&\lambda_{n,n+1}\\ 0&0&0&\dots&\lambda_{n+1,n}&\lambda_{n+1,n+1}\end{pmatrix}-\lambda_{1,n+1}\lambda_{n+1,1}\det\begin{pmatrix}\lambda_{2,2}&\lambda_{2,3}&\dots&0&0\\ \lambda_{3,2}&\lambda_{3,3}&\dots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\dots&\lambda_{n-1,n-1}&\lambda_{n-1,n}\\ 0&0&\dots&\lambda_{n,n-1}&\lambda_{n,n}\end{pmatrix}\\ \\ &+(-1)^{n}\lambda_{n+1,1}\lambda_{1,2}\lambda_{2,3}\cdots\lambda_{n-1,n}\lambda_{n,n+1}+(-1)^{n}\lambda_{1,n+1}\lambda_{2,1}\lambda_{3,2}\cdots\lambda_{n,n-1}\lambda_{n+1,n}.\end{split}
Proof.

This follows by a long (but straightforward) application of the multilinearity of the determinant function and the Laplace Expansion Theorem. ∎

Let us set the following notation for the rest of this paper. For 0j<n0\leq j<n we define

αj=cj+aj+1¯2,γj=cjaj+1¯2i\alpha_{j}=\frac{c_{j}+\overline{a_{j+1}}}{2},\quad\gamma_{j}=\frac{c_{j}-\overline{a_{j+1}}}{2i}

and

αn=a0+cn¯2,γn=a0cn¯2i.\alpha_{n}=\frac{a_{0}+\overline{c_{n}}}{2},\quad\gamma_{n}=\frac{a_{0}-\overline{c_{n}}}{2i}.

We now find an expression for the Kippenhahn polynomial FTϕF_{T_{\phi}} of the symbol matrix TϕT_{\phi} of an arbitrary n+1n+1-periodic tridiagonal matrix TT acting on 2(0)\ell^{2}({\mathbb{N}}_{0}), involving the determinants of some tridiagonal matrices. This expression will be useful in what follows.

Proposition 2.2.

Let nn\in{\mathbb{N}}. Consider the symbol TϕT_{\phi}, that is, the (n+1)×(n+1)(n+1)\times(n+1) matrix defined as in (2) for n2n\geq 2 and as in (3) for n=1n=1. Then the Kippenhahn polynomial of TϕT_{\phi} is equal to

FTϕ(t,x,y)=\displaystyle F_{T_{\phi}}(t,x,y)={} Gn(t,x,y)|αnx+γny|2Hn(t,x,y)+2(1)nRe((αn¯x+γn¯y)j=0n1(αjx+γjy))cosϕ\displaystyle G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)+2(-1)^{n}\ \mathrm{Re}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)\cos\phi
2(1)nIm((αn¯x+γn¯y)j=0n1(αjx+γjy))sinϕ,\displaystyle-2(-1)^{n}\ \mathrm{Im}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)\sin\phi,

where Gn(t,x,y)G_{n}(t,x,y) is the determinant of the tridiagonal (n+1)×(n+1)(n+1)\times(n+1) matrix

(λ1,1λ1,20000λ2,1λ2,2λ2,30000λ3,2λ3,3λ3,30000λ4,3λ4,4000000λn,nλn,n+10000λn+1,nλn+1,n+1),\begin{pmatrix}\lambda_{1,1}&\lambda_{1,2}&0&0&\ldots&0&0\\ \lambda_{2,1}&\lambda_{2,2}&\lambda_{2,3}&0&\cdots&0&0\\ 0&\lambda_{3,2}&\lambda_{3,3}&\lambda_{3,3}&\cdots&0&0\\ 0&0&\lambda_{4,3}&\lambda_{4,4}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&0&\cdots&\lambda_{n,n}&\lambda_{n,n+1}\\ 0&0&0&0&\cdots&\lambda_{n+1,n}&\lambda_{n+1,n+1}\end{pmatrix},

and, where we set Hn(t,x,y)=1H_{n}(t,x,y)=1 when n=1n=1, and, for n2n\geq 2, we set Hn(t,x,y)H_{n}(t,x,y) to be the determinant of (n1)×(n1)(n-1)\times(n-1) tridiagonal matrix

(λ2,2λ2,3000λ3,2λ3,3λ3,4000λ4,3λ4,400000λn1,n1λn1,n000λn,n1λn,n).\begin{pmatrix}\lambda_{2,2}&\lambda_{2,3}&0&\cdots&0&0\\ \lambda_{3,2}&\lambda_{3,3}&\lambda_{3,4}&\cdots&0&0\\ 0&\lambda_{4,3}&\lambda_{4,4}&\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&\lambda_{n-1,n-1}&\lambda_{n-1,n}\\ 0&0&0&\cdots&\lambda_{n,n-1}&\lambda_{n,n}\end{pmatrix}.

Here we have set, for 1jn+11\leq j\leq n+1,

λj,j=t+Re(bj1)x+Im(bj1)y,\lambda_{j,j}=t+\mathrm{Re}(b_{j-1})x+\mathrm{Im}(b_{j-1})y,

and for 1jn1\leq j\leq n,

λj,j+1=αj1x+γjiy andλj+1,j=αj1¯x+γj1¯y.\lambda_{j,j+1}=\alpha_{j-1}x+\gamma_{j-i}y\quad\text{ and}\quad\lambda_{j+1,j}=\overline{\alpha_{j-1}}x+\overline{\gamma_{j-1}}y.
Proof.

We divide the proof in two cases. For n+1=2n+1=2, by computing the real and imaginary parts of the matrix TϕT_{\phi} in (3), we obtain that the 2×22\times 2 matrix tI2+xRe(Tϕ)+yIm(Tϕ)tI_{2}+x\mathrm{Re}(T_{\phi})+y\mathrm{Im}(T_{\phi}) is given by

(t+Re(b0)x+Im(b0)yα0x+γ0y+(α1x+γ1y)eiϕ(α0¯x+γ0¯y)+(α1¯x+γ1¯y)eiϕt+Re(b1)x+Im(b1)y),\begin{pmatrix}t+\mathrm{Re}(b_{0})x+\mathrm{Im}(b_{0})y&\alpha_{0}x+\gamma_{0}y+(\alpha_{1}x+\gamma_{1}y)e^{-i\phi}\cr(\overline{\alpha_{0}}x+\overline{\gamma_{0}}y)+(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)e^{i\phi}&t+\mathrm{Re}(b_{1})x+\mathrm{Im}(b_{1})y\end{pmatrix},

where α0\alpha_{0}, α1\alpha_{1}, γ0\gamma_{0} and γ1\gamma_{1} are as defined above. The determinant of this matrix can be simplified to

FTϕ(t,x,y)=\displaystyle F_{T_{\phi}}(t,x,y)={} (t+Re(b0)x+Im(b0)y)(t+Re(b1)x+Im(b1)y)|α0x+γ0y|2|α1x+γ1y|2\displaystyle(t+\mathrm{Re}(b_{0})x+\mathrm{Im}(b_{0})y)(t+\mathrm{Re}(b_{1})x+\mathrm{Im}(b_{1})y)-|\alpha_{0}x+\gamma_{0}y|^{2}-|\alpha_{1}x+\gamma_{1}y|^{2}
2Re((α0x+γ0y)(α1¯x+γ1¯y)eiϕ)\displaystyle\quad-2\mathrm{Re}\left((\alpha_{0}x+\gamma_{0}y)(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)e^{i\phi}\right)
=\displaystyle={} (t+Re(b0)x+Im(b0)y)(t+Re(b1)x+Im(b1)y)|α0x+γ0y|2|α1x+γ1y|2\displaystyle(t+\mathrm{Re}(b_{0})x+\mathrm{Im}(b_{0})y)(t+\mathrm{Re}(b_{1})x+\mathrm{Im}(b_{1})y)-|\alpha_{0}x+\gamma_{0}y|^{2}-|\alpha_{1}x+\gamma_{1}y|^{2}
2Re((α0x+γ0y)(α1¯x+γ1¯y))cosϕ+2Im((α0x+γ0y)(α1¯x+γ1¯y))sinϕ\displaystyle\quad-2\mathrm{Re}\left((\alpha_{0}x+\gamma_{0}y)(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)\right)\cos\phi+2\mathrm{Im}\left((\alpha_{0}x+\gamma_{0}y)(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)\right)\sin\phi
=\displaystyle={} G1(t,x,y)|α1x+γ1t|2H1(t,x,y)\displaystyle G_{1}(t,x,y)-|\alpha_{1}x+\gamma_{1}t|^{2}H_{1}(t,x,y)
2Re((α0x+γ0y)(α1¯x+γ1¯y))cosϕ+2Im((α0x+γ0y)(α1¯x+γ1¯y))sinϕ,\displaystyle\quad-2\mathrm{Re}\left((\alpha_{0}x+\gamma_{0}y)(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)\right)\cos\phi+2\mathrm{Im}\left((\alpha_{0}x+\gamma_{0}y)(\overline{\alpha_{1}}x+\overline{\gamma_{1}}y)\right)\sin\phi,

as desired.

Now, for the case n+13n+1\geq 3, by computing the real and imaginary parts of the matrix TϕT_{\phi} in (2), we can observe that tIn+1+xRe(Tϕ)+yIm(Tϕ)tI_{n+1}+x\mathrm{Re}(T_{\phi})+y\mathrm{Im}(T_{\phi}) is the matrix

(λ1,1λ1,2000λ1,n+1λ2,1λ2,2λ2,30000λ3,2λ3,3λ3,30000λ4,3λ4,4000000λn,nλn,n+1λn+1,1000λn+1,nλn+1,n+1),\begin{pmatrix}\lambda_{1,1}&\lambda_{1,2}&0&0&\ldots&0&\lambda_{1,n+1}\\ \lambda_{2,1}&\lambda_{2,2}&\lambda_{2,3}&0&\cdots&0&0\\ 0&\lambda_{3,2}&\lambda_{3,3}&\lambda_{3,3}&\cdots&0&0\\ 0&0&\lambda_{4,3}&\lambda_{4,4}&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&0&\cdots&\lambda_{n,n}&\lambda_{n,n+1}\\ \lambda_{n+1,1}&0&0&0&\cdots&\lambda_{n+1,n}&\lambda_{n+1,n+1}\end{pmatrix},

where we have now set

λ1,n+1=(αnx+γny)eiϕandλn+1,1=(αn¯x+γn¯y)eiϕ.\lambda_{1,n+1}=(\alpha_{n}x+\gamma_{n}y)e^{-i\phi}\quad\text{and}\quad\lambda_{n+1,1}=(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y)e^{i\phi}.

The above matrix is tridiagonal, except for the upper-right and bottom-left corners.

We can compute the determinant of the matrix polynomial tIn+1+xRe(Tϕ)+yIm(Tϕ)tI_{n+1}+x\mathrm{Re}(T_{\phi})+y\mathrm{Im}(T_{\phi}) by using Lemma 2.1 obtaining

FTϕ(t,x,y)=\displaystyle F_{T_{\phi}}(t,x,y)={} det(tIn+1+xRe(Tϕ)+yIm(Tϕ))\displaystyle\det(tI_{n+1}+x\mathrm{Re}(T_{\phi})+y\mathrm{Im}(T_{\phi}))
=\displaystyle={} Gn(t,x,y)|αnx+γny|2Hn(t,x,y)\displaystyle G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}\ H_{n}(t,x,y)
+(1)n(αn¯x+γn¯y)j=0n1(αjx+γjy)eiϕ+(1)n(αnx+γny)j=0n1(αj¯x+γj¯y)eiϕ\displaystyle+(-1)^{n}(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y)\prod_{j=0}^{n-1}(\alpha_{j}x+\gamma_{j}y)e^{i\phi}+(-1)^{n}(\alpha_{n}x+\gamma_{n}y)\prod_{j=0}^{n-1}(\overline{\alpha_{j}}x+\overline{\gamma_{j}}y)e^{-i\phi}
=\displaystyle={} Gn(t,x,y)|αnx+γny|2Hn(t,x,y)+2(1)nRe((αn¯x+γn¯y)j=0n1(αjx+γjy)eiϕ).\displaystyle G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}\ H_{n}(t,x,y)+2(-1)^{n}\mathrm{Re}\left((\overline{\alpha_{n}}x+\overline{\gamma_{n}}y)\prod_{j=0}^{n-1}(\alpha_{j}x+\gamma_{j}y)e^{i\phi}\right).

Computing the real part of the last term above, we obtain the equation

FTϕ(t,x,y)=\displaystyle F_{T_{\phi}}(t,x,y)={} Gn(t,x,y)|αnx+γny|2Hn(t,x,y)+2(1)nRe((αn¯x+γn¯y)j=0n1(αjx+γjy))cosϕ\displaystyle G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)+2(-1)^{n}\ \mathrm{Re}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)\cos\phi
2(1)nIm((αn¯x+γn¯y)j=0n1(αjx+γjy))sinϕ,\displaystyle-2(-1)^{n}\ \mathrm{Im}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)\sin\phi,

which completes the proof. ∎

For every nn\in{\mathbb{N}} and for a fixed point (x,y)2(x,y)\in{\mathbb{R}}^{2}, the angle ϕ[0,2π)\phi\in[0,2\pi) is involved only in the constant term (with respect to the variable tt) of the polynomial FTϕ(t,x,y)F_{T_{\phi}}(t,x,y). Furthermore, for every (x,y)2(x,y)\in{\mathbb{R}}^{2} and for every ϕ[0,2π)\phi\in[0,2\pi), the polynomial FTϕ(t,x,y)F_{T_{\phi}}(t,x,y), seen as a polynomial in tt, has n+1n+1 real roots, counting multiplicities, as it is the characteristic polynomial of the Hermitian matrix xRe(Tϕ)yIm(Tϕ)-x\mathrm{Re}(T_{\phi})-y\mathrm{Im}(T_{\phi}). The following lemma will be useful later when applied to the polynomial FTϕF_{T_{\phi}}.

Lemma 2.3.

Let F(t:ϕ)F(t:\phi) be a family of polynomials in [t]{\mathbb{R}}[t] given by the expression

F(t:ϕ)=tn+1+pntn++p1t+p0ucosϕvsinϕ,F(t:\phi)=t^{n+1}+p_{n}t^{n}+\ldots+p_{1}t+p_{0}-u\cos\phi-v\sin\phi,

where ϕ[0,2π)\phi\in[0,2\pi). Assume that the polynomial F(t:ϕ)F(t:\phi) has n+1n+1 real roots counting multiplicities for any angle ϕ[0,2π)\phi\in[0,2\pi). Let ϕ0\phi_{0}, ϕ1[0,2π)\phi_{1}\in[0,2\pi) be such that

ucosϕ0+vsinϕ0=u2+v2 and ucosϕ1+vsinϕ1=u2+v2.u\cos\phi_{0}+v\sin\phi_{0}=-\sqrt{u^{2}+v^{2}}\quad\text{ and }\quad u\cos\phi_{1}+v\sin\phi_{1}=\sqrt{u^{2}+v^{2}}.

Then

max{max{t:F(t:ϕ)=0}:0ϕ<2π}=max{t:F(t:ϕ1)=0},\max\left\{\max\left\{t\in{\mathbb{R}}\,:\,F(t:\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t\in{\mathbb{R}}\,:\,F(t:\phi_{1})=0\right\},

and

min{max{t:F(t:ϕ)=0}:0ϕ<2π}=max{t:F(t:ϕ0)=0}.\min\left\{\max\left\{t\in{\mathbb{R}}\,:\,F(t:\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t\in{\mathbb{R}}\,:\,F(t:\phi_{0})=0\right\}.
Proof.

Define p(t)p(t) as

p(t)=tn+1+pntn++p1t+p0.p(t)=t^{n+1}+p_{n}t^{n}+\ldots+p_{1}t+p_{0}.

Observe that, by assumption, the equation

p(t)=ucosϕ+vsinϕp(t)=u\cos\phi+v\sin\phi

has n+1n+1 real solutions (counting multiplicities) for every ϕ[0,2π)\phi\in[0,2\pi). For some ϕ[0,2π)\phi\in[0,2\pi), we have ucosϕ+vsinϕ=0u\cos\phi+v\sin\phi=0, and hence pp has n+1n+1 real roots (counting multiplicities) and the derivative of pp has nn real roots (counting multiplicities). Let r0r_{0} be the largest root of p(t)p^{\prime}(t). Hence, pp is increasing on the interval [r0,)[r_{0},\infty) and the equations

p(t)=ucosϕ+vsinϕp(t)=u\cos\phi+v\sin\phi

have a unique solution on the interval [r0,)[r_{0},\infty).

Observe that for every ϕ[0,2π)\phi\in[0,2\pi)

u2+v2ucosϕ+vsinϕu2+v2;-\sqrt{u^{2}+v^{2}}\leq u\cos\phi+v\sin\phi\leq\sqrt{u^{2}+v^{2}};

equality occurs on the left-hand-side inequality at ϕ0\phi_{0} while equality occurs on the right-hand-side inequality at ϕ1\phi_{1}.

For each ϕ[0,2π)\phi\in[0,2\pi), consider the number

max{t:p(t)=ucosϕ+vsinϕ}.\max\{t\in{\mathbb{R}}\,:\,p(t)=u\cos\phi+v\sin\phi\}.

Since the function pp is increasing on [r0,)[r_{0},\infty), the largest of these numbers, when ϕ\phi varies, occurs when tt is the largest solution of the equation

p(t)=u2+v2.p(t)=\sqrt{u^{2}+v^{2}}.

Hence we have

max{max{t:F(t,ϕ)=0}:0ϕ<2π}=max{t:F(t,ϕ1)=0}.\max\left\{\max\left\{t\in{\mathbb{R}}\,:\,F(t,\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t\in{\mathbb{R}}\,:\,F(t,\phi_{1})=0\right\}.

Analogously, the smallest, when ϕ\phi varies in [0,2π)[0,2\pi), among the largest solutions tt of the equations

p(t)=ucosϕ+vsinϕ,p(t)=u\cos\phi+v\sin\phi,

occurs when tt is the largest solution of the equation

p(t)=u2+v2.p(t)=-\sqrt{u^{2}+v^{2}}.

Hence we have

min{max{t:F(t,ϕ)=0}:0ϕ<2π}=max{t:F(t,ϕ0)=0}.\min\left\{\max\left\{t\in{\mathbb{R}}\,:\,F(t,\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t\in{\mathbb{R}}\,:\,F(t,\phi_{0})=0\right\}.\qed

In Theorem 2.7, we will show that the closure of the numerical range of TT is the numerical range of a single matrix. One of the key steps in the proof of said theorem will be to use the following proposition, which computes the closure of the numerical range of TT by using a single homogeneous polynomial, instead of the uncountable number of Kippenhahn polynomials of the symbols TϕT_{\phi}, which Theorem 2.8 in [14] would suggest: this is achieved by getting rid of the parameter ϕ\phi in the expression of the Kippenhahn polynomial of the symbol TϕT_{\phi} in Proposition 2.2.

Proposition 2.4.

Let nn\in{\mathbb{N}}. Suppose that T(a,b,c)T(a,b,c) is an n+1n+1-periodic tridiagonal operator acting on 2(0)\ell^{2}({\mathbb{N}}_{0}). Let GnG_{n} and HnH_{n} be as in Proposition 2.2 and let PP be the real homogeneous polynomial of degree 2(n+1)2(n+1) given by

P(t,x,y)=(Gn(t,x,y)|αnx+γny|2Hn(t,x,y))24j=0n|αjx+γjy|2.P(t,x,y)=\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)\right)^{2}-4\prod_{j=0}^{n}\left|\alpha_{j}x+\gamma_{j}y\right|^{2}.

Then P(t,0,0)=t2(n+1)P(t,0,0)=t^{2(n+1)} and

sup{Re(eiθz):.zW(T(a,b,c))}=max{t:P(t,cosθ,sinθ)=0},\sup\left\{\mathrm{Re}(e^{-i\theta}z)\colon\right.\bigl{.}z\in W\left(T(a,b,c)\right)\bigr{\}}=\max\{t\in{\mathbb{R}}\colon P(t,-\cos\theta,-\sin\theta)=0\},

for each θ[0,2π)\theta\in[0,2\pi).

Proof.

It is trivial to check that P(t,0,0)=t2(n+1)P(t,0,0)=t^{2(n+1)}. Now, let F(t:ϕ)=FTϕ(t,x,y)F(t:\phi)=F_{T_{\phi}}(t,x,y), where we know by Proposition 2.2 that

FTϕ(t,x,y)=Gn(t,x,y)|αnx+γny|2Hn(t,x,y)ucosϕvsinϕ,F_{T_{\phi}}(t,x,y)=G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)-u\cos\phi-v\sin\phi,

where

u=2(1)nRe((αn¯x+γn¯y)j=0n1(αjx+γjy))u=-2(-1)^{n}\ \mathrm{Re}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)

and

v=2(1)nIm((αn¯x+γn¯y)j=0n1(αjx+γjy)).v=2(-1)^{n}\ \mathrm{Im}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right).

Notice that

u2+v2=\displaystyle u^{2}+v^{2}={} 4Re2((αn¯x+γn¯y)j=0n1(αjx+γjy))+4Im2((αn¯x+γn¯y)j=0n1(αjx+γjy))\displaystyle 4\mathrm{Re}^{2}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)+4\mathrm{Im}^{2}\left(\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right)
=\displaystyle={} 4|(αn¯x+γn¯y)j=0n1(αjx+γjy)|2\displaystyle 4\left|\left(\overline{\alpha_{n}}x+\overline{\gamma_{n}}y\right){\prod_{j=0}^{n-1}}(\alpha_{j}x+\gamma_{j}y)\right|^{2}
=\displaystyle= 4j=0n|αjx+γjy|2.\displaystyle{}4\prod_{j=0}^{n}\left|\alpha_{j}x+\gamma_{j}y\right|^{2}.

The polynomial F(t:ϕ)F(t:\phi) has the form outlined in Lemma 2.3 and, as was mentioned before Lemma 2.3, it has n+1n+1 real roots, counting multiplicities. Hence, by Lemma 2.3, for ϕ0\phi_{0} and ϕ1\phi_{1} satisfying

ucos(ϕ0)+vsin(ϕ0)=u2+v2,ucos(ϕ1)+vsin(ϕ1)=u2+v2,u\cos(\phi_{0})+v\sin(\phi_{0})=-\sqrt{u^{2}+v^{2}},\qquad u\cos(\phi_{1})+v\sin(\phi_{1})=\sqrt{u^{2}+v^{2}},

we have that

max{max{t:F(t:ϕ)=0}:0ϕ<2π}=max{t:F(t:ϕ1)=0},\max\left\{\max\left\{t:F(t:\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t:F(t:\phi_{1})=0\right\},

and

min{max{t:F(t:ϕ)=0}:0ϕ<2π}=max{t:F(t:ϕ0)=0}.\min\left\{\max\left\{t:F(t:\phi)=0\right\}:0\leq\phi<2\pi\right\}=\max\left\{t:F(t:\phi_{0})=0\right\}.

Notice that

F(t:ϕ0)F(t:ϕ1)=\displaystyle F(t:\phi_{0})\cdot F(t:\phi_{1})={} (Gn(t,x,y)|αnx+γny|2Hn(t,x,y)(ucos(ϕ0)+vsin(ϕ0)))\displaystyle\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)-\left(u\cos(\phi_{0})+v\sin(\phi_{0})\right)\right)
(Gn(t,x,y)|αnx+γny|2Hn(t,x,y)(ucos(ϕ1)+vsin(ϕ1)))\displaystyle\cdot\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)-\left(u\cos(\phi_{1})+v\sin(\phi_{1})\right)\right)
=\displaystyle={} (Gn(t,x,y)|αnx+γny|2Hn(t,x,y))2(u2+v2)2\displaystyle\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)\right)^{2}-\left(\sqrt{u^{2}+v^{2}}\right)^{2}
=\displaystyle={} (Gn(t,x,y)|αnx+γny|2Hn(t,x,y))2(u2+v2)\displaystyle\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)\right)^{2}-(u^{2}+v^{2})
=\displaystyle={} P(t,x,y).\displaystyle P(t,x,y).

We also have, for each θ[0,2π)\theta\in[0,2\pi), that

(4) max{t:FTϕ(t,cosθ,sinθ)=0, 0ϕ<2π}=max{max{t:FTϕ(t,cosθ,sinθ)=0}: 0ϕ<2π}=max{t:FTϕ1(t,cosθ,sinθ)=0}=max{t:P(t,cosθ,sinθ)=0}.\begin{split}\max\{t\in{\mathbb{R}}\colon F_{T_{\phi}}(t,-\cos\theta,&-\sin\theta)=0,\ 0\leq\phi<2\pi\}\\ ={}&\max\left\{\max\left\{t\in{\mathbb{R}}\colon F_{T_{\phi}}(t,-\cos\theta,-\sin\theta)=0\right\}\colon\ 0\leq\phi<2\pi\right\}\\ ={}&\max\left\{t\in{\mathbb{R}}\colon F_{T_{\phi_{1}}}(t,-\cos\theta,-\sin\theta)=0\right\}\\ ={}&\max\{t\in{\mathbb{R}}\colon P(t,-\cos\theta,-\sin\theta)=0\}.\end{split}

The last equality follows since the roots of P(t,cosθ,sinθ)P(t,-\cos\theta,-\sin\theta) are those of F(t:ϕ1)=FTϕ1(t,cosθ,sinθ)F(t:\phi_{1})=F_{T_{\phi_{1}}}(t,-\cos\theta,-\sin\theta) and F(t:ϕ0)=FTϕ0(t,cosθ,sinθ)F(t:\phi_{0})=F_{T_{\phi_{0}}}(t,-\cos\theta,-\sin\theta), so by the choice of ϕ0\phi_{0} and ϕ1\phi_{1}, the largest root of P(t,cosθ,sinθ)P(t,-\cos\theta,-\sin\theta) is the largest root of FTϕ1(t,cosθ,sinθ)F_{T_{\phi_{1}}}(t,-\cos\theta,-\sin\theta).

By the definition of the Kippenhahn polynomial, we have

max{t:FTϕ(t,cos(θ),sin(θ))=0}=max{Re(eiθz):zW(Tϕ)}.\max\left\{t\in{\mathbb{R}}\colon F_{T_{\phi}}(t,-\cos(\theta),-\sin(\theta))=0\right\}=\max\left\{\mathrm{Re}(e^{-i\theta}z):z\in W(T_{\phi})\right\}.

and hence we obtain

(5) max{t:FTϕ(t,cos(θ),sin(θ))=0, 0ϕ<2π}=max{Re(eiθz):zW(Tϕ), 0ϕ<2π}.\begin{split}\max\left\{t\in{\mathbb{R}}\,:\,F_{T_{\phi}}(t,-\cos(\theta),-\sin(\theta))=0,\ 0\leq\phi<2\pi\right\}\\ =\max\left\{\mathrm{Re}(e^{-i\theta}z)\,:\,z\in W(T_{\phi}),\ 0\leq\phi<2\pi\right\}.\end{split}

Lastly, the equality

(6) sup{Re(eiθz):zW(T(a,b,c))}=max{Re(eiθz):zW(Tϕ), 0ϕ<2π}\sup\left\{\mathrm{Re}(e^{-i\theta}z)\,:\,z\in W\left(T(a,b,c)\right)\right\}=\max\left\{\mathrm{Re}(e^{-i\theta}z)\,:\,z\in W\left(T_{\phi}\right),\ 0\leq\phi<2\pi\right\}

follows from Theorem 2.8 in [14]. Putting together equations (4), (5) and (6), we obtain the desired conclusion. ∎

The following definition will be useful.

Definition 2.5.

Suppose that Q(t,x,y)Q(t,x,y) is a real homogeneous polynomial in 33 variables t,x,yt,x,y of degree mm with Q(1,0,0)>0Q(1,0,0)>0. If the equation Q(t,x0,y0)=0Q(t,x_{0},y_{0})=0 in tt has mm real solutions counting multiplicities for any (x0,y0)2(x_{0},y_{0})\in{\mathbb{R}}^{2} with x02+y02>0x_{0}^{2}+y_{0}^{2}>0, we say that QQ is hyperbolic (with respect to (1,0,0)(1,0,0)).

The above condition may also be formulated as: “the equation Q(t,cosθ,sinθ)=0Q(t,-\cos\theta,-\sin\theta)=0 in tt has mm real solutions for any angle 0θ<2π0\leq\theta<2\pi”.

Theorem 2.6 (Plaumann and Vinzant [20]).

Suppose that Q(t,x,y)Q(t,x,y) is a real homogeneous hyperbolic polynomial of degree mm with Q(1,0,0)=1Q(1,0,0)=1. Then there exists an m×mm\times m complex matrix AA satisfying

Q(t,x,y)=det(tIm+xRe(A)+yIm(A)).Q(t,x,y)={\rm det}(tI_{m}+x{\rm Re}(A)+y{\rm Im}(A)).

Remark. Helton and Vinnikov [12] (cf. [11]) proved a result stronger than the above theorem which guarantees that we can construct an m×mm\times m complex symmetric matrix AA satisfying a similar property. In this paper we do not use the symmetry of the matrix AA.

Depending on the above Theorem 2.6, we obtain the main theorem of this paper.

Theorem 2.7.

Suppose that T(a,b,c)T(a,b,c) is an n+1n+1-periodic tridiagonal operator acting on 2(0)\ell^{2}({\mathbb{N}}_{0}). Then there exists a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) complex matrix AA such that

W(T(a,b,c))¯=W(A)\overline{W(T(a,b,c))}=W(A)

where the matrix AA is chosen so that it satisfies

FA(t,x,y)=(Gn(t,x,y)|αnx+γny|2Hn(t,x,y))24j=0n|αjx+γjy|2,F_{A}(t,x,y)=\left(G_{n}(t,x,y)-|\alpha_{n}x+\gamma_{n}y|^{2}H_{n}(t,x,y)\right)^{2}-4\prod_{j=0}^{n}\left|\alpha_{j}x+\gamma_{j}y\right|^{2},

where the polynomials GnG_{n} and HnH_{n} are as in Proposition 2.2.

Proof.

By Theorem 2.6, there exists a 2(n+1)×2(n+1)2(n+1)\times 2(n+1) matrix AA such that P(t,x,y)=FA(t,x,y)P(t,x,y)=F_{A}(t,x,y), where PP is the homogeneous polynomial in Proposition 2.4. But also, by the same proposition,

sup{Re(eiθz):zW(T(a,b,c))}=\displaystyle\sup\left\{\mathrm{Re}(e^{-i\theta}z)\colon z\in W\left(T(a,b,c)\right)\right\}={} max{t:FA(t,cosθ,sinθ)=0}\displaystyle\max\{t\in{\mathbb{R}}\colon F_{A}(t,-\cos\theta,-\sin\theta)=0\}
=\displaystyle={} max{Re(eiθz):zW(A)}\displaystyle\max\left\{\mathrm{Re}(e^{-i\theta}z)\colon z\in W(A)\right\}

for each θ[0,2π)\theta\in[0,2\pi), and hence the closure of the numerical range of T(a,b,c)T(a,b,c) equals the numerical range of AA. ∎

It is clear that given the operator TT, one can compute the polynomial PP which, by the Plaumann-Vinzant Theorem, is the Kippenhahn polynomial of some matrix AA. The question arises on whether the matrix AA can be explicitly computed. The paper [20] shows a method for constructing such a matrix AA (see also [12, 19]).

In some cases, the matrix AA can be found explicitly, as the next proposition shows. The reader should compare our next result to Theorem 4.1 in [1], where an alternative method for computing the numerical range of the tridiagonal operator T(a,b,c)T(a,b,c) is obtained, when aa, bb and cc are real 22-periodic sequences.

Proposition 2.8.

Let aa and cc be real 22-periodic sequences and let bb the constant 0 sequence. If

S=(α0+α1γ0γ10γ0α0+α10γ1γ10α0α1γ00γ1γ0α0α1)S=\begin{pmatrix}\alpha_{0}+\alpha_{1}&-\gamma_{0}&-\gamma_{1}&0\\ -\gamma_{0}&-\alpha_{0}+\alpha_{1}&0&-\gamma_{1}\\ -\gamma_{1}&0&\alpha_{0}-\alpha_{1}&-\gamma_{0}\\ 0&-\gamma_{1}&-\gamma_{0}&-\alpha_{0}-\alpha_{1}\end{pmatrix}

then W(T(a,b,c))¯=W(S)\overline{W(T(a,b,c))}=W(S).

Proof.

It is a straightforward computation that the polynomial PP in Proposition 2.4 equals

P(t,x,y)=(t2|α0x+γ0y|2|α1x+γ1y|2)24|α0x+γ0y|2|α1x+γ1y|2P(t,x,y)=\left(t^{2}-|\alpha_{0}x+\gamma_{0}y|^{2}-|\alpha_{1}x+\gamma_{1}y|^{2}\right)^{2}-4|\alpha_{0}x+\gamma_{0}y|^{2}|\alpha_{1}x+\gamma_{1}y|^{2}

But a computation also shows that FS(t,x,y)=P(t,x,y)F_{S}(t,x,y)=P(t,x,y) and hence, by Theorem 2.7, we have W(T(a,b,c))¯=W(S)\overline{W(T(a,b,c))}=W(S). ∎

We illustrate the above proposition with some examples.

Example 2.9.

Let aa be the 22-periodic sequence with period word 1 31\ 3, let bb be the constant 0 sequence and let cc be the 22-periodic sequence with period word 4 84\ 8. Then, by Proposition 2.8, if

S=(812i72i012i1072i72i0112i072i12i8),S=\begin{pmatrix}8&\frac{1}{2}i&-\frac{7}{2}i&0\\[5.0pt] \frac{1}{2}i&1&0&-\frac{7}{2}i\\[5.0pt] -\frac{7}{2}i&0&-1&\frac{1}{2}i\\[5.0pt] 0&-\frac{7}{2}i&\frac{1}{2}i&-8\end{pmatrix},

then W(T(a,b,c))¯=W(S)\overline{W(T(a,b,c))}=W(S). The boundary of the numerical range of SS is shown in Figure 1. The Kippenhahn polynomial of SS equals

P(t,x,y)=t465t2x225t2y2+64x4+192x2y2+144y4.P(t,x,y)=t^{4}-65t^{2}x^{2}-25t^{2}y^{2}+64x^{4}+192x^{2}y^{2}+144y^{4}.

The quartic curve P(t,x,y)=0P(t,x,y)=0 in the complex projective plane has a pair of ordinary singular points of multiplicity 22 at (t,x,y)=(0,1,±i2/3)(t,x,y)=(0,1,\pm i\sqrt{2/3}) and there is no other singular point. So the algebraic curve theory tell us that the homogeneous polynomial P(t,x,y)P(t,x,y) is irreducible in the polynomial ring.

Refer to caption
Figure 1. Boundary of the numerical range of SS

Hence, using for example Proposition 2.3 in [8], there cannot be a matrix RR of size m×mm\times m, with 1m<41\leq m<4 with W(R)=W(S)W(R)=W(S). Incidentally, this shows that the size of the matrix AA in Theorem 2.7 is optimal.

Example 2.10.

Let aa and cc be real 22-periodic sequences with period words a0a1a_{0}a_{1} and c0c1c_{0}c_{1} respectively, and let bb be the constant sequence 0. If a0=c1a_{0}=c_{1}, then γ1=0\gamma_{1}=0 and then, by Proposition 2.8, W(T(a,b,c))¯=W(S)\overline{W(T(a,b,c))}=W(S), where

S=(α0+α1γ000γ0α0+α10000α0α1γ000γ0α0α1).S=\begin{pmatrix}\alpha_{0}+\alpha_{1}&-\gamma_{0}&0&0\\ -\gamma_{0}&-\alpha_{0}+\alpha_{1}&0&0\\ 0&0&\alpha_{0}-\alpha_{1}&-\gamma_{0}\\ 0&0&-\gamma_{0}&-\alpha_{0}-\alpha_{1}\end{pmatrix}.

But this implies that

W(T(a,b,c))¯=conv(W(A+α1I)W(Aα1I)),\overline{W(T(a,b,c))}=\mathrm{conv}\left(W(A+\alpha_{1}I)\cup W(A-\alpha_{1}I)\right),

where

A=(α0γ0γ0α0).A=\begin{pmatrix}\alpha_{0}&-\gamma_{0}\\ -\gamma_{0}&-\alpha_{0}\end{pmatrix}.

That is, W(T(a,b,c))¯\overline{W(T(a,b,c))} is the convex hull of two ellipses (possibly degenerate), each one a translation of a single elllipse (possibly degenarate) centered at the origin.

Example 2.11.

Let aa be the 22-periodic sequence with period word 1,11,-1, let bb be the constant 0 sequence and let cc be the constant 11 sequence. Then, by Example 2.10, we have that W(T(a,b,c))¯=conv(W(A+I)W(AI))\overline{W(T(a,b,c))}=\mathrm{conv}\left(W(A+I)\cup W(A-I)\right), where

A=(0ii0).A=\begin{pmatrix}0&i\\[5.0pt] i&0\end{pmatrix}.

But it is easy to see that W(A)W(A) is the closed line segment joining i-i and ii. Hence, W(T(a,b,c))¯\overline{W(T(a,b,c))} equals the convex hull of the closed line segment joining 1i-1-i and 1+i-1+i and the closed line segment joining 1i1-i and 1+i1+i; i.e., the square with vertices 1i-1-i, 1+i-1+i, 1i1-i and 1+i1+i, recovering (most of) Theorem 9 in [5].

Example 2.12.

Let aa and cc be real 22-periodic sequences with period words a0a1a_{0}a_{1} and c0c1c_{0}c_{1} respectively, and let bb be the constant sequence 0. If c0=a1c_{0}=a_{1}, then γ0=0\gamma_{0}=0 and then, by Proposition 2.8, W(T(a,b,c))¯=W(S)\overline{W(T(a,b,c))}=W(S), where

S=(α0+α10γ100α0+α10γ1γ10α0α100γ10α0α1).S=\begin{pmatrix}\alpha_{0}+\alpha_{1}&0&-\gamma_{1}&0\\ 0&-\alpha_{0}+\alpha_{1}&0&-\gamma_{1}\\ -\gamma_{1}&0&\alpha_{0}-\alpha_{1}&0\\ 0&-\gamma_{1}&0&-\alpha_{0}-\alpha_{1}\end{pmatrix}.

But if

U=(1000001001000001),U=\begin{pmatrix}1&0&0&0\\ 0&0&1&0\\ 0&1&0&0\\ 0&0&0&1\end{pmatrix},

then

USU=(α0+α1γ100γ1α0α10000α0+α1γ100γ1α0α1).U^{*}SU=\begin{pmatrix}\alpha_{0}+\alpha_{1}&-\gamma_{1}&0&0\\ -\gamma_{1}&\alpha_{0}-\alpha_{1}&0&0\\ 0&0&-\alpha_{0}+\alpha_{1}&-\gamma_{1}\\ 0&0&-\gamma_{1}&-\alpha_{0}-\alpha_{1}\end{pmatrix}.

But this implies that

W(T(a,b,c))¯=conv(W(A+α0I)W(Aα0I)),\overline{W(T(a,b,c))}=\mathrm{conv}\left(W(A+\alpha_{0}I)\cup W(A-\alpha_{0}I)\right),

where

A=(α1γ1γ1α1).A=\begin{pmatrix}\alpha_{1}&-\gamma_{1}\\ -\gamma_{1}&-\alpha_{1}\end{pmatrix}.

That is, W(T(a,b,c))¯\overline{W(T(a,b,c))} is the convex hull of two ellipses (possibly degenerate), each one a translation of a single elllipse (possibly degenarate) centered at the origin.

Example 2.13.

Let aa be the 22-periodic sequence with period word 0101, let bb be the constant 0 sequence and let cc be the constant 11 sequence. Then, by Example 2.12, we have that W(T(a,b,c))¯=conv(W(A+I)W(AI))\overline{W(T(a,b,c))}=\mathrm{conv}\left(W(A+I)\cup W(A-I)\right), where

A=(1212i12i12).A=\begin{pmatrix}\frac{1}{2}&-\frac{1}{2}i\\[5.0pt] -\frac{1}{2}i&-\frac{1}{2}\end{pmatrix}.

But, if

U=(121212i12i),U=\begin{pmatrix}\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\[10.0pt] -\frac{1}{\sqrt{2}}i&\frac{1}{\sqrt{2}}i\end{pmatrix},

then UU is unitary and UAUU^{*}AU equals

(0100).\begin{pmatrix}0&1\\ 0&0\end{pmatrix}.

Therefore, W(T(a,b,c))¯=conv(W(B+I)W(BI))\overline{W(T(a,b,c))}=\mathrm{conv}\left(W(B+I)\cup W(B-I)\right), recovering the result in [14, Theorem 3.6].

In the paper [15] we explore some sufficient conditions under which the matrix AA can be explicitly found, namely if b=0b=0 and there is some symmetry in the periodic sequences aa and cc, then the polynomial PP can be factored as the product of the Kippenhahn polynomials of two computable matrices, which generalizes the previous four examples.

References

  • [1] N. Bebiano, J. da Providência, and A. Nata. The numerical range of banded periodic Toeplitz operators. J. Math. Anal. Appl., 398:189–197, 2013.
  • [2] S.N. Chandler-Wilde, R. Chonchaiya, and M. Lindner. Eigenvalue problem meets Sierpinski triangle: computing the spectrum of a non-self-adjoint random operator. Oper. Matrices, 5:633–648, 2011.
  • [3] S. N. Chandler-Wilde, R. Chonchaiya, and M. Lindner. On the spectra and pseudospectra of a class of non-self-adjoint random matrices and operators. Oper. Matrices, 7:739–775, 2013.
  • [4] S. N. Chandler-Wilde and E. B. Davies. Spectrum of a Feinberg-Zee random hopping matrix. J. Spectr. Theory, 2:147–179, 2012.
  • [5] M. T. Chien and H. Nakazato. The numerical range of a tridiagonal operator. J. Math. Anal. Appl. 373:297-304, 2011.
  • [6] R.T. Chien and I.M. Spitkovsky. On the numerical ranges of some tridiagonal matrices. Linear Algebra Appl., 470:228–240, 2015.
  • [7] J. Feinberg and A. Zee. Spectral curves of non-hermitean Hamiltonians. Nuclear Phys. B, 552:599–623, 1999.
  • [8] H. L. Gau and P. Y. Wu. Companion matrices: reducibility, numerical ranges and similarity to contractions. Linear Algebra Appl. 383:127–142, 2004.
  • [9] R. Hagger. The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators. J. Funct. Anal., 269:1563–1570, 2015.
  • [10] R. Hagger. On the spectrum and numerical range of tridiagonal random operators. J. Spectr. Theory, 6:215266, 2016.
  • [11] J.  W. Helton and I. M. Spitkovsky. The possible shapes of numerical ranges. Operators and Matrices, 6:607-611, 2012.
  • [12] J. W. Helton and V. Vinnikov. Linear matrix inequality representations of sets. Communications on Pure and Applied Mathematics,60: 654-674, 2007.
  • [13] C. Hernández-Becerra and B. A. Itzá-Ortiz. A class of tridiagonal operators associated to some subshifts. Open Math., 14:2391–5455, 2016.
  • [14] B. A. Itzá-Ortiz and R. A. Martínez-Avendaño. The numerical range of a class of periodic tridiagonal operators. Linear Multilinear Algebra. 69:786–806, 2021.
  • [15] B. A. Itzá-Ortíz, R. A. Martínez-Avendaño and H. Nakazato. The numerical range of some tridiagonal operators is the convex hull of the numerical ranges of two finite matrices. Preprint arXiv:2103.01866 [math.FA].
  • [16] T. Kato. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.
  • [17] R. Kippenhahn, Über den wertevorrat einer Matrix. Math. Nachr., 6:193-228, 1951.
  • [18] R. Kippenhahn. On the numerical range of a matrix. Translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach. Linear Multilinear Algebra 56:185-225, 2008.
  • [19] D. Plaumann, B. Sturmfels and C. Vinzant, Computing linear matrix representations of Helton-Vinnikov curves, in Mathematical methods in systems, optimization, and control, Oper. Theory Adv. Appl. 222, 259–277, Birkhäuser/Springer Basel AG, Basel, 2012.
  • [20] D. Plaumann and C. Vinzant. Determinantal representations of hyperbolic plane curves: An elementary approach, J. Symbolic Comput., 57:48–60, 2013.